5-3 Results of Geological Survey

In order to gauge the geological and strata conditions required to examine and confirm the types of bridge foundations and supporting layers, boring, standard penetration tests, soil sampling and indoor tests were implemented. As a result of these tests, ground cross-sections, column diagrams and indoor test results necessary for the basic design were collected. The boring results from each bridge site are shown on the next page.

В	aka	novi		_	FIE	ELD	В	DRI	NG	LC)G						RING EET	NO.	1 O		4
	JECT:	Bridge Construction, Bougainville Trunk Road	Coord	linates:	N:	9:	3257	74.58	37	E:		65321.7	743	Wat	er Le	vel:		0.0	00	_ m	n
LOCA	ATION:	Bakanovi River, Abutment at Arawa Side	Groun	d Eleva	ation (n	n-MS	L):			-0.	522		_ m	Star	ting [Date:		23/3/	2008	_	
CLIEN	NT:	Chodai Co., Ltd.	Max.E	Orilling [Depth:					20	.50		_ m	Finis	shing	Date:		25/3/	2008	_	
																					╛
					Ê		To	tal			Ē	Natural Water Content	imit						SPT		
Ē	5010		9 0	9 2	RECOVERY (cm)		U	nit			Plastic Limit	Conte	Liquid Limit		Spe	cific		Blo	w Coun	t	
DEPTH (m.)	3RAPHIC	SOIL DESCRIPTION	SAMPLING METHOD	SAMPLE NO.	COVE			ight			⊩	•	- Ī		Gra	vity		(E	Blow/ft)		
8	5		S ≅	ŝ	2	١,	(Tor	v/m³)	^			(%)		١.			١.				
		0.0-4.0 m, SW, well-graded SAND with gravel, 40% fine	wo			T '	0 1.	, <u>z</u> .		3	6	90 -	120	t	.4 2.	6 2.8	T'	0 20	30	40	┪
1 -		angular gravel of gray volcanic rock with 3-4 cm max sized, 60% medium-coarse subangular sand, medium dense-	wo																		
']		dense, brown-brownish gray, <u>Former riverbed deposit</u>	SS	1	24															• 4	12
2 -			wo																● 26		
-			SS	2	7	L							+	⊢			⊢		/ 1°	+	\dashv
3 -			WO SS	3	14													-	18	+	\dashv
-			wo	٦	14													Н			1
4 -		4.0-7.0 m, SW-SP, well-poorly graded SAND with gravel,	SS	4	12									T			T	41	6		1
5 -		20% fine subangular gravel of gray volcanic rock with 2-3 cm max sized, 80% medium-coarse subangular sand,	wo																		٦
J -		medium dense-dense, brownish-dark greenish gray, Alluvial deposit	SS	5	18												L		27		
6 -			WO														<u> </u>		9 27		
-			SS	6	13														#	+	_
7 -		7.0-8.0 m, MH, sandy SILT, 60% silt, 35% sand & 5%	ss	7	33		• 1	.7			37				2 .4		1		23	+	-
-		gravel, non plasticity, very stiff, greenish gray, <u>Volcanic ash</u> deposit (?)	WO																$\forall \vdash$		_
8 -		8.0-11.0 m, SW-SP, well-poorly graded SAND with gravel,	SS	8	30														30		
9 -		10-20% very fine subround gravel of white volcanic rock with some random 2-3 cm max sized, 80-90% very fine-	wo																Z		
		medium subangular sand, medium dense-dense & loose at end-formation, greenish-brownish gray, <u>Alluvial deposit</u>	SS	9	20														21		
10 -			WO							_							L	\angle	\vdash	+	_
-			SS	10	31												H		\vdash	+	-
11 -		11.0-12.0 m, MH, SILT, non plasticity, medium stiff, with	ss	11	38												H	8		+	-
-		<10% medium-coarse subangular sand, brownish gray, Volcanic ash deposit (?)	wo														<u> </u>			+	1
12 -		12.0-13.0 m, SP, SAND with 10% volcanic gravel of 3.5 cm max sized, 90% medium-coarse sand, medium dense,	SS	12	35)	19		
13 -		brownish gray, <u>Alluvial deposit</u>	wo																		╛
-	•	13.0-16.0 m, SC-SM, clayey-silty SAND, 40% clay-silt, very low-medium plasticity, loose at upper-very loose at end	SS	13	35												\Box	10	\vdash	_	4
14 -		formation, with some 5-20% random fine angular- subangular gravel of volcanic rock at 1.5-2.0 cm max sized,	wo	14	40			•	1.9	!	32			-		● 2.6	\perp	7	\vdash		\dashv
-		greenish brown-pale brown, Alluvial/olcanic ash deposit (?)	WO	1///	70							+					/-				\exists
15 -			SS	15	45											-00	Le .				1
16 -			UD	1				•	1.9		30					● 2.8			\leq		
		16.0-20.5 m, SM-SP-SW, silty SAND at upper-poorly-well graded SAND with gravel at end formation with 10% fine	SS	16	40														\perp	\perp	1
17 -		subangular gravel of brown volcanic rock with 1 cm max sized & 30% silt, 60% fine-coarse subangular sand, very	WO							• :					• 2	5			\vdash		4
-		dense, greenish-brownish gray to dark brown, Alluvial deposit	SS WO	17	39						[]	-			• -		\vdash		\vdash	+	\dashv
18 -		<u>acposit</u>	ss	18	23															+	┪
-			wo																		ļ
19 -			SS	19	15																1
20 -			wo															П	\prod	1	J
-		End of Borehole @ 20.5 m	SS	20	10							\vdash		1			\vdash	\vdash	+	+	4
-	-	End of Borefiole @ 20.5 m	-	-		\vdash							-	\vdash			\vdash	\vdash	+	+	\dashv
-	1					\vdash						+	-					\vdash	+	+	\dashv
-	1					T											T	П	\top	+	1
-]																				
]																		П	\perp		
-													_	_			\vdash		\perp	+	_
-						\vdash						\vdash	-	-			\vdash	\vdash	+	+	4
-	-	SS - Split Spoon Sampling DC - Dry Coring				\vdash						\vdash	-	\vdash			\vdash	H	+	+	4
	i		⊢—	-	⊢—	-	-			⊢	—	\vdash	+	+-	-	\vdash	-	\vdash	-	+	_

Bov	<i>Ι</i> Δ			FIF	ELD	BC)RI	NG	1.0)G						BORING	NO.	Ь	BH-2	
						_			_	_										
PROJECT:	Bridge Construction, Bougainville Trunk Road	Coord	linates:	N:	93	32868	34.72	27	_ E:		766149	.451	Wate	er Lev	vel:		-0	.60		m
LOCATION	Bove River, Abutment at Buka Side	Grour	d Eleva	ation (n	n-MSL	_):			-0.	174		m	Start	ing D	ate:	_	26/3	/2008		
CLIENT:	Chodai Co., Ltd.	Max.E	Orilling [Depth:					33	.50		m	Finis	hing	Date:		30/3	/2008	<u> </u>	
				<u> </u>		То	tal			. <u></u>	ater	=						SPT		
			o o	RECOVERY (cm)		Ur				Plastic Limit	Natural Water Content	Liquid Limit		Spe	cific		Blo	ow Co		
DEPTH (m.)	SOIL DESCRIPTION	SAMPLING METHOD	SAMPLE NO.	OVER,		Wei	ight			Plas	Nati C. Dat			Gra	vity		(1	Blow/	ft)	
GRAI		SAM	SAM	REC		(Ton	/m ³)			'	(%)	1								
	0.0-3.0 m, SW, well-graded SAND with gravel, 30% fine	wo			1.0	6 1.8	3 2.	0	3	0 6	0 90	120	2	.4 2.6	3 2.8	1	10 2	0 30) 40)
	subangular gravel of brown volcanic rock with 2.5-3 cm max sized, 70% medium-coarse subangular sand, medium	wo									П									
1 -	dense, gray-brown, <u>Backfill (?)</u>	SS	1	17													• 14			
2 -		WO															<u> </u>	23		
		SS	2	20					_		Н	+			+	-	/	23		
3 -	3.0-20.0 m, SM-SW-SP, slity to well-poorly graded SAND	SS	3	13												-	10			
4	with gravel, 5-25% fine subangular gravel of white volcanic rock with 1-3 cm max sized with 5-25% silt, 75-95% fine-	WO																		
7 10000	coarse subangular sand, medium-very dense, brownish- greenish gray, <i>Alluvial deposit</i>	SS	4	10													• 1	5		
5		WO	5	21							Н									7
1000000		WO	5	21															Н	
6		SS	6	18														•	28	
7		WO																		$\overline{}$
		SS	7	15					_											_
8 -		WO	8	17														Ý 2	5	
		wo	Ť															\parallel		
9		SS	9	22														23		
10 -		WO									Ш				_			_ \	• 3	
- 1000000000		SS	10	28																
11 -		ss	11	34				• 2.	• 1	7	Н				● 2.6					\rightarrow
12		WO																		
		SS	12	22														1	27	
13 -		WO SS	13	20	H				_		Н	+	Н		+	+			29	
-		wo	13	20														\forall		
14		SS	14	22							П							9 2	5	
15 -		WO																		
- 100000000		SS	15	30							Н		H				H	18		
16 -		SS	16	16	Н				_		Н	+	Н		+		4	17		
17 -		wo																\setminus		
"]		SS	17	22					• 1	6				•	2.6				32	
18 -		WO	-						_										• 3	6
		SS	18	29															\forall	
19 -		SS	19	30																42
20		wo																Ι.	30	
	20.0-22.0 m, SW-SP, well-poorly graded SAND, fine-coarse subangular sand, medium-dense, brownish gray-gray,	SS	20	10					_		\square	_	\vdash			\perp		$\perp /$	-	
21 -	Alluvial deposit	WO SS	21	20	\vdash				_		\vdash		H					23		
		wo	-	۲	Н						\vdash	+	Н				1	1		
22	22.0-23.5 m, MH, SILT, non plasticity, stiff-very stiff, grayish brown, with wood remnant, <i>Volcanic ash deposit (2)</i>	SS	22	45													12			
23		WO									$\sqcup \mathbb{I}$				$-\mathbb{I}$		\perp	22		
	23.5-25.0 m, SW, well graded SAND with gravel, 10% fine	SS	23	29	\vdash				_	_	\vdash	+	\vdash			+	-	\ <u>`</u>		
24 -	subangular gravel of white volcanic rock with 2.5 cm max sized, 90% silt-medium subangular sand, medium dense,	ss	24	34	\vdash				\vdash		\vdash	+	\vdash		+	+			29	
25	brownish gray, <u>Alluvial with volcanic ash deposit (?)</u>	wo	Ĺ	L												#		ĺ		
25	25.0-33.5 m, MH, SILT, non plasticity, very soft-stiff, grayish brown-greenish gray, <i>Volcanic ash deposit (2)</i>	SS	25	45												1				
	5 5 - 5, <u></u>																			

В	ove					ВС	RII	NG	LO	G							BOR SHE		NO.		BH-2 OF	\dashv
		Bridge Construction, Bougainville Trunk Road Bove River, Abutment at Buka Side Chodai Co., Ltd.		inates: d Eleva rilling D			.):			E:_ -0.1	17	66149		Start		Date:			-0.1 26/3/2 30/3/2	2008		т
DEPTH (m.)	GRAPHIC LOG	SOIL DESCRIPTION	SAMPLING METHOD	SAMPLE NO.	RECOVERY (cm)		To Ur Wei (Ton	nit ight /m³)			('	Content	Liquid Limit		Spe Gra	vity			Blov (B	SPT w Co	ount ft)	
26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		25.0-33.5 m, MH, SILT, non plasticity, very soft-stiff, grayish brown-greenish gray, Volcanic ash deposit (?) End of Borehole @ 33.5 m	\$\$ WO \$\$ WO \$\$\$ WO \$\$\$ WO \$\$\$\$ WO \$\$\$\$\$\$\$\$	25 26 27 28 29 30 31 31 32	45 45 45 45 45 45 45 45	1.4		3 2.0		30		90	120	2.4	• 2.5			5 5	8 8 8	22		
-		SS - Split Spoon Sampling DC - Dry Coring WO - Wash Boring									-	+	\perp	\vdash			\dashv	_	\dashv	\dashv	\dashv	\dashv

P	uka	urobi 1			FIE	LD	В	ORI	NG	LC)G						BORI		NO.		3H-3 OF	1
														+								+
	JECT:	Bridge Construction, Bougainville Trunk Road	1	linates:		93				-			8.845	1	ter Le		-			85		m
		Pukarobi1 River, Abutment at Buka Side	1	d Eleva		n-MSL							r						31/3/2			
CLIEN	NT:	Chodai Co., Ltd.	Max.E	Orilling I	Depth:					23	.50		r	n Fin	ishing	Date	e: _		2/4/2	.008	—	
	(9				Ê		То	tal			imit Ei	Natural Water Content	Emit E	\dagger						SPT		1
(m.)	SRAPHIC LOG	SOIL DESCRIPTION	D O	o S III	RECOVERY (cm)			nit			Plastic Limit	Vatura	Liquid Limit			ecific				w Cou		
DEPTH (m.)	RAPH	SOIL DESCRIPTION	SAMPLING METHOD	SAMPLE NO.	ECOV			ight /m³)			<u></u>	(%)	\dashv		Gra	avity			(В	Blow/ft	:)	
۵	o o		o≥	o,	<u>~</u>	1.0		3 2.	0	3	0 6		120		2.4 2	6 2.8	3	1(0 20	30	40	
		0.0-2.0 m, MH-SP, SILT-poorly graded SAND, 30% silt, with some random fine subangular gravel of white volcanic rock,	WO																			
1 -		70% medium subangular sand, very loose, greenish- brownish gray,, <u>Alluvial deposit</u>	WO											\perp				1	\dashv	_	\perp	4
-		orania grajii <u>riilavai aggoot</u>	SS	1	20									+			ı	1	\dashv	-	+	-
2 -		2.0-8.0 m, SM, silty SAND, well-poorly graded SAND with	SS	2	13												k	1				-
-		some gravel, very random subangular gravel of white & gray volcanic rock with 1-3 cm max sized with 15% silt,	wo	Ť										+				\forall			+	┨
3 -		85% fine-coarse subangular sand, loose-medium dense, brownish gray-dark gray, <u>Alluvial deposit</u>	SS	3	15														11			
4 -			WO																		\perp	
-			SS	4	24					• 1	8					● 2.6		1	9		\perp	4
5 -			WO	5	Loss									-				+	\dashv	_	+	-
-			WO	5	LOSS	\vdash							+	+	+			\dashv	\dashv	+	+	\dashv
6 -			SS	6	22														12		+	1
7 -			WO																			
			SS	7	18													_1	9			4
8 -		8.0-14.0 m, SW, well graded SAND with gravel, 10-30%	WO	_										-					8	_	+	4
-		fine subangular gravel of white, gray, brown volcanic rock with 3 cm max sized, 70-90% fine-coarse subangular sand,	SS	8	20									+				\rightarrow	$\overline{}$	-	+	\dashv
9 -		loose-medium dense, whitish-greenish-brownish gray,	SS	9	13									+				\dashv	7	20	+	1
10 -		Alluvial deposit	wo																	A		
10 -			SS	10	27															7	30	
11 -			WO																\dashv	1 2	7	4
-			SS WO	11	14									+				\dashv	\rightarrow	4	+	+
12 -			SS	12	Wood													\dashv	*	;	+	1
-			wo																\exists		+	1
13 -			SS	13	Wood													3				
14 -		440.470 00 L 0	WO															\coprod			_	4
-		14.0-17.0 m, SC, clayey SAND, 50-50%:fine-sand, low plasticity, medium stiff, pale greenish-brownish gray, mixed	SS	14	45					_				+				5	\dashv	_	+	4
15 -		with more fine-medium sand at end layer, <u>Alluvial/Volcanic</u> ash deposit (?)	WO SS	15	45				● 2.0		27			-		• 2.	7	1	,	_	+	+
-			UD	1	70					-	-			-				\forall	\dashv	_	+	┨
16 -			SS	16	45									T				5			\top	┨
17 -			WO																\subseteq			
		17.0-23.5 m, SM, silty SAND, well graded SAND with some gravel, 10% fine subangular gravel of white volcanic rock	SS	17	28									_						22	\perp	4
18 -		with 1-2.5 cm max sized with 30% silt, 60% fine-coarse subangular sand, medium-very dense, brownish-greenish	WO															\dashv	\dashv		28	4
_		gray, <u>Alluvial deposit</u>	SS	18	28									+				\dashv		\rightarrow	\forall	-
19 -			ss	19	26	\vdash						Н	+	+	+	Н		\dashv	\dashv	+	+	5
20			wo																			_
20 -			SS	20	18																\perp	5
21 -			WO							•	19				1	● 2.6		_	_	\downarrow	\perp	5
-			SS	21	25	H				Ļ	Ě		+	+	-	3	\Box	\dashv	\dashv	\dashv	+	┨`
22 -			WO SS	22	24	\vdash					\vdash	H	+	+	+	\vdash	\vdash	\dashv	\dashv	+	+	- 5
-			wo		<u> </u>								+	+				\dashv	\dashv	\dashv	+	\dashv
23 -			SS	23	19									Ī								5
_		End of Borehole @ 23.5 m											\Box					\Box		\exists	1]
-				-									\perp	\bot			\sqcup	\dashv	\dashv	\dashv	+	\dashv
-		SS - Split Spoon Sampling DC - Dry Coring		-		\vdash							+	+	-	\vdash		\dashv	\dashv	+	+	\dashv
-		WO - Wash Boring WO - Wash Boring Tested Samples		\vdash		\vdash					\vdash		+	+		\vdash	\vdash	\dashv	\dashv	+	+	\dashv
		Laza - 55.50 compto															\perp					

— Р	uka	robi 2			FIE	ELD	ВС	ORII	NG	LC)G						DRING HEET	NO.	Ь	BH-4	-
PRO	JECT: ATION:	Bridge Construction, Bougainville Trunk Road	Grour	inates: d Eleva	ation (m		_):			-6.	141		m	Star			_	3/4/	.95 2008 2008		m
DEPTH(m.)	GRAPHIC LOG	SOIL DESCRIPTION	SAMPLING METHOD	SAMPLE NO.	RECOVERY (cm)		We (Ton	nit ight	0			Natural Water Content	Liquid Limit		Gra	ecific		(1	SPT ow Co Blow/	ount ft)	
1		0.0-2.0 m, GW, well graded GRAVEL with some sand, 15% medium-coarse subangular sand, 85% fine subangular gravel of white & brown volcanic rock with 3 cm max sized, dense, grayish brown, <u>Backfill (?)</u>	WO WO SS	1	22		0 1.	2.0		3		0 90	120		2.4 2.	6 2.8		0 2	0 3	9 3	
3		2.0-12.5 m, SM-SP-SW, silty to poorly-well graded SAND with some gravel, 0-40% fine subangular gravel of white, gray, brown volcanic rock with 1-3 cm max sized with 10-40% silt, 50-60% fine-coarse subangular sand, mediumvery dense, grayish brow-brownish gray, <u>Alluvial deposit</u>	WO SS WO SS	2	18					• 10	6				•	2.6		13	1 2	6	
5	-		WO SS WO SS	5	24												4.5			• 3	6
7			WO SS WO SS	7	26 7					• 12						● 2.6		•			
9	-		SS DC SS	8 1 9	Loss 15																
0			WO SS WO SS	10	17					• 10					•	2.6					
12		End of Borehole @ 12.5 m	ss s	12	9																
	-																				
	-																				
	-																				
		SS - Split Spoon Sampling DC - Dry Coring WO - Wash Boring - Tested Samples															\perp				

	ree	pers			FIE	LD	ВС	ORI	NG	LO	G						BORI SHEE		ᆫ		H-5 OF 1
_																					
PRO	JECT:	Bridge Construction, Bougainville Trunk Road	Coord	linates:	N:	93	33723	30.66	3	E:_	7	61124	1.941	Wat	er Le	vel:	-		-0.7	5	m
		Creepers River, Abutment at Buka Side	Groun	d Eleva	ation (m	n-MSL	_):			-4.5	85		m	Star	ting [Date:	_		5/4/20	80	_
CLIE	NT:	Chodai Co., Ltd.	Max.E	Orilling [Depth:					25.	50		m	Finis	shing	Date	: _		7/4/20	80	_
DEPTH(m)	GRAPHIC LOG	SOIL DESCRIPTION SS - Split Spoon Sampling DC - Dry Coring	SAMPLING METHOD	SAMPLE NO.	RECOVERY (cm)		To Ur Wei	nit ight		: :	\vdash	(%) Natural Water Content	Liquid Limit			ecific			Blow	SPT Cou	
	L	WO - Wash Boring - Tested Samples				1.0	6 1.8	3 2.0)	30	60	90	120	2	.4 2.	6 2.8		10	20	30	40
1 .	-	0.0-12.0 m, SM, silty SAND, poorty-graded, fine-coarse grained, subangular, with10% fine subangular gray gravel of volcanic rock with 1-3 cm max sized with 25% silt, loosemedium dense, gray, <i>Alluvial deposit</i>	WO WO SS WO	1	5													• 7			
2			SS	2	Loss													1		#	
3	-		WO SS	3	24								+						1	20	+
4	-		wo																1	25	
	-		SS	4	Loss							_	+				-			$\frac{1}{1}$	+
5			SS	5	27															1	31
6	-		WO SS	6	29								_					-		\downarrow	31
7			wo																	1	
	-		SS	7	28								+				_		16	+	+
8			SS	8	27					• 16					•	2.5				2	9
9			DC SS	1 9	29													4		1	30
10			wo	-	29															\bot	
10			SS WO	10	20												_			26	4
11			ss	11	22													+	- 	21	
12		12.0-15.0 m, MH, SILT, with 15% fine sand, non plasticity,	wo	40	40							\Box							9 14	4	\perp
13		stiff, gray, <u>Volcanic ash deposit (?)</u>	SS	12	16							\dashv	+				+		+	+	+
13			SS	13	22			• 1	.9	•	30				2.4			1	11	7	
14			WO SS	14	Loss													4	\forall	+	
15		15.0-23.0 m, SP, poorly-graded SAND, fine-medium	WO																	\leq	41
		grained, subangular, with some partial coarse subangular sand and random fine subangular gray gravel of volcanic	SS	15	20								+					1		+	+
16		rock with <1 cm max sized, medium dense-dense, gray, Alluvial deposit	SS	16	21												1	1	1	\downarrow	43
17			WO SS	17	25							_+	_	\vdash			_	_		21	_
18			WO	40	20							1					1	1	4 18	3	\perp
			SS	18	22							+	+	-			-	+			
19			SS	19	18													4	18	#	#
20			WO SS	20	14							+	+				-	+	1	22	+
21]		WO															4	-	22	#
	1		SS	21	8					\vdash		\dashv	+	\vdash			\dashv	+	<u> </u>	+	+
22	1		ss	22	13								\perp						13	#	丰
23		23.0-25.5 m, ML, sandy SILT, 40% fine-medium sand, low-	WO SS	23	40	\vdash				\vdash		\dashv	+	\vdash			\dashv	1	10	+	+
24		medium plasticity, stiff, with very random fine gravel of volcanic rock with <1 cm max sized, light-yellowish brown	WO	23	40								\pm					1		\pm	\pm
24		with mottled pale gray inside, Volcanic ash deposit (?)	SS	24	29			● 1.8			● 38	7	\perp			● 2.6	1	1	11	7	4
25			WO SS	25	23							+	+	\vdash			+	+	15	+	+
		End of Borehole @ 25.5 m																			

R	ata	vi			FIE	LD	ВС	DRII	NG	LC)G						RING N		BH-6
														<u> </u>					
	JECT:	-	Coordi		N:			11.81		-		6097	4.024	1	er Le			-0.80	r
		Ratavi River, Abutment at Buka Side	Ground			ı-MSI	_):				395			Star				4/2008	
CLIEN	11:	Chodai Co., Ltd.	Max.Dı	rilling L	eptn:					25.	.50		m	Fini	sning	Date:	11	/4/2008	3
٠.)	907		(0	ġ	RECOVERY (cm)			otal nit			Plastic Limit	Natural Water Content	Liquid Limit		Spe	cific		SPT Blow Co	
DEPTH (m.)	GRAPHIC LOG	SOIL DESCRIPTION	SAMPLING METHOD	SAMPLE NO.	OVER		We	ight			<u>₽</u>	ž O	ĭ		Gra	vity		(Blow	/ft)
DEF	GR/	SS - Split Spoon Sampling DC - Dry Coring WO - Wash Boring	SAN	SAN	REC			v/m³)				(%)							
		0.0-25.5 m, SM-SW-SP, silty SAND with gravel, well-poorly	WO			1.	6 1.8	8 2.0	0	3(0 60	90	120	+	2.4 2.0	5 2.8	10	20 3	0 40
		graded SAND, 20-30% fine subangular gravel of gray/green volcanic rock with 1-3 cm max sized with 15-	WO																
1 -		20% silt, 55-60% fine-coarse subangular sand with patially coarse grained, medium dense-dense, gray, Alluvial deposit	SS	1	32												1	15	
2 -			wo																
-			SS	2	19									╀			++'	16	
3 -			wo ss	3	26													+	29
-			wo					H					+				+	+	+
4 -			SS	4	22									İ					32
5 -			wo																
-			SS	5	18	L						_		1			++	2.2	
6 -			WO SS	6	28					• 11			_	-		● 2.7	++	+	\mapsto
-			WO	6	28														H
7 -			SS	7	20												\Box	20	1
			wo															\top	
8 -			ss	8	17													•	28
9 -			DC	1													\bot		$\vdash \downarrow$
-			SS	9	23												++		
10 -			wo ss	10	20									+			++	٠,	29
-			wo														\vdash	+/	
11 -			SS	11	15													2	1
12 -			wo															$\perp \setminus$	97
-			SS	12	15			Н						\bot			+	+I	f'
13 -			WO SS	13	19					• 12				+		• 2.7	++	1 2	25
-			WO	13	13									+			++	+	
14 -			SS	14	11												1 (13	
15 -			wo																
-			SS	15	13													19	
16 -			WO	10	1	H		$\vdash \vdash$						\vdash			+ +	14	
-			SS WO	16	Loss	\vdash		\vdash				\dashv	+	\vdash			++	\forall	+
17 -			SS	17	10			H						+			++	20	+
10			wo					H						T					
18 -		18.0-19.0 m, SG-GW, silty to well-graded GRAVEL with sand, 45% well-graded & fine subangular-subround, <0.5	SS	18	6													12	
19 -		cm max size with 15% silt & 40% fine-coarse sand	WO														1 1	14	
-			SS	19	14			\square				_		-			++	+	\vdash
20 -			wo ss	20	20			\vdash					+	+			++	21	+
-			WO	20	20			H						+			++	+	+
21 -			SS	21	19					● 13				İ	•	2.6	1	23	
22 -			wo															20	
			SS	22	10													120-	Ш
23 -			WO										_				++	21	\vdash
-			SS WO	23	16			\vdash				-	+	\vdash			++	+	\vdash
24 -			ss	24	13			\vdash						-			++	+	26
-			wo		.5			H									+	+	
25 -			SS	25	6									I				ľ	30
		End of Borehole @ 25.5 m																	

lra	aka				FIE	ELD	ВС	ORI	NG	LC)G						BORI SHEE		ю.[BH-7 OF	-
		Bridge Construction, Bougainville Trunk Road Iraka River, Abutment at Buka Side Chodai Co., Ltd.	1	inates: d Eleva	ation (m	93 n-MSL	_): _			-0.	193	57658.	_ m	Wate Start Finis	ting [ate:	- -		2/4/2	2008		m
DEPTH(m.)	GRAPHIC LOG	SOIL DESCRIPTION SS - Split Spoon Sampling DC - Dry Coring WO - Wash Boring Tested Samples	SAMPLING METHOD	SAMPLE NO.	RECOVERY (cm)	1.0	To Ur Wei (Ton	nit ight /m³)	0	3	Plastic Limit	Natural Water Content	Tidnid Limit	2	Spe Gra				Blov (Bl	SPT v Coo low/f	t)	
_		0.0-4.0 m, SW, well graded SAND with gravel, 30-50% fine subangular gravel of gray volcanic rock with 4 cm max	WO													2.0		Ĭ	Ī		j	
1 -		sized and also random cobble-boulder, 50-70% fine-coarse subangular sand, medium dense-very dense, brownish	wo	1	17	H							+				+	+	+		+	5
1		gray, <u>Backfill (?)</u>	wo	<u> </u>	- · ·																	\dashv
2			SS	2	19															•	7	
3 -			wo																A	$' \downarrow$		_
-			DC															_	4			4
4 -		4.0-14.5 m, SM-SW-SP, silty SAND, <10% fine subangular	SS	4	16	\vdash							+				\dashv	•	+			+
		gravel of white volcanic rock of 2 cm max sized with 15% silt, 80% fine-medium subangular sand with little coarse,	wo														T	\forall	1			1
5		loose-very dense, gray with partial pale greenish gray, Alluvial deposit	SS	5	20													Ì	13			
6 -			wo														_		12			_
-			SS	6	8												_	_}\	+			=
7 -			wo	7	17												\dashv			7		\dashv
			wo														T		\exists	$ egthinspace{2mm} olimits for the property of the property o$		1
8			SS	8	10																35	
9 -			DC	1													_		4	4	7	_
-			SS	9	Loss												_		4	\rightarrow	+	-
10 -			wo	10	22								+				\dashv		+		36	<u>, </u>
-			wo										+				\dashv		1		\rightarrow	\exists
11			SS	11	20					• 1	5					● 2.7						5
12 -			wo																			5
			SS	12	Loss					_			-				-	_	\dashv		\rightarrow	4
13 -			WO SS	13	16					_			+				\dashv	+	+	٠,	32	\dashv
			wo														\dashv		\dashv	1		\dashv
14			SS	14	26															24		
15 -		14.5-17.0 m, SM, silty SAND, with <5% random fine subround gravel of black volcanic rock, mostly 0.3 cm sized	wo													2.6					\setminus	
		with 2.5 cm max, 20% silt, 80% fine sand, non plasticity, medium-very dense, black, <i>Volcanic ash deposit (?</i>)	SS WO	15	37				-	1 • 2	20		+			2.6	\dashv		1		\rightarrow	4
16 -			ss	16	22	\vdash				\vdash			+				\dashv	+	+	9 25	+	\dashv
			wo	Ť									+	H			\dashv	+	/	$^{\prime}$	\dashv	\dashv
17		17.0-18.0 m, GW, well-graded subround GRAVEL of black volcanic rock, mostly <0.5 cm with 2.5 cm max, medium	SS	17	Loss														7			
18		dense, gray, <u>Alluvial deposit</u> 18.0-19.0 m, SP, SAND with <5% subround black volcanic	wo	L.	L.,	Н				_			+	\vdash			4	•	4	_	_	_
-		gravel with 2.5 cm max sized, fine-medium, subangular,	SS	18	18	\vdash				_			+	\vdash			\dashv	\forall	+	\dashv	+	\dashv
19 -		loose, gray, <u>Alluvial deposit</u> 19.0-22.0 m, SC, clayey SAND, 50-50%:fine-sand, with	SS	19	45	\vdash		-	2.0	⊢●	24		+			• 2.7	+	-	15	\dashv	+	\dashv
		very random fine subangular-subround gravel of black & white volcanic rock with 2.5 cm max sized, low-medium	WO										+				\dashv	\forall	+	\dashv	\dashv	\dashv
20 -		plasticity,medium dense-dense, pale yellowish-greenish brown, <i>Alluvial/volcanic ash deposit (?)</i>	SS	20	45													9				
21 -			wo	_	l	\vdash				_			\perp				4		15	_	_	_
-			SS	21	17	\vdash							+	\vdash			\dashv	+	Н	\dashv	+	\dashv
22 -		22.0-22.5 m, SC, clayey SAND, 10% clay, fine sand with	ss	22	37	Н							+	\vdash			\dashv	-	14	\dashv	+	\dashv
22		<10% coarse, subangular, medium dense, pale greenish brown, Alluvial deposit	wo										1					_/				
23		22.5-25.5 m, SC, sandy CLAY, 25% fine sand with 75% silt- clay, medium-high plasticity, stiff-very stiff, pale brown-	SS	23	27													1	11			_]
24 -		brown, Alluvial with partial volcanic ash deposit (?)	wo	_	<u> </u>	Н				_		\vdash	\perp				4		12	_	_	\dashv
-			SS	24	30	\vdash				_			+	\vdash			\dashv	+	+	\dashv	+	\dashv
25			SS	25	18		● 1.6			-	1 .	0	+	\vdash	2.4		\dashv	+	+	19	+	\dashv
+		End of Borehole @ 25.5 m												Ħ			_			_		\dashv

K	oro	va			FIE	ELD	ВС	ORI	NG	LC)G					BOI	RING EET	NO.		SH-8 OF	1
	JECT:	Bridge Construction, Bougainville Trunk Road	Coord	inates:	N:	- Q	3416	77 26	.7	F.		75674	1.593	Wat	er I e	vel:		-1	50		m
		Korova River, Abutment at Buka Side	1							-			m	1				16/4/			"
CLIEN		Chodai Co., Ltd.	1	Orilling [I-IVIOI							— ''' m		-			30/4/		_	
CLILI	•11.	Criodal Co., Etc.	IVIAX.L	illillig L	Јерин.					20	.50		— '''	FILLS	sillig	Date.		30/4/	2006		
		SOIL DESCRIPTION					То	tal			±.	ater	#						SPT		┪
_	POO	REMARKS: 17-28/4/08 - Shortage of drill powder with 2 days flood		ď	RECOVERY (cm)		Uı				Plastic Limit	Natural Water Content	Liquid Limit		Spe	cific			w Coi	unt	
DEPTH (m.)	呈	at Malas & Korova on 19-21 & 25/4/08	SAMPLING METHOD	SAMPLE NO.	VER		We	ight			- Plas	Nati	Ę.		Gra	vity		(E	Blow/fi	t)	
DEPT	GRAPHIC	SS - Split Spoon Sampling DC - Dry Coring	SAME	SAMF	RECC		(Ton	/m ³)				(%)									
		WO - Wash Boring - Tested Samples				1.	6 1.8	3 2.	0	3	0 6	0 90	120	2	.4 2.	6 2.8	1	0 20	30	40	┙
-		0.0-15.0 m, SW-SP, well-poorly graded SAND with silt & gravel, with 15% fine subangular gravel of gray volcanic	WO																		4
1 -		rock with1- 3.5 cm max sized & 10% silt, 75% fine-medium subangular sand with some coarse, loose-medium dense,	wo	1	26	_							+	┢				7	-	+	4
_		gray, <u>Alluvial deposit</u>	WO	'	20												H				-
2 -			SS	2	16												46	3			┪
_			WO														\Box			\top	┪
3 -			DC		22														21		٦
4 -			DC																		
			SS	4	14								_						22		4
5 -			WO		-														20	,	4
-			SS WO	5	Loss								-						\leftarrow		\dashv
6 -			SS	6	10												-	9 14		+	\dashv
-			wo	Ť	"													\vdash			┪
7 -			SS	7	27													•	17		\neg
8 -			WO															<i>I</i>			
0			SS	8	Loss													13			
9 -			DC	1														_ \			_
-			SS	9	27														24		4
10 -			wo	10	24	-							-	-					21		-
-			WO	10	24													\vdash			-
11 -			SS	11	23													9 1	6	+	-
40			wo															\top			┪
12 -			SS	12	17													13			
13 -			WO													A 27	L	\perp		_	
-			SS	13	26	<u> </u>				• 1			_			● 2.7		• 1	6		4
14 -		14.0-15.0 m, SM, silty SAND, 20% silt, fine subangular	WO SS	44	27					_										28	\dashv
-		sand with some random subround gravel <1 cm max sized, pale gray, <i>Alluvial deposit</i>	WO	14	21								-						\dashv		\dashv
15 -		15.0-17.0 m, SW, well-graded SAND with some random	ss	15	23														+	31	┨
		gravel, <10% fine subangular-subround gravel of gray volcanic rock with 3.5 cm max sized, fine-medium	wo																	\forall	\exists
16 -		subangular sand with some coarse, dense, gray, <u>Alluvial</u> <u>deposit</u>	SS	16	20																1
17			DC	1						• 1:						• 2.7					\rfloor
		17.0-19.0 m, SP-SM, poorly graded SAND with silt & gravel, 10% silt & 35% fine subangular gravel of white & brown	SS	17	18					U 1.	_		_				_			4	1
18 -		volcanic rock with 3 cm max sized, 55% fine-coarse sand, dense, grayish brown, <u>Alluvial deposit</u>	WO	40	10								-	_			_				\rightarrow
_			SS	18	10														\rightarrow	4	\dashv
19 -		19.0-20.0 m, SM, silty SAND, non plasticity, loose, dark	SS	19	23								+				-	10			┨
-		brownish gray, <u>Alluvial/volcanic ash deposit (?)</u>	wo		Ť	T						\vdash	+	T					\forall		\dashv
20 -		20.0-21.0 m, SP-SM, poorly -graded SAND with silt & gravel, similar to 19.0-20.0 but dense, <u>Alluvial deposit</u>	SS	20	12														Ž	31	╛
21 -			WO																	\bot	\Box
		21.0-23.0 m, SM, silty SAND, 50-50%:silt-fine sand, non plasticity, medium dense, dark brownish gray, thin	SS	21	20								\perp				L	/'		_	4
22 -		interbedded seam of fine-coarse subangular sand, with some fine subround gravel of <0.5 cm max sized,	WO			\vdash							+	\vdash			_		25	+	\dashv
-		Alluvial/volcanic ash deposit (?)	SS	22	14	\vdash				\vdash		\vdash	+	\vdash					+		\dashv
23 -		23.0-24.0 m, SM, silty SAND, low plasticity, medium dense,	ss	23	25			•	2.0	•	25	\vdash	+			● 2.7	•	8	\dashv		\dashv
-		dark brownish gray, <u>Alluvial/volcanic ash deposit (?)</u>	WO										+					\setminus		+	\dashv
24 -		24.0-25.5 m, SM, silty SAND, 10% fine subangular-	SS	24	40	Г		•	2.0	•	25	\Box		T		• 2.7		7	20		\exists
25 -		subround gravel with <0.5 cm av sized & 25% silt, 65% fine- coarse subangular sand, med dense-dense, greenish gray,	WO																		╛
		Alluvial deposit	SS	25	28																● 45
		End of Borehole @ 25.5 m																			

	1ala		1								_							NO.		H-9
		5			FIE	ELD	во	RIN	NG	LO	G					SH	EET		1	OF 1
PRO	JECT:	Bridge Construction, Bougainville Trunk Road	Coordi	nates:	N:	93	34623	9.52	3	E:_	75	52447	.828	Wate	er Lev	el:		-1.	00	m
LOC	ATION:	Malas River, Abutment at Buka Side	Ground	d Eleva	ation (m	-MSL	.): _			-0.5	57		m	Start	ing Da	ate:	_	1/5/2	8008	
CLIEN	NT:	Chodai Co., Ltd.	Max.D	rilling E	epth:		_			25.	50		m	Finis	hing I	Date:	_	3/5/2	8008	
	1	I															_			
DEPTH (m.)	GRAPHIC LOG	SOIL DESCRIPTION	UNG	SAMPLE NO.	RECOVERY (cm)		Tota Uni Weig	it		; : :	Hasuc Lillin	Natural Water Content	· Liquid Limit		Spec			Blo	SPT w Cou Blow/ft	
DEPTI	GRAPI	SS - Split Spoon Sampling DC - Dry Coring	SAMPLING METHOD	SAMP	RECO		(Ton/r				\vdash	%)	-			,				,
		WO - Wash Boring - Tested Samples				1.6	6 1.8	2.0	,	30	60	90	120	2.	4 2.6	2.8	1	10 20	30	40
-		0.0-7.0 m, SP, well-poorly SAND with some gravel, 5-30% of fine subangular-subround gravel of gray volcanic rock	WO									_								+
1 -		with 3 cm max sized, 70-95% fine-medium subangular sand, medium dense-dense, grayish brown-dark gray,	WO	1	16		+	+	-	\dashv		+	+		\dashv		╫		+	9 36
-		cobble/boulder concentrate at 3-6 m, <u>All</u>	wo	'	10														\nearrow	
2 -			SS	2	10													9 11	5	
3 -			wo																	
			DC		Loss													14		
4 -			DC					_				_	\perp			_	\perp	\sqcup	21	\perp
-			SS	4	Loss		\perp	_			_	_	_		_		1	<u> </u>		+
5 -			WO																22	+
-			SS	5	22	\vdash	+	+	\dashv	\dashv	-	+	+		+	+	+	\vdash	+	+
6 -			ss	6	29														27	,
-			wo																\forall	_
7 -		7.0-9.0 m, SM, silty SAND, 50-50%:silt to fine-med	ss	7	45														2	29
8 -		subangular sand with fine little subround gravel, meium dense, grayish brown, Alluvial with volcanic ash deposit (?)	WO SS	8	25				• 2.	0 • 2	5					● 2.8		1	7	
9 -	10100001010000101	0000 MH 007	DC	1														_		
		9.0-20.0 m, MH, SILT, non-low plasticity, medium stiff-very stiff, dark grayish brown, <i>Volcanic ash deposit (?)</i>	SS	9	11												17	_		
10 -			WO	40	07		+	-		\vdash		_	+		-		+	9	+	+
-			WO	10	27			-				+	+				+			+
11 -			SS	11	23			+									1 +	8		_
			wo				\dashv										Ħ		\dashv	+
12 -			SS	12	30												1 +	7		
13 -			WO																	
			SS	13	8													8		
14 -			WO				_											11	_	
-			SS	14	22			+										\		_
15 -			WO	15	18		\dashv	+				+	+				\vdash	14	+	+
-			wo	10	10													+		_
16 -			SS	16	45		\dashv	+		H		+	+				t	\Rightarrow	20	+
17 -			DC	1													İ	I		
17			SS	17	45													10		
18 -			WO			Ш											L	1		_
-			SS	18	45		\dashv					_	\perp		_		1	14		+
19 -			WO	40	45		+	-				+	+		+	-	\vdash	$\vdash \downarrow$	19	+
			SS	19	45		+	+		\dashv		+	+		-		\vdash	+		+
20 -		20.0-22.0 m, SM-SP-SW, silty SAND, 30% silt & 10% fine	SS	20	37		+	+	• 2	1 • 2	2	+	+		+	● 2.8	\vdash		+	30
-		subround gravel with <0.5 cm max sized, 60% fine-coarse subangular sand, dense, gray, <i>Alluvial with volcanic ash</i>	WO				\dashv	+				+	+		\dashv		\vdash		1	+
21 -		deposit (?)	SS	21	30		+	+		\exists		\top	\top				T		\nearrow	33
22 -			wo																	
		22.0-25.5 m, MH, sandy SILT, with 40% fine sand, non-low plasticity, medium stiff, pale-dark brownish gray, <i>Volcanic</i>	SS	22	45		•	1.8			• 44		\bot	\Box		● 2.7	1	8		\perp
23 -		ash deposit (?)	WO				_					_	\perp		_		\coprod		_	_
			SS	23	45		+	_	_	\Box		+	+	\vdash	_		1		\perp	+
24 -			WO	24	Lace		+	+		\dashv		+	+		-		₽	9	-	+
-			SS	24	Loss		+	+	\dashv	\vdash		+	+	\vdash	+	+	\vdash	-	+	+
25 -			SS	25	28		+	+				+	+	\vdash			+	• 12		
-	omentalatisisiisi	End of Borehole @ 25.5 m					\top	\dashv		\exists		\top	+				T			+

L	Jrurv				FIE	ELD	В	DRI	NG	LC	G						BOR		NO.		OF	
		Bridge Construction, Bougainville Trunk Road Ururva River, Abutment at Arawa Side Chodai Co., Ltd.	Groun	linates: nd Eleva Drilling [ation (n					0.1		74201		Sta		evel: Date:	- - e: _		4/5/2	.30 2008 2008		m
DEPTH (m.)	GRAPHIC LOG	SOIL DESCRIPTION	SAMPLING	SAMPLE NO.	RECOVERY (cm)	1	U We	otal nit ight	0		Plastic Limit	Natural Water	Liquid Limit		Gra	ecific avity		11	Blo (E	SPT ow Co Blow/s	ount ft)	0
1		0.0-2.5 m, SM, silty SAND, 40% silt-clay, 60% fine-medium subangular sand, loose, non-very low plasticity, dark brown, Reidual soil or completely weathered agglomerate and/or tuffaceous rock	WO WO SS	1	45						25					2.6		•				
2			wo		4.5													\perp				
3		2.5-8.5 m, CL, silty CLAY with sand, non-medium plasticity, medium stiff-hard, with 25% fine tuffaceous rock chip (sand), light-yellowish brown, Reidual soil or completely	SS WO SS	3	45 26													5	7			
4		weathered agglomerate and/or tuffaceous rock	WO SS WO	4	21													6				_
5			SS	5	Loss														•	7		_
6			WO SS	6	45			•	1.9	-	-34					2.6					3	6
7			WO SS	7	45															21		_
8			WO SS	8	45																	$\overline{}$
9		8.5-13.5 m, highly weathered AGGLOMERATE and/or TUFFACEOUS ROCK, light-pale brown, when crushed by SPT presented as clay, non-very low plasticity, very stiff- hard, with >80% tuffaceous rock chip, <u>Highly weathered</u>	DC SS DC	1 9 2	45				• 2	1-0	25					• ^{2.6} ₄						_
10		agglomerate and/or tuffaceous rock	ss	10	45																	_
11			wo ss	11	32																	_
12			SS DC	3 12 4	30																	_
13		End of Borehole @13.5 m	SS	13	28																	_
	-																					_
																						_
	-																					
	-																					_
	-												\downarrow									_
													\pm									_
														L	L							_
						F							+		F							
		SS - Split Spoon Sampling DC - Dry Coring											\perp									_
	-	SS - Split Spoon Sampling DC - Dry Coring WO - Wash Boring - Tested Samples				\vdash							+	\vdash						\vdash	\vdash	_

k	(as	krus			FIE	ELD	В	DRI	NG	LC	G						BOF	RING	NO.		OF	\dashv
		Bridge Construction, Bougainville Trunk Road Kaskrus River, Abutment at Buka Side Chodai Co., Ltd.	Groun	inates: d Eleva	ation (m		_):			-1.5	551	32176	m	Wat Star Finis	ting [Date:			-1. 9/5/2 11/5/	2008		m
DEPTH (m.)	GRAPHIC LOG	SOIL DESCRIPTION	SAMPLING METHOD	SAMPLE NO.	RECOVERY (cm)		We (Tor	otal nit ight	0			Natural Water Content	Liquid Limit		Gra	ecific			Blo (E	SPT w Co Blow/	ount ft)	
		0.0-0.5 m, MH, SILT, brown, top soil, Ash deposit?	WO			1.	6 1.	8 2.	0	30) 60	90	120	2	.4 2.	6 2.8	8	10	0 20	30	40	-
1 -		0.5-4.0 m, moderately-slightly weathered AGGLOMERATE, comprises various souces of volcanic cobble/boulder ie	wo																			
2 -		comprises various souces or volcanic contended and dark gray basalt, light gray, gray, reddish brown tuffaceous rock etc with unknown size, no matrix or cementing material could be retrieved and/or identified, <u>Agglomerate basement</u>	SS	1	22																	
3 -			DC	1																		
4 -		End of Borehole @ 4.0 m	DC	2																		
-		End of boleriole @ 4.0 mi																				
-																						
-																						
																						\exists
-																						
-																						
-																						\exists
																						\exists
-																						\exists
-																						\exists
-																						\exists
-																						\exists
-		SS - Split Spoon Sampling DC - Dry Coring WO - Wash Boring								\vdash		\vdash		-							\Box	\dashv

R	ota	ovei			FIE	ELD	В	DRI	NG	LC	G						BOF	RING	NO.		H-12 OF	-
	TION:	Rataovei River, Abutment at Arawa Side	Groun	inates: d Eleva	ation (m		_):			0.4	120		m	Wat Star Finis	ting [Date:			13/5/	90 2008 2008		m
DEPTH (m.)	GRAPHIC LOG	SOIL DESCRIPTION	SAMPLING	SAMPLE NO.	RECOVERY (cm)		We (Tor	/m³)	•			Natural Water Content	Liquid Limit		Gra	ecific			Blo (E	SPT w Co Blow/f	t)	
		0.0-1.0 m, SM, silty SAND, non-plasticity, loose, brown, Alluvial/olcanic ash deposit (?)	WO WO			1.	6 1.	5 Z.		3	0 6	90	120	2	.4 2.	6 2.8	8	10) 20	30	40	
1 - 2 - 3 -		1.0-6.0 m, moderately-slightly weathered AGGLOMERATE, comprises various souces of volcanic cobble/boulder with generally gray and partial reddish brown tuffaceous rock with unknown size, no matrix or cementing material could be retrieved and/or identified	SS	1	15			•	2.0	• 1	8					• 2	2.7					
4			DC	2																		
5			DC	3																		
5		End of Borehole @ 6.0 m	DC	4																		
-																						
-																						_
-																						_
																						_
																					\equiv	
-																						=
-		SS - Split Spoon Sampling DC - Dry Coring WO - Wash Boring . Tested Samples																				

Wa	Warakapis		FIELD BORING LOG												BORING NO. BH-13 SHEET 1 OF 1								
PROJEC LOCATIO	ON:	Bridge Construction, Bougainville Trunk Road Warakapis River, Abutment at Arawa Side Chodai Co., Ltd.	Groun	inates: d Eleva	ation (m			68.68		-0.0		72391	17.887	m	Wate Start Finis	ting D	ate:			-1.8 15/5/2 16/5/2	2008	m	1
DEPTH(m.)	GRAPHIC LOG	SOIL DESCRIPTION	SAMPLING METHOD	SAMPLE NO.	RECOVERY (cm)		Ui We (Ton	/m³)				Natural Water				Spe	vity			Blov (B	SPT w Cour low/ft)		
1 -	88888	0.0-0.5 m, MH, SILT, brown, top soil, <u>Ash deposit?</u> 0.5-1.0 m, SP, SAND, loose, gray, <u>Alluvial deposit</u> 1.0-4.0 m, moderately-slightly weathered AGGLOMERATE, comprises various souces of volcanic cobble/boulder with genrally gray tuffaceous rock with unknown size, no matrix	WO WO SS DC	1	18	1.	6 1.8	8 2.0	0	3/11		0 90	120)	2	.4 2.6		2.8		10	30	40	<u>-</u>
3 -		or cementing material could be retrieved and/or identified, Agglomerate basement	SS DC DC	2 2 3	Loss																		_
4 -		End of Borehole @ 4.0 m																				-	
																						<u>+</u>	
-																						‡ ‡	_
																						<u>+</u>	_
																						+	_
																						+	_
																						<u>+</u>	_
																						<u>+</u>	_
																						<u>+</u>	_
																						+	_
-																						‡	_
-		SS - Split Spoon Sampling DC - Dry Coring WO - Wash Boring																				\pm	1

Irung		FIELD BORING LOG										BORING NO. BH-14 SHEET 1 OF 1							\dashv			
ROJEC	CT: ON:	Bridge Construction, Bougainville Trunk Road Irung River, Abutment at Arawa Side Chodai Co., Ltd.	Groun	inates: d Eleva	N: ation (m	93	3849 -):	46.76	7	E:	<u>7</u> 587			Sta	ter Le	Date:			-0. 17/5/ 18/5/			m
DEPTH (B.)	GRAPHIC LOG	SOIL DESCRIPTION	SAMPLING METHOD	SAMPLE NO.	RECOVERY (cm)		We (Tor	nit ight /m³)				Natural Water Content	_		Gra	ecific avity			Blo (E	SPT w Co Blow/	unt ft)	
1 -		0.0-1.0 m, MH, SILT, non-plasticity, soft-stiff, brown, Volcanic ash deposit (?) 1.0-1.5 m, SM, SAND, dense, gray, Alluvial deposit	WO WO			1.	b 1.	3 2.0	J	● 13		0 90	120		2.4 2		2.8	1	0 20) 30) 40	
2 3		1.5-3.0 m, mod-slight weathered AGGLOMERATE, comprises various souces of volcanic cobble & boulder with unknown size ie very hard andesite, <u>Agalomerate</u> <u>basement</u> End of Borehole @ 3.0 m	SS WO DC	1	25					● 13												
		Elia di Boleliole 🥪 3.0 ili																				
- - - -																						
-																						_ _ _
-																						
-																						
													+									
		SS - Split Spoon Sampling DC - Dry Coring																				

P	Rawa 1				EIE	LD	P.	יםר	NG)G							BOF	RING	NO.		SH-15	-
	awa	ז ז 			TIE			JKI	NG		,G 							SHE	<i>C</i> 1		'	<u> </u>	'
PRO	JECT:	Bridge Construction, Bougainville Trunk Road	Coord	inates:	N:	9:	3869	49.86	88	E:	7	1199	4.451		Wate	er Le	vel:			-2.	95		m
LOCA	ATION:	Rawa1 River, Abutment at Arawa Side	Groun	d Eleva	ation (m	n-MSI	_):			0.4	57			m	Start	ting [ate:			19/5/	2008		
CLIEN	NT:	Chodai Co., Ltd.	Max.D	rilling [Depth:					6.0	00			m	Finis	hing	Date	е:		20/5/	2008		
					·		То	ıtal			ŧ	Vater t	ŧ								SPT		\dashv
DEPTH(m.)	GRAPHIC LOG	SOIL DESCRIPTION	SAMPLING METHOD	SAMPLE NO.	RECOVERY (cm)		We	nit ight ı/m³)			\vdash	% Natural Water				Spe	cific				w Co Blow/f		
		0.0-2.7 m. MH. sandy SILT. 40% fine sand. 60% silt. non-				1.	6 1.	8 2.	0	3() 60	90	120	_	2	.4 2.0	6 2.8	3	10	0 20	30	40	\dashv
-		0.0-2.7 m, MH, sandy SILT, 40% fine sand, 60% silt, non- plasticity, soft, pale brown-brown, with some little very fine- fine subangular sand, <i>Volcanic ash deposit</i> (2)																	\exists	\dashv			
1 -			SS	1	42			•	1.9	•	27						• ^{2.}	6	•	7			
2 -			WO SS	2	37														• 5				
3 -	9888888	2.7-6.0 m, moderately-slightly weathered AGGLOMERATE,	DC	1																			_
4 -		comprises various souces of volcanic cobble/boulder with genrally gray tuffaceous rock with unknown size, no matrix or cementing material could be retrieved and/or identified,	DC	2																		\equiv	
5 -		Agglomerate basement	DC	3																		$\frac{1}{2}$	
-			DC	4		_							\dashv	_								\dashv	-
6 -		End of Borehole @ 6.0 m																					
-																						\dashv	\dashv
-																							
-																						\dashv	-
-																							
-																						\dashv	\dashv
-																							
-													\dashv								\dashv	\dashv	\dashv
-																						\dashv	-
-																							
-																						\dashv	\dashv
-																							
-			\vdash										\dashv	-								\dashv	\dashv
																						#	\exists
-													\dashv	-								\dashv	\dashv
																						\sqsupset	
-						\vdash						\dashv	\dashv	-								\dashv	\dashv
-													-									\dashv	\dashv
-																						\exists	
-			<u> </u>										-	_								\dashv	-
-																						\pm	_
																						\dashv	\neg
-																						\exists	_
		00 O-1/1 O-1-1-0 O-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1																				\exists	\exists
-		SS - Split Spoon Sampling DC - Dry Coring WO - Wash Boring - Tested Samples	\vdash	\vdash									\dashv								\dashv	\dashv	-

THE INDEPENDENT STATE OF PAPUA NEW GUINEA

Environment Act 2000

Act, Section:65 & 66 Reg., Se. 16(1)

ENVIRONMENT PERMIT

An Environment Permit is hereby issued under Section 65 of the Environment Act 2000

TO: Department of Works

OF: P. O. Box 1108, Boroko, National Capital District, Port Moresby

- (a) to carry out works associated with construction or refurbishment of bridges at Bakanovi, Bove, Pukarobi 1, Pukarobi 2, Creepers, Ratavi, Iraka, Korova, Malas, Ururua, Kaskrus, Rotaovei, Warakapis, Irung, and Rawal ("premises") along the Bougainville Coastal Trunk Road in the Autonomous Region of Bougainville.
- (b) to discharge waste into the environment from the premises while carrying out a Level 2 (Category A) activity associated with construction or refurbishment of bridges which would result in discharge of waste into water or onto land in such a way that it results in the waste entering water.

The activities shall be carried out in accordance with the terms conditions of this permit.

WD-L2A (171)

Permit Number:

Date of Issue: 7th May 2008

Date of Commencement: 3rd June 2008

Term of Permit: Five (5) years

Date of Expiry: 2ndJune 2013

KELLY GAW! Director of Environment

Page 1 of 4

INTERPRETATIONS

DEC: mean the Department of Environment and Conservation

Director/ Director of Environment: means the Secretary or the Head of the Department of Environment and Conservation. The term is used to ensure consistency with the designation provided in s. 15 of the Environment Act 2000 and its roles and functions under s. 16 of the Act.

Domestic Wastewater. means grey water and sewage.

Environment Act/ the Act: means the Environment Act 2000 (as amended) and any Environmental Policies and Regulations made thereunder.

Permit: means the Environment Permit issued under Section 65 of the Environment Act 2000. The permit authorizes the commencement of works and the discharges of wastes from the premises whilst carrying out works associated with construction or refurbishment of bridges.

Permit Holder: refers to the Department of Works

Premises: refers to the area within the locality of the bridges at Bakanovi, Bove, Pukarobi 1, Pukarobi 2, Creepers, Ratavi, Iraka, Korova, Malas, Ururua, Kaskrus, Rotaovei, Warakapis, Irung, and Rawal ("premises") along the Bougainville Coastal Trunk Road in the Autonomous Region of Bougainville that are defined by the following grid reference - Location (1): refers to Bakanovi bridge located within 155°23'47.070"E and 6°05'38.142"S; Location (2): refers to Bove bridge located within 155°24'15.720"E and 6°04'05.616"S; Location (3): refers to Pukarobi 1 bridge located within 155°22'03.150"E and 6°00'12.348"S; Location (4): refers to Pukarobi 2 bridge located within 155°21'36.852"E and 5°59'44.832"S; Location (5): refers to Creepers bridge located within 155°21'31.488"E and 5°59'28.536"S; Location (6): refers to Ratavi bridge located within 155°21'27.918"E and 5°59'16.644"S; Location (7): refers to Iraka bridge located within 155°19'42.678"E and 5°57'05.958"S; Location (8): refers to Korova bridge located within 155°19'09.918"E and 5°57'02.916"S; Location (9): refers to Malas bridge located within 155°19'09.150"E and 5°51'33.180"S; Location (11): refers to Kaskrus bridge located within 155°05'46.968"E and 5°39'36.360"S; Location (12): refers to Rotaovei bridge located within 155°01'15.960"E and 5°33'57.660"S; Location (14): refers to Irung bridge located within 155°01'15.960"E and 5°33'57.660"S; Location (14): refers to Irung bridge located within 155°01'15.960"E and 5°33'57.660"S; Location (14): refers to Irung bridge located within 155°01'15.960"E and 5°33'57.660"S; Location (14): refers to Irung bridge located within 155°01'15.960"E and 5°33'57.660"S; Location (14): refers to Irung bridge located within 155°01'15.960"E and 5°32'35.532"S

Works: means vegetation clearance, earth works, removal of old culvert debris and carrying out works associated with the refurbishment and construction of bridges within the premises.

TERMS AND CONDITIONS OF ENVIRONMENT PERMIT

Annual Charge

The annual charge under this Permit is = K1,020.00This charge is based on the following fees –

a) Rainfall Runoff: runoff containing sediments construction phase = K1,000.00

b) Annual Fee: annual (administration) fee for Level 2A activity = K20.00

Conditions

General

- The Permit Holder shall carry out works associated with the refurbishment and construction of bridges in accordance with the
 plans and specifications in the environment permit application unless otherwise specified through a condition of this permit
- 2. In the event of an inconsistency between the permit application and a condition of this permit, the condition of this permit will apply.

Works

Bridge Construction

 The Permit Holder shall carry out works associated with the refurbishment and construction of 15 bridges along the Bougainville Coastal Trunk Road between Kokopau and Arawa in the Bougainville Autonomous Region.

Waste Treatment Facilities

Septic Tank

 The Permit Holder shall construct a septic tank with a soak-away trench not less than 100m from the nearest surface water for treatment of domestic wastewater.

Landfill

5. The Permit Holder shall construct a landfill not less than 100m from the nearest watercourse for disposal of solid wastes.

Operation

Erosion Control

6. The Permit Holder shall design and apply appropriate measures to prevent soil erosions and minimize sediment runoff into watercourses at the premises. The measures shall include but not limited to use of cut-off drains ,velocity control techniques , sediments traps, ground cover (natural, e.g. grass growing or artificial, e.g. plastic sheets), sedimentation traps and limited vegetation clearing.

Waste Management

Wastewater

- The Permit Holder shall ensure that all domestic wastewater from the premises are directed to the septic tank referred to in Condition 4 for treatment prior to disposal.
- 8. The Permit Holder shall employ waste minimization strategy (avoid, reduce, recycle, treatment, disposal) in managing the waste streams from the quarry.

1

Page 3 of 4

Solid Waste

9. The Permit Holder shall ensure that all solid wastes are collected and disposed at the designated landfills.

Air Emission

- 10. The Permit Holder shall employ appropriate control measures to minimize aerial emissions produced by the machineries and equipment used for the bridge construction from the premises. Dust should be controlled using dust suppressants including water sprays.
- 11. The Permit Holder shall not generate offensive odour from the premises.

Noise

12. The Permit Holder shall ensure that noise levels from the premises are minimized through the use of appropriate noise control measures. These abatement measures may include noise barriers, attenuation of sound from vehicles and equipment, etc.

Rainfall Runoff

13. The Permit Holder shall segregate rainfall runoff from the fuel and chemical storage areas used during the bridge construction by diverting clean runoff from these areas in order to avoid cross-contamination

Waste Fuel Oil

14. The Permit Holder shall ensure that waste oil from the machinery and fuel storage facilities are reused and/or disposed by incineration and/or removed for reprocessing where appropriate.

Monitoring

- 15. The Permit Holder shall carryout regular checks on machinery and equipment used for quarrying to ensure that they are in good working condition so as to minimize noise and air emissions.
- 16. The Permit Holder shall carry out routine monitoring of air, noise and waste generation to detect non- compliance at early stages and apply corrective measures to minimize impacts.
- 17. The Permit Holder shall carry out regular checks on measures taken to minimize soil erosion and discharge of sediments (Condition 12) to ensure their treatment efficiency.

Rehabilitation

18. The Permit Holder shall perform land forming and re-vegetation activities at the end of the bridge refurbishment and construction operation. All stockpile areas shall be rehabilitated and re-vegetated.

Reporting

- 19. The Permit Holder shall submit summary monitoring reports every three months and an Environmental Performance Report to the Director at the end of each calendar year or other reports as directed by the Director for evaluation and compliance. The reports may include but not limited to –
 - a) Raw data (analysis by certified laboratories) from monitoring programs
 - b) Interpretation of raw data
 - c) incidence of non-compliance and reasons, and
 - d) status of compliance with the other conditions of this permit.
- 20. The Permit Holder shall notify the Director on any significant environmental incident that occurs in relation to the discharge of waste from the constructions of the fifteen (15) bridges.

Page 4 of 4

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (RAWA -1 Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of RAWA-1 Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>RAWA-1</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of MOA (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: <u>2007</u> / <u>June</u> / <u>2008</u>

Raymond MASONO

Acting Chief Administrator Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer Division of Lands and Physical Planning

Autonomous Bougainville Government

Kola

John KOLAN

Administration Chief Executive Officer Division of Technical Services Autonomous Bougainville Government

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFIND O

Manager Customary Land Department of Lands and Physical Planning **PNG**

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Community Coordination Committee: RAWA-1 C.C.C.									
Bridge Name:	RAWA-1								
Date:	JUNG LOTE 2008								
Time:	(A.30 -11-00 em								
Venue:	RAWAL								

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Altoman
2	Mr. Raphael WANE	DOW	De
3			_

(2) C.C.C.

	Name	Clan/Group/Community	Signature
1	MATHEW BORATS	NAROW CCHEF	GAR I
2	HENRY TOAGITZ	NAKES (CHEF)	March A
3	MORRIS POTSI	NORDING CHEF)	Store !
4	GABLIEL BUTSIA	NATSI COHIEF	andrel
5	JUSTIAN INDIKEN	NABOM (YUTA	
6	CLOUENT KADUM	NATS/	and
7	ALOYSIUS RIRIPI	NATSI	1 Amire
8	BENIUM ATOEN	NABOIN	Fire.
9	EBDIE TOROZ	NAKARIP (C/h	D EUR
10			
11			
12			
13			
14	·		. *
15			:

JICA	Stud	y '	Team	`
Hiro	mori	X	UROZ	< \

Environmentalist 1

T.

Ryoichi KAWABE

Environmentalist 2 A5-4-7

11/37

Annex

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

II Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Bakanovi Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Bakanovi Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Bakanovi</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of MOA (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: 10 / 07 / 2008

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Mymason

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning Autonomous Bougainville Government

I An Cola

John KOLAN

Administration Chief Executive Officer

Division of Technical Services

Autonomous Bougainville Government

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Commu	ınity Coordination Committee:	Bakanovi C.C.C
Bridge Name:	Bakanovi	·
Date:	10/7/08	
Time:	11.30 - 12.00	
Venue:	BOKENDUI BO	1166

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Stormai
2	Mr. Raphael WANE	DOW	
3			

(2) C.C.C.

	Name	Clan/Group/Community	Signature
	SPOOR. BETOPA	SAVINION CLAN (KOPANI)	Botan
2	PATRICA KIVA	SAVINIOA WOMENS RED	Bre .
.	PETER · SIMPRE	MAKIARA CLAN (KOPANI)	Bunar
ļ	PATRICK . FIRITAM	C.O. E. CHOIRMON (MONETA)) Attack
5	JACOB · TOKIDA	SENIOR TEACHER (MONETRI)	John .
3	DONALS - EVERET	Auxeillary tolice	They
,	CHRISTOPHER. PROSI	VILLAGE COURT MAGISTRATE	L. Pipesi
3	AGOITHA FIRITAM	VILLAGE COURT CLERK	Buton
)	PETER KALDSOI	C.O.F. CHARMAN TORAN	- Birabiles
0	JAOK. SOKA	FRECUTIVE OFFICE (END)) Josephan
1	CLARA. KIA	WOMENS FRESIDENT	Char
2	THOMAS. KEREFAS	VITO PARAMOUNT CHIEF	Busi
3	MICHEAL DARIAS	PARAMOUNT CHIEF (MAN	ETA Worza
4	PETER. MOMET	BAKORIN CLAN (VITO)	Muss
5	MARK. KEREBAS	AKNIRO CLAN CHIET (BO	VF) ALONDON

Annex

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- 3. Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Bove Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Bove Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including **Bove** Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of **MOA** (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: 10 / 07 / 2008

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARC

Chief Executive Officer

Division of Lands and Physical Planning

Autonomous Bougainville Government

John KOLAN

Administration Chief Executive Officer

Division of Technical Services

Autonomous Bougainville Government

Chris SIRIOSI

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Commu	nity Coordination Committee: Bove C.C.C	_
Bridge Name:	Bove	
Date:	10/2/08	
Time:	12.00 - 13.30	
Venue:	BONE BRIDGE	

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Allanoi
2	Mr. Raphael WANE	DOW	10
3			

(2) C.C.C.

	Name	Clan/Group/Community	Signature
1	DAMES SIONAL	BONE PERFORMENSI-CHIEF	· John
2	DAUL DEPANOR	ACIBORAS COE MAGNETARA	
3	PATRICK GOROGA	ENIPOCHON BEP	Bok-rox
4	DANKEL GOODL	Go-Con Commontes	(Agend
5	ANGGA DEKO	CONTARA CLAN	A. Dobos
6	CONCURKATA	AUDRA CLOS	Katanle
7	RITA ENote.	Without Rep UKE	Erole,
8	Modela FIBILITY	KURO CHAN CHEE	Believe
9	MARIA FRANKSO	AWOLA CLASS CHIEF	Manue
10	MALL HOLERAL	ROUS VICECIAR	Northans
11	PSERVORMA VATELA	COMM PERCE STORM	SU
12	MULLAR PERMON	Bouse Village Your PEP	Adno
13			
14			
15	,		

Annex

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Pukarobi-2 Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Pukarobi-2 Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Pukarobi-2</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of MOA (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: 10 / D4 / <u>2008</u>

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

anmoren

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning Autonomous Bougainville Government

John KOLAN

Administration Chief Executive Officer

1 Amal

Division of Technical Services

Autonomous Bougainville Government

Chris SIRIOS

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Communi	Pukarobi-2 C.C.C	
Bridge Name:	Pukarobi-2	
Date:	10/2/08	
Time:	15.20-15.45	. ·

(1) ABG

Venue:

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Masamai
2	Mr. Raphael WANE	DOW	, 0
3			

(2) C.C.C.

(2)	J.O.O.		
	Name	Clan/Group/Community	Signature
1	TOHN RIRIAU	BATOVA Claron	42
2	BRI JOHN MARAMO	MABERI High Skell	Leey
3	GREGORY AKUPA	Sisio Clean	Assort
4	FR. MICHAEL BORA	MARIRI MAJISTRY SKUL	MALE
5	SAM KOPA	C.OE CHARMAN	Jeun X
6	SINIA SAM	Police Wakunin	Mars
7	MARTHA ARITE	Wommes Rep	MATA ARITE
8	LUKE KIPA	youth Rep	Socielano
9	John Konou	TAGONI Cleon	Joseph
10	RAPHAEL GERETO	OVOKE Cleen	Quina
11	John BAVE	ORORO Clean	Soler
12	PEKA GAGMINA	CAND Medietor	Deview
13	John ARE	MAGISTRET	Fru
14	John KAPDI	Viles policie	John K
15	TIMOTY SAVIRI	SIOS lida	Freely
16	VIVIANA KOVO	MOMANS Rep	fuce
17	John Mairi	TARARA VILEP	Som

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

II Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (<u>Pukarobi-1</u> Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Pukarobi-1 Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Pukarobi-1</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of **MOA** (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: 10 / 07 / 2008

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning Autonomous Bougainville Government

1 - Male

John KOLAN

Administration Chief Executive Officer

Division of Technical Services

Autonomous Bougainville Government

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Second Stakeholder Meeting Attendance List For

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Commu	unity Coordination Committee:	Pukarobi-1 C.C.C
Bridge Name:	Pukarobi-1	·
Date:	10/7/08	
Time:	14.15 - 14.15	
Venue:	PSKAROBI 1	brisco

(1) ABG

	Name	- Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Mamai
2	Mr. Raphael WANE	DOW	
3			

(4)	J.C.C.		· · · · · · · · · · · · · · · · · · ·
	Name	Clan/Group/Community	Signature
1	JOHN RONE	Know A Botzala Chan	francis
2	BR John MARRING		
3	FR MICHAEL BORA	MINOGRA STREET	Mt.
4.	JOHON MAIN	Frances Village	Lihm
5	Ensons CRUS	Provate for	Con
6	PER SITAVA	Caste Phon	Kehosh
7	VIVIANA KOUD	Woman's Rep	an
8	MATOR PERIOU	Charles Chreed	Nun
9	PAGL RELIQUE	INOCO CLASO	Brill
10	Plo Alexa	Frank Chang	"Dus A with
11	John Karnson	The Charles	
12	MISTUSFILER	60mpn Man	Man
13	John Liver	Programa Shano	Kn
14	PLASHS UMRU	Tapack Ullace	Pulan
15	SING Som	Police RO	are

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

II Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Creepers Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Creepers Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Creepers</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of MOA (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date:	11	/ D7-	7	2008
			•	

Mymason

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning Autonomous Bougainville Government

John KOLAN

Administration Chief Executive Officer

1 Am/60

Division of Technical Services

Autonomous Bougainville Government

Christ KIOSI

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Second Stakeholder Meeting Attendance List For

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Communi	ty Coordination Committee: <u>Creepers C.C.C</u>
Bridge Name:	Creepers
Date:	11/7/08
Time:	8.00 - 8.20
Venue:	CROEPERS BININGE

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Maronai
2	Mr. Raphael WANE	DOW	
3			

	Name	Clan/Group/Community	Signature
1	JOHN PINE	BRAIA BOTOVA CLAN	fas
2	BR JOHN MARAMO	Moder Hill School	Set .
3	FR Michael Born	MUNICIPA STAGE	Million
4	Grano Crus	Youth Pap	Solo
5	JOHN MAIR	TESTIANA VILLAGE	Som
6	POKA SUTAKA	Ovorce Ctop	Pylone
7	11/120/2010	Ward Rep	Vebru
8	MATA RIPLEN	Woman 11 Rep	Also
9	JBAN CONOU	TEROUGHOU	Sohn
10	Wes Cupa	YOUTH REP	1834
11	PLO ANTENTO	LAVIA Chow	total
12	MAJO ARIZE	Cotynous DEP	MPC
13			
14			
15		and the second of the second o	

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

II Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Ratavi Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Ratavi Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Ratavi</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of **MOA** (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: / D7 / 2008

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning Autonomous Bougainville Government

John KOLAN

Administration Chief Executive Officer

AMORO

Division of Technical Services

Autonomous Bougainville Government

Chris SERIOSI

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Second Stakeholder Meeting Attendance List For

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Community Coordination Committee: Ratavi C.C.C		
Bridge Name:	Ratavi	
Date:	11/2/08	
Time:	9.00 - 9.15	
Venue:	- RATANI BOLL	NGE

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Mamai
2	Mr. Raphael WANE	DOW	10
3			

	Name	Clan/Group/Community	Signature
1	JOHN ARE	KANIA BATOVA Clea	a challow
2	Bot - John MARAINE	_	feed
3	For MicHeal Bolis	Minuctry Skill	kreiker
4	SAM KOPA	COE TERA	Sundy
5	Orolo Ors	youth Rep	Supro
6	John Mariei	TARA VILLES	John M
7	PEKA SIUTAKA	OVOKE aleun	PEKER SILE
8	VIVIANA KOVO	Klommis Per	Chenne
9	Timoty SAVIRE	Sios Woker	February
10	John BILLEN	Common youth	Paur
11	John Kappi	VILES Police	John K.
12	RADHAEL GERETO	OYOKE Cleven	Radhair Gi
13	LUKE KIDA	Youth Rep	Sonlus
14	SINIA SAM	police Res	meeto
15	DOREKY C.	Sisio Clean	Picity
	PHICIP TORUPA	KAVIA Clevar	P-71.
	LLETAI THOMAS	OVOKE Cleon	tomas

Annex -

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Iraka Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Iraka Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Iraka</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of **MOA** (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date:	11	1	<u>07</u>	1	2008
-------	----	---	-----------	---	------

Mayhans

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning

Autonomous Bougainville Government

John KOLAN

Administration Chief Executive Officer

Division of Technical Services

Autonomous Bougainville Government

Chris STRIOSI

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Second Stakeholder Meeting Attendance List For

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Community Coordination Committee: <u>Iraka C.C.C</u>		
Bridge Name:	<u>Iraka</u>	
Date:	11/7/08	
Time:	9.30-9.50	
Venue:	Ihaica Boudge	

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Marmori
2	Mr. Raphael WANE	DOW	
3			

	5.0.0.		
	Name	Clan/Group/Community	Signature
1	LAPHARL GERMO	Commety Reg	Buto
2	PACIL REVIRE	UVBIO dean	Bul hanks
3	Timoty TokeATA	ORoRo Cleon	Torecta
4	ANTON BOKIRIO	followent Offices	non
5	DORETY CALACUI	SISIO CLEANREY	Piere
6	MARIN MOIRU	Womans Rep	April
7	John Relian	VATOVA CROON	Ster
8	PHUP KURRA	KAVIA Cleien	Dur
9	Timoty SAVIRI	CHourh lep	Opidel
10	As MICHAEL NAMBO	A.O.G. Chowh Rep	Mobel
11	John Bruke	CHARMON.	the
12	DAYID KOME	TEANA SUB & PING	Bayon
13	Cult Kips	I.P. P. N.G CHAMMAN	o freed
14	POL RIDIETA	OVOKE Clean Rep	Pore
15	MAKTU K-	RAVAN Sub P. FGAN	Delve
			10

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- 3. Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Korova Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Korova Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Korova</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of MOA (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date:	 1	07	1	2008

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning Autonomous Bougainville Government

John KOLAN

Administration Chief Executive Officer

Antala

Division of Technical Services

Autonomous Bougainville Government

ChrissIR1081

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Second Stakeholder Meeting Attendance List For

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Communi	ty Coordination Committee: <u>Koreva C.C.C(</u> Koreva)
Bridge Name:	Koreva (Koreva)
Date:	11/2/08
Time:	10,25-10,45
Venue:	KOREVA BOLDGE

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Masamai
2	Mr. Raphael WANE	DOW	
3			

	Name	Clan/Group/Community	Signature
1	RAPHAEL GERATO	COMMUNITY REP	Good
2	PAUL REVIRE	UVA10 CLAW	VINL RAIRE
3	ANTON BOKIRA	PARAMOUNT CHIEF	AB
4	NOWN-BIURA	SISIO CLANU	Hos
5	PAULA · SAMARIO	OVOKE CRAN	Troja
6	LUKE. KIPPA	BOM CHARRANA	CAN TO THE REAL PROPERTY OF THE PARTY OF THE
7	WIARIA, MOIRU	WOMENS REP	Mees
8	TIMOTHY. GOROVATO	YOUTH REP	For
9	TIMOTHY TORUSTA	ORDRO Char	Thork
10	JOHN RIMON	Comm Miloropass	*=
11	HINR Pola Samary	Oldes Um	There
.12	PHLIP KURANDA	FAULT Chan	Rom
13			
14			
15	·		******

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Malas Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Malas Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Malas</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of MOA (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: 1 / 07 / 2008

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning Autonomous Bougainville Government

dolla

John KOLAN

Administration Chief Executive Officer

Division of Technical Services <

Autonomous Bougainville Government

Chair SIRIOSI

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Second Stakeholder Meeting Attendance List For

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Commun	Name of Community Coordination Committee: Malas C.C.C		
Bridge Name:	Malas		
Date:	11/2/08		
Time:	12.50 - 12.30		
Venue:	MASLASS BRIDGE		

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Mamai
2	Mr. Raphael WANE	DOW	
3			

			
	Name	Clan/Group/Community	Signature
1	ANDREW Abea	COE Member	Atha
2	Steven Koreus	COMUNITY POLICE	THORUGAL
3	DAVIEL KENVIRI	CLAN CHIEF	19-7
4	STANZEY DEKU	YouTH 12LP	Sperco
5	LEO GEARE	exupel Rep.	Haza.
6	Anne Kapellate	WOMEN'S REP	Heighernate
7	HERMAN TANDKORO	YOUTH REF	A Paner
8	leavin moko	CLAN CHIEF	Deron
9	Linus Wale	Clamont Chief	Gud
10	Homas Kone	Claim Chief	Mone,
11	Exsavier opa	CHIEF	Enpa
12	ROBERT LAMBUMO	other	Karanaw
13	Pouline Empues	dist	Corne
14	Francis KARO	other	wabe.
15	Chamant Unvermon	OtheF	CHave
		97.0	

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (<u>Ururlia</u> Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of <u>Ururva</u> Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Ururva</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of MOA (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: 23rd / June / 2008

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning Autonomous Bougainville Government

John KOLAN

Administration Chief Executive Officer

Division of Technical Services

Autonomous Bougainville Government

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Second Stakeholder Meeting Attendance List For

For The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Community Coordination Committee: <u>Ururva C.C.C</u>				
Bridge Name:	<u>Urunya</u>			
Date:	23 rd	June	2008	
Time:	10:10	- 10:4	.0	_
Venue	Uni	rua Rasa	10.0	

(1) ABG

Signature
Altamos"
1. /hm

(2) C.C.C.

	J		
	Name	Clan/Group/Community	Signature
1	ALEX. PEOAPE	OV4 VEO/Chife	illu
2	ROBERTH. SIRMOVER	. UNAYO.	9 Bee
3	PUKUTO-TOVIS	BUIRAO	Proues -
4	ABLE. REREVAIRI	APIGEREAVA.	Alle
5.	BANIEL SIVERMO	CHIJE.	Des
6	KENT. THOWAS.	YOUTH LEADON.	Peternes
7	ROBIN REREVAIRI	. Commtieeder	de
8	SOUL. REREVARI	Clean Cheife.	Buch
9	TETEO. Elizabel .	Chan Chile:	Temple.
10	THOMMS . RAY.	Group Leagues.	y
11	Somnic. NOSEN-	youTh Leaden.	in
12			
13			
14			
15			

JICA study Team. Hivonor XUROX Ryoichi Kawabe

27 18 M

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (<u>Kaskrus</u> Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Kaskrus Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Kaskrus</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of MOA (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: <u>26</u> / <u>07</u> / <u>2008</u>

May maxano

Raymond MASONO
Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVADO

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning

Autonomous Bougainville Government

John KOLAN

Administration Chief Executive Officer

Division of Technical Services

Autonomous Bougainville Government

Chris Struosi

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Second Stakeholder Meeting Attendance List

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Community Coordination Committee: <u>Kaskrus C.C.C</u>		
Bridge Name:	Kaskrus	
Date:	26/7/08	
Time:	10.30 - 10.50	
Venue:	Karknus Brings	

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Mariai
2	Mr. Raphael WANE	DOW	! 1
3			

	Name	Clan/Group/Community	Signature
1	NORMAN RAPERS	STASUN CHOW	Respease
2	LAVINIO TOMOVIO		Tombach
3	JOHN MIKUIAN	Who Book Chan Ch	
4	YRABA CHILLIA		Sennier
5	KOPIN SIMIKA	KEIPE MER	Kumoken
6	Thatma T MICA	4 LOBUSE WIFE	The the cit
7	PIATURE ROUGH	Nakou Mass	Mersi
8	MASIK MATERIA	France	Marikabres
9	Anniel Microst	WEATALL CLANCE	of Sheed
10	JOE (TOPOLORIEP	Pars 750n	
11	MICHAR ROBUNDA	Statisting Chances	of Wheel
12	ELIZAN VICUS	STARREST Chroscher	, Marca
13	Lot Karana	Chack CHER	Hehera
14	HORNE KIK	PRSTON	Tell
15	Moses VITAS	Nest zavos Mons	- Moral

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Rotaovei Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Rotaovei Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including **Rotaovei** Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of MOA (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: 26 / DT / 2008

Mymaspy

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning Autonomous Bougainville Government

- Anko

John KOLAN

Administration Chief Executive Officer

Division of Technical Services

Autonomous Bougainville Government

Chris SHNOSI

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

The Second Stakeholder Meeting Attendance List

For

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Community Coordination Committee: Rotaovei C.C.C		
Bridge Name:	je Name: <u>Rotaovei</u>	
Date:	26/7/08	
Time:	11.25-11.45	
Venue:	NOTATOVEL BOUNDE	

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Manai
2	Mr. Raphael WANE	DOW	1
3			

	Name	Clan/Group/Community	Şignature
1	RODNEY SNIA	MASTAHOR CHAN CLUB	- Anne
2	JUNT DPOI	SEC TEOP LANCUIT	(O. Dein
3	NICK BELLO	STORW Chow CHAR	The
4	Theky Kre	BORDO UK DIKINDI	Alex
5	MANTINDE BONDE	NORTHE	Ban
6	SIMBER STER CHEMINE	Village Cather Manon	Bimmondi
7	Williams PAPURNA	STESONCHON CHOST	Deal &
8	COUNTE AKINA	PROAKS CLAST	Olean
9	Lysus lates	UCWE SEC	Tithe
10	NEWLY MINED	UCIOF SEC	Drive
11	LAWRENCE BOWNE	- Com /Elden	Roma.
12	STEPHON VEDRETS	TRANSOS CLASO MONOS	2 83-
13	Solomo John	VAIRA GROOM CHEP	Alexander
14	TAGIM DOBOLD	PARAMETER CHAR	
15	Red Timody NIVEN	CHIRCH REP	Des

Annex

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

AUTONOMOUS BOUGAINVILLE GOVERNMENT DIVISION OF TECHNICAL SERVICES

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Warakapis Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Warakapis Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Warakapis</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of MOA (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: 107 / 2008

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning

Autonomous Bougainville Government

John KOLAN

Administration Chief Executive Officer

And Col

Division of Technical Services

Autonomous Bougainville Government

Chris SIRIOSI

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Jacob WAFFINDUO

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

PNG

The Second Stakeholder Meeting Attendance List For

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Commu	nity Coordination Committee: Warakapis C.C.C
Bridge Name:	Warakapis
Date:	26/2/08
Time:	12.30 - 13.00
Venue:	WROTAKEPIS BOUNGE

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Maximai
2	Mr. Raphael WANE	DOW	7.0
3			

(2) C.C.C.

	J.O.O.	,	
	Name	Clan/Group/Community	Signature
1	GREGORY MOTEVIN	MKBERN CHAN	llen
2	JOE REARBY	EVE MANNED	AST
3	Staves Temos	Nother Chan	On we'
4	LEO WUXO	10 HOPPO CLASS	Aus
5	BOSSE VIETERO	North spera Chang	Hotel
6	BARRE VOSIVE	TOPOTZ Horselow	
7	Down WETTO	UC PASSON	alkona
8	Special Kuther	Polices Day	Myse
9	Titos Paulovi	Pasta	Shu-
10	VINCAST CHOSE	My Circles Classes	· Odle
11	Brokappet Kos Brawn		
12	GETRE KUKHOSON		
13			
14			
15			

Annex

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

- 1. All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.
- 2. When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

AUTONOMOUS BOUGAINVILLE GOVERNMENT DIVISION OF TECHNICAL SERVICES

THE PROJECT FOR CONSTRUCTION OF BRIDGES OF ON BOUGAINVILLE COASTAL TRUNK ROAD (Irung Bridge)

MEMORANDUM OF AGREEMENT

Objectives

This Memorandum Of Agreement (hereinafter referred to as MOA) has been signed between the Autonomous Bougainville Government (hereinafter referred to as ABG), the Division of Lands and Physical Planning of ABG (hereinafter referred to as DLPP(ABG)), the Division of Technical Services of ABG (hereinafter referred to as DTS(ABG)), the Division of Law of ABG (hereinafter referred to as DOL(ABG)), the Department of Lands and Physical Planning of PNG (hereinafter referred to as DLPP), the Department of Works of PNG (hereinafter referred to as DOW) all representing the State or National Government and villagers and relevant Local Clans comprising Community Coordination Committee (hereinafter referred to as CCC) for the smooth implementation of the following project inclusive of Irung Bridge Construction.

Outline of the Project

Reconstruction of 15 bridges/ culvert including <u>Irung</u> Bridge planned at the same location of the original bridges. The Project is expected to be implemented by the Grant Aid from Japanese Government. This MOA is prerequisite condition to get commitment from Japanese Government for the implementation of the Project. The Project will be started in accordance with the tentative schedule after the agreement between Papua New Guinea and Japanese Government.

Objectives of the 2nd Stakeholder Meetings

Following explanation and discussion will be carried out in the 2nd stakeholder meetings.

- Explanation of the Project Outlines and Expected Schedule in the Future
- Explanation of Predicted Positive and Negative Impacts
- Explanation of Construction Area and Right of way for National Road (on-site)
- Exchange Opinions
- Signing of **MOA** (Memorandum Of Agreement)

Agreement

We (whose name appear on the next page and the attendance list), understand above description and agree that this project will be implemented without any unnecessary interruptions to the contractor due to such factors as land disputes, crop compensation, gravel royalties, employment, provision of social services, or similar. We agree that if any such issue arises, those issues shall be immediately brought to the attention of relevant agencies or Government Department such as DTS(ABG), DLPP(ABG), Police, etc, to resolve. We further agreed that the CCC will ensure that members of our respective clans & settlement are made aware of this MOA and that any breach of this MOA will be referred to appropriate Law Enforcement Agencies.

We acknowledge that we represent our respective clans and communities and hereby agree and undertake to abide by the above Agreement. And as a sign of our agreement and consent have caused our signature to be signed below on the date shown.

Date: 26 / 07 / 2008

aymasen

Raymond MASONO

Acting Chief Administrator

Autonomous Bougainville Government

Andrew DOVARO

Chief Executive Officer

Division of Lands and Physical Planning

Autonomous Bougainville Government

John KOLAN

Administration Chief Executive Officer

Division of Technical Services

Autonomous Bougainville Government

Chief Executive Officer

Division of Law

Autonomous Bougainville Government

Manager Customary Land

Department of Lands and Physical Planning

PNG

Eric SIKAM

First Assistant Secretary (Technical Services)

Department of Works

PNG

The Second Stakeholder Meeting Attendance List For

The Basic Design Study on the Project for Construction of Bridges on Bougainville Coastal Trunk Road

Name of Community Coordination Committee: Irung C.C.C				
Bridge Name:	Irung			
Date:	26/3/08			
Time:	15.00 - 15.30			
Venue:	TRUNG BRUDGE			

(1) ABG

	Name	Post	Signature
1	Mr. Simeon ITAMAI	DTS(ABG), Engineer	Manai
2	Mr. Raphael WANE	DOW	Homes
3			

(2) C.C.C.

	Name	Clan/Group/Community	Signature
1	CRORLING CETSIMUR		Star
2	EBURDA JAMBU		
3_	Depoter Karry	NORMAN MANCHIO	Ban
4	William ROAD	NORMAN MON MADO	We -
5	Mano Mohara		Monalows
6	Chrutin Mother	Compade Pap	4
7_	Michael Whole	Com book	M-
8	Charles Corroll	Comm 1 ADAD	and and
9 .	DOE ROAFA	E MARSON	A.
10	10005 8200000	Yours RED	Die .
11			
12	-		
13		;	
14			
15			

Annex

Summary of Explanation regarding Environmental and Social Impacts

I Roles and Responsibility

 All participants of this meeting should try to let all other local people understand the importance of the bridge construction and cooperate with consultants and contractors.

When a problem causes between consultant/contractor and local people, CCC members should hold meeting(s) and find out an effective solution in continuous communication with ABG and DOW.

Il Predicted Impacts

- Some portions of customary land will need to be acquired as a part of access road for the bridge although the portions are limited to some of surrounding area of the bridge. Additionally some of areas on customary lands will need to be used temporarily as construction yards.
- 4. Access to the river water at the bridge site will be limited during a bridge construction. Additionally it is predicted that water usage for drinking, cooking, bathing, washing clothes & plates and fishing may be limited at the down stream of the construction site due to a turbidity caused by earth works. Hence users who are using river water may have to shift to the upstream.

cc Executive Manager, Implementation Manager Department of Personnel Management

> Director-General Economic Development Cooperation Division Department of Foreign Affairs

Technical Advisor Staff Development & Training Unit Department of Health

Dr. Alphonse Tay Chief Executive Officer Port Moresby General Hospital

Mr. Robin Calistus District Administrator Morobe Provincial Administrator

Ms. Regina Koi Kulunga Director of Nursing Services Mt Hagen General Hospital

Mr. Albert Bunat Senior Health Advisor East Sepik Provincial Administration

Mr. Takeshi Tanabe Counselor/Chief of ODA Office Embassy of Japan

BETWEEN:

KP TRUST COMPANY LIMITED

(the "Landlord")

AND:

KANICHIRO SOMA

(the "Tenant")

RESIDENTIAL LEASE

K.P. TRUST CO. LTD
Suite # 03
Pasuwe House Gordens Industrial Area
P.O.Box 6617 Boroko
National Capital District
Email: kp_trust@daltron.com.pg

24. COSTS

The tenant shall upon demand pay the costs of the Landlord's lawyers of and incidental to the preparation, and execution of the Lease, and stamping, obtaining statutory approval and attending to registration (if appropriate) of the Lease together with any reasonable out of pocket expenses in relation thereto.

25. **STATUS**

Each party shall observe all relevant statutes, statutory regulations and by-laws relating to the health, safety, noise and other housing standards with respect to the Premises.

26. EARLY TERMINATION

In the event that the tenant wishes to vacate the premises prior to the expiry date of this lease, the tenant an advance of two (2) month notices in writing of his intention to terminate the Lease, And the bond will be automatically forfeited.

THE SCHDULE

ITEM 1: LAND

Allotment 75 Section 51, Port Road, Blight Street, Granville, (Reef Apartments Stage 1) City of Port Moresby, Papua New Guinea being the whole of land comprised in State Lease Volume 35 Folio 8686

ITEM 2: PRIOR ENCUMBRACES

As stated in the State Lease otherwise Nil.

ITEM 3: PREMISES

Unit No. 18

ITEM 4: TERM

One (1) Year commencing on the 10th day of April 2008 and terminating on the 10th day of April 2009 with option to renew

<u>ITEM 5:</u> <u>RENT OF TERM</u>

One hundred four thousand KINA (K 104,000.00) including water (K100/per Month) plus GST during the term of this Lease

ITEM 6: RENT REVIEW

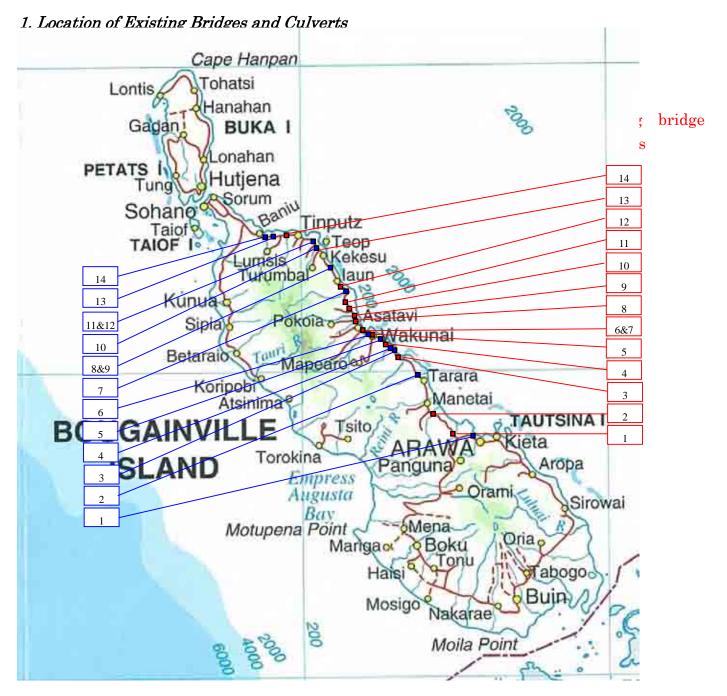
This agreement shall be reviewed within twelve (12) Months from April 10th 2008

ITEM 7: PAYMENT OF RENT

EIGHT THOUSAND SIX HUNDRED SIXTY SIX KINA SIXTY SIX TOEA (K 8,666.66) plus GST payable on a monthly basis during the Term of this Lease to be payable to "KP TRUST CO LTD"

ITEM 8: BOND

EIGHT THOUSAND SIX HUNDRED SIXTY SIX KINA SIXTY SIX TOEA (K 8,666.66)


IN WITNESS WHEREOF the parties have hereto set their hands and seals on the 10th day of April 2008

Occupation & Address of Witness

THE COMMON SEAL of KP TRUST COMPANY LIMITED was hereunto affixed by authority of its Board of Directors in the presence of:)))	Director / Secretary COMMON Seal Of Director / Secretary
SIGNED by the said Kanichiro Soma in the presence of))	Kanichiro Soma
Signature of Witness		
Name of Witness	•••	

5-5 Ledger of Existing Structures

During the Study, 14 bridges and 14 culverts were identified on the road between Kokopau and Arawa. These are summarized in the following pages.

	Bridge Name		Bridge Name
1	PENEI	8	RED RIVER
2	AWAKAWAU	9	AITA
3	TAKANU	10	SIVAVI
4	KOIKOI	11	URUAI
5	KOKOAVII	12	SAUMIZ
6	URUAVI 2	13	YODIDI/RATUWE
7	URUAVI 1	14	RAMAZON

	Culvert Name		Culvert Name
1		8	
2	TEKANU	9	
3		10	TEROKI
4		11	
5		12	
6		13	RAWA2
7		14	CHINPATZ

Existent Bridge

No.1 Bridge Name: PENEI Location: S: 6° 13' 2.6" E: 155° 29' 30.8"

Span: L=32.0+32.0 Chainage:

Bridge Name: ARAKAWAU No.2

Span: L=33.0 Chainage:14.6km

Bridge Name: TEKANU No.3

Span: L=36.0 Chainage:44.7km

No.4 Bridge Name: KOIKOI

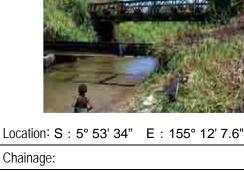
Span: L=24.0

Location: S: 6° 7' 53.08" E: 155° 25' 24.28"

Location: S: 5° 56' 51.14" E: 155° 18' 36.54"

Location: E : 5° 53' 18.31" S: 155° 15' 36.97"

Chainage:54.7km


No.5 Bridge Name: KOKOAVII Location: S : 5° 52' 12.94" E : 155° 13' 44.83"

Span: L=18.0 Chainage: 59.0km

No.6 Bridge Name: URUAVI 2

Span: L=32.0+32.0

No.7 Bridge Name: URUAVI 1

Span: L=36.0

Location: S: 5° 52' 32.3" E: 155° 12' 3.0"

Chainage:

No.8 Bridge Name: Red River

Span: L=36.0 Chainage: 71.0km

E: 155° 10' 7.39"

Location: S: 5° 50' 28.68"

No.9 Bridge Name: AITA Location: S: 5° 49' 3.61" E: 155° 8' 51.47"

Span: L=66.0+6.2

No.10 Bridge Name: SIVAVI

Span: L=44.0 Chainage:

Bridge Name: URUAI No.11

Span: L=36.0+36.0 Chainage:

No.12 Bridge Name: SAUMITZ

Span: L=27.0 Chainage: 125.5km

Chainage: 77.7km

Location: S: 5° 47' 12.37"

E: 155° 9' 8.02"

Location: S: 5° 45' 25.02" E: 155° 7' 5.05"

E: 155° 7' 28.63" Location: S: 5° 42' 19.72"

 $No.13 \quad \text{Bridge Name: YODIDI/RATUWE} \qquad \qquad \text{Location: S}: 5° 35' 6.43" \quad \text{E}: 155° 4' 23.52"$

Span: L=6.0 Chainage: 112.0km

No.14 Bridge Name: RAMAZON

Location: S: 5° 32' 24.90" E: 154° 57' 8.93"

Span: L=36.0 Chainage: 128.6km

(2) Existent Box culvert

No.1 Name: No.2 Name: Tekanu

Location: S: 6°12' 36.7" E: 155°32' 48.3"

Location: S: 6° 1' 3.1" E: 155° 24' 2.5"

No.3 Name:

No.4Name:

Location: S: 5° 54' 52.7" E: 155° 17' 53.3"

No.5Name:

No.6 Name:

Location: S: 5°52' 53.1" E: 155°15' 2.9" Location: S: 5°52' 8.7" E: 155°13' 41.1"

No.7 Name:

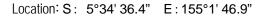
Name:

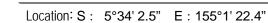
Location: S: 5°37' 31.9" E: 155°4'54.9"

No.8

No.9 Name:

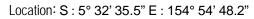
No.10 Name: Teroki

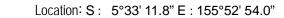

Location: S: 5°37' 4.9" E: 155°4' 50.2"


Location: S: 5°35' 7.7" E: 155°3' 25.8"

No.11 Name:

No.12 Name:





No.13 Name: Rawa2

No.14 Name: Chinpatz

