Department of Energy Republic of the Philippines

The Study on Capability Enhancement on Policy and Planning for a More Effective and Comprehensive Philippine Energy Plan (PEP) Formulation

Final Report

(Appendix)

- Tools for PEP Formulation -

December 2008

Japan International Cooperation Agency

The Institute of Energy Economics, Japan

Tokyo Electric Power Company

I DD
JR
08–059

Contents of Appendix

Appendix-1	Overview of Case Studies	A1-1
Appendix-2	Sample of Summary Sheet	A2-1
Appendix-3	Sample of Energy Balance Table	A3-1
Appendix-4	Operation Manual for Demand Forecasting Model	A4-1
Appendix-5-1	Operation Manual for Supply/Demand Optimization Model A	5-1-1
Appendix-5-2	Guidance for Supply/Demand Optimization ModelA	5-2-1
Appendix-6	Operation Manual of Outlook Summary	A6-1

Appendix-1

Overview of Case Studies

<u>Appendix 1</u>

1.1 BAU Case

									G	rowth I	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1.210	1.647	2,177	2.772	3.413	4.079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21.536	25,491	29.456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	/ F	,-/ 0		,		_,,							
Crude oil	Peso / litter	17.8	33.0	367	30.5	12.3	45.2	137	1.6	15	1.4	13	38
Coal	Paso / kg	2.0	33.7	36	4.1	42.5	40.2	15.7	2.4	2.3	2.1	1.5	3.0
Notural Cas	Data / mmPtu	2.0	5.2 640	5.0	740	4.5	4.7	12.1	1.4	2.5	2.1	1.0	27
Natural Gas	Peso / Illinotu	10.1	20.8	22.0	27.0	40.0	42 1	10.0	1.0	1.5	1.4	1.5	2.1
LFG	Peso / litter	19.1	50.8	55.9	57.0	40.0	45.1	10.0	1.9	1.8	1.0	1.5	3.3
Gasoline	Peso / litter	30.7	55.1	59.0	65.5	72.3	79.9	11.0	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.0	64.9	/1.8	/9.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	/4.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4.2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	3.9
Fuel Oil	Peso / litter	18.9	38.2	41.7	45.3	49.1	53.0	15.1	1.8	1.7	1.6	1.5	4.2
Electricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.5	1.4	1.3	3.5
Energy Indicators													
TPE per capita	kgoe/person	384	438	525	582	640	690	2.7	3.7	2.1	1.9	1.5	2.4
TPE per GDP	toe/mil. PHP	27.0	24.7	24.4	22.8	21.7	20.7	-1.8	-0.3	-1.3	-1.0	-1.0	-1.1
Electricity per capita	kWh/person	530	636	781	936	1.094	1.251	3.7	4.2	3.7	3.2	2.7	3.5
Passenger Cars	1 000 units	788	862	1 094	1 346	1 605	1 857	1.8	49	42	3.6	3.0	35
Utility Vehicles	1,000 units	1 792	2 4 3 4	3 238	3 944	4 470	4 784	63	59	4.0	2.5	14	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	41	2.9	2.0	13	33
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2 1 5 8	3 610	5 134	6 / 97	7 179	8 010	10.8	73	4.8	2.0	1.4	5.4
CO2 Emission	CO -kton	64 453	85.000	106 750	136 680	165 180	105 170	57	1.5		3.0	3.4	1.5
CO2 Emission	CO ₂ -Rion	04,455	85,090	100,750	150,080	105,180	195,170	5.7	4.0	5.1	5.7	5.4	4.5
Total Primary Energy Supply	ktoe	38,498	46,510	58,665	68,603	79,242	89,253	3.9	4.8	3.2	2.9	2.4	3.4
Coal	ktoe	5,190	7,458	9,975	14,688	18,789	23,903	7.5	6.0	8.0	5.0	4.9	6.3
Natural Gas	ktoe	2,504	2,858	3,608	3,793	4,529	4,615	2.7	4.8	1.0	3.6	0.4	2.5
Oil	ktoe	14,430	18,096	21,841	25,836	29,748	33,313	4.6	3.8	3.4	2.9	2.3	3.4
Geothermal	ktoe	8,516	9,327	13,426	13,667	14,812	15,354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2,088	2,661	3,543	4,425	5,307	6,189	5.0	5.9	4.5	3.7	3.1	4.4
Nuclear	ktoe	0	0	0	0	0	0						
Renewables	ktoe	3	327	681	834	962	1,061	153.2	15.8	4.1	2.9	2.0	26.2
Commercial Energy	ktoe	32,731	40,727	53,074	63,243	74,148	84,435	4.5	5.4	3.6	3.2	2.6	3.9
Non-commercial Energy	ktoe	5,766	<i>5,783</i>	<i>5,591</i>	5,360	5,095	4,818	0.1	-0.7	-0.8	-1.0	-1.1	-0.7
Coal	%	13.5	16.0	17.0	21.4	23.7	26.8						
Natural Gas	%	6.5	6.1	6.1	5.5	5.7	5.2						
Oil	%	37.5	38.9	37.2	37.7	37.5	37.3						
Others	%	27.6	26.5	30.1	27.6	26.6	25.3						
Non-commercial Energy	%	15.0	12.4	9.5	7.8	6.4	5.4						
Final Demand (excl. Non-Con	ktoe	17,402	22,931	29,531	36,445	43,253	49,668	5.7	5.2	4.3	3.5	2.8	4.3
Agriculture	ktoe	313	269	324	381	435	485	-3.0	3.8	3.3	2.7	2.2	1.8
Industry	ktoe	4,084	4,822	6,125	7,562	9,109	10,717	3.4	4.9	4.3	3.8	3.3	3.9
Energy Intensive	ktoe	2,653	3,260	4,035	4,894	5,815	6,772	4.2	4.4	3.9	3.5	3.1	3.8
Other	ktoe	1,430	1,562	2,090	2,668	3,294	3,944	1.8	6.0	5.0	4.3	3.7	4.1
Commercial	ktoe	1.660	2.312	3.145	4.107	5.163	6.278	6.9	6.3	5.5	4.7	4.0	5.5
Residential	ktoe	2,405	2,908	3.870	4,988	6.208	7,463	3.9	5.9	5.2	4.5	3.8	4.6
Transport	ktoe	8 940	12,619	16 066	19 408	22,338	24 724	71	49	39	2.9	2.1	42
En anon Not Inc		10 110	12 100	20,000	27 220	16 110	51712	5 1		5.2	, / 5	2.2	1 5
Energy Net Import	ктое	18,112	23,198	28,779	37,330	40,410	34,/13	5.1	4.4	3.5	4.5	3.5	4.5
Coal	ktoe	5,/10	5,139	6,975	10,656	14,074	17,937	6.7	6.3	8.8	5.7	5.0	6.5
Natural Gas	ktoe	0	0	0	875	2,625	3,500				24.6	5.9	~
Oil	ktoe	14,402	18,059	21,805	25,799	29,711	33,276	4.6	3.8	3.4	2.9	2.3	3.4
Energy Import Ratio	%	55.3	57.0	54.2	59.0	62.6	64.8						
Coal	%	71.5	68.9	69.9	72.5	74.9	75.0						
Natural Gas	%	0.0	0.0	0.0	23.1	58.0	75.8						
Oil	%	99.8	99.8	99.8	99.9	99.9	99.9						

	Growth Rate (%)												
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,647	2,177	2,772	3,413	4,079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21,536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	-												
Crude oil	Peso / litter	17.8	33.9	36.7	39.5	42.3	45.2	13.7	1.6	1.5	1.4	1.3	3.8
Coal	Peso / kg	2.0	3.2	3.6	4.1	4.5	4.9	9.9	2.4	2.3	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	642	696	749	803	856	13.1	1.6	1.5	1.4	1.3	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	42
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	39
Fuel Oil	Peso / litter	18.9	38.2	417	45.3	49.1	53.0	15.1	1.8	17	1.6	1.5	42
Flectricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.7	1.0	13	3.5
Electricity (Titerage)	10507 R001	0.0	12.0	15.0	11.0	15.0	10.1	12.0	1.0	1.5	1	1.5	5.5
Energy Indicators													
TPE per capita	kgoe/person	384	418	491	529	567	595	1.7	3.3	1.5	1.4	0.9	1.8
TPE per GDP	toe/mil. PHP	27.0	23.6	22.8	20.8	19.3	17.8	-2.7	-0.7	-1.8	-1.5	-1.5	-1.6
Electricity per capita	kWh/person	530	602	716	830	939	1,040	2.6	3.5	3.0	2.5	2.1	2.7
Passenger Cars	1,000 units	788	862	1,094	1,346	1,605	1,857	1.8	4.9	4.2	3.6	3.0	3.5
Utility Vehicles	1,000 units	1,792	2,434	3,238	3,944	4,470	4,784	6.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	3.3
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	7,479	8,010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO ₂ -kton	64,453	79,640	95,640	118,020	137,160	156,210	4.3	3.7	4.3	3.1	2.6	3.6
Total Primary Energy Supply	ktoe	38.498	44.771	55,455	63.366	71.498	78.545	3.1	4.4	2.7	2.4	1.9	2.9
Coal	ktoe	5,190	7.373	8.696	12.021	14.579	17.968	7.3	3.4	6.7	3.9	4.3	5.1
Natural Gas	ktoe	2.504	2,797	3.600	3.716	4.448	4.509	2.2	5.2	0.6	3.7	0.3	2.4
Oil	ktoe	14.430	16,400	19.718	22,993	25.741	27.841	2.6	3.8	3.1	2.3	1.6	2.7
Geothermal	ktoe	8.516	9.327	13.426	13.667	14.812	15.354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2.088	2.661	3.543	4.425	5.307	6,189	5.0	5.9	4.5	3.7	3.1	4.4
Nuclear	ktoe	2,000	2,001	0,010	0	0	0,109	0.0	0.5		517	0.1	
Renewables	ktoe	3	312	630	749	839	899	150.9	15.1	35	23	14	25.4
Commercial Energy	ktoe	32 731	38 871	49 614	57 571	65 727	72 761	3.5	5.0	3.0	2.5	2.1	3.2
Non-commercial Energy	ktoe	5 766	5 901	5 840	5 795	5 770	5 784	0.5	-0.2	-0.2	-0.1	0.0	0.0
	NOC .	10.5	3,701	15.7	10.0	3,770	3,704	0.5	-0.2	-0.2	-0.1	0.0	0.0
Coal Notural Cas	%	13.5	16.5	15./	19.0	20.4	22.9						
Oil	70 0/	27.5	36.6	35.6	36.3	36.0	35.7						
Others	70 %	27.6	27.5	31.7	29.7	29.3	28.6						
Non-commercial Energy	%	15.0	13.2	10.5	9.1	8.1	7.4						
Final Demand (excl. Non-Con	ktoe	17 402	21 787	27 120	32 363	37 148	11 273	16	15	3.6	28	21	3.5
A griculture	ktop	313	21,787	27,120	32,303	37,140	41,275	4.0	4.5	2.6	2.0	2.1 1.6	1.0
Industry	ktoe	4 084	4 551	5 500	6 677	7 785	8 870	-4.0	4.2	2.0	2.0	2.6	3.2
Energy Intensive	ktoe	4,064	4,551	3,390	4 211	1,105	0,070 5,501	2.2	4.2	2.0	2.1	2.0	3.2 2.0
Other	ktoe	2,033	1 490	1,014	2 266	2,957	2 270	0.7	5.7	1.2	2.0	2.4	2.4
Commercial	ktoe	1,450	1,460	1,910	2,500	2,020	5,219	57	5.5	4.5	5.0	2.0	3.4
Commercial	ktoe	1,000	2,187	2,878	3,038	4,429	5,218	3.7	5.0	4.8	4.0	3.3 2.1	4.7
Residential	ktoe	2,405	2,763	3,330	4,434	5,342	0,219	2.8	5.2	4.5	3.8	3.1	3.9
Transport	ktoe	8,940	12,032	14,800	17,277	19,220	20,563	0.1	4.2	3.1	2.2	1.4	5.4
Energy Net Import	ktoe	18,112	21,502	25,700	32,353	38,763	44,341	3.5	3.6	4.7	3.7	2.7	3.6
Coal	ktoe	3,710	5,139	6,019	8,599	10,515	13,143	6.7	3.2	7.4	4.1	4.6	5.2
Natural Gas	ktoe	0	0	0	798	2,544	3,394				26.1	5.9	
Oil	ktoe	14,402	16,363	19,682	22,957	25,705	27,804	2.6	3.8	3.1	2.3	1.6	2.7
Energy Import Ratio	%	55.3	55.3	51.8	56.2	59.0	60.9						
Coal	%	71.5	69.7	69.2	71.5	72.1	73.1						
Natural Gas	%	0.0	0.0	0.0	21.5	57.2	75.3						
Oil	%	99.8	99.8	99.8	99.8	99.9	99.9						

1.3 High Grow Case

									G	rowth I	Rate (%))	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1.210	1.672	2.289	3.072	4.032	5,181	6.7	6.5	6.1	5.6	5.1	6.0
RGDP per capita	PHP/person	14,198	17,976	22.651	28.254	34,796	42.341	4.8	4.7	4.5	4.3	4.0	4.5
Energy Prices	r in , person	1 1,170	11,010	22,001	20,20	01,770	.2,011						
Crudo oil	Dago / littar	17.9	22.0	267	20.5	12.2	45.2	127	16	15	1 /	12	20
Crude on	Peso / Intel	17.0	20	26	39.5	42.5	45.2	15.7	1.0	1.5	1.4	1.5	2.0
Coal Natural Car	Peso / kg	2.0	5.2	3.0	4.1	4.3	4.9	9.9	2.4	2.5	2.1	1.8	3.1
Natural Gas	Peso / mmBtu	347	642	090	749	803	850	13.1	1.0	1.5	1.4	1.5	3.7
LPG	Peso / litter	19.1	50.8	55.9	57.0	40.0	43.1	10.0	1.9	1.8	1.0	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4.2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	3.9
Fuel Oil	Peso / litter	18.9	38.2	41.7	45.3	49.1	53.0	15.1	1.8	1.7	1.6	1.5	4.2
Electricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.5	1.4	1.3	3.5
Energy Indicators													
TPE per capita	kgoe/person	384	423	508	564	629	690	2.0	37	21	22	19	24
TPF per GDP	toe/mil PHP	27.0	23.5	22.4	20.0	18.1	16.3	-2.7	-1.0	-2.3	-2.0	-2.1	-2.0
Flectricity per capita	kWh/person	530	611	7/8	20.0	1 081	1 276	2.0	4.1	3.0	3.6	3.4	3.6
Passangar Cars	1 000 units	799	872	1 1 4 4	1 480	1,001	2 2 2 2 7	2.9	5.6	5.2	4.0	4.5	1.0
Litility Vabialas	1,000 units	1 702	2 473	3 378	1,400	1,079	5 3 27	2.0	5.0	1.5	4.9	4.5	4.4
Trucke	1,000 units	1,792	2,473	3,378	4,239	4,919	5,521	6.2	4.5	4.0	2.5	1.0	4.5
Directo	1,000 units	207	203	432	222	007	004	0.5	4.5	3.3	2.3	1.8	5.7
Buses	1,000 units	2 1 5 9	31	52	54	0 177	3/	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,684	5,370	6,973	8,177	8,800	11.3	/.8	5.4	3.2	1.5	5.8
CO2 Emission	CO_2 -kton	64,453	80,830	101,680	129,890	160,880	194,440	4.6	4.7	5.0	4.4	3.9	4.5
Total Primary Energy Supply	ktoe	38,498	45,265	57,277	67,316	79,035	90,881	3.3	4.8	3.3	3.3	2.8	3.5
Coal	ktoe	5,190	7,440	10,012	14,123	19,079	24,963	7.5	6.1	7.1	6.2	5.5	6.5
Natural Gas	ktoe	2,504	2,858	3,285	3,716	4,235	4,615	2.7	2.8	2.5	2.6	1.7	2.5
Oil	ktoe	14,430	16,739	20,443	24,611	28,550	32,318	3.0	4.1	3.8	3.0	2.5	3.3
Geothermal	ktoe	8.516	9.327	13,426	13.667	14.812	15.354	1.8	7.6	0.4	1.6	0.7	2.4
Hvdro	ktoe	2.088	2.661	3.543	4.425	5.307	6.189	5.0	5.9	4.5	3.7	3.1	4.4
Nuclear	ktoe	_,0	_,	0	0	0	0						
Renewables	ktoe	3	317	655	801	925	1 020	151.6	15.6	41	29	2.0	26.0
Commercial Energy	ktoe	32 731	39 343	51 364	61 343	72 908	84 458	37	5.5	3.6	3.5	3.0	3.9
Non-commercial Energy	ktoe	5 766	5 022	5 013	5 072	6 127	6 423	0.5	-0.0	0.2	0.5	0.0	01
Tion-commercial Energy	RIDE	5,700	5,922	5,915	5,972	0,127	0,425	0.5	-0.0	0.2	0.5	0.9	0.4
Coal Natural Car	%	13.5	16.4	17.5	21.0	24.1	27.5						
Natural Gas	%	6.5	6.3	5./ 25.7	5.5	5.4	5.1						
Offers	%0 0/	27.5	37.0	30.8	20.0 28.1	26.6	55.0 24.8						
Non-commercial Energy	70 %	15.0	13.1	10.3	20.1	20.0	24.8						
	70	17.000	22.125	20.250	25.1.02	10 165	10.005	10			2.7	2.2	12
Final Demana (excl. Non-Con	ĸtoe	17,402	22,135	28,350	35,142	42,105	49,205	4.9	5.1	4.4	3.7	3.2	4.3
Agriculture	ktoe	313	256	300	347	392	435	-3.9	3.3	2.9	2.5	2.1	1.5
Industry	ktoe	4,084	4,650	5,944	7,454	9,191	11,161	2.6	5.0	4.6	4.3	4.0	4.1
Energy Intensive	ktoe	2,653	3,164	3,953	4,874	5,922	7,105	3.6	4.6	4.3	4.0	3.7	4.0
Other	ktoe	1,430	1,486	1,990	2,580	3,270	4,056	0.8	6.0	5.3	4.9	4.4	4.3
Commercial	ktoe	1,660	2,232	3,049	4,065	5,277	6,684	6.1	6.4	5.9	5.4	4.8	5.7
Residential	ktoe	2,405	2,792	3,651	4,666	5,802	7,037	3.0	5.5	5.0	4.5	3.9	4.4
Transport	ktoe	8,940	12,205	15,406	18,610	21,503	23,948	6.4	4.8	3.9	2.9	2.2	4.0
Energy Net Import	ktoe	18,112	21,841	27,381	35,427	45,207	54,778	3.8	4.6	5.3	5.0	3.9	4.5
Coal	ktoe	3,710	5,139	6,975	10.054	14,363	18,997	67	63	76	74	5.8	68
Natural Gas	ktoe	0,710	0	0,2,5	798	2,330	3 500	0.7	5.5	/.0	23.9	85	5.5
Oil	ktoe	14 402	16 702	20 406	24 574	2,550	32 281	3.0	41	38	3.0	2.5	33
Energy Import Ratio	0/2	55 3	55 5	52 2	57 8	62.0	64 0	5.0	-+.1	5.0	5.0	2.5	5.5
Coal	∕ <i>0</i> 0∕-	71 5	60 1	607	71.0	75.2	76.1						
Natural Gas	70 0/	/1.3	09.1	09.7	/1.2 21 F	15.5	70.1						
	70	0.0	0.0	0.0	21.3	33.0	/3.8						
UII	%	99.8	99.8	99.8	99.9	99.9	99.9						

1.4 Low Growth Case

	Growth Rate (%)												
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,580	1,942	2,335	2,758	3,216	5.5	4.2	3.8	3.4	3.1	4.0
RGDP per capita	PHP/person	14,198	16,986	19,210	21,471	23,803	26,284	3.7	2.5	2.2	2.1	2.0	2.5
Energy Prices	-												
Crude oil	Peso / litter	17.8	33.9	36.7	39.5	42.3	45.2	13.7	1.6	1.5	1.4	1.3	3.8
Coal	Peso / kg	2.0	3.2	3.6	4.1	4.5	4.9	9.9	2.4	2.3	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	642	696	749	803	856	13.1	1.6	1.5	1.4	1.3	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4 2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	3.9
Fuel Oil	Peso / litter	18.9	38.2	417	45.3	49.1	53.0	15.1	1.8	17	1.6	1.5	4.2
Flectricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.7	1.0	1.3	3.5
Electricity (Average)	1 CSO / KWII	0.8	12.0	15.0	14.0	15.0	10.1	12.0	1.0	1.5	1.4	1.5	5.5
Energy Indicators													
TPE per capita	kgoe/person	384	408	463	472	495	508	1.2	2.5	0.4	0.9	0.5	1.1
TPE per GDP	toe/mil. PHP	27.0	24.0	24.1	22.0	20.8	19.3	-2.3	0.0	-1.8	-1.1	-1.4	-1.3
Electricity per capita	kWh/person	530	579	648	716	780	843	1.8	2.3	2.0	1.7	1.6	1.9
Passenger Cars	1,000 units	788	837	988	1,145	1,306	1,469	1.2	3.4	3.0	2.7	2.4	2.5
Utility Vehicles	1,000 units	1,792	2,338	2,943	3,468	3,868	4,119	5.5	4.7	3.3	2.2	1.3	3.4
Trucks	1,000 units	267	346	405	455	494	521	5.3	3.2	2.4	1.6	1.1	2.7
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,442	4,654	5,715	6,490	6,936	9.8	6.2	4.2	2.6	1.3	4.8
CO2 Emission	CO ₂ -kton	64,453	77,330	88,330	96,350	108,910	119,880	3.7	2.7	1.8	2.5	1.9	2.5
Total Primary Energy Supply	ktoe	38 108	13 827	52 113	56 880	62 670	67 300	26	37	16	2.0	15	23
Coal	ktoe	5 1 90	7 336	8 578	8 360	10 283	12 1/2	2.0	3.7	-0.5	4.2	3.4	3.5
Notural Gas	ktoe	2 504	2 424	2 368	3 715	3 730	3 783	0.6	0.5	-0.5	4.2	0.2	17
Natural Gas	ktoe	2,304	2,424	10 250	20,525	3,739	3,703	-0.0	-0.5	9.4	1.0	1.2	2.0
Caethermal	ktoe	14,450 9 5 1 6	0.227	12 426	12 667	14 812	15 254	2.0	2.0	2.4	1.0	1.5	2.0
Geotherman	ktoe	2,000	9,527	2 5 4 2	13,007	5 207	6 190	1.0	7.0	0.4	2.7	0.7	2.4
Hydro	ktoe	2,088	2,001	5,545	4,425	5,507	0,189	5.0	5.9	4.5	5.7	5.1	4.4
Inuclear	ktoe	0	202	500	0	722	0	140.0	12.0	2.0	1.0	1.0	247
Renewables	ktoe	3	302	580	667	/33	//8	149.2	13.9	2.8	1.9	1.2	24.7
Commercial Energy	ktoe	32,731	37,977	46,753	51,368	57,323	62,174	3.0	4.2	1.9	2.2	1.6	2.6
Non-commercial Energy	ktoe	5,766	5,850	5,690	5,520	5,356	5,224	0.3	-0.6	-0.6	-0.6	-0.5	-0.4
Coal	%	13.5	16.7	16.4	14.7	16.4	18.0						
Natural Gas	%	6.5	5.5	4.5	6.5	6.0	5.6						
Oil	%	37.5	36.3	34.8	36.1	35.8	35.5						
Others	%	27.6	28.0	33.5	33.0	33.3	33.1						
Non-commercial Energy	70	15.0	15.5	10.9	9.1	0.5	7.0			•			• •
Final Demand (excl. Non-Con	ktoe	17,402	21,085	24,903	28,552	31,872	34,820	3.9	3.4	2.8	2.2	1.8	2.8
Agriculture	ktoe	313	247	273	297	320	340	-4.6	2.0	1.7	1.4	1.2	0.3
Industry	ktoe	4,084	4,414	5,160	5,945	6,768	7,626	1.6	3.2	2.9	2.6	2.4	2.5
Energy Intensive	ktoe	2,653	3,015	3,497	4,010	4,554	5,126	2.6	3.0	2.8	2.6	2.4	2.7
Other	ktoe	1,430	1,400	1,663	1,935	2,214	2,500	-0.4	3.5	3.1	2.7	2.5	2.3
Commercial	ktoe	1,660	2,097	2,558	3,040	3,540	4,062	4.8	4.1	3.5	3.1	2.8	3.6
Residential	ktoe	2,405	2,695	3,359	4,077	4,807	5,503	2.3	4.5	4.0	3.3	2.7	3.4
Transport	ktoe	8,940	11,631	13,553	15,192	16,438	17,289	5.4	3.1	2.3	1.6	1.0	2.7
Energy Net Import	ktoe	18,112	21,029	24,240	26,924	31,302	34,961	3.0	2.9	2.1	3.1	2.2	2.7
Coal	ktoe	3,710	5,139	6,019	5,629	7,058	8,405	6.7	3.2	-1.3	4.6	3.6	3.3
Natural Gas	ktoe	0	0	0	797	1,831	2,665	0.7			18.1	7.8	5.0
Oil	ktoe	14,402	15,890	18,222	20,498	22.414	23,891	2.0	2.8	2.4	1.8	13	2.0
Energy Import Ratio	%	55 3	55.4	51.8	52.4	54.6	56.2	2.0	2.0	2	1.0	1.5	2.0
Coal	%	71 5	70.0	70.2	67 3	68.6	69.2						
Natural Gas	%	0.0	, 0.0	0.0	21.5	49.0	70.4						
Oil	%	99.8	99.8	99.8	99.8	99.8	99.8						
	, 0	//.0	//.0	//.0	//.0	//.0	//.0						

1.5 High Price Case

									G	rowth I	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,647	2,177	2,772	3,413	4,079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21,536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	-												
Crude oil	Peso / litter	17.8	33.9	39.5	45.2	50.8	56.5	13.7	3.1	2.7	2.4	2.1	4.7
Coal	Peso / kg	2.0	3.2	3.9	4.6	5.4	6.2	9.9	4.0	3.5	3.1	2.6	4.6
Natural Gas	Peso / mmBtu	347	642	749	856	963	1,070	13.1	3.1	2.7	2.4	2.1	4.6
LPG	Peso / litter	19.1	30.8	37.0	43.1	49.3	55.4	10.0	3.7	3.1	2.7	2.4	4.4
Gasoline	Peso / litter	30.7	53.1	61.8	71.0	80.7	91.2	11.6	3.1	2.8	2.6	2.5	4.4
Kerosene	Peso / litter	29.5	52.8	61.4	70.5	80.2	90.5	12.3	3.1	2.8	2.6	2.5	4.6
Jet Fuel	Peso / litter	32.6	59.6	69.3	79.7	90.9	102.9	12.8	3.1	2.8	2.7	2.5	4.7
Diesel	Peso / litter	28.8	50.4	58.7	67.4	76.5	86.3	11.8	3.1	2.8	2.6	2.4	4.5
Fuel Oil	Peso / litter	18.9	38.2	44.5	51.0	57.5	64.2	15.1	3.1	2.7	2.5	2.2	5.0
Electricity (Average)	Peso / kWh	6.8	12.0	13.9	15.8	17.8	19.7	12.0	3.0	2.6	2.3	2.1	4.3
Energy Indicators	1	204	410	100	522	550	E 0 1	17	2.2	1.4	1.2	0.0	17
TPE per capita	kgoe/person	27.0	418	488	323 20.5	10.0	584 17.5	1.7	3.2	1.4	1.5	0.9	1.7
Fleetrieite ner conite	toe/mil. PHP	27.0 520	25.0	22.7	20.5	19.0	17.5	-2.1	-0.8	-2.0	-1.5	-1.0	-1./
Electricity per capita	kwn/person	330 799	862	1 079	1 209	924	1,019	2.0	5.4	2.9	2.4	2.0	2.1
Passenger Cars	1,000 units	1 702	2 424	1,078	1,508	1,342	1,709	1.8	4.0	3.9	2.4	2.8	3.3
Trucks	1,000 units	1,792	2,454	3,238	5,944	4,470	4,/84	0.5	5.9	4.0	2.5	1.4	4.0
Directo	1,000 units	207	220	457	303	228	393	0.0	4.1	2.9	2.0	1.5	3.3
Buses	1,000 units	2 1 5 9	2 (10	5 1 2 4	54	33	3/	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	1,479	8,010	10.8	1.5	4.8	2.9	1.4	5.4
CO2 Emission	CO ₂ -kton	64,453	79,640	94,940	115,700	134,780	152,960	4.5	3.0	4.0	3.1	2.6	3.5
Total Primary Energy Supply	ktoe	38,498	44,771	55,207	62,719	70,648	77,383	3.1	4.3	2.6	2.4	1.8	2.8
Coal	ktoe	5,190	7,373	8,684	11,684	14,539	17,913	7.3	3.3	6.1	4.5	4.3	5.1
Natural Gas	ktoe	2,504	2,797	3,509	3,716	4,103	4,007	2.2	4.6	1.2	2.0	-0.5	1.9
Oil	ktoe	14,430	16,400	19,559	22,652	25,225	27,162	2.6	3.6	3.0	2.2	1.5	2.6
Geothermal	ktoe	8,516	9,327	13,426	13,667	14,812	15,354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2,088	2,661	3,543	4,425	5,307	6,189	5.0	5.9	4.5	3.7	3.1	4.4
Nuclear	ktoe	0	0	0	0	0	0						
Renewables	ktoe	3	312	625	738	823	878	150.9	14.9	3.4	2.2	1.3	25.3
Commercial Energy	ktoe	32,731	38,871	49,347	56,881	64,809	71,503	3.5	4.9	2.9	2.6	2.0	3.2
Non-commercial Energy	ktoe	5,766	5,901	5,860	5,837	5,839	5,880	0.5	-0.1	-0.1	0.0	0.1	0.1
Coal	%	13.5	16.5	15.7	18.6	20.6	23.1						
Natural Gas	%	6.5	6.2	6.4	5.9	5.8	5.2						
Oil	%	37.5	36.6	35.4	36.1	35.7	35.1						
Others	%	27.6	27.5	31.9	30.0	29.6	29.0						
Non-commercial Energy	%	15.0	13.2	10.6	9.3	8.3	/.0						
Final Demand (excl. Non-Con	ktoe	17,402	21,787	26,901	31,888	36,413	40,287	4.6	4.3	3.5	2.7	2.0	3.4
Agriculture	ktoe	313	254	289	322	351	374	-4.0	2.6	2.2	1.7	1.3	0.7
Industry	ktoe	4,084	4,551	5,548	6,588	7,644	8,676	2.2	4.0	3.5	3.0	2.6	3.1
Energy Intensive	ktoe	2,653	3,071	3,646	4,251	4,863	5,463	3.0	3.5	3.1	2.7	2.4	2.9
Other	ktoe	1,430	1,480	1,902	2,337	2,781	3,214	0.7	5.2	4.2	3.5	2.9	3.3
Commercial	ktoe	1,660	2,187	2,856	3,589	4,349	5,104	5.7	5.5	4.7	3.9	3.3	4.6
Residential	ktoe	2,405	2,763	3,531	4,380	5,254	6,095	2.8	5.0	4.4	3.7	3.0	3.8
Transport	ktoe	8,940	12,032	14,676	17,009	18,815	20,038	6.1	4.1	3.0	2.0	1.3	3.3
Energy Net Import	ktoe	18,112	21,502	25,541	31,744	37,899	43,158	3.5	3.5	4.4	3.6	2.6	3.5
Coal	ktoe	3,710	5,139	6,019	8,331	10,515	13,143	6.7	3.2	6.7	4.8	4.6	5.2
Natural Gas	ktoe	0	0	0	797	2,196	2,890				22.5	5.6	
Oil	ktoe	14,402	16,363	19,523	22,615	25,188	27,125	2.6	3.6	3.0	2.2	1.5	2.6
Energy Import Ratio	%	55.3	55.3	51.8	55.8	58.5	60.4						
Coal	%	71.5	69.7	69.3	71.3	72.3	73.4						
Natural Gas	%	0.0	0.0	0.0	21.5	53.5	72.1						
Oil	%	99.8	99.8	99.8	99.8	99.9	99.9						

1.6 Low Price Case

	Growth Rate (%)												
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,647	2,177	2,772	3,413	4,079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21,536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	-												
Crude oil	Peso / litter	17.8	33.9	33.9	33.9	33.9	33.9	13.7	0.0	0.0	0.0	0.0	2.6
Coal	Peso / kg	2.0	3.2	3.3	3.5	3.6	3.7	9.9	0.8	0.8	0.7	0.5	2.5
Natural Gas	Peso / mmBtu	347	642	642	642	642	642	13.1	0.0	0.0	0.0	0.0	2.5
LPG	Peso / litter	19.1	30.8	30.8	30.8	30.8	30.8	10.0	0.0	0.0	0.0	0.0	1.9
Gasoline	Peso / litter	30.7	53.1	56.1	59.7	63.8	68.6	11.6	1.1	1.2	1.3	1.5	3.3
Kerosene	Peso / litter	29.5	52.8	55.8	59.2	63.3	68.0	12.3	1.1	1.2	1.3	1.4	3.4
Jet Fuel	Peso / litter	32.6	59.6	637	68.4	73 9	80.3	12.8	13	14	16	17	37
Diesel	Peso / litter	28.8	50.4	53.0	56.1	59.6	63.7	11.8	1.0	11	1.0	13	3.2
Fuel Oil	Peso / litter	18.9	38.2	38.9	39.7	40.6	41 7	15.1	0.4	0.4	0.5	0.5	3.2
Flectricity (Average)	Peso / kWh	6.8	12.0	12.1	12.2	12.3	12.4	12.0	0.1	0.1	0.2	0.2	24
Electricity (Average)	1 030 / R 11	0.0	12.0	12.1	12.2	12.5	12.4	12.0	0.1	0.2	0.2	0.2	2.7
Energy Indicators													
TPE per capita	kgoe/person	384	417	493	535	576	606	1.7	3.4	1.7	1.5	1.0	1.8
TPE per GDP	toe/mil. PHP	27.0	23.5	22.9	21.0	19.5	18.2	-2.7	-0.6	-1.7	-1.4	-1.4	-1.6
Electricity per capita	kWh/person	530	600	719	839	956	1,064	2.5	3.7	3.1	2.6	2.2	2.8
Passenger Cars	1,000 units	788	862	1,111	1,389	1,679	1,964	1.8	5.2	4.6	3.9	3.2	3.7
Utility Vehicles	1,000 units	1,792	2,434	3,238	3,944	4,470	4,784	6.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	3.3
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	7,479	8,010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO ₂ -kton	64,453	79,380	96,180	119,820	140,630	160,740	4.3	3.9	4.5	3.3	2.7	3.7
Total Primary Energy Supply	ktoe	38.498	44.681	55.627	63.896	72.402	79.837	3.0	4.5	2.8	2.5	2.0	3.0
Coal	ktoe	5,190	7.368	8,703	12.238	15,164	18.567	7.3	3.4	7.1	4.4	4.1	5.2
Natural Gas	ktoe	2.504	2.767	3.608	3.772	4.331	4.590	2.0	5.5	0.9	2.8	1.2	2.5
Oil	ktoe	14.430	16.340	19.887	23.281	26.235	28.541	2.5	4.0	3.2	2.4	1.7	2.8
Geothermal	ktoe	8.516	9.327	13.426	13.667	14.812	15.354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2.088	2.661	3.543	4.425	5.307	6,189	5.0	5.9	4.5	3.7	3.1	4.4
Nuclear	ktoe	_,0	_,	0	0	0	0						
Renewables	ktoe	3	311	634	759	856	922	150.8	153	37	2.4	15	25.5
Commercial Energy	ktoe	32 731	38 775	49 800	58 142	66 705	74 164	3.4	5.1	3.1	2.8	2.1	33
Non-commercial Energy	ktoe	5 766	5 906	5 826	5 755	5 697	5 673	0.5	-0.3	-0.2	-0.2	-0.1	-0.1
	0/	12.5	16.5	15.0	10.2	20.0	02.2	0.0	0.0	0.2	0.2	0.1	
Coal Natural Gas	% 0/	13.5	10.5	15.0	19.2	20.9	23.3						
Oil	70 %	37.5	36.6	35.8	36.4	36.2	35.7						
Others	%	27.6	27.5	31.6	29.5	29.0	28.1						
Non-commercial Energy	%	15.0	13.2	10.5	9.0	7.9	7.1						
Final Demand (excl. Non-Con	ktoe	17 402	21 706	27 249	32 768	37 866	42 317	45	47	3.8	29	22	36
Agriculture	ktoe	313	21,700	303	353	400	441	-4.1	37	3.1	2.5	2.2	1.4
Industry	ktoe	4 084	4 535	5 616	6 7 5 6	7 929	9 088	2.1	44	3.8	33	2.0	33
Energy Intensive	ktoe	2 653	3,060	3,603	4 365	5 054	5 737	2.1	3.9	3.0	3.0	2.0	3.5
Other	ktoe	1 4 3 0	1 475	1 023	2 301	2 875	3 351	0.6	5.5	4.5	3.0	2.0	3.5
Commercial	ktoe	1,450	2 1 2 1 2 0	2 802	2,391	2,075	5 240	0.0 5.6	5.5	4.5	1.0	2.5	1.0
Commercial Residential	ktoe	2,405	2,160	2,092	3,002	4,312 5 425	6 261	2.0	5.0	4.9	4.2	2.5	4.0
Treaser ant	ktoe	2,405	2,730	3,373	4,485	3,433	0,301	2.8	5.5	4.7	3.9	3.2	4.0
Transport	ktoe	8,940	11,985	14,800	17,492	19,390	21,078	0.0	4.4	3.3	2.3	1.5	5.5
Energy Net Import	ktoe	18,112	21,442	25,869	32,865	39,606	45,584	3.4	3.8	4.9	3.8	2.9	3.8
Coal	ktoe	3,710	5,139	6,019	8,766	10,982	13,604	6.7	3.2	7.8	4.6	4.4	5.3
Natural Gas	ktoe	0	0	0	854	2,426	3,475				23.2	7.5	
Oil	ktoe	14,402	16,303	19,850	23,244	26,199	28,504	2.5	4.0	3.2	2.4	1.7	2.8
Energy Import Ratio	%	55.3	55.3	51.9	56.5	59.4	61.5						
Coal	%	71.5	69.7	69.2	71.6	72.4	73.3						
Natural Gas	%	0.0	0.0	0.0	22.6	56.0	75.7						
Oil	%	99.8	99.8	99.8	99.8	99.9	99.9						

1.7 Super High Price Case

									G	rowth I	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1.210	1.647	2,177	2,772	3.413	4.079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14.198	17,708	21.536	25,491	29,456	33.332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	1	,	.,	y	- , -	- ,)						
Crude oil	Peso / litter	17.8	39.5	46.6	53.6	60.7	67.8	17.2	33	29	25	22	55
Coal	Peso / kg	2.0	37	4.6	5.5	6.5	7.4	13.4	4.2	37	33	2.2	5.4
Natural Gas	Peso / mmBtu	347	749	883	1 017	1 1 50	1 284	16.6	33	29	2.5	2.7	5.4
I PG	Peso / litter	10.1	37.0	44.7	52 /	60.1	67.8	14.1	3.0	3.2	2.5	2.2	5.7
Gasolina	Paso / litter	20.7	58.7	68.0	70.5	00.1	102.5	13.0	3.7	2.0	2.0	2.4	1.0
Karosana	Peso / litter	20.5	58.7	68.5	79.0	90.0	102.5	13.9	3.2	2.9	2.7	2.5	4.9 5 1
Let Evel	Peso / litter	29.5	65.0	76.4	19.0	100.0	101.0	14.0	2.2	2.9	2.7	2.5	5.1
Discal	Peso / litter	20.0	56.0	/0.4 65 7	00.2 75.9	100.8	07.6	14.9	2.2	2.9	2.7	2.5	5.1
East O'l	Peso / litter	20.0	30.0	63.7 51.6	75.8	80.4	97.0	14.2	3.2	2.9	2.0	2.5	5.0
Fuel OII	Peso / litter	18.9	43.8	51.0	59.4	67.4	/5.5	18.3	3.3	2.9	2.0	2.3	5.7
Electricity (Average)	Peso / Kwn	0.8	13.8	16.2	18.0	21.0	23.3	15.5	3.2	2.8	2.4	2.1	5.0
Energy Indicators													
TPE per capita	kgoe/person	384	413	482	514	551	574	1.5	3.1	1.3	1.4	0.8	1.6
TPE per GDP	toe/mil. PHP	27.0	23.3	22.4	20.2	18.7	17.2	-2.9	-0.8	-2.0	-1.5	-1.6	-1.8
Electricity per capita	kWh/person	530	592	699	805	907	1,001	2.3	3.4	2.9	2.4	2.0	2.6
Passenger Cars	1,000 units	788	840	1,036	1,254	1,477	1,693	1.3	4.3	3.9	3.3	2.8	3.1
Utility Vehicles	1,000 units	1,792	2,434	3,238	3,944	4,470	4,784	6.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	3.3
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	7,479	8,010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO ₂ -kton	64.453	78,440	93.220	112,440	132.230	149.320	4.0	3.5	3.8	3.3	2.5	3.4
	-	20.400	11 210	54.500	(1.000	(0.741	76.259	2.0	10	2.5	2.4	1.0	2.0
Total Primary Energy Supply	Ktoe	5 100	44,348	34,392	01,800	09,741	/0,238	2.9	4.2	2.5	2.4	1.8	2.8
Coal	ktoe	5,190	7,349	8,654	2 7 1 5	14,494	17,557	1.2	3.3	5.5	5.5	3.9	5.0
Natural Gas	ktoe	2,504	2,637	3,290	3,/15	3,739	3,783	1.0	4.5	2.5	0.1	0.2	1./
	ktoe	14,430	16,129	19,160	22,167	24,672	26,551	2.3	3.5	3.0	2.2	1.5	2.5
Geothermal	ktoe	8,516	9,327	13,426	13,667	14,812	15,354	1.8	/.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2,088	2,661	3,543	4,425	5,307	6,189	5.0	5.9	4.5	3.7	3.1	4.4
Nuclear	ktoe	0	0	0	0	0	0						
Renewables	ktoe	3	308	613	723	806	859	150.2	14.8	3.4	2.2	1.3	25.2
Commercial Energy	ktoe	32,731	38,412	48,686	55,909	63,830	70,294	3.3	4.9	2.8	2.7	1.9	3.1
Non-commercial Energy	ktoe	5,766	5,936	5,906	5,897	5,911	5,964	0.6	-0.1	-0.0	0.1	0.2	0.1
Coal	%	13.5	16.6	15.9	18.1	20.8	23.0						
Natural Gas	%	6.5	5.9	6.0	6.0	5.4	5.0						
Oil	%	37.5	36.4	35.1	35.9	35.4	34.8						
Others	%	27.6	27.7	32.2	30.4	30.0	29.4						
Non-commercial Energy	%	15.0	13.4	10.8	9.5	8.5	7.8						
Final Demand (excl. Non-Con	ktoe	17,402	21,409	26,354	31,216	35,628	39,403	4.2	4.2	3.4	2.7	2.0	3.3
Agriculture	ktoe	313	243	273	304	331	353	-4.9	2.4	2.2	1.7	1.3	0.5
Industry	ktoe	4,084	4,469	5,444	6,460	7,493	8,501	1.8	4.0	3.5	3.0	2.6	3.0
Energy Intensive	ktoe	2,653	3,013	3,573	4,163	4,760	5,345	2.6	3.5	3.1	2.7	2.3	2.8
Other	ktoe	1,430	1,457	1,871	2,297	2,733	3,156	0.4	5.1	4.2	3.5	2.9	3.2
Commercial	ktoe	1,660	2,149	2,805	3,522	4,266	5,005	5.3	5.5	4.7	3.9	3.2	4.5
Residential	ktoe	2,405	2,719	3,472	4,304	5,161	5,986	2.5	5.0	4.4	3.7	3.0	3.7
Transport	ktoe	8,940	11,829	14,359	16,626	18,378	19,559	5.8	4.0	3.0	2.0	1.3	3.2
Energy Net Import	ktoe	18.112	21.231	25,142	30,886	36,980	42.061	3.2	3.4	4.2	3.7	2.6	3.4
Coal	ktoe	3 7 1 0	5 1 3 9	6.019	7 959	10 514	12 883	67	32	57	57	41	51
Natural Gas	ktoe	0,710	0,157	0,017	797	1 831	2 664	0.7	5.2	5.1	18.1	7.8	5.1
Oil	ktoe	14 402	16 092	19 123	22 130	24 635	2,004	2.2	35	3.0	2.2	1.5	25
Energy Import Ratio	0/2	55 2	55 3	516	55 2	27,035 57 0	50 x	2.2	5.5	5.0	2.2	1.5	2.5
Coal	20 0/2	71.5	60.0	60 5	71.0	725	73 /						
Natural Gas	/0 0/2	1.5	09.9	09.5	21.5	12.5	70.4						
	/U 0/	0.0	0.0	0.0	21.3	47.0	00.4						
OII	70	27.0	77.0	77.0	77.0	77.7	77.7						

1.8 Energy Efficiency and Conservation Case

									G	rowth H	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1.210	1.647	2,177	2,772	3.413	4.079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21.536	25,491	29.456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	1 III / person	1,,170	11,100	21,000	20,171	27,100	00,002			5	2.,	2.0	0.0
Cruda oil	Dago / littar	17 9	22.0	267	20.5	12.2	15.2	127	16	15	1.4	12	20
Crude on	Peso / Inter	17.0	20	26	39.5	42.5	43.2	15.7	1.0	1.5	1.4	1.5	2.0
Coal	Peso / kg	2.0	5.2	5.0	4.1	4.3	4.9	9.9	2.4	2.5	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	642	090	749	803	830	13.1	1.0	1.5	1.4	1.5	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.5
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4.2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	3.9
Fuel Oil	Peso / litter	18.9	38.2	41.7	45.3	49.1	53.0	15.1	1.8	1.7	1.6	1.5	4.2
Electricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.5	1.4	1.3	3.5
Energy Indicators													
TPE per capita	kaoa/parson	38/	414	178	501	527	530	15	20	0.0	1.0	0.5	1.4
TPE per CDP	too/mil DUD	27.0	23 4	22.2	10.6	17.0	16.2	2.0	1.0	2.4	1.0	2.0	2.0
Flastrisity non conits		27.0 520	25.4	600	19.0	17.9	027	-2.9	-1.0	-2.4	-1.0	-2.0	-2.0
Electricity per capita	t wil/person	700	293	1 004	1 2 4 6	0.00	927	2.3	5.0	2.5	2.0	2.0	2.5
Passenger Cars	1,000 units	/88	862	1,094	1,346	1,605	1,857	1.8	4.9	4.2	3.0	3.0	3.5
Utility Vehicles	1,000 units	1,792	2,434	3,238	3,944	4,470	4,/84	6.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	3.3
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	7,479	8,010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO ₂ -kton	64,453	78,600	92,220	107,300	122,660	134,400	4.0	3.2	3.1	2.7	1.8	3.0
Total Primary Energy Supply	ktoe	38,498	44,403	54.226	60.436	67.206	72.316	2.9	4.1	2.2	2.1	1.5	2.6
Coal	ktoe	5,190	7.352	8.630	10.303	12.818	14,928	7.2	3.3	3.6	4.5	3.1	4.3
Natural Gas	ktoe	2,504	2,650	3 085	3 714	3 7 3 5	3 775	11	3.1	3.8	0.1	0.2	17
Oil	ktoe	14 430	16 170	18 984	21 607	23 628	24 946	23	33	2.6	1.8	11	2.2
Geothermal	ktoe	8 516	9 327	13 426	13 667	14 812	15 354	1.8	7.6	0.4	1.6	0.7	2.2
Hydro	ktoe	2 088	2 661	3 5/3	13,007	5 307	6 180	5.0	5.0	4.5	3.7	3.1	4.4
Nuclear	ktoc	2,000	2,001	5,545	4,423	5,507	0,109	5.0	5.7	4.5	5.7	5.1	4.4
Renewahlas	ktoe	2	208	607	705	277	0 010	150.2	14.5	2.0	1.0	1.0	24.0
Communical Engineering	ktoe	20 721	29.460	49 275	54 421	61 074	66 004	130.2	14.5	3.0	1.9	1.0	24.9
Commercial Energy	ktoe	52,751	58,409	48,275	54,421	61,074	66,004	3.3	4.0	2.4	2.5	1.0	2.8
Non-commercial Energy	ktoe	5,700	5,934	5,952	6,015	0,131	0,312	0.0	0.1	0.2	0.4	0.6	0.4
Coal	%	13.5	16.6	15.9	17.0	19.1	20.6						
Natural Gas	%	6.5	6.0	5.7	6.1	5.6	5.2						
Oil	%	37.5	36.4	35.0	35.8	35.2	34.5						
Others	%	27.6	27.7	32.4	31.1	31.1	30.9						
Non-commercial Energy	%	15.0	13.4	11.0	10.0	9.1	8.7						
Final Demand (excl. Non-Con	ktoe	17,402	21,460	26,049	30,312	33,930	36,759	4.3	4.0	3.1	2.3	1.6	3.0
Agriculture	ktoe	313	251	285	316	340	358	-4.3	2.6	2.1	1.5	1.0	0.5
Industry	ktoe	4,084	4,482	5,369	6,254	7,110	7,900	1.9	3.7	3.1	2.6	2.1	2.7
Energy Intensive	ktoe	2,653	3,025	3,529	4,038	4,527	4,979	2.7	3.1	2.7	2.3	1.9	2.5
Other	ktoe	1,430	1,458	1,840	2,216	2,583	2,920	0.4	4.8	3.8	3.1	2.5	2.9
Commercial	ktoe	1,660	2,154	2,764	3,407	4,045	4,647	5.3	5.1	4.3	3.5	2.8	4.2
Residential	ktoe	2,405	2,721	3,415	4,153	4,879	5,538	2.5	4.6	4.0	3.3	2.6	3.4
Transport	ktoe	8,940	11,852	14,216	16,182	17,555	18,315	5.8	3.7	2.6	1.6	0.9	2.9
En aron Nat Import	ktos	18 112	21 272	24.066	20 500	34 505	28 210	2.2	2.2	25	20	21	2.0
	кое	10,112	<i>41,273</i>	24,900	49,399	34,393	10,349	5.5	5.5	<i>3.3</i>	J.2	4.1	5.0
	ktoe	3,710	5,139	6,019	1,233	9,176	10,783	6.7	3.2	3.7	4.9	3.3	4.4
Natural Gas	ktoe	0	0	0	796	1,827	2,656			<u> </u>	18.1	7.8	
Oil	ktoe	14,402	16,134	18,947	21,570	23,592	24,910	2.3	3.3	2.6	1.8	1.1	2.2
Energy Import Ratio	%	55.3	55.3	51.7	54.4	56.6	58.1						
Coal	%	71.5	69.9	69.7	70.2	71.6	72.2						
Natural Gas	%	0.0	0.0	0.0	21.4	48.9	70.4						
Oil	%	99.8	99.8	99.8	99.8	99.8	99.9						

1.9 Super Energy Efficiency and Conservation Case

									G	rowth I	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,647	2,177	2,772	3,413	4,079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21,536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	-												
Crude oil	Peso / litter	17.8	33.9	36.7	39.5	42.3	45.2	13.7	1.6	1.5	1.4	1.3	3.8
Coal	Peso / kg	2.0	3.2	3.6	4.1	4.5	4.9	9.9	2.4	2.3	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	642	696	749	803	856	13.1	1.6	1.5	1.4	1.3	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4.2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	3.9
Fuel Oil	Peso / litter	18.9	38.2	41.7	45.3	49.1	53.0	15.1	1.8	1.7	1.6	1.5	4.2
Electricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.5	1.4	1.3	3.5
Energy Indicators		204	100	165	472	400	400	1.2	26	0.4	0.0	0.0	1.0
TPE per capita	kgoe/person	384	409	465	4/3	488	489	1.3	2.6	0.4	0.6	0.0	1.0
TPE per GDP	toe/mil. PHP	27.0	23.1	21.6	18.6	16.6	14./	-3.1	-1.4	-3.0	-2.3	-2.4	-2.4
Electricity per capita	kwh/person	530	584	1 004	1.246	/83	825	2.0	2.5	2.0	1.5	1.0	1.8
Passenger Cars	1,000 units	/88	862	1,094	1,346	1,605	1,857	1.8	4.9	4.2	3.0	3.0	3.5
Utility Vehicles	1,000 units	1,792	2,434	3,238	3,944	4,470	4,/84	6.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	3.3
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	7,479	8,010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO_2 -kton	64,453	77,570	88,920	97,210	107,010	113,090	3.8	2.8	1.8	1.9	1.1	2.3
Total Primary Energy Supply	ktoe	38,498	44,038	53,040	57,678	62,969	66,585	2.7	3.8	1.7	1.8	1.1	2.2
Coal	ktoe	5,190	7,331	8,566	8,686	10,261	11,403	7.2	3.2	0.3	3.4	2.1	3.2
Natural Gas	ktoe	2,504	2,503	2,588	3,712	3,731	3,765	-0.0	0.7	7.5	0.1	0.2	1.6
Oil	ktoe	14,430	15,944	18,274	20,301	21,683	22,356	2.0	2.8	2.1	1.3	0.6	1.8
Geothermal	ktoe	8,516	9,327	13,426	13,667	14,812	15,354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2,088	2,661	3,543	4,425	5,307	6,189	5.0	5.9	4.5	3.7	3.1	4.4
Nuclear	ktoe	0	0	0	0	0	0						
Renewables	ktoe	3	304	584	664	713	734	149.5	14.0	2.6	1.4	0.6	24.4
Commercial Energy	ktoe	32,731	38,070	46,981	51,456	56,507	59,801	3.1	4.3	1.8	1.9	1.1	2.4
Non-commercial Energy	ktoe	5,766	5,967	6,059	6,223	6,463	6,784	0.7	0.3	0.5	0.8	1.0	0.7
Coal	%	13.5	16.6	16.1	15.1	16.3	17.1						
Natural Gas	%	6.5	5.7	4.9	6.4	5.9	5.7						
Oil	%	37.5	36.2	34.5	35.2	34.4	33.6						
Others	%	27.6	27.9	33.1	32.5	33.1	33.5						
Non-commercial Energy	%	15.0	13.6	11.4	10.8	10.3	10.2						
Final Demand (excl. Non-Con	ktoe	17,402	21,137	25,016	28,382	30,975	32,720	4.0	3.4	2.6	1.8	1.1	2.6
Agriculture	ktoe	313	247	274	295	311	319	-4.6	2.1	1.6	1.0	0.5	0.1
Industry	ktoe	4,084	4,415	5,156	5,855	6,491	7,031	1.6	3.2	2.6	2.1	1.6	2.2
Energy Intensive	ktoe	2,653	2,979	3,389	3,781	4,133	4,432	2.3	2.6	2.2	1.8	1.4	2.1
Other	ktoe	1,430	1,436	1,767	2,075	2,358	2,599	0.1	4.2	3.3	2.6	2.0	2.4
Commercial	ktoe	1,660	2,122	2,655	3,190	3,693	4,137	5.0	4.6	3.7	3.0	2.3	3.7
Residential	ktoe	2,405	2,680	3,280	3,888	4,454	4,930	2.2	4.1	3.5	2.8	2.1	2.9
Transport	ktoe	8,940	11,673	13,652	15,153	16,027	16,304	5.5	3.2	2.1	1.1	0.3	2.4
Fnerov Net Import	ktoe	18 1 1 2	21.046	24 256	27.007	30.610	32 947	3.0	20	22	25	15	24
Coal	ktop	3 710	5 120	6 010	5 0/9	7 1/1	7 021	5.0	2.7	_0.2	2.5	2.2	2.7
Natural Gas	ktop	5,710	5,159	0,019	J,740 704	1 0 2 2	1,901 2616	0.7	3.4	-0.2	3.7 19 1	2.3 77	5.1
	ktoe	14 402	15 007	18 229	194 20 265	1,823	2,040	20	20	2.1	10.1	1.1	10
Energy Import Patio	0/	14,402 55.2	55 2	516	20,203	21,040 54.2	22,320 55 1	2.0	2.0	2.1	1.5	0.0	1.0
Coal	70 0/	JJ.J 71 =	JJ.J 70 1	J1.0 70.2	J2.J 60 =	54.2 60.6	33.1 70.0						
Votural Gas	70 0/	/1.5	/0.1	/0.3	08.5	09.0 10 0	70.0						
ivatural Gas	% 0/	0.0	0.0	0.0	21.4	48.9	/0.3						
UII	%	99.8	99.8	99.8	99.8	99.8	99.8						

1.10 E20 and CNG Case

									Gı	owth F	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,647	2,177	2,772	3,413	4,079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21,536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	-												
Crude oil	Peso / litter	17.8	33.9	36.7	39.5	42.3	45.2	13.7	1.6	1.5	1.4	1.3	3.8
Coal	Peso / kg	2.0	3.2	3.6	4.1	4.5	4.9	9.9	2.4	2.3	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	642	696	749	803	856	13.1	1.6	1.5	1.4	1.3	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4 2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.2	2.0	2.0	2.1	3.9
Fuel Oil	Peso / litter	18.9	38.2	417	45.3	49.1	53.0	15.1	1.8	1.7	1.6	1.5	4.2
Flectricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.7	1.0	1.3	3.5
Electricity (Average)	1 CSO / KWII	0.0	12.0	15.0	14.0	15.0	10.1	12.0	1.0	1.5	1.4	1.5	5.5
Energy Indicators													
TPE per capita	kgoe/person	384	418	491	529	567	595	1.7	3.3	1.5	1.4	0.9	1.8
TPE per GDP	toe/mil. PHP	27.0	23.6	22.8	20.8	19.3	17.8	-2.7	-0.7	-1.8	-1.5	-1.5	-1.6
Electricity per capita	kWh/person	530	602	716	830	939	1,040	2.6	3.5	3.0	2.5	2.1	2.7
Passenger Cars	1,000 units	788	862	1,094	1,346	1,605	1,857	1.8	4.9	4.2	3.6	3.0	3.5
Utility Vehicles	1,000 units	1,792	2,434	3,238	3,944	4,470	4,784	6.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	3.3
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	7,479	8,010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO ₂ -kton	64,453	79,460	93,350	114,490	131,970	149,420	4.3	3.3	4.2	2.9	2.5	3.4
Total Primary Energy Supply	ktoe	38 498	44 771	55 455	63 367	71 499	78 546	31	44	27	24	19	29
Coal	ktoe	5 190	7 373	8 696	12 021	14 579	17 968	73	34	67	39	43	5.1
Natural Gas	ktoe	2 504	2 797	3,600	3 716	4 448	4 509	2.2	5.7	0.7	3.7	0.3	24
Oil	ktoe	14 430	16 343	18 951	21 824	24 032	25 614	2.2	3.0	2.9	1.9	13	2.4
Geothermal	ktoe	8 5 1 6	0 3 2 7	13 426	13 667	14 812	15 354	1.8	7.6	0.4	1.5	0.7	2.5
Hydro	ktoe	2 088	2 661	3 5/3	13,007	5 307	6 180	5.0	5.0	4.5	3.7	3.1	2.4 4.4
Nuclear	ktoe	2,088	2,001	5,545	4,423	5,507	0,109	5.0	5.9	4.5	5.7	5.1	4.4
Renewables	ktoe	2	270	1 209	1 010	2 5 4 0	2 1 2 6	150.5	20.5	65	50	4.2	21.0
Commencial Energy	ktoe	22 721	20 071	1,390	1,919	2,349	5,120 72 761	139.5	50.5	2.0	5.0 2.7	4.2	20
Commercial Energy	ktoe	52,751	5 001	49,014	57,572	5 771	72,701 5 705	5.5	5.0	5.0 0.2	2.1	2.1	3.2
Non-commercial Energy	кюе	5,700	5,901	3,841	5,790	3,771	5,785	0.5	-0.2	-0.2	-0.1	0.0	0.0
Coal	%	13.5	16.5	15.7	19.0	20.4	22.9						
Natural Gas	%	6.5	6.2	6.5	5.9	6.2	5.7						
Oil	%	37.5	36.5	34.2	34.4	33.0	32.6						
Non-commercial Energy	%0 0/2	27.0	13.2	55.1 10.5	0 1	51.7 8 1	51.4						
	70	17.002	13.2	27.120	22.262	27.1.00	(1.072	10		20	2.0	2.1	2.5
Final Demand (excl. Non-Con	ktoe	17,402	21,787	27,120	32,363	37,149	41,273	4.6	4.5	3.6	2.8	2.1	3.5
Agriculture	ktoe	313	254	297	337	373	402	-4.0	3.1	2.6	2.0	1.6	1.0
Industry	ktoe	4,084	4,551	5,590	6,677	7,785	8,870	2.2	4.2	3.6	3.1	2.6	3.2
Energy Intensive	ktoe	2,653	3,071	3,674	4,311	4,957	5,591	3.0	3.7	3.2	2.8	2.4	3.0
Other	ktoe	1,430	1,480	1,916	2,366	2,828	3,279	0.7	5.3	4.3	3.6	3.0	3.4
Commercial	ktoe	1,660	2,187	2,878	3,638	4,429	5,218	5.7	5.6	4.8	4.0	3.3	4.7
Residential	ktoe	2,405	2,763	3,556	4,434	5,342	6,219	2.8	5.2	4.5	3.8	3.1	3.9
Transport	ktoe	8,940	12,032	14,800	17,277	19,220	20,563	6.1	4.2	3.1	2.2	1.4	3.4
Energy Net Import	ktoe	18,112	21,445	24,933	31,184	37,053	42,115	3.4	3.1	4.6	3.5	2.6	3.4
Coal	ktoe	3,710	5,139	6,019	8,599	10,515	13,143	6.7	3.2	7.4	4.1	4.6	5.2
Natural Gas	ktoe	0	0	0	798	2,544	3,394				26.1	5.9	
Oil	ktoe	14,402	16,306	18,915	21,787	23,995	25,578	2.5	3.0	2.9	1.9	1.3	2.3
Energy Import Ratio	%	5.5.3	55.2	50.3	54.2	56.4	57.9	2.0	2.0				2.0
Coal	%	71.5	697	69.2	71.5	72.1	73.1						
Natural Gas	%	0.0	0.0	0.0	21.5	57.2	75 3						
Oil	%	99.8	99.8	99.8	99.8	99.8	99.9						
	, 0	//.0	//.0	//.0	//.0	//.0	//./						

1.11 E85 and CNG Case

									G	rowth I	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1.210	1.647	2,177	2,772	3.413	4.079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21.536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	1111, person	1 1,170	17,700	21,000	20,171	27,100	00,002			5		2.0	0.0
Crudo oil	Dago / littar	17 9	22.0	267	20.5	12.2	45.2	127	16	15	1.4	12	20
Crude on	Peso / Intel	17.0	20	26	39.5	42.5	45.2	15.7	1.0	1.5	1.4	1.5	2.0
Coal Natural Car	Peso / kg	2.0	5.2	3.0	4.1	4.3	4.9	9.9	2.4	2.5	2.1	1.8	3.1
Natural Gas	Peso / mmBtu	347	042	090	749	803	850	13.1	1.0	1.5	1.4	1.5	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4.2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	3.9
Fuel Oil	Peso / litter	18.9	38.2	41.7	45.3	49.1	53.0	15.1	1.8	1.7	1.6	1.5	4.2
Electricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.5	1.4	1.3	3.5
Energy Indicators													
TPE per capita	kgoe/person	384	418	491	529	567	595	17	33	15	14	0.9	18
TPE per GDP	toe/mil DHD	27.0	23.6	22.8	20.8	10.3	17.8	-2.7	-0.7	-1.8	-1.5	-1.5	-1.6
Flootrigity per conite	W/h/manaan	520	23.0	716	20.0	020	1 0 4 0	-2.1	-0.7	-1.0	-1.5	-1.5	-1.0
Becom and Com	t wil/person	700	862	1 004	1 2 4 6	939	1,040	2.0	3.5	3.0	2.5	2.1	2.1
Passenger Cars	1,000 units	/ 00	802 2.424	1,094	1,540	1,005	1,857	1.8	4.9	4.2	3.0	5.0	3.3
Utility venicles	1,000 units	1,792	2,434	3,238	5,944	4,470	4,784	0.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	5.5
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	7,479	8,010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO_2 -kton	64,453	79,460	93,350	114,490	126,420	137,680	4.3	3.3	4.2	2.0	1.7	3.1
Total Primary Energy Supply	ktoe	38,498	44,771	55,455	63,367	71,502	78,553	3.1	4.4	2.7	2.4	1.9	2.9
Coal	ktoe	5,190	7,373	8,696	12,021	14,579	17,968	7.3	3.4	6.7	3.9	4.3	5.1
Natural Gas	ktoe	2,504	2,797	3,600	3.716	4,448	4,509	2.2	5.2	0.6	3.7	0.3	2.4
Oil	ktoe	14.430	16.343	18,951	21.824	22,120	21.569	2.5	3.0	2.9	0.3	-0.5	1.6
Geothermal	ktoe	8 516	9 327	13 426	13 667	14 812	15 354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2 088	2 661	3 543	4 4 2 5	5 307	6 189	5.0	5.9	45	37	3.1	44
Nuclear	ktoe	2,000	2,001	0,515	0	0,507	0,109	5.0	5.7	1.5	5.7	5.1	
Renewables	ktoe	3	370	1 308	1 0 1 0	4 461	7 171	150.5	30.5	65	18/	10.0	363
Commercial Energy	ktoe	32 731	38 871	1,570	57 572	65 728	72 762	35	5.0	3.0	27	2.1	30.5
Non commercial Energy	ktoe	5 766	5 001	5 9 1 1	5 706	5 775	5 702	0.5	0.2	0.2	2.7	2.1	0.0
Non-commercial Energy	RIOE	5,700	5,901	J,041	5,790	5,775	5,792	0.5	-0.2	-0.2	-0.1	0.1	0.0
Coal	%	13.5	16.5	15.7	19.0	20.4	22.9						
Natural Gas	%	6.5	6.2	6.5	5.9	6.2	5.7						
Oil	%	37.5	36.5	34.2	34.4	30.9	21.5						
Non commercial Energy	% 0/	27.0	27.0	55.1 10.5	0.1	54.4 8 1	30.0 7.4						
Non-commercial Energy	70	15.0	15.2	10.5).1	0.1	7.4				• •		
Final Demand (excl. Non-Con	ktoe	17,402	21,787	27,120	32,363	37,149	41,273	4.6	4.5	3.6	2.8	2.1	3.5
Agriculture	ktoe	313	254	297	337	373	402	-4.0	3.1	2.6	2.0	1.6	1.0
Industry	ktoe	4,084	4,551	5,590	6,677	7,785	8,871	2.2	4.2	3.6	3.1	2.6	3.2
Energy Intensive	ktoe	2,653	3,071	3,674	4,311	4,957	5,592	3.0	3.7	3.2	2.8	2.4	3.0
Other	ktoe	1,430	1,480	1,916	2,366	2,828	3,279	0.7	5.3	4.3	3.6	3.0	3.4
Commercial	ktoe	1,660	2,187	2,878	3,638	4,429	5,218	5.7	5.6	4.8	4.0	3.3	4.7
Residential	ktoe	2,405	2,763	3,556	4,434	5,342	6,219	2.8	5.2	4.5	3.8	3.1	3.9
Transport	ktoe	8,940	12,032	14,800	17,277	19,220	20,563	6.1	4.2	3.1	2.2	1.4	3.4
Energy Net Import	ktoe	18,112	21.445	24,933	31,184	35,142	38.070	34	31	46	24	16	30
Coal	ktoe	3 710	5 1 3 0	6.010	8 500	10 515	13 1/3	67	37	7 /	<u></u>	4.6	5.2
Natural Gas	ktop	5,710	5,159	0,019	709	2 5 1 1	3 20/	0.7	5.2	/.4	+.1 26 1	+.0 5 0	5.2
	ktop	14 402	16 206	18015	190 71 707	2,344	2,394 21 522	25	2.0	20	20.1	0.5	16
	KIOE	14,402	10,500	10,913	21,/8/	22,083	21,333	2.3	5.0	2.9	0.5	-0.3	1.0
Cool	70 0/	JJ.J 71 F	55.2	50.5	54.2 71 F	55.5 1 CT	J2.5 72 1						
Voai Natural Cas	% 0/	/1.5	09./	09.2	/1.5	12.1	/ 5.1						
Inatural Gas	%	0.0	0.0	0.0	21.5	57.2	15.3						
Oil	%	99.8	99.8	99.8	99.8	99.8	99.8						

1.12 Vehicle Plus Case

									Gı	owth I	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,647	2,177	2,772	3,413	4,079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21,536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices													
Crude oil	Peso / litter	17.8	33.9	36.7	39.5	42.3	45.2	13.7	1.6	1.5	1.4	1.3	3.8
Coal	Peso / kg	2.0	3.2	3.6	4.1	4.5	4.9	9.9	2.4	2.3	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	642	696	749	803	856	13.1	1.6	1.5	1.4	1.3	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4.2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	3.9
Fuel Oil	Peso / litter	18.9	38.2	41.7	45.3	49.1	53.0	15.1	1.8	1.7	1.6	1.5	4.2
Electricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.5	1.4	1.3	3.5
Energy Indicators		20.4	101	107	520	500	600	1.0	2.4	1.0	1.5	1.0	1.0
TPE per capita	kgoe/person	384	421	497	539	580	609	1.8	3.4	1.6	1.5	1.0	1.9
TPE per GDP	toe/mil. PHP	27.0	23.7	23.1	21.2	19.7	18.3	-2.6	-0.6	-1./	-1.4	-1.5	-1.6
Electricity per capita	kWh/person	530	602	/16	830	939	1,040	2.6	3.5	3.0	2.5	2.1	2.7
Passenger Cars	1,000 units	/88	862	1,094	1,346	1,605	1,857	1.8	4.9	4.2	3.6	3.0	3.5
Utility Vehicles	1,000 units	1,792	2,496	3,411	4,255	4,923	5,362	6.9	6.4	4.5	3.0	1./	4.5
Trucks	1,000 units	267	368	462	548	619	6/1	6.6	4.7	3.5	2.5	1.6	3.8
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,800	5,699	7,555	9,049	10,015	12.0	8.4	5.8	3.7	2.0	6.3
CO2 Emission	CO_2 -kton	64,453	80,340	97,430	121,060	141,390	161,390	4.5	3.9	4.4	3.2	2.7	3.7
Total Primary Energy Supply	ktoe	38,498	45,011	56,076	64,425	72,969	80,347	3.2	4.5	2.8	2.5	1.9	3.0
Coal	ktoe	5,190	7,373	8,696	12,021	14,579	17,968	7.3	3.4	6.7	3.9	4.3	5.1
Natural Gas	ktoe	2,504	2,797	3,600	3,716	4,449	4,511	2.2	5.2	0.6	3.7	0.3	2.4
Oil	ktoe	14,430	16,632	20,309	23,997	27,137	29,550	2.9	4.1	3.4	2.5	1.7	2.9
Geothermal	ktoe	8,516	9,327	13,426	13,667	14,812	15,354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2,088	2,661	3,543	4,425	5,307	6,189	5.0	5.9	4.5	3.7	3.1	4.4
Nuclear	ktoe	0	0	0	0	0	0						
Renewables	ktoe	3	320	662	803	915	992	152.1	15.7	3.9	2.6	1.6	25.9
Commercial Energy	ktoe	32,731	39,110	50,236	58,630	67,199	74,564	3.6	5.1	3.1	2.8	2.1	3.3
Non-commercial Energy	ktoe	5,766	5,901	5,840	5,795	5,770	5,784	0.5	-0.2	-0.2	-0.1	0.0	0.0
Coal	%	13.5	16.4	15.5	18.7	20.0	22.4						
Natural Gas	%	6.5	6.2	6.4	5.8	6.1	5.6						
Oil	%	37.5	37.0	36.2	37.2	37.2	36.8						
Others	%	27.6	27.3	31.4	29.3	28.8	28.0						
Non-commercial Energy	%	15.0	13.1	10.4	9.0	7.9	7.2						
Final Demand (excl. Non-Con	ktoe	17,402	22,026	27,742	33,421	38,621	43,076	4.8	4.7	3.8	2.9	2.2	3.7
Agriculture	ktoe	313	254	297	337	373	402	-4.0	3.1	2.6	2.0	1.6	1.0
Industry	ktoe	4,084	4,551	5,590	6,677	7,785	8,870	2.2	4.2	3.6	3.1	2.6	3.2
Energy Intensive	ktoe	2,653	3,071	3,674	4,311	4,957	5,591	3.0	3.7	3.2	2.8	2.4	3.0
Other	ktoe	1,430	1,480	1,916	2,366	2,828	3,279	0.7	5.3	4.3	3.6	3.0	3.4
Commercial	ktoe	1,660	2,187	2,878	3,638	4,429	5,218	5.7	5.6	4.8	4.0	3.3	4.7
Residential	ktoe	2,405	2,763	3,556	4,434	5,342	6,219	2.8	5.2	4.5	3.8	3.1	3.9
Transport	ktoe	8,940	12,272	15,422	18,335	20,692	22,367	6.5	4.7	3.5	2.4	1.6	3.7
- Energy Net Import	ktoe	18 112	21 734	26 201	33 358	40 150	46.052	37	30	40	3.8	28	3.8
Coal	ktop	3 710	5 120	6 010	8 500	10 515	13 1/2	5.7	20	7 /	<i>J</i> .0 ∕/ 1	<u>2.0</u>	5.0
Notural Cos	ktoe	5,/10	5,159	0,019	0,399 700	2515	3 206	0.7	3.2	7.4	4.1	4.0 5.0	5.2
Gil	ktoe	14 402	16 505	20 272	198	2,343	20 512	20	11	24	20.1	5.9 17	2.0
UII Energy Import Patio		14,402	10,393	20,272	25,901	27,100	29,313 61 9	2.9	4.1	3.4	2.3	1./	2.9
Conl	70 0/	JJ.J 71 =	55.0 60.7	54.5	JU.9 71 5	JY.0 70 1	01.0 72.1						
Notural Cos	70 0/	/1.5	09./	09.2	/1.5	12.1	15.1						
	70	0.0	0.0	0.0	21.3	00.0	15.5						
UII	7⁄0	99.8	99.8	99.8	99.8	99.9	99.9						

1.13 Nuclear and LNG Free Case

									G	rowth l	Rate (%	5)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,647	2,177	2,772	3,413	4,079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21,536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices													
Crude oil	Peso / litter	17.8	33.9	36.7	39.5	42.3	45.2	13.7	1.6	1.5	1.4	1.3	3.8
Coal	Peso / kg	2.0	3.2	3.6	4.1	4.5	4.9	9.9	2.4	2.3	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	642	696	749	803	856	13.1	1.6	1.5	1.4	1.3	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4.2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	3.9
Fuel Oil	Peso / litter	18.9	38.2	41.7	45.3	49.1	53.0	15.1	1.8	1.7	1.6	1.5	4.2
Electricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.5	1.4	1.3	3.5
Energy Indicators	1 /	204	410	401	520	570	500	17	2.2	1.5	1.0	0.0	1.0
TPE per capita	kgoe/person	27.0	418	491	20.9	10.4	19.0	1.7	5.5 0.7	1.3	1.0	0.9	1.0
TPE per GDP	toe/mil. PHP	27.0	23.0	22.8	20.8	19.4	18.0	-2.1	-0.7	-1.8	-1.5	-1.5	-1.0
Electricity per capita	KWh/person	530	602	/10	830	939	1,040	2.6	3.5	3.0	2.5	2.1	2.7
Passenger Cars	1,000 units	/88	862	1,094	1,346	1,605	1,857	1.8	4.9	4.2	3.0	3.0	3.5
Trucks	1,000 units	1,792	2,454	3,238	5,944	4,470	4,784	0.5	3.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.5	3.3
Buses	1,000 units	31	31	52	54	35	3/	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	1,479	8,010	10.8	1.5	4.8	2.9	1.4	5.4
CO2 Emission	CO_2 -kton	64,453	79,640	95,640	118,020	133,270	152,290	4.3	3.7	4.3	2.5	2.7	3.5
Total Primary Energy Supply	ktoe	38,498	44,771	55,455	63,366	72,074	79,110	3.1	4.4	2.7	2.6	1.9	2.9
Coal	ktoe	5,190	7,373	8,696	12,021	14,038	17,431	7.3	3.4	6.7	3.2	4.4	5.0
Natural Gas	ktoe	2,504	2,797	3,600	3,716	3,740	3,786	2.2	5.2	0.6	0.1	0.2	1.7
Oil	ktoe	14,430	16,400	19,718	22,993	25,741	27,841	2.6	3.8	3.1	2.3	1.6	2.7
Geothermal	ktoe	8,516	9,327	13,426	13,667	14,812	15,354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2,088	2,661	3,543	4,425	5,307	6,189	5.0	5.9	4.5	3.7	3.1	4.4
Nuclear	ktoe	0	0	0	0	1,826	1,826					0.0	
Renewables	ktoe	3	312	630	749	839	899	150.9	15.1	3.5	2.3	1.4	25.4
Commercial Energy	ktoe	32,731	38,871	49,614	57,571	66,304	73,327	3.5	5.0	3.0	2.9	2.0	3.3
Non-commercial Energy	ktoe	5,766	5,901	5,840	5,795	5,770	5,784	0.5	-0.2	-0.2	-0.1	0.0	0.0
Coal	%	13.5	16.5	15.7	19.0	19.5	22.0						
Natural Gas	%	6.5	6.2	6.5	5.9	5.2	4.8						
Oil	%	37.5	36.6	35.6	36.3	35.7	35.2						
Others	%	27.6	27.5	31.7	29.7	31.6	30.7						
Non-commercial Energy	%	15.0	13.2	10.5	9.1	8.0	7.3						
Final Demand (excl. Non-Con	ktoe	17,402	21,787	27,120	32,363	37,148	41,273	4.6	4.5	3.6	2.8	2.1	3.5
Agriculture	ktoe	313	254	297	337	373	402	-4.0	3.1	2.6	2.0	1.6	1.0
Industry	ktoe	4,084	4,551	5,590	6,677	7,785	8,870	2.2	4.2	3.6	3.1	2.6	3.2
Energy Intensive	ktoe	2,653	3,071	3,674	4,311	4,957	5,591	3.0	3.7	3.2	2.8	2.4	3.0
Other	ktoe	1,430	1,480	1,916	2,366	2,828	3,279	0.7	5.3	4.3	3.6	3.0	3.4
Commercial	ktoe	1,660	2,187	2,878	3,638	4,429	5,218	5.7	5.6	4.8	4.0	3.3	4.7
Residential	ktoe	2,405	2,763	3,556	4,434	5,342	6,219	2.8	5.2	4.5	3.8	3.1	3.9
Transport	ktoe	8,940	12,032	14,800	17,277	19,220	20,563	6.1	4.2	3.1	2.2	1.4	3.4
Energy Net Import	ktoe	18,112	21,502	25,700	32,353	37,587	43,153	3.5	3.6	4.7	3.0	2.8	3.5
Coal	ktoe	3,710	5,139	6.019	8,599	10.050	12.682	67	32	74	32	48	5.0
Natural Gas	ktoe	0	0	0,019	798	1.832	2.667	0.7	5.2	,.r	18.1	7.8	5.0
Oil	ktoe	14,402	16,363	19,682	22,957	25,705	27,804	2.6	3.8	3.1	2.3	1.6	2.7
Energy Import Ratio	%	55.3	55.3	51.8	56.2	56.7	58.9	2.0	2.0	2.1	2.0	1.5	
Coal	%	71.5	69.7	69.2	71.5	71.6	72.8						
Natural Gas	%	0.0	0.0	0.0	21.5	49.0	70.4						
Oil	%	99.8	99.8	99.8	99.8	99.9	99.9						

1.14 Nuclear and LNG Fix Case

									Gi	rowth F	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,647	2,177	2,772	3,413	4,079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21,536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices													
Crude oil	Peso / litter	17.8	33.9	36.7	39.5	42.3	45.2	13.7	1.6	1.5	1.4	1.3	3.8
Coal	Peso / kg	2.0	3.2	3.6	4.1	4.5	4.9	9.9	2.4	2.3	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	642	696	749	803	856	13.1	1.6	1.5	1.4	1.3	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4.2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	3.9
Fuel Oil	Peso / litter	18.9	38.2	41.7	45.3	49.1	53.0	15.1	1.8	17	1.6	15	42
Electricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.5	14	13	3.5
Electrenty (Average)	1 030 / R W II	0.0	12.0	15.0	14.0	15.0	10.1	12.0	1.0	1.5	1.4	1.5	5.5
Energy Indicators													
TPE per capita	kgoe/person	384	418	491	529	569	597	1.7	3.3	1.5	1.5	0.9	1.8
TPE per GDP	toe/mil. PHP	27.0	23.6	22.8	20.7	19.3	17.9	-2.7	-0.7	-1.9	-1.4	-1.5	-1.6
Electricity per capita	kWh/person	530	602	716	830	939	1,040	2.6	3.5	3.0	2.5	2.1	2.7
Passenger Cars	1,000 units	788	862	1,094	1,346	1,605	1,857	1.8	4.9	4.2	3.6	3.0	3.5
Utility Vehicles	1,000 units	1,792	2,434	3,238	3,944	4,470	4,784	6.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	3.3
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	7,479	8,010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO ₂ -kton	64,453	79,640	95,640	117,520	130,420	149,500	4.3	3.7	4.2	2.1	2.8	3.4
Total Primary Energy Supply	ktoe	38 498	44 771	55 455	63 279	71 721	78 787	31	44	27	2.5	19	29
Coal	ktoe	5 190	7 373	8 696	11 857	12,896	16 278	73	34	64	17	48	47
Natural Gas	ktoe	2,504	2,797	3 600	3 793	4 529	4 615	2.2	5.2	1.0	3.6	0.4	2.5
Oil	ktoe	14.430	16.400	19.718	22,993	25.741	27.841	2.6	3.8	3.1	2.3	1.6	2.7
Geothermal	ktoe	8 516	9 327	13 426	13 667	14 812	15 354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2.088	2.661	3 543	4 425	5 307	6 189	5.0	59	4 5	37	3.1	44
Nuclear	ktoe	2,000	2,001	0,010	0	1 826	1 826	0.0	0.5		217	0.0	
Renewables	ktoe	3	312	630	749	839	899	150.9	15.1	35	23	14	25.4
Commercial Energy	ktoe	32 731	38 871	49 614	57 485	65 951	73 003	3.5	5.0	3.0	2.5	2.1	33
Non-commercial Frieray	ktoe	5 766	5 901	5 840	5 795	5 770	5 784	0.5	-0.2	-0.2	-0.1	0.0	0.0
Col	NOC N	12.5	16.5	15.7	10.7	10.0	20.7	0.5	0.2	0.2	0.1	0.0	0.0
Coal Notural Gas	% 0/	13.5	10.5	15.7	18.7	18.0	20.7						
Oil	70 9/2	37.5	36.6	35.6	36.3	35.0	35.3						
Others	%	27.6	27.5	31.7	29.8	31.8	30.8						
Non-commercial Energy	%	15.0	13.2	10.5	9.2	8.0	7.3						
Final Demand (excl. Non-Con	ktoe	17 402	21 787	27 120	32 363	37 148	41 273	46	45	3.6	2.8	21	3.5
Agriculture	ktoe	313	21,707	27,120	337	373	402	-4.0	3.1	2.6	2.0	1.6	1.0
Industry	ktoe	4 084	4 551	5 590	6 677	7 785	8 870	2.2	4.2	3.6	3.1	2.6	3.2
Energy Intensive	ktoe	2 653	3 071	3,570	4 311	4 957	5 501	3.0	37	3.0	2.8	2.0	3.0
Other	ktoe	1 4 3 0	1 / 80	1 016	2 366	2 828	3 270	0.7	53	13	2.0	3.0	3.0
Commercial	ktoc	1,450	2 1 97	2 0 7 0	2,500	4 420	5 219	57	5.5	4.5	1.0	2.2	17
Desidential	ktoe	2,405	2,107	2,070	5,050	4,429	5,210	2.1	5.0	4.0	4.0	2.1	4.7
Tropoport	ktoe	2,403	12,703	14 800	4,454	10 220	20,562	2.0	3.2	4.5	2.0	5.1	2.4
Transport	Kloe	8,940	12,052	14,800	17,277	19,220	20,363	0.1	4.2	5.1	2.2	1.4	5.4
Energy Net Import	ktoe	18,112	21,502	25,700	32,290	37,400	42,997	3.5	3.6	4.7	3.0	2.8	3.5
Coal	ktoe	3,710	5,139	6,019	8,458	9,070	11,693	6.7	3.2	7.0	1.4	5.2	4.7
Natural Gas	ktoe	0	0	0	875	2,625	3,500				24.6	5.9	
Oil	ktoe	14,402	16,363	19,682	22,957	25,705	27,804	2.6	3.8	3.1	2.3	1.6	2.7
Energy Import Ratio	%	55.3	55.3	51.8	56.2	56.7	58.9						
Coal	%	71.5	69.7	69.2	71.3	70.3	71.8						
Natural Gas	%	0.0	0.0	0.0	23.1	58.0	75.8						
Oil	%	99.8	99.8	99.8	99.8	99.9	99.9						

1.15 Double Refinery Capacity Case

									G	rowth I	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,647	2,177	2,772	3,413	4,079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21,536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	*												
Crude oil	Peso / litter	17.8	33.9	36.7	39.5	42.3	45.2	13.7	1.6	1.5	1.4	1.3	3.8
Coal	Peso / kg	2.0	3.2	3.6	4.1	4.5	4.9	9.9	2.4	2.3	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	642	696	749	803	856	13.1	1.6	1.5	1.4	1.3	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4.2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	39
Fuel Oil	Peso / litter	18.9	38.2	417	45.3	49.1	53.0	15.1	1.8	17	1.6	1.5	42
Electricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.5	1.0	13	3.5
Electricity (Hveruge)	10507 R.011	0.0	12.0	15.0	11.0	15.0	10.1	12.0	1.0	1.0	1.1	1.5	5.5
Energy Indicators													
TPE per capita	kgoe/person	384	418	491	533	570	598	1.7	3.3	1.6	1.4	0.9	1.8
TPE per GDP	toe/mil. PHP	27.0	23.6	22.8	20.9	19.4	17.9	-2.7	-0.7	-1.7	-1.5	-1.5	-1.6
Electricity per capita	kWh/person	530	602	716	830	939	1,040	2.6	3.5	3.0	2.5	2.1	2.7
Passenger Cars	1,000 units	788	862	1,094	1,346	1,605	1,857	1.8	4.9	4.2	3.6	3.0	3.5
Utility Vehicles	1,000 units	1,792	2,434	3,238	3,944	4,470	4,784	6.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	3.3
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	7,479	8,010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO ₂ -kton	64,453	79,640	95,640	118,020	137,160	156,210	4.3	3.7	4.3	3.1	2.6	3.6
Total Primary Energy Supply	ktoe	38.498	44.771	55,455	63.712	71.879	78.926	3.1	4.4	2.8	2.4	1.9	2.9
Coal	ktoe	5,190	7.373	8.696	12.021	14.579	17.968	7.3	3.4	6.7	3.9	4.3	5.1
Natural Gas	ktoe	2.504	2.797	3,600	3.716	4,448	4.509	2.2	5.2	0.6	3.7	0.3	2.4
Oil	ktoe	14.430	16.400	19.718	23.340	26.123	28.222	2.6	3.8	3.4	2.3	1.6	2.7
Geothermal	ktoe	8 5 1 6	9 327	13 426	13 667	14 812	15 354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2.088	2.661	3 543	4 425	5 307	6 189	5.0	5.9	4 5	37	3.1	44
Nuclear	ktoe	2,000	2,001	0	0	0,007	0,109	210	0.7		017	5.1	
Renewables	ktoe	3	312	630	749	839	899	150.9	15.1	35	23	14	25.4
Commercial Freray	ktoe	32 731	38 871	49 614	57 918	66 109	73 142	3.5	5.0	3.1	2.5	2.0	33
Non-commercial Energy	ktoe	5 766	5 901	5 840	5 795	5 770	5 784	0.5	-0.2	-0.2	-0.1	0.0	0.0
Non-commercial Energy	RIDE	5,700	5,901	5,040	5,795	5,770	5,704	0.5	-0.2	-0.2	-0.1	0.0	0.0
Coal Natural Cas	%	13.5	16.5	15.7	18.9	20.3	22.8						
Natural Gas	% 0/	0.3 27.5	0.2 26.6	0.3 25.6	3.8 26.6	26.2	25.0						
Offers	70 %	27.6	27.5	31.7	29.6	29.2	55.8 28.4						
Non-commercial Energy	%	15.0	13.2	10.5	9.1	8.0	7.3						
Final Domand (aval Non Con	ktos	17 402	21 797	27.120	27 262	27 149	41 272	16	15	26	20	21	2.5
A grigulturg	kitee	212	21,707	27,120	32,303	37,140	41,273	4.0	4.5	2.0	2.0	2.1	1.0
Inductor	ktoe	4 094	4 5 5 1	5 500	6 677	515 7795	402 8 870	-4.0	3.1	2.0	2.0	1.0	2.2
Energy Intensive	ktoe	4,064	4,551	3,390	4 211	1,105	0,070 5,501	2.2	4.2	3.0	2.1	2.0	3.2
Cther	ktoe	2,035	3,071	3,074	4,511	4,957	2,391	5.0	5.1	3.2	2.8	2.4	5.0 2.4
Other	ktoe	1,430	1,480	1,916	2,300	2,828	5,279	0.7	5.5	4.5	3.0	3.0	3.4
Commercial	ktoe	1,660	2,187	2,878	3,038	4,429	5,218	5./	5.0	4.8	4.0	3.3	4.7
Residential	ktoe	2,405	2,763	3,556	4,434	5,342	6,219	2.8	5.2	4.5	3.8	3.1	3.9
1 ransport	ktoe	8,940	12,032	14,800	17,277	19,220	20,563	6.1	4.2	3.1	2.2	1.4	3.4
Energy Net Import	ktoe	18,112	21,502	25,700	32,700	39,144	44,722	3.5	3.6	4.9	3.7	2.7	3.7
Coal	ktoe	3,710	5,139	6,019	8,599	10,515	13,143	6.7	3.2	7.4	4.1	4.6	5.2
Natural Gas	ktoe	0	0	0	798	2,544	3,394				26.1	5.9	
Oil	ktoe	14,402	16,363	19,682	23,303	26,086	28,185	2.6	3.8	3.4	2.3	1.6	2.7
Energy Import Ratio	%	55.3	55.3	51.8	56.5	59.2	61.1						
Coal	%	71.5	69.7	69.2	71.5	72.1	73.1						
Natural Gas	%	0.0	0.0	0.0	21.5	57.2	75.3						
Oil	%	99.8	99.8	99.8	99.8	99.9	99.9						

1.16 Double Renewable Energy Capacity Case

									G	rowth F	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1.210	1.647	2,177	2,772	3.413	4.079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21.536	25,491	29.456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	1 III / person	1,,170	11,100	21,000	20,171	27,100	00,002			5	2.7	2.0	0.0
Crude oil	Dago / littar	17 9	22.0	267	20.5	12.2	15.2	127	16	15	1.4	12	20
Crude on	Peso / Inter	17.0	20	26	39.5	42.5	45.2	15.7	1.0	1.5	1.4	1.5	2.0
Coal	Peso / kg	2.0	5.2	5.0	4.1	4.5	4.9	9.9	2.4	2.5	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	642	090	749	803	850	13.1	1.0	1.5	1.4	1.5	3.7
LPG	Peso / litter	19.1	30.8	33.9	37.0	40.0	43.1	10.0	1.9	1.8	1.6	1.5	3.3
Gasoline	Peso / litter	30.7	53.1	59.0	65.3	72.3	79.9	11.6	2.1	2.1	2.0	2.0	3.9
Kerosene	Peso / litter	29.5	52.8	58.6	64.9	71.8	79.3	12.3	2.1	2.1	2.0	2.0	4.0
Jet Fuel	Peso / litter	32.6	59.6	66.5	74.1	82.4	91.6	12.8	2.2	2.2	2.2	2.1	4.2
Diesel	Peso / litter	28.8	50.4	55.8	61.7	68.1	75.0	11.8	2.1	2.0	2.0	2.0	3.9
Fuel Oil	Peso / litter	18.9	38.2	41.7	45.3	49.1	53.0	15.1	1.8	1.7	1.6	1.5	4.2
Electricity (Average)	Peso / kWh	6.8	12.0	13.0	14.0	15.0	16.1	12.0	1.6	1.5	1.4	1.3	3.5
Energy Indicators													
TPE per capita	kaoo/porcon	381	/18	401	550	605	634	17	33	26	16	0.0	2.0
TPE per CDP	too/mil DUD	27.0	23.6	22 8	21.0	20.5	10.0	27	0.7	0.8	1.0	1.5	2.0
Fleetrieity ner conite		27.0 520	25.0	22.0	21.9	20.5	19.0	-2.1	-0.7	-0.8	-1.5	-1.5	-1.4
Become an Com	t wii/person	700	862	1 004	1 2 4 6	939	1,040	2.0	5.5	5.0	2.5	2.1	2.1
Passenger Cars	1,000 units	/88	862	1,094	1,346	1,605	1,857	1.8	4.9	4.2	3.6	3.0	3.5
Utility Vehicles	1,000 units	1,792	2,434	3,238	3,944	4,470	4,/84	6.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	3.3
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,610	5,134	6,497	7,479	8,010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO ₂ -kton	64,453	79,640	95,640	112,090	131,460	148,760	4.3	3.7	3.2	3.2	2.5	3.4
Total Primary Energy Supply	ktoe	38,498	44.771	55.455	66.551	75.862	83.307	3.1	4.4	3.7	2.7	1.9	3.1
Coal	ktoe	5,190	7.373	8.696	10.581	13,598	16.572	7.3	3.4	4.0	5.1	4.0	4.8
Natural Gas	ktoe	2.504	2,797	3,600	3.716	3.740	3,786	2.2	5.2	0.6	0.1	0.2	1.7
Oil	ktoe	14 430	16 400	19 718	22 993	25 741	27 841	2.6	3.8	3.1	23	1.6	27
Geothermal	ktoe	8 516	9 327	13 426	18,006	20,711	21,381	1.8	7.6	6.0	2.3	1.0	3.8
Hydro	ktoe	2 088	2 661	3 5/3	16,000	5 836	6 983	5.0	5.0	5.8	2. 4 4.5	3.7	10
Nuclear	ktoe	2,000	2,001	0,545	4,070	0,050	0,705	5.0	5.7	5.0	4.5	5.7	ч.)
Renewebles	ktoe	2	212	620	760	800	061	150.0	15 1	4.1	27	1.0	25 7
Communical Engineering	ktoe	20 721	20.071	40 614	60 756	70.002	901	150.9	5.0	4.1	2.7	1.0	25.1
Commercial Energy	ktoe	52,751	38,871	49,614	60,756	70,092	77,524	3.5	5.0	4.1	2.9	2.0	3.5
Non-commercial Energy	ktoe	5,700	5,901	5,840	5,795	5,770	5,784	0.5	-0.2	-0.2	-0.1	0.0	0.0
Coal	%	13.5	16.5	15.7	15.9	17.9	19.9						
Natural Gas	%	6.5	6.2	6.5	5.6	4.9	4.5						
Oil	%	37.5	36.6	35.6	34.6	33.9	33.4						
Others	%	27.6	27.5	31.7	35.3	35.6	35.2						
Non-commercial Energy	%	15.0	13.2	10.5	8.7	/.0	6.9						
Final Demand (excl. Non-Con	ktoe	17,402	21,787	27,120	32,363	37,148	41,273	4.6	4.5	3.6	2.8	2.1	3.5
Agriculture	ktoe	313	254	297	337	373	402	-4.0	3.1	2.6	2.0	1.6	1.0
Industry	ktoe	4,084	4,551	5,590	6,677	7,785	8,870	2.2	4.2	3.6	3.1	2.6	3.2
Energy Intensive	ktoe	2,653	3,071	3,674	4,311	4,957	5,591	3.0	3.7	3.2	2.8	2.4	3.0
Other	ktoe	1,430	1,480	1,916	2,366	2,828	3,279	0.7	5.3	4.3	3.6	3.0	3.4
Commercial	ktoe	1,660	2,187	2,878	3,638	4,429	5,218	5.7	5.6	4.8	4.0	3.3	4.7
Residential	ktoe	2,405	2,763	3,556	4,434	5,342	6,219	2.8	5.2	4.5	3.8	3.1	3.9
Transport	ktoe	8,940	12.032	14,800	17.277	19.220	20,563	6.1	4.2	3.1	2.2	1.4	3.4
Enarcy Nat Import	ktos	18 112	21 502	25 700	21 110	37 200	12 116	2.5	26	2.0	36	27	25
Energy iver import	кюе	10,112	21,302	25,700	51,110	57,209	42,410	5.5	5.0	5.9	5.0	4.7	5.5
Coal	ktoe	5,710	5,139	6,019	/,363	9,672	11,945	6.7	3.2	4.1	5.6	4.3	4.8
Natural Gas	ktoe	0	0	0	798	1,832	2,667	_	<i>.</i> -	<i>.</i> .	18.1	7.8	
Oil	ktoe	14,402	16,363	19,682	22,957	25,705	27,804	2.6	3.8	3.1	2.3	1.6	2.7
Energy Import Ratio	%	55.3	55.3	51.8	51.2	53.1	54.7						
Coal	%	71.5	69.7	69.2	69.6	71.1	72.1						
Natural Gas	%	0.0	0.0	0.0	21.5	49.0	70.4						
Oil	%	99.8	99.8	99.8	99.8	99.9	99.9						

1.17 Revised Price Case at \$70/Bbl

									G	rowth l	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													
Population	Million	85.3	93.0	101.1	108.7	115.9	122.4	1.8	1.7	1.5	1.3	1.1	1.5
Real GDP in 1985 price	Billion PHP	1,210	1,647	2,177	2,772	3,413	4,079	6.3	5.7	5.0	4.3	3.6	5.0
RGDP per capita	PHP/person	14,198	17,708	21,536	25,491	29,456	33,332	4.5	4.0	3.4	2.9	2.5	3.5
Energy Prices	1	<i>,</i>	,		,	,	<i>,</i>						
Crude oil	Peso / litter	17.8	19.8	21.9	24.0	26.1	28.2	2.1	2.1	19	17	16	19
Coal	Peso / kg	2.0	3.2	3.6	4 1	4 5	49	9.9	2.1	23	2.1	1.8	37
Natural Gas	Peso / mmBtu	347	440	477	523	569	615	49	1.6	1.9	17	1.0	23
I PG	Peso / litter	10.1	18.5	21.6	24.6	207	30.8	-0.7	3.1	27	24	2.1	1.0
Gasolina	Paso / litter	30.7	30.0	44.2	40.8	56.0	62.0	-0.7	2.5	2.7	2.4	2.1	2.0
Karosana	Paso / litter	20.5	39.6	13.8	49.0	55.5	62.3		2.5	2.4	2.4	2.5	2.)
Let Evel	Peso / litter	29.5	15.0	43.0	49.4 59.6	66.0	74.7	5.5	2.5	2.4	2.4	2.5	2.4
Discol	Peso / litter	20.0	45.5	41.0	30.0	51.0	/4./ 50.1	0.9	2.0	2.5	2.5	2.4	2.4
East O'l	Peso / litter	20.0	24.1	41.0	40.2	22.0	26.0	4.7	2.5	2.4	2.5	2.5	2.8
Fuel OII	Peso / litter	18.9	24.1	26.9	29.8	32.8	30.0	5.0	2.2	2.1	2.0	1.9	2.6
Electricity (Average)	Peso / kwh	6.8	8.2	9.0	9.9	10.8	11./	3.8	1.9	1.9	1.7	1.6	2.2
Energy Indicators													
TPE per capita	kgoe/person	384	436	509	548	586	614	2.6	3.1	1.5	1.3	0.9	1.9
TPE per GDP	toe/mil. PHP	27.0	24.6	23.6	21.5	19.9	18.4	-1.9	-0.8	-1.9	-1.5	-1.5	-1.5
Electricity per capita	kWh/person	530	627	743	860	971	1,074	3.4	3.5	3.0	2.5	2.0	2.9
Passenger Cars	1,000 units	788	951	1,220	1,492	1,768	2,034	3.8	5.1	4.1	3.5	2.8	3.9
Utility Vehicles	1,000 units	1,792	2,434	3,238	3,944	4,470	4,784	6.3	5.9	4.0	2.5	1.4	4.0
Trucks	1,000 units	267	358	437	505	558	595	6.0	4.1	2.9	2.0	1.3	3.3
Buses	1.000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1.000 units	2.158	3.610	5.134	6.497	7.479	8.010	10.8	7.3	4.8	2.9	1.4	5.4
CO2 Emission	CO ₂ -kton	64.453	84.520	101.470	124.710	144.100	163.540	5.6	3.7	4.2	2.9	2.6	3.8
	2	20,000	61,520				100,010	2.0				2.0	2.0
Total Primary Energy Supply	ktoe	38,498	46,320	57,150	65,281	73,551	80,728	3.8	4.3	2.7	2.4	1.9	3.0
Coal	ktoe	5,190	7,416	9,304	12,824	15,187	18,575	7.4	4.6	6.6	3.4	4.1	5.2
Natural Gas	ktoe	2,504	2,858	3,608	3,729	4,529	4,615	2.7	4.8	0.7	4.0	0.4	2.5
Oil	ktoe	14,430	17,922	20,872	24,177	27,204	29,420	4.4	3.1	3.0	2.4	1.6	2.9
Geothermal	ktoe	8,516	9,327	13,426	13,667	14,812	15,354	1.8	7.6	0.4	1.6	0.7	2.4
Hydro	ktoe	2,088	2,661	3,543	4,425	5,307	6,189	5.0	5.9	4.5	3.7	3.1	4.4
Nuclear	ktoe	0	0	0	0	0	0						
Renewables	ktoe	3	329	666	789	881	942	153.5	15.2	3.4	2.2	1.3	25.6
Commercial Energy	ktoe	32,731	40,513	51,419	59,611	67,920	75,095	4.4	4.9	3.0	2.6	2.0	3.4
Non-commercial Energy	ktoe	5,766	5,807	5,731	5,670	5,631	5,633	0.1	-0.3	-0.2	-0.1	0.0	-0.1
Coal	%	13.5	16.0	16.3	19.6	20.6	23.0						
Natural Gas	%	6.5	6.2	6.3	5.7	6.2	5.7						
Oil	%	37.5	38.7	36.5	37.0	37.0	36.4						
Others	%	27.6	26.6	30.9	28.9	28.6	27.9						
Non-commercial Energy	%	15.0	12.5	10.0	8.7	7.7	7.0						
Final Demand (excl. Non-Con	ktoe	17,402	22,933	28,528	33,925	38,825	43,027	5.7	4.5	3.5	2.7	2.1	3.7
Agriculture	ktoe	313	307	360	405	444	476	-0.3	3.2	2.4	1.9	1.4	1.7
Industry	ktoe	4,084	4,729	5,797	6,912	8,045	9,153	3.0	4.2	3.6	3.1	2.6	3.3
Energy Intensive	ktoe	2,653	3,183	3,802	4,454	5,114	5,762	3.7	3.6	3.2	2.8	2.4	3.1
Other	ktoe	1,430	1,546	1,995	2,457	2,931	3,391	1.6	5.2	4.3	3.6	3.0	3.5
Commercial	ktoe	1,660	2,291	3,005	3,788	4,601	5,409	6.7	5.6	4.7	4.0	3.3	4.8
Residential	ktoe	2,405	2,879	3,693	4,593	5,520	6,413	3.7	5.1	4.5	3.7	3.0	4.0
Transport	ktoe	8,940	12,727	15,673	18,228	20,216	21,576	7.3	4.3	3.1	2.1	1.3	3.6
Fnerov Net Import	ktoe	18 112	23 024	27 332	3/ 100	10 771	16 187	10	3.5	16	3.6	27	3.8
Cool	letop	2 710	5 120	6 407	0.220	10.082	12 604	4.7 67	1.9	7.0	2.5	2.7	5.0
Notural Cos	lites	5,710	5,159	0,497	9,239	2 625	2 500	0.7	4.8	1.5	3.3 26 5	4.4	3.5
Matural Gas	ktoe	14 402	17 005	20.925	811 24 141	2,023	3,300	A A	2 1	20	20.5	3.9 1 c	20
	ktoe	14,402	17,885	20,835	24,141	27,107	29,383	4.4	5.1	3.0	2.4	1.0	2.9
Energy Import Katio	% 0	33.3 71.5	30.8	<u>33.2</u>	37.4	00.0	01.9						
Coal Notural Cas	%	/1.5	69.3	09.8	72.0	12.3	15.2						
Inatural Gas	%	0.0	0.0	0.0	21.7	58.0	/5.8						
UII	%	99.8	99.8	99.8	99.8	99.9	99.9						

1.18 Revised Price (\$70/Bbl) and Economic Growth (4%) Case

									Gı	owth H	Rate (%)	
	Unit	2005	2010	2015	2020	2025	2030	05-10	10-15	15-20	20-25	25-30	05-30
Economic Indicators													<u></u>
Population	Million	85 3	93.0	101.1	108.7	115.9	122.4	18	17	15	13	11	15
Real GDP in 1985 price	Billion PHP	1 210	1 498	1 872	2 286	2 736	3 222	4.4	4.6	4.1	37	3 3	4.0
PGDP per capita	DUD/porson	1/ 108	16 110	18 523	21.021	2,750	26 331	2.6	28	2.6	24	2.5	2.5
En anon Briage	r m/person	14,190	10,110	16,525	21,021	23,012	20,331	2.0	2.0	2.0	2.4	2.2	2.5
Energy Frices	D (11)	15.0	10.0		210	261	a 0 a			1.0			1.0
Crude oil	Peso / litter	17.8	19.8	21.9	24.0	26.1	28.2	2.1	2.1	1.9	1./	1.6	1.9
Coal	Peso / kg	2.0	3.2	3.6	4.1	4.5	4.9	9.9	2.4	2.3	2.1	1.8	3.7
Natural Gas	Peso / mmBtu	347	440	477	523	569	615	4.9	1.6	1.9	1.7	1.6	2.3
LPG	Peso / litter	19.1	18.5	21.6	24.6	27.7	30.8	-0.7	3.1	2.7	2.4	2.1	1.9
Gasoline	Peso / litter	30.7	39.0	44.2	49.8	56.0	62.9	4.9	2.5	2.4	2.4	2.3	2.9
Kerosene	Peso / litter	29.5	38.6	43.8	49.4	55.5	62.3	5.5	2.5	2.4	2.4	2.3	3.0
Jet Fuel	Peso / litter	32.6	45.5	51.7	58.6	66.2	74.7	6.9	2.6	2.5	2.5	2.4	3.4
Diesel	Peso / litter	28.8	36.3	41.0	46.2	51.8	58.1	4.7	2.5	2.4	2.3	2.3	2.8
Fuel Oil	Peso / litter	18.9	24.1	26.9	29.8	32.8	36.0	5.0	2.2	2.1	2.0	1.9	2.6
Electricity (Average)	Peso / kWh	6.8	8.2	9.0	9.9	10.8	11.7	3.8	1.9	1.9	1.7	1.6	2.2
En anon Indicators													
The new service	1	201	421	490	400	525	540	1.0	27	0.0	1.0	0.6	1.4
TPE per capita	kgoe/person	27.0	421	480	499	323	340 20.5	1.9	2.7	0.8	1.0	0.0	1.4
TPE per GDP	toe/mil. PHP	27.0	26.1	25.9	23.7	22.2	20.5	-0.7	-0.2	-1./	-1.5	-1.0	-1.1
Electricity per capita	kWh/person	530	604	686	/66	842	914	2.7	2.6	2.2	1.9	1.6	2.2
Passenger Cars	1,000 units	788	887	1,059	1,238	1,422	1,608	2.4	3.6	3.2	2.8	2.5	2.9
Utility Vehicles	1,000 units	1,792	2,293	2,921	3,466	3,878	4,131	5.1	5.0	3.5	2.3	1.3	3.4
Trucks	1,000 units	267	355	422	478	520	549	5.9	3.5	2.5	1.7	1.1	2.9
Buses	1,000 units	31	31	32	34	35	37	-0.2	1.1	0.9	0.8	0.7	0.7
Motorcycles/Tricycles	1,000 units	2,158	3,622	4,979	6,163	7,016	7,497	10.9	6.6	4.4	2.6	1.3	5.1
CO2 Emission	CO ₂ -kton	64,453	80,620	93,140	106,540	121,520	134,440	4.6	2.9	2.7	2.7	2.0	3.0
Total Primary Energy Supply	ktoe	38 498	44 946	54 183	59 749	66 194	71 416	31	38	2.0	21	15	2.5
Coal	ktoe	5 190	7 303	8 548	9.855	12 216	14 436	7.1	3.2	29	44	3.4	4.2
Natural Gas	ktoe	2 504	2 832	3 055	3 716	3 741	3 787	2.5	1.5	4.0	0.1	0.2	1.7
Oil	ktoe	14 430	16 692	10 308	21 827	23 024	25 520	3.0	3.0	2.5	1.0	1.3	23
Gaothermal	ktoe	8 5 1 6	0 327	13 426	13 667	14 812	15 354	1.0	7.6	0.4	1.5	0.7	2.5
Undro	ktoe	2,000	2,527	2 5 4 2 0	13,007	5 207	6 190	1.0	5.0	4.5	2.7	2.1	2.4 4 4
Nuclear	ktoe	2,000	2,001	5,545	4,423	5,507	0,169	5.0	5.9	4.5	5.7	5.1	4.4
Inuclear	ktoe	0	220	0	700	0	0	150.0	14.2	2.0	1.0	1.0	25.1
Renewables	ktoe	3	320	625	722	/94	842	152.2	14.3	2.9	1.9	1.2	25.1
Commercial Energy	ktoe	32,731	39,136	48,506	54,212	60,794	66,128	3.6	4.4	2.2	2.3	1.7	2.9
Non-commercial Energy	ktoe	5,766	5,810	5,677	5,537	5,399	5,288	0.2	-0.5	-0.5	-0.5	-0.4	-0.3
Coal	%	13.5	16.2	15.8	16.5	18.5	20.2						
Natural Gas	%	6.5	6.3	5.6	6.2	5.7	5.3						
Oil	%	37.5	37.1	35.6	36.5	36.1	35.7						
Others	%	27.6	27.4	32.5	31.5	31.6	31.3						
Non-commercial Energy	%	15.0	12.9	10.5	9.3	8.2	7.4						
Final Demand (excl. Non-Con	ktoe	17,402	22,034	26,297	30,342	33,997	37,176	4.8	3.6	2.9	2.3	1.8	3.1
Agriculture	ktoe	313	348	393	431	465	496	2.2	2.4	1.9	1.6	1.3	1.9
Industry	ktoe	4,084	4,451	5,257	6,094	6,958	7,835	1.7	3.4	3.0	2.7	2.4	2.6
Energy Intensive	ktoe	2,653	3,034	3,531	4,056	4,595	5,140	2.7	3.1	2.8	2.5	2.3	2.7
Other	ktoe	1,430	1,417	1,726	2,038	2,363	2,695	-0.2	4.0	3.4	3.0	2.7	2.6
Commercial	ktoe	1,660	2,101	2,600	3,139	3,707	4,298	4.8	4.4	3.8	3.4	3.0	3.9
Residential	ktoe	2,405	2,884	3,620	4,413	5,211	5,957	3.7	4.7	4.0	3.4	2.7	3.7
Transport	ktoe	8,940	12.250	14.427	16.264	17.656	18,590	6.5	3.3	2.4	1.7	1.0	3.0
For a second sec		10 112	21.704	25 200	20,526	24 470	20 570	2.0	2.0	2.1	2 1	2.0	2.0
Energy Net Import	ктое	18,112	21,794	25,290	29,520	34,470	38,3/9	3.8	5.0	3.1	5.1	2.5	3.1
Coal	ktoe	3,710	5,139	6,019	6,938	8,750	10,428	6.7	3.2	2.9	4.8	3.6	4.2
Natural Gas	ktoe	0	0	0	798	1,833	2,668				18.1	7.8	
Oil	ktoe	14,402	16,655	19,272	21,790	23,887	25,483	3.0	3.0	2.5	1.9	1.3	2.3
Energy Import Ratio	%	55.3	55.7	52.1	54.5	56.7	58.3						
Coal	%	71.5	70.4	70.4	70.4	71.6	72.2						
Natural Gas	%	0.0	0.0	0.0	21.5	49.0	70.5						
Oil	%	99.8	99.8	99.8	99.8	99.8	99.9						

Appendix-2

Sample of Summary Sheet

This summary sheet is produced for each case to state summary of the supply/demand optimization for all years from 2005 through 2030. However, because of limited paper size, only several sample years are printed in this Appendix-2. Please refer to the excel sheet on PC for detail annual figures.

														E (0/)	/ /
Keterence	Summary sheet	TEDMA	11.5							05 10	GRO	WIH	RAI	E (%)	
IERM 1	IERM 2	IERM 3	Unit	2005	2006	2007	2008	2009	2030	05 -> 10	10 -> 15	15 -> 20	20 -> 25	25 -> 30	05 ->
conomic Indicators	Population		Million	85.26	86.97	88.45	89.95	91.46	122 37	1.8	17	15	13	11	
	CDP at 1985 price on Pl	-P base	Billion DHD	1 210 5	1 276 /	1 364 6	1 450 6	1 5/3 8	1078.8	6.3	5.7	5.0	1.0	3.6	
	CDP por capita on 1985		Dillorr III DHD/porcon	1/ 100	14 676	1,304.0	16 127	16 990	4,070.0	0.5	3.7	3.0		2.5	
	GDF per capita on 1965		riir/peisoii	14,190	14,070	13,420	10,127	10,000	33,332	4.5	4.0	5.4	2.9	2.0	
nergy Indicators	TPE per capita		kaoe/person	383.9	377.5	372.8	407.9	416.5	689.9	2.7	3.7	2.1	1.9	1.5	l
- 57	TPE per GDP		TOE/million PH	27.0	25.7	24.2	25.3	24.7	20.7	-1.8	-0.3	-1.3	-1.0	-1.0	
	Electricity per capita		kWh / person	530	525	543	575	604	1,251	3.7	4.2	3.7	3.2	2.7	1
															1
	Vehicle number	Total	1000Unit	5,036	5,308	5,777	6,213	6,723	15,283	7.7	6.4	4.4	2.8	1.6	
		Passenger Cars	1000Unit	788	792	812	801	823	1,857	1.8	4.9	4.2	3.6	3.0	1
		Utility Vehicles	1000Unit	1,792	1,791	1,946	2,098	2,260	4,784	6.3	5.9	4.0	2.5	1.4	1
		Trucks	1000Unit	267	286	303	320	338	595	6.0	4.1	2.9	2.0	1.3	I
		Buses	1000Unit	31	29	30	30	30	37	-0.2	1.1	0.9	0.8	0.7	1
		Motorcycles/Tricycles	1000Unit	2,158	2,409	2,685	2,964	3,271	8,010	10.8	7.3	4.8	2.9	1.4	1
		Total No. of vehicle per person	unit/1000psn	59.1	61.0	65.3	69.1	73.5	124.9	5.8	4.6	2.9	1.5	0.5	1
		Passenger Cars	unit/1000psn	9.2	9.1	9.2	8.9	9.0	15.2	0.0	3.2	2.7	2.3	1.8	1
		Utility Vehicles	unit/1000psn	21.0	20.6	22.0	23.3	24.7	39.1	4.5	4.1	2.5	1.2	0.3	1
		Trucks	unit/1000psn	3.1	3.3	3.4	3.6	3.7	4.9	4.2	2.3	1.5	0.7	0.2	
		Buses	unit/1000psn	0.4	0.3	0.3	0.3	0.3	0.3	-1.9	-0.6	-0.5	-0.4	-0.3	
		Motorcycles/Tricycles	unit/1000psn	25.3	27.7	30.4	33.0	35.8	65.5	8.9	5.5	3.3	1.6	0.3	
								0010							
	CO2 Emission		CO2-kton	64,453	59,619	65,892	77,100	79,480	195,130	5.7	4.6	5.1	3.9	3.4	
	Total Primary Energy	Commercial Total	kTOF	32 731	32 830	32 975	36 685	38 094	84 428	4	54	36	32	2.6	
	Domestic Requirement	Coal	kTOF	5 190	4 889	5 210	7 350	7 401	23 903	7.5	6.0	8.0	5.0	49	1
	excluding Stockniling	Natural Gas	KTOE	2 504	2 363	2 821	2 322	2 842	4 632	27	4.8	1.0	3.6	0.4	
			KTOE	14 420	14,006	12,021	15 959	16 270	22 299	4.6	2.0	2.4	2.0	22	
			KTOE	10,402	10,543	10,022	14 621	14 621	14 621	4.0	0.0	0.4	2.5	2.5	1
		Potroloum Producto Import	KTOE	10,493	2 554	2 070	14,021	14,021	19,021	0.9	15.0	0.0	0.0	0.0	(
		Petroleum Products Import	KIDE	3,937	3,554	3,970	1,230	1,008	18,666	-2.5	15.8	9.2	0.2	4.3	(
		Fossii totai	KIDE	22,124	21,349	22,022	25,529	26,521	61,823	5.1	4.5	4.6	3.7	3.1	1
		Fossil ratio	%	67.6	65.0	66.8	69.6	69.6	73.2	0.6	-0.9	1.0	0.4	0.5	
		Geothermal	kTOE	8,516	9,000	8,785	8,785	8,785	15,354	1.8	7.6	0.4	1.6	0.7	
		Hydro	kTOE	2,088	2,475	2,132	2,309	2,485	6,189	5.0	5.9	4.5	3.7	3.1	
		Nuclear	kTOE	0	0	0	0	0	0					ŀ	
		Renewables	kTOE	3	7	35	62	303	1,061	153.2	15.8	4.1	2.9	2.0	1
		Non-Commercials	kTOE	5,766	5,652	5,561	5,829	5,804	4,818	0.1	-0.7	-0.8	-1.0	-1.1	l
		Total	kTOE	38,498	38,483	38,535	42,514	43,898	89,245	3.9	4.8	3.2	2.9	2.4	l
	Final Energy Demand	Total	kTOE	17,402	16,814	18,494	20,570	21,600	49,668	5.7	5.2	4.3	3.5	2.8	
		Agricluture	kTOE	313	281	134	256	259	485	-3.0	3.8	3.3	2.7	2.2	1
		Industry (Energy Insentive)	kTOE	2,653	2,753	2,645	2,970	3,109	6,772	4.2	4.4	3.9	3.5	3.1	1
		Industry (Other)	kTOE	1,430	1,385	1,282	1,364	1,458	3,944	1.8	6.0	5.0	4.3	3.7	1
		Commercial	kTOE	1,660	1,749	1,689	2,010	2,153	6,278	6.9	6.3	5.5	4.7	4.0	1
		Residential	kTOE	2,405	2,277	2.338	2,546	2,718	7.463	3.9	5.9	5.2	4.5	3.8	1
		Transport	kTOE	8.940	8,369	10.406	11.422	11,903	24.724	7.1	4.9	3.9	2.9	2.1	
				_,		_,	,	,	,						
	Energy Net Import	Total	kTOE	18,112	18,145	18,046	21,095	21,567	54,688	5.1	4.4	5.3	4.4	3.3	
		Coal	kTOE	3,710	4,073	4,079	5,274	5,324	17,937	6.7	6.3	8.8	5.7	5.0	i l
	1	Natural Gas	kTOE	0	0	0	0	. 0	3.500			·	24.6	5.9	i l
		Oil	kTOE	14,402	14,072	13.967	15.821	16,242	33.251	4.6	3.8	3.4	2.9	2.3	
					,•·-	,	-,	· - , - · -	,		5.5	0.1			
	Import Ratio	Total	%	55	55	55	58	57	65	0.6	-1.0	1.7	1.2	0.7	
	(excl. oil stockpiling)	Coal	%	71.5	83.3	78.3	71.8	71.9	75.0	-0.7	0.3	0.7	0.6	0.0	i
		Natural Gas	%	0.0	0.0	0.0	0.0	0.0	75.6				20.2	5.5	i
		Oil	%	99.8	99.8	99.8	99.8	99.8	99.9	0.0	0.0	0.0	0.0	0.0	1
	1	1	1											1	d T

(Economic and Energy Indicators)

(Oil & Gas Sector)

					Acctual			Forecast	>	-					
Reference	Oil and Gas Sector										GRO	ωтн	RAT	E (%)	
TERM 1	TERM 2	TERM 3	Unit	2005	2006	2007	2008	2009	2030	05 -> 10	10 -> 15	15 -> 20	20 -> 25	25 -> 30	05 -> 30
Oil & Coo contor	Drimony Enorgy Supply	Total	KTOE	16.276	15.062	16.025	17 700	10.069	20 507	4.0	4.2	2.0	2.0	21	2.5
Oll & Gas sector	Phinary Energy Supply	Natural das		10,370	10,002	10,920	17,790	10,900	30,307	4.9	4.3	3.2	3.0	2.1	3.5
		Final demand	kTOE	2,304	2,303	2,021	2,322	2,042	4,032	2.1	4.0	1.0	3.0	7.0	2.0
		For electricity	kTOE	2 492	2 310	2 743	2 243	2 762	4 434	22	4.8	1.0	3.6	0.1	23
	including Biofuel	Petroleum Products Total	kTOE	13 872	12 699	14 104	15 468	16 127	33 955	5.3	4.0	3.5	2.9	2.3	3.6
		LPG	kTOE	1.063	1.008	1.074	1.385	1.520	3.218	9.4	8.0	4.8	0.4	0.4	4.5
		LPG substitute	kTOE	0	0	0	0	0	2.025				37.1	12.7	
	including Bio-ethanol	Gasoline	kTOE	2,928	2,737	2,795	3,280	3,478	7,318	4.9	5.3	3.9	2.7	1.8	3.7
		Ethanol	kTOE	1	1	2	0	177	748	167.0	21.0	3.9	2.8	1.8	28.6
		Gasoline	kTOE	2,926	2,736	2,793	3,280	3,301	6,570	3.8	4.2	3.9	2.7	1.8	3.3
		Jet fuel	kTOE	1,000	1,003	1,125	1,168	1,228	2,989	5.3	4.8	4.5	4.1	3.7	4.5
		Kerosene	kTOE	285	222	200	193	185	90	-9.0	-3.9	-3.5	-3.2	-2.8	-4.5
	including Bio-diesel	Diesel	kTOE	5,582	5,230	5,553	6,295	6,616	13,066	5.0	4.6	3.5	2.6	1.7	3.5
		Final demand	kTOE	5,377	5,082	5,404	6,174	6,494	12,940	5.1	4.9	3.7	2.6	1.7	3.6
		Bio-Diesel	kTOE	0	1	28	53	113	214	304.3	4.8	3.4	2.3	1.3	35.3
		Diesel	kTOE	5,377	5,082	5,376	6,121	6,382	12,726	4.7	4.9	3.7	2.6	1.7	3.5
		For electricity	kTOE	205	148	149	121	121	126	2.2	-6.9	-5.4	0.4	0.4	-1.9
		Fuel oil	kTOE	3,014	2,499	3,358	3,147	3,099	5,249	5.8	0.6	0.8	1.9	2.3	2.2
		Final demand	kTOE	1,796	1,606	2,453	2,519	2,471	4,506	7.2	3.4	3.2	2.7	2.2	3.7
		For electricity	<u>kTOE</u>	1,218	893	905	627	628	743	3.4	-5.5	-7.2	-2.8	2.7	-2.0
	Crude oil	Production (crude oil)	<u>kTOE</u>	28	24	25	37	37	37	5.6	0.0	0.0	0.0	0.0	1.1
		Production (condensate)	KTOE	582	535	601	111	951	379	10.4	4.8	-4.1	-8.1	-10.0	-1./
			KTOE	10,465	10,518	9,997	14,584	14,584	14,584	6.9	0.0	0.0	0.0	0.0	1.3
		Export	KTOE	0	0	0	0	0	0	7.0	0.0	0.0	0.0		4 5
		Processing	KTOE	10,116	10,054	9,694	14,621	14,621	14,621	7.0	0.0	0.0	0.0	0.0	1.5
	Notural gas	Draduation	KTOE	2 362	232	2 022	2 2 2 2 2	901	379	10.4	4.8	-4.1	-0.1	-10.0	-1./
	Natural gas	Import	kTOE	2,701	2,529	3,033	2,322	2,042	1,132	1.1	4.0	-4.1	-0.1	-10.0	-3.4
		Export	kTOE	0	0	0	0	0	3,300				24.0	5.9	
		Consumption	kTOE	2 504	2 363	2 821	2 322	2 842	4 632	27	4.8	1.0	3.6	0.4	25
		Net Balance (export)	KTOE	197	2,000	212	2,022	2,042	4,002	-91.8	31.7	14.8	-25.2	-232 7	-165.8
	Oil & Gas product net imp	Total	KTOF	13 819	13 537	13 366	15 044	15 291	36 372	4 4	38	4.5	4.3	28	3.9
		Natural gas	KTOE	0	0	0	0	0	3.500		31.7	-1346.2	24.6	5.9	0.0
		Crude oil	KTOE	10.465	10.518	9.997	14.584	14.584	14.584	6.9	0.0	0.0	0.0	0.0	1.3
		Condensate	KTOE	-582	-535	-601	-777	-951	-379	10.4	4.8	-4.1	-8.1	-10.0	-1.7
		LPG	KTOE	695	665	820	675	809	2,360	6.6	12.6	6.4	0.0	0.0	5.0
		LPG substitute	KTOE	0	0	0	0	0	2,025				37.1	12.7	_
		Gasoline	KTOE	1,150	1,140	1,333	556	577	3,846	-6.9	14.8	9.5	5.4	3.2	4.9
		Jet fuel	KTOE	259	291	359	-38	0	1,589	-100.0		21.7	11.2	7.7	7.5
		Kerosene	KTOE	94	79	52	0	14	90	-4.8	14.6	-3.5	-3.2	-2.8	-0.2
		Diesel	KTOE	2,024	1,873	2,128	756	1,017	7,366	-5.6	16.5	8.5	5.2	3.1	5.3
		Fuel oil	KTOE	-286	-495	-720	-712	-760	1,390	-184.4	14.0	12.2	14.6	10.8	-206.5

(Electric Power Sector)

LICCU	TIC FOWEI Secto														
					Acctual			Forecast		-					
Reference	Electric Power Sector										GRO	W T H	RAT	E (%)	
TERM 1	TERM 2	TERM 3	Unit	2005	2006	2007	2008	2009	2030	05 -> 10	10 -> 15	15 -> 20	20 -> 25	25 -> 30	05 -> 30
Electric Power Sector	Power Generation		GWh	56,477	56,545	60,430	63,600	67,916	187,741	5.2	5.9	5.2	4.5	3.8	4.9
	Electricity Tariff	Average	PHP/kWh	6.8	7.4	8.0	11.5	11.9	16.1	12.0	1.6	1.5	1.4	1.3	3.5
		Residential	PHP/kWh	7.0	7.8	8.5	12.2	12.7	16.8	12.8	1.5	1.4	1.3	1.2	3.6
		Commercial	PHP/kWh	7.2	7.7	8.2	11.8	12.3	16.5	11.4	1.6	1.5	1.4	1.3	3.4
		Industrial	PHP/kWh	6.2	6.6	7.4	10.7	11.1	14.9	12.5	1.6	1.5	1.4	1.3	3.6
	Electricity per capita		kWh/person	662	650	683	707	743	1,534	3.4	4.2	3.7	3.2	2.7	3.4
	Sectoral Demand	Total	GWh	45,159	45,672	48,009	51,697	55,214	153,135	5.5	6.0	5.2	4.5	3.8	5.0
		Agriculture	GWh	491	480	493	533	572	1,298	4.4	5.0	4.1	3.5	2.9	4.0
		Industry (Energy Insentive)	GWh	8,008	8,119	8,456	8,744	9,071	17,751	3.3	3.7	3.4	3.1	2.7	3.2
		Industry (Other)	GWh	7,404	7,505	7,783	8,332	8,954	26,486	5.4	6.5	5.5	4.7	4.0	5.2
		Commercial	GWh	13,134	13,642	14,795	15,761	16,926	51,950	6.8	6.6	5.7	4.9	4.2	5.7
		Residential	GWh	16,031	15,830	16,376	18,218	19,580	55,494	5.7	6.1	5.3	4.5	3.8	5.1
		Transport	GWh	91	97	107	109	111	156	4.5	1.9	1.7	1.5	1.3	2.2
														ļľ	
	Power Supply	Total	GWh	56,568	56,784	59,613	63,600	67,916	187,741	5.2	5.9	5.2	4.5	3.8	4.9
		Coal	GWh	15,257	15,294	16,837	25,613	25,613	111,461	10.9	8.1	10.5	6.1	5.9	8.3
		Natural Gas	GWh	16,951	16,605	19,442	15,807	19,363	29,323	2.7	4.7	0.6	3.3	-0.2	2.2
		Oil	GWh	6,051	4,426	4,495	2,586	2,589	3,096	-0.1	-5.4	-7.3	-2.9	2.8	-2.6
		Geothermal	GWh	9,902	10,465	10,215	10,215	10,215	17,854	1.8	7.6	0.4	1.6	0.7	2.4
		Hydro	GWh	8,387	9,939	8,564	9,272	9,981	24,858	5.0	5.9	4.5	3.7	3.1	4.4
		Nuclear	GWh	0	0	0	0	0	0						
		Renewables	GWh	19	55	59	107	154	1,150	60.4	16.8	9.0	6.2	4.7	17.8
		T					15.000	15.000	07.050		1.0	1.0			
	Power Capacity	lotal	MW				15,803	15,803	37,353		4.3	4.6	5.0	3.7	
		Coal	MW				4,177	4,177	18,177		8.1	10.5	6.1	5.9	
		Natural Gas	MW				2,763	2,763	5,763		6.4	2.5	4.3	1.8	
			IVIVV				3,602	3,602	3,152		0.0	0.0	0.5	-3.2	
		Geothermal	IVIVV NOV				1,978	1,978	3,078		2.9	1.7	1.6	2.8	
		Hydro	IVIVV				3,257	3,257	5,757		2.3	1.0	3.8	3.9	
			IVIVV				0	0	1,000				07.4	0.0	
		Renewables	IVIVV				26	26	426		0.0	0.0	37.1	27.6	
														i "	

		,															
					Acctual		\checkmark	Forecast		-							
Reference	Coal & Renewable Ene	rgy Sector								GROWTH RATE(%)							
TERM 1	TERM 2	TERM 3	Unit	2005	2006	2007	2008	2009	2030	05 -> 10	10 -> 15	15 -> 20	20 -> 25	25 -> 30	05 -> 30		
Coal sector	Demand	Total	kTOE	5,190	4,889	5,210	7,350	7,401	23,903	7.5	6.0	8.0	5.0	4.9	6.3		
		General	kTOE	1,056	1,175	1,238	1,326	1,394	3,213	6.8	4.7	4.2	3.7	3.3	4.5		
		For electricity	kTOE	4,134	3,714	3,972	6,024	6,006	20,690	7.7	6.3	8.8	5.3	5.2	6.7		
		Export	kTOE	0	0	0	0	0	0								
	Supply	Total	kTOE	5,230	5.317	5.874	7,350	7,401	23,903	7.4	6.0	8.0	5.0	4.9	6.3		
		Production	kTOE	1,520	1,243	1,795	2,076	2,076	5,966	8.8	5.3	6.1	3.2	4.8	5.6		
		Import	<u>kTOE</u>	3,710	4,073	4,079	5,274	5,324	17,937	6.7	6.3	8.8	5.7	5.0	6.5		
Reference	Non-commercial Energ	ly Sector								-							
Non-commercial En	eSupply & Demand	Total	kTOE	5,766	5,652	5,561	5,829	5,804	4,818	0.1	-0.7	-0.8	-1.0	-1.1	-0.7		
		Rice hull	kTOE	48	48	48	51	53	111	2.7	4.1	3.8	3.4	3.0	3.4		
		Charcoal	kTOE	677	684	691	670	648	32	-1.6	-4.5	-6.7	-11.3	-30.1	-11.5		
		Fuel wood	kTOE	3,669	3,527	3,404	3,324	3,229	608	-3.1	-3.8	-5.4	-8.1	-13.9	-6.9		
		Bagasse	kTOE	711	740	769	1,132	1,212	3,105	12.8	5.6	4.8	4.0	3.3	6.1		
		Agriculture waste	kTOE	646	638	632	646	655	946	0.6	1.8	1.8	1.8	1.7	1.5		
		Animal waste	kTOE	15	16	16	6	6	16	-15.5	5.5	4.8	4.2	3.6	0.1		

(Coal Sector, Non-Commercial)

Appendix-3

Sample of Energy Balance Table

This energy balance table is produced for each case to state summary of the supply/demand optimization for all years from 2008 through 2030. However, because of limited paper size, only several sample years are printed in this Appendix-3. Please refer to the excel sheet on PC for detail annual figures.

																				ktoe
	Coal	Natural Gas	Condens ate	Crude	Gasoline	Kerosen e	Diesel	Fuel Oil	LPG	Jet Fuel	Aviation Gasoline	Hydro	Geother mal	Nuclear	Renewa bles	Bioethan ol	Biodiesel	Electricit y	Biomass	Total
Indigenous production	2,076	1,986	488	37	0	0	0	0	0	0	0	2,309	8,785	0	9	0	0	0	5,900	21,590
Import	5,218	0	0	14,584	440	0	548	0	609	0	4	0	0	0	0	0	0	0	0	21,403
Export	0	0	-488	0	0	0	0	-756	0	-75	0	0	0	0	0	0	0	0	0	-1,318
Total Primary Energy Supply	7,294	1,986	0	14,621	440	0	548	-756	609	-75	4	2,309	8,785	0	9	0	0	0	5,900	41,674
Transformation Sector	-6,024	-1,907	0	-14,621	2,724	193	5,365	3,231	711	1,207	0	-2,309	-8,785	0	-9	0	51	4,281	0	-15,894
Electricity Plants	-6,024	-1,907	0	0	0	0	-121	-627	0	0	0	-2,309	-8,785	0	-9	0	0	5,266	0	-14,517
Petroleum Refineries	0	0	0	-14,036	2,724	193	5,486	3,859	711	1,207	0	0	0	0	0	0	0	0	0	143
Bioethanol Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Biodiesel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	51	0	0	51
Energy Sector	0	0	0	-585	0	0	0	0	0	0	0	0	0	0	0	0	0	-986	0	-1,570
Petroleum Refineries	0	0	0	-585	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-585
LNG Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Own Use in Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-392	0	-392
Distribution Loss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-593	0	-593
Total Final Consumption	1,270	78	0	0	3,164	193	5,913	2,475	1,319	1,132	4	0	0	0	0	0	51	4,281	5,900	25,780
Total Industry	1,270	77	0	0	0	16	326	997	61	0	0	0	0	0	0	0	0	1,410	1,697	5,854
Energy Intensive Industry	1,242	0	0	0	0	16	221	613	33	0	0	0	0	0	0	0	0	720	1,481	4,325
Other Industry	28	77	0	0	0	0	105	384	29	0	0	0	0	0	0	0	0	690	216	1,529
Total Transport	0	1	0	0	3,164	0	5,357	1,300	65	1,132	4	0	0	0	0	0	51	9	0	11,084
Road	0	1	0	0	3,164	0	5,057	0	65	0	0	0	0	0	0	0	51	0	0	8,338
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	9
Water	0	0	0	0	0	0	300	1,300	0	0	0	0	0	0	0	0	0	0	0	1,600
Air	0	0	0	0	0	0	0	0	0	1,132	4	0	0	0	0	0	0	0	0	1,136
Total Other Sectors	0	0	0	0	0	177	229	179	1,193	0	0	0	0	0	0	0	0	2,862	4,203	8,843
Residential	0	0	0	0	0	172	0	0	775	0	0	0	0	0	0	0	0	1,514	3,904	6,365
Commercial	0	0	0	0	0	0	70	141	419	0	0	0	0	0	0	0	0	1,304	299	2,233
Agriculture	0	0	0	0	0	5	159	37	0	0	0	0	0	0	0	0	0	44	0	246
Electricity Output in ktoe	2,203	1,156	0	0	0	0	222	0	0	0	0	797	879	0	9	0	0	0	0	5,266
Installed Capacity of Power Plant in MW	4,177	2,763	0	0	0	0	2,952	650	0	0	0	3,257	1,978	0	26	0	0	0	0	15,803

	-		-					-		-			-				-			ktoe
	Coal	Natural Gas	Condens ate	Crude	Gasoline	Kerosen e	Diesel	Fuel Oil	LPG	Jet Fuel	Aviation Gasoline	Hydro	Geother mal	Nuclear	Renewa bles	Bioethan ol	Biodiesel	Electricit y	Biomass	Total
Indigenous production	2,234	2,797	687	37	0	0	0	0	0	0	0	2,661	9,327	0	17	0	0	0	5,901	23,662
Import	5,139	0	0	14,584	638	17	1,081	0	846	0	4	0	0	0	0	0	0	0	0	22,310
Export	0	0	-687	0	0	0	0	-808	0	0	0	0	0	0	0	0	0	0	0	-1,495
Total Primary Energy Supply	7,373	2,797	0	14,621	638	17	1,081	-808	846	0	4	2,661	9,327	0	17	0	0	0	5,901	44,476
Transformation Sector	-5,988	-2,715	0	-14,621	2,724	159	5,365	3,231	711	1,240	0	-2,661	-9,327	0	-17	181	114	4,816	0	-16,789
Electricity Plants	-5,988	-2,715	0	0	0	0	-121	-627	0	0	0	-2,661	-9,327	0	-17	0	0	5,923	0	-15,535
Petroleum Refineries	0	0	0	-14,036	2,724	159	5,486	3,859	711	1,240	0	0	0	0	0	0	0	0	0	143
Bioethanol Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	181	0	0	0	181
Biodiesel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	114	0	0	114
Energy Sector	0	0	0	-585	0	0	0	0	0	0	0	0	0	0	0	0	0	-1,107	0	-1,692
Petroleum Refineries	0	0	0	-585	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-585
LNG Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Own Use in Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-439	0	-439
Distribution Loss	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-668	0	-668
Total Final Consumption	1,384	82	0	0	3,362	177	6,445	2,424	1,556	1,240	4	0	0	0	0	181	114	4,816	5,901	27,687
Total Industry	1,384	77	0	0	0	16	362	1,067	94	0	0	0	0	0	0	0	0	1,550	1,929	6,480
Energy Intensive Industry	1,353	0	0	0	0	16	244	654	40	0	0	0	0	0	0	0	0	763	1,681	4,752
Other Industry	31	77	0	0	0	0	117	413	55	0	0	0	0	0	0	0	0	786	248	1,728
Total Transport	0	5	0	0	3,362	0	5,852	1,191	72	1,240	4	0	0	0	0	181	114	10	0	12,032
Road	0	5	0	0	3,362	0	5,594	0	72	0	0	0	0	0	0	181	114	0	0	9,329
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	10
Water	0	0	0	0	0	0	258	1,191	0	0	0	0	0	0	0	0	0	0	0	1,449
Air	0	0	0	0	0	0	0	0	0	1,240	4	0	0	0	0	0	0	0	0	1,245
Total Other Sectors	0	0	0	0	0	160	232	165	1,390	0	0	0	0	0	0	0	0	3,257	3,971	9,176
Residential	0	0	0	0	0	155	0	0	882	0	0	0	0	0	0	0	0	1,725	3,689	6,451
Commercial	0	0	0	0	0	0	70	127	507	0	0	0	0	0	0	0	0	1,482	283	2,470
Agriculture	0	0	0	0	0	5	162	38	0	0	0	0	0	0	0	0	0	50	0	254
Electricity Output in ktoe	2,203	1,629	0	0	0	0	222	0	0	0	0	919	933	0	17	0	0	0	0	5,923
Installed Capacity of Power Plant in MW	4,177	2,763	0	0	0	0	2,952	650	0	0	0	3,357	1,978	0	26	0	0	0	0	15,903

																				ktoe
	Coal	Natural Gas	Condens ate	Crude	Gasoline	Kerosen e	Diesel	Fuel Oil	LPG	Jet Fuel	Aviation Gasoline	Hydro	Geother mal	Nuclear	Renewa bles	Bioethan ol	Biodiesel	Electricit y	Biomass	Total
Indigenous production	2,678	3,600	884	37	0	0	0	0	0	0	0	3,543	13,426	0	38	0	0	0	5,840	30,046
Import	6,019	0	0	14,584	1,260	144	2,526	0	1,498	117	4	0	0	0	0	0	0	0	0	26,152
Export	0	0	-884	0	0	0	0	-451	0	0	0	0	0	0	0	0	0	0	0	-1,336
Total Primary Energy Supply	8,696	3,600	0	14,621	1,260	144	2,526	-451	1,498	117	4	3,543	13,426	0	38	0	0	0	5,840	54,862
Transformation Sector	-7,013	-3,506	0	-14,621	2,724	0	5,365	3,231	711	1,400	0	-3,543	-13,426	0	-38	453	140	6,222	. 0	-21,902
Electricity Plants	-7,013	-3,506	0	0	0	0	-121	-627	0	0	0	-3,543	-13,426	0	-38	0	0	7,647	0	-20,628
Petroleum Refineries	0	0	0	-14,036	2,724	0	5,486	3,859	711	1,400	0	0	0	0	0	0	0	0	0	143
Bioethanol Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	453	0	0	0	453
Biodiesel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	140	0	0	140
Energy Sector	0	0	0	-585	0	0	0	0	0	0	0	0	0	0	0	0	0	-1,424	. 0	-2,009
Petroleum Refineries	0	0	0	-585	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-585
LNG Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Own Use in Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-561	0	-561
Distribution Loss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-863	. 0	-863
Total Final Consumption	1,683	94	0	0	3,984	144	7,891	2,780	2,208	1,517	4	0	0	0	0	453	140	6,222	5,840	32,960
Total Industry	1,683	77	0	0	0	18	452	1,237	194	0	0	0	0	0	0	0	0	1,929	2,531	8,121
Energy Intensive Industry	1,644	0	0	0	0	18	305	761	61	0	0	0	0	0	0	0	0	885	2,205	5,880
Other Industry	39	77	0	0	0	0	147	476	132	0	0	0	0	0	0	0	0	1,044	326	2,241
Total Transport	0	17	0	0	3,984	0	7,183	1,401	91	1,517	4	0	0	0	0	453	140	11	0	14,800
Road	0	17	0	0	3,984	0	6,825	0	91	0	0	0	0	0	0	453	140	0	0	11,509
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	11
Water	0	0	0	0	0	0	358	1,401	0	0	0	0	0	0	0	0	0	0	0	1,759
Air	0	0	0	0	0	0	0	0	0	1,517	4	0	0	0	0	0	0	0	0	1,521
Total Other Sectors	0	0	0	0	0	126	256	142	1,924	0	0	0	0	0	0	0	0	4,282	3,309	10,040
Residential	0	0	0	0	0	120	0	0	1,190	0	0	0	0	0	0	0	0	2,246	3,074	6,629
Commercial	0	0	0	0	0	0	70	99	734	0	0	0	0	0	0	0	0	1,976	236	3,114
Agriculture	0	0	0	0	0	6	186	44	0	0	0	0	0	0	0	0	0	61	0	297
Electricity Output in ktoe	2,730	2,090	0	0	0	0	222	0	0	0	0	1,224	1,343	0	38	0	0	0	0	7,647
Installed Capacity of Power Plant in MW	5,177	3,763	0	0	0	0	2,952	650	0	0	0	3,757	2,278	0	26	0	0	0	0	18,603

											-	-	-	-						Ktoe
	Coal	Natural Gas	Condens ate	Crude	Gasoline	Kerosen e	Diesel	Fuel Oil	LPG	Jet Fuel	Aviation Gasoline	Hydro	Geother mal	Nuclear	Renewa bles	Bioethan ol	Biodiesel	Electricit y	Biomass	Total
Indigenous production	3,422	2,922	2 718	37	0	0	0	0	0	0	0	4,425	13,667	0	58	0	0	0	5,795	31,044
Import	8,599	798	з <u>о</u>	14,584	1,945	i 118	3,757	0	2,198	424	4	0	0	0	0	o	0	0	0	32,428
Export	0	0	-718	, o) 0	0	0	-74	0	0	0	0	0	0	0	0	0	0	0	-792
Total Primary Energy Supply	12,021	3,720	0 0	14,621	1,945	118	3,757	-74	2,198	424	4	4,425	13,667	0	58	0	0	0	5,795	62,679
Transformation Sector	-10,020	-3,612	0	-14,621	2,724	0	5,365	3,231	711	1,400	0	-4,425	-13,667	0	-58	531	160	7,760	0	-24,522
Electricity Plants	-10,020	-3,608	0	0	0	0	-121	-627	0	0	0	-4,425	-13,667	0	-58	0	0	9,528	0	-22,998
Petroleum Refineries	0	0) O	-14,036	2,724	0	5,486	3,859	711	1,400	0	0	0	0	0	0	0	0	0	143
Bioethanol Plants	0	0) <u> </u>	0) <u>c</u>	0	0	0	0	0	0	0	0	0	0	531	0	0	0	531
Biodiesel Plants	0	0) O	0) <u>c</u>	0 0	0	0	0	0	0	0	0	0	0	0	160	0	0	160
Energy Sector	0	-4	<u>۱</u>	-585	i c	0	0	0	0	0	0 0	0	0	0	0	0	0	-1,768	0	-2,357
Petroleum Refineries	0	0) O	-585	i c) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-585
LNG Plants	0	-4	<u>ہ</u>	0) <u>c</u>) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-4
Own Use in Electricity	0	0) O	0) <u> </u>) 0	0	0	0	0	0	0	0	0	0	0	0	-693	0	-693
Distribution Loss	0	0) <u>o</u>	0) <u>c</u>) 0	0	0	0	0	0	0	0	0	0	0	0	-1,076	0	-1,076
Total Final Consumption	2,001	108	s 0	0	4,669	118	9,122	3,157	2,909	1,824	4	0	0	0	0	531	160	7,760	5,795	38,157
Total Industry	2,001	77	′ o	0) <u>c</u>) 19	546	1,388	316	C	0 0	0	0	0	0	0	0	2,330	3,203	9,880
Energy Intensive Industry	1,954	. 0) O	0) <u>c</u>) 19	369	869	89	c	0	0	0	0	0	0	0	1,012	2,790	7,101
Other Industry	47	77	, o	0) <u>c</u>	0	177	520	227	c	0	0	0	0	0	0	0	1,318	412	2,778
Total Transport	0	31	0	0	4,669	0	8,297	1,643	106	1,824	4	0	0	0	0	531	160	12	0	17,277
Road	0	31	0	0	4,669	0	7,797	0	106	C	0	0	0	0	0	531	160	0	0	13,294
Rail	0	0	v 0	0) <u>c</u>	0 0	0	0	0	, c	0	0	0	0	0	0	0	12	0	12
Water	0	0) O	0) <u>c</u>	0	500	1,643	0	c c	0	0	0	0	0	0	0	0	0	2,143
Air	0	0	v 0	0) <u>c</u>	0 0	0	0	0	1,824	4	0	0	0	0	0	0	0	0	1,828
Total Other Sectors	0	0) O	0) <u>c</u>	99	279	125	2,486	c	0 0	0	0	0	0	0	0	5,418	2,592	11,001
Residential	0	0) O	0) <u>c</u>	93	0	0	1,523	0	0	0	0	0	0	0	0	2,818	2,408	6,842
Commercial	0	0) <u> </u>	0) 0	0	70	76	964	. 0	0	0	0	0	0	0	0	2,528	185	3,822
Agriculture	0	0) <u>o</u>	0) <u>c</u>) 7	209	49	0	0	0	0	0	0	0	0	0	72	0	337
Electricity Output in ktoe	4,238	2,115	ί Ο	0	0	0	222	. 0	0	0	0	1,529	1,367	0	58	0	0	0	0	9,528
Installed Capacity of Power Plant in MW	8.177	4.263	3 O) () (0 0	2.952	650	0	c	0	3.957	2.478	0	26	0	0	0	0	22,503
Reference Case

2025

																	-			ktoe
	Coal	Natural Gas	Condens ate	Crude	Gasoline	Kerosen e	Diesel	Fuel Oil	LPG	Jet Fuel	Aviation Gasoline	Hydro	Geother mal	Nuclear	Renewa bles	Bioethan ol	Biodiesel	Electricit y	Biomass	Total
Indigenous production	4,064	1,917	471	37	0	0	0	0	0	0	0	5,307	14,812	0	78	0	0	0	5,770	32,457
Import	10,515	2,544	0	14,584	2,442	99	4,654	292	2,878	752	4	0	0	0	0	0	0	0	0	38,763
Export	0	0	-471	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-471
Total Primary Energy Supply	14,579	4,461	0	14,621	2,442	99	4,654	292	2,878	752	4	5,307	14,812	0	78	0	0	0	5,770	70,750
Transformation Sector	-12,252	-4,328	0	-14,621	2,724	0	5,362	3,212	748	1,400	0	-5,307	-14,812	0	-78	588	173	9,362	0	-27,831
Electricity Plants	-12,252	-4,315	0	0	0	0	-124	-647	0	0	0	-5,307	-14,812	0	-78	0	0	11,486	0	-26,050
Petroleum Refineries	0	0	0	-14,036	2,724	0	5,486	3,859	748	1,400	0	0	0	0	0	0	0	0	0	180
Bioethanol Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	588	0	0	0	588
Biodiesel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	173	0	0	173
Energy Sector	0	-13	0	-585	0	0	0	0	0	0	0	0	0	0	0	0	0	-2,125	0	-2,722
Petroleum Refineries	0	0	0	-585	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-585
LNG Plants	0	-13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-13
Own Use in Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-827	0	-827
Distribution Loss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1,298	0	-1,298
Total Final Consumption	2,327	133	0	0	5,166	99	10,016	3,504	3,626	2,151	4	0	0	0	0	588	173	9,362	5,770	42,919
Total Industry	2,327	77	0	0	0	20	639	1,517	460	0	0	0	0	0	0	0	0	2,745	3,911	11,696
Energy Intensive Industry	2,272	0	0	0	0	20	433	973	121	0	0	0	0	0	0	0	0	1,139	3,409	8,365
Other Industry	55	77	0	0	0	0	207	545	339	0	0	0	0	0	0	0	0	1,606	503	3,331
Total Transport	0	55	0	0	5,166	0	9,078	1,874	118	2,151	4	0	0	0	0	588	173	13	0	19,220
Road	0	55	0	0	5,166	0	8,411	0	118	0	0	0	0	0	0	588	173	0	0	14,511
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	0	13
Water	0	0	0	0	0	0	667	1,874	0	0	0	0	0	0	0	0	0	0	0	2,541
Air	0	0	0	0	0	0	0	0	0	2,151	4	0	0	0	0	0	0	0	0	2,156
Total Other Sectors	0	0	0	0	0	79	299	113	3,048	0	0	0	0	0	0	0	0	6,605	1,859	12,003
Residential	0	0	0	0	0	72	0	0	1,863	0	0	0	0	0	0	0	0	3,407	1,726	7,068
Commercial	0	0	0	0	0	0	70	59	1,185	0	0	0	0	0	0	0	0	3,115	132	4,562
Agriculture	0	0	0	0	0	7	229	54	0	0	0	0	0	0	0	0	0	83	0	373
Electricity Output in ktoe	5,367	2,497	0	0	0	0	230	0	0	0	0	1,833	1,481	0	78	0	0	0	0	11,486
Installed Capacity of Power Plant in MW	10,177	5,263	0	0	0	0	3,052	650	0	0	0	4,757	2,678	0	126	0	0	0	0	26,703

Reference Case

2030

																				ktoe
	Coal	Natural Gas	Condens ate	Crude	Gasoline	Kerosen e	Diesel	Fuel Oil	LPG	Jet Fuel	Aviation Gasoline	Hydro	Geother mal	Nuclear	Renewa bles	Bioethan ol	Biodiesel	Electricit y	Biomass	Total
Indigenous production	4,825	1,132	278	37	0	0	0	0	0	0	0	6,189	15,354	0	99	0	0	0	5,784	33,698
Import	13,143	3,394	0	14,584	2,739	84	5,175	602	3,525	1,090	4	0	0	0	0	0	0	0	0	44,341
Export	0	0	-278	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-278
Total Primary Energy Supply	17,968	4,526	0	14,621	2,739	84	5,175	602	3,525	1,090	4	6,189	15,354	0	99	0	0	0	5,784	77,761
Transformation Sector	-15,315	-4,348	0	-14,621	2,724	0	5,360	3,193	795	1,400	0	-6,189	-15,354	0	-99	622	178	10,950	0	-30,705
Electricity Plants	-15,315	-4,331	0	0	0	0	-126	-666	0	0	0	-6,189	-15,354	0	-99	0	0	13,425	0	-28,656
Petroleum Refineries	0	0	0	-14,036	2,724	0	5,486	3,859	795	1,400	0	0	0	0	0	0	0	0	0	227
Bioethanol Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	622	0	0	0	622
Biodiesel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	178	0	0	178
Energy Sector	0	-17	0	-585	0	0	0	0	0	0	0	0	0	0	0	0	0	-2,475	0	-3,076
Petroleum Refineries	0	0	0	-585	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-585
LNG Plants	0	-17	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-17
Own Use in Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-957	0	-957
Distribution Loss	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1,518	0	-1,518
Total Final Consumption	2,653	178	0	0	5,463	84	10,535	3,795	4,321	2,490	4	0	0	0	0	622	178	10,950	5,784	47,056
Total Industry	2,653	77	0	0	0	21	728	1,617	620	0	0	0	0	0	0	0	0	3,154	4,620	13,490
Energy Intensive Industry	2,591	0	0	0 0	0	21	494	1,068	157	0	0	0	0	0	0	0	0	1,260	4,029	9,620
Other Industry	62	77	0	0	0	0	234	548	464	0	0	0	0	0	0	0	0	1,894	591	3,871
Total Transport	0	101	0	0	5,463	0	9,492	2,075	124	2,490	4	0	0	0	0	622	178	13	0	20,563
Road	0	101	0	0	5,463	0	8,647	0	124	0	0	0	0	0	0	622	178	0	0	15,136
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	0	13
Water	0	0	0	0	0	0	845	2,075	0	0	0	0	0	0	0	0	0	0	0	2,920
Air	0	0	0	0	0	0	0	0	0	2,490	4	0	0	0	0	0	0	0	0	2,494
Total Other Sectors	0	0	C	0 0	0	63	315	103	3,576	0	0	0	0	0	0	0	0	7,783	1,163	13,003
Residential	0	0	0	0	0	56	0	0	2,186	0	0	0	0	0	0	0	0	3,977	1,080	7,299
Commercial	0	0	0	0	0	0	70	46	1,389	0	0	0	0	0	0	0	0	3,713	83	5,301
Agriculture	0	0	0	0	0	8	245	57	0	0	0	0	0	0	0	0	0	93	0	402
Electricity Output in ktoe	6,949	2,466	0	0	0	0	237	0	0	0	0	2,138	1,535	0	99	0	0	0	0	13,425
Installed Capacity of Power Plant in MW	13,177	5,763	0	0	0	0	3,152	650	0	0	0	5,757	3,078	0	426	0	0	0	0	32,003

Appendix-4

Operation Manual for Demand Forecasting Model

Appendix-4 Operation Manual for Demand Forecasting Model

1. Model Configuration

Demand forecasting model was developed on Microsoft Excel using Simple.E (regression tool) as Add-in soft developed by the Institute of Energy Economics, Japan (IEEJ). Demand forecasting model consists of 3 model operation sheets and 13 table and graph sheets. Three model operation sheets are composed of "Data", "Model", and "Simulation" sheets. "Data" sheet contains many necessary data for the model. Model equations are in "Model" sheet. "Simulation" sheet shows the results of demand forecasting model. Other 13 sheets show the table and graph of each sector for analysis.

45	45	PSY	I	L	Government Expenditure	Million peso	05	57,042	55,826	55,337	58,746	62,34
46	46	PSY			Fixed Capital Formation	Million peso	FCF	172,951	143,047	154,252	166,397	180,79
47	47	PSY			Export of Goods & Services	Million peso	EXP	217,865	231,515	241,431	256,451	307,20
48	48	PSY			Import of Goods & Services	Million peso	IMP	269,148	266,139	289,273	322,548	369,32
49	49	PSY			Statistical Discrepancy	Million peso	s	10,208	8,485	-4,315	-3,479	-14,75
50	50	PSY			Gross Domestic Expenditure	Million peso	GDE	720,690	716,522	718,941	734,156	766,36
51	51											
52	52	ADB		IIP	Production Index (Manufacturing)	1978=100	IIP	807.7	920.4	951.9	1025.9	1120
53	53											
54	54	ADB	Price	Exchange Ra	Exchange rate (Average of period)	Peso/US\$	EXRA	24.3	27.5	25.5	27.1	26
55	55	ADB		Price index	WPI	1998=100	WPI	58.9	69.0	71.6	71.5	77
56	56	PSY			CPI (fixed for projection)	1994=100	CPI	47.2	55.6	60.0	63.3	68
57	57	ADB			GDP Deflator	1985-100	COPDE	149 5	174.2	188.0	200.8	220
• •	Þ	\Dat.	<u>a</u> (Model,	Simulation	/Dinsequent and & Oil / TPES / Agriculture / EI	Mfg /Gen	Mfg (Cor	n / Res / T	ransFuel/	Electric Po		
×,	巨の調	整(<u>R</u>)	- 🗟 🙆	オートシェイ	7₩+ 🔪 🔪 🔿 🖓 🔝 📣 🧟 🤌	• · X • A	· - = =		7 .			
					Model Operation Sheets			Table	e and C	raph S	heets	

2. Data Entry

(1) Data sources

There are many data such as ADB (Asian Development Bank), PSY (Philippine Statistical Yearbook), IEA (International Energy Agency), EPPB (Energy Policy and Planning Bureau, DOE), etc. in "Data" sheet. Data sources are shown in column F in "Data" sheet. When you update future data, refer to these data sources.

						Data So	ources	1				
M 14	1icros	oft Ex	cel - DFM	ref 08070	08							
	771)	I↓(E)	編集① 扌	表示⊻/ 挿	◎ た書 Ф 久間) ツール①	データ(<u>D</u>)	ウイン	ドウ(W) -	ヘルプ(円)	Adobe PDF	(<u>B</u>)
2	7											
	2	8) / []	X 💞 🐰	🖻 🛍 🝼	N + N	🍓 :	Σ <i>f</i> *	<u></u> ≩↓ Z↓	1	75% -	2.
	AC	407	-	=	878.5							
	E	F	G	Н			I			J	к	AC
1											TREND	18
2	E	F	G	H	I					J	TIME	2007
3	3		Macrol	Econom	y Block							
4	4	ADB	Economy	Population	Population	(as of July 1))			million	POPU	88.45
5	5				Growth r	ate				%		1.70%
6	6	ADB			Urban Popu	ilation: UBNP	OP				UBNPOP	43.16
7	7				Urban Po	pulation Rat	io 🛛				UBNPOR	48.8%
0	8											

(2) Data update

This "Data" sheet contains actual data up to 2007. To use this model in the future, some data should be

updated every year. The followings are data to be updated.

- Population (Row 4/ADB)
- Labor force (Row 9-14/ADB)
- Average income per family (Row 18/PSY)
- Average expenditure per family (Row 19/PSY)
- GDP (Row 22-32 and 38/PSY)
- GDE (Row 44-50/PSY)
- IIP (Row 52/ADB)
- Exchange rate and price index (Row 54-58/ADB, PSY)
- Energy prices (Row 68-79/EPPB)
- Sectroral data of energy intensive industries (Row 125-157 except Row 135, 137, and 139/PSY, ADB, www.psma.com)
- Household energy use (Row 160-165/EPPB)
- Number of vehicles (Row 169-183 except Row 175/PSY)
- Fuel consumption for transport (Row 214-220/EPPB)
- Data for railway (Row 222-227/PSY, EPPB)
- Data for marine (Row 229-237 except Row 233-234/PSY, EPPB)
- Data for air (Row 239-246/PSY, EPPB)
- Energy data for Agriculture (Row 256 and 265-271/EPPB)
- Energy data for Energy Intensive Industry (Row 275 and 291-297/EPPB)
- Energy data for Other Industry (Row 301 and 310-316/EPPB)
- Energy data for Commercial (Row 320 and 329-335/EPPB)
- Energy data for Residential (Row 339 and 349-355/EPPB)
- Energy data for Transport (Row 359-369/EPPB)
- Losses of power sector (Row 395 and 398/EPPB)
- Generation mix (Row 402-408/EPPB)
- Primary energy for power (Row 427-436/EPPB)
- Traditional non-commercial energy (Row 442-480/EPPB)
- Energy for Energy Intensive Industries (Row 529-641/EPPB)

(3) Enter formula

In addition to actual data, some formulas should be entered every year. These formulas are same as previous year. The followings are formulas to be entered every year.

- Energy Indicators (Row 105-122)
- Real price for major industries (Row 135, 137, and 139)
- Passenger car and truck equivalent (Row 175 and 184)
- Diffusion rate and mileage (Row 186-200) Note: Only row 192 and 197 in 2006 are exogenous variables because something is wrong with actual data.
- Gasoline and diesel consumption for transport (Row 202 and 208)
- Electricity ratio and Price mix factor of commercial energy (Row 257, 259, 276, 285, 302, 304, 321,

- After EEC and Price Effect for transport (Row 359-373)
- Final Energy Consumption (Row 376-391)
- Composition of power generation mix and thermal efficiency (Row 411-424)
- Total Primary Energy Supply (Row 491-527)

N 1	1icros	oft Ex	cel - DFM	Ref 080708						
8	ファイノ	μ(<u>Ε)</u> /	編集(E)	Est f.	ッール(T) データ(D) ウィンドウ(W)	ヘルプ(日)	Adobe PDF	(B)		
	_		The second	Enter 10	rmula					
7	H		E 97		.					
	🗃 🔁	8) 🖨 🖪	L 💞 🐰 🛙	🛅 🛍 🝼 🖡 🗠 - 🖓 - 🕵 Σ 📠 🛃	- 🛍 🚜	75% -		Tahoma	T
			. <u> </u>	••••••••••••••••••••••••••••••••••••••			000年度2番			
-		N L	2 🗋 🚺	🔍 お気に入り	」 ▼ 移動(G) ▼ 💽 ○評開発調査グループ¥3107	1/1/E/¥2	008年度##	50/天现地制直车	· ·	
	AC	223	-	=						
	Е	F	G	Н	I	J	K	AB	AC	AD
1							TREND	17	19	19
2	E	F	G	Н	I	3	TIME	2006	2007	2008
191	191									
192	192			Milage	Gasoline Milage before EEC per PC Equiv.	TOE	GAMLBE	1,469		
193	193				Cummulative Price Elasticity Factor		PCFGA	100.00%	100.00%	
194	194				Cummulative EEC Factor		ECFGA	100.00%	100.00%	
195	195				Gasoline Milage after EEC & Price Effect	TOE	GAMLAE	1.330		
196	196							0.00		
197	197				Diesel Milage before EEC per Truck Equivalnet	TOE	DEMLBE	10.800		
198	198				Cummulative Price Elasticity Factor		PCFDE	100.00%	100.00%	
199	199				Cummulative EEC Factor		ECFDU	100.00%	100.00%	
200	200				Diesel Milage after EEC & Price Effect	TOE	DEMLAE	9.007		
201	201									
202	202			Fuel	Gasoline Type Total incl. Ethanol and Others	KTOE	TRGTTO	2738.1	2836. <mark>8</mark>	
203	203				Gasopline Fuel Conversion Rate		_			
204	204				CNG	%	TRGVGR	0.00%	0.00%	0.01%
205	205		Data u	pdate	LP G	70	TRGLPR	0.15%	1.58%	2.00%
206	206			1	Ethanol	%	TRGETR	0.00%	0.00%	0.00%
207	207									
208	208				Diesel Type Total incl. Bio-Diesel and Others	KTOE	TRDTTO	3900.3	4902.9	
209	209				Diesel Fuel Conversion Rate					
210	210				CNG	%	TRDNGR	0.00%	0.00%	
211	211				LPG	%	TRDLPR	0.00%	8.00%	0.00%
212	212				Bio-diesel	%	TRDBDR	0.00%	1.00%	1.00%
213	213									
214	214				CNG	KTOE	TRROCN	0.0	0.0	
215	215				LPG	KTOE	TRROLP	4.0	44.8	
216	216				Gasoline	KTOE	TRROGA	2,732.6	2,789.5	
217	217				Ethanol	KTOE	TRROET	1.4	2.0	
218	218				Diesel	KTOE	TRRODI	3,900.3	4,902.9	
219	219				Bio-diesel	KTOE	TRROBD	0.0	9.0	
220	220				Total	KTOE	TRROTO	6,638.4	7,739.2	
221	221		I	1	1	1				

(4) Assumptions

To estimate future energy demand, it is necessary to set up some assumptions such as GDP, population, energy prices, etc. The followings are some assumptions to be entered up to 2030.

- Population (Row 4,7 and 17)
- GDP (Row 22-32 and 38)
- GDE (Row 44-50)
- Exchange rate and price index (Row 54-58)
- Energy prices (Row 68-79)
- Household energy use (Row 160-165)
- Gasoline and diesel conversion rate (Row 204-206 and 210-212)
- Losses of power sector (Row 395 and 398)
- Generation mix (Row 402-408/EPPB)

- Energy for power plants (Row 435-436)

JICA team set up these assumptions on the "Data" sheet by each case study. However, if you want to change these assumptions, you should enter your assumptions on the above rows.

(5) Working Assumptions

This forecasting model can evaluate impacts of energy prices and energy conservation. In this case, you can change working assumptions such as price elasticity and annual EEC (Energy Efficiency and Conservation) promotion on row 83 to 102.

N	1icro <u>s</u>	oft Ex	cel - DF <u>M I</u>	Ref 0807 <u>08</u>								
	ファイノ	μ(<u>F</u>) ;	編集(E) 表	銢⊻ 挿入	(① 書式(②) ツール(① データ(型) ウィンドウ(Ѡ) /	<ルプ(<u>H</u>)	Adobe PDF	(<u>B</u>)				
2	7		🗟 すべて貼	わ付け(1) ア	የብታል()) 🗸 🙀							
	2) 🖨 🖪	. 💞 🐰 [🗈 🛍 🝼 🗁 - 🖙 🝓 Σ 🏂 🛃	🛍 🛷	75% -	2.	Tahoma	•	11 - B	ΙĽ
+	\rightarrow	8	2 🔏 🔇	え お気に入り) → 移動(G) → 🛜 C:¥開発調査グループ¥JICA	フィリピン¥2	:008年度¥第	95次現地調査	¥- • •			
4	AF	107	-	=								
	Е	F	G	н	1	J	K	AB	AC	AD	AE	AF
1							TREND	17	18	19	20	
2	E	F	G	н	I	3	TIME	2006	2007	2008	2009	2010
81	81		Workin	a Assum	otions							
82	82		Price Elasti	cities	Transportation Sector	%						
83	83				Gasoline Vehicle Milage	%	GAPELS	0.00	0.00	-0.10	-0.10	-0.
84	84				Diesel Vehicle Milage	%	DIPELS	0.00	0.00	-0.10	-0.10	-0.
85	85				Marine Fuel	%	MFPELS	0.00	0.00	-0.10	-0.10	-0.
86	86				Avitation Fuel	%	AVFPELS	0.00	0.00	-0.10	-0.10	-0.
87	87				Agricultural Sector	%	AGPELS	0.00	0.00	-0.10	-0.10	-0.
88	88				Energy Intensive Industry	%	IIPELS	0.00	0.00	-0.10	-0.10	-0.
89	89				Other Manufacturing	%	IOPELS	0.00	0.00	-0.10	-0.10	-0.
90	90				Commercial Sector	%	COPELS	0.00	0.00	-0.10	-0.10	-0.
91	91				Residential Sector	%	REPELS	0.00	0.00	-0.10	-0.10	-0.
92	92											
93	93		Annual EEC	Promotion	Transportation Sector							
94	94				Gasoline Vehicle Milage	%	EECGAM	0.0%	0.0%	0.5%	0.5%	0.!
95	95				Diesel Vehicle Milage	%	EECDIM	0.0%	0.0%	0.5%	0.5%	0.!
96	96				Marine Fuel	%	EECMF	0.0%	0.0%	0.5%	0.5%	0.!
97	97				Aviation Fuel	%	EECAVE	0.0%	0.0%	0.5%	0.5%	0.!
98	98				Agricultural Sector	%	EECAG	0.0%	0.0%	0.5%	0.5%	0.!
99	99				Energy Intensive Industry	%	EECII	0.0%	0.0%	0.5%	0.5%	0.!
100	100				Other Manufacturing	%	EECIO	0.0%	0.0%	0.5%	0.5%	0.5
1.01	101				Commercial Sector	%	EECCO	0.0%	0.0%	0.5%	0.5%	0.!
1 0 2	102				Residential Sector	%	EECRE	0.0%	0.0%	0.5%	0.5%	0.5
1.03	103											

3. Model running

4. Result of simulation

After running the model, you can see the results of model simulation on "Simulation" sheet. Red figures show the results of model equation. Pink figures show the figures that are estimated by Simple.E using linear trend automatically. Black figures show the figures defined in "Data" sheet.

D	🗃		S 🗟 🖤	¥ 🖻 (🖺 🔨 🗠 + Cl +	🝓 Σ	$f_{\ast} \xrightarrow{A} \begin{bmatrix} z \\ z \end{bmatrix} \xrightarrow{Z}$	l 🛍 🛷 7	5% 🔹 🕻	🤉 🛛 🛛 Ta	homa	▼ 11	BI	Ū ≣ ≣ ₹
÷	\Rightarrow	🛛 😰	🛗 🧿 ස්ව	気に入り 🗸	移動(④ 🗸 💽 🛤	#開発調査	査グループ¥JIC	Aフィリピン¥200	3年度¥第5次	、現地調査¥i、	· •			
	AD	652	•	= 0.00	001									
	Е	F	G	н		1		J	ĸ	AA	AB	AC	AD	AE
1									TREND	16	17	18	19	20
2	E	F	G	Н	I			J	TIME	2005	2006	2007	2008	2009
135	135				Food at real price			1994=10	ORVIFO	156.6	158.0	169.2	181.2	193.9
136					F	Products		1994=10	OVICC	360.3	350.8	388.8	427.9	473.0
137	ľ	oreca	st by m	iodel e	equation			1994=10	ORVICE	290.0	270.3	278.5	286.3	294.8
138					· ·	s		1994=10	OVIPP	183.4	195.3	212.0	229.4	249.3
139			1					1994=10		152.1	150.5	164.7	179.7	197.0
140	140	Quarterly	Economic Indii	Gross Revi	(Food	-		1978=10		12,725	13,628	14,530	15,433	16,335
141	141	QEI			Paper & paper product	S.		1079-11	alcacc	2,082	2,094	2,107	2,120	2,133
1.42	142	QEI			Chemical & chemical pr	oducts		1978=10		5,988	6,308	6,628	6,949	7,269
143	143	QEI			Ferrous			1970=10		19,614	15,040	14 570	17,005	10,407
1 44	144		 	Due dueties	Perrous at real price			1976=10		15,111	15,342	16,572	17,095	19,467
145	145	www.psma	a.com.pn	Production	Raw sugar production			1,000 km	DDCE	12.269	2,254,636	2,415,000	2,577,132	2,750,301
140	140	ADB						1,000 to	PRCE	12,368	12,033	13,099	13,763	14,478
1.40	147				Depen PDDE				_					
1 40	140				Paper; PRPE				_					
149	199	DCV	Du di dia a	Duildin n	No. of Desideshiel built	lalia a								
150	150	PDT DCV	bullaing	building	No. or Residential bui	laing Thuildian			NONDO	11.464	14.000	14.470	14.054	15,000
150	151	P51			No. or Non-residenda	i bullaing	huildina		NONRB	11,464	14,000	14,470	14,004	15,230
152	-1	-		~	-	rrepair	Dalialing		NOTE	102 240	04.201	07.425	100.640	102.072
153	-	Forec	ast by S	Simple	e.Ľ	بالمانيط الم		1.000 m			.,	97,420	100,049	105,075
154	-			- r		ar Dullull	ny vildina	1,000 m	EANIDE	E 224	6.025	6.112	6 100	6 207
155	154	DCV			Electronic of Alterativ	an and/or	uliuling Konsir building	1,000 m	I ANKO	3,234	0,023	0,112	0,199	0,207
157	157	nev			Floor area of Aiteratio	uldina	repair building	1,000 m	EATR	14 224	14 652	15,022	15 202	15 762
158	158	-51				mang		1,000 m	MID	17,237	14,033	15,022	10,092	15,702
150	150		Housebo	d Epor	u Lleo			I						
109	159		Touseno	ia Enero	Jy USC			L915	FUIDOD	10.00	10.01	44.00	44.70	15.11
160	160		mousehold Us	sing Energy	THIS Electricity Users			million	LIPCUPOP	13.62	13.91	14.30	14.70	15.11
161	-1		•			1		million	KERUPOP	9.35	9.87	10.38	10.95	11.53
162	-	Assur	nntions	-				Imilion	INEKHPOP	9,45	9.3	9.29	9.13	0.99
164	-	100001	inputtin	<i>.</i>				million	CHROR	9,49	9.63	9.76	9,62	9,49
165			1		INNE Ogri rociduos Liser			million	DESUDOD	5,91	2.05	0.12	0.23	2 72
166	100				nins Ayri residues User	>			REDITION	3.11	3.05	2.94	2.64	2.73

However, it is very difficult to check the model results from "Simulation" sheet only. So, we added 13 table and graph sheets for analysis.

45	45	PSY	1		Government Expenditure	Million peso	os	57,042	55,826	55,337	58,746	62,34
46	46	PSY			Fixed Capital Formation	Million peso	FCF	172,951	143,047	154,252	166,397	180,79
47	47	PSY			Export of Goods & Services	Million peso	EXP	217,865	231,515	241,431	256,451	307,20
48	48	PSY			Import of Goods & Services	Million peso	IMP	269,148	266,139	289,273	322,548	369,32
49	49	PSY			Statistical Discrepancy	Million peso	os -	10,208	8,485	-4,315	-3,479	-14,75
50	50	PSY			Gross Domestic Expenditure	Million peso	GDE	720,690	716,522	718,941	734,156	766,36
51	51											
52	52	ADB		IIP	Production Index (Manufacturing)	1978=100	IIP	807.7	920.4	951.9	1025.9	1120
53	53											
54	54	ADB	Price	Exchange Ra	Exchange rate (Average of period)	Peso/US\$	EXRA	24.3	27.5	25.5	27.1	26
55	55	ADB		Price index	WPI	1998=100	WPI	58.9	69.0	71.6	71.5	77
56	56	PSY			CPI (fixed for projection)	1994=100	CPI	47.2	55.6	60.0	63.3	68
57	57	ADB			GDP Deflator	1995-100	COPDE	149 5	174.2	188.0	200.8	220
 		Ì <u>∖Dat</u>	<u>a</u> (Model,	Simulation	/FinstDemand & Oil /TPES / Agriculture /EI	Mfg / Gen	Mfg (Coi	n/Res/T	ransFuel/	Electric Po		
図用	ミの調	整(R)	- 🗟 🕲	オートシェイ	ブѠヶ 🔪 🔪 🔿 🎦 🔛 4 🙍 🖄	• 🔏 • A	· - = =		7 .			
												-
								m 11	10	1 01		
								Table	and G	raph SI	neets	

When you open these table and graph sheet, it is easy for you to check the simulation results on each sector. These table and graph sheets are linked to the "Simulation" sheet.

Appendix-5-1

Operation Manual for Supply/Demand Optimization Model

Appendix-5-1 Operation Manual of Optimization Model

1. Import Demand Data into Optimization Model

There are many case studies in Holder of "optimization model (philippines) as following figure. After you open "ref" Holder, you can find "input-data.xls". Then, double-click for open.

Next, click Enable Macro

Microsoft Excel		110 1 10 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u> File E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>T</u> ool	s <u>D</u> ata <u>W</u> indow <u>H</u> elp	
] 🗅 😅 🖬 🔒 🖨 🖪 🖤 %	🖻 💼 🗠 - 🍓 Σ 🍂 🛃 🏙 🛛	» • • B I
▼ =		
		Click
	Microsoft Excel	? 🗙
	C:¥Documents and Settings¥NPC-09¥デスク ッ (philippines)¥ref¥input-data.xls contains matro	7¥optimization model s.
	Macros may contain viruses. It is always tafe to macros are legitimate, you might lose son e fun	o disable macros, but if the ctionality.
	Disable Macros	More Info

Then, open "demand-sec" sheet. This sheet contains energy demand data.

10 16 17	2018 2019 2020	wnoie whole whole	101 104 108	.0948 .1104 .3749	2022 2764 2908	.775 .465 .532	4. 4. 4.	327 327 327	uba 157 202	4410.77 4545.49 4668.74
Ope	en demar	nd-sec		6048 7113 7654	3050 3193 3337	.873 .949 486	4. 4. 4.	327 327 327	224 234 239	4784.34 4891.84 4991.11
$\frac{21}{22}$	2024	whole	127	.7045	3481	.108	4.	327	<u>241</u> 243	5165.80
23	2026	whole	142	.0393	3766	.817	4.	327	243	5241.27
24	2027	whole	151	.2468	3907	.21	4.	327	243	5308.50
25	2028	whole	160	.3307	404	6.51	4.	327	243	5367.67
26	2029	whole	11	39.29	4184	.358	4.	327	244	5418.94
27	2030	whole	178	.1238	432	0.63	λ.	327	244	5462.55
28	\$ontext									
29	Data come	es from f	odel	l at l	ine	No =	38	1-3	62	
30	line no=4 ⊮√unit-freight,	464 comme /Freight /interes	st /excl	nange-rati	e /sales-	price	le ma	nd-sec	base	;-sup-el∕conr
Beady								_		

Next, open Reference Case of Energy Demand Forecasting Model, DFM Ref.xls.

Open "Simulation" sheet and select final energy consumption from Coal to Fuel Oil from 2006 to

Then, click "Edit" on menu bar and select "Copy".

1	licro	soft	Excel ·	- DFM R	ef.xls								
	<u>F</u> ile	<u>E</u> dit	⊻iew	<u>I</u> nsert	F <u>o</u> rmat	Ī	ols	<u>D</u> ata	<u>W</u> ind	low <u>t</u>	<u>H</u> elp		
۵ (¹	2	K)	Can't <u>U</u>	ndo	Ctrl+Z		۵	8	ю.,	<u>()</u>	Σ	f <u>*</u> 🛔	¥1
1	Al	Q.	Can't <u>R</u>	epeat	Ctrl+Y		17	5.07	Se	lect	Con	v	
	E	Ж	Cut		Cultix						P	5	
2	E	É	<u>С</u> ору		Ctrl+C								
. 360	36	2	Paste		Ctrl∓V								
361	36		Paste S	ioecial			L_						
362	36;						þn G	iasolin	e				
363	36:		Paste a	is <u>H</u> yperi	link		he						
364	36					-	þ						
365	36!		Fill			•	el						
366	36		Cle <u>a</u> r			۲	ene						

Next, open "input-data.xls" file again and click "demand-sec" sheet. After that, set cursor on Cell C3, then, select "Paste Special" on "Edit" menu.

🔀 Micra	soft Excel - input	-data.xls	>				
📳 Eile	Edit <u>V</u> iew Insert	: F <u>o</u> rmat <u>T</u>	jools [<u>D</u> ata Window <u>H</u> elp)		
] 🗅 🚅	∽ Can't Undo び Can't <u>R</u> epeat	Ctrl+Z Ctrl+Y	🗎 🕻	🛓 🗠 - 🔥 Σ .0765026	<u>, f≈ A</u> ,f≈ 2+	40	1. Open input-data.xls
	X Cu <u>t</u>	Ctrl+X		С	D		
1	Copy	Ctrl+C		K TOE	KTUE -	-1	4. Select Paste Special
2	🔁 Paste	Ctrl+V		Ceal	gas		
3	Paste Special.			1175 077	52 564	434	
4	Paste as <u>H</u> ype	erlink		1238.048	77.36,	746	3. Set cursor on C3
5	F <u>i</u> ll	+		1269.64	78.395	506	
6	Cle <u>a</u> r	,		1322.576	80.04		
ange-ra	ate (sales-pri	ce de ma	and-s	ec Abase-sup-		2.	Open demand-sec sheet

Check "Values" and "Transpose". Then, click "OK". Fossil energy data is copied into "input-data.xls".

	А	В	С	[)	E		
1	* demand	KTOE	KTOE	KTOE		KTOE	ł	
2	×	×	Coal	gas		LPG	1	
3	2006	whole	1175.077	52.5	6434	1007.86	62 🕻	
4	Paste Spe	ecial			6746	1073 76	64	
5	Pacte				9506	1319.24	48	1. Check Values
6	O All		Comments		4991	1431.2	15	
7	O Form	ulas	C Validatio <u>n</u>		8143	1556.24	41.	
8	C Value	95	C All except border	's	1687	1682.73	35 4	
9	C Form	ats	C Column <u>wi</u> dths		1188	1811.3	10	
10	Operation		C		Z73	1940.5	2	Check Transpose
11	• None	1	C <u>M</u> ultiply		1934	2072.1		Sheen Hanspose
12	C Subtr	act	< Divide		3409	2208.20)3 i	
13					8538	2344.40	<u> 33 -</u>	
14	🗖 Skip t	olanks 🤇	Transpose		7498	248		
15	Destation				6948	262 3.	Clio	ck OK
16	Paste Li			ncei	1104	276		
17	2020	whata	2001 182	100	27/0	2000 80	20	

Next, you should import electricity data and non-commercial energy data from "Energy Demand Forecasting Model" same as fossil energy before as follows.

-											
<u> </u>	licrosoft Exce	- DFM Ref.xls									
	<u>File E</u> dit <u>V</u> iew	Insert Format	t <u>T</u> ools <u>D</u> ata <u>W</u> indow <u>H</u> eip			•			C 1		
			V 🗈 📾 🖉 - 🎑 🥆 🖌	1 40-	D » Tab		L. Open	DFM R	ef.xis ag	gain	
			₀ == u=s => * (\$\$\$ ∠)* Z	* 🛄		2000					
AB389 🔄 = 3927.8068845											
	E F					J	K	AB	AC	AD	
1		0 0 1 /				_	TREND	17	18	1	
2	E F	3. Select	t AB389-AZ389]	TIME	2006	2007	2008	
80	380 EPPB					KTOE	FEGA	2,733	2,789	3,164	
81	381 EPPB 🛏		Extrans.			KTOE	FLET	1	2	C	
82	382 EPPB		Jet fuel			KTOE	FEJ	1,003	1,125	1,132	
83	383 EPPB		Kerosene			KTOE	FEKE	222	200	193	
84	384 EPPB		Diesel			KTOE	FEDI	5,082	5,376	5,913	
85	385		Bio-diesel			KTOE	FEBD	0	0	51	
86	386 EPPB		Fuel Oil			KTOE	FEFO	1,606	2,453	2,475	
87	387	Pe	Petroleum Products Total including Bio-fu	iel		KTOE	FEPP	11,658	13,022	14,252	
88	388	F	Fossil Fuel Total			KTOE	FEFE	12,886	14,337	15,600	
89	389 EPPB	E	lectricity			KTOE	FEEL	3,928	4,129	4,281	
90	390 EPPB	Grand Total				KTOE	FETO	16,814	18,466	19,880	
91	391		Fossil Fuel Ratio			%					
92	392	Power Sec	ctor Balance								
393	393	Power Plant		-		d.	1				
894	394	Power Supply	Power Demand		2. Open	Sim	ulation	,907	4,129	4,281	
95	395		Transmission/Delivery Loss					592	630	649	
96	396		T/D Loss Ratio					3.2%	13.1%	13.0%	
397	397		Power Demand Ex-Power Sta	tion		KTOE	PWEXPS	4,499	4,809	4,982	
398	398		Chini asc		_	KTOE	PWOU	364	388	401	
		Data / Mod	del <u>(Simulation</u>) (Sum m	ary 🖉	(

Ready

1	<u>N</u>	1icro	soft	Excel -	- DFM R	ef.xls									
		<u>F</u> ile	Edit	<u>V</u> iew	Insert	F <u>o</u> rmat	Ŀ	ools	<u>D</u> ata	W	indow	<u>H</u> elp			
		2	⊾)	Can't <u>U</u>	indo	Ctrl+Z				0	So	loot	Con		
1	2	Al	Q	Can't <u>R</u>	epeat	Ctrl+Y	/	17	5.076	65	be	iect	Cob	У	
	1	E	Ж	Cu <u>t</u>		Ctrl X		F					1		
	2	E <	68	⊆ору		Ctrl+C		\triangleright	Ι						
-	360	36	C.	Paste		Ctrl+V									
	361	36		– Paste 9	inecial			L.,							
1	362	36;			peciai			þn G	iasoline	•					
	363	36:		Paste a	as <u>H</u> yper	link		he							
	364	36	_				-	þI							
ł	365	36!		Fill			۲	el							
	366	36		Clear			•	ene							
1	267	0.00													

🔀 Micros	oft Exc 🕂 - input-	data.xls					
🖹 📔 Eile 🛛	<u>E</u> dit <u>V</u> iew <u>I</u> nsert	F <u>o</u> rmat]	<u>T</u> ools [<u>D</u> ata <u>W</u> indow <u>H</u> e	lp		
] 🗅 🚅 '	い Can't Undo Ú Can't <u>R</u> epeat	Ctrl+Z Ctrl+Y	🗎 🕻 1927	🖹 🗠 🗸 🧶 1 1.8068845	∑ £~ ≜ [[1. Open input	data.xls
	∦ Cut_ ℃	Ctrl+X		М	N		
2	留 <u>C</u> opy 品 Paste	Ctrl+C Ctrl+V		KIU⊫ Fuel oil	KTUE	K 4. Select	Paste Special
3	Paste <u>S</u> pecial Paste as <u>H</u> yper	link		1606.21	3927.80	75652.333	
5	Fill	,		2475.455	4128.77	1 5900 3. Se	et cursor on N3
6	Delete	,		2366.015	4527.92 14916 41	5 5900 / -	
8	De <u>l</u> ete Sheet Move or Copy S	iheet		2488.03	5092.83	2. Open de	mand-sec sheet
rate (sa	les-price	le mand	-sec	base-sup-	е		

	A	В	М	N	(
1	* demand	KTOE	KTOE	KTOE	KTOE			
2	×	×	Fuel_oil	el	RE			
3	2006	whole	1606.213	3927.807	5652			
4	Paste 9	inecial		2 2 2 77	5560	_	1 Ob b W- b-	
5	i date	pecial		61	5900		1. Check valu	es
6	Paste -		C Comments	925	5900			
7		wmu -s	C Validation	16	5900			
8	. 💽 <u>V</u> a	lues	C All e <u>x</u> cept bo	rders 332	5890			
9) C Fo	rma <u>t</u> s	C Column <u>wi</u> dth	is 17	5879	- 1	2 Chook Trong	noso
10	Operati	ion		152	5865		2. Oneck Trans	pose
11		one	C Multiply	112	5851			
12		<u>i</u> d Ibtract		23	5840			
13		ber det		984	5833			
14	. 🗆 sk	ip blanks	▼ [Transpose]	373	5825			
15				1284	5816	3.	Click OK	
16	Past	e Link	ОК	Cancel 355	5806			
17	2020	whole	13156.802	7759.944	5794			

M	1icros	oft Exc 🖣	- DFM Ref.x)								
	File [<u>E</u> dit <u>V</u> iew	Insert Format Tools	Data Window Help							
			∰ <u>(</u> , ♥ % 🖻	🖺 ⊨⊃ + 🍓 Σ f≈ ᢓ↓ 🛍 🕄 💥	1. Ope	n DFN	A Ref.xls	again	3		
AE488 = 5052.33296100497											
	E	F	G H	I	J	K	AB	AC	AD		
	_	-		1-		TREND	17	18	19		
12	L 470	F	ь н	1	J	TIME	2006	2007	2008		
473	473		Desidestial	Dian hull	VTOF	DEDLI					
474	4/4	EDDD			KTOE	REKH	E41.6	E46.0	520.0		
476	476	FDDR	3 Soloot AF	2/88.12/88	KTOE	DEEW	3227.0	3100.4	3060.8		
477	477	FPPB	J. Delett Al	D 400·A L 400	KTOE	REBA	0.0	0.0	0.0		
478	478	EPPB			KTOE	AECR	326.8	308.3	304.4		
479	479	EPPB		Animal waste	KTOE	REAW	0.0	0.0	0.0		
480	480			Non-commercial Total	KTOE	REB	4095.4	3954.7	3904.2		
481	481										
482	482	EPPB	Total NonOcommercila Er	Rice hull	KTOE	FERH	48.1	48.4	51.0		
483	483	EPPB		Charcoal	KTOF	FECH	684.0	690.7	681.9		
484	484	EPPB		Fuel woo		FEFW	3526.9	3404.1	3377.7		
485	485	EPPB		Bagasse 2. Open Simulation	n 📘	FEBA	739.7	769.3	1132.4		
486	486	EPPB		Agricultu		FECR	638.1	632.1	651.3		
487	487	EPPB		Animal w		FEAW	15.6	16.2	5.8		
488	488			Non-commercial Total	KTOE	BFETO	5652.3	5560.7	5900.1		
489	489										
490	490		Total Primary En	ergy supply including Fuel for Powe	r						
491	491		Coal		KTOE	TESCO	4889.4	5210.0	5642.0		
492	492		Natural Ga	is Line	KTOE	TESNG	2362.9	2820.7	2901.9		
493	493			LPG Aviation excelled	KTOE	TESAC	1007.9	10/3.8	1319.2		
494	494			Aviauon yasoline	KIUE	TESAG	3.3	3.8	4.1		
_D	ata,	(Mode	Simulation	Summary							

M	licro	soft	Excel	- DFM R	tef.xls					
	<u>F</u> ile	<u>E</u> dit	⊻iew	Insert	F <u>o</u> rmat	Ξc	ols	<u>D</u> ata	<u>W</u> indow	Help
0	2	K)	Can't U	indo	Ctrl+Z				Solo	et Conv
	Al	0	Can't <u>R</u>	epeat	Ctrl+Y		17	5.076	Defet	л сору
	Е	Ж	Cu <u>t</u>		Ctri+X					
2	<u>e (</u>	Ĥ	<u>С</u> ору		Ctrl+C			I		
360	361	e	<u>P</u> aste		Ctrl+V					
361	36		Pacte 9	inecial						
362	36;		1 0300 -	poeidini			þn G	asoline	,	
363	36:		Paste a	as <u>H</u> yper	link		he			
364	36	-				-	þI			
365	36!		Fill			•	el			
366	36		Clear			۲	ene			

🔀 Mic	rosoft Excel - input-	data.xls						
🖳 🖳 Ei	e <u>E</u> dit <u>V</u> iew <u>I</u> nsert	Format 10	ls <u>D</u> ata <u>W</u> in	dow <u>H</u> elp)			
	子 🏳 Can't Undo	Ctrl+Z	a 🛍 🕟	🤮 Σ	f∗ <mark>‡</mark> ↓	hu 🕐 🔋		
_	🗸 🖸 Can't <u>R</u> epeat	Ctrl+Y	652.332981	60497			1 Oper	innut-data vls
	A Cut	Ctrl+X	N		Π		1. Oper	i input uata.xis
1		Ctrl+C		1				
$\frac{1}{2}$	Paste	CIMILEY			DE		4. Sele	ct Paste Special
2	Paste Special		12007	007	5650 C	222	1. 2010	or i aste special
3	Paste as <u>Hyp</u> er	ink	3927	.801	000Z.3	333		
4			4128	.///	5550.7	735	_	
5	- Clear		428	U.61	5900.1		3. Set (cursor on O3
6	Delete	ŕ	4527	.925	5900.1	/ 4 📃		
7	Delete Sheet		4816	.416	5900.6	538		
8	<u>M</u> ove or Copy S	iheet	5092	.832	5890.6	369	Onon do	mand-goe shoot
-0			15070	- 11	F070 /	10 A L 2	. Open del	nanu sec sneet
rate j	(sales-price)	demano	<u>i-sec (ba</u>	ase-su	ір-е			
	Δ	В	N	0				
1	* demand KTC)E K	TOE	KTOE				
2	X X	e	;	RE				
3	2006 who	ole (3	3927.807	5652.	.333			
4	2007 who	ple 4	128.777	5560.	735			
<u>b</u>	Paste Specia		INON RI	2 X	119			
5	Paste				14	1. (Check Valu	es
	O All		C <u>C</u> omments		138			
	<u> </u>		C Validatio <u>n</u>		104			
10	C Formats		C Column width	rders s	753			
11	Operation				194	- 2 C	hock Tran	enoeo
12	• None		C <u>M</u> ultiply		22	2.0	HECK HAII	spose
13	C Add		C D <u>i</u> vide		\$13			
14	UDtract				972			
15	Skip blan	G 🕻			907			
16		1		-	17	3. Clic	k OK	
17	Paste Link	J 🕻	ок	Cancel	1 587			
18	2021.1whc	nte TR	3U78.64T	5789.	7058			

Now, you have imported energy demand data of Reference Case from "Energy Demand Forecasting Model" into "Optimization Model". The above procedure is the same in cases of BAU, High Growth, Low Growth, EEC, S-EEC, Vehicle-plus, E20, and E85. However, in cases of High Price, Low Price, and S-High Price, you need to import price data from "Energy Demand Forecasting Model" into "sale-price" sheet in "Optimization Model" in addition to energy demand.

Moreover, in case of nuclear-LNGfree, nuclear-LNGfix, RE2, and RefCap2, you have to change assumption of "base-sup-el", "capacity", and "merge-cons-max" sheets. Specialized experience is needed for this assumption setting.

After you finish importing necessary data into "input-data.xls", click "Save File". Then, close "input-data.xls" as follows.

2. Run Optimization Model (GAMS)

After setting input-data, you can run "Optimization Model" as follows. Double-click IDE icon The to open GAMS.

Two patterns will appear according to model condition as follows. Final destination of both patterns is the same to specify the holder. In this case, specified holder is "ref".

After previous operation, you can find the below screen.

When you click **b**, "Optimization Model" is running.

Eile	e <u>E</u> dit <u>S</u> earch <u>W</u> indows	s Utilities Help				
Ø	3 🖪 🍇 💊 🗞		• (a) 🗸		1	· 668
	C:¥Documents and Se	ttings¥NPC-09¥デスクト	ップ¥optimization i	node (philippina		-
F	pep2008.gms					
	\$inlinecom /* */ \$Eolcom ! \$phantom null				Clie	ck
91	/*					
90 J	Philippines E (2006 Energy Alloca by IEEJ (by DOE in	nergy Master Plan -2030) tion optimization T. Asakura) Vietnam (Mr. Michae	si)			
8	<pre>file out_test /out_ put out_test; out_test.pw = 255; out_test.nw = 0 ; out_test.lw = 0 ; scalar a, total;</pre>	test.csv/;				
₹-	\$include set_defini \$include data_read.	tion.inc inc			-	•
	1.1	Insert	1			

The below figure is the result after Model run.

- (67				IDE
		gamsi	ide: C:¥oj	ptimization model (phlippines)¥ref¥Name.gpr	
as	<u>F</u> ile	<u>E</u> dit	<u>S</u> earch	Windows Utilities Help	
	2				I 😹
4	pe	p2008			_
290 		- P	utfile	out flow C:\OPTIMIZATION MODEL (PHLIPPINES)\REF\OU	T FLOW.CS
	II	- Pi	utfile	out electricity C:\OPTIMIZATION MODEL (PHLIPPINES)	\REF\OUT
	II	- P	utfile	out cost summary C:\OPTIMIZATION MODEL (PHLIPPINES) \ REF \ OUT
	II	- P	utfile	out_pair_pc C:\OPTIMIZATION MODEL (PHLIPPINES)\REF	OUT_PAIN
	II	- P	utfile	out_refinery C:\OPTIMIZATION MODEL (PHLIPPINES)\RE	F\OUT_REF
290 37	II	- P	utfile	out_ref_rate C:\OPTIMIZATION MODEL (PHLIPPINES)\RE	F\OUT_REF
1	II	- Pi	utfile	out_check_Xcon C:\OPTIMIZATION MODEL (PHLIPPINES)\)	REF\OUT_(
	II	Pi	utfile	out_check_Xprd C:\OPTIMIZATION MODEL (PHLIPPINES)\)	REF\OUT_(
	II	Pi	utfile	out_unitcost C:\OPTIMIZATION MODEL (PHLIPPINES)\RE	F\OUT_UN:
000	II	Pi	utfile	out_import C:\OPTIMIZATION MODEL (PHLIPPINES)\REF\	OUT_IMPON
	II	Pi	utfile	out_export C:\OPTIMIZATION MODEL (PHLIPPINES)\REF\	OUT_EXPOI
	II	Pi	utfile	out_summary C:\OPTIMIZATION MODEL (PHLIPPINES)\REF	\OUT_SUMI
	II	Pi	utfile	out_unit_conv C:\OPTIMIZATION MODEL (PHLIPPINES)\R	EF\OUT_UT
	II	- PI	utfile	out_dummy C:\OPTIMIZATION MODEL (PHLIPPINES)\REF\O	UT_DUMMY.
0id	11	P1	utfile	out_EXCEL_flow C:\OPTIMIZATION MODEL (PHLIPPINES)\.	REF\OUT_I
CIC)	11	Pi	utrile	out_demand C:\OPTIMIZATION MODEL (PHLIPPINES)\REF\	OUT_DEMAR
	11	- Pi	utrile	OUT_CO2_SO2_C: (OPTIMIZATION MODEL (PHLIPPINES) (REF	VDEEVOU
		P1	utfile	out shock cost C:\OPTIMIZATION MODEL (PHLIPPINES)	DEELOUT (
		- P	utfile	out CO2 detail C:\OPTIMIZATION MODEL (PHLIPPINES)\.	REF (OUT
			actile.	- Suc_CO2_decall C. (OFTIMIZATION MODEL (FHEIFFINES)).	ALL DEEL OF
	┛				•
			1: 1	Insert	
	-	1	hur E		NUL .

After running model, Optimization Model (GAMS) created many CSV files, "OUT_******.CSV" as follows. Of which, "OUT_WS.CSV" file is used by "Outlook Summary Model" described in "Attachment-6".

😂 ref				
ファイル(E) 編集(E) 表示(V) お気	に入り(A) ツール(I) ヘルプ(H)			
😋 戻る 🔹 🕥 🖌 🏂 🔎 検	🕈 🝺 フォルダ 📴 🏂 🗙	19 🛄 -		
アドレス(D) 🗀 C:¥optimization model ()	phlippines)¥ref			
フォルダ ×	名前	サイズ	種類	軍新日時
 Documents and Settings DRIVERS I386 IBMSHARE IBMTOOLS icons OfficeScan NT OfficeScan NT Optimization model (phlippine BAU E20 E85 EEC HighGrowth HighPrice LowGrowth 	OUT_ELECTRICITY.CSV OUT_EP_CAPACITY.CSV OUT_EXPORT.CSV OUT_EXPORT.CSV OUT_FLOW.CSV OUT_FLOW.CSV OUT_LOAD.CSV OUT_LOAD_ref.CSV OUT_LOAD_ref.CSV OUT_MERGE_PRD_MAX.CSV OUT_MERGE_PRD_MAX.CSV OUT_PAIR_PC.CSV OUT_REFINERY.CSV OUT_REFINERY.CSV OUT_REFINERY.CSV OUT_REF-RATE.CSV OUT_STOCK_PILING2.CSV OUT_STOCK_PILING2.CSV	27 KB 3 KB 373 KB 3 KB 142 KB 12 KB 2 KB 2 KB 2 KB 2 34 KB 3 KB 2 KB 7 KB	Microsoft Excel Com Microsoft Excel Com	Image: Preated Image: Ima
DowPrice		103 KB 104 KB	Microsoft Excel Com	2008/10/28 12:19
Duclear-LNGfree		1 KB 131 KB 70 KB 23 KB	Microsoft Excel Com Microsoft Excel Com Microsoft Excel Com Microsoft Excel Com	2008/10/28 12:19 2008/10/28 12:19 2008/10/28 12:19 2008/10/28 12:19
RerCap2 S-EEC S-HighPrice Vebicle-plus	OUT_WS_ref.CSV Nown-use.csv	23 KB 23 KB 1 KB 1 KB	Microsoft Excel Com Microsoft Excel Com Microsoft Excel Com	2008/10/26 18:16 2008/06/10 21:12 2008/06/01 11:56
	Sp-factor.csv	1 KB	Microsoft Excel Com	2008/07/14 13:48

OUT_SUMMARY_KTOE.

ine

3. Out_Summary Sheet for Energy Balance

CSV file only is not enough to check the results of the model. So, "out_summary_kton_***.xls" is prepared. This file is very useful to check energy balance.

🔛 Mi	crosoft Excel	- out_summ	ary_kton_re	í.xls						
E E	ile <u>E</u> dit <u>V</u> iew	Insert Form	nat <u>T</u> ools <u>D</u> at	a <u>W</u> indow <u>H</u>	elp					
D	ž 🔲 🔒	a 🕽 🖉	አ 🖻 🛍	ю т 🍓	$\Sigma f_{x} \stackrel{A}{\geq} \downarrow$	🛍 🛛 🙄	MS Pゴシック	v 11	• B I	∐ ≣≣≩
	A111	•	=							
	A	В	С	D	AB	AC	AD	AE	AF	AG
1	year	energy	term	unit	2029	2030				
2	2006	crude	production	kton	35	35				
. 3	2006	crude	import	kton	13902.44	13901.49				
4	2006	crude	export	kton	0	0			Joom Even	
5	2006	crude	to stock pi	kton	12.53	11.58			viauru Exeu	
6	2006	crude	consumpir	kton	13924.92	13924.92				
7	2006	coal	production	kton	8300.46	8682.83				
8	2006	pool .	immet	kton	17926.49	19229.22				
9	2006				Þ	0				
10	2006	Clic	k Macr	o Exec	ute	23137.66				
11	2006					0				
12	2006	coar	uemanu	ROT	4000.0	4774.39				
1.0			1 1 11	o	1					

Microsoft Excel - OUT_COAL.CSV													
۹ 🚇	🖲 Elle Edit View Insert Format Iools Data Window Help												
D	🖻 🖪 🔒	a 🐧 🎷	X B B	ю - 🙆	Σ f _* ≜↓	🏨 🕐 🐥	MSPゴシック	- 11	• B I	u 🖻 🚍			
▼ = year													
	A	в	C	D	E	F	G	н	I I	J	к		
1	year	production	export	import	total	cons.in.EP(kton)						
2						domestic c	oal		import coal				
3		kton	kton	kton	kton	current	new	total	current	new	total gr		
4	2006	2355.67	C	6517.12	8872.79	241.08	0	241.08	5464.46	0	5464.46		
5	2007	3736	C	8131.65	11867.65	1724.38	0	1724.38	7943.86			-	
6	2008	3736	C	7633.91	11369.91	1537.4	0	1597.4	7562.96	011	1 77		
7	2009	3736	Micros	oft Evcel			-			Clic	k Yes		
8	2010	4019.25	The ob	JIC LINCEI									
9	2011	4124.87		There is a	large amount o	f information or	n the Clipboard	. Do you want l	to be able to pa:	ste this informa	tion into 🤟	-	
10	2012	4515.44	G	another pr	ogram later?						9 1		
11	2013	4615.07		 To save i 	t on the Clipbo	ard so that you	on paste it la	ter, click Yes.			2 1		
12	2014	4714.68		 To delete 	it from the Clip	ober dandfre	memory, click	No.			2 1		
13	2015	4818.83			• • • •	Yes	No	Cancel	1		9 1		
14	2016	5209.96							<u></u>		1 1		
15	2017	5317.64	C	10146.83	15464.47	1400.5	565.9	2062.4	7362.67	2784.16	10146.83 1		
16	2018	5708.27	C	11507.02	1 721 5.29	1 492.03	846.84	2338.86	7340.65	4166.37	11507.02 1		
17	2019	5957.25	C	12167.96	18125.2	1487.56	985.64	2473.2	7318.69	4849.27	12167.96 1		
18	2020	6158.25	C	12580.68	18738.92	1 433.31	1123.78	2557.09	7051.77	5528.9	12580.68 1		

M																
aphic osof cace - out_summary_con_relations																
ten Fair New Tuser, Lõuvar Toois Nara Muuaon Helb																
	🎽 🔛 🍝	a 🗸 💞 🛛	አ 🖻 🖪	MS Pゴシック	1 - 11 -											
		•	=						ck Ye	as 🛛						
	Α	В	С	D	E	F	G	н								
1	vear	energy	term	unit	2006	2007	2008	2009	2010	20101 2011 2013						
95	2006	el	EP_FO	GWh	3741.66	0	0	0	0	1138.8	C)				
96	2006	el	EP_nuclear	GWh	0	0	0	0	0	0	C)				
97	2006	el	EP hvdm	GWh	9939.41	8563.95	9 72 37	9980 79	1.0689.21	11397.62	12106.04	, T				
98	2006	el	E Microsoft	Excel							×	Æ				
99	2006	el	E									Γ.				
100	2006	el	ir 🚺	ir A file named 'C:¥optimization model (phippine /¥ref¥out_summary_kton_ref.xls' already exists in this location. Do you want to replace it?												
1.01	2006	el	e 🗸													
1.02	2006	el	0		- C	Yes	No	Cancel	1			:				
1.03	2006	el	ti						1			i				
104	2006	el	demand	GWh	45672.17	48009.04	49774.53	52650.29	56004.84	59218.98	62465.32	2				
105	2006	el	surplus	GWh	841.92	0	0	0	0	0	C)				
106	2006	bio ethanol	product	1000kl	2.53	3.54	0	304.56	323.47	681.2	715.1	T				
107	2006	bio diesel	product	1000kl	0	0	63.86	135	142.81	149.68	156.3	1				
108	2006	C O2		Mton	58.41	71.02	74.91	76.48	79.64	83.7	88)				
1 0 9	2006	SO2		kton	738.83	1056.54	1046.44	1044.11	1054.03	1080.53	1126.09	,				
110	2006	2006 vear total cost(10^6 peso)			396816.4	374210.4	631282.4	666043.9	714147.6	779591	803708.2					
111			, in the second s									T				
112		total cost(r	nillion peso)	10833325											

4	2144.946	2.53	1474.149	-54.4595	-3217.44	1000	1 _{000k} production import 100 demand		🗖 bioethanol									
5	3199.297	3.54	83.01351	0	-3285.84	10000				Gasoli								
6	3200.824	0	522.2027	0	-3723.01				export									
- 7 -	3200.824	304.56	524.3784	0	-4029.76	100												
8	3200.824	323.47	755.0405	0	-4279.32													
9	3200.824	681.2	740.1081	0	-4622.13		00											
10	3200.824	715.1	935.5	0	-4851.42	60	100						▋▋		_			
11	3197.378	747.58	1126.149	0	-5071.12		~~											
12	3200.824	779.16	1304.581	0	-5284.57	40)00		▋▋▋₿₿₿₿	╉╋╋	╉┦				-			
13	3200.824	81 0.61	1485.73	0	-5497.16						ПП							
14	3200.824	841.29	1662.351	0	-5704.47	20	ן טטנ	ΠΗΗΗ		1	181							
15	3200.824	870.74	1831.838	0	-5903.39		0							1	4			
16	3200.824	898.79	1993.189	0	-6092.8													
17	3197.378	925.29	2149.054	0	-6271.74	-20	000	┥┝┥┝┥┝	┥┝┥┝┥┝┥┝┥┝┥┝	┨┝┥┝┥┝╴	┨┝┨╿		┨┝╼┨┝	┥	-			
18	3200.824	950.49	2290.446	0	-6441.76													
19	3200.824	974.14	2426.284	0	-6601.25	-40)00		╹┛┨╹┨╎╎╎╎	┪┝┥┝┥┝╴	<u>1</u> HI				-			
20	3200.824	996.14	2552.622	0	-6749.57	60	l											
21	3200.824	1016.47	2669.27	0	-6886.56	-00	1 00			_	00	П						
22	3200.824	1035.1	2776.081	0	-7011.99	-80	100 H								_			
23	3200.824	1052.28	2874.541	0	-7127.64		/~~											
24	3200.824	1067.78	2963.23	0	-7231.82	-100)00 ^l	_							_			
25	3200.824	1081.6	3042.23	0	-7324.64					~ 00 -	ററ) (Ne	54	۰LC			
26	3200.824	1093.78	3111.757	0	-7406.35	You ca	n che	eck ener	rgy halance	55	22	123	28	12	12			
27	3200.824	1104.35	3172.014	0	-7477.17	104 04			igj salaliee	ый	22	121	22	ίď	ъ			
28	3200.824	1113.37	3223.257		-7537.44	by ener	rgv se	ources							_			
29						~ 5 0110												
30										_								
31															_			
32																		
33																		
	▶ ▶I/diesel-f	fuel-oil ∕ker	osene-jet 🤆	asoline-bal	LPG / gas / co	oal ∕crude oiD	out_sum	mary (out_c	o. 🚺									
Ready	,										_	_						

Appendix-5-2

Guidance for Supply/Demand Optimization Model

Appendix-5-2 Guidance for Supply/Demand Optimization Model

1 Summary of Supply and Demand Optimization Model

1.1 Objective

The objective of the energy demand and supply optimization model (hereinafter called as "optimization model") is to calculate a logically correct and consistent supply and demand balance of various energies. Demand is forecasted by the demand forecasting model and given to this model as input data. This optimization model decides the amount of each energy supply with minimum total cost under the condition that the given demand should be satisfied. Linear Programming theory is used as the optimization method.

Furthermore, this optimization model can be used as a tool to examine how the energy balance would change under various conditions. In order to facilitate easy comparison study, the program is designed to produce summary sheets of the calculation results.

1.2 Objectives of Optimization Model

1.2.1 Objective Energies

Since the objective of developing the optimization model is to provide basis for formulating the Energy Plan of Philippines, any energy to be used in the country in principle becomes the objective of this optimization model. Thus, 38 types of energy are incorporated in this model, which are as follows.

- Crude oil : Domestic crude oil 1, Import crude oil for distillate and for oil stockpiling
- Coal: Domestic, Import (import coal)
- Gas: domestic (raw gas) and import (PNG, LNG)
- Petroleum products : LPG, LPG substitute, gasoline, kerosene, jet fuel, gas oil, heavy oil
- By product at refinery : off gas, whole range naphtha, light naphtha, heavy naphtha, condensate ,raw kerosene, fine kerosene, raw gas oil, fine gas oil, atmosphere residue from topper, vacuum gas oil, vacuum residue, light cycle oil

- Electricity

- Biofuel (bio-ethanol, bio diesel)

1.2.2 Objective Facilities (Energy Transforming Facilities)

Three kinds of energy transforming facilities are incorporated in the model; they are oil refinery, power plant, and gas processing plant.

- Oil refinery

An oil refinery composes of topper (atmospheric pressure distillation unit), vacuum distillation unit, reformer, cracking unit, hydro-desulphurization unit, and others. They make up an oil refinery as a package. This model contains the Petron refinery and shell refinery, plus hypothetical general oil refineries.

- Power Plants

Power plants are classified into eight kinds based on the energy source as follows.

Hydro, domestic coal, import coal, gas, fuel oil, diesel, nuclear, and renewable energies

- Gas Processing Plant

At the gas processing plant, raw natural gas sent from offshore is processed. At first, condensate (C5+) is extracted and then the rest of the gas will be natural gas (C1, C2).

1.2.3 Objective Period

The objective period is 25 years from 2006 through 2030 to be covered by the Philippine Energy Plan.

1.2.4 Decision Items

These items are called as variables in the optimization model. The optimization model shall decide the value of these variables in order that the objective function gives the optimum value. These variables are typically production, consumption, import, export and cost of each energy items. The energy consumption quantities calculated by the model indicate the quantities fed to each transformation plant plus those straightly directed to the final consumption.

1.2.5 Objective Function

In the standard case such as the Reference Case, the objective function is defined as the net present value at 2006 of the total cost incurred during the projection period. This objective function can be defined applying other criterion subject to the purpose of analysis.

1.3 Energy Flow

Energy flow is the basic information in compiling an optimization model and is supposed to explain the current and future energy flow of Philippines. Of course, consideration is made on simplification and easiness to understand. Primary energy is produced from mines or oil/gas fields and transformed to secondary energies before delivered to the users via several routes and finally consumed. The energy flow chart illustrates such flow of energy. As it is difficult to show all of them in one figure, they are shown in several figures stage by stage hierarchically in Figure $1 \sim$ Figure 3.

1.3.1 Total Model Flow

Figure 1 shows the total flow incorporated in this optimization model. This figure shows that demand data is given as input from the result separately forecasted by the demand forecasting model.

Figure 1 Energy Demand and Supply Optimization Model Total Flow

1.3.2 Model Flow by Energy Sector

The refinery part is composed of three plants. Figure 2 shows the hypothetical flow of No.1 through No.3 refineries incorporated in the model assuming processing of import crude oils.

Figure 2 Refinery Plan

Figure 3 is the flow chart including flows of coal, natural gas and power plants. As shown here, produced domestic coal will be directly use for power plant or general users. The raw natural gas is separated at gas processing plant into condensate and natural gas. Among them, the flow chart shows that natural gas will be consumed at power plants and end users.

It is of course possible that, subject to future study, items and types of input/output energies and composition of transforming plants would be changed and the energy flow chart should be modified. Then, the supply optimization model should also be revised to these adjustments, accordingly.

1.3.3 Special Treatment

In this model, special treatments for simplification purpose are made in expression of flows of several energies as follows.

- As there is no firm plan to utilize propylene produced from RFCC, they are delivered in the model to gasoline and diesel gas oil by 50/50 percents.
- 2) Whole quantity of BTX produced in the refining process is converted into gasoline.
- 3) Whole quantity of condensate produced at the gas processing plant is merged to light naphtha.

Figure 3 Coal, Gas, Electricity Energy Flow

1.4 Modeling Tool

The basic theory of modeling is LP (linear Programming). In this LP model, all constraints and one objective function should be represented in the form of linear equation. The solution in which an objective function is maximum or minimum under conditions of satisfying all constraints is called as the optimum solution. In case of linear analysis, the solution is mathematically guaranteed as optimal. In case of non-linear analysis, however, there is no mathematical assurance of optimum.

GAMS is used as a modeling tool. GAMS stands for General Algebraic Modeling System and is a product of GAMS Company. A commercial contract is required to use the GAMS official version, while the company distributes a student version GAMS as a free software. Though we can handle a huge model with the official version, there is a limitation on size for the student version, which is maximum 300 variables and 300 constraints. This model is designed that, if we operate it only for one year, we can handle it by the student version for demonstration.

Figure 4 Tool for Model Building

This aims to make the technical transfer easier and familiarization of the Counterpart faster.

Input file is written in EXCEL. One sheet contains one data item. These sheets are housed in one book and there are 36 sheets. As GAMS cannot directly handle a book form of EXCEL, we need to convert them from an EXCEL sheet to a CSV (Comma Separated Value) file one by one. To make this easier, a macro program is added in this input EXCEL book with a function to automatically convert one sheet to one CSV file by one click.

Regarding the output file, over 10 output tables are generated in the CSV file form so that it is easy to read the output tables by EXCEL. The configuration of these tools is shown in Figure 4.

1.5 System Block Flow

Figure 5 shows the system block flow from receiving the demand forecast results to obtaining the final solutions. Extraction from the forecasting model can be done by cut & paste into the input_data.xls. The data from the forecasting model are as follows;

- 1) Demand by energy, by year
- 2) Sales price
- 3) Generation by power plant using RE such as hydro, geothermal, nuclear and RE.
- 4) Biofuel quantity
- 5) Non commercial energy(RE)

Other data are those peculiar to optimization model and should be input through key in.

Figure 5 System Flow
1.6 Input Data

There are 43 kinds of data, which is shown in Table 1. The left column 'file name' is the name of input file to GAMS model with extension name 'csv'. The data of No31, 32, and 33 come from forecasting model file by cut & paste.

NO	file name	content	input method
1	dummy-control.csv	Control whether balance includes dummy variable.	key in
2	el-data-control.csv	Control whether PDPAT data is used or not	key in
3	cost-unit.csv	Define the unit of cost in output	key in
4	unit-data	Define the constant of unit conversion	key in
5	SG. csv	specific gravity	key in
6	mining-max.csv	max of production of fossil domestic energy	key in
7	EP-capacity.csv	power plant development plan (data is increment)	key in
8	capacity.csv	capacity of facility exclude power plant	key in
9	own-use-crude	fuel amount used in refinery	key in
10	import.csv	import min/max	key in
11	export.csv	export min/max	key in
12	own-use. csv	own-use ration in power plant	key in
13	dist-loss	distribution loss of electricity	key in
14	p-factor.csv	power plant factor(load rate %)	key in
15	heat-value. csv	heat value of energy	key in
16	therm-eff.csv	thermal efficiency of power plant	key in
17	yield.csv	yield of facility	key in
18	pp-max-rate	petroleum products of maximum rate	key in
19	CO2-max.csv	CO2 emission max in regulation	key in
20	co2-emission.csv	CO2 emission rate	key in
21	S-content	sulphur content ratio	key in
22	stock-init.csv	initial value of oil stockpiling	key in
23	stock-day. csv	oil stockpiling day	key in
24	unit-FOB	Unit of FOB	key in
25	unit-op	Unit of operation & maintenance cost	key in
26	cost-op. csv	Operation/maintenance cost in facility	key in
27	unit-freight	unit of freight	key in
28	freight	cost of freight	key in
29	interest.csv	interest by year	key in
30	exchange-rate.csv	exchange rate	key in
31	sales-price		cut & paste
32	demand-sec.csv	Demand of final users	cut & paste
33	base-sup-el	power generation by hydro, RE, nuclear =fix	cut & paste
34	connect	definition of connection among energies	key in
35	merge-set	definition input & output in merge virtual plant	key in
36	merge-cons-max	max feed in topper	key in
37	merge-cons-min	min feed to plant	key in
38	coal-dom-rate	ratio of domestic coal in coal plant	key in
39	diesel-rate	ratio of disel oil in diesel power plant	key in
40	EP-load-min	minimum load of plant	key in
41	brach-set	definition input & output in branch virtual plant	key in
42	prd-fix	production data fixed in past year 2006	key in
43	domestic-cost	cost of distribution in domestic market	kev in

Table 1 The Input Data

The above EXCEL file is EXCEL book and has many sheets. Each sheet has macro command icon and csv file with the same sheet name is automatically created by clicking the icon.

All data file are always required. Each data has following meanings.

1) dummy-control.csv : In order to avoid infeasibilities, dummy variables are incorporated in a balance equation. Mainly this dummy variables are used in oil product balance equation.

2) el-data-control.csv : Basically generation and fuel consumption data are given by PDPAT. In this case these

data are all fixed. But sometimes power source allocation should be free and the model should select the best power allocation. This control data indicates whether PDPAT data is used or not.

3) cost-unit.csv: These data are for output and means the pair of cost name and unit.

4) SGcsv : The energy which is usually measured by volume should be converted to weight base. In order to convert the unit from volume to weight, the SG(Specific gravity) is used.

5) mining-max.csv: It means the maximum of production of crude oil, coal, gas per year.

6) imp-crude-ratio.csv: This data is regarding an oil refinery. It means the minimum and maximum of import crude oil ratio to total feed to topper.

7)EP-capacity.csv: This data are the increment of power plant. The current capacity should be assigned at the first year (2006).

8) capacity.csv: This data are the capacity of each facility/unit excluding power plant.

9) own-use-crude.csv: The oil refinery uses oil as fuel, which the oil refinery produces by it self. This data means the ratio of crude oil to be used for fuel in its oil refinery.

10) import.csv: The minimum and maximum of import energy

11) export.csv : The minimum and maximum of export energy

12) own-use.csv: The power plant uses part of electricity generated as utility. Own use data is given as ratio to total generation. But in the Vietnamese statistics generation amount is measured at the point of sending end, so this data is always 0.

13) dist-loss.csv: Some of electricity distributed is lost during transmission / distribution. This amount is also proportional to generation, so this data is a ratio to generation.

14) p-factor.csv : Plant factor by power plant class (P-factor means the percentage of capacity use) or plant load

15) heat-value.csv: Every energy emits heat when it is burnt. That is heat value. This data is used for unit conversion from weight/volume to ton oil equipment (toe) or calculating fuel consumption in power plant. But in the case that PDPAT is used, this calculation is not done.

16) therm-eff : Thermal efficiency by power plant type

17) yield.csv : Yield means the ratio of products to one unit feed. For example, if 1 bbl of crude oil is fed into topper, the ratio of the amount of gasoline produced is gasoline yield.

18) pp-max-rate.csv: This data means the maximum the product rate of gasoline & diesel. This data is defined in order to match the calculated rate of petroleum product with the actual data. If the rate of gasoline and diesel are similar to the actual data, another petroleum product's rate will be similar.

19) CO2_max.csv: The specified value of CO2 emission max as regulation. If there is no regulation, this value should be very large.

20) CO2-emission.csv: In order to calculate total CO2 emission, the CO2 emission ratio of each energy per unit weight is required.

21) S-content.csv: In order to calculate SO2 emission, the sulfur emission rate of each energy per unit weight is required.

22) stock-init.csv: In order to calculate the oil stockpiling, the oil inventory of oil previous year when oil stockpiling calculation begins should be given as the initial stock(inventory)

23) stock-day.csv: The oil for stockpiling should be stocked for specified days of the total consumption of oil

products. This specified day is called stock_day.

24) unit-FOB.csv : The unit of sales-price

25) unit-op.csv : The unit of operation and maintenance cost

26) cost-op.csv : Cost of operation / maintenance of facilities

27) unit-freight.csv : The unit of freight

28) freight.csv : Cost of freight

29) interest.csv : Interest by year

30) exchange-rate.csv : Exchange rate by year

31) sales-price.csv : Sales price of each energy

32) demand-sec.csv : Demand by sector or total demand by energy

33) bas-sup-el.csv : Generation by power plant(hydro, nuclear, geothermal, RE)

34) connect.csv : This data represents the connection of every energy. The connection means here production

(plant, feed), consumption(plant), import and export (permitted or allowed?)

35) merge-set.csv : Definition of product energy and feed energy in merge plant

36) merge-cons-max.csv : The plant with 2 different name but the only one plant like coal power plant with domestic and import coal as feed fuel has the maximum feed quantity.

37) merge-cons-min.csv : The plant with over 2 feeds has to be consumed a specified quantity.

38) cost-dom-rate.csv : The maximum rate of domestic coal feed to total feed into coal power plant.

39) diesel-rate.csv : The maximum rate of diesel oil feed to total feed into diesel oil power plant.

40) EP-load-min.csv: Minimum load of a specified power plant.

41) branch-set.csv : Definition of product energy and feed energy in branch plant

42) prd-fix.csv : Production data fixed in 2006

43) domestic-cost.csv : Expenditures of energy in order to deliver to users.

1.7 Constraints

There are 29 kinds of constraints. Table 2 shows all constraint lists. All these constraints are not always used. Sometimes some equations are not used. Sometimes the constraint is defined, but it has no meaning. For example if there is no CO2 emission regulation, input data CO2 emission max is very large value. So CO2 max constraints is substantially useless.

In the following explanation on equations, a rule applies that a blue letter means the variable which the model can decide with optimal objective function, and black letters mean data given as input data.

Table 2 Constraint List

No	name	target	content
1	eq_connect	all energies	Def of energy flow(prod, cons, import,export)
2	eq_dummy	all dummy variables	Def of plus and minus dummy variable
3	eq_branch	energy in branch plant	Def input and output of virtual plant 'branch'
4	eq_merge	energy in merge plant	Def input and output of virtual plant 'merge'
5	eq_merge_cons_max	crude feed to topper	total of domestic & import crude feeding to topper
6	eq_merge_cons_min	gas EP feed	minimum feed to gas EP
7	eq_merge_prd_max	gen max from coal EP	Total of generation from dom and imp coal in EP
8	eq_trans_heat	coal	Unit conversion from weight to calorie in coal
9	eq_pp_max_rate	PP=petoleum products	Final petroleum products max rate constraints
10	eq_yield	topper, gas plant	production = yield*(feed to plant)*(1-own_use_crude)
11	eq_power	EP=power plant	Def of the relation of fuel quantity and generation
12	eq_coal_dom_max	dom coal in EP_coal	Def of the max consumption of dom coal in EP-coal
13	eq_EP_coal_fix	coal in EP_coal	Def of total genaration from coal EP at 2006
14	eq_EP_DO_fix	feed in EP_DO	Def of total genaration from diesel EP at 2006
15	eq_EP_DO_rate	DO max in EP_DO	Def of the maximum consumption of DO in EP-DO
16	eq_EP_load_min	diesel oil EP	Def of load min of EP
17	eq_own_use	own use electricity	Def of own use electricity in EP itself
18	eq_dist_loss	power distribution loss	Def of power loss in sending& distribution line
19	eq_bal_stockpiling	crude imp for SP	import of crude oil for stockpiling
20	eq_stock_piling	crude inventry for SP	the necessary oil stockpiling this year
21	eq_co2_gas	gas	CO2 emission calculation from gas consumption
22	eq_co2_coal	coal	CO2 emission calculation from coal consumption
23	eq_co2_oil	petroleum production	CO2 emission calculation from PP consumption
24	eq_co2_max	total co2	Def of total co2 emission by year
25	eq_so2	all energy	SO2 emission calculation from all energy
26	eq_cost	cost	cost by each year
27	eq_cost_real	cost	cost exclude dummy cost
28	eq_obj_cost	eq_obj_cost	obj cost including dummy cost = objective function
29	eg obj cost real	eg obj cost real	obj cost excluding dummy cost

1) eq_connect (Balance equation of every energy)

production + import - export - consumption = 0

These constraints should be defined for every energy. All information for creating these equations are stored in connect.csv. Production, consumption, import, and export should all not always require to exist. Elements of these constraints are sometimes production and consumption, sometimes import and consumption, sometimes production and export like condensate. Production and consumption sometimes have over 2 elements. For example, feed materials are domestic crude and import crude oil. So energies produced from topper have 2 routes depending on feed energy. Sometimes consumption has also over 2 elements. For example, energies consumed in final user and power plant has 2 consumptions.

Coding : eq_connect(y,class,c)\$connect_cc(y,class,c)..

sum((p,xc,f,xf,xclass,xp)\$connect(y,c,class,p,xc,f,xf,xclass,xp),

(Xprd(y,class,p,xc,c) + p01(f)*Ximp(y,c)-p01(xf)*Xexp(y,c) -

Xcon(y,xclass,xp,c))) +

 $coeff_dum(y,c)*Xdum(y,c) = e = 0;$

If this energy c can be imported, then p01(f) = 1 else p01(f) = 0;

If this energy c can be exported, then p01(f) = 1 else p01(f) = 0;

Xprd(y,class,p,xc,c) : production, y means year

class means petron or shell or whole

p means plant where energy c is produced

xc means feed material to plant p

c means target energy

Ximp(y,c)

: import

Diesel oil can be produce at plant M_DO with feed material dummy

 $Dummy = diesel_P + diesel_S$ (P: petron, S: Shell)

This issue is defined in merge.csv

This equation is represented in another equation name later.

M_DO : merging plant (virtual plant)

Diesel oil can be imported and exported because the data have both yes under the import and export heading. Also diesel oil is consumed in final use. Demand means a kind of plant and means consumption in final user in this model.

Diesel oil is consumed in diesel current power plant, EP_DO_C.

NP means No Plant, that is the production is already defined in (a), so no need to define the production in this line.(NP is key word in this model.)

Diesel oil is also consumed in diesel new power plant, EP_DO_N.

Thus above 3 lines define the diesel oil balance. That is the diesel oil is produced from M_DO plant and can be imported / exported and is consumed in final user, current and new power plant.

GAMS develops the above equation definition as follows;

Example in 2030

eq_connect(2030,whole,diesel) ..

Xprd(2030,whole,M_DO,dummy,diesel)

- Xcon(2030,whole,EP_DO_C,diesel) - Xcon(2030,whole,EP_DO_N,diesel)

+ Ximp(2030,diesel) - Xexp(2030,diesel) + Xdum(2030,diesel) = E=

9089.50633333333;

demand(input data)

2) eq_dummy

Sometimes the system cannot get optimal solution. This thing is called infeasible. If infeasible phenomenon happens, the cause of infeasibility should be found out. Sometimes it is very easy to find the cause. Sometimes it takes much time to find out it. There is no royal road to find out the infeasible cause. It depends on the experience of model analyzer. In order to avoid the infeasibility each balance equation can include the dummy variable. Even if there is actually no feasible solution, the surplus or deficit can be absorbed in the dummy variable. So there is no infeasibility on the surface.

Of course after finishing calculation, the check whether every dummy variable has positive value or not should be done. If a dummy variable has positive variable, it means that there is no feasible solution. This Philippines model is not so complex comparing with usual LP system. So it is not so difficult to find the cause which the dummy variable has positive value.

There are 2 reasons that dummy variables have positive values. One is that there is surplus of energy, another is that deficit of energy. That means the energy cannot be balanced.

If surplus is positive, deficit is minus.

So 3 kinds of dummy variables should be defined like Xdum_P, Xdum_M and Xdum.

Xdum_P(non negative variable) : If the deficit occurs, Xdum_P has positive value.

Xdum_M(non negative variable) : If surplus occurs, Xdum_M has positive value.

 $Xdum(free variable) = Xdum_P - Xdum_M$

Xdum can have positive value, 0, negative value.

It will not occur that both Xdum_P and Xdum_M have positive.

So Xdum = Xdum_P or Xdum = - Xdum_M.

These dummy variables are used as follows;

Xdum is used in the energy balance equation. Xdum_P and Xdum_M are used in cost definition equation. If dummy variables have positive value, the model is supposed that the cost will be very large. The objective function should be minimum. So if there is feasible solution, dummy variable should be = 0.

From above explanation, this equation is the technical and artificial equation.

 $coeff_dum(y,c)>0)..$

coding :eq_dummy(y,c)\$(target_year(y)

And

Xdum(y,c) = e = XdumP(y,c) - XdumM(y,c);

GAMS develops the above equation definition as follows;

Example electricity in 2030

 $eq_dummy(2030,el)$. - XdumP(2030,el) + XdumM(2030,el) + Xdum(2030,el) = E = 0;

3) eq_branch (target : material which branches into over 2 materials)

consumption(feed to branch virtual plant) = production(energy1) + production(energy2) +

Example1 : kerosene can be evaluated as kerosene and jet fuel based on objective function. Example2 : Some of the residue from topper goes to Vacuum distillation and fuel oil blend.

Xcon(y,class,p,c) =e= sum(xc\$branch(y,class,c,p,xc),Xprd(y,class,p,c,xc));

Example kerosene in petron refinery branches into kerosene and jet fuel

The meaning of above flow.

KO_KHT : kerosene after hydro treating operation

KO_HC : kerosene after Hydro cracking operation

KO_M : kerosene merged by KO_KHT and KO_HC

 $(KO_KHT+KO_HC = KO_M)$

kerosene_P : kerosene from petron refinery

jet_fuel_P jet_fuel from petron refinery

GAMS develops the above equation definition as follows;

Example B_KO petron refinery in 2030

eq_branch(2030,petron,KO_M,B_KO)..

- Xprd(2030,petron,B_KO,KO_M,kerosene_P)

- Xprd(2030,petron,B_KO,KO_M,jet_fuel_P) + Xcon(2030,petron,B_KO,KO_M)

The equation regarding M_KO is defined in equation eq_merge explained in the next paragraph "eq_merge".

4) eq_merge (target : merge virtual plant)

Merging

The merging operation is the reverse to branch operation. That is, many feed materials are merged into 1 material.

This data is defined in input data, merge.csv

The sample of M_KO

year class feed plant output М КО 2006*2030 KO_KHT KO_M petron merge(y,class,xc,p,c), 2006*2030 petron KO_HC M KO KO_M (input data)

And

coding:eq_merge(y,class,p,c)\$(target_year(y)
merge_pc(y,class,p,c))..

Xprd(y,class,p,'dummy',c) =e= sum(xc\$merge(y,class,xc,p,c),Xcon(y,class,p,xc));

GAMS develops the above equation definition as follows;

Example M_KO of petron refinery in 2030

eq_merge(2030,petron,M_KO,KO_M)..

Xprd(2030,petron,M_KO,dummy,KO_M)

- Xcon(2030,petron,M_KO,KO_KHT) - Xcon(2030,petron,M_KO,KO_HC) =E=0;

5) eq_merge_cons_max (target : topper plant)

consumption in (domestic crude oil feed + import crude oil) =< maximum feed crude oil

The topper plant consumes simultaneously both domestic crude oil and import crude oil. But the yield of topper plant depends on feed crude oil. But topper plant's capacity is defined as the maximum total feed crude oil. This maximum capacity is defined in this equation.

Total feed has the maximum which is the capacity of topper.

input data

sample (petron refinery)					
*year		class	plant	feed	value
2006*2030	petron		topper	crude_dom	180
2006*2030	petron		topper	crude_imp	0
In this case the topper capacity is $180 + 0 = 180$ (bpsd)					
<pre>coding: eq_merge_cons_max(y,class,p)\$(target_year(y</pre>	r)	A	and		
merge_o	cons_ma	x1(y,cla	iss,p))		

sum(xc\$set_merge_cons_max(y,class,p,xc),Xcon(y,class,p,xc)) =l=

sum(xc\$set_merge_cons_max(y,class,p,xc),merge_cons_max(y,class,p,xc));

GAMS develops the above equation definition as follows;

Example petron refinery in 2030

eq_merge_cons_max(2030,petron,topper)..

Xcon(2030,petron,topper,crude_dom)

+ Xcon(2030,petron,topper,crude_imp) =L= 8983.818

=180bpsd=8983kton/year

And

6) eq_merge_cons_max (target : gas power plant)

The gas power plant has to consume a specified amount of ga as fuel. This specifid amount is the maximum possible production. From 2019 gas max possible production begins to decrese, so the gas power plant possibly begins to work-down, but it is not preferable. In order to keep the specified load of gas power plant, thes constraint is required.

Equation eq_merge_cons_min(y,seq,class);

eq_merge_cons_min(y,seq,class)\$(target_year(y)

merge_cons_min1(y,seq,class))..

sum((p,c)\$set_merge_cons_min(y,seq,class,p,c),Xcon(y,class,p,c)) =g=

sum((p,c)\$set_merge_cons_min(y,seq,class,p,c),merge_cons_min(y,seq,class,p,c));

GAMS develops the above equation definition as follows;

eq_merge_cons_min(2020,1,whole)..

Xcon(2020,whole,EP_gas_C,gas) + Xcon(2020,whole,EP_gas_N,gas) =G= 3964.36;

The consumption of total of domestic gas and LNG import in gas power plant should be greater than a specified value=3964.36.

7) eq_merge_prd_max (target : domestic coal)

production from (domestic coal power plant +import power plant) =< maximum generation

The coal power plant uses simultaneously both domestic coal and import coal. But these 2 kinds of coal has different heat value. The formula between fuel consumption and generation in power plant includes the heat value of fuel. So the coal power plant has to be handled separately corresponding to the fuel kind. So there are 2 kinds of coal power plant, domestic coal power plant and import coal power plant. But the coal power plant's maximum capacity is defined by the maximum generation as just only coal power plant. This rule is represented by this eq_merge_prd_max constraint.

The information of coal power plant capacity is given in input data (EP-capacity.csv).

coding: eq_merge_prd_max(y,seq,class,c)\$(target_year(y)

merge_prd_max1(y,seq,class,c))..

And

sum((p,xc)\$set_merge_prd_max(y,seq,class,p,xc,c),Xprd(y,class,p,xc,c))

=l=

sum((p,xc)\$set_merge_prd_max(y,seq,class,p,xc,c),merge_prd_max(y,seq,class,p,xc,c)*p_factor(y,p,xc)/100)
* (365*24/1000);

Power capacity is given in MW unit. But generation unit = GWh. So the maximum generation has to be transformed from MW to GWh like the above equation.

Xprd(y,class,p,xc,c) : generation by individual power plant

class = whole

p = domestic coal power plant and import coal power plant

xc = domestic coal and import coal

c = electricity

merge_prd_max(y,seq,class,p,xc,c) : automatically calculated from EP_capacity input data

maximum generation of individual power plant

seq : current power plant and new coal power plant

other indexes are the same to ones of Xprd(y,class,p,xc,c)

unit = MW

p_factor(y,p,xc) : input data (p_factor.csv)

plant factor = load factor (unit= %) means the utilizing rate per year.

The conversion formula from MW to GWh

= MW * plant factor/100 * 365 days/year * 24 hours/day /1000

GAMS develops the above equation definition as follows;

Example in 2030

eq_merge_prd_max(2030,1,whole,el)..

Xprd(2030,whole,EP_coal_dom_C,coal_dom,el)

+ Xprd(2030, whole, EP_coal_imp_C, coal_imp, el) = L= 25613.364;

maximum generation (GWh)

8) eq_trans_heat(y,p,xc,c) (target : domestic and import coal)

heat of coal to demand = weight of coal to demand * heat_value

Coal demand is given in input data with unit "ktoe". This demand is the total of domestic coal and import coal. Both coal have different heat value. So in order to create the constraint to satisfy the demand should be represented by the ktoe unit. The coal production is measured by weight base, kton. So these weight base should be converted to calorie base. This conversion can be represented by this eq_trans_heat

consumption in weight base production in calorie base

coding : eq_trans_heat(y,p,xc,c)\$(target_year(y)

And

trans_heat(p,xc,c))..

Xprd(y,'whole',p,xc,c) =e= heat_value(y,xc)/10000 * Xcon(y,'whole',p,xc);

Xprd(y, whole', p, xc, c): coal after unit conversion = calorie base p =conversion operation for domestic and import

(Trans_H_dom, Trans_H_imp)

xc = domestic coal and import coal in weight base

c = domestic coal and import coal in calorie base

heat_value(y,xc) : conversion factor = heat value of individual coal Xcon(y,'whole',p,xc) : coal before conversion – weight base

GAMS develops the above equation definition as follows;

Example in 2030

eq_trans_heat(2030,trans_H_dom,coal_dom,coal_dom_H)..

Xprd(2030,whole,trans_H_dom,coal_dom,coal_dom_H)

 $-0.5557*Xcon(2030,whole,trans_H_dom,coal_dom) = E = 0;$

for reference)

Part 1 is represented by eq_trans_heat

Part 2 is represented by eq_merge.

Part 3 is represented by by eq_connect.

9) eq_eq_pp_max_rate(y,c) (target : petroleum products)

calculated rate of petroleum product <= petroleum product/ crude_oil consumed * (1-0.96)

The yield data cannot be gotten in this model. So they are estimated data. But there are data regarding the rate of final refinery products. In order to match the rate of calculated petroleum products with the actual data, the actual data must be given by input data as maximum rate of refinery products. In this model main product, gasoline and diesel oil product's rates are given. Then yields should be adjusted in order that rates of other products will automatically match with actual data.

crude_oil consumed * (1-0.96)

The rate of refinery product is calculated by the equation calculated rate of diesel <= diesel / crude_oil consumed * (1-0.96) coding : eq_pp_max_rate(y,c)\$set_pp_max_rate(y,c)..

sum(p\$pp_max(p,c), Xprd(y,'whole',p,'dummy',c)) =l= sum((class,p)\$(topper(p) And

not whole(class)),

(Xcon(y,class,p,'crude_dom')+Xcon(y,class,p,'crude_imp')) *

own_use_crude(class,p)/100)) * pp_max_rate(y,c)/100;

Xprd(y,'whole',p,'dummy',c) : production of petroleum product

p : merging plant of petron and shell products

c : petroleum product

 $X con(y, class, p, 'crude_dom') + X con(y, class, p, 'crude_imp'): total feed of crude oil and the set of th$

own_use_crude(class,p): 4% of crude oil is consumed as utility in refinery

pp_max_rate(y,c) : actual rate of petroleum product

GAMS develops the above equation definition as follows; Example in 2030

eq_pp_max_rate(2030,diesel)..

Xprd(2030,whole,M_DO,dummy,diesel)

- 0.3456*Xcon(2030,petron,topper,crude_dom)

- 0.3456*Xcon(2030,petron,topper,crude_imp)

- 0.3456*Xcon(2030,shell,topper,crude_dom)

```
-0.3456*Xcon(2030,shell,topper,crude_imp) =L=0;
```

ref1) own_use_crude = 4%

 $pp_max_rate of diesel = 38\%$

Then (1-0.04)*0.38 = 0.3456

ref2)This method is not recommendable.

If actual yield can be gotten, this constraints should be deleted.

10) eq_yield (target : refinery unit, gas plant)

production = yield * feed to plant * (1-own_use_crude/100)

A feed material is crude oil in the case of topper plant. The feed material is oil which is produced in this refinery in the case of refinery units excluding topper. The feed material is raw gas in the case of gas plant. An oil refinery uses oil as utility, which is produced in oil refinery itself. This self use oil is assumed as a linear proportion to the total feed crude oil. This proportional rate is assumed at 4% defined in input data. The own-use-crude data is defined only for topper. It is 0 for gas plant.

coding: eq_yield(y,class,p,xc,c)\$(target_year(y) And

set_yield4(y,class,p,xc,c))..

Xprd(y,class,p,xc,c)

=e=

yield(y,class,p,xc,c)*Xcon(y,class,p,xc)*(1-own_use_crude(class,p)/100);

Xprd(y,class,p,xc,c) : production from plant p of class unit , feed material is xc, target material is c

(class means petron or shell in refinery, whole in gas plant)

yield(y,class,p,xc,c) : yield in plant p of class unit, feed material is xc, target material is c

Xcon(y,class,p,xc) : consumption in plant p of class unit, feed is xc

own_use_crude(class,p) : fuel rate to crude oil consumed in refinery plant : input data

GAMS develops the above equation definition as follows;

Example LGO_top of petron topper in 2030

eq_yield(2030,petron,topper,crude_imp,LGO_top)..

Xprd(2030,petron,topper,crude_imp,LGO_top)

- 0.0864*Xcon(2030,petron,topper,crude_imp) =E= 0;

→ yield(input data)

And

And

11) eq_power (target : electricity)

fuel consumption=generation * 860/(heat value*thermal efficiency)
This equation is the formula between fuel consumption and generation
unit : 1KWh = 860kcal
coding : eq_power(y,p,c)\$(target_year(y)
elp(p)

pair_pc(p,c)		And						
	CC/		0				1	

therm_eff(y,p,c)>0 And

(capacity(y,'whole',p,c)>0 or merge_prd_max2(y,p,c)))..

Xcon(y,'whole',p,c)

=e=

Xprd(y,'whole',p,c,'el')*860/(heat_value(y,c)*therm_eff(y,p,c)/100);

fuel power plant electricity

Xcon(y,'whole',p,c) : consumption of fuel in power plant

 \ensuremath{p} : power plant excluding geothermal, hydro, nuclear, RE

c = electricity

Xprd(y,'whole',p,c,'el') : generation from power plant p unit=GWh

heat_value(y,c) : heat value

therm_eff(y,p,c) : thermal efficiency

GAMS develops the above equation definition as follows;

Example domestic coal power plant in 2030

eq_power(2030,EP_coal_dom_C,coal_dom)..

- 0.396254393050397*Xprd(2030,whole,EP_coal_dom_C,coal_dom,el)

+ $Xcon(2030,whole,EP_coal_dom_C,coal_dom) = E = 0;$

 \rightarrow 860/(heat_value(y,c)*therm_eff(y,p,c)/100);

12) eq_coal_dom_max (target:coal power plant)

domestic coal / (domestic + import) in power plant <= a specified value

The domestic coal in Philippines includes an alkali material. So when domestic coal is burned in power plant, import coal should be mixed. This rate is given as input data.

coding : equation eq_coal_dom_max(y,seq);

eq_coal_dom_max(y,seq)\$(target_year2(y) And ord(seq)<3)..

sum((p,c)\$(pair_pc_seq(p,c,seq) And

coal_dom(c)), Xcon(y,'whole',p,c)/heat_value(y,c))

=l= coal_dom_rate(y)/100 * sum((xp,c)\$(pair_pc_seq(xp,c,seq)),

Xcon(y,'whole',xp,c)/heat_value(y,c));

GAMS develops the above equation definition as follows;

eq_coal_dom_max(2007,1)..

0.00014396256973187*Xcon(2007,whole,EP_coal_dom_C,coal_dom)

 $3.125E-5*Xcon(2007,whole,EP_coal_imp_C,coal_imp) = L = 0;$

13) eq_EP_DO_fix (target : EP-DO)

The rate of diesel oil in feed to DO power plant is specified at 15%.

Actually DOE staff insists that this rate is maximum. But if it is maximum, the diesel oil has high value, LP model does not use diesel but fuel oil, so it is not realistic. So at present the model adopts that this rate is fixed. coding : equation eq_EP_DO_rate(y,p);

diesel oil / (diesel oil + fuel oil) in power plant = a specified value(=15%)

eq_EP_DO_rate(y,p)\$set_diesel_rate(y,p)..

Xcon(y,'whole',p,'diesel') =e= diesel_rate(y,p)/100*sum(c\$pair_pc(p,c),Xcon(y,'whole',p,c)));

GAMS develops the above equation definition as follows;

eq_EP_DO_rate(2007,EP_DO_C). 0.85*Xcon(2007,whole,EP_DO_C,diesel)

- 0.15*Xcon(2007,whole,EP_DO_C,fuel_oil) =E= 0;

14) eq_own_use (target : electricity)

own use power = own_use_* generation

Since Generation is measured at generating end in Philippines, this equation is required. But if power generation is measured at the sending end, this equation is not necessary.

```
coding : eq_own_use(y)$target_year(y)..
          Xcon(y,'whole','own','el')
          =e=
          sum((p,c)$(elp(p)
                                                                       And
                    pair_pc(p,c)),Xprd(y,'whole',p,c,'el'))*own_use(y)/100;
GAMS develops the above equation definition as follows;
Example in 2030
eq_own_use(2030)..
- 0.07125487106*Xprd(2030,whole,EP_coal_dom_C,coal_dom,el)
      - 0.07125487106*Xprd(2030,whole,EP_coal_imp_C,coal_imp,el)
      - 0.07125487106*Xprd(2030,whole,EP_coal_dom_N,coal_dom,el)
      - 0.07125487106*Xprd(2030,whole,EP_coal_imp_N,coal_imp,el)
      - 0.07125487106*Xprd(2030,whole,EP_gas_C,gas,el)
      - 0.07125487106*Xprd(2030,whole,EP_gas_N,gas,el)
       - 0.07125487106*Xprd(2030,whole,EP DO C,diesel,el)
      - 0.07125487106*Xprd(2030,whole,EP_DO_C,fuel_oil,el)
      - 0.07125487106*Xprd(2030,whole,EP DO N,diesel,el)
      - 0.07125487106*Xprd(2030,whole,EP_DO_N,fuel_oil,el)
      - 0.07125487106*Xprd(2030,whole,EP_FO,fuel_oil,el)
      + Xcon(2030, whole, own, el) =E= 3125.32136662563;
                                                    generation from nuclear, hydro, geothermal, RE is fixed.
15) eq_dist_loss (target : electricity)
distribution loss = loss rate*((generation -own_use) + import + export)
coding : eq_dist_loss(y)$target_year(y)..
Xcon(y,'whole','distribution','el')
          =e=
 dist_loss(y)/100 *(sum((p,c,xc)$(elp(p) And
                                        And
                                el(c)
                            pair_pc(p,xc)),Xprd(y,'whole',p,xc,c))
                                                                         Xcon(y,'whole','own','el')
                                                                   _
                                                                                                     +
sum(c$el(c),Ximp(y,c)+Xexp(y,c)));
GAMS develops the above equation definition as follows;
Example in 2030
eq_dist_loss(2030)..
- 0.121752*Xprd(2030,whole,EP_coal_dom_C,coal_dom,el)
      - 0.121752*Xprd(2030,whole,EP_coal_imp_C,coal_imp,el)
      - 0.121752*Xprd(2030,whole,EP coal dom N,coal dom,el)
      - 0.121752*Xprd(2030,whole,EP_coal_imp_N,coal_imp,el)
```

- 0.121752*Xprd(2030,whole,EP_gas_C,gas,el)

- 0.121752*Xprd(2030,whole,EP_gas_N,gas,el)

- 0.121752*Xprd(2030,whole,EP_DO_C,diesel,el)
- 0.121752*Xprd(2030,whole,EP_DO_C,fuel_oil,el)
- 0.121752*Xprd(2030,whole,EP_DO_N,diesel,el)
- 0.121752*Xprd(2030,whole,EP_DO_N,fuel_oil,el)
- 0.121752*Xprd(2030,whole,EP_FO,fuel_oil,el)

+ 0.121752*Xcon(2030,whole,own,el) + Xcon(2030,whole,distribution,el) =E= 5340.18406557767;

generation from nuclear, hydro, geothermal, RE is fixed

16) eq_stock_piling (target : Arabian light crud oil)

oil stockpiling to be put *0.95 = stock day * demand of refinery

Crude oil is evaluated as equivalent to 95 % of oil products after considering processing loss. This amount of crude oil should be stocked as oil stockpiling.

(95% is the Japanese specification)

coding : eq_stock_piling(y,c)\$(target_year(y)

crude_stock(c))..

Xstk(y,c)*0.95 =g= sum(xc\$refc(xc),demand_tot_kt(y,xc)*stock_day(y,xc)/365);

Reason that operator is "g" is that Xstk should always be ≥ 0 .

If the consumption of target of oil stockpiling products of this year is very large, oil stockpiling will be also large. But if that demand of the next year is smaller than this year, the oil stockpiling required will be smaller than one of this year. If operator is =, oil to be stocked should be minus.

The minus means to extract from stockpiling. But from the viewpoint of the objective of oil security extract is not recommendable. Furthermore the minus value of variables is not allowed in LP system.

GAMS develops the above equation definition as follows;

Example in 2030

q_stock_piling(2030,crude_stock)..

0.95*Xstk(2030,crude_stock) =G= 1024.76103466522;

Calculated from demand and stock oil day for refinery products.

And

17) eq_bal_stockpiling(y,c) (target : Arabian light crud oil)

import crude oil for oil stockpiling = Increment of stockpiling from this year to last year

GAMS develops the above equation definition as follows;

Example in 2030

eq_bal_stockpiling(2030,crude_stock)..

Ximp(2030,crude_stock)

+ Xstk(2029,crude_stock) - Xstk(2030,crude_stock) = E= 0;

18) eq_co2_gas (target : gas)

This equation calculates the total CO2 emission by some of oil product and gas

```
CO2 emission = emission rate * (demand + consumption in EP) * 44/12
```

This result is measured by CO2 kton.

```
coding : eq_co2_gas(y,c)$(target_year(y)
```

gas_rep(c))..

Xco2(y,c) =e=CO2_emission(y,c)*44/12 *

 $(sum(p\EP_gas(p), Xcon(y, whole', p, c)) + from gas power plant$

```
demand_tot_kt(y,c)); from demand
```

GAMS develops the above equation definition as follows;

Example in 2030

eq_co2_gas(2030,gas)..

- 2139.0369*Xcon(2030,whole,EP_gas_C,gas)

- 2139.0369*Xcon(2030,whole,EP_gas_N,gas) + Xco2(2030,gas) =E= 1075421.42860743 ;

19) eq_co2_coal (target :coal)

This equation calculates the total CO2 emission by coal.

```
CO2 emission = emission rate * (production of coal + import coal - export)*44/12
```

This result is measured by CO2 kton.

coding : eq_co2_coal(y,c)\$(target_year(y)

And

And And

➤ from power paint

And

coal_rep(c))..

```
Xco2(y,c) = e = co2_emission(y,c)*44/12*
```

(sum((p,xc)\$(elp(p)

coal(xc)

pair_pc(p,xc)),Xcon(y,'whole',p,xc))+

sum((p,xc,xxc)\$trans_heat(p,xc,xxc),

Xcon(y,'whole','M_coal',xxc)/(heat_value(y,xc)/10000))); from demand

GAMS develops the above equation definition as follows;

Example in 2030

eq_co2_coal(2030,coal)..

- 4117.373333333333333*Xcon(2030,whole,EP_coal_dom_C,coal_dom)

- 4117.37333333333333Xcon(2030,whole,EP_coal_imp_C,coal_imp)

- 4117.373333333333*Xcon(2030,whole,EP_coal_dom_N,coal_dom)

- 4117.373333333333*Xcon(2030,whole,EP_coal_imp_N,coal_imp)

- 7409.34557015176*Xcon(2030,whole,M_coal,coal_dom_H)

```
- 6023.95513289442*Xcon(2030, whole, M_coal, coal_imp_H) + Xco2(2030, coal) = E = 0
```

20) eq_co2_oil (target : oil)

This equation calculates the total CO2 emission by some of oil products.

CO2 emission = emission rate * (demand + consumption in EP) * $44/$	12
coding : eq_co2_oil(y,c)\$(target_year(y)	And
refc(c))	
$Xco2(y,c) = e = co2_emission(y,c)*44/12*(demand_tot_kt($	y,c) + from demand
sum(p\$(elp(p) And	
pair_pc(p,c)),Xcon(y,'whole',p,c)));	from power plant
GAMS develops the above equation definition as follows;	
Example fuel_oil in 2030	
eq_co2_oil(2030,fuel_oil)	
- 3371.329866666667*Xcon(2030,whole,EP_DO_C,fuel_oil)	
- 3371.329866666667*Xcon(2030,whole,EP_DO_N,fuel_oil)	
- 3371.329866666667*Xcon(2030,whole,EP_FO,fuel_oil) + Xco2(203	30,fuel_oil)
=E=21146893.2749419	
21) eq_so2 (target : so2)	
This equation calculates total SO2 emission.	
total SO2 emission= 32/16*sulfur content ratio * (demand + consur	nption in EP)
coding : eq_so2(y,r,c)\$(target_year(y) And s_content(y,c)>0)	
$Xso2(y,r,c) = e = 32/16*s_content(y,c)/100*(demand_tot_kt(y,r))$,c) +
<pre>sum(p\$pair_pc(p,c),Xcon(y,r,p,c)));</pre>	
GAMS develops the above equation definition as follows;	
Example in 2030	
eq_so2(2030,coal_dom) 0.032*Xcon(2030,petron,EP_coal_dom)	_C,coal_dom)
- 0.032*Xcon(2030,petron,EP_coal_dom_N,coal_dom)	
- 0.032*Xcon(2030,petron,trans_H_dom,coal_dom)	
- 0.032*Xcon(2030,shell,EP_coal_dom_C,coal_dom)	
- 0.032*Xcon(2030,shell,EP_coal_dom_N,coal_dom)	
- 0.032*Xcon(2030,shell,trans_H_dom,coal_dom)	
- 0.032*Xcon(2030,whole,EP_coal_dom_C,coal_dom)	
- 0.032*Xcon(2030,whole,EP_coal_dom_N,coal_dom)	
- 0.032*Xcon(2030,whole,trans_H_dom,coal_dom) + Xso2(2030,coa	l_dom) =E= 0
22) eq_cost (target : cost)	
This equation calculates the cost by year	
cost = import cost*import + acquisition cost*production + operation	on cost*feed to facility +
export price * export	

coding : eq_cost(y)\$target_year(y)..

Xcost(y) = e =

 $sum((r,c)\(crude(c) Or refc(c) Or import_gas_coal(c) Or el(c)), Ximp(y,r,c)\(crude(c),r,c)) + sum((r,p,c)\(mine(p) And mine_pc(p,c)), Xprd(y,r,p,'earth',c)\(crude(y,c)) + b) + sum(r,p,c)\(mine(p) And mine_pc(p,c)), Xprd(y,r,p,'earth',c)\(crude(y,c)) + b) + sum(r,p,c)\(mine(p) And mine_pc(p,c)), Xprd(y,r,p,'earth',c)\(crude(y,c)) + b) + sum(r,p,c)\(crude(y,c))\(crud$

sum((r,p,c)\$(pair_pc(p,c) And elp(p)),cost_op(y,r,p))

sum((r,p,c)\$(pair_pc(p,c) And not elp(p)), Xcon(y,r,p,c)*cost_op(y,r,p))
sum((r,c)\$export(c),Xexp(y,r,c)*sale_exp(y,r,c));

GAMS develops the above equation definition as follows;

Example in 2030

eq_cost(2030).. - 51.9819418604651*Xprd(2030,whole,mine,earth,crude_dom)

- 4.4594459*Xprd(2030,whole,mine,earth,coal_dom)

- 30.3712965487227*Xprd(2030,whole,mine,earth,gas_raw)
- 54.8837209302326*Ximp(2030,crude_imp)
- 57.7906976744186*Ximp(2030,crude_stock) 6.664*Ximp(2030,coal_imp)
- 72.970479704797*Ximp(2030,LPG) 135.405405405405*Ximp(2030,gasoline)
- 109.322660098522*Ximp(2030,kerosene)
- 148.048090523338*Ximp(2030,jet_fuel)
- 101.954976303318*Ximp(2030,diesel)
- $-76.8240850059032*Ximp(2030,fuel_oil) + 71.1254612546125*Xexp(2030,LPG)$
- + 110.405405405405*Xexp(2030,gasoline)
- + 86.7857142857143*Xexp(2030,kerosene)
- $+ 122.164073550212*Xexp(2030, jet_fuel) + 81.457345971564*Xexp(2030, diesel)$
- $+ 62.7744982290437*Xexp(2030,fuel_oil) 1000000*XdumP(2030,crude_dom)$
- 1000000*XdumP(2030,crude_imp) 1000000*XdumP(2030,coal_dom)
- 1000000*XdumP(2030,coal_imp) 1000000*XdumP(2030,gas)
- 1000000*XdumP(2030,gas_raw) 1000000*XdumP(2030,gas_imp)
- 1000000*XdumP(2030,LPG) 1000000*XdumP(2030,LPG_P)
- 1000000*XdumP(2030,LPG_S) 1000000*XdumP(2030,gasoline)
- 1000000*XdumP(2030,gasoline_P) 1000000*XdumP(2030,gasoline_S)
- 1000000*XdumP(2030,kerosene) 1000000*XdumP(2030,kerosene_P)
- 1000000*XdumP(2030,kerosene_S) 1000000*XdumP(2030,jet_fuel)
- 1000000*XdumP(2030,jet_fuel_P) 1000000*XdumP(2030,jet_fuel_S)
- 1000000*XdumP(2030,diesel) 1000000*XdumP(2030,diesel_P)
- 1000000*XdumP(2030,diesel_S) 1000000*XdumP(2030,fuel_oil)
- 1000000*XdumP(2030,fuel_oil_P) 1000000*XdumP(2030,fuel_oil_S)
- 1000000*XdumP(2030,el) 1000000*XdumM(2030,crude_dom)
- 1000000*XdumM(2030,crude_imp) 1000000*XdumM(2030,coal_dom)
- 1000000*XdumM(2030,coal_imp) 1000000*XdumM(2030,gas)
- 1000000*XdumM(2030,gas_raw) 1000000*XdumM(2030,gas_imp)
- 1000000*XdumM(2030,LPG) 1000000*XdumM(2030,LPG_P)
- 1000000*XdumM(2030,LPG_S) 1000000*XdumM(2030,gasoline)
- 1000000*XdumM(2030,gasoline_P) 1000000*XdumM(2030,gasoline_S)
- 1000000*XdumM(2030,kerosene) 1000000*XdumM(2030,kerosene_P)
- 1000000*XdumM(2030,kerosene_S) 1000000*XdumM(2030,jet_fuel)

- 1000000*XdumM(2030,jet_fuel_P) 1000000*XdumM(2030,jet_fuel_S)
- 1000000*XdumM(2030,diesel) 1000000*XdumM(2030,diesel_P)
- $1000000*XdumM(2030,diesel_S) 1000000*XdumM(2030,fuel_oil)$
- 1000000*XdumM(2030,fuel_oil_P) 1000000*XdumM(2030,fuel_oil_S)
- -1000000*XdumM(2030,el) + Xcost(2030) = E = 127186.111106024;

The cost of dummy variable is very large.

23) eq_obj_cost(target : objective function)

This equation defines objective function.

```
obj_cost = sum(total cost by year)
```

coding : eq_obj_cost..

Obj_cost =e= sum(y\$target_year(y),Xcost(y)/(1+interest(y)/100)**(ord(y)-1));

GAMS develops the above equation definition as follows;

Example in 2030

eq_obj_cost..

- Xcost(2006) - 0.925925925925926*Xcost(2007)

- 0.857338820301783*Xcost(2008) - 0.793832241020169*Xcost(2009)

- 0.735029852796453*Xcost(2010) - 0.680583197033753*Xcost(2011)

- 0.630169626883105*Xcost(2012) - 0.583490395262134*Xcost(2013)

- 0.540268884501976*Xcost(2014) - 0.500248967131459*Xcost(2015)

- 0.463193488084684*Xcost(2016) - 0.428882859337671*Xcost(2017)

- 0.397113758645991*Xcost(2018) - 0.367697924672214*Xcost(2019)

- 0.340461041363161*Xcost(2020) - 0.31524170496589*Xcost(2021)

- 0.291890467561009*Xcost(2022) - 0.270268951445379*Xcost(2023)

 $-\ 0.250249029116091*Xcost(2024) - 0.231712063996381*Xcost(2025)$

 $-\ 0.214548207404056*Xcost(2026) - 0.198655747596349*Xcost(2027)$

 $-\ 0.183940507033656* Xcost (2028) - 0.170315284290422* Xcost (2029)$

- 0.157699337305947*Xcost(2030) + obj_cost =E=0;

1.8 Output Data Table

GAMS automatically creates a text file, which includes all information about model such as code, input data, constraints, solution and statistics. This text file has the extension name list. It is big size file and it is not easy to analyze the result. Therefore, for easy reference, this system built by the JICA project has a function to create 17 kinds of tables in order to analyze the result correspondent to the purpose. These tables are as follows;

- 1) Energy balance table (typical table used in energy analysis)
- 2) Summary table with unit ktoe (for comparing some cases)
- 3) Summary table with unit kton/MMm3(for analyzing in time series)
- 4) Refinery result(balance data in oil refinery with yield data)
- 5) Electric result (power generation, fuel consumption, technical data etc)
- 6) List of import(amount list of import energy as result) for check
- 7) List of export (amount list of export energy as result) for check
- 8) List of product(amount of production as result) for check
- 9) List of consumption(amount of consumption in plant as result) for check
- 10) Demand table(input data)
- 11) List of unit cost(input data with unit change)
- 12) Cost result(cost, amount of flow, total cost)
- 13) List of dummy variable(value of dummy variable)
- 14) CO2 emission result
- 15) Detail information of CO" emission
- 16) Oil stockpiling
- 17) Coal result detail information

1.9 Program Structure

main program : PEP2008.gms

sub program	1) set_definition : Define various index, parameter, table
	2) data_read.inc : Read input data
	3) unit_change.inc : Change the unit
	4) set_definition2.inc : Define new sets based on input data
	5) eq_definition.inc : Define constraits
	6) bound_set.inc : set the bound of variables
	7) after_process.inc : Tracting the solution for output
	8) output.inc : create various outputs in kton
	9) kt_ktoe.inc : unit change from kton to ktoe
	10) output_ktoe.inc : create various outputs in ktoe
	11)output_ws.inc :create a file for work sheet

These files are all text file. So they can easily be read by usual text editor.

Extension gms is fixed by GAMS system. But extension inc is free. these inc files are read into main program "PEP2008.gms" by \$include. Therefore, for convenience the extension inc is used.

1.10 Model Size and Execution Time

The size of a LP model can be measured by the number of variables and constraints incorporated. Now there are around 10600 variables and 7700 constraints covering 25 years in the standard model. Should the energy flow change, new plants be installed or new energy item be added, the model size would greatly increase. At present, execution time of this 25 year model is less than 1 second. The execution time would also increase if constraints overlapping years are levied or strong constraints are added. At any rate, however, the execution time would not become a serious problem.

1.11 Functions and Operations of the Optimization Model

This energy supply optimization model has following functions.

1.11.1 Information Created (main function)

- a. To calculate the logically correct demand and supply balance of each energy that should comprehensively satisfy the energy demands given as input data. They are for example,
 - Raw material feed amount into each facility at oil refinery
 - Petroleum products production amount
 - Converted amount of petroleum products to other energy, e.g., from kerosene to jet fuel or diesel gas oil
- b. To calculate the minimum total cost as the net present value at 2006

1.11.2 Service Functions for Convenience of Users

- c. To automatically convert from a sheet in a book of EXCEL to a CSV file (EXCEL macro)
- d. To output tables to show the optimum solutions in various forms (CSV file)

1.11.3 Functions of GAMS Itself

- e. To make a text file including all information of the model. The first file houses the following information.
 - Original program created by modeler
 - Input data
 - Developed constraints
 - Various statistics on the model (scale, execution time, etc)
 - Solution itself
- f. To show grammatical error message
- g. To point an infeasible constraint or a variable as a cause of infeasible solution
- h. To show the number of infeasibility if infeasible
- i. To show name of the output table created
- j. etc

2 Operations Procedure

In order to execute the model the basic flow of operation is as follows;

- 1) Create input data file
- 2) Execute the model
- 3) Analyze the model

This document only refer to operation of the Energy Supply / Demand Optimization Model for PEP2008. Regarding GAMS including its installment, please refer to the GAMS Manual.

2.1 Input Data Source

All input data should be stored in input_data.xls.

This file gets demand, sales price, generation from nuclear, hydro, geothermal and RE, non commercial energy from demand forecasting model file by cut & paste. Other all data should be inputted by hand.

2.1.1 Common Operation

(1) Make a new holder /How to create a csv file from EXCEL

(condition) You already have the model including program and data) in the standard holder name. for example, 'Reference'.

a To define the new holder name where the model data and output file are stored.

It is better to the naming of the holder, which helps to understand assumptions.

- b To copy all files of reference model into this holder
- (2) New assumptions for case study you are planning should be inputted into the specified sheet in the input-data.xls. If the case study will request the modification of programming, you have to revise the program. But in many cases it is enough to change only data.
- (3) Click once the icon 'Save file' with color yellow as below. GAMS cannot read EXCEL file directly. So EXCEL file should be converted to csv form file. A csv file is the text file and each data is separated by comma. For example

*heat_value,

*year, energy, heat value

2006*2030,coal_dom,5557

2006,coal_imp,6250

2007,coal_imp,6400

2008*2030,coal_imp,6835

2006*2030,gas,9100

2006*2030,crude,10500

2006*2030,LPG,11800

2006*2030,gasoline,11500

GAMS can read the csv file. A csv file should be created by sheet in EXCEL file. There are many sheets in this EXCEL file. In order to create csv file, this conversion operation should be done many times sheet by

sheet. It is rather nuisance operation. So the macro which enables to create a csv file by one touch is prepared at each sheet. The csv file created has the same name with the sheet name. In order to kick off this macro, it is enough just to click the following icon with name 'Save file', which can be seen on every sheet.

Save file

The function of this MACRO.

1) The original EXCEL file is overwriting with the same name.

The EXCEL asks you whether overwritten is permitted or not ?

You must answer 'yes'. If you answer no, the next csv file would not be created.

2) The csv file is created . The file name is sheet name + .csv.

If the same name exists in the holder, EXCEL asks you whether overwritten is permitted or not ?

You must answer 'yes'. If you answer no, the next csv file would not be created.

Note) In order that MACRO is executable,

1) you have to answer 'yes' against the question from EXCEL that enable MACRO when EXCEL starts?

2) you have to change that the security level is less than middle level at the time EXCEL begins to work as follows; (in the case of Windows XP)

tool---macro--security

security level to middle.

The operation to create input files is outlined below

2.1.2 Key-in Data

All data of input-data.xls in the column ' input data file name' in table 1 should be inputted by key in operation.

(1) dummy-control.csv :

format : energy name, '1' or '0'

related place in program : constraint=eq_bal_ref

meaning : '1': dummy variable is automatically inserted in the balance equation.

'0': dummy variable is not used.

If oil products balance seems to be difficult to realize, 1 should be set, otherwise 0.

For security it is recommended that '1' is set. So it is better not to change the base model.

(2) el-data-control.csv

format: the first line 'gen', '1' or '0'

the second line 'con', '1' or '0'

related place in program : el_flag definition in 'unit_change.inc'

eq_power in 'eq_definition.inc'

meaning : 'gen', '1' : generation data comes from PDPAT, so fixed

'0' : generation free

'con', '1': fuel consumption comes from PDPAT, so fixed

'0' : generation free

 $el_flag = 0$ at 'gen'=1 and 'con'=1

relation between fuel consumption and generation cannot be defined.

=1 otherwise

relation between fuel consumption and generation is defined.

el_flag is automatically set according to el_data_control in 'unit_change.inc'.

In PEP2008, usually you should have input always 0.

(3) cost-unit.csv

format: energy name, unit

related place in program : 'output.inc'

meaning : used in heading

(4) unit-data.csv

format: from unit, to unit, value

related place in program : 'unit_change.inc'

meaning : constant data of unit change

(5) SGcsv

format: energy name, specific gravity

related place in program : 'unit_change.inc', 'bound_set', 'after_process.inc', 'output.inc'

eq_bal_gas, eq_co2_ethanol in eq_definition.inc

meaning : used in unit change from volume unit to weight unit

(6) mining-max.csv : (used by parameter 'product-max' in program)

format: year, 'whole', energy, production maximum

related place in program : 'bound_set'

meaning : primary fossil energy production max by year

source : This data comes from electricity group.

(7) EP_capacity.csv

format: year, district, fuel, capacity of power plant

related place in program : 'bound_set', unit_change, eq_definition

meaning: Maximum generation of power plant

starting year(2006) : currenct capacity

from 2007 : increment capacity of power plant

(8) capacity.csv

format: year, class, plant, energy, max-capacity

related place in program : 'bound_set'

meaning : Plants cannot produce or consume specified energy over this value.

(9) own-use-crude.csv

format: topper name, %

related place in program : eq_yield in 'eq_definition.inc'

meaning : Oil refinery uses fuel which it produces as fuel for its own plants. It is the ratio to the total feed of crude oil.

- (10) import.csv (used by table import_minmax in program)
 format: year, energy name, min of import, max of import
 related place in program : 'bound.inc'
 meaning : min and max of import
- (11) export.csv (used by table export_minmax in program)format: year, energy name, min of export, max of exportrelated place in program : 'bound.inc'meaning : min and max of export
- (12) own-use.csv

format: power plant name, own use ratio

related place in program : eq_own_use in 'eq_definition.inc'

meaning : A power plant uses electricity which it generates by itself. As power generation in this model is measured at sending end in this model, this input term should always be 0. But if this rule will change in future, this input term is defined.

(13) dist-loss.csv

format: year, 'whole', loss rate(%)

related place in program : eq_dist_loss in 'eq_definition.inc'

- meaning : Sending electricity, electricity is lost through transmission-distribution line. It is proportional
 - to amount of electricity sent. This loss electricity should be considered in balance equation

(14) p-factor.csv

format: year, 'whole', power plant name, fuel name, plant factor

related place in program : 'bound.inc'

meaning : Each power plant has specific load (%), or this load is controlled by power policy.

Load means the percent of capacity use.

(15) heat-value.csv

format: year, energy, heat value

related place in program : 'unit_change.inc', 'output.inc', 'eq_definition.inc'

meaning : Considering energy issues, calorie unit is important. Changing unit from weight to calorie, heat value plays a base role.

Heat value differs among energy and country.

(16) therm-eff.csv

format: year, power plant name, fuel name, termal efficiency (%)

related place in program : 'bound.inc', 'output.inc'

eq_coal_dom, eq_power, in 'eq_definition.inc'

meaning : Each power plant has thermal efficiency (%).

It depends on power plant, fuel plant, year.

(17) yield.csv

format: year, plant (facility), raw energy, product energy, yield

related place in program : 'output.inc'

eq_yield, eq_yield_ref, in 'eq_definition.inc'

- meaning : This means how much each product is produced against 1 unit raw material feed. This is the basic data in considering energy balance because energy produced is calculated based on the yield. The total yield in a facility should be always 1.
- (18) pp-max-rate max .csv

format: year, energy, rate (%)

related place in program : 'output.inc'

eq_pp_max_rate in 'eq_definition.inc'

meaning :The max rate of petroleum product

(19) CO2_max

format: year, max CO2 emission to be allowed

related place in program : eq_co2_max in 'eq_definition.inc'

meaning : total CO2 emission should be less than CO2_emission max. Such regulation should be decided by the government

(20) CO2_emission.csv

format: year, energy, CO2_emission rate

related place in program : 'unit_change.inc', 'output'.inc'

eq_set_definition2, eq_CO2_oil_gas, eq_ethanol in 'eq_definition.inc'

meaning : It means the emission amount of CO2 when 1 unit of an energy is burnt.

It is used in calculating CO2 emission.

(21) S-content.csv

format: year, max SO2 emission to be permitted

related place in program : 'output.inc'

eq_so2 in 'eq_definition.inc'

- meaning : It means the emission amount of SO2 when 1 unit of an energy is consumed. It is used in calculating SO2 emission.
- (22) stock-init.csv

format: year, max SO2 emission to be permitted

related place in program : 'bound.inc'

meaning : Considering oil stockpiling, the initial stockpiling should be given as data.

(23) stock-day.csv

format: year, 'whole', 'crude'

related place in program : 'output.inc'

eq_stock_piling in 'eq_definition.inc'

meaning : In this model oil stockpiling is calculated by following equation;

oil stockpiling*0.95 = stock_day * consumption of all oil products per year/365

This stock day can be decided by the oil security policy.

(24) unit-FOB.csv

format : energy, unit

related place in program : 'unit_change.inc' meaning : The unit of FOB

(25) unit-op.csv

format : plant, unit

related place in program : 'unit_change.inc', 'output.inc'

meaning : The unit of operation and maintenance cost

(26) cost-op.csv

format: year, class, plant, operation cost, maintenance cost

related place in program : 'unit_change.inc'

meaning : Cost of operation and maintenance per 1 unit feed

But regarding power plant, operation cost is given by PDPAT on per year basis including maintenance cost

Ref)In PEP2008, operation and maintenance cost should be negligible.

(27) unit-freight.csv

format : energy, unit of freight

related place in program : 'unit_change.inc'

meaning : The unit of freight

(28) freight.csv

format : energy, (cost of freight by energy)

related place in program : 'unit_change.inc', 'output.inc'

meaning : Cost of freight

(29) interest.csv

format: year, interest related place in program : 'after_process.inc'

meaning : Interest (it depends on year)

(30) exchange-rate.csv

format: year, exchange rate

related place in program : 'unit_change.inc', 'output.inc'

eq_obj_cost in eq_definition

meaning : Exchage rate of peso and US dollar (it depends on year)

(31) sales-price.csv

format : year, (various cost of sales by energy)

related place in program : 'unit_change.inc'

meaning : Cost of sales

FOB cost = sales price - freight

(32) demand-sec.csv

format : year, class, demand by energy(coal, gas, LPG, AVI gaso, bio ethanol, jet_fuel, kerosene, diesel, bio diesel, fuel_oil, el, RE)

related place in program : 'unit_change.inc', eq_definition.inc

meaning : The demand by energy. The demand of each energy should be satisfied.

These data should given from the forecasting model, sheet name 'simulation' unit is ktoe.

(33) base-sup-el.csv

format : year, generation by power plant(Hydro, geo, nualear, RE)

related place in program : 'unit_change.inc', eq_definition.inc

meaning : The generation fixed by specified power plant.

These data should given from the forecasting model, sheet name 'simulation' unit is ktoe.

--Operation from forecasting model into the input-data.xls of optimization model--

(NOTES)The forecasting model includes the information for optimization model .

That information should be done cut & paste by hand to input-data.xls.

operation 1. cut & paste demand data by year and by energy from the forecasting model with sheet name 'Simulation' line no= 376-386, and 389 to input-data.xls with sheet name 'demand-sec'

(ref: property = change the row and column and only value copy)

operation 2. cut & paste non-commercial energy by year from the forecasting model with sheet name 'Simulation' line no= 488 to input-data.xls' most right column with sheet name 'demand-sec'

(ref: property = change the row and column and only value copy)

operation 3. cut & paste sales price by year and by energy from the forecasting model with sheet name 'Simulation' line no= 67-76 to input-data.xls with sheet name 'sales-price'

(ref: property = change the row and column and only value copy)

(34) connect.csv

format : year, energy, class, plant, feed, import, export, class, plant

related place in program : 'set_definition2.inc', 'eq_definition.inc', 'bound_set.inc', 'kt_ktoe', 'output_inc'

meaning : It represents the energy flow.

Target is energy. This energy can be produced from class, plant, feed, and consumed in class, plant. If this energy is allowed to be import, data should be yes, if not allowed, 'none' should be inputted. If this energy has over 2 production way or over 2 consumption, these information is represented after 2'nd line. If there is no plant or feed data, 'NP' or 'dummy' should be inputted under the heading plant or feed.

example) Here regarding gasoline flow is picked up as follows.

Figure 6 Flow regarding gasoline

This flow can be represented by the following input data

2006*2030	NAP_top petron	topper	crude_dom	none	none	petron	M_NAP	1)	
2006*2030	NAP_top petron	topper	crude_imp	none	none	petron	NP	2)	
2006*2030	NAP_M petron	M_NAP	dummy	none	none	petron	NHT	3)	
2006*2030	LN	petron	NHT	NAP_M	none	none	petron	B_LN	4)
2006*2030	GO_NHT	petron	B_LN	LN	none	none	petron	blend_GO	5)
2006*2030	GO_ref	petron	reformer	HN	none	none	petron	blend_GO	6)
2006*2030	GO_FCC petron	FCC	BTM_HC	none	none	petron	blend_GO	7)	
2006*2030	gasoline_P	petron	blend_GO	dummy	none	none	whole	M_GO	8)
2006*2030	gasoline whole	M_GO	dummy	yes	yes	whole	demand	9)	
explanation)								

- (PETRON) NAP_top can be produced from topper with feed material crude_dom and consumed in plant M_NAP(merging naptha). Neither import and export are not allowed in NAP_top.
- 2) (PETRON) NAP_top can be also proceed from topper with feed material crude_imp. Consumption is already defined in 1), so consumption should be defined no more.
- 3) (PETRON)NAP_M is the products from plant M_NAP and consumed in NHT as feed material. Neither import and export are not allowed in M_NAP.
- 4) (PETRON)LN(Light Naptha) is the product from NHT(Naptha Hydro Treating) with feed material NAP_M, and is consumed B_LN(Branch LN). Neither import and export are not allowed in LN
- 5) (PETRON)GO_NHT(Gasoline from plant NHT) is the product from plant B_LN and consumed in blend_GO(blender of Gasoline). Both import and export are not allowed in LN
- 6) (PETRON)GO_ref(Gasoline from plant Reformer) is the product from plant Reformer and consumed in blend_GO(blender of Gasoline). Neither import and export are not allowed in LN
- 7) (PETRON)GO_FCC(Gasoline from plant FCC) is the product from plant FCC(Fluid Catalystic Cracking) and consumed in blend_GO(blender of Gasoline). Neither import and export are not allowed in LN

- PETRON)total gasoline of PETRON refinery is produced from blend GO and is consumed in M_GO (Merging_Gasoline : feed material is gasorine from PETRON and SHELL refineries)
- 9) (Whole)The flow of above from 1) to 8) lines are PETRON refinery,. There is the exactly same flow in SHELL refinery. Both gasoline_P and gasoline S are merged in plant M_GO. Gasoline is produced from M_GO and consumed in demand. (Demand is defined as one of plants.)
- NOTES) Plant is composed of some kinds.
 - a actual plants like many facilities in refinery,, power plants
 - b merging and branching plant with name M_xxxx and B_xxxx
 - c blending plant with name blend_GO and blend_FO
 - d peculiarity of this LP model such as
 - * demand (consumed as demand)
 - * calculate(just only calculation so not target of balance)
 - * Trans_H_dom and Trans_H_imp(transformation weight base to calorie in coal)
 - * own (electricity used own power plant)
 - * distribution (transmit and distribution loss in electricity)
- (35) merge-set.csv

format : year, class,feed,plant,final

related place in program : 'set_definition2.inc', 'eq_definition.inc', 'output.inc'

meaning : (look Figure 6 : blend_GO is the same of merging plant)

1 final product and many feed materials.

If there are n feed materials this data is represented by n lines and

final is always the same energy.

```
(calss =Petron, feed = GO_NHT, GO_ref, GO_FCC, final = gasoline_P in Fig2.1)
```

(Example)

2006*2030	petron	GO_NHT	blend_GO	gasoline_P
2006*2030	petron	GO_ref	blend_GO	gasoline_P
2006*2030	petron	GO_FCC blend_G	O gasoline_	_P

(36) merge-cons-max.csv

format : year, class, plant, feed, max of consumption

related place in program : 'set_definition2.inc', 'eq_definition.inc', 'output.inc', 'unit_change.inc'

meaning : Topper plant has 2 kinds of feed such as domestic crude and import crude

The capacity of topper plant is measured by total feed amount. But the yield greatly depend on the feed material property. So a topper plant is virtually divided 2 plants such as topper distillation domestic crude and import crude. The capacity of the individual plant cannot be defined. This data defines as the total maximum feed.

maximum feed should be given

(37) merge-cons-min.csv

format : year, seq, class, plant, feed, min of consumption

related place in program : :'set_definition2.inc', 'eq_definition.inc'

meaning : There are 2 gas power plants. One is current plant, another is new plant. Gas consumed in these 2 gas plants should be consumed at least a specified amount. The gas power plant should keep the minimum load. The minimum load is equivalent to the consumption of gas production whose is the highest production in domestic gas.

minimum consumtion

(38) coal_dom_rate.csv

format : year, max rate of domestic coal in coal power plant

related place in program : 'eq_definition.inc'

meaning : The domestic coal in Philippines is rich of alkali. So the rate of domestic coal of being used in power plant has limit.

(Sample) 2007*2030 20

In this sample that rate is 20%.

(39) diesel-rate.csv

format : year, max rate of diesel oil in diesel power plant

related place in program : 'eq_definition.inc'

meaning : This data is the max rate of diesel oil in diesel power plant.

(40) EP-load-min

format : year, plant, minimum load

related place in program : 'eq_definition.inc'

meaning : Diesel power plant should work at minimum load a year..

(41) branch_set.csv

format : year, class,feed,plant,final

related place in program : 'set_definition2.inc', 'eq_definition.inc','output.inc'

meaning : (look Figure 6 : B_LN is the branch plant)

1 feed and many output materials.

If there are n output materials this data is represented by n lines and

feed is always the same energy.

(42) prd_fix.csv

format: year, class, feed, plant, final energy

related place in program : 'eq_definition.inc','output.inc'

meaning : In the past year, 2006 in this model, production actual data is directly adopted, not calculated

(43) domestic-cost.csv

format: year, energy, domestic cost

related place in program : 'unit_change.inc','output.inc'

meaning : used for calculation of FOB

FOB = sales price - domestic freight cost

2.2 Procedure of Execution

After preparing all input data, the model can be executed via following procedure

2.2.1 Load GAMS into Memory and Execute the Model

(1) Double click the following icon IDE on the desktop

IDE is the interface of GAMS. By using this interface, the various actions become possible as follows

1) GAMS coding

2) Execute model by GAMS

3) Get all information of results

note) IDE icon is automatically created on the desktop by installing GAMS system.

(2) Move a gpr(Gams PRject file) to one in which the model exists.

1) Click the 'file' in the tool bar.

2) Click the name in the drop down in sequence

project-new project

- 3) Select the holder name in which the model and data exits.
- 4) Key in the project name.

Project name is the file name to control the model.

So 1 project corresponds to 1 model.

The name can be defined freely and has automatically the extension name 'gpr'.

- (3) Click the 'file' in the tool bar and 'open'
- (4) Select the model text file name with the extension name '.gms' you coded. (pep2008.gms)
- (5) One Click the following execution icon.

note)If this icon is not colored with red, the model cannot be worked. In order to work the GAMS, click the tab with the name 'PEP2008.gms'. Then this icon becomes red.

- (6) GAMS automatically runs and creates the output file with the name 'PEP2008.lst' called list file. note) Refer the GAMS manual regarding 1st file
- (7) Many kinds of output are automatically created under the same holder as described above. These outputs are created by this model itself but not by GAMS. They are created in order to analyze and check the various results. How to use these outputs are described later.

2.2.2 In the Case that Error Happens.

There are 2 kinds of errors. One is grammatical error and the other is infeasible/unbounded error.

(1) Grammatical error

In case of grammatical error, there are some grammatical errors in the model coding. You have to fix them according to the GAMS grammar. The place where the error happened is pointed by '****', so you can easily find the error place in the list file. Also the list file gives the error contents by code. The meaning of the code is written after the model coding.

The error message are, for example as follows;

17 put out_testt;

\$140,294 The error meaning are, for example, as follows;

140 Unknown symbol

294 No external file assigned - A file has to be made current by

using the name on a put statement, i.e. PUTxxx fname

note)Refer the GAMS manual regarding the detail grammar

(2) Infeasible/Unbounded error

1) Infeasible error

There is no royal road to find the real cause of this infeasible error. It depends on the experience.

But there is a basic procedure to find the cause. Many data are required in LP model. Man kind is apt to mistake. So errors happen from input data error with probability of over 80%.

The list file created by GAMS points the row (constraint) names or variable names where infeasible errors happened. When the infeasible error happens in the constraint, the constraint cannot be satisfied. When the infeasible error happens in the variable, the variable(solution) cannot exist between the minimum and maximum. Therefore at first the most important method to find an infeasible error is to check the input data regarding row and variables where they happen. Especially lower and upper bound data, fixed data are apt to

make errors. If you cannot find the cause of infeasible checking input data, check the equations developed by GAMS itself. Check whether the equation developed is one you intended or not.

example of REPORT SUMMARY)

**** REPORT SUMMARY :	0	NONOPT	
	12]	INFEASIBLE (INFES)	
SUM	9994.526		
MAX	4830.000		
MEAN	832.877		
	0 UNE	BOUNDED	
example of infeasible error in the	constraint)		
2025.whole.EP_coal_dom.L_coa	d.		INFES
example of infeasible error in the	variable)		
2018.whole.EP_gas .gas			
.el		. 73333.524 72567.840	INFES

Especially, check the index and coefficients consisting equations. Usually you can find over 80% course of errors by easy checking of data and equations. Even doing so, if you cannot find the error cause, imagine the solution you think to be correct and fix the variable by its value. Check what happens. You may find questionable results. Analyze the solution in detail. Sometimes you may be able to find the cause. The model creates many kinds of output. There are some output files for checking such as list of production, consumption, import, export, bound of variable, refinery results and electricity results. You may be able to find questionable results in these checking of output files. Then you may be able to find the error cause. The above described checking have to be repeated done in detail many times, before the model stabilizes.

2) Unbounded error

This error means that the objective function value would have gone to the infinity. As one example, this case may come from the phenomenon such that the material can be sold at infinity with cost 0. If you meet this unbounded error, you should check the cost definition.

2.2.3 After Processing the Execution of the Model

After executing the model, even if there are no errors, the solution may not be correct. The solution is apparently optimal. But it often happens that the solution is not one you had expected. So detail check should be done by implementing doing following procedures.

(1) Check 'out_dummy.csv'

If you will find the output with nonzero data, it means that the solution is not optimal.

Plus value means that the demand side is over than supply sand. So plus value is the deficit amount. Minus value means that the supply side is over than demand side. So minus value is the surplus amount. You should correct input data or programming in order that all data in out_dummy.csv are 0.

(2) Check 'out_refinery rate.csv' (Table 3 out-refinery table)

If you will find the unnatural rate of petroleum products, you have to check data regarding refinery model. The ratio of petroleum products represents whether the refinery calculation is suitable or not. The reason is that the main data of refinery is the yield, but that data is usually confident in the refinery company, so the data are estimated ones in order that the final petroleum products rates match the actual ones. Gasoline is produced through some facilities and some routes. Regarding individual facility, there not may be correct production of products, but totally the ratios are matched to the actual data. So it is required to check the final petroleum products.

(3) Check 'out_load.csv'(Table 4 out load table)

If you will find that the value of this file are all 100, it may be infeasible.

If you cannot explain the trend of this result, something is wrong.

Here refer the following how to analyze this output file.

year	LPG	gasoline	kerosene	jet_fuel	diesel	fuel_oil
2006	3.45	16.44	1.58	7.02	37.46	29.27
2007	4.5	17.71	1.36	8.16	36	27.77
2008	4.5	17.72	0	9.52	36	27.76
2009	4.5	17.72	0	9.52	36	27.76
2010	4.5	17.72	0	9.52	36	27.76
2011	4.49	17.7	0	9.52	36	27.8
2012	4.5	17.72	0	9.52	36	27.76
2013	4.49	17.7	0	9.52	36	27.8
2014	4.5	17.72	0	9.52	36	27.76
2015	4.5	17.72	0	9.52	36	27.76
2016	4.5	17.72	0	9.52	36	27.76
2017	4.5	17.72	0	9.52	36	27.76
2018	4.5	17.72	0	9.52	36	27.76
2019	4.5	17.72	0	9.52	36	27.76
2020	4.5	17.72	0	9.52	36	27.76
2021	4.5	17.72	0	9.52	36	27.76
2022	4.5	17.72	0	9.52	36	27.76
2023	4.5	17.72	0	9.52	36	27.76
2024	4.5	17.72	0	9.52	36	27.76
2025	4.5	17.72	0	9.52	36	27.76
2026	4.5	17.72	0	9.52	36	27.76
2027	4.5	17.72	0	9.52	36	27.76
2028	4.5	17.72	0	9.52	36	27.76
2029	4.5	17.72	0	9.52	36	27.76
2030	4.5	17.72	0	9.52	36	27.76

Table 3	Out-refinery	rate table
---------	--------------	------------

actual data at 2007

LPG 4.6%

gasoline 16.8 %

kerosene + jet-fuel 10.2 %

diesel 35.4%

fuel oil 29.4%

In this model there are 2 constraints as follow;

maximum rate of gasoline = 18%

maximum rate of diesel = 36%

Other rate are calculated based on total energy minimum cost.
year	production		plant						
	coal	gas	coal power	gas power	Diesel power	Fuel oil power	topper		
2006	100	100	57.06	100	9.43	100	68.93		
2007	100	81.4	100	75.51	0	0	100		
2008	100	63.38	100	80.82	0	0	100		
2009	100	75.17	100	95.38	0	0	100		
2010	79.2	79.46	100	100	13.98	100	100		
2011	81.38	80.21	100	100	75.88	100	100		
2012	89.21	80.97	100	100	20.03	100	100		
2013	91.28	81.67	100	100	81.92	100	100		
2014	93.34	100	100	97.86	53.65	100	100		
2015	80.35	100	100	97.15	31.87	100	100		
2016	86.96	100	100	96.29	0	36.1	100		
2017	88.83	100	100	95.43	59.82	100	100		
2018	95.44	100	100	94.56	16.2	100	100		
2019	99.68	100	100	83.92	79.21	100	100		
2020	82.57	100	100	89.28	17.16	100	100		
2021	84.1	100	100	99.09	39.67	100	100		
2022	87.49	100	100	93.51	36.87	100	100		
2023	92.71	100	100	86.98	29.83	100	100		
2024	96.07	100	100	75.31	72.9	100	100		
2025	86.67	100	100	87.85	45.11	100	100		
2026	88.02	100	100	85.73	88.99	100	100		
2027	92.63	100	100	89.88	19.86	100	100		
2028	97.22	100	100	86.5	0	98.01	100		
2029	98.54	100	100	83.29	89.12	100	100		
2030	81.5	100	100	80.36	53.59	100	100		

Table 4 Out-load table

Assumptions: Hydro, geothermal, Renewable power plant generate at specify power. It gradually continue to increase.

example at 2007,

- a) Coal production is at maximum at first. Yet it cannot satisfy the demand of electricity.
- b) Coal continues to be imported till coal power plant load becomes maximum at second, yet cannot satisfy the demand of electricity
- c) Next, gas plant begins to work till load 75.51%. It means that it can satisfy the demand of electricity. So diesel power plant and fuel oil power plant are not required to work.

These situation continues by 2009. Gas power plant load increases for 3 years.

example at 2010 (till 2010 there is no new power plant enlargement)

a) Coal power plant load is 100%. But it cannot satisfy the demand.

But production does not reach at the maximum because the maximum of coal production increases. (maximum of production 3,736 kton at 2007, 5,036,kton at 2010). Furthermore domestic coal ratio to total feed to coal power plant is less than 20%.

- b) Next gas plant works at maximum load before production reaches at maximum. So eve if gas is produced more, there is no room of consumption. Yet it cannot satisfy the demand.
- c) Next fuel oil power plant works at maximum load. Yet it cannot satisfy the demand.
- d) Next diesel power plant begins to work. It can satisfy the demand before the load of diesel oil power plant reaches at maximum.

This situation continues till 2015. For this 6 years, coal and gas power plant capacity are enlarged. So it occurs that coal power plant is working at maximum load, but production rate is down at 2005.

From 2014, gas production reaches at maximum before gas power plant load reaches at maximum. But load of gas plant is down comparing to the previous year because 2015 gas plant capacity is up.

Thus looking at this table, there is no unnatural phenomenon. We can judge this solution has no mistakes from this load analysis viewpoint.

If every field has all 100% at one year, it means that there may be some mistakes. If you encounter this thing look the out-dummy.csv, then you will find out that some dummy variables have non zero value.

After these 3 check procedures, go to the following steps.

(4) Open the out_summary_kton.xls and click the icon name 'Macro Execute' in sheet name is 'out-summary'

--Macro content--

a) Open the out_summary.csv. (Double click this file name)

This file includes almost all energy balance information by year and is automatically created by the model. This file uses the unit by kton or MMm3.

b) copy data of all E column out_summary.csv.

c) Paste into E column of the sheet name 'out_summary' in the out_summary_kton.xls.

d) In out_summary.csv is longitudinally represented by year and energy. This macro changes this format horizontally by year.

e) This file automatically draws graph of each energy balance.

This graph is drawn on each sheet by energy. (Each sheet name is the same to the energy name.) So check the graph whether questionable trends exist or not.

If you find the questionable results, fix them and execute the model again till you satisfy.

(5) Open the out_summary_ktoe.xls and click the icon name 'Macro Execute'

This macro content is the same to the macro of out_summary-kton.xls

(6) Open the primary-energy-ktoe.xls and copy the sheet name out_summry of out-summary-ktoe.xls

into a sheet name out-summary of the primary-energy-ktoe. So automatically you can get some graphs regarding primary energy supply.

2.2.4 Execute Case Studies (1)

After creating the basic model, you can conduct many case studies. Procedures of case study are as follows;

(1) Make sure that what is difference between the basic model and case study you want to do.

This difference should be represented as input data or in the model.

(2) Make a new holder under the holder which the original model exists.

(3) Copy all files under the original model holder to new holder for case study.

(4) Change the data or GAMS model according to conditions of the case study.

(5) execute the case study

(6) Do usual analysis of the case study

(7) In order to compare the case studies(ex: case A and case B)

1) open the out_summary.csv of case A

```
2) file save as xxxxxxx.xls
```

- 3) open the out_summry.csv of case B
- 4) copy all column E data in case B into column F in xxxxxx.xls
- 5) Calculate the difference from the data E column (case A)minus the data F column(case B)
- 6) Analyze the difference by sorting or thinking

2.2.5 Execute Case Studies(2)

Case study procedures using GAMS may be classified into several types as follows;

(1) Calculate the only specified year(only one year)

- 1) Click the IDE icon
- 2) Move the specified holder (refer 2.2.1 (1), (2))
- 3) file-open

file type = Includes files(*.inc)

select set_definition.inc

4) find the line

```
set target_year / 2006*2030
```

/;

5) In case that target year is 2010

change 2006*2030 into 2010*2010

```
6) execute the case study
```

(2) Only key in data change is required.

For example CO2 max value is required to be changed.

- 1) open the input-data.xls
- 2) Click the sheet name 'CO2-max'
- 3) input a new data of CO2-max
- 4) click the icon 'Save file'

5) execute the case study

(3) Demand data are changed

If some assumptions like GDP growth rate which would affect the energy demand are changed,

1) The forecasting model should be executed.

2) Copy the demand data into the sheet 'demand-sec' of input-data.xls.

3) execute the case study.(refer 2.2.1)

(4) Demand does not change, but power development plan changes

1) According to the plan, input the capacity of power plant increment into the sheet 'EP-capacity' of input-data.xls.

2) execute the case study (ref 2.2.1)

(5)Energy flow changes

If energy flow changes, change carefully the data in sheet 'connect' of input-data.xls.

It often occurs that if the energy flow changes, it is required to change the constraints in eq_definition.inc. This operation is not so easy. You have to master GAMS to some extent in order to do this.

(Example)

current : Condensate goes only to export.

after chage : Condensate goes to export and merge into naptha.

Current data of sheet 'connect' of input-data.xls regarding condensate is as follows;

*year	energy	class	plant	feed	import	export	class	plant
2006*2030	condensate	whole	gas_plant	gas_rawnone	yes	whole	NP	

after change

current data regarding condensate is as follows;

*year energy class plant feed plant import export class 2006*2030 condensate whole gas_plant gas_rawnone yes petron M_NAP (in this case class 'petron' is picked up. If you select shell instead of petron, there is no problem. There is no diffrence between petron and shell, because M_NAp is virtual plant, so there is no physical property.)

At the same time merging line should be defined in sheet 'merge-set' of input data.xls

*year	class	feed	plant	final		
2006*2030	petron	NAP_top M_N	IAP NAP_M		٦	
2006*2030	petron	NAP_HCM_N	IAP NAP_M	curr	ent >	
2006*2030	petron	NAP_coker	M_NAP	NAP_M	J	
2006*2030	petron	condensate	M_NAP	NAP_M	←	—Add
2006*2030	shell	NAP_top M_N	IAP NAP_M		٦	
2006*2030	shell	NAP_HCM_N	IAP NAP_M	curr	ent >	
2006*2030	shell	NAP_coker	M_NAP	NAP_M	J	
2006*2030	shell	condensate	M_NAP	NAP_M	•	—Add

before change

eq_connect (2007, whole, condensate) ...

Xprd (2007,whole,gas_plant,gas_raw,condensate) - Xexp(2007,condensate) =E=0;

eq_merge (2007,petron,M_NAP,NAP_M)..

```
Xprd(2007,petron,M_NAP,dummy,NAP_M)
```

```
- Xcon (2007, petron, M_NAP, NAP_top) - Xcon(2007, petron, M_NAP, NAP_coker)
```

- Xcon (2007, petron, M_NAP, NAP_HC) = E = 0;

(skip regarding shell)

after change

eq_connect(2007,whole,condensate)..

Xprd(2007,whole,gas_plant,gas_raw,condensate)

 $Xcon(2007, petron, M_NAP, condensate) - Xexp(2007, condensate) = E = 0;$

eq_merge(2007,petron,M_NAP,NAP_M). Xprd(2007,petron,M_NAP,dummy,NAP_M)

- Xcon(2007,petron,M_NAP,condensate) Xcon(2007,petron,M_NAP,NAP_top)
- Xcon(2007,petron,M_NAP,NAP_coker) Xcon(2007,petron,M_NAP,NAP_HC) = E = 0

After executing and analysing this case study, condensate stops export, and it is consumed as naptha. it looks that there is no mistake in this case study.

But there is one great mistake. It is the unit. Balance equations like equation eq_connenct and eq_merge have 'kton' as unit. But condensate is measured 'MMm3' as unit. So the unit of condensate should be conveted from MMm3 to kton. So the definition of new set such as new name of condensate after unit conversion and new virtual conversion plant, for example condensate_kton and trans_condensate.

a) sheet name 'connect' should be revised as follows;

*year class plant energy feed import export class plant 2006*2030 condensate gas_plant gas_raw none yes petron conv_condensate whole 2006*2030 condens_kton petron conv_condens condensate none none petron M_NAP b) sheet name 'merge-set' should be revised as follows; *year class feed final plant 2006*2030 NAP_M petron condens_kton M_NAP c) sheet name 'yield' should be added as follows; condensate 2006*2030 petron 740 conv_condens condens_kton

Analyzing the result, there are no unnatural values. But comparing the reference case, the rate of petroleum products varies by year. It comes from the reason why petroleum products (naptha) come from another plant which is not refinery site. Gas production gives the effect of production situation from refinery.

- (6) An objective function is required to be changed.
- 1) Click the IDE icon
- 2) Move the specified holder (refer 2.2.1 (1), (2))
- 3) file-open

file type = Includes files(*.inc)

select eq_definition.inc

- 4) Define the new objective function
- 5) file-open
 - main program = Vietnam.gms
- 6) Modify the objective function name by new name

solve vietnam_1 using LP minimizing obj_cos-→solve vietnam_1 using LP minimizing xxxxx

7) execute the case study.

Appendix-6

Operation Manual of Outlook Summary

Appendix-6 Operation Manual of Outlook Summary

1. Model Configuration

The Energy Demand Forecasting Model and Energy Supply Optimization Model combined provide energy supply and demand outlook of the future. These models produce a bunch of figures. In order to identify features of energy supply and demand outlook projected for each case easily, Combined Simulation Summary is prepared. This Outlook Summary consists of 7 sheets, Summary, Overview, Energy Balance Table, Base Table, Supply, Simulation and OUT_WS. Data of Simulation sheet and OUT_WS sheet are imported from Energy Demand Forecasting Model and Energy Supply/Demand Optimization Model, respectively.

Figure-1 Outlook Summary Book Sheets

The "Summary" sheet is designed to show typical energy indicators to highlight features of scenarios, cases or policy options such as primary energy supply, final energy demand and other important sectoral figures. Projected figures are prepared annually from 2005 to 2030 with 5 year average growth rates. The "Overview" Sheet is a one-page brief summary of the Outlook Summary for easy reference carrying data on every five year. "Energy Balance Table" Sheet provides energy balance table from 2008 to 2030. When entering any year from 2008 to 2030 on Cell B1, you can see energy balance table in the year that you entered as illustrated in Figure-2. These data are linked to the "Simulation" and "OUT_WS" sheets. Appenxix-1, Appendix-2, and Appendix-3 in this report show the samples of the "Overview" sheet, "Summary" sheet, and "Energy Balance Table" sheet.

	B1 - <i>f</i> × 2008						
	A	В	С	D	Е		
1	BAU Case	2008					
2		Soal	Natural G	Condensa	Crude	Ga	
3	Indigenous production	2,076	2,321	570	37		
4	Import	5,274	0	0	14,584		
5	Export	0	0	570	~		
6	Total Primary Energy Supply	7,350	2,321	Ent	Enter Year		
- 7	Transformation Sector	-6,024	-2,243				
8	Electricity Plants	-6,024	-2,243	0	0		
9	Petroleum Refineries	0	0	0	-14,036		
10	Bioethanol Plants	0	0	0	0		
11	Biodiesel Plants	0	0	0	0		
12	Energy Sector	0	0	0	-585		

Figure-2 Energy Balance Table Sheets

2. Copy & Paste of Simulation Sheet

Data on the "Simulation" sheet is copied from Simulation sheet of the Energy Demand Forecasting Model. When you paste the data on the "Simulation" sheet in Demand Forecasting Model, you should select "paste special" and "value" as illustrated in Figure-3. Do not copy the "Simulation" sheet itself but the "Value" only, since the contents of the table are linked to other sheets within the Outlook Summary book.

Figure-3 Copy and Paste of Simulation Sheet

3. Copy & Paste of OUT_WS Sheet

Data on the "OUT_WS" sheet is copied from "OUT_WS.CSV" file that is created by Energy Supply/Demand Optimization Model as illustrated in Figure-4.

Figure-4 Copy and Paste of OUT_WS Sheet

Now you have completed the procedure to produce three summary sheets, namely, summary, overview and Energy Balance Table, where other four sheets are used to provide base data.