2.2.3 Basic Design Drawings

2.2.3.1 Bridge Outline

Based on the examination, each bridge is outlined in Table 2-8 and 2-9.

Bridge Name	Lawakha Bridge	Basochu Bridge	Nyarachu Bridge
Bridge Type	Simple composite	PC box girder bridge	PC box girder bridge
Bridge Length	steel I girder bridge 45 0m	40.0m	40.0m
Span Length	44 0m	39.0m	39.0m
Girder Height	2.2m×3 main girders	2.2m	2.2m
Width	6.0m (2-lane)	6.0m (2-lane)	6.0m (2-lane)
Foundation	Spread foundation (A1 abutment) Caisson type pile foundation	Spread foundation (A1, A2 abutment)	Spread foundation (A1, A2 abutment)
Major Materials	$\begin{aligned} & (\phi 2.0m, A2 \text{ abutilent}) \\ & \text{Steel material (SMA490, SMA400 : using weathering steel)} \\ & \text{Concrete} \\ & \sigma_{ck} = 21 \text{N/mm}^2 (\text{abutment}) \\ & \sigma_{ck} = 24 \text{N/mm}^2 (\text{Caisson type pile foundation}) \\ & \sigma_{ck} = 30 \text{N/mm}^2 (\text{Superstructure deck slab}) \end{aligned}$	Main girder concrete $(\sigma_{ck}=30N/mm^2)$ Concrete $(\sigma_{ck}=21N/mm^2)$	Main girder concrete $(\sigma_{ck}=30N/mm^2)$ Concrete $(\sigma_{ck}=21N/mm^2(abutment))$
Superstructure	Launching method using	Stationary scaffolding using	Stationary scaffolding using columns
Construction	temporary vent (2 units)	columns + river cutaway	+ river cutaway
Earth Retaining Method	Earth retaining wall for earthwork of A2 abutment using soldier piles and lagging method	Earth retaining wall for earthwork of A1 and A2 abutment using soldier piles and lagging method	Earth retaining wall for earthwork of A2 abutment using soldier piles and lagging method
Remarks	 Necessary to relocate the existing bridge Retaining wall for the approach road at Punatsangchu Dam and junction with the national highway are scheduled in the vicinity of A1 abutment. 	Well point drainage of spring water at the excavation for abutments using a submerged pump	 Well point drainage is jointly applied using cut-off wall by chemical injection and a submerged pump for good permeability on ground to be load bearing layer for bridge abutments Due to high road height of the bridge, traffic should be restricted for smoothing the existing national highway.

utline (1)

Bridge Name	Burichu Bridge	Chanchey Bridge	Loring Bridge
Bridge Type	PC box girder bridge	PC box girder bridge	Simple steel Langer bridge
Bridge Length	50.0m	45.0m	70.0m
Span Length	48.9m	43.9m	68.6m
Girder Height	2.8m	2.5m	11.0m
Width	6.0m (2-lane)	6.0m (2-lane)	6.0m (2-lane)
	Spread foundation	Caisson type pile foundation	Spread foundation
Foundation	(A1, A2 abutment)	(φ 3.0m, A1 • A2 abutment)	(A1 abutment)
Foundation			Caisson type pile foundation
			(φ3.0m, A2 abutment)
	Main girder concrete	Main girder concrete	Steel material (SMA490,
	$(\sigma_{ck}=30N/mm^2)$	$(\sigma_{ck}=30N/mm^2)$	SMA400 : using weathering
	Concrete	Concrete	steel)
Major Materials	$(\sigma_{ck}=21N/mm^2(abutment))$	$\sigma_{ck}=21$ N/mm ² (abutment)	Concrete
whajor whaterhals		$\sigma_{ck}=24$ N/mm ² Caisson type	$\sigma_{ck}=21 \text{N/mm}^2$ (abutment)
		pile foundation,	$\sigma_{ck}=24$ N/mm ² (Caisson type
		superstructure deck slab)	pile foundation,
			superstructure deck slab)
Superstructure	Stationary scaffolding using	Stationary scaffolding using	Cable erection + vertical
Construction	columns + river bypath	pickets + river bypath	hanging method
	Earth retaining wall for	Earth retaining wall for	Earth retaining wall for
Earth Retaining	earthwork of A1 and A2	earthwork of A1 abutment using	earthwork of A2 abutment using
Method	abutment using soldier piles	soldier piles and lagging method	soldier piles and lagging method
	and lagging method		
Remarks	-	-	-

Table 2-9Bridge Outline (2)

2.2.3.2 Basic Design Drawings

General basic design drawings for the proposed bridges are shown on the following pages.

Table 2-10	List of Basic	Design	Drawings
------------	---------------	--------	----------

Drawing No.	Description	No. of Drawings
1/6	Lawakha Bridge General View	1
2/6	Basochu Bridge General View	1
3/6	Nyarachu Bridge General View	1
4/6	Burichu Bridge General View	1
5/6	Chanchey Bridge General View	1
6/6	Loring Bridge General View	1

The Terms Of Design

			•	
	Bridge O	rder	First Order Bridge	
	Bridge Le	nglh	40 000m	
	Span Ler	ngth	39 000m	
	Road Wi	dth	6.000m	
	Live Lo	ad	IRC Class A	
De	esign Seism	ic Scale	KH=0 22 KV=0 00	
	Form		Pre-stress Concrete box Girder	
Super	Material	Concrete	σck=30 N/mm ²	
structure		Reinforcig Bar	SD295	
		Tendon	12S12 7mm	
	Com	Structure	Inverted Type Abutment	
Sub structure	Foundation		Spread Foundation	
	Material	Concrete	ock=21 N/mm ²	
	strength	Reinforcig Bar	SD295	

	SCALE	DATE	DRAWING NO
-BRIDGE	1.400		

The Terms Of Design

	Bridge O	rder	First Order Bridge	
	Bridge Le	ngth	40.000m	
	Span Lei	ngth	39.000m	
	Road Wi	dth	6.000m	
	Live Lo	ad	IRC Class A	
De	sign Seism	ic Scale	KH=0 22 KV=0 00	
	Form		Pre-stress Concrete box Girder	
Super	Material strength	Concrete	σck=30 N/mm ²	
structure		Reinforcig Bar	SD295	
		Tendon	12S127mm	
_	Structure		Inverted Type Abutment	
Sub structure	Form	Foundation	Spread Foundation	
	Material	Concrete	σck=21 N/mm ²	
	strength	Reinforcig Bar	SD295	

	SCALE	DATE	DRAWING NO.
J BRIDGH	1:400		

	SCALE	DATE	DRAWING NO
BRIDGE	1:400		

-44-

KH=0 22 KV=0 00	
Simple Steel Langer	
(490W) (400W)	
ent	

	SCALE	DATE	DRAWING NO
BRIDGE	1:600		

2.2.4 Implementation Plan

2.2.4.1 Implementation Policy

The following implementation policies were taken into account when implementing the Project as a Japanese Grant Aid Scheme.

- To maximize the use of local engineers, workers, construction materials and equipment so as to contribute to creating employment opportunities, to promote technology transfer and to revitalize the regional economy.
- To create a close liaison system with Bhutanese implementing agencies, the consultant and contractors.
- To draw up a plan on the implementation of substructure and PC superstructures during the dry season (between October and May) when the river water level is low.
- To draw up a realistic implementation plan in due consideration of local rainfall patterns, the time required for materials and equipment procurement and application of appropriate construction methods, etc.
- To draw up an implementation plan and onsite work-in-process without hindering the present traffic conditions and inconveniencing the public as much as possible.

2.2.4.2 Implementation Conditions

Special considerations for the project implementation are described as follows.

(1) Compliance with labor standards

The contractor shall observe the present construction-related legislation in Bhutan and prevent any conflicts with workers by respecting appropriate labor conditions or customs associated with employment.

(2) Environmental conservation during the construction period

Instructions and supervision shall be provided in due consideration of the environmental aspects as a prerequisite for a permission when receiving a "building permit" prior to the commencement of the construction work.

In particular, attention is given to dust and muddy water discharged due to disposal of scrap wood, removal of surplus soil, land banking and pavement construction, and the impact on wild animals through noise resulting from the utilization of explosives.

(3) Necessity of communication means at the sites

Since the infrastructure of telephone communications including cellular phones has not been established at the project sites, the minimal necessary communications system shall be taken into account for work supervision and safety control of construction-related personnel in order to ensure communication between sites by installing satellite phones at each construction site.

(4) Respect of local practices

On drawing up an implementation plan, a work scheduled shall be made taking into account the local traditional events such as the Tsechu Festival or religious holidays.

(5) Security of traffic safety

In order to carry out the construction work while opening traffic to public, traffic safety shall be sufficiently taken into account. When necessary, the construction work shall be carried out by requesting traffic direction from the Bhutan police for smooth traffic management in order to prevent schedule delays.

(6) Schedule adjustment

Progress of the work undertaken by the Bhutanese side shall be properly confirmed and adjusted.

(7) Customs clearance and road conditions

An implementation plan shall be drawn up, considering imports and unloading, the required number of days for customs clearance and road conditions during the rainy and winter seasons.

2.2.4.3 Scope of Work

In implementing the Project, the scope of work to be undertaken by the Japanese and Bhutanese sides is outlined as follows.

- (1) Work undertaken by the Japanese side
 - 1) Reconstruction of Proposed Six Bridges
 - Superstructure work, substructure work, deck face work, incidental bridge work, approach road work, retaining wall work, drainage work and necessary temporary work
 - Establishment of temporary facilities (such as base camps, offices, lodging houses and warehouses)
 - Shifting the existing Lawakha Bridge

2) Materials and equipment procurement

Procurement of construction materials and machinery necessary for the facility construction described in "2.2.4.6 Procurement Plan"

3) Safety measures

Safety control pertaining to the implementation of construction work

4) Consultancy services

A detailed design, preparation of tender documents and contract, assistance for tendering procedures, and construction supervision described in the "2.2.4.4 Consultant Supervision"

- (2) Work undertaken by the Bhutanese side
 - 1) Issuance of construction permits

Prior to commencement of the construction work, the acquisition of construction permits pertaining to the Project by the implementing agency of Bhutan

2) Customs clearance and tax exemption

Facilitating customs clearance in Bhutan for imports and exports of construction materials and equipment, tax exemption conveniences

3) Land acquisition

Acquisition of lands for the bridge construction under the Project, lots necessary for temporary yards such as offices, laboratories and plants, waste and surplus soil disposal sites, described in the Implementation Plan.

4) Relocation of obstacles

Relocation of obstacles such as water pipes or electric lines, when necessary

- 5) Others
 - Provision of quarries and borrow pits necessary for construction work
 - Facilitating of entry and stay of Japanese and third-country persons engaged in the Project
 - Exemption of taxes and other public surcharges such as custom duties and domestic taxes imposed by Bhutan.
 - Appointment of the counterpart (C/P) and provision of transportation means and expenses for the personnel

2.2.4.4 Consultant Supervision

(1) Operating schedule of consultancy services

In the case of implementing the Project, the Exchange of Notes (E/N) for a detailed design under the Japanese Grant Aid Scheme for the Project shall be signed between both Governments of Japan and Bhutan as a prerequisite, and then the Grant Agreement (G/A) shall be made between JICA and the Government of Bhutan. After the signing of the E/N and G/A, the consultant shall conclude a Consultancy Agreement with the Department of Roads (DoR), Ministry of Works and Human Settlement, which is the implementing agency in Bhutan, in accordance with the scope and procedures of the Japanese Grant Aid Scheme based on a written recommendation issued by JICA. Following the conclusion of the agreement, the consultant shall prepare the detailed design and receive an approval for tender documents to be prepared and then the Consultancy Agreement will be completed. After that, the E/N and the G/A for tendering assistance services, construction supervision and construction work shall be concluded between both countries. Based on these, the Consultancy Agreement and Contract for the construction work shall be concluded with DoR. The major services including the consultancy agreement are described as follows.

1) Stage of tender document preparation (Detailed design stage)

In conformity with the results of the Basic Design Study Report, a detailed design for each facility and tender documents will be prepared. These documents as follows will be approved by DoR;

- Design reports
- Design drawings
- Tender documents

2) Tender stage

The DoR will select a contractor of Japanese nationality by means of competitive bidding with the assistance of the consultant. Representatives from the Government of Bhutan shall have the authority to approve related contracts and who are able to judge technical matters. The tender assisting services of the consultant at the tender stage are described as follow.

- Public announcement of P/Q (pre-qualification)
- Pre-qualification
- Bidding and evaluation of bids
- Contract with contractor

3) Work supervision stage

After receiving a verification of construction contract from JICA, the consultant will issue the commencement of work to the contractor and begin construction supervision. During the construction supervision, the consultant shall report on the construction progress to DoR, and provide services to the contractor on work progress, quality, safety and payments, remedies and suggestions on construction work.

In addition, the consultant shall conduct a defect inspection one year later after the completion of the construction supervision, after which the consultancy services will be completed.

(2) Implementation organization

The personnel arrangements and duties of the consultant at each stage of the detailed design, tendering and construction supervision are described as follows.

1) Preparation of detailed design and tender documents

A design team organized by the chief consultant shall make detailed designs. In addition, this work will include preparation of tender documents. In due consideration of the Project to be implemented under the Japanese Grant Aid Scheme, the following points shall be taken into account in preparing tender documents.

- Forms for instruction to tenderers and contracts, etc. shall conform to the guidelines of the Japanese Grant Aid Scheme.
- Technical specifications shall be prepared in due consideration of the "Road Survey and Design Manual (1st Edition, June 2005) compiled by the Department of Roads, Thimphu, Ministry of Works and Human Settlement, Royal Government of Bhutan" and "Standard Specifications and Code of Practice for Road Bridge, the Indian Roads Congress (IRC standard)" so as to sufficiently ensure quality.
- Personnel who are fully familiar with design contents of the Basic Design Study and detailed designs shall take the initiative in preparing the tender documents.

2) Implementation system for tender assistance

The necessary personnel and their roles as an implementation system for assistance of tender procedures are described as follows.

- Chief consultant : General supervision of all matters to ensure that the tendering progresses smoothly
- Tender documents preparation : Checking of tender documents, duties pertaining to the

3) Implementation system for construction supervision

The required engineers and their roles as an implementation system for construction supervision are described as follows.

- Chief supervisor

 In addition to on-site witnessing at the commencement of the Project, at the midway point and at the time of completion, and at the time of a completion inspection, coordination so that duties are carried out smoothly, management of stationed work supervisors and generalization of work supervision services.
- Stationed work supervisor
 By being stationed at the project site, the supervisor will carry out safety control, construction schedule control, completed work amount and quality control. Since the sites are far from each other and there are many bridges, work supervision will be conducted by dividing responsibility into north and south areas. The work supervisor responsible for the south will be a stationed supervisor of overall local work supervision services, and will also take charge of Burichu, Chanchey and Loring Bridges in the south. The stationed supervisor responsible for the north will supervise Lawakha, Basochu and Nyarachu Bridges.
- Superstructure engineer
 As superstructure construction will be carried out for steel and PC bridges, one steel bridge and one PC bridge engineer will be arranged during the superstructure construction period.
- Work supervision (pavement) : By posting an engineer at the sites from the commencement of pavement work (roadbed and asphalt pavement) for approach roads to the completion of trial asphalting, various tests with respect to pavement will be witnessed, and construction and work progress will be controlled.
- Inspector of outsourcing work (steel bridge fabrication): Quality will be controlled by witnessing the inspection of full-scale drafting, material test and a temporary assembly at a steel bridge manufacturing plant for steel bridges

outsourced by the contractor.

2.2.4.5 Quality Control Plan

The quality of construction materials and products and precision of bridge structure will be controlled on fabrication and erection. The Table 2-11 lists the control items and the frequency.

Classification	Item	Description	Frequency	
Material Inspection	Aggregate	Grading, specific gravity, hardness, soundness	Every production district, every 50m ³	
	Cement	Grading, specific gravity, intensity	Every manufacturer	
	Reinforcing bar	Intensity, bending workability	Every diameter, every lot	
	PC steel	Intensity	Every lot	
	Asphalt	Viscosity, penetration degree, softening point	Every lot	
	Landfill material	Grading, specific gravity, moisture content, plasticity, liquidity, compaction, CBR	Every production district, every 500m ³	
Product	Freshly concrete	Temperature, slump, air content	Every 10m ³ at the construction site	
Inspection	Hardened concrete	Intensity, unit weight	Every 30m ³ , test piece for intensity was prepared on 7/28	
	Hot mix asphalt	Temperature, OAC	Every 30 tonnage at construction site	
	Banking roadbed	Field density	2 locations at each bridge (every approach road)	
	Pile load bearing layer	Position, bearing capacity	All positions, 1 location for a group of piles for load bearing layer	
	Girders	Dimension, linearity	All number of items	
	Piles	Dimension, linearity	All number of items	
	Foundation work substructure	Dimension, position, height	All number of items	
	Superstructure	Dimension, position, height	Every 5m in the direction of road	
	Asphalt pavement	Thickness, surface smoothness, height	Every 100m ² for thickness Every 5m for surface smoothness and height in the direction of road	

2.2.4.6 Procurement Plan

(1) Construction materials

The policy concerning procurement of construction materials is described as follows.

- ① Locally available materials shall be procured in principle.
- ② If local material have quality problems or difficult to procure locally due to insufficient distribution volume within a certain period, then they shall be procured from Japan or a third country (India).

Procurement sources for major materials to be utilized for the construction work are shown in Table 2-12 following table.

	Procurement Source					
Item	Bhutan	Japan	Third Country	Remarks		
Landfill materials	0					
Asphalt (for mixing in place construction)	0					
Asphalt emulsion	0					
Base course material (crushed stones)	0					
Cement (ordinary Portland cement)	0					
Admixture (water reducing agent)		0				
Fine aggregate (sand)	0					
Coarse aggregate (crushed stones)	0					
Triangular pole stone (20 to 25cm)	0					
Liner plate (circular 2m, 3m)		0				
Reinforcing bar (Fe-415)			0	India		
PC steel wire			0	India		
Sheath			0			
Steel bridge (weather proofing)		0	0	Steel materials procured from Japan, manufacturing in Indonesia		
Balustrade (steelwork)			0	India		
Bearing (with bearing accessories)		0				
Expansion devices		0				
Bridge deck catch basin (with longitudinal discharge pipe)		0				
Gabion			0	India		
Form plywood			0	India		
Timbering materials (H-type steel, tube pipe, etc.)			0	India		
Scaffolding materials (scaffolding board, separator, etc.)	0	0		Separators, etc. procured from Japan, scaffolding boards locally procured		
Lumber (fro formwork, temporary work, etc.)	0					
Sand bags (for bridge election)	0					
Fuel	0					

Table 2-12 Procurement Sources for Major Construction Materials

(2) Construction machinery

The policy concerning procurement of construction machinery is described as follows.

- ① Universal-use machinery shall be procured locally or from India.
- ② If large machinery or special machinery is broken down or impossible to use it may have a significant impact on the construction schedule. Therefore, it shall be procured from Japan.

From the findings of the field survey, the procurement sources for major machinery to be utilized for the construction work shall be scheduled in Table 2-13.

	Pro	curement So	urce		
Item	Bhutan	Japan	Third Country	Remarks	
Bulldozers (15, 21 ton)	0				
Back hoes (0.8 m^3)	0				
Clamshells (0.4 m ³)		0			
Large-sized breakers (1,300 kg class)	0				
Wheel loaders (1.4 m^3)	0				
Dump trucks (10 ton)	0				
Trucks (4 to 4.5 ton)	0				
Rafter cranes (16, 25 ton)		0			
Grout mixers		0			
Grout pumps		0			
Chemical feeding system		0			
Core drills (55 kW)		0			
Down the hole hammers (508 to 762)		0			
Motorized graders (3.1m)	0				
Road rollers (10 to 21t)	0				
Tire rollers ()8 to 12t			0	India	
Vibration rollers (0.8 to 11t)			0	India	
Tampering machines (60 to 100kg)	0				
Concrete mixers (0.5m ³)			0	India	
Road sprinklers (10m ³)	0				
Air compressors (5m ³ /min.)			0	India	
Air compressors (18 to 19m ³ /min.)		0			
Generators (Not more than 75 kva)			0	India	
Generators (125, 200 kva)		0			
Vent material machinery ()		0			
Launching machinery ()		0			
Cable erection machinery ()		0			

Table 2-13 Procurement Sources for Major Construction Machinery

(3) Transportation of construction materials / machinery

The place of delivery for construction materials / machinery which are locally procured is usually a materials production area, warehouse, or motor pool.

The transportation plan for construction materials / machinery which are mainly supplied from overseas is described as follows.

1) Customs procedures

The number of days required for customs procedures at the source of importation is as follows.

- India : Two days at Phuentsholing (regular customs clearance)
- Other countries : Eight days at the Kolkata Port (for waiting at the offing, unloading and temporary customs clearance) and two days at Phuentsholing (regular customs clearance)

2) Transportation between Kolkata and Phuentsholing

Construction materials / machinery which are procured from overseas other than India will be transported via transport vehicles shown in Table 2-14 from Kolkata Port to Phuentsholing (785km) and the number of days for transportation will be four to five days.

Vakiala Tura	Load	ling Dimension	Maximum Loading	
venicie Type	Length	Width	Height	(MT)
Trucks	5	2.1	2.1	13
Trailers	12	2.4	2.4	24
Low bed trailers	6	3	3	30
Special low bed trailers	8	3.75	3.75	40

Table 2-14 Transport Vehicles (Kolkata to Phuentsholing)

3) Transportation between Phuentsholing and each bridge site

Details for transportation between Phuentsholing which is located on the border with India and each bridge site are described as follows.

- ① Transport vehicle and loading limit
 - The maximum length of materials will be 9m.
 - The maximum load will be 8 tons.
- ② Transportation route and time

Generally speaking, roads in Bhutan will be utilized as transportation routes between Phuentsholing and each bridge site. However, in special cases when passing is dangerous, for example, when transporting superstructure steel elements through the mudslide district halfway to Loring Bridge, roads in Assam in India will be taken.

In due consideration of the above-mentioned situations, the transportation routes and time to each bridge site are shown in Table 2-15.

Bridge Name	Transportation Route	Conveyance Distance	Required Time
		(km)	(day)
Lawakha Bridge	Phuentsholing to Bhutan to site	241	2
Basochu Bridge	Phuentsholing to Bhutan to site	245	2
Nyarachu Bridge	Phuentsholing to Bhutan to site	282	2
Burichu Bridge	Phuentsholing to Bhutan to site	294	2
Chanchey Bridge	Phuentsholing to Bhutan to site	301	2
Loring Bridge (general materials and equipment)	Phuentsholing to Bhutan to site	359	2
Loring Bridge (such as steel girders)	Phuentsholing to via India to Bhutan to site	259	2

Table 2-15 Transportation Routes and Time

4) Transportation routes and time for procurement from Japan

Although there are many container freighters operating between Japan and Calcutta Port, a conventional ship is operated about once a month. The number of days required for transporting materials from the warehouse and plants in Japan to each project site is as follows.

Warehouse/Plant to a Japanese port	:	7 days
Port departure to Singapore Port, Chittagong Port, Calc	utta Port :	30 days
Waiting in the offing at Calcutta and unloading	:	5 to 7 days
Temporary customs clearance at Calcutta	:	1 to 2 days
Calcutta to Phuentsholing via inland transportation	:	5 to 7 days
Regular customs clearance at Phuentsholing	:	1 to 2 days
Reloading at Phuentsholing into trucks in Bhutan	:	2 to 3 days
at Phuentsholing to project site	:	3 to 7 days
Total	54 to 65 days	= 2 months

2.2.4.7 Implementation Schedule

The project implementation schedule table prepared in accordance with the procedures of the Japanese Grant Aid Scheme is shown in Table 2-16.

In the Project, factors considered in the case of deciding construction work schedules are listed as follows.

- Base camps are assumed to be established at Wangdi Phodrang and Damphu.
- With respect to the five bridges aside from the Loring Bridge, both superstructure and substructure will be constructed during the dry season when it will not be affected by the river conditions.
- With respect to Loring Bridge, due to the deep valley and low water level, the substructure can be constructed even during the rainy season and subsequently after the dry season. Since a cable erection method is scheduled for the superstructure, once again it will not be affected by the river water level. Therefore substructure construction will continue even during the rainy season.

 Table 2-16
 Project Implementation Schedule

2.3 Obligations of the Recipient Country

2.3.1 General Requirements for the Japanese Grant Aid Project

The general requirements to be undertaken by Bhutan which were already agreed on between both governments and confirmed in the Minutes of Discussions (M/D) are described as follows.

- ① Land required for implementing the Project shall be secured prior to the commencement of construction work.
- ② Electric power and water supply and a drainage system and other incidental facilities, etc. shall be completely equipped.
- ③ Customs duties, internal taxes and other public surcharges which will be imposed in the recipient country with respect to the supply of products and services under the verified contracts shall be exempted.
- ④ Japanese nationals and third-country nationals whose services may be required in connection with the supply of products and services under verified contracts and such facilities as may be necessary for their entry into the recipient country and stay therein in the performance of their work shall be accorded.

2.3.2 Specific Requirements for the Project

Specific requirements for the Project other than general requirements requested under the Grant Aid Scheme are described as follows.

(1) Removal of existing proposed bridges

The existing bridges will be promptly removed by the Bhutanese side immediately after the completion of the proposed bridges.

(2) Reconstruction or improvement of other bridges

Of the six bridges other than those under the Project on National Highway No.5, reconstruction of Wakleytar Bridge was completed under the Phase II Project. In addition, it has been between 18 to 23 years since the other five bridges were constructed (1985 to 1990), and since the load limit are only 8 to 18t and the width is a narrow 3.27m, Bhutan should reconstruct or improve the five bridges at an appropriate time in order to ensure the effects of the Project.

Bridge Name	Distance in kilometers (km)	Bridge Length (m)	Effective Span (m)	Effective Width (m)	Load Capacity (ton)	Year Constructed
Hesothangkha Bridge	2.4	9.55	9.3	3.27	18	1985
Rurichu Bridge	18.5	16.0	15.0	3.27	18	1987
Baichu Bridge	23.6	16.0	15.0	3.27	18	1985
Kamichu Bridge	31.5	19.0	18.0	3.27	15	1986
Mechiikora Bridge	53.9	19.0	18.0	3.27	8	1990

Table 2-17 Overview of Five Bridges Other than Proposed

Fig. 2-16 Locations of Five Bridges Other than Proposed

(3) Removal and Relocation of Existing Utilities for Project-related Construction

With respect to Land Acquisition, it is unnecessary to secure a new lot at the present time. The following existing objects will be removed or relocated by the Bhutanese side.

- ① Relocation of the existing utilities (such as electricity and water supply) at project sites
- ② Relocation of the forest administration office located in the vicinity of Chanchey Bride (on the side of Damphu)

(4) Temporary Yard Acquisition

The following yards should be secured during the construction period as temporary yards for contractors.

- Vacant (unoccupied) land located in the roadside of Basochu Bridge (on the side of Wangdi Phodrang)
- ② Vacant land located in the roadside of Nyarachu Bridge (on the side of Wangdi Phodrang)
- ③ Vacant land located in the roadside of Burichu Bridge (on the side of Wangdi Phodrang)
- ④ Lot after the relocation of the forest administration office located in the roadside of Chanchey Bridge (on the side of Damphu)
- (5) For Loring Bridge, a lot on the side of Sarpang 3km from Loring Bridge to be used as a temporary yard and vacant land on the side of Sarpang 17 km away for steel elements storage
- (5) Arrangement on aggregate or gravel

It is requested to arrange an exemption for mining rights for aggregate or gravel, to secure its rights, and to provide free of change with or to help secure borrow pits and dumping grounds. The following locations on the excavation of aggregate or gravel are scheduled.

- ① Aggregate : Stone pit in the vicinity of Nyarachu Bridge
- ② Gravels : Collected sand from Sunkosh and Gelephu Rivers in Wangdi Phodrang

2.4 Project Operation and Maintenance Plan

2.4.1 Maintenance Work Description

Superstructures of two bridges are of weathering steel, and the other four are of PC. All the substructures are of reinforced concrete.

Although maintenance items are necessary yearly and every five years, large-scale maintenance work such as repainting will be unnecessary. In addition to bridge maintenance, approach roads and revetment will be maintained.

	Item	Contents				
	① Inspection and cleaning of	By inspecting catch basins on the bridges, gutters and pipes				
	drainage systems:	of approach roads, to remove and clean any sediment.				
	② Inspection and cleaning of	Although a surface drainage system is installed on expansion				
Annual maintenance	expansion joints:	joints on the bridge surface, to inspect and if necessary				
		remove and clean mud or sand accumulated in joint gaps.				
	③ Inspection and repair of	By inspecting conditions of bridge pavement, to repair				
	bridge face:	cracks, etc.				
	④ Inspection and cleaning of	To inspect, clean and remove mud accumulated around				
	bearings:	bearings below girders if necessary.				
	⑤ Inspection and repair of	To inspect and repair pot holes on asphalt pavement.				
	approach road pavement:					
	⁽⁶⁾ Inspection and cleaning of	To remove mud accumulated in gutters.				
	approach road gutters:					
Maintananaa	① Repair of steel handrails:	To partially repair handrails damaged by vehicle collisions.				
Maintenance	② Repair of revetments:	To inspect and replace gabions if necessary.				
years	③ Re-painting of road	To periodically repaint road markings.				
	markings:					

Table 2-18 Contents of Maintenance

2.4.2 Other Maintenance Items

It is important to preserve good bridge conditions and to improve the durability of the facilities by sufficiently carrying out maintenance in order to sustain the effects of the Project. Therefore, the following items should be taken into account.

- ① By periodically inspecting, to constantly grasp the facility conditions.
- ② To inspect and clean the drainage system before the rainy season.
- ③ To secure maintenance budget based on a maintenance plan.

2.5 Project Cost Estimation

2.5.1 Cost Estimation under the Project

(1) Expenses to be borne by Japan

The Project will be implemented in accordance with the Japan's Grant Aid scheme and the cost will be determined before concluding the Exchange of Note for the Project.

(2) Expenses to be borne by Bhutan

Project items to be undertaken by Bhutan, the implementing time and estimated project cost are shown in the following table.

No.	Project Description	Implementing Time	Project Cost (Nu.)	Project Cost (yen conversion)
1	Remove 6 proposed bridges	After opening bridges to traffic under the Project	2,119,000	6,081,530
2	Relocate check posts of 6 proposed bridges	After opening bridges to traffic under the Project	450,000	1,291,500
3	Reconstruct 5 bridges other than proposed bridges	To be confirmed through discussions	30,356,000	87,121,720
4	Service charges for A/P and B/A procedures		6,822,000	19,579,140
		Total	39,747,000	114,073,890

Table 2-19Project Description undertaken by Bhutan, Implementing Time and
Estimated Project Cost

Nu. = Ngultrum

(3) Estimation Conditions

① Estimation Time	:	May 2008				
② Exchange rate	:	1 US = 107.97, 1 Nu = 2.87 (mean value between November 1,				
		2007 and April 30, 2008)				
③ Implementation period : The Project will be implemented as construction work through						
		national bond. The time required for detailed designs and				
		construction work will be 8.0 months and 37.5 months respectively				
		as shown in the implementation schedule.				
(4) Other	:	The cost was estimated with the accuracy of the Grant Aid Scheme				
		of the Government of Japan.				

2.5.2 Operation and Maintenance Cost

The maintenance cost was calculated in Table 2-20 in accordance with the maintenance plan for the Project as described earlier.

					(E	Exchange rate :	1Nu := ¥2.87)
Cycle	Object	Location subject to inspection	Maintenance Description	Unit	Unit Cost	Workload	Maintenance Cost (Nu)
Annual		Drainage system	Cleaning of catch basins, conduit pipes	spot	100	50	5,000
	Bridge	Expansion joints	Cleaning, shield rubber repair	spot	500	12	6,000
		Bridge decks	Minor repair of pavement	m²	220	174	38,000
		Bearings	Cleaning on abutments	spot	100	12	1,000
	Road	Road surfaces	Pavement repair	spot	620	143	88,000
		Gutters	Removal of sediment	m	50	950	48,000
	(1)Subtotal						186,000
	Dridaa	Handrails	Repair of damage due to collisions	m	1,000	29	29,000
Five-	Bridge	Revetment	Inspection, repair of gabions	m	1,800	144	259,000
year	Road	Marking	Re-painting	m	30	290	9,000
	②Subtotal						297,000
	③Average amount of each year (②/5-year)						59,000
Total amo	Total amount for each year $(1+3)$						245,000
					Japanese	yen conversio	n amount /year =¥703,000

Table 2-20 Major O/M Items and Cost

2.6 Other Relevant Issues

In order to sufficiently display the project effects through the smooth implementation of the requested Japanese assistance, the Bhutanese side is required to take the following matters into account.

Information on the possibility of impact in the implementation of the Project, for example, the approach road for the Phase 1 Punatsangchu Hydropower Plant Project which is under construction in the vicinity of Lawakha Bridge should be sufficiently shared with the Japanese side. In addition, information on the Phase 2 to Phase 4 Punatsangchu Hydropower Plant Project or Sunkosh Hydropower Plant Project should be sufficiently shared in the similar manner and it should be requested in order for the bridges to be reconstructed through the implementation of the hydropower construction projects not to be buried in water.

- ② Although the reconstruction of the five other bridges on National Highway No. 5 is essential in displaying the project effects, it should be adjusted so as not to interfere with the Project during the construction work period.
- ③ In order to alleviate traffic congestion during construction work and to avoid unnecessary troubles with local residents, advanced notice for motorists and local residents should be thorough through the initiatives of DoR.
- ④ DoR should carry out periodic monitoring in accordance with the Environmental Codes of Practice (ECoP).

CHAPTER 3

PROJECT EVALUATION AND RECOMMENDATIONS

CHAPTER 3 PROJECT EVALUATION AND RECOMMENDATIONS

3.1 Project Effects

The stable transportation of people and goods on National Highway No. 5 will be secured by reconstructing bridges on National Highway No.5 through the implementation of the Project. Accordingly, approximately 120,000 residents in four districts (Wangdue Phodrang, Dagana, Tsirang and Sarpang dzongkhags) along National Highway No. 5 are expected to benefit.

The project effects are shown in Table 3-1.

	Remedial Measures under the	Direct Effects and	Indirect Effects and
Current Situation and Problems	Requested Japanese Assistance	Degree of Improvement	Degree of Improvement
The present temporary Bailey	• The temporary bridges on	① The load capacity of all six	① Two-way traffic on the existing
bridges on National Highway	National Highway No. 5 will	bridges will increase from 18t	bridges is impossible, so
No. 5 show remarkable damage	be reconstructed as	(minimum value for the	vehicles must slow down when
or deterioration; in addition, the	permanent bridges.	proposed six bridges) to 40t.	crossing. This leads to a
load capacity on many bridges		Consequently, the weight limit	bottleneck for traffic. In
is less than 18t, so they cannot		of passing vehicles can be	addition, it also invites the
withstand large vehicles.		substantially eased, in	possibility of traffic accidents
Consequently, larger vehicles		particular, traffic of large-sized	since the width of the bridge
are unable to utilize the route so		vehicles will be revitalized.	section is narrower. By
that vehicles larger than 18t		② The travel distance for	reconstructing the bridges, not
must utilize National Highway		large-sized vehicles between	only will load capacity increase
No. 2, which is a route passing		Gelephu, the center of the	but also road width. The
through India, in order to access		development in the south which	drivability and safety of bridges
to cities in the south. The		is regarded as a priority	will therefore be improved.
restriction of transportation		development district in the 10 th	② As the project site relies on road
hinders socio-economic		Five Year Plan and Thimphu,	traffic and National Highway
development.		the capital of Bhutan will	No. 5 is the only trunk road,
		decrease sharply. Specifically,	improvement in drivability
		since the load capacity of the	along National Highway No. 5
		existing bridges along National	through the rebuilding of
		Highway No. 5 is 18t, larger	bridges will promote the
		vehicles are unable to utilize	distribution of people and
		the route. Accordingly,	commodities and in turn
		large-sized vehicles over 18t in	regional economic development.
		both cities must utilize National	③ Since there are development
		Highway No. 2 at a distance of	programs along National
		approximately 380km (passing	Highway No. 5 and in the
		through India). After the	southern district (Punatsangchu
		completion of the Project, since	Hydropower Project, Industrial
		the route from Thimphu to	Estate Construction Project,
		Gelephu will be converted to	New Airport Construction
		approximately 260km passing	Project and 2 nd East-West
		through National Highways	Highway Construction Project),
		No. 1 and No.5, the travel	the reconstruction of bridges
		distance will decrease	will support the transportation of
		approximately by 120km and	materials and equipment for the
		double transit across the border	implementation of these
		can be prevented.	development projects.

Table 3-1Project Effects

3.2 Recommendations

3.2.1 Undertakings to be Taken by the Recipient Side

(1) Implementation of Responsibilities Undertaken by the Bhutanese Side

The Bhutanese side is required ensure security of necessary lots for reconstructing the bridges, temporary yards, such as offices and plants, as described in "Implementation Plan", disposal yard for waste and surplus soil disposal related to construction work, relocation of obstacles, provision of quarry and borrow pits without any hindrance to the project implementation.

(2) Reconstruction of Other Five Bridges

The remaining five Bailey bridges on National Highway No. 5 should be reconstructed by the Bhutanese side in line with the project implementation.

3.2.2 Technical Cooperation and Coordination with Other Donors

By dispatching bridge experts to DoR as Technical Cooperation Project, design, soundness survey and evaluation on superstructure (PCT girder bridge and plate girder bridge), substructure (abutment and bridge pier) were instructed. As the result, Bhutan has independently designed concrete and steel bridges up to 30m long and conducted soundness evaluation on domestic bridges. In addition, design and work supervision has been taken up to about 50m long Bailey brides without any problems.

Bridges over 30m long are designed by India and Thailand, whereas, construction work is conducted by India or by joint ventures of builders between India and Bhutan. In the design and construction work, troubles on delay of a construction period or quality arise, so they cannot catch up with the past bridge construction conducted through Japanese Grant Aid.

Through the implementation of the Project, with respect to knowledge and skills that the Bhutanese engineers obtained from the technical cooperation, the further skills are considered to be settled through the implementation of on-site observation.