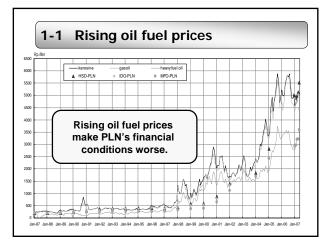

APPENDICES

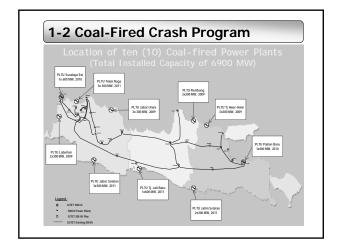
Appendix – 1	Materials for Workshop
1.1	1st Workshop (January 2008)
1.2	2nd Workshop (August 26, 2008)
1.3	3rd Workshop (November 5, 2008)
Appendix – 2	Technology Transfer Seminar
Appendix – 3	A summary of a Study on a Railway Link Plan for Coal Transportation
Appendix – 4	Coal Supply to PLN
Appendix – 5	Operation Record
5.1	Operation Performance Record for the Existing Power Plants of PJB
5.2	Operation Performance Record for the Existing Power Plants of Indonesia Power
Appendix— 6	Simulation Data of WASP IV
6.1	Input Data
6.2	Output Data
Appendix – 7	General Information of System Planning
Appendix – 8	Outline of PSS/E Software
Appendix— 9	"Analisis Dampak Lingkungan (ANDAL) Pembangunan Pembangkit Listrik Tenaga Uap (PLTU) 2 Jawa Timur Kapasitas 1 × (600-700) MW di Kabupaten Probolinggo"
Appendix – 10	"Pemantauan Pelaksanaan RKL dan RPL PLTU Suralaya Unit 1-8 Semester 1 Tahun 2007"
Appendix – 11	"NOTA DINAS No. 062/121/PD Y5/2008" for SUMMARY AMDAL PLTU1 Jawa Tengah Rembang

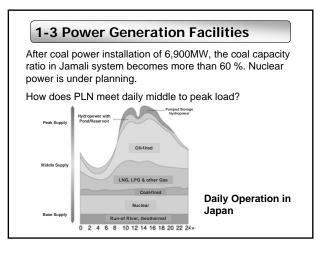
APPENDIX-1 **MATERIALS FOR WORKSHOP**

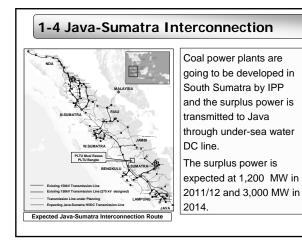
- 1.1 1st Workshop (January 2008)
- 1.2 2nd Workshop (August 26, 2008)
- 1.3 3rd Workshop (November 5, 2008)

1.1 1st Workshop (January 2008)

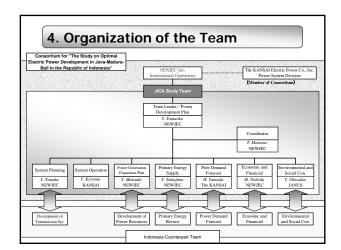



Table of Contents


- 1. Current issues in Indonesia
- 2. Policy
- 3. Work Plan
- 4. Organization of the Team
- 5. Works



- 1-1. Rising oil fuel prices
- 1-2. Coal-Fired Crash Program
- **1-3. Power Generation Facilities**
- 1-4. Java-Sumatra Interconnection



2. Policy

- i. To keep consistency with past studies.
- ii. To take into account the peak demand shift in the future.
- iii.To develop the integrated optimal power generation development (best mix) plan reviewing the role of existing power stations.
- iv. To develop the integrated optimal transmission system development plan in terms of economy and reliability.
- v. To propose improvement measures for Jamali system operation and maintenance based on the experience of the KANSAI.

(3. V	Vorl	k Pla	an							
Fisca	al Year	2007				Fisca	l Year	2008			
1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12
	minary dy Stage			tudy Stage ptimal Scen			Conclusior	and Recor	nmendatior	Stage	
-	1st Field	Work		2nd Field	l Work	3rc	Field W	ork	4th Fie	eld Work	
D Prepara	tion Wor	ĸ	□ 1st Horr	e Work	2nd	Home \	Vork	Srd Wd	Home rk		Home ork
	lc/R ▲ _{WS1} (JKT					v	lt/R /S2 ▲ BY) ▲	Seminar		Df/R WS3 (JKT)	F/R

5. Works

- 5-1. Power Demand Forecast
- 5-2. Primary Energy Supply
- 5-3. Generation Expansion Plan
- 5-4. Power System Plan
- 5-5. Study on Recommendation for Improvement of Power System Operation
- 5-6. Economic and Financial Study
- 5-7. Environmental and Social Consideration
- 5-8. Power Development Plan
- 5-9. Conclusion

5-1. Power Demand Forecast

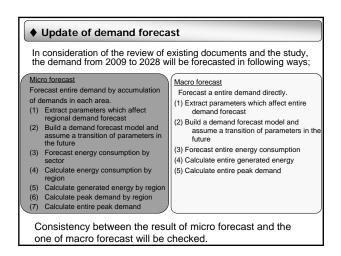
- Review of existing demand forecast
- Review of economic policy, forecast of economic growth rate and regional development plan
- Evaluation of the possibility of application of DSM
- Evaluation of the possibility of energy saving measures
- Update of demand forecast
- Information to be surveyed

Review of existing demand forecast

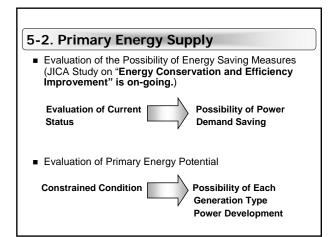
- (1) Review the existing demand forecast :
 - RUPTL
 - RUKN
 - other documents
- (2) Review the outline of the software for demand forecast which is used in MEMR and PLN

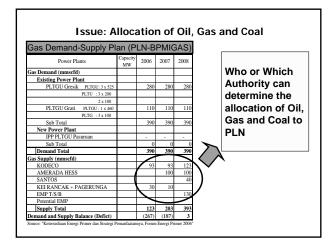
Review of economic policy, forecast of economic growth rate and regional development plan

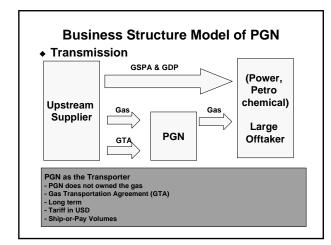
Review the economic situation in the area which will be considered for demand forecast;


- Population in Jamali area (number and growth)
- GDP growth rate and energy consumption by sector
- Regional development plan

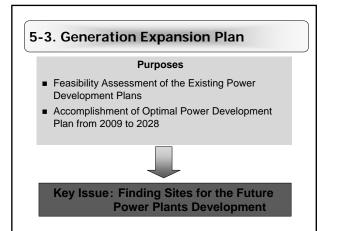
Evaluation of the possibility of application of DSM

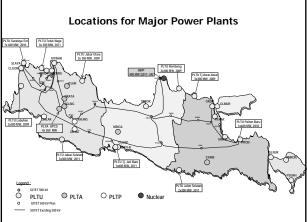

- Review the action plan for DSM which was studied in the past
 Evaluate the possibility of application of DSM considering the situation in Japan
- (3) Present methods for DSM in Japan if necessary


• Evaluation of the possibility of energy saving measures


- (1) Evaluates the effects of possible measures for energy saving
 - Evaluation of possibility and calculation of effects of measures for energy saving in factories, commercial demands and households.
 - Calculation of the reduction of energy consumption by applying electrical appliances
 - Evaluation of other measures
- (2) In the study, JICA team will have a support from the team of "The Study on Energy Conservation Promotion in Indonesia"

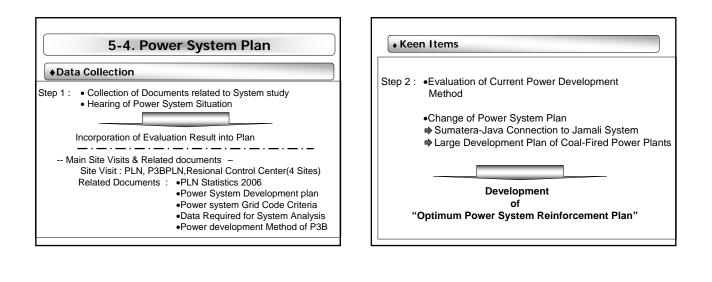
Organization	Information and documents
to be visited	to be surveyed
MEMR, DGEEU PLN, System Planning PLN, P3B	 The latest demand forecast and grounds for it. (Peak demand, Energy consumption, Number of customers, load factor, losses, electrification rate, etc.) Existing capacity and taking-over estimation of captive generators PLN Statistics, PLN Annual Report Regional supply and demand Outline of "DKL" and "Simple-E"

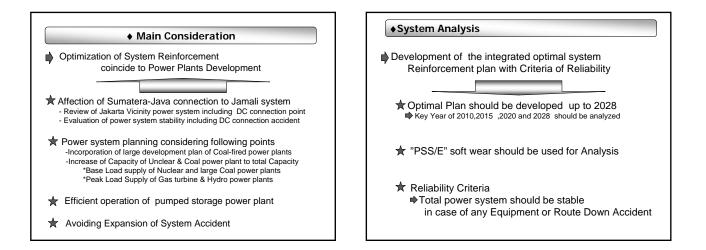


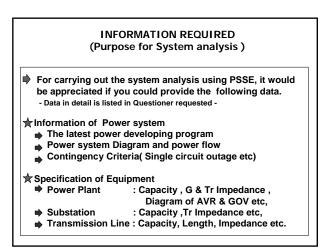


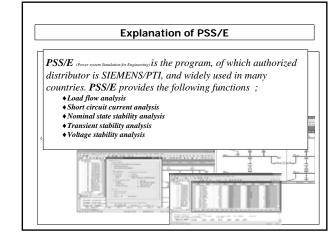
Required Data/Information

- Development Plans for Oil, Gas and Coal including the Related Infrastructures
- Allocation Mechanism of Oil, Gas and Coal to Power Sector (PLN)
- Procurement Processes of Primary Energy
- Development Plans of Gas Pipeline Network
- Potential Reserve of Hydro and Geothermal

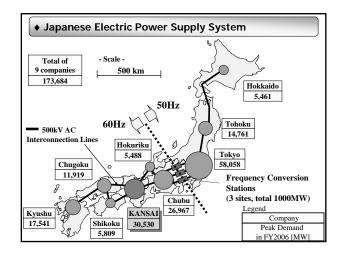


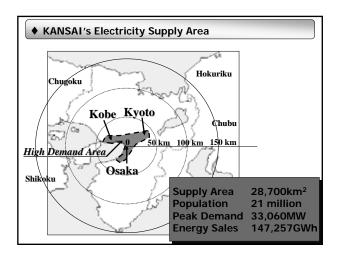


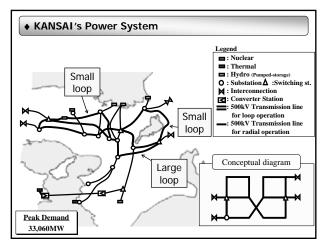

		2007	2010	2015	2020	2025
Peak Demand	MW	16,511	20,247	27,846	37,634	50,454
Reseve Margin	%	35%	35%	35%	30%	30%
Required Capacity	MW	22,290	27,333	37,592	48,924	65,590
Existing Capacity	MW	18,760	19,256	13,152	9,887	7,909
Additional Capacity	MW	3,530	8,077	24,440	39,037	57,681
Crash Program	MW	0	6,900	6,900	6,900	6,900
Java-Sumatra Inter.	MW			3,000	3,000	3,000
Add. Capacity less Crash Program & Java-Sumatra	MW	3,530	1,177	14,540	29,137	47,781
Aditional Capacity per Year	MW		1,177	2,673	2,919	3,729
Number of Equivalent Power Plants of 600 MW	Nos		2.0	4.5	4.9	6.2
Reference Data : RUKN 2006	i, MEM	R	l			

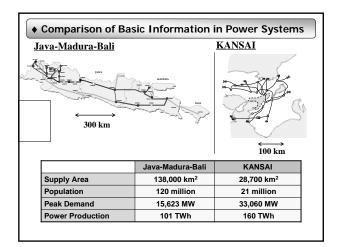

Required Data/Information

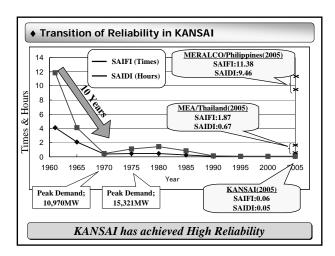
- The Latest RUKN (2006. 06 ?) and RUPTL (2006.11?)
- Current Progress Status of the Crash Program
- Potential Candidate Sites (Map) for the Future Power Resources Development
- Operation Performance Data of the Existing Major Power Plans for WASP IV

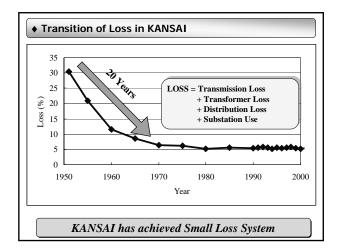


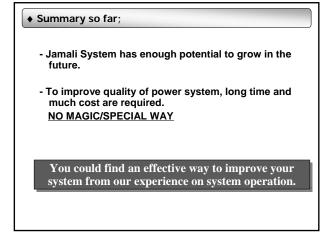


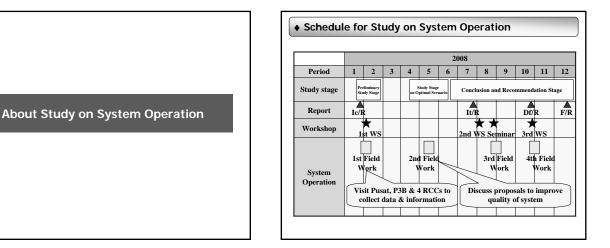


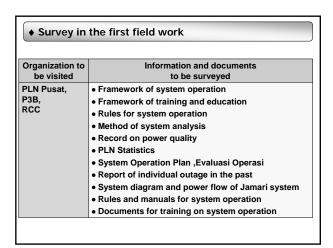


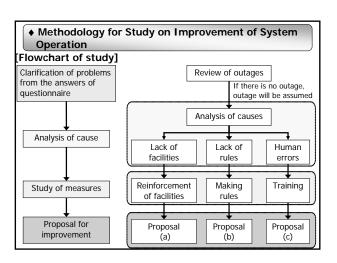

About KANSAI Electric Power Co., Inc.

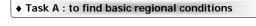








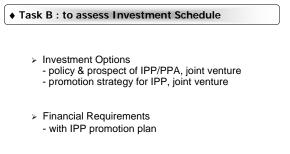


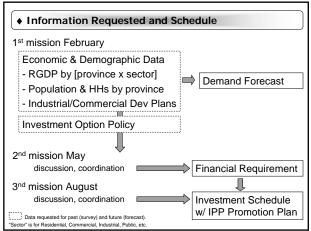

- possible countermeasures at this moment;
- (a) Reinforcement of facilities Reinforcement of facilities such as FACTS device and/or protection relay
- (b) Establishment of rules Establishment of rules such as system isolation and/or recovery from outage
- (c) Training Training of simulated outage and/or utilization of software for training

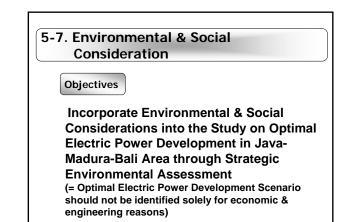
JICA study team will propose countermeasures and discuss them with CP in the second field survey

5-6. Economic and Financial Study

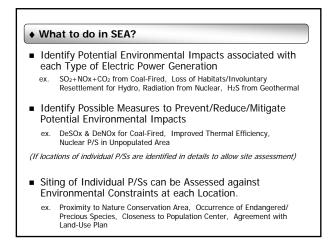
Tasks


- A. To find basic Regional Economic and Demographic Conditions for Demand Forecast
- B. To assess Investment Options and Financial Requirements for Optimal Power Development Plan


"HAVE BEEN's" and "WILL BE's"


Economy

- production (RGDP) by [province x sector]
 # of business establishments by [province x sector]
- Large Scale Development Plan
 e.g. heavy industry development, commercial complex development tourism promotion (in Bali), etc
- Demography
- population, # of households by province



 Investment Schedule
 investment schedule for Optimal Power Development Plan

What is Strategic Environmental Assessment (SEA)?				
Strategic Environmental Assessment (SEA)	Environmental Impact Assessment (EIA)			
Applied to Policy, Plans & Programs (Upstream of Decision-Making)	Applied to Individual Projects (Downstream of Decision-Making			
General Assessment	Specific Assessment			
Area Basis and/or Long-Term	Site and Project Specific			
Can Consider Synergistic Impacts	Difficult to Consider Synergistic Impacts			
Can Consider Cumulative Impacts	Difficult to Consider Cumulative Impacts			
Greater Flexibility for Alternatives	Constrained to Specific Projects			

♦ SEA for "Coal-Thermal Development Acceleration Program" on Air Quality

[Data Requirements]

- Total Emissions from 10 Coal-Fired P/Ss for SO₂, NOx, SPM and CO₂ (without DeSOx, DeNOx, ESP)
- 2. Total Emissions from 10 Coal-Fired P/Ss for SO₂, NOx, SPM and CO₂ (with DeSOx, DeNOx, ESP)
- 3. Total Emissions from All Exiting P/Ss in Java for SO_2, NOx, SPM and CO_2

+ What is Output of SEA?

- Provide Input to Identification of Alternative Electricity Development Scenarios
- Recommend Possible Environmental Protection Measures to the Optimal Electric Power Development Scenario

5-8. Power Development Plan

- Review and evaluation of national policies, relevant laws and regulation, and institutional framework on electric power sector
- Review and evaluation of institutional framework for power utility industry consisting of PT. PLN, Indonesia
- Setting up alternative scenarios for power development and identification of optimal scenario
- Finalization of optimal Jamali power development plan

Information Requested

- National policies, relevant laws and regulation and institutional framework for electric power sector.
- Institutional framework on power utility industry in Jamali including PT. PLN.

5-9. Conclusion

- Accomplish the optimal power development plan, from 2009 to 2028, with the least cost under the conditions of probable power sources, probable site locations and environmental impact.
- Accomplish Jamali transmission system development plan corresponding to the optimal power development plan in terms of economy and reliability.
- Suggest the improvement methods of system operation through seminar based on the experience of the KANSAI and current conditions in Indonesia.
- Support to produce environment-friendly optimal power development plan

1.2 2nd Workshop (August 26, 2008)

2ND WORKSHOP OF THE STUDY ON OPTIMAL ELECTRIC POWER DEVELOPMENT IN JAVA-MADURA-BALI IN THE REPUBLIC OF INDONESIA

AUGUST 26, 2008 AT PJB HEAD OFFICE PRESENTED BY JICA STUDY TEAM

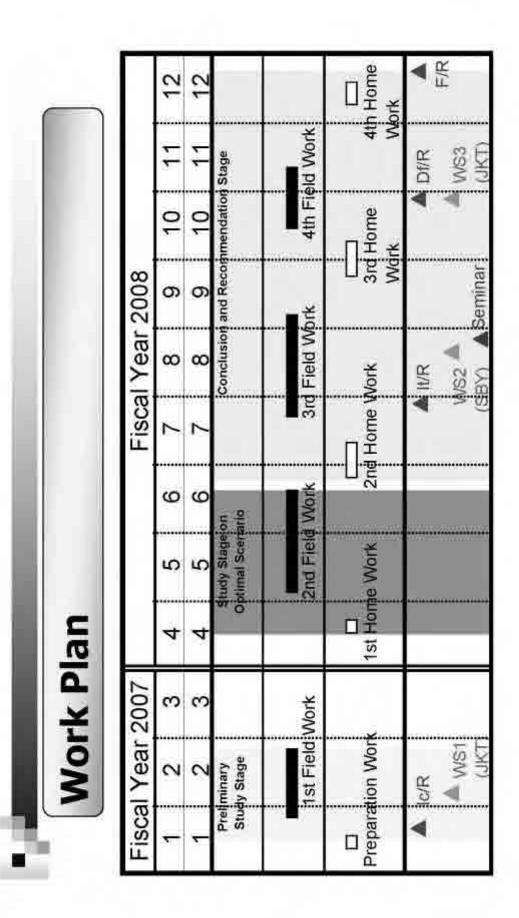
THE STUDY ON OPTIMAL ELECTRIC POWER DEVELOPMENT IN JAVA-MADURA-BALI IN THE REPUBLIC OF INDONESIA

Introduction

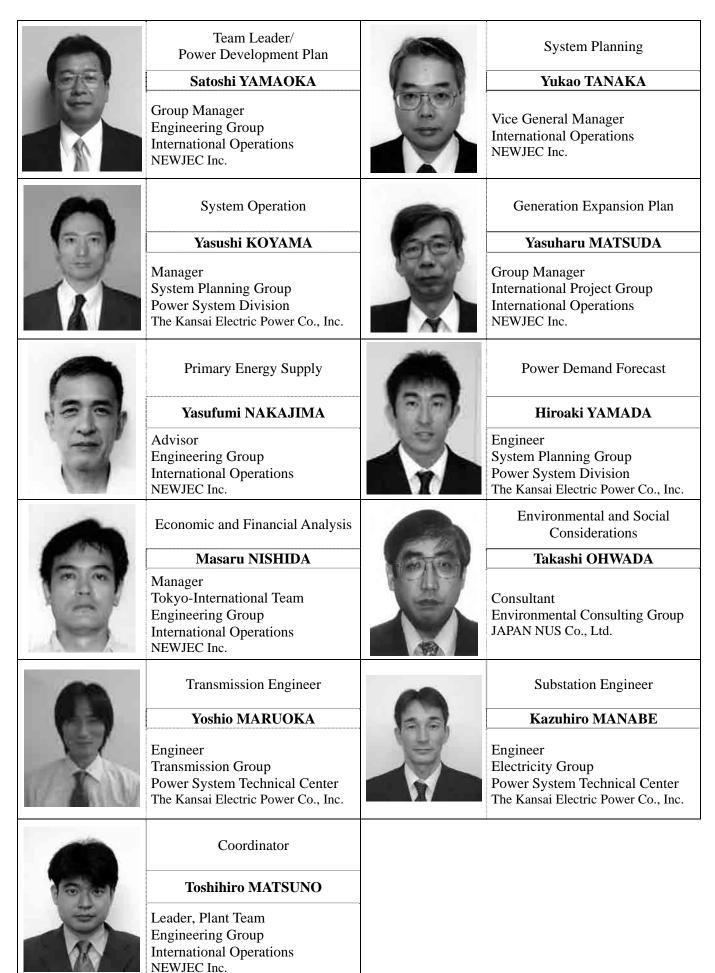
In response to the request of the Government of the Republic of Indonesia, the Government of Japan decided to conduct THE STUDY ON OPTIMAL ELECTRIC POWER DEVELOPMENT IN JAVA-MADURA-BALI IN THE REPUBLIC OF INDONESIA.

Accordingly, the Japan International Cooperation Agency (JICA), the official agency responsible for the implementation of the technical cooperation programs of the Government of Japan, will undertake the Study in close cooperation with the authorities concerned with the Government of Indonesia.

NEWJEC Inc. and the KANSAI Electric Power Co., Inc. have been selected as the JICA Study Team to conduct the captioned Study.


The Study will begin in January 2008 and finish in December 2008.

Study Items


- 1. Power Demand Forecast
- 2. Primary Energy Supply
- 3. Generation Expansion Plan
- 4. Power System Plan
- 5. Study on Recommendation for Improvement of Power System Operation
- 6. Economic and Financial Study
- 7. Environmental and Social Consideration
- 8. Power Development Plan

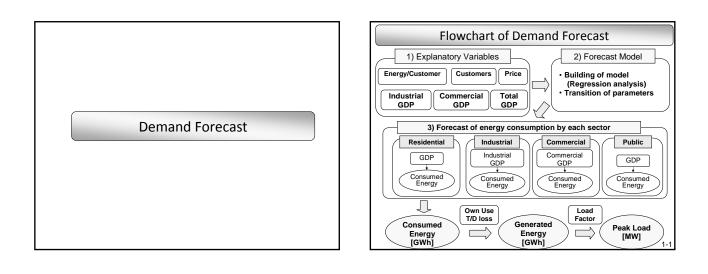
Conclusion

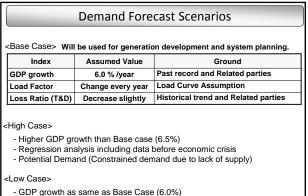
- 1. Accomplish the optimal power development plan, from 2009 to 2028, with the least cost under the conditions of probable power sources, probable site locations and environmental impact.
- 2. Accomplish Jamali transmission system development plan corresponding to the optimal power development plan in terms of economy and reliability.
- 3. Suggest the improvement methods of system operation through seminar based on the experience of the KANSAI and current conditions in Indonesia.
- 4. Support to produce environmental friendly optimal power development plan.

Member List of JICA Study Team

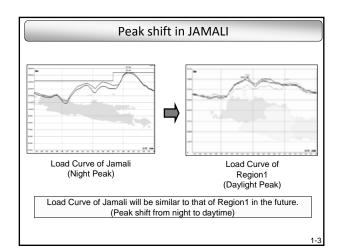
The Study on Optimal Electric Power Development in Java-Madura-Bali in the Republic of Indonesia

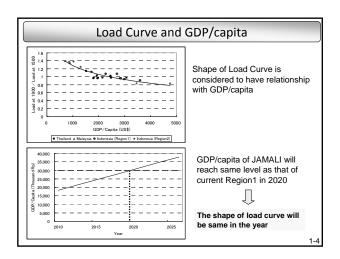
The 2nd Workshop Program

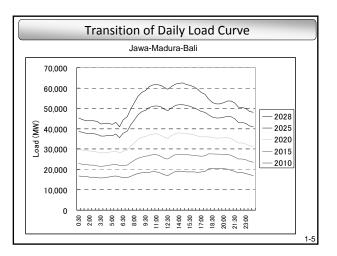

Date :	26 August 2008 at 10:00 AM.
Place:	PJB Head Office
Subject:	Interim Report

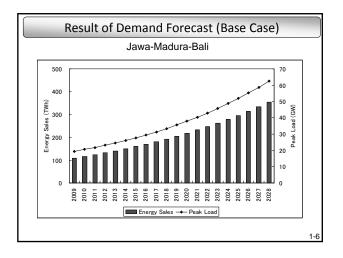

Time	Content	Presenter
10:00 - 10:10	Opening Speech by MEMR	
10:10 - 10:20	Opening Speech by JICA	
10:20 - 10:25	Opening Speech by PLN	
10:25 - 10:35	General	Mr.Yamaoka
10:35 - 10:50	10:35 - 10:50 Power Demand Forecast	
10:50 - 11:10	Primary Energy	Mr.Nakajima
11:10 - 11:40	Generation Expansion Plan	Mr.Matsuda
11:40 - 12:00	Question and Answer for the morning session	
12:00 - 13:00	Lunch Time	
13:00 - 13:30	Power System Operation	Mr.Koyama
13:30 - 14:00	Power System Plan	Mr.Tanaka
14:00 - 14:20	Economic and Financial Study	Mr.Nishida
14:20 - 14:50	Strategic Environmental Assessment	Mr.Ohwada
14:50 - 15:00	Coffee Break	
15:00 - 15:30	Power Development Scenario	Mr.Yamaoka
15:30 - 16:00	Question and Answer	
16:00 - 16:05	Closing Speech by PLN	

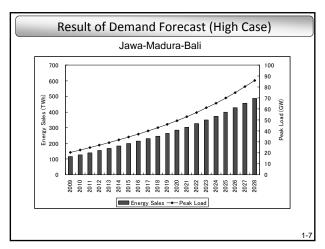
1. POWER DEMAND FORECAST

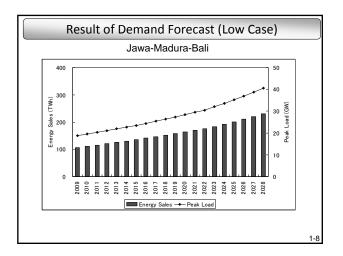

SPEAKER: MR. YAMADA HIROAKI, KANSAI ELECTRIC POWER CO., Inc.

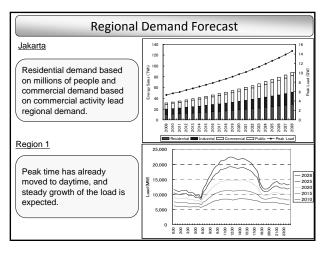

1. Demand Forecast

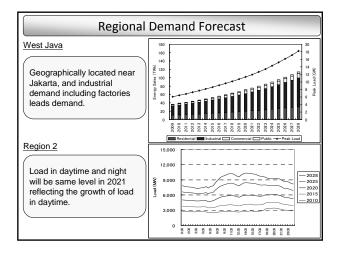


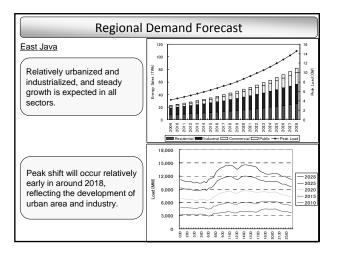

- Effect of energy saving studied by other JICA team (About 30% Reduction of Energy Consumption)

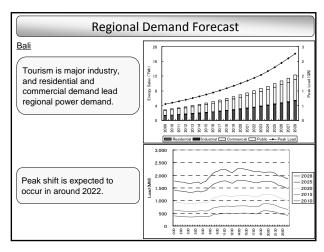


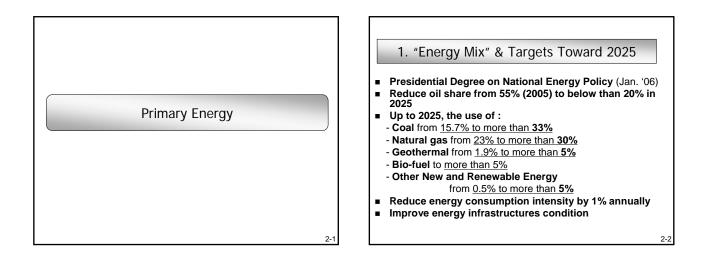





1. Demand Forecast







1. Demand Forecast

SPEAKER: MR. NAKAJIMA YASUFUMI, NEWJEC Inc.

Type of PP	Fuel	Operation Mode	Remarks
1. PLTU	Coal	$B \rightarrow B \text{ or } M$	Major power generation
	Gas	$B \rightarrow M \& partial P$	
	Oil	$B, M \rightarrow X$	Convert to Gas-firied or retire
2. PLTG	Gas	$B \text{ or } M \rightarrow B \text{ or } M \text{ \& partial } P$	Convert to PLGTU
	HSD	Р	Convert to PLGTU with gas-fired or retire
8. PLTGU	Gas	$B \rightarrow B \text{ or } M \& \text{ partial } P$	Apply LNG or CNG
	HSD	$B \text{ or } P \rightarrow P$	Convert to Gas-firied or retire
4. PLTD	HSD	$P \text{ or } M \rightarrow P \text{ or } M$	Only in remote area
5. PLTA	Large	M or P→M & partial P or P	
	Small	$B \rightarrow B$	Minor
	Pumped	Р	Major peak generation
6. PLTP	-	В	Environmentally developed
7. PLTN		В	Environmentally developed

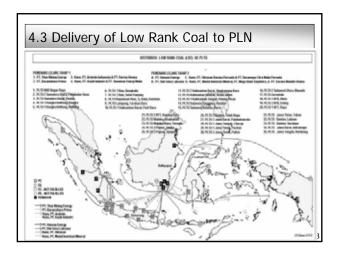
Coal Rank	HHV (kca/kg)	Resource	es	Reserves		
	Air Dried Base	Billion Ton	%	Billion Ton	%	
Low	<5100	14.95	24.4	2.98	44.1	
Medium	5100-6100	37.65	61.5	2.44	36.1	
High	6100-7100	7.97	13	1.22	18	
Very High	>7100	0.67	1.1	0.12	1.8	
Total		61.24	100	6.76	100	
	L					

53

90

200

Coal Demand (Mill.ton/y)


4. Coal for PLTU	

- Adoption of Low Rank Coal for PLTU is the policy of Indonesian Government
- Coal Characteristics
- Competitiveness in Domestic Market
- <u>Stable Supply of Coal</u> is the key for stable operations of coal fired PLTU
- ✓ Production Capacity
- Infrastructures such as transportation, coal handling, coal storage, etc.

2-

4.1 Typical Analysis of Low Rank Coal Typical Rejection Description Gross Clorific Value Kcal/kg (AR*) 4200 <4000 or >4500 Hardgrove Grindebility lindex 60 <45 or >65 Total Moisture % (AR) 30 >35 Ash Content % (AR) 5 >6 Sodium Content % (AR) 1.5 >4 Sulphur Content % (AR) 0.33 >0.35 Nitorogen % (AR) >1.2 Max. 1.2 >Medium Slagging Fauling Index Medium Grain Size through sieve 2.38mm Max. 20% >20% Grain Size through sieve 2.38mm Max. 80% >80% Min. 95% <95% Grain Size through sieve 32mm Grain Size through sieve 2.38mm 100% <98% (Max. size 10mm Ash Fusion Temperature (IDT) °C 1150 <1100 ote; AR=As Received Base 2-6

	Property	Impact
		1.3 times of Coal Consumption
1	1 Low Calorific Value	Larger Size of Coal Handling Equipment
		Bigger amount of Coal Transportation
		• Drying Capability in Pulverizer (High Temp. 1ry Air is
2	High Water/Moisture	required and Boiler Partial Load is limitted)
	content	Pulerizer Grinding Capability (Large Capacity Pulverizer)
		Lower Boiler Efficiency (More CO2 Discharge)
3	Low Ash content	Smaller Capacity of Ash Handing Equipment
4	Low Sulphur content	·Less formation of SOX
6	Self Ignition	• Fire in Storage

4.4 Recent (Condition of Low Rank Coal	
	LRC requred in 1000MW Plant; 31.9Million Ton/Year	
	Contracted 28.5Million Ton/Year (90%) with 8 Company	
Coal Production	20Years Long Term Contract	
Coal Froduction	Supplied from South Smatra and Karimantan	
	Half of them are Exploration Stage	
	Infrastructure is not Sufficient	
Infrastructure		
 Inland Transport 	Road, River, Conveyer are not prepared sufficiently	
	Necessary to Develop or Construct	
• Railway	Constraction Stage of New Railway in Sumatra	
	Ralway in Karimantan is FS Stage	
Marine Transport	Mainly Barge Transport is applied	
_	21-PANAMAX and 340- Barges are necessary in2010	
 Unloading Jetty 	Faced to Open Sea (no Breakwater)	
	Unloading may be Interupted in Rough Weather	

5. Gas Supply

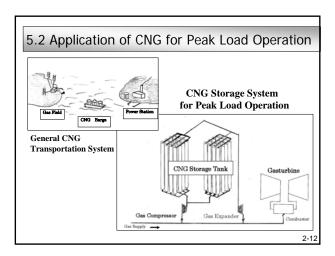
- Gas supply to PLN is behind the schedule
 Gas Supply to Jakarta region will start through <u>SSWJ</u> <u>Gas Pipeline from Sumatra</u>
 Gas from Kangean gas field will be supplied to east Java through <u>East Java Gas Pipeline</u>
- <u>LNG from Bontan</u> is under negotiation
- Long-term & Take or Pay Contract
- Change of Supply gas flow is difficult

5.1 LNG (Liquefied Natural Gas)

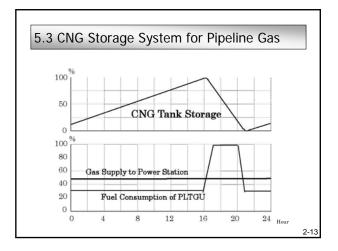
LNG can be stored

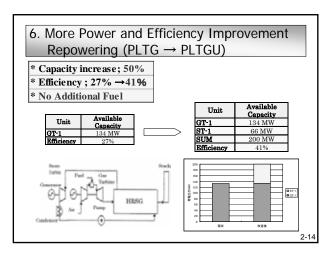
- Suitable for the <u>Peak-load operation</u> of electricity generation - Transportable for a <u>Long distance</u>
- World-wide market

Integrated production system


From gas production to LNG Import Terminal
 Long-term and Take-or-Pay contracts
 (limited purchase option)

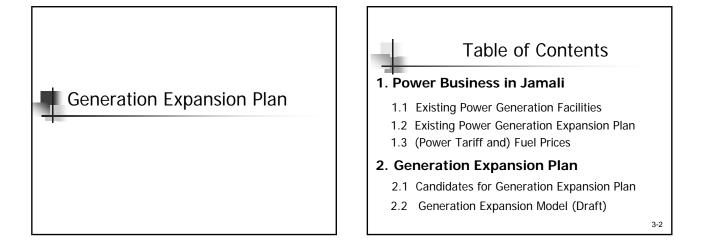
High quality and higher price


Many Hurdles for LNG procurements


LNG can Store but Take-or-Pay is always required

2-11

2-10

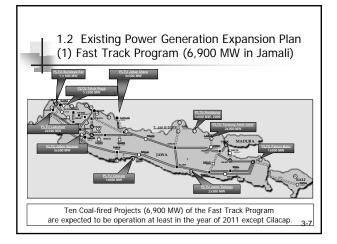


Region	Installed Capacity	Existing Plan	Possible New/Addition l	Total Resource Potential
Sumatra	2	913	3,605	4,520
Java-Bali	835	785	2,015	3,635
Nusa Tenggara	0	9	138	146
Sulawesi	20	140	575	735
Maluku	0	0	40	40
Toatal(MW)	857	1,847	6,373	9,076

Non-Fossil Energy	potential	Installed Capacity
Hydro	$75,\!670~\mathrm{MW}$	4,200 MW
Mini/Micro Hydro	459MW	84 MW
Solar	4.8kWh/m2/day (1203 TW)	8 MW
Wind	3 - 6m/s (9,290 MW)	0.5 MW

3. GENERATION EXPANSION PLAN

SPEAKER: MR. MATSUDA YASUHARU, NEWJEC Inc.

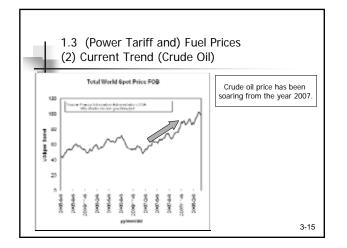


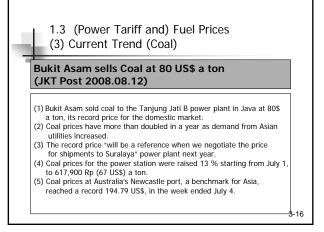
	nstallec	,			Facilitie	5
	Installed	Capacity	Rated C	Capacity	Total fo	r Jamali
Year	PLN	Out of PLN	PLN	Out of PLN	Installed Capacity	Rated Capacity
	мw	мw	мw	MW	MW	MW
Year 2005	16,356	N.A	14,225	N.A	N.A	N.A
Year 2006	18,416	3,895	16,990	3,837	22,311	20,827
**Year 2007	18,416	4,005	16,362	3,947	22,421	20,309

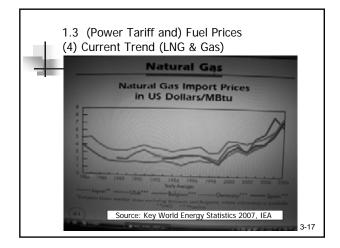
			Installed Ca	pacity (MW)			PLN Total
Year	Steam	Gas Turbine	Combined C.	Geothermal	Diesel	Hydro	Installed Capacity
	PLTU	PLTG	PLTGU	PLTP	PLTD	PLTA	MW
Year 2005	6,000	2,065.0	5,403	375	103	2,409	16,355
Year 2006	7,320	2,065.0	6,143	375	103	2,409	18,415
		Ener	av Productio	n by Type of	Fuel		
Year	HSD	Ener MF0	gy Productio Coal	n by Type of Natural Gas	Fuel Geothermal	Hydro	
Year	HSD GWh					Hydro GWh	PLN Total Production GWh
Year Year 2005		MFO	Coal	Natural Gas	Geothermal	,	Production

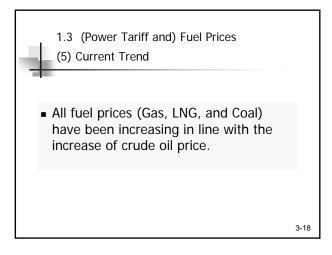
(3	3) Cap			Senera ieratio	n Share		
		Capa	icity Share by	Type of Fue	l (%)		PLN Tota
Year	Steam	Gas Turbine	Combined C.	Geothermal	Diesel	Hydro	Installed Capacity
	PLTU	PLTG	PLTGU	PLTP	PLTD	PLTA	%
Year 2005	36.7%	12.6%	33.0%	2.3%	0.6%	14.7%	100.09
Year 2006	39.8%	11.2%	33.4%	2.0%	0.6%	13.1%	100.0
		Energ	y Production \$	Share by Type	e of Fuel		PLN Tota
Year	HSD	MFO	Coal	Natural Gas	Geothermal	Hydro	Productio
	%	%	%	%	%	%	%
Year 2005	24.49	% 9.2%	6 38.0%	16.7%	3.7%	8.1%	100.09
Year 2006	20.79	% 9.7%	6 43.2%	16.8%	3.7%	5.9%	100.09
2005 -> 2006		Ĵ		Î	Ĵ		

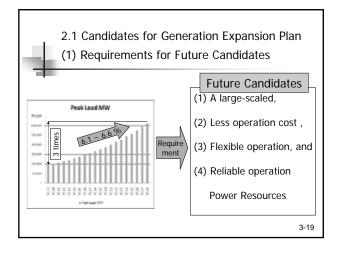
(4	i) Fuei	Costs	as of 2	006 toi	r Jama	11	
_		el Cost (R	p/kWh) by Fi	uel Type fo	r Jamali 2	006	
Fuel Type	Generatron Energy	Fuel Consumtion		Fuel Price		Fuel Cost	Fuel Cos
	GWh	Unit	Consump.	Unit	Price	Billion Rp.	Rp./kWh
HSD	16,574	K.Liter	4,212,302	Rp./Liter	5,556	23,404	1,412.
MFO	7,717	K.Liter	2,059,781	Rp./Liter	3,521	7,252	939.
Coal	34,526	Ton	16,821,687	Rp./kg	349	5,871	170.0
Gas	13,434	MMSCF	126,367	Rp./MSCF	24,112	3,047	226.8
Geo	2,975	-	-	Rp./kWh	525.6	1,564	525.0
Total	75,226					41,138	546.
Source: PLN	Statistical 2	2006					

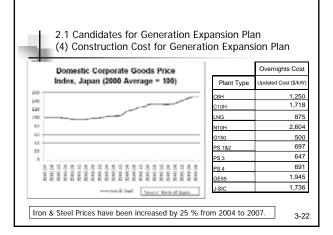

1.2 Existing Power Generation (2) Other PLTU (Coal) Project		Plan	
Project Name	Ins. Capa. (MW)	Op. Year	
IPP Paiton III Extension Project	815	2012	
			3-8

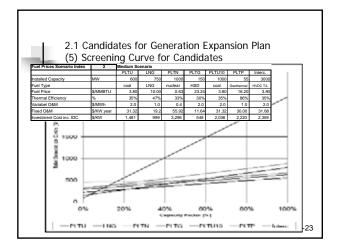

Capa. (MW) 60 45 60 x 3	Op. Year 2012 2011 2010, 11
45	2011
	2011
60 x 3	2010, 11
	,
110	2012
110 x 2	2011
50	2011
60 x 2	2010
10	2010
	110 x 2 50 60 x 2

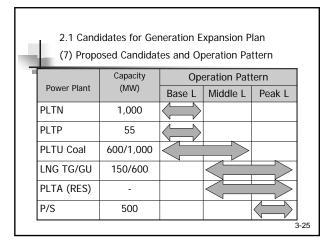

Project Name	Add. Capa. (MW)	Op. Year
T. Priok Extension	750	2012
M. Tawar Repowering	225	2011
M. Karang Repowering	750	2011
Above three projects are under going	by JBIC finance.	

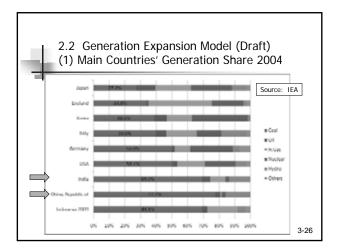

Project Name	Ins. Capa. (MW)	Op. Year
Upper Cisokan Pumped Storage	1000	2013 (2015)
IPP Rajamandala	47	2012
PU Jatigede	55 x 2	2015

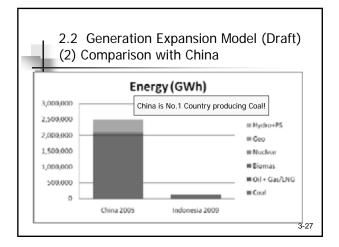

v =		HSD	MFO	Coal	Natural Gas	Geothermal
Year Ex	. Rate	\$/bbl	\$/bbl	\$/ton	\$/MSC	\$/kWh
2000 8,5	29 Rp/\$	11.06	7.12	18.02	2.55	0.026
2001 10,2	66 Rp/\$	13.61	10.14	19.44	2.54	0.028
2002 9,2	61 Rp/\$	24.15	19.35	23.73	2.54	0.033
2003 8,5	71 Rp/\$	32.30	29.59	26.93	2.51	0.036
2004 8,9	85 Rp/\$	32.37	30.04	25.68	2.37	0.033
2005 9,7	51 Rp/\$	45.97	39.43	25.80	2.60	0.047
2006 9.1	41 Rp/\$	97.92	61.48	36.74	2.65	0.055

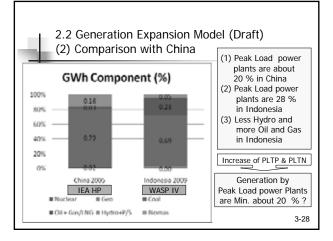


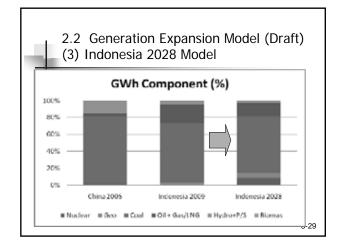


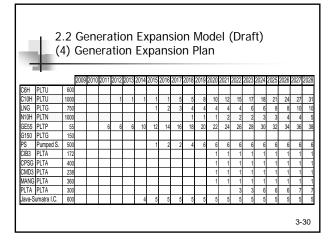

		Price			
Kind of Fuel		USD	Cents/mKcal	Heat Content	
Coal	80.0	per Ton	1,509	5,300	Kcal/kg
LNG	10.0	per MMBTU	3,968	252,000	Kcal/mmb
Gas	5.0	per MMBTU	1,984	252,000	Kcal/mmb
HSD	133.0	per Barrel	9,222	9,070	Kcal/I
MFO	81.0	per Barrel	5,437	9,370	Kcal/I
Geothermal	0.0553	per kWh	6,430		
Nuclear			250		

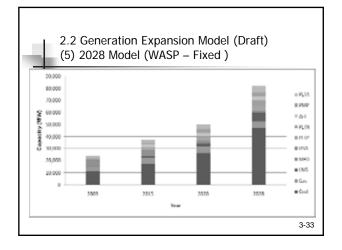

			eneratior t for Gen		ion Expansion Plan
Plant Type	Construction Cost (M.US\$)	Installed Capacity (MW)	Unit Constructi on C. (US\$/kW)	Expected Operatio n Year	Remark / Source
PLTU - Coal	1,400	815	1,718	2012	 IPP Paiton III Extension Project News release by TEPCO on Aug.04.2008 Super Critical Conventional Coal Thermal 30-year PPA
PLTN			2,083		 World Nuclear Association Report, 2005 EIA (2004) used a starting point of 2083 US\$ per kW for its estimates in its "2004 Annual Energy Outlook"

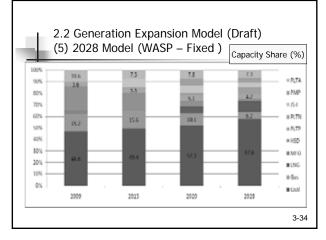


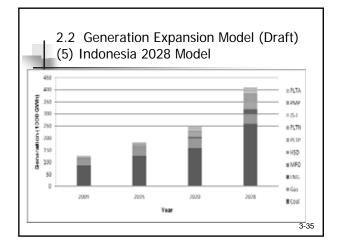


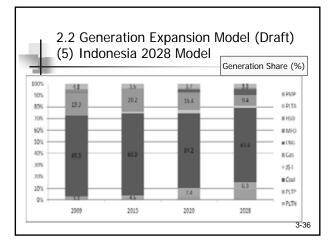

	omparison		ation Expa andidates		111
Р. Туре	Fuel Type	A large-S	Less OPC	Flexible	Reliable
PLTU	Coal(LRC)	0	0	Δ	0
PLTN	-	0	Ø	×	0
	HSD/Gas	Δ/Ο	×/A	0	0/>
PLTG/GU	LNG	0	Δ	0	
PLTP	None	×	Δ	×	0
PLTD	HSD	×	×	0	0
PLTA	(RES)	0	Ø	0	×
P/S	None	0	Δ	Ø	0

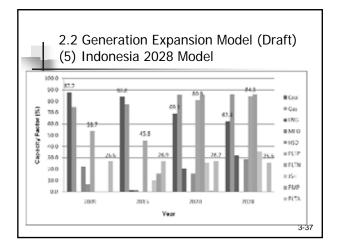


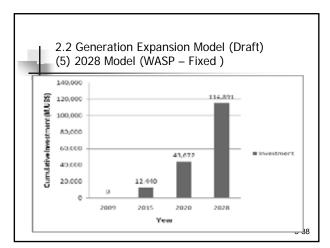


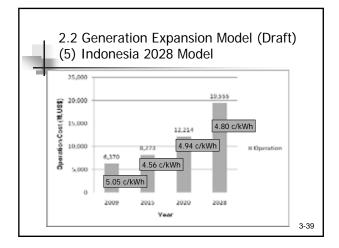


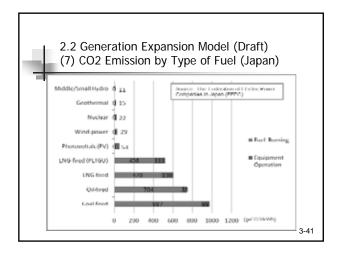


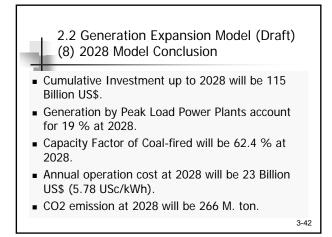

2.2 Generat (4) Generat		ion Model (Dra ion Plan	aft)
Pumped 3	Storage (PS	5)	
Name	Installed Capacity	Construction Cost	Annual Generation
Upper Cisokan (PS-1 & 2)	1,000 MW	697 US\$/kW	2,400 GWI
Matenggen* (PS-3)	1,000 MW	647 US\$/kW (585 as of 1999)	905.2 GWI
Grindulu * (PS-4)	1,000 MW	691 US\$/kW (624 as of 1999)	905.2 GWI

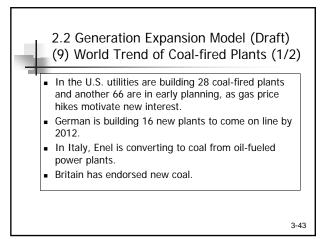

	2.2 Generation Expansion Model (Draft)(4) Generation Expansion Plan							
PLTA								
Name	Location	Туре	Unit Constructio n Cost (\$/kW)	Installed Capacity (MW)	Annual Energy (GWh)			
Cibuni-3	W.J	RES	2,337	172	568			
Cipasang	W.J	RES	1,333	400	751			
Cimandiri-3	W.J	RES	1,630	238	600			
Maung	C.J	RES	1,572	360	535			
PLTA	-	RES	2,337	300	563			
Source : Hydro	Inventory a	nd Pre-Fe	easibility Studi	es, June 19	999			

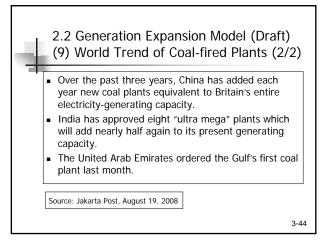


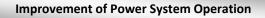






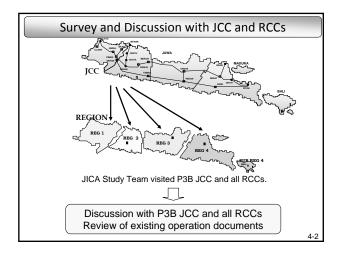


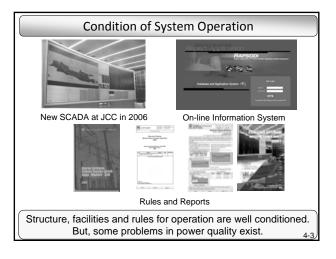




4. POWER SYSTEM OPERATION

SPEAKER: MR. KOYAMA YASUSHI, KANSAI ELECTRIC POWER CO., Inc.

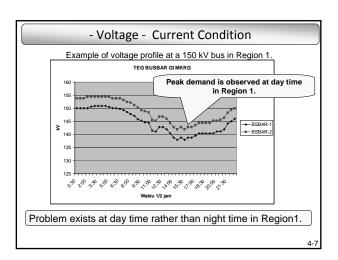


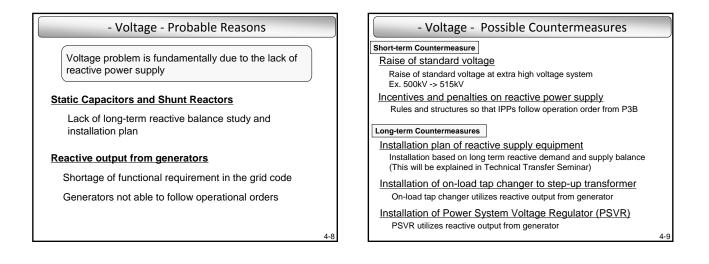

Today's Topics

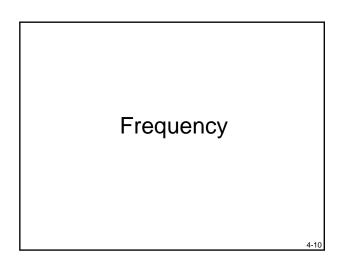
In this 2nd Workshop

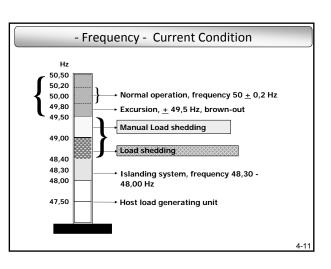
- Our Findings on System Operation – Voltage, Frequency, Outage and Losses
- Possible Countermeasures (briefly)

 Under study for the next workshop

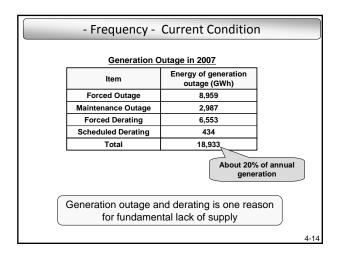


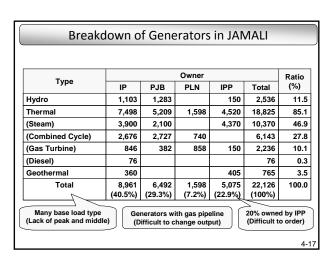



	- Voltag
	System voltage shal
	Nominal Volta
Voltago	500kV
Voltage	150kV
	70kV
	20kV
	4-4


	- Voltage - (Current Condition	
Sys	stem voltage shall be n	naintained within following b	and
	Nominal Voltage	Standard	
	500kV	+5%, -5%	
	150kV	+5%, -10%	
	70kV	+5%, -10%	
	20kV	+5%, -10%	

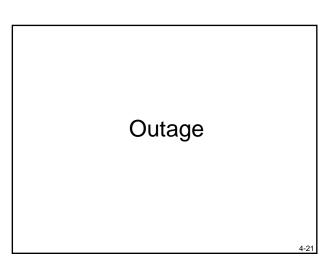
	- Voltage - Current Condition												
	The number of substation with voltage drop												
Vol	Voltage 2002 2003 2004 2005 2006 2007 2008*												
500kV	(S/S)	103	1	58	149	145	75		60	23			
150kV	(S/S)	566	5	51	407	479	288	1	53	106			
70kV	(S/S)	319	2	48	198	207	169	2	252	34			
	oltage	ed voltag RC	:C1		C2	RCC3	RCC	34		otal			
500kV	(S/S)		0		0		0	0		0			
150kV	(S/S)		1		11		0	0		12			
70kV	(S/S)		4		0		0	6		10			





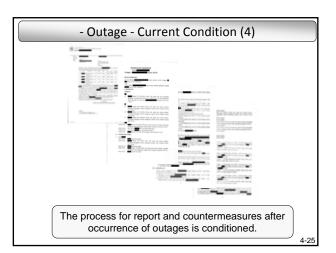
	- Frequency - Current Condition - Frequency - Current Condition											
Go	overnor Free (GF) Capacity			Deviation of Standard Frequency								
All generator shall be operated as GF mode, but no description for amount to be secured.						2007	2008*					
					The number of deviation	108	361	338	239	741	510	296
	C Capacity										*As of Ma	rch, 2008
	Be determined through P3B meeti	ng. 5% of the loa	d is required for 2008.		[Record of 2007]							
					F > 50.5 Hz (189 times)							
Re	<u>serve Margin</u>				179 times of the	mworo	0011000	by load	fluctuo	tion		
	Classification	Shall be operated within	Amount to be secured		F < 49.5 Hz (321 times)		causeu	by load	nuctua			
	Spinning reserve	10 minutes	Maximum unit		252 times of the	-		huland	flucture	tion		
	Spinning reserve + Cold reserve	4 hours	Maximum unit x 2			1810						
	Spinning reserve + Cold reserve + Capacity reserve		Maximum unit x 2 + Margin		69 times of then	n were o	aused	by gene	rator ou	tage		
U	R					-						
<u></u>	Be set considering system freque the record of frequency drop in the				Lack of genera	tion al	oility to	respo	nd to l	oad flu	ictuatio	
			4-12									4-13

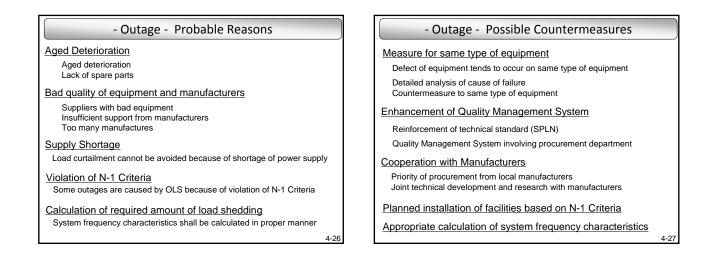
- Frequency - Probable Reasons
Lack of Governor Free (GF) Capacity (4-16) GF Capacity seems to be insufficient.
Lack of LFC Capacity (4-16) LFC Capacity seems to be insufficient.
Lack of generators of middle and peak type (4-17) Proper amount of middle and peak type generators isn't secured.
Operation order to IPP generators (4-17) Difficult for JCC to order IPPs to change output.
Output change of natural gas generators Natural gas generator with pipeline is difficult to change output.
Low ramp rate (4-18) Actual ramp rate is lower than designed value.
Inadequate calculation of System Frequency Characteristics System Frequency Characteristics may not be appropriate. (4-19) 4-15

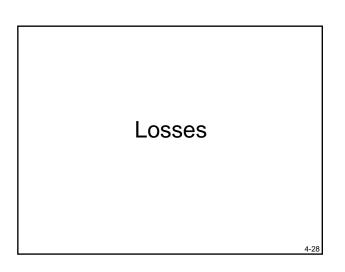

GF Ca	ра	city and LFC Ca	apacit	у	
GF Capacity	No.	Plant	Capacity (MW)	LFC Capacity (MW)	Notes
Generators without LFC	1	PLTU Suralaya	1800	3 x 10	Normal
control are mainly coal	2	PLTA Saguling	700	4 x 25	Normal
fired and operate with full	3	PLTA Cirata	1000	8 x 20	Normal
output all the time.	4	PLTGU Gresik	1030	2 x 10	Normal
> No GF Capacity	5	PLTU Paiton	800	0	Out of Contro
	6	PLTGU Grati	300	15	Normal
LFC Capacity	7	PLTGU Muara Tawar	400	0	Not Operated
Description of OCOMMA/	8	PLTGU Priok Baru	1100	2 x 10	Out of Contro
Required 850MW	9	PLTGU Muara Karang Baru	400	10	Normal
> Planned 410MW	10	PLTGU Tambak Lorok	208	2 x 7.5	Normal
> Actual	11	PLTGU Gresik Baru	500	10	Normal
	12	PLTU Tanjung Jati B	1320	2 x 15	Normal
	13	PLTU PEC	1290	0	Not Operated
Fundamental Lack	14	PLTU Java Power	1220	0	Not Operated
of GF Capacity and	15	PLTGU Cilegon	740	0	Not Operated
LFC Capacity	16	PLTU Cilacap	562	0	Not Operated
		Total		410	

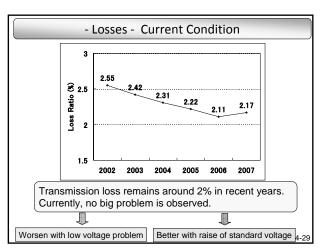
		e of generat		Data (MRM/min)
	No	Name		Rate (MW/min)
			Designed Value	Status of Actual Value
	1	PLTP DRAJAT	0.55	same
	2	PLTP KAMOJANG	1	same
Some generators have lower ramp rate than designed value.	3	PLTP SALAK	1	same
	7	PLTGU TAMBAKLOROK	2	same
	8	PLTGU GRESIK 1&2	1	same
	9	PLTGU GRESIK 3&4	2	same
	10	PLTU MUARAKARANG 1 - 3	2	-
	11	PLTU MUARAKARANG 4 & 5	3	-
	12	PLTU SURALAYA 1 - 4	5	-
	13	PLTU PRIOK	2	-
	14	PLTU PERAK	1	-
	15	PLTU PAITON 1-2	4	-
	16	PLTU PAITON 5-6	10	Slower
	17	PLTU PAITON 7-8	10	Slower
Low ability to change	18	PLTU Tanjung Jati	20	Slower
	19	PLTG GILITIMUR	2	-
output in accordance	20	PLTG MUARATAWAR	5	-
with load change.	21	PLTG GRESIK	5	
(23	PLTA CIRATA	120	Faster
	24	PLTA SUTAMI	22.5	Faster
	25	PLTA SAGULING	12	Faster
	26	PLTA MRICA	4.5	same

System Frequency Characteristics											
System Frequency Characteristics (System Stiffness)											
Year 2002 2003 2004 2005 2006 2007											
System frequency constant (MW/Hz) 569 540 543 608 613 696											
System capacity is not con	prese	nted a	,		,						
System Frequency Charact	eristic	s may	/ not b	be app	oropria	ate.					
It is used to determine requ	It is used to determine required amount for load shedding.										
						4-19					

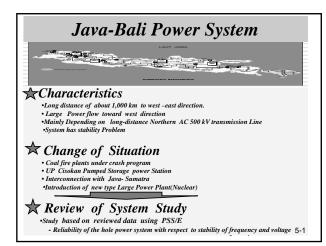

- Frequency - Possible Countermeas	ures
[Frequency control under normal condition]	
Application of penalty for generators Penalty for generators not complied with requirements and/or violation of operation orders	Induction for
Bidding classified by operation type Bidding considering peak and middle type generators Introduction of specific price schedule for IPPs Capacity fee based on contracted and available capacity	investment of peak/middle type
Specific tariff considering peak and middle type operation	
[Frequency control under emergency condition]	
Proper calculation of system frequency characterist	tics
Detailed analysis of system frequency characteristi	<u>cs</u>
	4-20

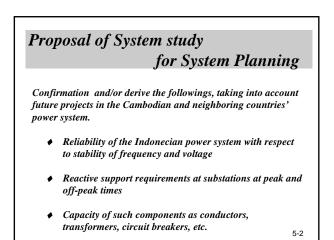



- Outa	age - C	urrent	t Cond	ition (1)								
SAID	SAIDI and SAIFI in Java (excluding Bali)												
Item	2001	2002	2003	2004	2005	2006							
SAIDI (minutes/customer/year)	510.0	499.2	322.2	250.2	224.4	164.4							
SAIFI (times/customer/year)	12.24	9.26	7.90	6.67	5.88	4.23							
SAIDI	S/ [times/custor	<u>I</u> MFI —, _		Develo	ped Cou	ntries							


$\left[\right]$	- Outage	e - Cu	irrent	t Con	ditior	า (2)						
	Main reason for outages by year											
	2002 2003 2004 2005 2006 2007 2008											
	Nature	68	48	51	54	42	28	44				
	Defect of Facility	130	136	114	113	108	95	55				
	Animals	16	19	7	9	9	9	3				
0	HF	3	4	11	3	10	3	1				
Outage	Kite	21	18	13	7	10	9	4				
ge	Overloading	9	13	6	16	3	0	0				
	Trees	3	2	3	1	1	3	1				
	Relay malfunction	1	16	11	9	8	9	0				
	Others	50	29	31	24	11	3	1				
	Total	301	285	247	236	202	159	109				
0	Load Curtailment	18	9	9	26	29	9	0				
Control	Manual Load Shedding	19	10	10	34	19	61	17				
tro	*OLS	0	13	6	16	3	9	2				
<u> </u>	Automatic load shedding	42	6	15	25	21	15	7				
	Total	79	38	40	101	72	94	26				
	OLS : Load shedding system ag	ainst ove	er load			*/	As of Mar	ch, 2008				
	Many outages ar	e cau	sed by	the p	roblem	n of fac	cilities	4-23				

	- Outage - Current Condition (3)												
Load shedding and load curtailment in 2007													
			Reg	gion									
ltem	Regi	ion1			Regi	on4	Total						
	Jakarta	West Jawa	Region2	Region3	East Jawa	Bali	. orai						
Automatic Load Shedding	162	50	562	135	110	100	1,120						
Manual Load Shedding	11,284	1,396	2,131	198	734	57	15,800						
Load Curtailment	0	0	161	1,276	464	0	1,901						
Total	11,446	1,446	2,854	1,609	1,308	157	18,821						
Quite a large outage are caused by load shedding and load curtailment													
							4-24						


SUMMARY JICA study team has found...


- Sophisticated Operation Systems
 New SCADA, RAPSODI
- Well-established Rules - Aturan Jaringan, ROT, EOB, EOT etc.
- Some difficulties on System Operation
 Voltage Drop, Frequency Deviation and Outage
 Basically due to lack of adequate facilities
- Possible Countermeasures

 will be explained in detail in the 3rd Workshop

5. POWER SYSTEM PLAN

SPEAKER: MR. TANAKA YUKAO, NEWJEC INC.

Example of System Reliability Criteria

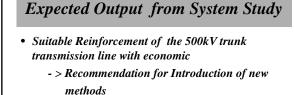
In accordance with the above, the Consultant will carry out power flow analysis and clarify the followings: -Sufficient capacity of main components such as conductors and transformers to ensure that power flow does not exceed capacity limits under normal conditions or disturbance situations (N-1 rule) -Sufficient capacity of reactive compensation equipment, such as shunt reactance and/or capacitance to ensure that

voltages at substations, do not exceed voltage -Sufficient capacity of circuit breakers to ensure that short circuit currents do not exceed their capacity, in three-phase short circuit faults.

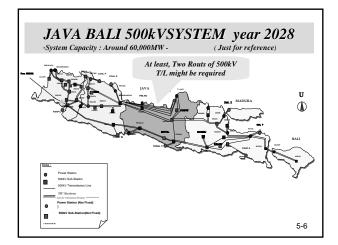
5-3

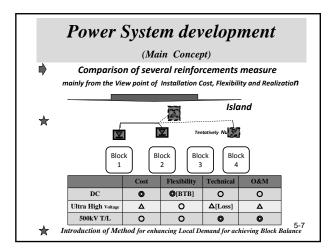
Power System development

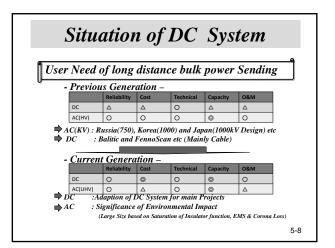
(System Analysis)

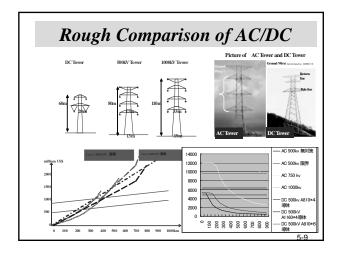

Development of the integrated optimal system Reinforcement plan with Criteria Reliability

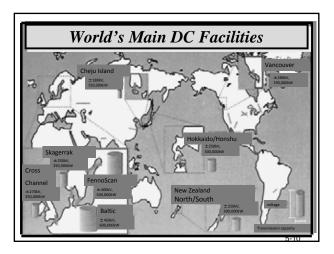
- ★ Optimal Plan should be developed up to 2028
 ➡ Key Year of 2010,2015 ,2020 and 2028 should be analyzed
- * "PSS/E" soft wear should be used for Analysis

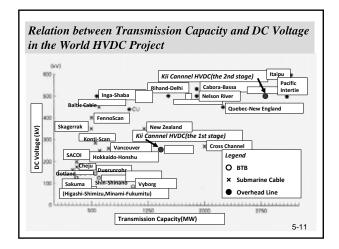

🛧 Reliability Criteria

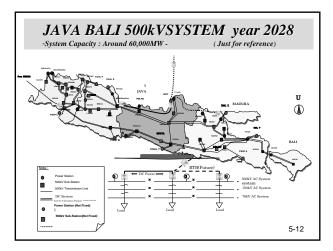

Total power system should be stable in case of any Equipment or Root Down Accident

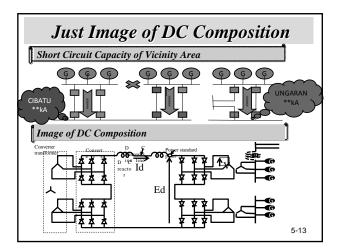

5-4

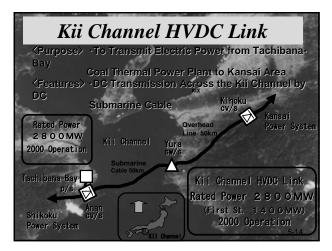


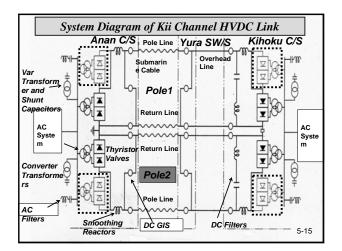

- Enhancement of Reliability of Whole Java- Bali system
 - -> Recommendation of Simple Protection Method for avoiding large Power- Drop Out

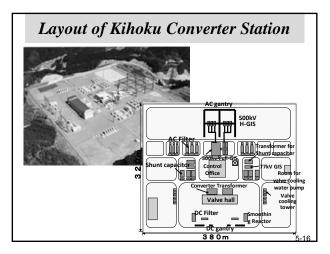


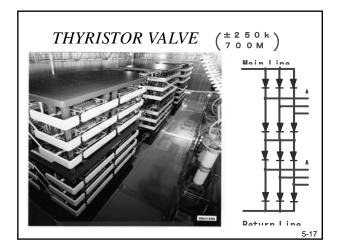


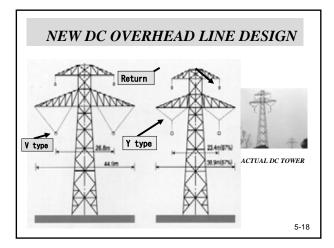


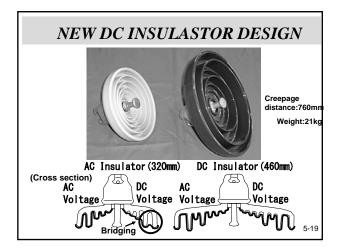


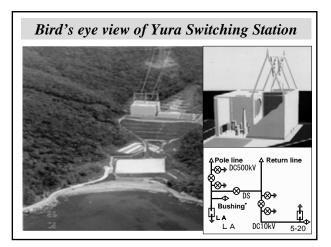


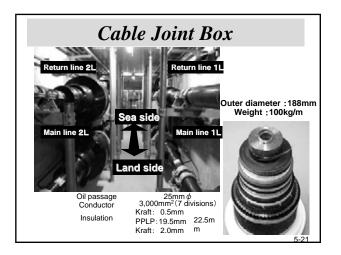


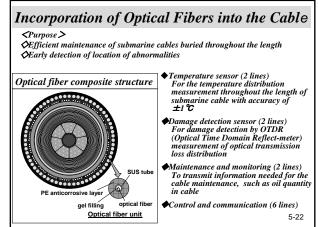


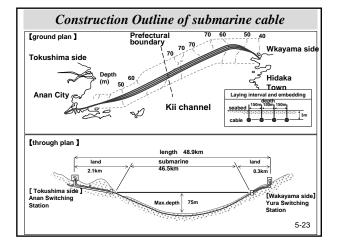


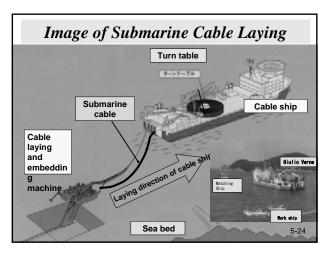


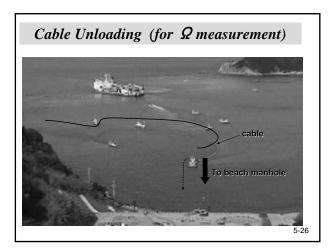


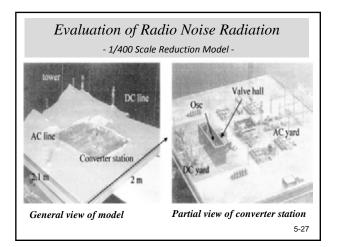


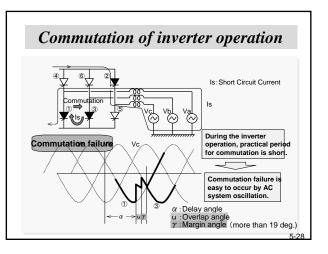


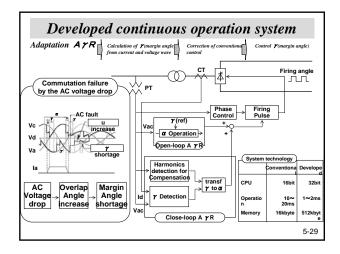


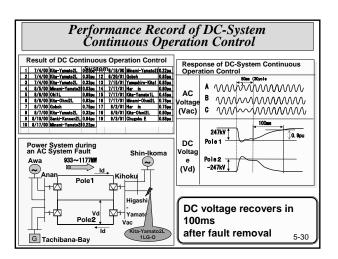


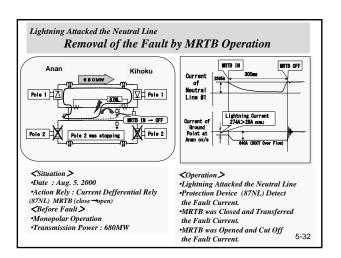


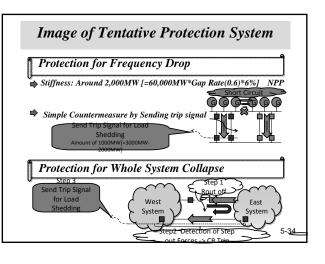


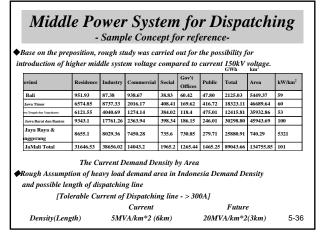


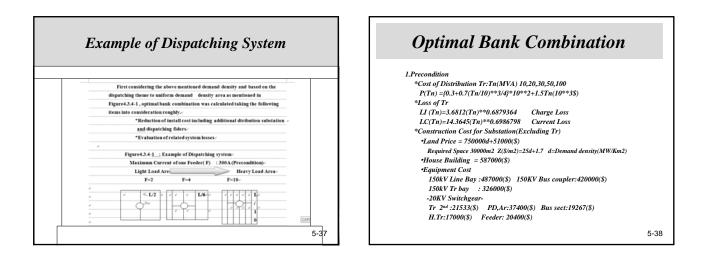


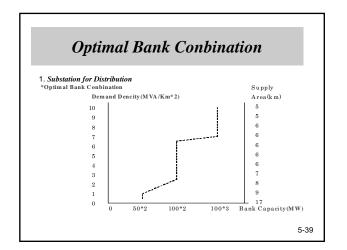




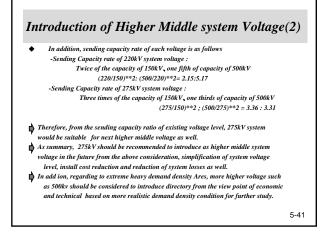



Stabi	lization of power system b	y HVDC
	Contents of control	Effect
PM Power Modulation	Inputting frequency deviation of both converter station. Extraction of power oscillation element. Control DC power to restrict power oscillation.	Restraint of power oscillation
EFC Emergency Frequency control	Inputting frequency deviation of both converter station when power system is divided. Controlling DC power to decrease frequency deviation.	Frequency improvement
EPPS Emergency Power Preset Switch	Receiving EPPS signal from power stability system in Shikoku. Controlling DC power.	Frequency improvement 5-31



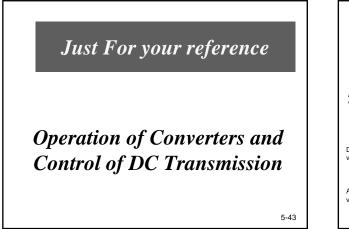

	Year	1995	'96	'97	'98	'99	2000
Anan Converter Station	Civil Engineering Works		Land.	Base			
	Electric Works				Equipment Instal	lation	
Kihoku Converter Station	Civil Engineering Works	C	Lar	d,Base			
	Electric Works				Equipment Inst	allation	
Yura Switching Station	Civil Engineering, Electric Works			Land,B	uilding,Truss		
Submarine and	Civil Engineering Works		Tur	nel			
Land Cables	Laying	1000			#1#2#3#4		
Overhead Lines	Towers			8	Base, Assembly		
Overhead Lines	Lines				-		1

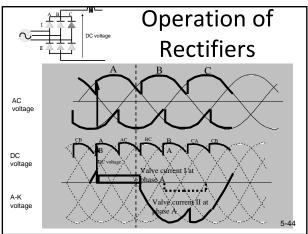
Example of Countermeasures ★First Countermeasure : Sending trip signal to Dispatch Feeder ∠S(MW) = RP (MW) -SS (MW) Where RP: Sending Power /SS : System Stiffness or Stable restriction / LS:Load Shedding For instance , Load Shedding might be set based on three condition taking the flowing condition into account *Assumption of the savior case *Consideration of the upper side limit of Frequency *Avoidance of large fluctuation of Frequency Level One: Power flow is between BMW-A MW > Load Trip Signal of B-AMW Level second : Power flow is between CMW-BMW > addition trip of C-A MW

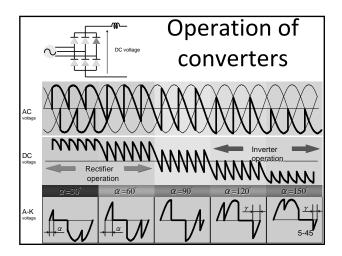


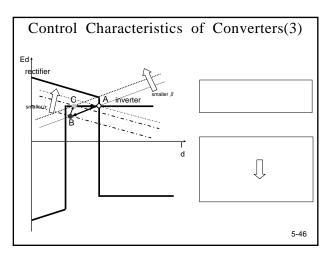
Introduction of Higher Middle system Voltage(1)

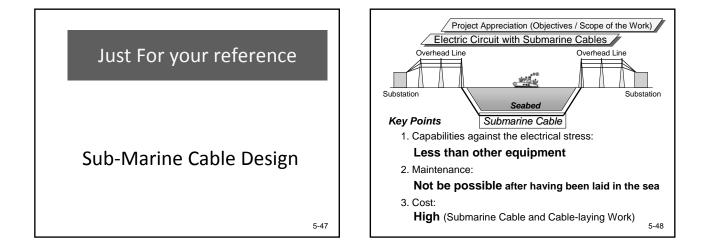
♦ Maximum length of middle dispatching system between trunk substation and dispatching substation. → Considering protection relay, tolerable voltage drop etc, maximum voltage drop of 5% was assumed with the capacity of 100MVA,Bank,LF:90% for dispatching substation and Maximum dispatching length was calculated roughly.

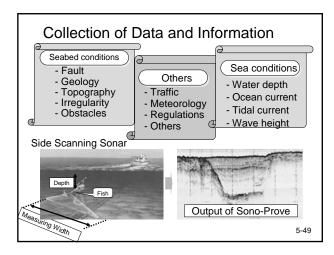

Base on these assumption ,the result of rough comparison of each medium system voltage is shown in Table 4.3.4-2,

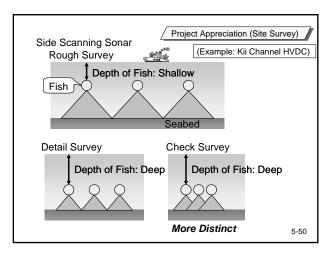

Middle	Sending Capacity	Max	Bank	Number of	Rough	Required	Syst
System	/2cct.410mm**2	Length	Combination	Dispatching	Line	Trunk	Los
Voltage	[Impedance	(Km)	of Trunk	Substation	Length	Substation	
(Kv)	Base1000MVA]		Substation	for Trunk	[Km]		
				Substat5ion			
150 760MVA[0.08+j0.9]	50	500MVA* 3	5	6-9	Many	Lar	
			Unit			(Around25)	
220	MVA[0.05+j0.	70	750MVA* 8	8	9-12	Middle	Mid
	6]		Unit			(Over 10)	
275	1360MVA	90	1000MVA*	10	9-15	Little	Sma
	[0.04+j0.5]		3 Unit			(Under10)	

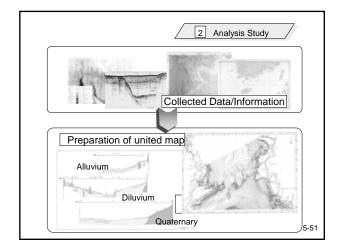


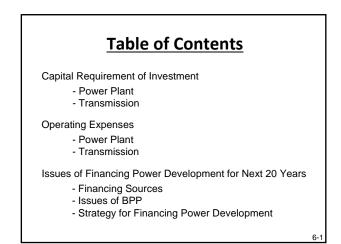

Other Main Recommendation Issues for further study


- Utilization of DC System as BTB Operation
- \Rightarrow *F/S for DC connection with Kalimantan*
- Consideration of applicable stability criteria
- Enhancing the Supply-Demand Balance of Block areas
- Elaboration of previous recommended issues
 Introduction of DC & new Medium system Voltage 5-42

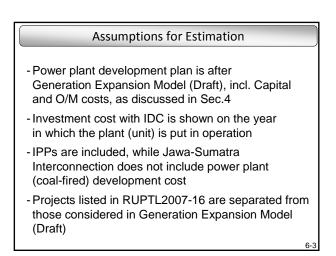


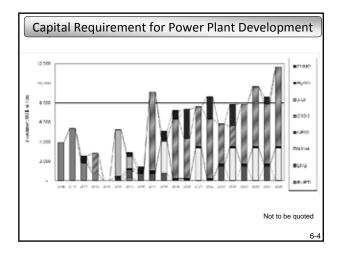


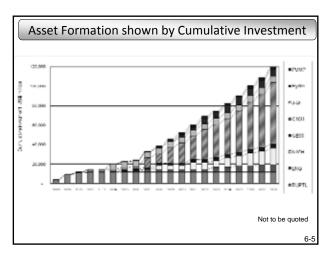


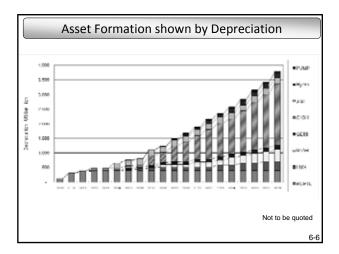

P	roject Appreciation (Conditi	on of Malacca Strait)
Outline of	Condition and Concern	n in Malacca Strait
	Outline	Concern
Seabed	Non major fault	Sand bank
condition	Sand or Mud (in large area)	Sand/Reef wave (height:4 – 7 m or more)
Sea condition	Water depth: less than 50 m Ocean current: slow	Tidal current: fast
Others	Wind: Gentle (on the average)	Squall / Thunderstorm Bush (around the seashore) Fishing bank Seabed mine
		5-5

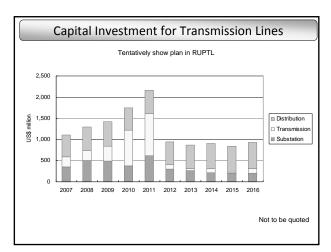
3 Sc	enario of the Site Surve
Step -1: Decision of Area for Cable-I	aying Work
Requirements for Cable-laying	g Work
✓Water depth	: Shallow
✓Ocean/ Tidal current	: Slow
✓Wave height	: Calm
 ✓ Geological formation (Cable laying stratum) 	: Sand or Mud
✓Fault	: Non major fault
✓ Surface of Seabed	: Flat
✓Obstacles	: Non
✓Meteorological phenomena	: Calm
✓Connection to overhead line	: Easy

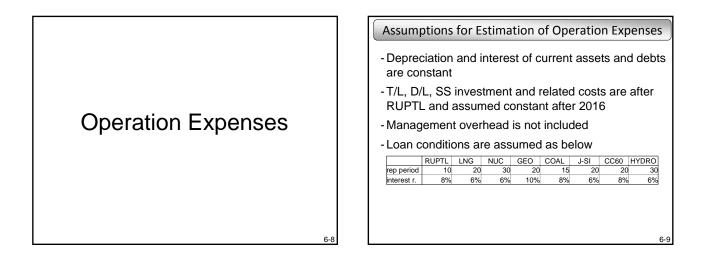

		Pro	ject Appr	eciatio	on (Subma	arine a	ble)
Character	istic	of ead	ch Subr	narine	e Cable		
		S	olid	(OF	Х	LPE
Experience	DC	0	many	Δ	few	×	non
(Submarine cable)	AC	Δ	few	0	many	Δ	few
Electrical Performance		less	O than OF		Ø	laci	? ¢ data
Mechanical Performance		less	O than OF		Ø	laci	? data
Applicability for long length			0		O er length 100 km	laci	? data
longest lengt (experience			0 km Channel	-	0 km Channel		
		-		-			5-5

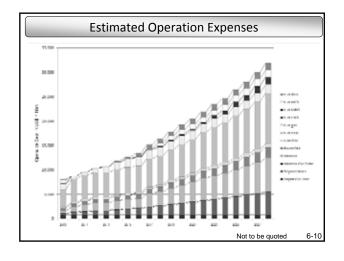

SPEAKER: MR. NISHIDA MASARU, NEWJEC INC.

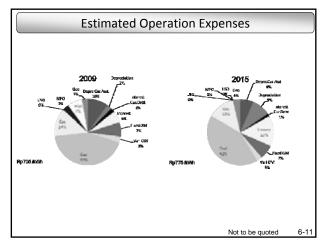

Financial Consideration on Power Development Plan

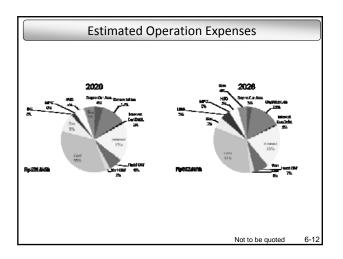



Capital Requirement of Investment









Issues of Financing Power Development for Next 20 Years

PLN's Financing Source for What We Understand **Power Plant Development On Income Side** - Electricity Tariff will be "Full Cost" level, except for R-1 ("Full Cost" being BPP) Own resources - Loan (Two-step, Gov't, Commercial) - Subsidy will be in place for foreseeable future - Regional Tariff and Regional Subsidy will possibly be - Bond (and Guaranteed Notes) determined by Regional Government - Lease **On Expense Side** - IPP (PPA & ESC) - Operation expenses will decrease by "Fuel Shift" - Fast Track Program, a new approach? - Diversification of primary energy works in the Opposite - Future investment requirement will increase progressively 6-14

6-16

PLN's Financing for Power Plant Development 1

Own resources

- Limited by nature

- Mostly for T/L and local currency portion

Loan (Two-step, Gov't, Commercial)

- Huge capital requirement may exhaust ODA resources
- Environmentally friendly PJs have advantages (+CDM)
- Possibility of commercial bank loan can be explored more : Market Confidence in PLN is the key

Bonds and Guaranteed Notes

-Market Confidence in PLN is the key

PLN's Financing for Power Plant Development 2

Lease

- Relatively expensive choice
- Successful case of Tanjung Jati-B should be studied

IPP (PPA & ESC)

- For base-load plant development (upper limit?)
- Competition among bidders should be encouraged

Fast Track Program?

- Unique in Exporter Credit + Commercial Loan with Gov't Guarantee
- Demonstrating Gov't determination to solve power shortage?

Issues of BPP 1

Current BPP

- Being Basis of Tariff, determines PLN's Income
- Including only Depreciation cost as capital expense component
- Only value of depreciating (= existing) facilities
- Does not allow for the cost of rapidly expanding future facilities

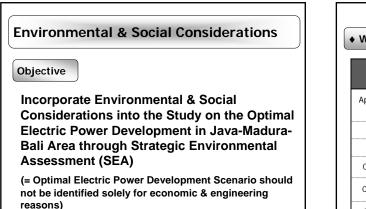
6-18

Issues of BPP 2

Change to New BPP

- Raising level of BPP to allow for future investment, realizing "Consumer Supported Financing"
- Amendment to regulations on PLN's accounting is necessary, e.g., "accelerated depreciation" for definite period
- Another way of showing Government determination
- Market confidence would be bolstered, which may ease difficulties of seeking finance from commercial banks

6-19


Strategy for Financing Power Development

- ODA loans for environmentally friendly projects (low CO2 emission + due consideration on social/ environmental impacts)
- Possibility and benefit of CDM must be exploited
- Improving investment climate (environment) for both domestic and foreign capital, to encourage IPP
- Revising BPP to allow for future investment need
- Operation cost must be minimized to gain consumers support for raised tariff(BPP) by introduction of better facility management schemes (eg.asset management)
- Other possibility, Lease and Fast Track, should be studied for further applications 6-20

7. STRATEGIC ENVIRONMENT ASSESSMENT

SPEAKER: MR. OHWADA TAKASHI, JAPAN NUS CO., LTD

7. Environmental & Social Considerations

Strategic Environmental Assessment (SEA)	Environmental Impact Assessment (EIA)
Applied to Policy, Plans & Programs (Upstream of Decision-Making)	Applied to Individual Projects (Downstream of Decision-Making)
General Assessment	Specific Assessment
Area Basis and/or Long-Term	Site and Project Specific
Can Consider Synergistic Impacts	Difficult to Consider Synergistic Impacts
Can Consider Cumulative Impacts	Difficult to Consider Cumulative Impacts
Greater Flexibility for Alternatives	Constrained to Specific Projects

What to do in SEA of Power Sector?

- Identify Potential Environmental Impacts associated with each Type of Power Generation
 - ex. SO₂, NOx, PM, CO₂ from Coal-Fired, Loss of Habitats/Involuntary Resettlement for Hydro, Radiation from Nuclear, H₂S from Geothermal
- Recommend Measures to Prevent/Reduce/Mitigate Potential Environmental Impacts
 - ex. FGD, Low-NOx Burner, ESP for Coal-Fired, Cooling Tower to reduce Thermal Effluents from Thermal, Information Disclosure to obtain Consent for Resettlement for Hydro

What is Outcome of SEA?

- Provide Input to Identification of Alternative Electricity Development Scenarios to Avoid Significant Environmental Impacts
- Recommend Environmental Protection Measures to the Optimal Electric Power Development Scenario to Make it Environment-Friendly

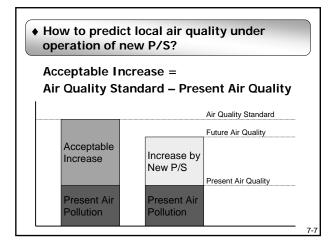
 Can SEA suggest the maximum capacity of coal-fired power generation to be allowed in Jamali ?

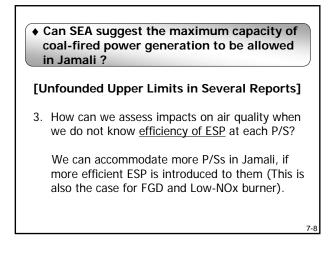
[Unfounded Upper Limits in Several Reports]

1. How can we assess impacts on air quality when we do not know <u>locations</u> of individual P/Ss?

Extension of existing P/Ss may deteriorate local air quality down to unacceptable levels, while construction of the same capacity at new locations as new P/Ss may not pose threats to the health.

7-5


Can SEA suggest the maximum capacity of coal-fired power generation to be allowed in Jamali ?


[Unfounded Upper Limits in Several Reports]

2. How can we assess impacts of coal-fired P/S when we do not know the present level of air pollution?

We can not accommodate coal-fired P/S at location with serious air pollution.

7. Environmental & Social Considerations

Can SEA suggest the maximum capacity of coal-fired power generation to be allowed in Jamali ?

[Unfounded Upper Limits in Several Reports]

4. How can we set a limit on CO₂ emission from P/Ss when Indonesia does not have a legallybinding target for its CO₂ emission reduction under Kyoto Protocol?

Indonesia reserves a right to emit CO_2 for its industrial development. We can not limit the maximum CO_2 emission from power generation.

How can we "reduce" CO₂ emission from thermal power generation?

[Efficient use of fuel]

- 1) Improvement of generation efficiency.
- 2) Natural gas than oil. Oil than coal.

[Recovery of CO₂]

- 1) CCS (Carbon Capture & Storage)
- 2) CO₂ sequestration by forests

 Can SEA suggest the maximum capacity of coal-fired power generation to be allowed in Jamali ?

[To Justify the Maximum Acceptable Capacity]

We need to know;

- 1) Locations of individual P/Ss, and
- 2) Present level of air pollution, and
- 3) Efficiency of ESP, FGD and Low-NOx Burner, or
- 4) CO_2 emission reduction target for the power sector.

7-1

Does hydroelectric power generation suppress global warming?

[HEPPs may NOT be "clean" as we thought]

1. All reservoirs of HEPPs release CH_4 into the atmosphere.

Influx of excessive nutrients to reservoir \rightarrow Proliferations of phytoplankton/floating plants \rightarrow Anaerobic decomposition \rightarrow CH₄ emission

7-12

7. Environmental & Social Considerations

Does hydroelectric power generation suppress global warming?

[HEPPs are NOT always friendly to the earth]

2. CH₄ has GWC (Global Warming Coefficient) of 21.

(1 ton of $CH_4 = 21$ tons of CO_2)

Too much CH_4 emission from reservoir \rightarrow Offset CO_2 emission reduction by HEPP \rightarrow HEPP will be an emission source of GHG Does hydroelectric power generation suppress global warming?

[Some HEPPs may be emission source of GHG]

As results,

- We can not rely CO₂ emission reduction solely on HEPP.
- HEPP with a large reservoir can not be registered as CDM project.

7-14

Is geothermal power generation environment-friendly?

[No emission of SO₂, NO_x, PM and CO₂ from geothermal power generation]

But,

- H₂S emission → Offensive odor, corrosion of metal, negative impacts on local vegetation.
- As and Hg effluent \rightarrow Toxic to aquatic fauna.

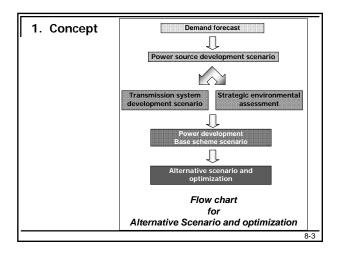
7-15

7-13

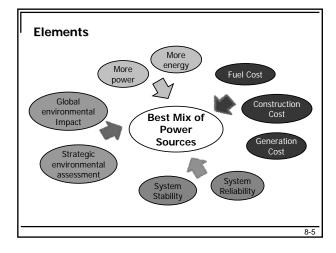

 Why is geothermal power generation promoted?

[Geothermal power generation is not necessarily environment-friendly]

• Geothermal power generation has its specific environmental problems, and it is promoted because geothermal energy is domestic energy.


8. POWER DEVELOPMENT SCENARIO

SPEAKER: MR. YAMAOKA SATOSHI, NEWJEC INC.


Contents

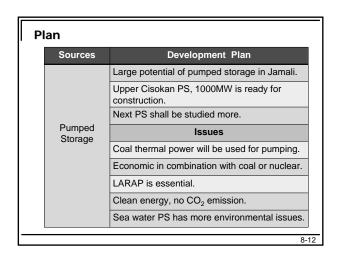
- 1 Concept
- 2 Base scheme
- 3 Optimization study
- 4 Suggestion for follow-up projects

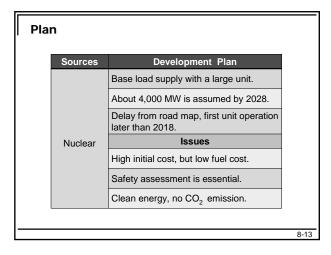
Target

- ✦ Oil free to avoid high oil fuel price
- ♦ Annual demand increase 6.5 %
- ♦ Reserve margin 30 %
- More capacity: 22.3 GW in 2006 to 81.2 GW in 2028, 3.64 times
- More production energy: 104.8 TWh in 2006 to 406.6 TWh in 2028, 3.88 times

	Current	olayers	
Sources	Base	Middle	Peak
Coal .			
Geothermal	\Leftrightarrow		
Small hydro	\Leftrightarrow		
Gas .	<	→	
Oil		<	
Reservoir hydro		<	

8-2

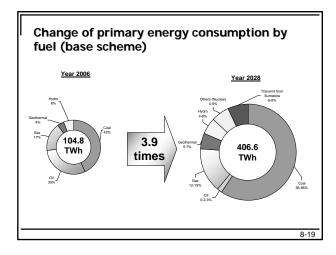

Power Source	s		
	Future play	ers	
Sources	Base	Middle	Peak
Coal	\longleftrightarrow		
Geothermal	\longleftrightarrow		
Small hydro	\Leftrightarrow		
Reservoir hydro		<	\rightarrow
Gas (LNG)		<	\rightarrow
Oil			<============>
Pumped Storage			\leftarrow
Nuclear	← →		
Solar, wind, biomass	\longleftrightarrow		
Transmit from Sumatra	\longleftrightarrow		
			8-7

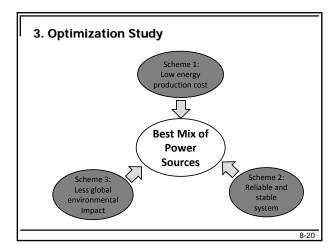

Plan	
Sources	Development Plan
	Main substitution for oil, but base load
	FTP is on-going, 6,900 MW in Jamali by 2010/11
	Low rank domestic coal will be applied.
Coal	Issues
	Procurement is uncertain.
	Logistics shall be established.
	Common use of existing infrastructure is economic in extension of running plants.
	Environmental impact, air pollution is anticipated.
	8-8

Sources	Development Plan
	LNG enables peak load supply.
	Three gas plants, MK, MT, TP, total 1,678 MW are on going.
	Bojanegara CC, 4@750 MW, is planned.
Natural Gas	Issues
	Procurement is uncertain.
	LNG logistics shall be established.
	Less air pollution than coal.

Plan		
Sources	Development Plan	
	To be advanced in policy, 5 % on energy basis.	
	Existing 835 MW , prioritized 785 MW, and feasible 2,015 MW, total 3,635 MW.	
	Capacity ratio 5 % will be attainable in 2025.	
Geothermal	IPPs are expected more than PLN's own development.	
	Issues	
	High initial cost, but fuel is domestic.	
	Sites are in protected areas.	
	No CO ₂ emission.	
		8-

lan	
Sources	Development Plan
	Large potential of reservoir type and run-of- river.
	No reservoir type constructed after Cirata II, 1998.
Hydro	Potential studies executed before 1998.
	Issues
	High initial cost, but no fuel cost.
	LARAP is essential.
	Clean energy, no CO ₂ emission.


an	
Sources	Development Plan
	Future base load supply.
	Bio fuel or phytogenic waste
	Primary energy target 5 % by 2025.
Biomass	Issues
	High fuel cost.
	Logistics of fuel is challenging.
	Clean energy, no CO ₂ emission.


Sources	Development Plan
	Future base load supply.
Renewable;	Primary energy target 3 % by 2025.
small hydro solar & wind	
	Issues
	High initial cost, but no fuel cost.
	Clean energy, no CO ₂ emission.

Pla	an		
	Sources	Development Plan	
		Future base load supply.	
		Capacity 3,600 MW in mine-mouth coal in Sumatra.	
	Transmission	Transmit 3,000 MW to Jamali in 2015.	
	from Sumatra	Issues	
	Sumatra	Future expansion plan of DC transmission line.	
		High initial cost.	
		No air pollution in Jamali.	
,			
			8-16

2. Base Scheme	
Long term target:	Follow primary energy policy or power generation development plan that Indonesian government or PLN has announced.
Short term target :	Oil fuel use is suppressed.
	8-17

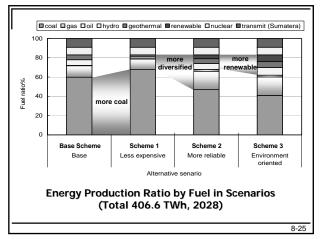
	tor				
Description	RUKN	RUPTL	Energy Outlook	Estimation in Base Scheme	Modification in Base Scheme
Target year	2010	2016	2025	2028	2028
Oil	2	0.2	3.1	0.2-3	0.2-3
Coal	71	72.1	64.9	65-72	56-66
Gas	12	18.6	18.8	12-19	12-19
Geothermal	7	9.1		5-7	5-7
Hydro	8	9.1	13.1	4-8	4-8
Others (Nuclear, etc)	0	0	13.1	4-9	4-9
Transmit from Sumatera	0	0	0	0	6-9
Total (%)	100	100	100	100	100

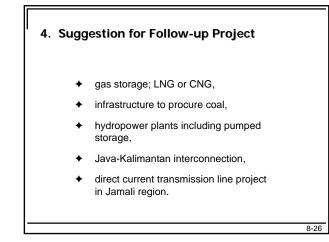
Scenario	Sources	Oil	Coal	Gas	Geo- thermal	Hydro	Pumped storage	Nuclear	Renew- able
Present 2006	Capacity rate 2006(%)	29	39	17	3.5	11.5	0	0	0
	Energy rate 2006 (%)	30.4	43.2	3.7	3.7	5.9	0	0	0
Base	Scheme	Energy rate 0.2 % due to PLN target.	Energy rate 56-66 % due to policy.	Energy rate 12 % due to policy and on-going projects.	Energy rate 5 % due to policy and feasible capacity.	Energy rate 4-8 % due to policy.	Due capacity developed for peak according to WASP.	Capacity rate 5-7 %, 4-5 GW due to roadmap.	Negligible

-1

F

in s low	Schem	ration co	•	get (20)28)			
Sources	Oil	Coal	Gas	Geo- thermal	Hydro	Pumped storage	nuclear	Re


Sources	Oil	Coal	Gas	Geo- thermal	Hydro	Pumped storage	nuclear	Renew- able
	Energy	Energy rate	Capacity	Capacity	Energy	Due	Capacity	Negligible
	rate 0.2 %	70 %	rate 10 %		rate down	capacity	up to 5	due to
Target	due to PLN	because of	because of	2% added with	to 2 % due to	developed	GW (7%) due to	expensive
	target.	cheap fuel.	expensive fuel.	feasible	high initial	for peak according	cheap	production cost.
		Positively	Not	785 MW.	cost.	to WASP.	production	0031.
		developed.	positive.	/00	Not	10 11/10/ .	cost.	
					positive.			
								8-22


Power development target (2028) in Scheme 2: Reliable and stable power supply system								
Sources	Oil	coal	Gas	Geo- thermal	hydro	Pumped storage	nuclear	Renew- able
Target	Energy rate 2-3 % to keep a source.	Cover power shortage.	Energy rate 19 %, positively developed using LNG	Available capacity 3.6 GW, 5 %, positively developed.	Energy rate 4-8 %, storage type developed.	Due capacity developed for peak according to WASP.	Capacity 5 GW (7%) to diversify sources.	Energy rate 4 %, solar, wind and biomass, to diversify sources.
			I	L		I	I	sources.
								8-23

Power development target (2028)

Less global environmental impact

in Scheme 3:

