SPEAKER: MR. MARUOKA YOSHIO,

MR. MANABE KAZUHIRO,

KANSAI ELECTRIC POWER CO., Inc.

2. Advanced and Efficient Technologies of Transmission and Substation Equipment

- 2-1. Gas Insulated Switchgear (GIS)
- 2-2. Life assessment of substation equipment
- 2-3. Advanced monitoring and control system
- 2-4. Conductor with reduced wind load and conductor with bulk capacity
- 2-5. Lightning protection devices for transmission line

2-1

2-3

2. Advanced and Efficient Technologies of Transmission and Substation Equipment

- 2-1. Gas Insulated Switchgear (GIS)
- 2-2. Life assessment of substation equipment
- 2-3. Advanced monitoring and control system
- 2-4. Conductor with reduced wind load and conductor with bulk capacity
- 2-5. Lightning protection devices for transmission line

2-1. Gas Insulated Switchgear (GIS)

Outline

- (1) Comparison of site area between GIS and AIS
- (2) Transition of GIS
- (3) Examples of the application of GIS
- (4) Comparison of construction cost between GIS and AIS
- (5) Comparison of maintenance cost between GIS and AIS
- (6) Summary

Comparison of s	ite area betw (77kV)	veen GIS and AIS
77kV Substation Layout	Substation Type	
	AIS Area : 100%	[Layout of substation] 77kV 4Lines 77/6.6kV Transformers 3units
	GIS (advanced complex type) Area : 13.5%	
➤ GIS area is as sm	all as 13.5% of A	AIS area. 2-10

Type and date	Configuration	SF6 amount	Installation area
Single phase enclosure type (1965-)		100% (250kg)	100%
Three phase enclosure type (1975-)		90% (225kg)	102%
Complex type (1985-)		60% (150kg)	64%
Advanced complex type (current type)		40% (100kg)	27%

Transition of GIS design (500kV)					
Туре	Number of breaks	SF6 amount	Installation area		
Double pressure type	4 breaks	100% (1700kg)	100%		
Single 2 breaks 51% pressure type 2 breaks (870kg) (current type) 91%					
1. 500kV CBs have been changed from double pressure type to single pressure type, because arc extinguish chambers are improved. 2. Therefore, both installation area and SF6 gas amount are reduced. Especially, SF6 gas amount of single pressure type is about half of double pressure type.					

and AIS						
		GIS AIS				
	Type of inspection Inspection Item	Regular (every 6yrs)	Internal (every 18yrs)	Regular (every 6yrs)	Internal (every 18yrs	
Circuit	Bushing		-	Required	Required	
breaker	Operation Mechanism, Linkage, Control Circuit	Required	Required	Required	Required	
	Contact		Required	-	Required	
	Operation Test, Pressure Meter Test, Insulation Resistance measurement etc.	Required	Required	Required	Required	
	Inspection Cost	86% (Compare to AIS Regular Inspection)	98% (Compare to AIS Internal Inspection)	100% (Base)	100% (Base)	
IS mai	ntenance cost is lower than AIS as for high lift work for the mainte	maintenanc enance of bu	e cost. Ishing or ins	ulator aren	't required	

2. Advanced and Efficient Technologies of Transmission and Substation Equipment

- 2-1. Gas Insulated Switchgear (GIS)
- 2-2. Life assessment of substation equipment
- 2-3. Advanced monitoring and control system
- 2-4. Conductor with reduced wind load and conductor with bulk capacity
- 2-5. Lightning protection devices for transmission line

2-2. Life assessment of substation equipment

Contents

1. Outline

2-19

2-21

2. Condition Based Maintenance for Substation Equipment (1) Transformers (2) Circuit Breaker

2. Advanced and Efficient Technologies of Transmission and Substation Equipment

- 2-1. Gas Insulated Switchgear (GIS)
- 2-2. Life assessment of substation equipment
- 2-3. Advanced monitoring and control system
- 2-4. Conductor with reduced wind load and conductor with bulk capacity
- 2-5. Lightning protection devices for transmission line

2-3. Advanced Monitoring and Control System
Outline

(1) Present conditions and background
(2) Transition of Monitoring and Control System
(3) Benefits of advanced LAN System
(4) Reliability of monitoring and control system
(5) Characteristics of monitoring and control system
(6) Replacement cost

2-39

(7) Challenges of the system

(8) Summary

Present condition and background

- 1. Many substations less than 275kV are monitored and controlled from a load dispatching control center.
- 2. Almost all 500kV substations are manned.
- 3. Some monitoring and control systems of 500kV substations are outdated.
- 4. Replacement of such system is planned in the near future.
- 5. LAN system is adopted for new system.
- 6. Unattended operation of 500kV substation is planned after replacement.

 Transition of Monitoring and Control system(1)

 Image: system of the system of

2-38

Replacement cost of monitoring and control system with LAN

	The second system	Advanced system
Cable rack install	1%	1%
Building Expansion	14%	0%
Cable	10%	9%
Monitoring System	105%	90%
Total Cost	130%	100%

When advanced system is adopted, replacement cost can be reduced from the following point of view.
➤ It isn't necessary to expand building.

- (New monitoring and control system doesn't need large space.)
- ➤ Metallic Control Cables are decreased by using Optical Cables.
- The cost of monitoring system itself is lower than that of the second system.

Summary

- 1. By the adoption of advanced LAN system, replacement cost can be reduced.
 - Expansion of existing building isn't needed.
 - The amount of control cables gets smaller.
 - The cost of the LAN system itself is lower than that of the second system.
- 2. By the adoption of 500kV unattended substations, the number of operators can be reduced.
- Advanced LAN system can treat much information.
- Conditions of unattended substations can be grasped exactly.
- Unattended operation can be realized at 500kV substations.
- 3. Surge level of outdoor RS was investigated and surge voltage for the test was determined.

2. Advanced and Efficient Technologies of Transmission and Substation Equipment

- 2-1. Gas Insulated Switchgear (GIS)
- 2-2. Life assessment of substation equipment
- 2-3. Advanced monitoring and control system
- 2-4. Conductor with bulk capacity and Conductor with reduced wind load
- 2-5. Lightning protection devices for transmission line
- 2-4. Conductor with bulk capacity and conductor with reduced wind load
 Outline
 Conventional Conductors
 Low-sag Up-rating Conductor (conductor with bulk capacity)
 - (1) Gap Conductor (GTACSR) (2) Invar Conductor (ZTACIR)
 - Conductor with Reduced Wind Load

2-54

Low-sag Up-rating Conductor					
Characteristics of each conductor (Conductor size is corresponding to 410mm ²)					
Designation	Continuous allowable temperature [deg.C]	Continuous allowable current [A]	Current ratio	Sag [m]	Difference from ASCR sag [m]
ACSR	90	829	1.0 (Base)	8.9	_
TACSR	150	1,323	1.6	11.2	+2.3
GTACSR	150	1,323	1.6	9.1	+0.2
ZTACIR	210	1,675	2.0	8.9	0.0
Condition of sag calculation : Maximum working tension is 500kN, Span Length is 300m, At continuous allowable temperature Low-sag up-rating conductors can upgrade the current capacity of existing					
lines without constructing new lines or modifying existing towers 2-61					

Conductor with Reduced Wind Load

- Effects by the reduction of wind load (design load)
 When it is adopted to new line, <u>construction cost will be reduced.</u> (It is possible to use slenderer tower steel)
 - •When it is adopted to existing line, tower strength will be increased relatively.
- Effect by the reduction of conductor swing

Reduction of Right Of Way (ROW)

(Additional effect)
- Effect by the low-sag characteristic
<u>Reduction of tower height</u>
(in comparison with conventional ACSR with same size in same temperature)2-65

Summary

•Low-sag up-rating conductor includes; Gap conductor and Invar conductor. They can upgrade the capacity of existing lines without constructing new lines or modifying existing towers.

•Conductor with reduced wind load has some effects; reduction of construction cost, increase of the strength of existing tower and reduction of ROW.

2. Advanced and Efficient Technologies of Transmission and Substation Equipment

- 2-1. Gas Insulated Switchgear (GIS)
- 2-2. Life assessment of substation equipment
- 2-3. Advanced monitoring and control system
- 2-4. Conductor with bulk capacity and Conductor with reduced wind load
- 2-5. Lightning protection devices for transmission line

2-5. Lightning protection devices for transmission line

Outline

2-67

- Line Arresters
 - Normal Type
 - Compact Type
- Active Horn (A new type of arc horn)
- Comparison of Line Arrester and Active Horn

Active Horn (A Net	w Type of Arc Horn)
Advantage	
•Reduction of installation cost (Vi •Light weight and compact •Easy handling and installation •No concern for lightning current •Effective against bird contact (be	ery cheap compared to line arrester)
Disadvantage	
Limitation on the number of oper It works at least 5 times (as termi After the limitation, it works as no Follow current runs until the term Coordination with trip out relay in Limitation on applicability not applicable where short circuit	ration frequency nation follow current within 1 cycle) ormal arching horn nination completion S/S is necessary current is more than 10kA (for 771/chost signal action top)
	2-83

Comparison bet	ween Line	e Arrester a	and Active	Horn	
	Line	arrester	Active	e horn	
Item	Normal type	Normal type Compact type		For ground fault	
Operation principle	Non linear characteristics Generation of a of zinc-oxide element suppressing g		Non linear characteristics of zinc-oxide element		on of arc- sing gas
Follow current	Less than 1A Depend on power		ower system		
Termination capability	Short circuit fault & Ground fault		und fault	Ground fault	
Operation frequency	No limitation More than 5 tim		n 5 times		
Short circuit current of the installed line	No lin	No limitation Less than 10kA		-	
Maximum discharge current of lightning	Exists		No limitation		
Applicable voltage	Up to 500kV	Up to 275kV	Up to 77kV	Up to 154kV	
Applicable area	All area	Except polluted area	All area	All area	
Probability of fault prevention	About 99%	About 95%	50 - 100%	About 50%	
Cost	Expensive	Not expensive	Low cost	Very low cos	

Summary

In Japan, following devices are widely installed as a lightning protection device.

•Line arrester (normal type), for preventing trip out with high reliability.

•The compact type line arrester; for reducing the installation cost of the normal type arresters.

•A new design of arcing horn, which is called "active horn"; as a cheap lightning protection device.

TECHNOLOGY TRANSFER SEMINAR OF THE STUDY ON OPTIMAL ELECTRIC POWER DEVELOPMENT IN JAVA-MADURA-BALI IN THE REPUBLIC OF INDONESIA

AUGUST 28, 2008

AT

PJB HEAD OFFICE

PRESENTED BY

JICA STUDY TEAM

The Study on Optimal Electric Power Development in Java-Madura-Bali in the Republic of Indonesia

Technology Transfer Program (Draft) 1st Day

Date :	27 August 2008 at 10:00 AM.
Place:	PJB Head Office
Subject:	Technology Transfer (Substation and Transmission)

Time	Content	Presenter
10:00 - 10:10	Opening Speech by PLN	
10:10 - 10:20	Opening Speech by JICA Study Team	Mr. Yamaoka
10:20 - 12:00	Technology Transfer "Design of Transmission and Substation"	Mr. Manabe Mr. Maruoka
12:00 - 12:30	Question and Answer	
12:30 - 13:30	Lunch	
13:30 - 15:00	Technology Transfer "Advanced and efficient technologies of Transmission and Substation equipment"	Mr. Manabe Mr. Maruoka
15:00 - 15:20	Question and Answer	
15:20 - 15:30	Questionnaire to Audience	

Technology Transfer Program (Draft) 2nd Day

Date :	28 August 2008 at 9:00 AM.
Place:	PJB Head Office
Subject:	Technology Transfer (System Operation)

Time	Content	Presenter
09:00 - 09:05	Opening Speech by JICA Study Team	Mr. Yamaoka
09:05 - 11:00	Technology Transfer : System Operation	Mr. Kishishita
11:00 - 11:40	Question and Answer	
11:40 - 11:50	Questionnaire to Audience	
11:50 - 12:00	Closing Speech by PLN	
12:00 - 13:00	Lunch	