Chapter 2 Contents of the Project

Chapter 2. Contents of the Project

2-1 Basic Concept of the Project

2-1-1 Overall Goal and Project Goal

The government of Tanzania had started the rural water supply project from 1971 targeting "Every Tanzanian citizen to be able to obtain safe water within 400m of their residence by the year 1991", however it produced limited results. Presently, according to the long-term development strategy in 2004, the government of Tanzania set the same goal (safe water for every citizen within 400m of their residence) in its "Tanzania development vision 2025". This project will contribute to the improvement of the rural water supply included as part of the above target.

This project targets increasing the served population for water supply from 9,401 people (2005) to 55,151 people (2020) by providing a safe and stable water source through water supply facilities in 26 villages in the Mwanza region and 18 villages in the Mara region.

2-1-2 Basic Concept of the Project

To achieve the overall goal of the project, water supply facility shall be constructed in this project. Procured facility is planed content based on capability of beneficiaries. However beneficiary's capability for operation and maintenance is partially seems insufficient, therefore soft component activity shall introduce to support for improvement of their capacity. It may introduce improvement of operation and maintenance management for beneficiary, region and district government by construction of the facility.

The table below gives a list of the requested items and followed by a summary of project descriptions in the Project Design Matrix (PDM).

Item	Rec	quest						
Equipment	Well drilling equipment, associate vehicles	1 lump sum						
procurement	Operation and maintenance vehicles for water	supply facilities and investigation equipment 1 lump sum						
	Target village	45 villages						
Facility	Construction of 289 hand pump well facilities	(in 35 villages)						
construction	Construction of Public faucet facility							
CONDUCTOR	7 schemes (in 8 villages, groundwater 4 schemes, lake water 3 schemes)							
	Rehabilitation of Public faucet facility	1 scheme (in 2 villages)						

Table 2-1: Contents of Request by Tanzanian side

Table 2-2: Project Design Matrix

Name of project: Rural water supply in Mwanza and Mara region Target area; 45 villages in Mwanza and Mara region

Period: January 2009~March 2012 Target group: Villagers

Date: October 5 2008

225			: October 5 2008
Summary of Project	Indicators	Measurement	External conditions
Overall goal To improve the living environment of target area villagers	Decreased rate of waterborne disease among villagers A	• Statistical health data • Questionnaire survey	
Project goal To supply safe water and improve water supply rate in the target area	Population of those receiving safe water supplyB	•VWC users Inventory list	No major changes in government water supply policy
Outcomes I. Water supply facilities will be constructed in target villages	1-1. Water supply rate in target area	records Questionnaire	No rapid increase or shift in population
Strengthens operation and maintenance management for the water supply facilities by beneficiary, district and regional council.			·
Activities		put	
Japanese side 1-1. Construct Hand Pump well 1-2. Construct spring protection facility 2-1. Established O/M system by beneficiary	(Japanese side) Construction of water supply facilities Soft component	(Tanzanian side) • Secured budget, human resources • Secure construction area	No drought or decrease in the ground-water level beyond expectations
 2-2. Instruct beneficiary on O/M methods 2-3. Instruct Agency on O/M methods 2-4. Strengthen supply spare parts to Agencies 	Consultancy service	Maintain access road	Prerequisite The beneficiary desires to execute the project
Tanzanian side 1-1. Beneficiary maintains access road 1-2. Explain project contents to beneficiary 1-3. Secure tax benefits for material procurement			
2-1. Assist in establishing VWC 2-2. Conduct hygiene education to VWC 2-3. Assist monitoring and VWC activities			

2-2 Basic Design of the Requested Japanese Assistance

2-2-1 Design Policy

2-2-1-1 Basic Plan

(1) Procurement of equipment

All of the well facility will be constructed by Japan side and there is no adequate governmental agency for Tanzania side which to receive equipment for boring, therefore procurement of equipment shall eliminate from this project.

(2) Target villages

Target villages for the project shall be selected by criteria including hand pump wells (289 points) and public faucets (8 schemes) facilities in 45 target villages that the Tanzania side requested based on the result of development study.

(3) Target year of the project

A target year of 2020 has been set for the project. Initially, a target year of 2015 was proposed in the development study based on the project implementation period of 2007 to 2009, with a renewal period of 6 years from completion of the project. However, the actual implementation of the project will be from 2009 to 2012. If target year is set to 2015, the population served by this project will be reached only 3 years after completion of the project. The Tanzania side strongly requested to keep at least 5 years between the year completion of the project and target year based on development study. Another factor that needed consideration when setting the target year is that this project will contribute to the goal of the "Tanzania development vision 2025", that people to will be able to obtain safe water within 400m of their residence by 2025. However, if the target year is set to 2025, the scope of the project would then be 13 years after its' completion, resulting in an excessive project design. As a result of discussions with the Tanzania side, the target year of the project was set for 2020 as it is half way between 2015 and 2025.

(4) Served population for water supply

The design served population for water supply in the each target village shall be estimated at 2020 based on the "Population and Housing Census", published by the Government of Tanzania 2002. However, populations that served by the existing facilities will be excluded.

(5) Basic Water supply quantity

A basic water supply quantity of 25 liter/capita/day shall be applied based on "Design Manual for Water Supply Facility" issued by Ministry of Water and Irrigation on 1997.

(6) Alternative villages and hand pump scheme site

924 villages were requested on development study as target villages. According to selection in development study, 45 villages were selected as priority project. Therefore, alternation for eliminated schemes and well points by selection in this basic design study shall not be selected, because the villages not selected as priority project were evaluated that not suitable as grant aid project.

(7) Population basis per hand pump well facility

In principle, a basis of 250 capita per facility has been set for the population per hand pump well facility.

(8) Selection of the Public Faucet scheme

1) Planning of the other projects by the other donors in the target area

The facilities shall be eliminated from this project in the case that other donors are planning projects in the target village. The government of Tanzania has set a target to supply safe water to all of its citizens within 400m from their houses by 2025, however, this target will not be reached in this area through the successful execution of this Project alone. Therefore, the other projects planned in the same villages shall be acceptable, whereas if the other projects are planned in the same commune, then the facility shall be eliminated from this project.

2) Yield test

A trial borehole excavation will be carried out to perform a yield test at villages marked for a public faucet scheme that have not yet secured a water source. The yield test will be deemed successful if the water volume complies with that necessary in each scheme. In cases where trial boreholes do not comply with the required volume of water, the scheme shall be eliminated from the public faucet scheme and either designated as the hand pump wells or eliminated from the project.

Successful water yield define for each facility as below.

- a) Successful water yield of the public faucet schemes has to comply with the water volume that is able to provide required water volume for each scheme (25 liter/capita/day × design served population of the scheme) within 12 hours
- Successful water yield of the hand pump well scheme has to comply with 15 liter/min

3) Water quality analyses

Water quality analysis will be conducted on successful trial boreholes which obtained certain

amount of yield. Water quality standards shall follow that of the Tanzania Standard. However, for items which affect human health, World Health Organization (WHO) guidelines will be followed.

4) Operation and maintenance cost

Operating and maintenance costs for the public faucet facilities are higher than for the hand pump well facilities. Some facilities have stopped to use by beneficiaries in developing countries due to lack of the operation and maintenance costs which is covered by correcting the water fee. In order to utilize the facilities sustainably, a payable amount of the water fee will be determined by the socio-economic survey. In the event the amount is lower than operation and maintenance costs, the scheme shall be changed to a hand pump well facility. The water fee per household shall be set at 5% of household income.

5) Technical evaluation

Technical evaluation will carried out for the public faucet scheme. In the event, evaluation result shows that the scheme are unable to conduct sustainable operation and maintenance by the beneficiaries, the scheme will be eliminated from Public faucet scheme and it will exam for hand pump scheme.

6) Flow diagram for selection of schemes

Diagram showing the selection process for public faucet schemes is shown in Figure 2-1.

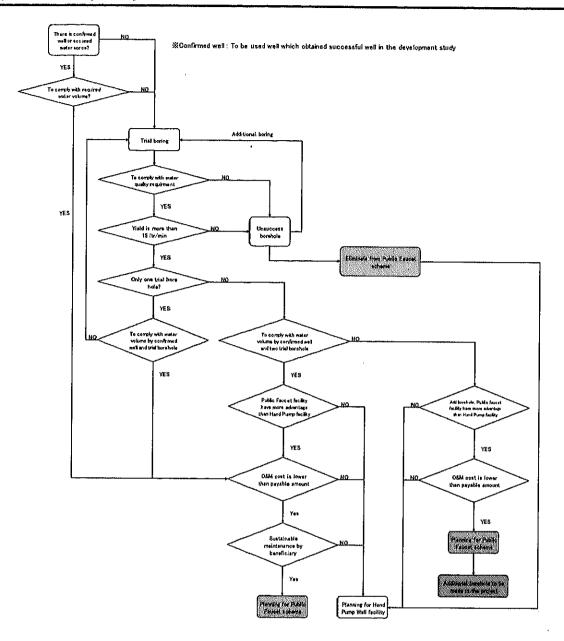


Figure 2-1: Flow diagram of selection process for public faucet schemes

(9) Selection of hand pump well points

1) Planning of the other projects by the other donor in the target area

The facilities shall be eliminated from this project in the case that other donors are planning a project in the target village. The government of Tanzania has set a target to supply safe water to all of its citizens within 400m from their houses by 2025; however, this target will not be reached in this area through the successful execution of this Project alone. Therefore, the other projects planned in the same villages shall be acceptable, whereas if the other projects are planned in the same commune, then the facility shall be eliminated from this project.

2) Field survey

The facilities that were requested are selected based on the priority project which was recommended by JICA development study conducted from 2004 to 2006. Therefore the basic surveys such as the utilization of existing facilities have already been carried out. The purpose of this field survey is to check if the location is accessible by construction equipment and whether it can be expected that villagers would continue to use the facility. If these conditions are not met, those facilities shall be eliminated from this project.

3) Hydro-geological survey

The expected successful drilling rate will be estimated based on the development study results and drilling results of the past projects by the other donors in the project site. If it is deemed that a location has a low possibility for ground water development, the location shall be eliminated from this project.

4) Geophysical survey

Vertical electrical prospecting will be carried out according to positions selected through the field survey and results of the hydro-geological survey. In principle, a location would not be eliminated from the plan unless results uncover a situation where 1) the aquifer is located within 20m depth from the ground level, or 2) the analysis result shows the second layer and third layer are thin (see figure below) and, additionally, encounter a high resistance value, which indicates there is little potential for an aquifer in those layers and any deeper would likely reach the foundation, so the above locations shall be eliminated from this project.

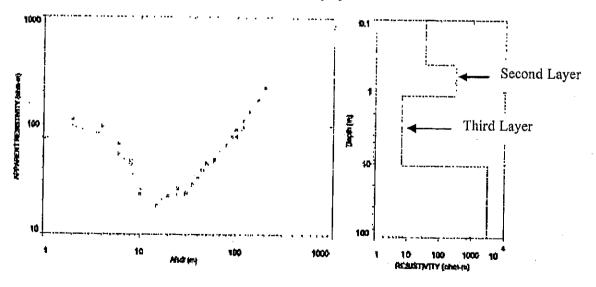


Figure 2-2: Non-Resistant column diagram based on analysis of electrical conductivity

5) Ranking

The selected drilling points which are seemed to be low successful rate and low cost performance rather than the other schemes shall be eliminated from this project.

6) Flow diagram for selection of schemes

Diagram showing the selection process for hand pump well facilities is shown in Figure 2-3.

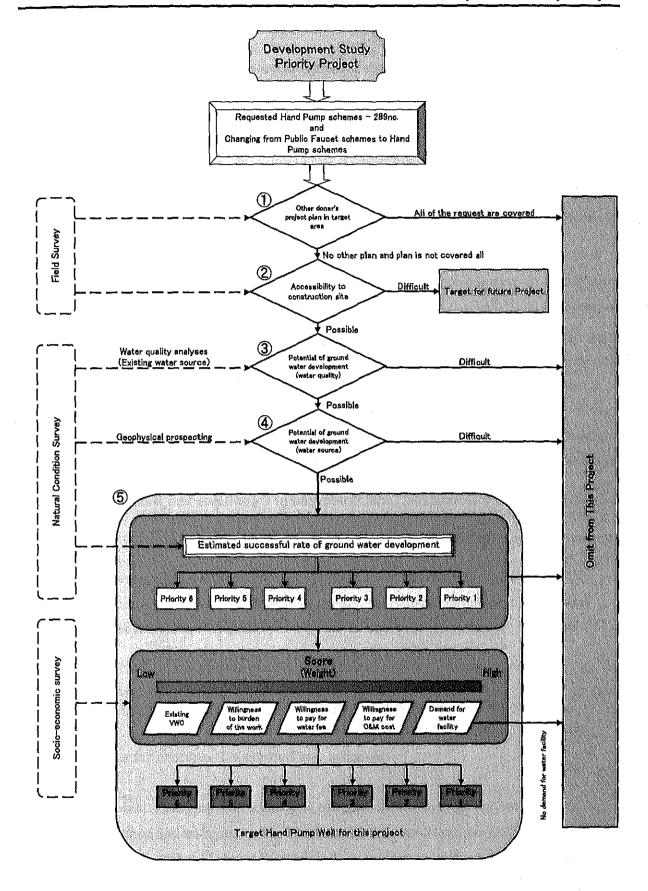


Figure 2-3: Flow diagram of selection process for hand pump well facilities

2-2-1-2 Policy for natural condition

The target area is located in the Mwanza and Mara regions which faces Lake Victoria. Both regions are located on the plateau which lowest altitude is 1,134m on the surface of Lake Victoria. The climate is relatively warm in comparison with the shoreline. In addition, the annual mean rainfall of both regions is 946mm and the annual mean air temperature is 24.5 degrees. Meanwhile, the annual mean rainfall at the observatories is between 356mm and 2,080mm, whereas the monthly mean rainfall is between 1.7mm and 234.35mm. The dry season is from July to September, and the rainy season begins from November to April of the following year.

In the target area, unpaved road will be muddy condition during the rainy season, therefore construction work should be planed to conduct during the dry season which the areas keep good road condition.

2-2-1-3 Policy for Social and Environment Conditions

A sense of ownership for water supply facilities should be cultivated and a concept of sanitation should be established among villagers in order to utilize the facility sustainably. Activities for the explanation and the education to the villagers will be carried out as part of the soft component (Technical Assistance) to achieve above policy.

2-2-1-4 Policy for Construction (and Procurement Conditions and Business Customs)

(1) Procurement of materials and equipments

There are small shops who sell some materials and equipments in the Mwanza and Mara regions, however the selection and quantity are limited. As a result, materials and equipments which will be prepared for the project shall be procured from Dar es Salaam, the commercial center of Tanzania.

(2) Approval and licenses

The Tanzanian side agreed to obtain the necessary approval and licenses from the relevant authority for facility construction so as not to interfere with the project.

(3) Work force

Based on the hearing from local construction companies, the work force is made up of Tanzanian workers and they will meet the needs of the project. Furthermore, there will be no need for workers from third countries unless special technical skills are required. Therefore, the work force will be planned by the local contractor in this project.

2-2-1-5 Policy of Utilization of Local Contractor

There are many drilling companies in Tanzania. They have adequate drilling technique and equipments, however they are unable to carry out construction management and quality control such as borehole logging test. Nonetheless, if Japanese contractors were to conduct the drilling work, the costs would be unmanageably high. Therefore, in order to maintain an appropriate cost, the local contractors shall be engaged in the drilling construction under the construction management and supervision by Japanese contractors.

2-2-1-6 Policy for Operation and maintenance

(1) Village level

Many of the target villages already have Village Water Committees (VWCs); however many of them are no longer functional because the facilities have broken down. On the implementation stage, the soft component activities will help VWC to strengthen restructuring the organization, and improving water fee collection and control methods.

(2) Authorities concerned

Currently, services to villagers and existing facilities are not provided sufficiently due to restructuring the organization budget and shortages of the Regional Water Engineer's office (RWE) and District Water Engineer's office (DWE). It is necessary to restructure organization, increase staff and improve technical capabilities of the authorities concerned, however this project does not have enough time to cover all of them. Therefore, suggestions concerning technical assistance to be supported by the other donors will be given in this project.

2-2-1-7 Policy for Facility Design

The facilities shall be design user-friendly as much as possible to operate and maintain by the villagers easily. Materials, equipments and spare parts which can be available in the local market shall be adopted.

2-2-1-8 Policies for construction method and schedule

(1) Method of deep well construction

The Mud Circulation Rotary method or the Down the Hole Hammer method (DTH) will be adopted as to the soil character at the drilling points. Both methods are commonly used in Tanzania. but Mud Circulation Rotary method will be used for surface and soft subsoil, whereas DTH will be adopted for foundation drilling.

(2) Construction schedule

The majority of facility construction of this project is the construction of hand pump well facilities. A term of project will be heavily influenced by the drilling period. Therefore, the contractor's ability and number of available equipments will be paid attention to set up an economical duration of the project.

2-2-2 Basic Plan

2-2-2-1 Selection of Public Faucet scheme

(1) Detail of the selection process

1) Other projects planned by the other donors in the target area

As a result of hearing to the Ministry of Water and Irrigation (MoWI) and Regional Water Engineer office in Mwanza and Mara regions, there is no other project in the target villages.

2) Yield test

The locations of yield tests conducted are shown as below.

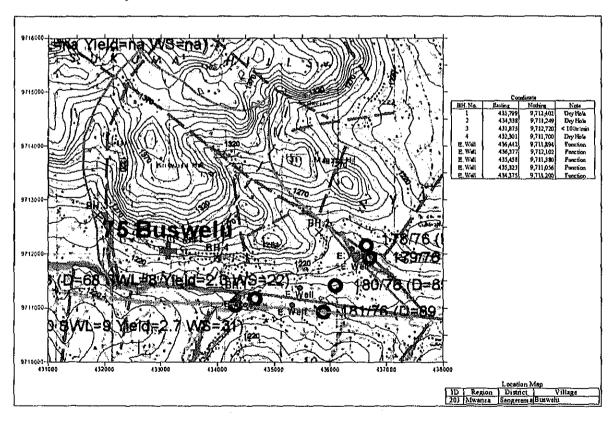


Figure 2-4: Location of yield tests in BUSWELU village

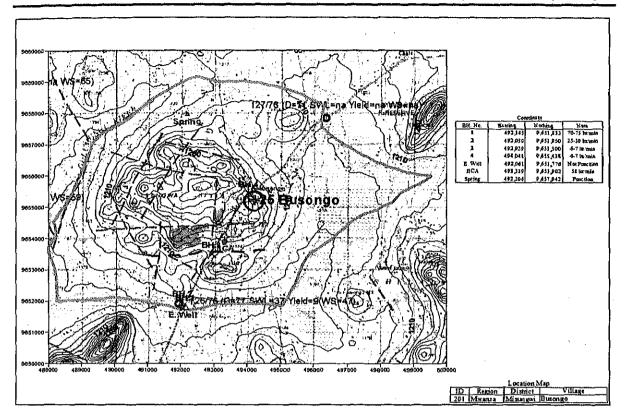


Figure 2-5: Location of yield tests in BUSONGO village

Yield tests were conducted at four points each at the BUSONGO and BUSWELU schemes, however none of them satisfied the required water volume. Therefore both schemes were eliminated from the Public Faucet schemes and had been changed to the candidate of the hand pump well scheme selection. Required water volume and the result of the yield tests for each scheme are shown as below.

Table 2-3: Required water yield for the each scheme

Region	District	ID	Scheme	Village	Water supply pop. in 2020 (Capita/village)	Water supply rate (ltr/capita/day)	Water demand (htr/month/village)	Water demand per scheme (ltr/month/scheme)	Operation hours (hr/day)	Required water volume (ltr/min)
	Misungwi	201	Busongo	Busongo	5,725	25	4,293,806	4,293,806	12	198.79
	Misungwi	202	Ngaya	Ngaya	4,170	25	3,127,541	3,127,541	12	144.79
		203	Buswelu	Buswelu	4,191	25	3,142,937	3,142,937	12	145.51
	Songaronia	204	Nyamiswi	Nayamiswi	3,902	25	2,926,230	8,043,563	12	372.39
Mwanza	Sengerema	205	INVALIDISMI	Nyakasasa	6,823	25	5,117,333			
	[206	Nyakahako	Nyakahako	9,065	25	6,798,845	6,798,845	12	314.76
i	Kwimba	207	Hungmalwa	Hungmalwa	6,299	25	4,724,191	4,724,191	12	218.71
	Ukerewe	208	Dul	Bukonyo	2,577	25	1,932,779	6,324,668	12	292.81
	Okerewe	209	Bukonyo	Namilemba	5,856	25	4,391,889			
Mara	Musoma	210	Saragana	Saragana	4,814	25	3,610,692	3,610,692	12	167.16
		Total			53,422		40,066,242	40,066,242		1,854.92

Table 2-4: Yield test results

BUSONGO

BH. No.	Easting	Nothing	Depth (m)	Static water level (GL- m)	Dinamic water level (GL- m)	Yield (ltr/min)	Judgement
l	492,145	9,651,833	100	22.0	-	70-75	Not enough yield for Level 2
2	492,050	9,651,950	102	18.0	38.0	25-30	Not enough yield for Level 2
3	492,929	9,653,500	100	3.1	68.3	6-7	Not enough yield for Level 2 also Level 1
4	494,048	9,655,438	100	34.0	75.5	6-7	Not enough yield for Level 2 also Level 1

BUSWELU

BH. No.	Easting	Nothing	Depth (m)	Static water level (GL- m)	Dinamic water level (GL- m)	Yield (ltr/min)	Judgement
l	435,799	9,712,402	110	1	-	-	Dry hole
2	434,338	9,711,249	98	_	-	-	Dry hole
3	431,854		102			<10	Not enough yield for Level 2 also Level 1
4	432,301	9,711,700	100	-	-	-	Dry hole

The yield values given above were derived from a simple measurement after completion of drilling and are not official yield test results.

The yield at existing wells at HUNGMALWA and SARAGANA are 192 liter/min and 114.4 liter/min respectively. This did not comply with the required volume of 218.17 liter/min and 167.16 liter/min respectively. Therefore, those two schemes are changed to the hand pump well schemes.

3) Result of water quality analysis

Criteria of water quality analysis

The criteria of water quality analysis for this project are shown as below.

Table 2-5: Criteria of water quality for this project

	Name of Constitutes	Symbol	Dalta	Tanzania	Standards	WHO G	uideline	Project	
No	Name of Constituent	Symbol	Units	Allowable	Upper Limit	Allowable	Acceptable	Standards	
B	acteriological								
1	Coliform	CT	MPN/100m1	0	1-3	0		0	
2	Escherichia Coil	E-Coil	MPN/100ml	0	0	0		0	
	oxio								
3	Lead	РЬ	mg/l	0.05	0,10	0.01		0.01	
_	Arsenic	As	mg/l	0,05	0.05	0.01		0.01	
5	Selenium	Se	mg/l	0.01	0.05	0.01		0.01	
	Chromium	Cr	mg/l	0.05	0.05	0.05		0.05	
7_	Cyanide	Cn	mg/l	0.10	0.20	0.07		0,07	
	Cadmium	Cq	mg/l	0.01	0.05	0.003		0.003	
9	Barium	Ba	mg/l	1.00	1,00	0.70		0.70	
	Mercury	Hg	mg/l			0.001		0.001	
	Silver	Ag	mg/l	-	-				
A	ffecting Human Health	<u> </u>			<u> </u>				
12	Fluoride	F	mg/l	1.50	8.00	1.50		1.50	
13	Nitrate	NO ₃	mg/l	30	100	50		50	
B	eing Orago-Septic								
14	Colour		_mg/i	15	50	-	15	15	
15	Turbidity	<u> </u>	mg/l	15	30		5	15	
16	Taste		-	Not Objectional	Not Objectional	-	-	Not Objectional	
17	Odour		-	Not Objectional	Not Objectional			Not Objectional	
	alinity and Hardness								
18	pH			6,5-8.5	6.5-9.2	-	_	6,5-8.5	
	Total Filtrable		mg/l	1,500	2,000			1,500	
20	Total Dissolved Solids	TDS	mg/l	-		-	1,000	-	
	Residue	CaCO ₃	mg/l	500	600			500	
T	ctal Hardness								
22	Calcium	Ca	mg/l	200	300	- 1		200	
23	Magnesium	Mg	mg/l	150	100		_	150	
24	Magnesium- Sodium Salphate	Mg-Na ₂ SO ₄	mg/l	1,000	1,000	_	-	1,000	
25	Sulphate	SO4	_mg/l	400	600	-	250	400	
	Chloride	CI	mg/l	250	800	-	250	250	
	one Toxic Metals		Ĺ <u></u>						
	lron	Fe	mg/l	0.30	1.00	-	0.30	0.30	
28	Manganese	Mn	mg/f	0.10	1.50	0.40	0.10	0.10	
29	Copper	Cu	mg/l	1.50	3.00	2.00	1.00	1.50	
30	Zinc	Zn	mg/l	5.00	15.00	-	3.00	5.00	
0	rgenic Pollution of Netural Origin								
	BOD	BOD	mg/l	6.00	6.00	-	-	6.00	
32	PV (Oxygen abs. KMnO4)		mg/l	10.00	20.00	-		10.00	
	Ammonium	NH₃	mg/l	0.50	2.00	-	1.50	0.50	
34	Total Nitrogen Exclusive Nitrate		mg/l	0.10	1.00	-	-	0.10	
0	rganio Pollution Introduced Artificially								
	Surfactants ABS (Alkyl Benxyl Sulphonates)		mg/l	1.00	1.00		_	1.00	
36	Organic matter as carbon in chloroform extract		mg/l	0.50	0.50		-	0.50	
37	Phenolic substance as phenol		mg/l	, 0.002	0.002		-	0.002	

Adoption value

Results of water quality analysis

Water quality analysis was conducted at two trial boreholes in BUSONGO village, however, concentration of Chlorine and Fluorine were higher than the project standard. Therefore, the two trial wells had been eliminated from the public faucet schemes.

Table 2-6: Result of laboratory water quality analysis

					T					Lateratory Test											
Category	Northines	Fasting	Ekvaina	Region	District	D	Village	Descriptica	Sautspafe	CN	Fe	Ma	F	ol	Bi .	XII,	NO;	Color	Turbicity	122	TDS
rarbii	(ATTIONE)	raxec	(m)	Nigra	Dotte	"	, resp.	i roseluna	Date	mgi	angl	exel	usl	, pr	ese l	ngl	Eğl	mgPt1	UTK	rg)	ngi.
L						L		<u> </u>		0.07	0.30	0.10	1.50	6545	0.7	0.50	50.00	15		1,500	$\overline{}$
-	9,651,833	机排	I,UIL	Hwarza	Misungwi	201	BUSONGO	BSO#I	1201/2004	41001	1.04	401	774	190	0	035	2.67	P	0	HO	760.0
مهري. مدين				Marke	Masagai	all	BL'SONGO	BSO /2	1201/2008	4001	9.16	411	197	9.00	ş	0.46	9.30	0	¢	230	765.0
===	9,617,521	\$90,207	1,127	Marana	Hismosi	202	NGAYA	Victoria Lake	2412/2007	41,001	0.28	411	1.09	1,47	0	9.35	0.70	14	23	280	67.6
**	9,742,914	41,150	1,130	Maranza	Sommon	24	NYAMISWI	Victorie Lake	21/12/2007	4001	0.01	4101	0.81	1.49	0	0.44	0.81	0	2	240	523
F 25.	A 337 CM	191191	1,01	Myzu	Sorgrena	206	NYAKAHAKO	Victoria Lake	27 12 2007	40.001	401	401	0.17	KJ.	0	165	0.27	H	- 4	260	53.4
	9,784,191	49,41	1,129	M # 3722	Ukaene	205	BLIKONYO	Victoria Lake	23.12/2007	4001	0.04	40	0.51	8.19	ø	0.37	0.50	0	0	260	47.2

]			1		Laboratory Test												
Category	Northeas	Extins	Ekraica	Regica	District	D	Village	Description	zaubjuš	Colfora] Haixs	Çı	Mg	50 ₁	a	BOD	COD	HCO;	Xi	Аı	Opis Popin	luigment
1	- m		(m)	,,		_			Date	www.	Lá	Eğl	ng!	ngl	mg!	ngi	ing	rš _j	ag!	igl	ngi	
ļ_				ļ						Q	900	200.0	(50,00)	400.00	251	4	Įģ!	•	,	1.00	0.50	
	9,651,833	192,145	1,171	Учэта	Histogri	M	BUSONGO	B50+1	1241/2004	0	117	113.0	32.56	91.50	46)	0	0	539.0	[19.1	<1.00	•	NG
25 25 25 25 25 25 25 25 25 25 25 25 25 2				Hwava	Misungai	201	BUSONGO	BSO#2	1201/2001	Ð	145	15.0	Ιέλ	123.00	##	0	0	579.0	116.5	<1.00	٠	NG
=_	9,617,524	490,307	1,127	Миания	Nemen	202	NGAYA	Victoria Lake	2412/2007	0	37	39.0	137	t0.60	21	4	LØ.	55.0	11.1	<1.00	0.01	Conditionally OX
ile c	9,742,914	441,850	1,130	M sranza	Soverana	М	NYAMISWI	Victoria Lake	2812/2007	0	16	15.0	153	4,90	[6	4	1	31.0	2.1	<1.00	411	OK
	9,725,524	161,898	1111	Mana	Songrama	206	NYAKAHAKO	Victoria Lake	27 12/2007	0	Đ,	16.0	6.56	4.90	14	6	10	320	14.4	<(.00	0.01	Conditionally OK
	9,784,198	493,418	1,129	H water	liame	20\$	BUXONNO	Victoria Lake	2312/2007	0	40	17,0	5,59	10.00	23	Ó	0	37.0	9.1	<1.00	40	OK

: Figure is encoding project standards

Note: Public faucet schemes using water from Lake Victoria have a water purifier system, and therefore those schemes which exceed project standards of pH, NH₄ and Turbidity shall be accepted on certain conditions.

4) Payable water fees

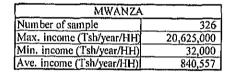
The payable water fee is set the amount which is 5% of the annual income per household and 80 percent of the total villagers who can pay the amount. In case of the international organizations such as World Bank, the water fee in developing country is 4 to 5 percent of the income.

Income survey

Method of survey

There are two methods for statistical survey, complete enumeration is carried out to investigate all subjects of a target research group, and sample survey is carried out to understand the full facts of the group based on investigation results of sample. For the actual survey, the complete enumeration would likely be superior, however the sample survey was conducted due to budgetary and time restrictions in this survey.

Sample collection method


There are two methods for sample extraction: purposive selection and random selection. Purposive selection lacks objectivity since it requires the person conducting the sample to exercise specific intent and experience to limit the extraction, whereas random sampling is objective. Therefore, a random sampling method was adopted in this survey.

> Results of income survey

In order to avoid restricting the samples to households with good access conditions in the village, three households from each sub-village were extracted at random to collect an annual cash income record. There were 6,487 households in the Mwanza and Mara regions in 2007 and the number of samples was 255 with a sampling error of \pm 6.02%.

Region	Village ID	District	Ward	Village	Personnel in household	Population 2007	Number of Household in 2007	Number of sampling	Percentage of sampling data
	201	MISUNGWI	Busongo	Busongo	6.36	5,035	792	33	4.17%
1	202	MISUNGWI	Mbarika	Ngaya	6.18	3,937	637	45	7.06%
	203	SENGEREMA	Nyanzenda	Buswelu	6,51	2,839	436	18	4.13%
	204	SENGEREMA	Nyakasasa	Nyamiswi	6.05	2,451	405	15	3,70%
Mwanza	205	SENGEREMA	Nyakasasa	Nyakasasa	6.06	4,287	708	27	3.81%
	206	SENGEREMA	Chifunfu	Nyakahako	5.85	5,695	973	24	2.47%
Ĺ	207	KWIMBA	Hungumalwa	Hungumalwa	5.74	5,694	993	24	2.42%
	208	UKEREWE	Namilembe	Bukonyo	6.89	1,806	263	21	7.98%
	209	UKEREWE	Namilembe	Namilembe	6.20	4,104	663	21	3,17%
Mara	210	MUSOMA	Nyambono	Saragana	6.35	3,913	617	27	4.38%
						Ave	rage		4.33%
						Standar	rd error		6.02%

Table 2-7: Number of collected samples and standard error

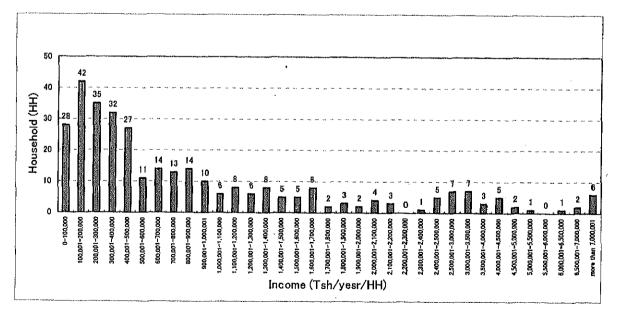


Figure 2-6: Income distribution in Mwanza Region

MARA	
Number of sample	141
Max. income (Tsh/year/HH)	5,965,000
Min, income (Tsh/year/HH)	43,000
Ave. income (Tsh/year/HH)	822,894

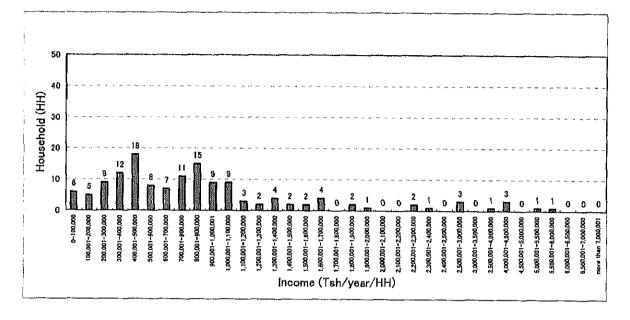


Figure 2-7: Income distribution in Mara Region

Annual incomes per household in 2000 were 977,000 Tanzania shilling (TSH) in Dar es Salaam, 846,000 TSH in other urban areas and 538,000 TSH in rural areas. Considering the price boost ratio since 2000, annual income in 2007 was estimated as follows:

- ✓ Dar es Salaam, 1,400,000 TSH,
- ✓ Other urban areas, 1,213,000 TSH, and
- ✓ Rural areas, 772,000 TSH.

As the result of annual income is 992,000 TSH in Mwanza region and is 932,000 TSH in Mara region, and these results seem to be adequate.

Table 2-8: Average annual income per household (2000)

Region	Average income by capita (TSH/capita)	Average size of household (person/HH)	Average income (TSH)
Dar es Salaam	16,473	4.55	977,055
Other urban	13,810	4.70	846,109
Rural	7,513	5.50	538,655

Source: Household Budget Survey, 2000/2001

Table 2-9: Inflation index

Unit: % / year

	2000	2001	2002	2003	2004	2005	2006	2007
Tanzania	4.9%	5.7%	6.2%	5.7%	6.7%	6.7%	6.2%	6.2%

Source: The Economic Survey, 2001, President's Office, Planning & Privatization, Tanzania, June 2002

Table 2-10: Average annual income per household considering price boost

Unit: TSH / HH / year

Region	2000	2001	2002	2003	2004	2005	2006	2007
Dar es Salaam	977.055	1,032,747	1,096,777	1,159,294	1,236,966	1,319,843	1,401,673	
Other urban	846,109	894,337	949,786	1,003,924	1,071,187	1,142,956	1,213,820	1,289,077
Rural	538,655	569,359	604,659	639,124	681,946	727,636	772,750	820,660

Population and number of households in target villages

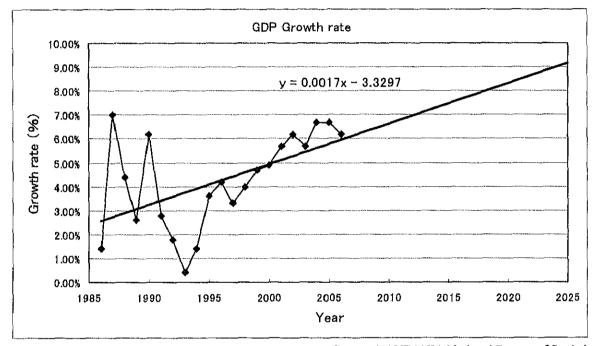
Population and number of households in target villages are shown as below.

Table 2-11: Population in target villages

Unit: Capita / village

Region	District	ID.	Village	Catenth rate of population	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mwanza	Misungwi	201	Busongo	1,32%	4,470	4,532	4,595	4,659	4,724	4,789	4,856	4,923	4,991	5,060	5,130	5,201	5,273	5,346	5,420	5,495	5,571	5,647	5,725
	Misungwi			132%	3,188	3,237	3,286	3,336		3,438	3,490			3,650	3,705	3,761	3,817	3,874	1,931	3,990	4,049		4,170
	Sengerema	203	Buswelu	3.61%	2,046	2,133	2,222	2,315	2,411	2,511	2,614			2,947	3,067	3,190	3,318	3,451	3,588	3,731	3,879		4,191
1	Sengerema	204	Nyamiswi	3.64%	2,050	2,125	2,202	2,282	2,365	2,451	2,540	2,633	2,729	2,828	2,931	3,038	3,148	3,263	3,382	3,505	3,632	3,765	3,902
			Nyakasasa	3.61%	3,585	3,715	3,851	3,991	4,136	4,287	4,443	4,604	4,772	4,946	5,126	5,312	5,506	5,706	5,914	6,129	6,352	6,583	6,823
ļ	Sengerema	206	Nyakahako	3.64%	4,763	4,936	5,116	5,302	5,495	5,695	5,903	6,117	6,340	6,531	6,810	7,058	1,315	7,581	1,857	8,143	8,440	8,747	9,069
	Kwimba	207	Hungmalwa	2.83%	3,067	3,208	3,352	3,500	3,652	3,809	3,970	4,136	4,306	4,481	4,661	4,847	5,037	5,233	5,435	5,642	5,855	6,074	6,299
	Ukerewe	208	Bukonyo	3.01%	1,479	1,526	1,574	1,624	1,675	1,728	1,782	1,838	1,896	1,955	2,016	2,039	2,144	2,211	2,280	2,351	2,424	2,499	2,537
	Ukerewe	209	Namilemba	3.01%	3,360	3,467	3,576	3,689	3,806	3,926	4,049	4,176	4,307	4,442	4,582	4,725	4,872	5,024	5,181	5,342	5,508	5,680	5,856
Mara	Musoma	210	Saragana	2.11%	1,180	3,256	3,333	3,412	3,493	3,576	3,660	3,746	3,834	3,924	4,016	4,110	4,206	4,304	4,401	4,501	4,604	4,708	4,814
	Ťe	tal .		3.03%	31,189	32,134	33,107	34,111	35,144	36,210	37,307	38,439	39,604	40,806	42,044	43,321	44,637	45,993	47,390	48,829	50,313	51,844	53,422

Table 2-12: Number of households in target villages


Unit: HH / village

															,				ATTTP.		7 1 1 1 1	<u> </u>
Region	District	ID	Village	2002 :	2003	2004	2005	2006	2007	2008	2009	2010	2011	2 012	2013	2014	2015	2016	2017	2018	2019	2020
Mwanza	Misungwi	201	Busongo	703	712	722	732	743	753	763	774	785	796	807	818	829	840	852	864	876	888	900
1	Misungwi	202	Ngaya	_ 516	523	531	539	548	556	564	573	582	590	599	608	617	626	636	645	655	664	674
	Sengerema		Buswelu	314	327	341	355	370	385	40L	418	435	452	471	490	509	530	551	573	595	619	643
1	Sengerema	204	Nyamiswi	339	351	364	377	391	405	420	435	451	467	484	502	520	539	559	579	600	622	645
	Sengerema	205	Nyakasasa	592	613	636	659	683	708	733	760	788	816	846	877	909	942	976	1,012	1,049	1,087	1,126
	Sengerema	206	Nyakahako	814	843	874	906	939	973	1,008	1,045	1,083	1,122	1,163	1,206	1,250	1,295	1,342	1,391	1,442	1,494	1,548
	Kwimba	207	Hungmalwa	535	559	584	610	637	664	692	721	151	781	813	845	878	912	948	984	1,021	,059	1,098
	Ukerewe	208	Bukonyo	215	221	228	236	243	251	259	267	275	284	293	302	311	321	331	341	352	363	374
	Ukerewe	209	Namilemba	542	560	577	595	614	634	654	674	695	717	739	763	786	811	836	862	889	917	945
Mara	Musoma	210	Saragan a	50t	513	525	537	550	563	576	590	604	618	633	647	662	678	693	709	725	742	758
	To	xal		5,071	5,222	5,382	5,546	5,718	5,892	6,070	6,257	6,449	6,643	6,848	7,058	1,271	7,494	7,724	7,960	8,204	8,455	8,711

Table 2-13: Estimated average annual income (2007)

Unit: TSH / HH / year

			T		T	
\ \	Village		}		No of	Average
Region		District	Ward	Village	Sub-	Annual Cash
	ID	[village	Income
	201	MISUNGWI	Busongo	Busongo	11	1,072,241
1	202	MISUNGWI	Mbarika	Ngaya	15	291,774
	203	SENGEREMA	Nyanzenda	Buswelu	6	730,188
i i	204	SENGEREMA	Nyakasasa	Nyamiswi	5	970,154
Mwanza	205	SENGEREMA	Nyakasasa	Nyakasasa	9	2,116,630
	206	SENGEREMA	Chifunfu	Nyakahako	8	2,475,000
ļ	207	KWIMBA	Hungumalwa	Hungumalwa	8	733,675
1	208	UKEREWE	Namilembe	Bukonyo	7	720,000
	209	UKEREWE	Namilembe	Namilembe	7	1,598,765
Mara	210	MUSOMA	Nyambono	Saragana	9	968,739

Source: TANZANIA National Bureau of Statistics

Figure 2-8: GDP Growth rate

The above data was collected in 2007 and is expected to increase in the future. Assuming future income will follow Gross Domestic Product (GDP), annual income for following years was calculated as shown below.

The World Bank and other international organizations recommend that the water fee shall be set between 4 to 5 percent of income in developing countries. Payable water fee is set as 5% of household income in this project. Monthly average payable water fee is shown as below.

Table 2-14: Average annual cash income

Unit: TSH / HH / year Village District Ward Village 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Region MISUNGWI 1,072,241 1,140,865 1,216,162 1,297,645 1,387,182 | 1,485,672 | 1,592,641 | 1,710,496 | 1,840,494 | 1,982,212 2,138,806 2312,050 | 2,501,638 | 2,711,775 201 Busongo Busongo 404.275 433,383 MISUNGWI Mbarika Ngaya 291,774 310,448 330,937 353,110 377,475 465,454 500,828 539,392 582,004 629,146 680,736 202 SENGEREMA Manzeeda Buswelu 730,188 776,920 828,196 883,685 944,660 1,011,730 1,884,575 1,164,834 1,253,361 1,349,870 1,456,509 1,574,487 1,703,595 1,846,697 970,154 | 1,032,244 | 1,100,372 | 1,174,097 | 1,255,109 | 1,144,222 | 1,441,006 | 1,547,641 | 1,665,261 | 1,793,486 | 1,935,172 | 2,091,921 | 2,263,458 | 2,453,589 SENGEREMA Nyakasasa Nyamiswi SENGEREMA Nyakasasa 2,116,630 | 2,232,035 | 2,400,733 | 2,561,582 | 2,738,331 | 2,932,753 | 3,143,911 | 3,376,560 | 3,633,179 | 3,912,934 | 4,222,056 | 4,564,042 | 4,938,294 | 5,353,110 Mwanza 205 Makasasa 2475,000 | 2633,400 | 2807,204 | 2995,287 | 3201,962 | 3,429,301 | 3,676,211 | 3,948,250 | 4,248,318 | 4,575,438 | 4,936,898 | 5,336,786 | 5,774,403 | 6,259,453 SENGEREMA Chifunfu Makahako 206 KWIMBA 733,675 780,630 832,152 887,906 949.771 | 1,016,563 | 1,089,755 | 1,170,397 | 1,259,347 | 1,363,476 | 1,463,466 | 1,582,007 | 1,711,731 | 1,855,517 207 Hungumalwa Hungumalwa UKEREWE Namilembe Bukanyo 720,000 766,080 816,641 871,356 931,480 997,615 | 1,069,443 | 1,148,582 | 1,235,874 | 1,331,037 | 1,436,188 | 1,552,520 | 1,679,826 | 1,820,932 UKEREWE Namilembe Namilembe 1,598,765 1,701,086 | 1,813,157 | 1,914,852 | 2,068,157 | 2,215,210 | 2,374,306 | 2,550,414 | 2,744,267 | 2,955,575 | 3,189,066 | 3,417,380 | 3,730,065 | 4,043,391

Table 2-15: Monthly average payable water fee per household

1,039,738 | 1,998,767 | 1,172,385 | 1,253,279 | 1,342,362 | 1,438,965 | 1,545,384 | 1,662,833 | 1,790,871 | 1,932,350 | 2,088,870 | 2,260,158 | 2,450,011

Mara 210 MUSOMA

Mambood

Saragana

Unit: TSH / HH / month Village District Ward Village 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Region MISUNGWI 1,468 4,754 5,067 5,407 5,780 6,190 6,636 7,127 7,669 8,259 8,912 9,634 [0,423 11,299 201 Busongo Busongo MASUNGWI 1,291 1,379 1,171 1,573 1,939 2,247 Mbarika 1,216 1,681 1,896 2,087 2,425 2,621 2,836 3,075 Ngaya SENGEREMA Nyanzenda 3.042 3,237 3,151 3,936 1,216 4,519 4,853 5.222 5,624 6,069 6.560 7,098 7,695 Buswelo 3,682 SENGEREMA 4.043 430 4.892 5.230 7,173 8,716 204 Nyakasasa Myamiswi 4,585 5.601 6,004 6,419 6,939 8,063 9,431 10,223 12,220 Mwanza 205 SENGEREMA Makasasa Nyakasasa 8,819 9,381 10,003 10,673 11,410 13,100 14,069 15,138 16,304 17,592 19,017 20,576 22,305 SENGEREMA Chifunfu Nyakahako 10,313 10,973 11,697 12,480 13,312 11,289 15,318 16,451 17,701 19,064 20,570 22,237 21,060 26,081 KWIMBA 3,057 3,253 3,467 3,700 3,955 1,236 1,511 4,877 5,247 5,651 6,098 6,592 7,132 7,731 Hungumalwa Hungumalwa 208 UKEREWE 3,000 3,192 3,403 3,631 3,881 4,157 4,456 4,786 5,149 5,546 5,984 6,469 6,999 1,587 Namikmbe Bukonyo 6.662 7,088 7,556 8,062 8,618 9,230 9,895 10,627 11,494 12,315 13,288 14,364 15,512 16,817 209 UKEREWE Namilembe Namilembe 210 MUSOMA 4,036 1,295 4,578 1885 5,222 5 593 5,995 6,439 6,928 8,051 10,208 Saragana

Table 2-16: Monthly average payable water fee per village

Unit: TSH / Village / month Village 2015 2019 2007 2009 2010 2011 2012 2013 2014 2016 2017 2018 2020 Region District Ward Village 2008 201 MISUNGWI Buscogo 2,792,251 3,010,410 3,255,361 3,522,835 3,818,682 4,146,325 4,505,447 4,903,921 5,346,634 5,840,587 6,390,754 7,004,355 7,682,530 8,440,401 Busango 911,260 561,033 655,794 710,722 770,206 837,473 993,181 1,084,251 1,186,392 298,232 1,425,147 1,563,197 | 1,720,025 MISUNGWI Mbarika 605,528 Ngaya 1,197,227 1,329,394 1,476,660 1,647,982 837,903 2,050,447 2,297,306 2572,233 2,886,256 3,239,834 203 SENGEREMA 972,214 1,077,425 3,646,899 4,106,515 Nianzanda Buswelu 1,831,248 2,027,054 2,250,004 2,501,707 2,783,174 1,104,116 3,467,183 3,874,940 4,340,735 SENGEREMA Nyakasasa Nyamishi 358,822 1,499,334 1,655,372 4,868,887 | 5,473,036 Mwanza 205 SENGEREMA (Ayakasasa 5,182,570 5,708,966 6,309,927 6,980,738 7,727,571 8,580,502 9,535,351 (10,614,640 (11,835,989 | 13,207,456 (14,776,491 16,557,394 | 18,564,074 | 20,845,457 Njakaasa 15,332,557 | 17,067,958 | 19,026,267 | 21,234,989 | 23,149,152 | 26,614,108 | 29,834,895 | 33,509,979 SENGEREMA Chifunfo 10,145,120 | 11,218,473 | 12,424,413 | 13,792,792 | Nyakahako 8,328,272 | 9,180,032 | KHTABA 1,868,178 2,074,936 2,306,077 2,563,673 2,858,193 3,184,582 3,553,813 3,971,981 4,446,685 4,980,135 5,586,000 6,269,002 7,045,861 207 1,681,762 bogumalwa Hinganalua UKEREWE 686,184 828,696 914,868 1,010,875 1,116,941 1,235,348 1,371,975 1,523,649 1,693,685 1,889,934 | 2,108,812 | 2,355,223 624,990 754,066 Namilande Bukanjo 10,598,826 | 11,829,125 | 13,214,306 209 UKEREWE Kamilende Vanilente 1,505,425 1,8414.0 4,226,785 4,650,498 | 5,128,350 5,661,432 6,266,155 6,932,717 1696 868 8,545,061 9,506,871 210 MUSOMA 1,886,175 2,053,231 2,241,943 2,448,916 2,678,571 2,938,379 3,219,609 3,538,027 3,898,927 4,292,016 1,738,011 5,237,407 | 5,799,753 | 6,422,499 Nambono Saragana

Water demand

Water supply to villagers is set to 25 liter/capita/day. Water demand in each village is shown as below.

Table 2-17: Water demand

Unit: liter/village/month

Region	District	ID	Village	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mwanza	Misungwi	201	Busongo	3,591,979	3,611,821	3,692,320	3,743,486	3,795,328	3,847,854	3,901,073	3,954,995	4,009,628	4,064,983	4,121,068	4,177,894	4,235,470	4,293,806
1	Misungwi	202	Ngaya	2,578,732	2,617,707	2,657,196	2,697,207	2,737,745	2,778,819	2,820,435	2,862,600	2,905,322	2,948,608	2,992,465	3,036,901	3,081,924	3,127,541
	Sengerema	203	Buswelu	1,883,237	1,960,733	2,041,050	2,124,291	2,210,561	2,299,972	2,392,637	2,488,676	2,588,210	2,691,367	2,798,279	2,909,083	3,023,920	3,142,937
	Sengerema	204	Nyamiswi	1,838,451	1,905,371	1,974,727	2,046,607	2,121,103	2,198,311	2,278,330	2,361,261	2,447,211	2,536,289	2,628,610	2,724,292	2,823,456	2,926,230
l	Sengerema	205	Nyakasasa	3,215,048	3,332,076	3,453,363	3,579,066	3,709,344	3,844,364	3,984,299	4,129,327	4,279,634	4,435,413	4,596,862	4,764,188	4,937,604	5,117,333
	Sengerema	206	Nyakahako	4,271,485	4,426,967	4,588,108	4,755,116	4,928,202	5,107,588	5,293,505	5,486,188	5,685,885	5,892,852	6,107,351	6,329,659	6,560,059	6,798,845
	Kwimba	207	Hungmalwa	2,856,716	2,977,560	3,101,825	3,229,606	3,361,004	3,496,120	3,635,059	3,777,931	3,924,846	4,075,919	4,231,267	4,391,012	4,555,277	4,724,191
	Ukerewe	208	Bukonyo	1,295,685	1,336,452	1,378,447	1,421,706	1,466,266	1,512,168	1,559,452	1,608,158	1,658,331	1,710,014,	1,763,253	1,818,094	1,874,586	1,932,779
L	Ukerene	209	Namilemba	2,944,209	3,036,846	3,132,271	3,230,568	3,331,824	3,436,128	3,543,571	3,654,248	3,768,257	3,885,698	4,006,673	4,131,290	4,259,657	4,391,889
Мага	Musoma	210	Saragana	2,681,703	2,744,962	2,809,585	2,875,600	2,943,039	3,011,931	3,082,308	3,154,202	3,227,646	3,301,090	3,376,084	3,452,659	3,530,851	3,610,692
	To	tal		27,157,244	27,980,494	28,828,891	29,703,251	30,604,415	31,533,255	32,490,669	33,477,587	34,494,972	35,542,233	36,621,914	37,735,072	38,882,804	40,066,242

Payable water fees

According to common unit for water fee in Tanzania, payable water fee per 20 liters water tank based on water demand are shown as below.

Table 2-18: Payable water fees per 20 litres

Unit: TSH/20 liter

Region	Village ID	District	Ward	Village	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	201	MISUNGWI	Busongo	Busongo	19.43	20.67	22.04	23,53	25.15	26,94	28.87	31.00	33.34	35.92	38.77	41.91	45.35	49,14
	202	MISUNGWI	Mbarika	Ngaya	5.44	5.78	6.17	6.59	7.03	1.53	8.08	8.67	9.33	10.06	10.85	11.73	12.68	13.75
	203	SENGEREMA	Nyanzenda	Buswelu	12.91	13.74	14.66	15.65	16.70	17.91	19.20	20.60	22.19	23.89	25.79	27.84	30.15	32.66
}	204	SENGEREMA	Nyakasasa	Nyamiswi	18,48	19.67	20.96	22.37	23.89	25.59	27,45	29.47	31,71	34.18	36.85	39.83	43,11	46.76
Mwanza	205	SENGEREMA	Nyakasasa	Nyakasasa	40,30	42.83	45.68	48.76	52.08	55.80	59,83	64.26	69.14	74.44	80.36	86.88	93.99	101.84
	206	SENGEREMA	Chifimfu	Nyakahako	48.74	51.84	55.28	58,98	63.03	67.51	72,41	77.78	83.66	90.09	97.22	105.12	113.70	123.22
	207	KWIMBA	Hungamalwa	Hungumalwa	14.74	15.69	16.72	17.85	19.07	20.44	21.90	23.52	25.30	27.27	29.42	31.80	34,41	37.29
) 1	208	UKEREWE	Namilembe	Bukonyo	12.06	12.84	13.68	14.57	15.60	16.71	17.91	19.20	20.68	22.28	24.01	25.99	28.12	30.46
	209	UKEREWE	Namilembe	Namilembe	29.77	31.67	33.74	35.99	38.48	41.19	44.21	47.43	51.06	54.98	59,32	64.14	69,43	75.22
Mata	210	MUSOMA	Nyambono,	Saragana	17.58	18.70	19,95	21,29	22,75	24.39	26.11	28.04	30,20	32,50	35,09	37.92	41.06	44.47

5) Operation and maintenance costs

Selection of facility type

In principle, there are three methods supply power for pump up ground water a) generator, b) solar and c) windmill. The characteristics of each are shown as below.

Table 2-19: Comparison table of power generation

	Generator	Solar power	Windmill system
Merit	 To be able to supply power stably Using common equipment, maintenance is relatively easy 	Low operation and maintenance cost	Low operation and maintenance cost
Demerit	High running cost Daily maintenance is necessary	 Generating power is depending on weather and sunshine Needs high investment cost Life time of panel about 10 to 15 years, Replacement of panel is required Generating power is about 60 watt / panel Solar panel is easily stolen Inverter often breakdown and it is difficult to get spare parts in market in developing country 	depending on winds and unstable

Considering large water demand for each scheme of this project, water supply facilities should be planned to satisfy water demand by multiple source of groundwater. In this case, power generators for pump up are necessary at each source. Construction of the facility which is necessary to large power generator such as windmill is not economical, therefore it is not been adopted in this project.

Comparing operation and maintenance costs between generators and solar, the solar requires 2 to 3 times the amount rather than generator. Therefore, in consideration for sustainable utilization of water facilities by the villagers, the water fee shall be as low as possible. The generator system is the most suitable system for this project and therefore was adopted in this project.

Table 2-20: Comparison table of operation and maintenance fee

Solar panel Pump Required Life Time Depreciation Cost O/M cost Water demand | Generation Unit Price Total Region Scheme Capacity number Tsh/Year Tsh/ltr Tsh/20ltr Tsh/20ltr Tsh/Number Tsh Year ltr/mth ΚW Number 1,000,000 117,000,000 1,000,000 312,000,000 1,000,000 245,000,000 1,000,000 125,000,000 1,000,000 175,000,000 117 7,800,000 2.49 49.88 49.88 3,127,541 60 7.0 15 Ngaya 2,59 8,043,563 60 18.7 312 15 20,800,000 51.72 51.72 Nyamiswi 48.05 15 16,333,333 2,40 48.05 6,798,845 60 14.7 245 Mwanza Nyakahako 1.76 35.28 60 125 15 8,333,333 35.28) Jungmal wa 4,724,191 7.5 36.89 10.5 175 15 11,666,667 1.84 36.89 60 Bukonyo 6,324,668 62 1,000,000 62,000,000 4,133,333 1.14 22.89 22.89 3,610,692 Mara Saragana

		Generator													
D	C.L	Water Demand	Required	l Fuel	Unit Price	Total Fuel	Running	Cost	Generator Price	Life Time		Depreciation	ı Cost		O/M cost
Region	Scheme	Ite/mth	ltr/year	ltr/mth	T'sh/ltr	Tsh/mth	Tsl/ltr	Tslv20 ltr	Tsh/unit	year	Tsh/year	Tsh/month	Tsh/ltr	Tsh/20ltr	Tsh/20ltr
	Ngaya	3,127,541	24,572	2,048	1,500	3,071,500	0.98	19.64	13,500,000	10	1,350,000	112,500	0.04	0.72	20.36
1	Nyamiswi	8,043,563	68,503	5,709	1,500	8,562,875	1.06	21,29	27,180,000	10	2,718,000	226,500	0.03	0.56	21.85
Mwanza	Nyakahako	6,798,845	51,377	4,281	1,500	6,422,125	0.94	18,89	26,797,000	10	2,679,700	223,308	0.03	0.66	
	Hungmalwa	4,724,191	16,926	1,411	1,500	2,115,750	0.45	8.96	14,758,000	10	1,475,800	122,983	0.03	0.52	
	Bukonyo	6,324,668	31,273	2,606	1,500	3,909,125	0.62	12.36	14,758,000	10	1,475,800	122,983	0,02	0.39	
Mara	Saragana	3,610,692	14,147	1,179	1,500	1,768,375	0.49	9.80	13,496,000	10	1,349,600	112,467	0,03	0.62	10.42

		Commercial Ele	ectricity							
Region	Scheme	Water Demand	Electrical fee	Pump Capacity	Running Hours	Electrici	y fee	Runn	ing cost	O/M cost
		ltr/mth	Tsh/kwh	kw	hr/day	Tsh/day	Tsh/mth	Tsh/ltr	Tsh/20ltr	Tsh/20ltr
	Ngaya	3,127,541	150	7.0	12	12,600	378,000	0.12	2.42	2,42
	Nyamiswi	8,043,563	150	18.7	12	33,660	1,009,800	0.13	2.51	2.5]
Mwanza	Nyakahako	6,798,845	150	14.7	12	26,460	793,800	0.12	2.34	2.34
	Hungmalwa	4,724,191	150	7.5	12	13,500	405,000	0.09	1.71	Jal
	Bukonyo	6,324,668	150	10,5	12	18,900	567,000	0.09	1.39	1.79
Mara	Saragana	3,610,692	150	3,7	12	6,660	199,800	0.06	1.11	4.0

[※] O/M cost=Running cost + Depreciation cost

Table 2-21: Initial cost Comparison table

	Solar Panel			
Region	Scheme	Solar Panel	Control Panel	Total
l tegron		JPY	JPY	JPY
	Ngaya	11,700,000	500,000	12,200,000
,	Nyamiswi	31,200,000	500,000	31,700,000
Mwanza	Nyakahako	24,500,000	500,000	25,000,000
ļ	Nyamiswi 31,200,000	500,000	13,000,000	
1	Bukonyo	17,500,000	500,000	18,000,000
Mara	Saragana	6,200,000	500,000	6,700,000

	Generator		
D '	Column	Gen	erator
Region	Scheme -	KVA_	JPY
	Ngaya	25	1,420,000
	Nyamiswi	100	2,800,000
Mwanza	Nyakahako	75 _	2,760,000
	Hungmalwa	35	1,520,000
	Bukonyo	45	1,800,000
Mara	Saragana	20	1,390,000

	Commercial	Electricity
Region	Scheme	Transformer
1100,000		[1]
	Ngaya	
	Nyamiswi	500,000
Mwanza	Nyakahako	200,000
	Hungmalwa	1,500,000
	Bukonyo	1,300,000
Mara	Saragana	

Facility planning

Following matters were considered to plan facilities:

To minimize operation and maintenance costs, the facility plan will avoid use of a power source as much as possible.

For example "multiple submerged pumps will be operated with one generator", "not to use a buster pump" and "chemicals for the purifying facility are minimized".

 The facility should be designed with conventional technology and a simple system so be operated and maintained by villagers.

Lake water purification equipment with a rapid filtration system would apply small reservoir and small filter basin, however it is adopted high performance and complex equipments which is difficult to be repaired by villagers or government staff. Therefore, a slow filtration system is adopted in this project to make it easier to repair and maintain.

- Facility to be planned to adopt local equipments and materials as much as possible to keep low initial cost.
- Secondary products which are available on the local market to keep low initial cost.

Facility plans for each scheme are shown below.

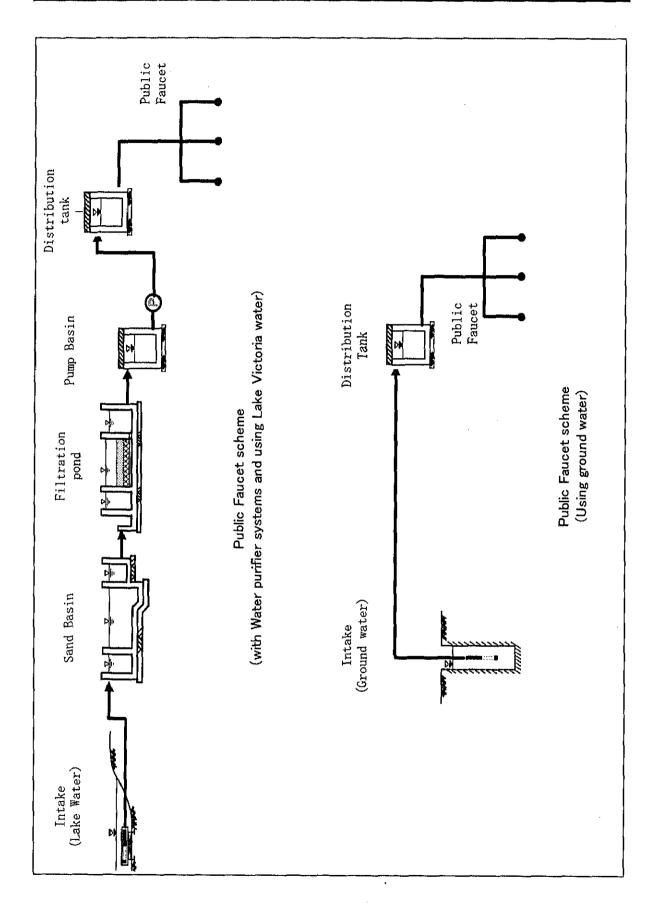


Figure 2-9: Public faucet scheme standard drawing

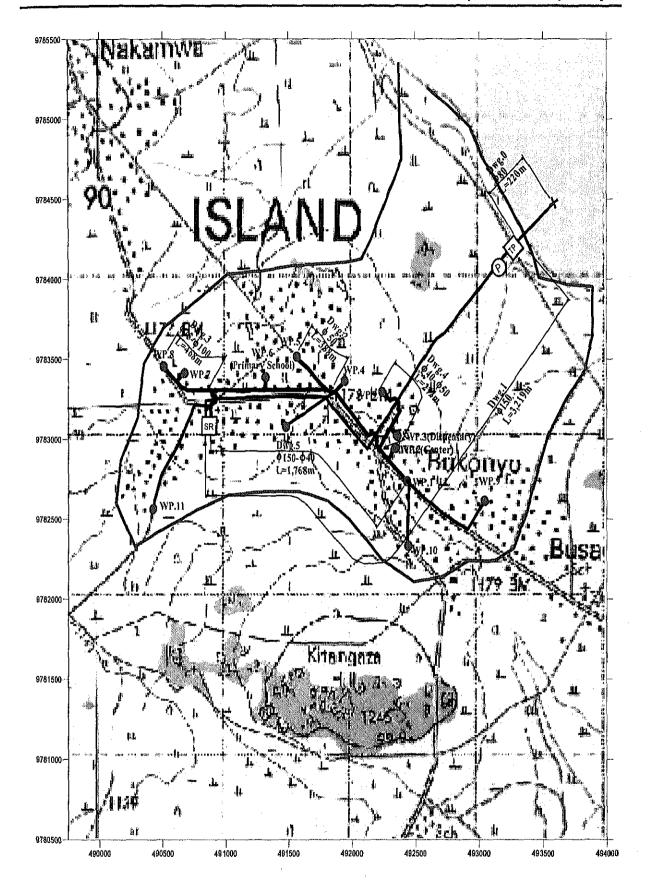


Figure 2-10: BUKONYO Public Faucet scheme (with water purifier system and using Lake Water)

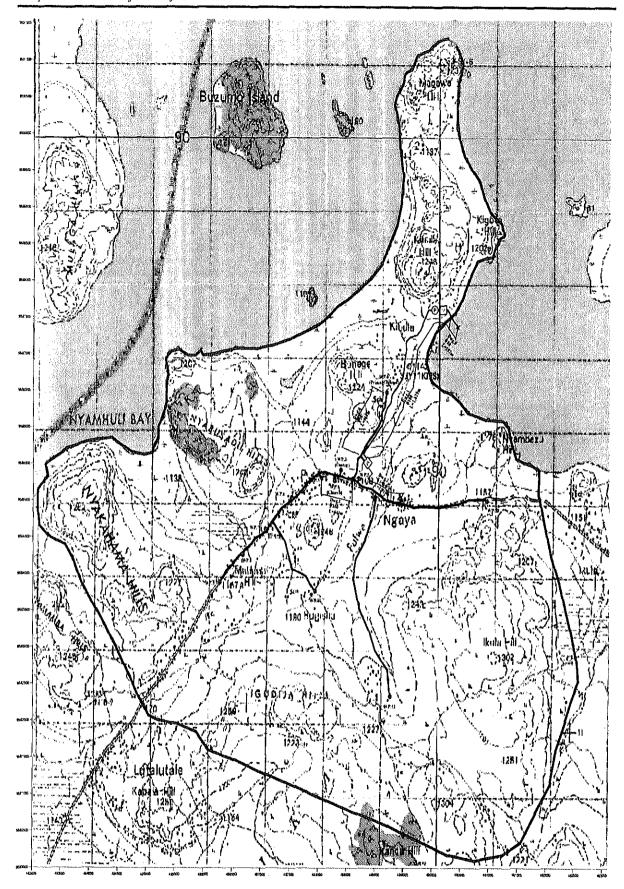


Figure 2-11: NGAYA Public Faucet scheme (with water purifier system and using lake water)

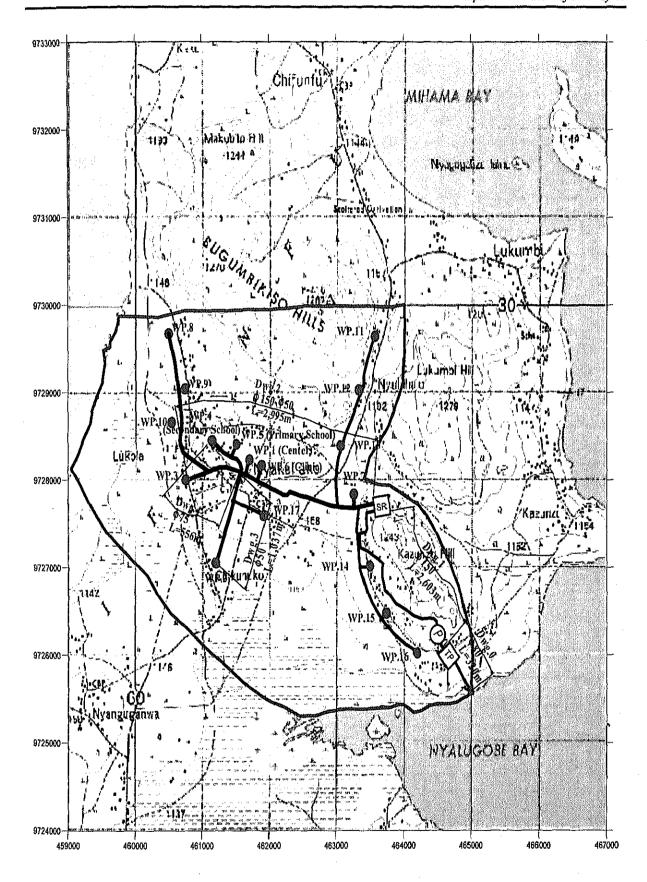


Figure 2-12: NYAKAHAKO Public Faucet scheme (with water purifier system and using lake water)

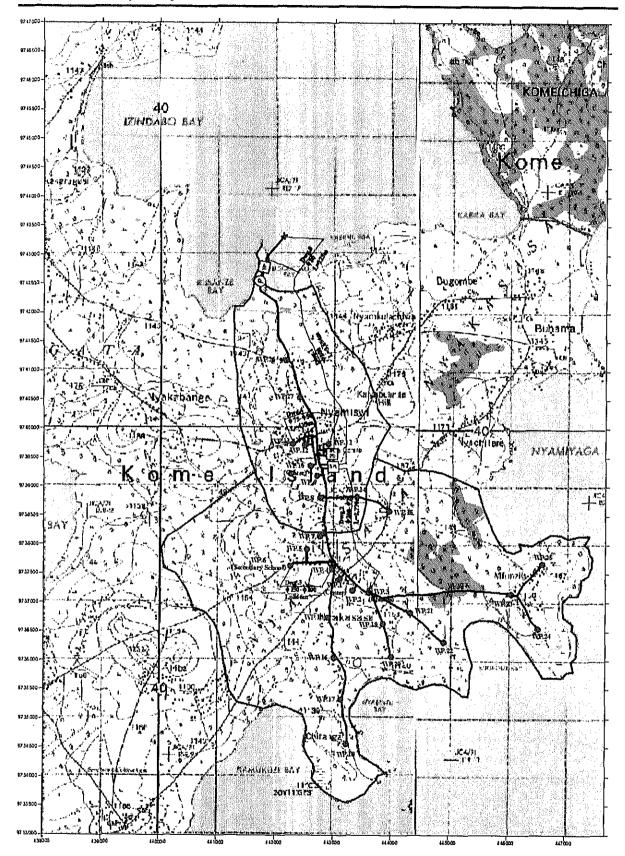
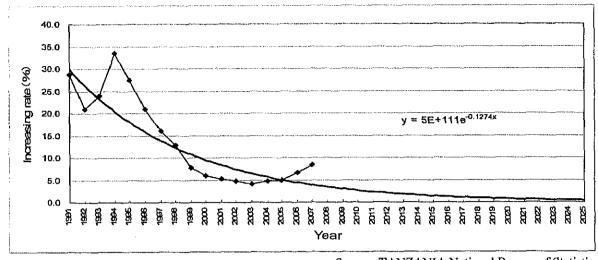


Figure 2-13: NYAMISWI Public Faucet scheme (with water purifier system and using lake water)

Operation and maintenance cost

Estimated operation and maintenance cost is shown below. The cost was calculated based on market prices in 2007 and the operation and maintenance cost was calculated in accordance with the "Design Manual for Water Supply and Waste Water Disposal" published by the Tanzanian Ministry of Water in July 1997. Detailed operation and maintenance cost for the schemes are shown as follows.


Table 2-22: Required monthly operation and maintenance cost (based on current market price 2007)

Unit: TSH/month/scheme Village Region Village District Ward Amount ID 201 MISUNGWI Busongo Busongo 202 MISUNGWI Mbarika Ngaya 5,635,832 203 SENGEREMA Nyanzenda Buswelu 204 SENGEREMA Nyakasasa Nyamiswi 12,643,262 Mwanza 205 SENGEREMA Nyakasasa Nyakasasa 206 SENGEREMA Chifunfu Nyakahako 7,835,851 207 KWIMBA Hungumalwa Hungumalwa 208 UKEREWE Namilembe Bukonyo 6,820,384 209 UKEREWE Namilembe Namilembe Mara 210 **MUSOMA** Nyambono Saragana

Table 2-23: Outline of operation and maintenance cost

Scheme	Lake Victoria													
Description	Nga	ya	Nya	miswi	Nyaka	ahako	Bukonyo							
water supply ratio	25,0	25.0 liter/capita/day		liter/capita/day	25.0	liter/capita/day	25.0	liter/capita/day						
water volume supplied	3,127,541	liter/month	11,258,611	liter/month	6,798,845	liter/month	6,324,668	liter/month						
Depreciation cost	576,582	10.2%	1,305,071	10.3%	781,580	9.0%	559,005	8.2%						
Equipment repairing cost	87,667	1.6%	161,775	1.3%	153,483	1.8%	107,088	1.6%						
Fuel cost	3,071,500	54.5%	8,562,875	67.7%	6,422,125	73.7%	3,909,125	57.3%						
Chemical cost	10,750	0.2%	21,125	0.2%	17,875	0,2%	17,750	0.3%						
Salary	1,889,333	33.5%	2,592,417	20,5%	1,341,833	15.4%	2,227,417	32.7%						
Total	5,635,832		12,643,262		8,716,896		6,820,384							

The estimated cost above is based on 2007 prices, and is expected to increase in the future. Operation and maintenance costs are expected to increase in the future, therefore the consumer price index (CPI) is considered to calculate the monthly operation and maintenance cost in each fiscal year.

Source: TANZANIA National Bureau of Statistics

Figure 2-14: Consumer Price Index in Tanzania

Table 2-24: Required monthly operation and maintenance cost

Unit: TSH/month/scheme 2013 2014 2015 2016 2017 2018 2019 2020 Village 2007 2008 2009 2010 2011 2012 District Ward Region MISUNGWI Busongo 201 Busongo 6,023,593 6,217,427 6,411,410 6,605,263 6,799,125 6,993,131 7,187,034 7,381,090 7,574,995 7,769,081 202 MISUNGWI Mbarika 5,829,772 Ngaya 203 SENGEREMA Buswelu Nyanzeada 204 SENGEREMA Nyakasasa Nyamiswi [16,128,176 | 16,564,224 | 17,000,509 | 17,436,872 | 17,873,312 | 18,309,829 | 13,078,537 | 13,513,996 | 13,949,378 | 14,384,954 | 14,820,589 | 15,256,436 | 15,692,196 2,643,262 205 SENGEREMA Mwanza Nyakasasa Nyakasasa 8.375,895 | 8.645,919 | 8.916,128 | 9.186,388 | 9.456,700 | 9.727,218 | 9.997,638 | 10.268,272 | 10,538,967 | 10,809,894 | 11,080,713 | 11,351,774 7,835,851 8,105,785 206 SENGEREMA |Chifunfu Nyakahako 207 KWIMBA Hangumahaz Hungumalwa 208 UKEREWE Namilanbe Bukonyo 7,760,643 7,995,847 8,231,093 | 8,466,382 | 8,701,874 | 8,937,254 | 9,172,844 | 9,408,486 | 9,644,180 | 9,880,106 6,820,384 7,055,290 7,290,365 7,525,483 209 UKEREWE Namilembe Namilembe 210 MUSOMA Nyambono Saragana

The required operation and maintenance cost based on water demand and yearly maintenance cost is shown as below.

Table 2-25: Required operation and maintenance cost per 20 litres of water

Unit: TSH/20 liter Village 2016 2017 2018 2019 2020 Village 2007 2008 2009 2010 2011 2012 2013 2014 2015 Region District Ward m 201 MISUNGWI Busongo Busongo 47.54 48.21 48.86 49.47 50.06 50.63 51.16 51.68 52.16 44,54 | 45.34 46.10 46.84 MISUNGWI 43.71 Mbarika Ngaya SENGEREMA 203 Nyanzenda Buswelu SENGEREMA 204 Nyakasasa Nyamiswi \$0.04 49.94 49.79 49.59 49.34 49.05 48.72 48.35 47.95 47.52 47.06 46.57 46.06 45.53 Mwanza 205 Nyakasasa SENGEREMA Nyakasasa 34.16 33.78 33,39 35.46 34.85 34.51 SENGEREMA Chifunfu Nyakahako 36.69 36.62 36.51 36.36 36.18 35.97 35.73 35,17 206 KWIMBA Hungumalwa Hungumalwa 208 UKEREWE Namilembe Bukonyo 32.35 32.32 32,26 32,18 32.07 31.94 31.80 31.63 31,44 31.24 32.17 32.27 32.32 32.35 209 UKEREWE Namilembe Namilembe Nyambono Mara 210 MUSOMA Saragana

6) Water fees

Required operation and maintenance cost and payable cost

The facilities which are constructed in this project will be completed in 2010 at the earliest. Therefore the scheme was selected based on payable water fee and required operation and maintenance costs from 2010 to 2020. A comparison table is shown as below.

The NYAMISWI and BUKONYO schemes will be provide water to two villages each, and the payable water fee varies according to each village. A decision with lower income results was selected based on the village.

Table 2-26: Comparison table of payable water fee and required O/M cost (Full items)

Included items

1 Depreciation cost for pipe line 1% of construction cost for one year 2 Depreciation cost for facilities 1% of construction cost for one year

Repairing cost for equipments 5% of equipment cost

4 Fuel 100% of consumed cost
5 Chemical 100% of consumed cost
6 Staff salary for Maintenance 100% of personnel salary

7 Staff salary for water fee correction 100% of personnel salary

Served water ratio: 25 liter / capita / day

Unit: Tsh/ 20kr

							Una .	I ZIN AVAI										
Scheme	Village	Description	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Ngaya	Ngaya	Payable water fee	635	6.78	7.26	7.79	8.36	8.99	9.70	10.45	1131	12.22	13.25	14.39	15.64	17.05	18.60	20.31
	Required maintenance fee		46.10	46.84	47.54	48.21	48.86	49.47	50.06	50.63	51.16	51.68	52.16	52.63	53.07	53.48	53.88	54.25
Nyaniswi	Nyamiswi		21.56	23.03	24.66	26.46	28.40	30.56	32,94	3552	38.39	41.55	45.07	48.91	53.14	57.85	63.20	69.07
	Nyakasasa		47.00	50.20	53.78	57.67	61.94	66.64	71.75	77.46	83.74	90.60	98.16	106.60	115.92	126.24	137.76	150.54
	Required maintenance fee		49.59	49,34	49.05	48.72	4835	47.95	47.52	47.06	46.57	46.06	45.53	44.98	44.41	43.82	43,23	42.61
Nyakahako	Nyakahako	Payable water fee	56.85	60.75	65.07	69.79	74.97	80.63	86.83	93.70	101.32	109.59	118,77	129.03	140.22	152.74	166.67	182.16
	Required maintenance fee		3636	36.18	35.91	35.73	35.46	35.17	34.85	34.51	34,16	33.78	33.39	32,99	32.57	32.15	31.71	31.27
Ilamalus !	Hungmalwa	Payable water fee	14.74	15.69	16.72	17.85	19.07	20.44	21,90	23.52	25.30	27,27	29.42	31.80	34.41	37.29	40.52	44,02
Hungmalwa	Required maintenance fee		31.09	31.46	31.83	32.19	32.55	32.91	33.26	33.22	32,83	32.43	32.04	31.63	31.23	30.82	30,41	30.00
	Bukonyo	D 11 .4 C	14.05	15.03	[6.1]	17.26	[8,5]	19.94	21.47	23.15	25.05	27.11	29.36	31.92	34.70	37.76	41.23	45.05
Bukonyo	Namilembe	Payable water fee	34.69	37.09	39.70	42.61	45.71	49,22	52.99	57.17	61.82	66.92	72.50	78.71	85.63	93.24	101,72	111.18
	Required maintenance fee		32.35	32.35	32.32	32.26	32,18	32,07	31,94	31,80	31.63	31,44	31.24	31.03	30.80	30.55	30.30	30.03
Saragana	Saragana	Payable water fee	21.29	22.75	24.39	26.11	28.01	30.20	32.50	35.09	37.92	41.06	44.47	48.29	52.52	57.21	62.39	68.23
	Required maintenance fee		28.83	29.05	29.24	29.41	29.56	29,69	29,81	29.91	30.00	30,06	30,12	30.15	30.17	30.17	30,16	30.14

Required maintenance fee: Maintenance cost total + (Served population × Served water ratio)

Payable water fee: Payable total amount + (Served population × Served water ratio)

Table 2-27: Comparison table of payable water fee and required O/M cost (Specific items)

Included items

1 Repairing cost for equipment 5% of equipment cost
2 Fuel 100% of consumed cost
3 Chemical 190% of consumed cost
4 Staff salary for Maintenance 100% of personnel salary

Water supply ratio: 25 liter / capita / day

Unit: Tsh/20ttr

Scheme	Village	Description	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Visania	Ngaya	Payable water fee	6.35	6.78	7,26	7.79	8.36	8.99	9.70	10.45	1131	12.22	13,25	14.39	15.64	17.05	18.60	20.31
Ngaya	Required maintenance fee		28,80	28.40	28.00	27.60	27.20	26.80	26.40	26.00	25.60	25,20	24.80	24.60	24.20	23.80	23.40	23,20
	Nyamiswi	Payable water fee	21.56	23.03	24.66	26.46	28,40	30.56	32.91	35,52	38,39	41.55	45.07	48.91	53.14	57.85	63.20	69.07
Nyamiswi	Nyakasasa		47.00	50.20	53.78	57.67	61.94	66,61	71.75	77.46	83.74	90.60	98.16	106.60	115.92	126.24	137.76	150.54
	Required maintenance fee		36.20	35.00	33.80	32.60	31.40	30.40	29.20	28.20	27.20	26.20	25.40	24.40	23.60	22.80	22.00	21.20
Vijakakaka	Nyakahako	Payable water fee	\$6.85	60.75	65.07	69.79	74.97	80.63	86.83	93.70	101.32	109.59	118.77	129.03	140.22	152,74	166.67	182.16
Nyakahako	Required maintenance fee		28.80	27.80	26.80	25.80	25.00	24.00	23.20	22.40	21,60	21.00	20.20	19.40	18,80	18.20	17.60	17,00
Hunamahan	Hungmalwa	Payable water fee	14,74	15.69	16.72	17.85	19.07	20.44	21.90	23.52	25.30	2121	29.42	31.80	34.41	37,29	40.52	44.02
Hungmahva	Required maintenance fee		18.00	17.80	17.80	17.60	17.40	17.40	17.40	17.20	17,20	17.00	16.60	16,00	15,40	15.00	14.40	14,00
	Bukonyo	ł Pavable water fee	14.05	15.03	16.11	17.26	1851	19.94	21.47	23,15	25.05	27.11	29.36	31.92	34.70	37.76	41.23	45.05
Bukonyo	Namilembe		34.69	37.09	39.20	42.61	45.71	49.22	52.99	57.17	61.82	66.92	72.50	78.71	85.63	93.24	101.72	111,18
	Required maintenance fee		23,40	22.80	22.20	21.40	20.80	20.20	19.60	19,00	18.40	17.80	17.40	16.80	16.40	15.80	15.40	15.00
Saragana	Saragana	Payable water fee	21.29	22.75	24.39	26.11	28.04	30.20	32.50	35.09	31.92	41.06	44.47	48.29	52.52	57.21	62.39	68,23
	Required maintenance fee		15.40	15.00	14,60	14,40	14.00	13.60	13.40	13.00	12.80	12,60	12.20	12,00	11.80	11.40	11.20	11,00

Required maintenance (ee: Maintenance cost total + (Served population × Served water ratio)

Payable water fee: Payable total amount + (Served population × Served water ratio)

7) Amount of willingness to pay

Generally, in developing countries, amount of willingness to pay is higher than payable water fee. However, in almost villages in the target area, it is less than payable water fee, therefore it is necessary to consider willingness to pay. According to the results, the village where the amount of willingness to pay is higher than operation and maintenance cost which to be required is only NYAKAHAKO village. The table below shows the amount of willingness to pay.

1,000

600

6 villages

No village

4 villages

Table 2-28: Amount of willingness to pay for water fee

Unit: TSH Village Per Per Yearly Region District Ward Village Per Bucket ID Monthly 201 Busongo Busongo 500 MISUNGWI 20 202 Mbarika Ngaya 2,000 _ 203 Nyanzenda Buswelu 204 20 Nyamiswi SENGEREMA Nyakasasa Mwanza 205 Nyakasasa 500 Chifunfu 20 206 Nyakahako 207 KWIMBA Hungumalwa 50 Hungumalwa 208 Bukonyo 500

Namilembe

Saragana

UKEREWE

MUSOMA

209

210

Mara

Namilembe

Nyambono

Total

The result of the survey revealed actual expenditure of the water fee in the dry season, as shown in Table 2-29. Actual expenditure of the water fee in the dry season is 36,000 TSH/month in NYAKAHAKO village. The expected water consumption rate in 2010 which is calculated with consideration to income growth along with GDP is shown in Table 2-30. At this water price, 81.7% of villagers would be supplied with water based on O/M costs, so villagers should be able to afford the water fee.

Table 2-29: Actual expenditure of water fee in dry season

Region	ΙD	District	Word	Village	Commercial water price per bucket (TSH)	Water consumption in Dry season per day (per 20 litter)	Expenditure of water fee in Dry season per day (TSH/day/Hous chold)	Expenditure of water fee in Dry season per month (TSH/month/ household)	Person per household (capita)	Water consumption (litter/capita/ day)
	201	MISUNGWI	Busongo	Busongo	150	8	1,200	36,000	6.36	25.15
	202	MISONOMI	Mbarika	Ngaya	200	3	600	18,000	6.18	9.70
	203		Nyanzenda	Buswelu		6			6.51	18.42
	204	CENICEDEMA	Nimbonson	Nyamiswi	100	5	500	15,000	6.05	16.52
Mwanza	205	SENGEREMA	ivyakasasa	Nyakasasa	200	3	600	18,000	6.06	9.91
	206		Chifunfu	Nyakahako	200	66	1,200	36,000	5.85	20.50
	207	KWIMBA	Hungumalwa	Hungumalwa	200	2	400	12,000	5.74	6.97
<u> </u>	208	UKEREWE	Namilembe	Bukonyo	_	2			6.89	5.80
	209	UNEKCWE	mainmentoe 	Namilembe		10		Ì	6.20	32.28
Mara	210	MUSOMA	Nyambono	Saragana		5			6.35	15.75

Table 2-30: Expected water consumption in 2010 based on actual expenditure of water fee in 2007

Region	D	District	Word	Village	Actual expenditure of water fee in 2007 (Tsh/month/ household)	ותו 43 ויפורעו		Expected water price in 2010 (Tstylitter)	Possible purchase water volume based on income (litter/day/ household)	Possible purchase water volume based on Income (litter/month/ household)	Peson per household (capita/ household)	Possible purchase water volume (litter/capita/ day)	Target water consumption (litter/capita/ day)	Water consumption rate (%)
Mwanza	206	SENGEREMA	Chifunfu	Nyakahako	36,000	46,000	43,83	2,19	20,990	699.67	5.85	119,52	146,35	81.7%

8) Sustainable operation and maintenance by the beneficiaries

Facilities which to be constructed by Japanese Grant Aid require sustainable operation and maintenance by the beneficiaries. Therefore, the beneficiary's capability will be examined.

a Items for operation and maintenance

The items for operation and maintenance are categorized as operational and technical:

Operational issues

- i Village Water Committee
- ii Collection of O/M fee
- iii Procurement of spare parts
- iv Procurement of chemicals
- v Accounting
- vi Hygiene education
- vii Support by upper organization

Technical issues

- i Chemical dosage control
- ii Intake and distribution pump operation
- iii Operation and maintenance of sedimentation basin
- iv Operation and maintenance of filtration system

b Current situation in NYAKAHAKO village

Current situation of existing facility

There are one dug well and 15 spring facilities in NYAKAHAKO village, however the springs dry up and are not used in the dry season with the exception of only three facilities. These water sources utilize shallow dug well and surface water, therefore villagers hope to improve the poor water quality of those facilities.

Operational issues

i Village water committee (VWC)

VWC is composed 8 people (4 males and 4 females) and hold the meeting once a month. The VWC discusses operation and maintenance of the existing facilities.

ii Collection of O/M fee

The O/M fee is collected at the time of using facilities and is stored TSH 170,000 in a water

fund^I at present.

iii Procurement of spare parts

Existing water sources are dug well and surface water which do not require any spare parts, and therefore did not require procurement of spare parts.

iv Procurement of chemicals

There is no correspond facility.

v Accounting

O/M fee is collected, however detail information is not provided.

vi Hygiene education

According to a questionnaire, villagers are aware of the dangers of water-borne disease, however education on hygiene is not carried out.

vii Support by upper organization

DWE conducts regular inspection for the facilities twice a year.

♦ Technical issues

Regular inspection is conducted by DWE however the specialists are not required for simple facilities.

e Evaluation of operation and maintenance, and required technical support in NYAKAHAKO village

♦ Operational issues

Based on the efforts of the VWC to collect the O/M fee and conduct operations, NYAKAHAKO village is deemed suitable to conduct operations for a public faucet scheme.

♦ Technical issues

The technical issues related to operation and maintenance items that can be expected are summarized in Table 2-31.

In principle, a water purifier system to be installed in this project is a slow filtration system which is simple to operate, therefore, it would not require many special operation skills. Nevertheless, it is necessary to make technical decisions on the suitable amount of chlorine to add, timing and how much filtration sand to take off. In addition, change of water quality should be monitored throughout the year. Therefore, for this kind of filtration system, it must be operated by

Fund which establishing from water fee for purchasing spare parts and repairing cost

technicians who have a fundamental understanding and received sufficient training. However, VWC members did not have enough knowledge or experience on similar equipment, and thus it is inadvisable to operate for this kind of filtration system on its own.

Table 2-31: Technical issues related Operation and Maintenance

Maintenance Item	Purpose	Maintenance Details	Method	Frequency	Conduct by	Comments
1, Water quality control	To maintain water guality and decide	Daily check items (Color, Turbidity)	To check source water quality	1 time/day	WC Whase water committee	Require turbidity meter in hand
(CATHLO)	dosage of Chilorine		To check purified water quality	1 time/day	WC	Require turbidity meter and residual chlorine meter in hand
		Regular check items	To check source water quality	4 times/year	Order to laboratory	To have water quality liaboratory or to assign out source
		Bacteria, bacillus coli, odor, pH, taste, nitrate nitrogen, nitrite-nitrogen)	To check purified water quality	f time/ month	Order to laboratory	To have water quality laboratory or to assign out source
		Other drinking water standards	To check purified water quality	1 time/year	Order to laboratory	To have water quality laboratory or to assign out source
		Filing chlorine	Filing calcium hypochlorite	1 time/day	VWC, DWE	Compare with the sodium hypochlorite, decrease of the chlorine with storage is little, but when filing it is necessary to melt. In addition, at the time of the chlorine injection rate, the decision which considers the fluctuation of rawwater quality th
2. Fitration plant control	To maintain purified water quality	Volume control in the facility	Control Valve Fitration speed 4m/day)	1 time/day	VWC	Daily attention is needed for the prevention of chying up of the filtration sand
		Check water level in filtration pond	To check sedimentation tank water level	1 time/day	VWC	Keep strictly on everyday
			Discharge water for filtration sand maintenance	1 time/ month	VWC	Ni
	}		Ohip off sand in 1~2cm	1 time/ month	VWC	More labor is required in comparison with other work
ı		Sand refiling	Maintain sand thickness at 40cm	1time/1-2 years	VWC, DWE	Ni
		To keep adequate water level in sedimentation pond	De-siting	1time/ 1-2 years	WYC, DWE	To be taken necessary action according to condition
		Prevent algae bloom	Clearing of sedimentation pond and intake	as necessary	WKC, DWE	As for seaweed propagation in order to obstruct fitration function, as much as possible it is necessary to prevent seaweed influx
3, Intake and Distribution Pumo	Adequate pump operation	Start and stop	Operate generator and control	1 time/day	VWC	W
and Generator control		Control in and out water volume	To check water volume and control Valve	1 time/day	VWC	Special attention is needed to control intake water volume according to water flow in plant
W1144	į	Noise	To check noise	1 time/ day	VWC	Keep strictly on everyday
		Vibration	To check vibration	1 time/day	VWC	Keep strictly on everyday
	İ	Revolving speed	To check revolving speed	1 time/ day	VWC	Keep strictly on everyday
		Water temperature	To check water temperature	1 time/day	VWC	Keep strictly on everyday
		Overhaul	To check and replace spare	1 time/ 5	VWC, DWE	Required out sourcing
		Ciditadi	parts	years	Actual work to be	andrew out basis d
	į			,	assigned	
4. Discharge volume control	To check Leakage water, efficiency pump running and decide chlorine dosage	Control adequate water volume	To measure water volume on distribution volume meter	1 time/day	VWC	Ni
	Water fee collection To check water leakage	Measure consumed water volume	To check on volume meter	1 time/day	VWC	M .
		Measure distribute water volume	To check volume on distribution volume meter	1 time/day	VWC	N
6. Water pressure control	To prevent water leakage	Measure water pressure		1 time/ day	VWC, DWE	N
7, Megal water	To decrease waste water volume	To check distribute water pipe line	Cyclical check	as necessary	VWC, DWE	More labor is required in compare with other work and transportation is required
8. Recording of		Record for running	Record daily report	1 time/day	VWC	Record keep strictly
	maintenance schedule	duration, check items, repairing, cleaning	Record daily maintenance report	at activity	VWC	Record keep strictly
		1	Record daily cleaning report	at activity	VWC	Record keep strictly

9) Conclusion

The consideration on the view of operational aspect, it is possible to be accomplished to operate and maintain the facilities. However, on the view of technical aspect, it should be concluded that the facilities are possible to be operated and maintained on the condition that the staffs who are competent to make technical decisions take part in the tasks continuously.

As mentioned previously, given the current technical aspects of the target village, there is a complete lack of qualified staff. Therefore, in order for the VWC to conduct operation and maintenance of the public faucet scheme, they must first secure the desired staff. However, with few similar facilities in Tanzania and even fewer qualified staff, it is difficult to acquire the necessary personnel. Furthermore, from a financial point of view, even if VWC employs such staffs, their salary and other related expenses would have to be reflected in the water fees. It is considered unlikely that the funds needed to employ such staffs could be covered by the water fee that beneficiaries are able to pay in addition to other operation expenses.

Therefore, the reasons given, there are significant difficulties in allocating full-time technicians for operation of the said facility. Thus NYAKAHAKO is eliminated from the public faucet scheme and instead will be given further consideration to be included in the hand pump well scheme.

(2) Selection results

A summary of selection results are shown in table and the diagram.

Region	Scheme	Water source	Other Donor Project	Yield	Water Qualities	O/M cost < payable amount	Sustainable maintenance	Result
	NGAYA	Lake	Nil	Yes	Yes	No	_	Hand Pump Well
	NYAMISWI	Lake	Nil	Yes	Yes	No	_	Hand Pump Well
Mwanza	NYAKAHAKO	Lake	Nil	Yes	Yes	Yes	No	Hand Pump Well
	BUKONYO	Lake	Nil	Yes	Yes	No		Hand Pumj Well
	BUSWELU	Ground Water	Nil	No			44	Hand Pump Well
	BUSONGO	Ground Water	Nil	No		-		Hand Pump Well
	HUNGMALWA	Ground Water	Nil	No		_	_	Hand Puny Well
Mara	SARAGANA	Ground	Nil	No		_	_	Hand Pumi

Table 2-32; Selection results table of Public faucet scheme

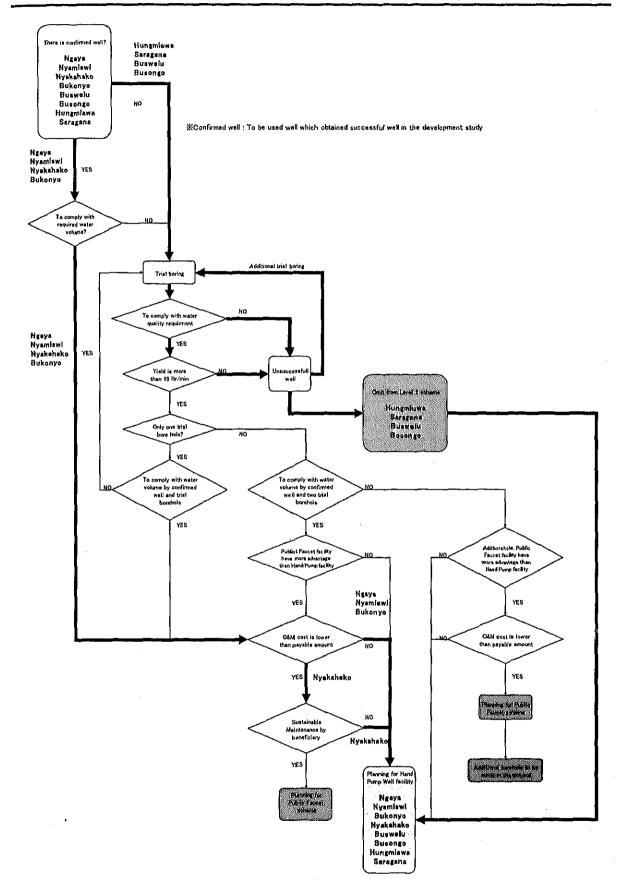


Figure 2-15: Selection results of Public Faucet scheme

2-2-2-2 Selection of Hand Pump Well facility point

- (1) Detail of selection process
 - 1) Other Projects planned by the other Donors in the target area

As a result of hearing to the MoWI and RWE in Mwanza and Mara regions, there is no other project in the target villages.

2) Field survey

The geological map produced on the development study shows the geological conditions in the Mwanza and Mara Regions (refer to the survey data). According to the map, geological formations observed in the area can generally be divided into the three units by age. The target villages consist of the above geological division depending on the geological survey in the field. The estimated drilling points in the villages are selected in consideration of the aquifer units supposed on the development study, given below.

• Stratum aguifer: unconfined, semi-confined

unconfined, semi-confined aquifer at a depth range of 20-50m bgsl in the decomposed (weathered) or secondary deposited Precambrian hard

rocks (mainly granite)

Fissure water:

semi-confined, confined aquifer at a depth range of 20-150m bgsl in the fractures and fissures distributed in the hard rocks (mainly granite).

The target drilling points were selected based on suitable lineament indicating the tectonic line on the geophysical map for groundwater development on the development study, and were expected to have the potential to store groundwater. Site conditions of those points were confirmed by the field survey directly this time. The results of the field survey showed that some points selected on the map may not be suitable for drilling in terms of the items below:

- i The points are very far from the center /main area of the village. It is estimated that the villagers do not come to the wells (refer to the villager comments).
- ii The points are located behind the mountain and it is very difficult to access those points,
- iii The points are located in the bottom of the valley and it is very difficult to access those points.
- iv Soft clay is distributed on the access road to the points and the ground conditions are very muddy even in dry season. There is no bypass route and would require extensive road construction to create one.
- v The points are very near the other water supply facilities.

In this study, adequate drilling points are selected in consideration of not only the tectonic lineament

on the map, but the topography and geology in the field. Therefore, if some points are eliminated by the above reasons, it is very difficult to select alternative points in the villages.

The results of screening to select drilling points in the target villages based on the field survey are given below, including the above conditions in terms of access:

Table 2-33: Selection result based on field survey

			Village	Re	equest	Selected	Eliminated well
Region	District	ID	Name	Deep well	Middle well	well number	number
		101	Sogoso	6	3	7	2
		102	Sotta	5	2	6	1
		103	Isole	5	2	6	1
	Sengerema	104	Busekeseke	4	3	6	1
		105	Katoma	5	3	7	3
		106	Magulukenda	6	2	7	1
. •		107	Nyancheche	5	4	7	2
	Kwimba	108	Mhula	4	4	7	1
Mwanza	Magu	109	Kijereshi	. 8	2	8	2
		110	Bugulala	5	6	7	4
		111	КЛЅОТЛ	5	4	7	2
		112	Kamena	5	3	6	2
1	Geita	113	Ndelema	3	7	7	3
	Gena	114	Nyashishima	2	3	5	0
	}	115	Bugogo	6	2	5	3
		116	Ikina	2	5	5	2
	1	117	Ibondo	_ 7	6	9	4
	Bunda	118	Mcharo	4	t	4	1
		119	Shirorisimba	4	4	6	2
	1	120	Ryamisanga	6	2	6	2
	Musoma	121	Kisamwene	6	5	6	5
		122	Bugoji	7	3	7	3
		123	Isaba	3	7	7	3
		124	Nyankunguru	5	4	6	3
	Tarime	125	Kiwanji	4	1	5	0
	İ	126	Bisarwi	3	5	6	2
Mara		127	Kisumwa	2	3	5	0
		128	Nyankonge	2	3	5	0
	1_	129	Masike	5	6	6	5
	Rorya	130	Bukama	4	7	5	6
	į.	131	Oliyo	5	4	6	3
		132	Tatwe	5	6	6	5
		133	BUSAWE	3	0	3	0
	Serengeti	134	Nyansurura	3	6	6	3
		135	Kebancha	4	3	5	2
	To	otal		158	131	212	77

9,889,98

9,2%,295

636.151

1,00 Mm

616,560 1,248 Mara

657,723 1,406 Mara

3) Result of the water quality analysis

Requested Hand Pump Well scheme (Including spring protection scheme)

The water quality analyses for the existing deep tube wells in some of the target villages were conducted and the results of the analyses are shown in Table 2-34. The concentration of Fluoride (F) in the existing wells of Sotta, Isole, Shiroshimba and Oliyo villages exceeds the water quality standard of this project shown in Table 2-5. It is likely that the high content of (F) is affected by the distribution of Nyanzan metavolcanics^{II} and dyke^{III)} rock such as the distribution of Nyanzan formation^{IV} in Sotta and Shiroshimba, the distribution of dyke in Isole probably, and the distribution of Nyanzan metavolcanics in the upstream of Oliyo village. Therefore, the target wells which are near the existing wells indicating high content of (F) are eliminated as shown in Table 2-35.

Laboratory Test Beatin Sampling f. XH Color Turbidity $10_{\rm i}$ 725 Category | Northings **Exins** District Region Description Date ngl agi mg | mg ag Pt1 UTK ρį 0.07 0.30 0.10 1.50 6545 0.7 0.50 \$0.00 15 ß 1,500 9,670,729 468,191 1,165 Minanza Sangrous 102 SOTTA Existing Net 27/12/2007 **4 (0)** 2(1 7.68 1.14 12,14 40 432.0 472,336 1,145 Maranza 9,686,739 103 ISOLE Existing Nicil 27.12/2007 4,001 0.02 401 0.81 39,19 #0 1329.0 400,733 1,259 Mareca Gria 9,697,246 III KASOTA

4001 401 401 0.71 661

40.00] 0.0) 400 1.62 121

4 (0)

400

400 0.29

401 134

920 108

1.12 Li 0.26 0.74

0.15 1250

027 0.50

0.08

33.7

460 3000

700 662.0

Existing Spring

Existing Vid

Existing Spring | 11:12:2007

119 STRORISTMBA Existing Well

DI OLNO

133 BUSAWE

Tarina

29 12 2007

21/12/201

22.12.2007

Table 2-34: Results of the water quality analysis (Existing water source)

					1			1							Laterale	nj Test						
Catagro	Northings	Eastings	Destiro	Region	District	ID	Village	Description	Sampling	Coliforn	I Hurches	Ca	Mg	50 ₄	a	BOD	COD	HCO3	Nı	As	Open Pages	holyment
		ľ	(0)				'		Dak	(a0)(280;	ng	181	ušį	ngl	rgi	ngl	mg!	ngl	agl	pgl	mg!	roogaxii.
								ì		0	500	200.0	150.00	400,00	250	6	10	•		1,00	0.50	
۳,	9,670,729	46 3, 191	1,165	Mwanza	Sangrama	102	90TFA	Existing Well	27/12/2007	6	115	1820	32,32	2410	204	Ŷ	0	347.0	19.9	<1.00	•	NG
: (lit	9,686,719	17334	1,145	M manza	Saterana	103	ISOLE	Existing Vid	27.12.2007	5	239	80,0	3164	96.00	609	0	0	776.0	523	<1.00		NG
11	9,697,246	椒,732	1,259	M 9/2022	Geita	III	KASOTA	Existing Spring	29-12-3007	1	23	9.5	3.18	0.00	18	0	0	21.0	7.4	<1.00	•	
.e.	9,808,987	636,151	1,300	Mm	Masona	119	SIRORUSIMBA	Existing Vol	21/12/2007	4	331	199.0	32.61	52.60	2 4	0	0	263,0	27.9	<1.00		NG
. <u>:</u>	9,836,895	616,360	1,248	Man	(arin:	[][OLIVO	Existing Wid	22/12/2027	2	300	215.0	3521	123.00	229	0	0	361.0	363	<1.00		NG
44	9,821,915	657.72)	1.406	Mara	Crementi	131	RUSARE	Fristing Coring	21.12.2M7	A	727	1750	1115	130	134		۸	1374		iM		***************************************

: Figure is exceeding project standards

Table 2-35: Eliminated point based on water quality analysis

Region	District	Village	Eliminated well (nos.)
Mwanza	Canaarama	Sotta	1
IVI WAIIZA	Sengerema	Isole	2
Mara	Musoma	Shiroshimba	2
iviai a	Rorya	Oliyo	ı
Total			6

Transmutation molten rock which constitute of Nyanzan layer or transmutation effusive rock

III Vertical platy intrusive rock Same as Dyke rock

Lower part of Precambrian which distributed geologic stratum on 28 billion years ago at east Africa

Testing boreholes on the development study

Location and the results of yield test and water quality analysis of the five testing boreholes which are regarded as successful boreholes constructed during the development study are shown as below.

Village Bore UTM Yeild Resion District Northing hole ID Name Easting (m) (ltr/min) Number (m) Geita 116 Ikina J-I 423,861 9,647,130 15 Mwanza Bunda 118 Mcharo J-1 605,579 9,778,302 83 Misungwi 201 Busongo J-1 493,339 9,653,902 58 Musoma 210 Saragana J-I 576,858 9,792,662 50 Mara Musoma 210

Table 2-36: Location of wells constructed in the development study

Table 2-37: Results of water quality analysis for wells constructed in development study

J-2

576,723

9,792,527

93

															dera	ny Tai	*				
Category	Korthises	Eastings	YeM	Region	District	D	Villar	Description	Samples	CN	fŧ	Me	Į	ρH	Ba	KH,	NO ₁	Color	Tubidity	TSS	TOS
		·		-		1	-		Date	瞬	瞬	ngl	티	r (i	92 l	1 82	闡	egPt	KTU	ing!	ngl
	<u> </u>			<u> </u>						0.07	030	0.10	150	6545	0.7	0.50	50.00	ß	45	1,500	
_	9,647,130	13,861	l Strein	Marke	Gáta	116	hina	IKA WA	14 10 2005	0.001	0.36	0.03	0,00	6.79	0	0,30	9.00	- 1]4	110	106.2
	9,771,302	605,579	Blar train	114351	Bunda	111	Moharo	MCA Wei	14:10:2005	0,001	0.15	0.00	1.40	761	0	6.30	4.00	[4	11	n	357.0
	9,653,502	49),JH	iller ein	Magaza	Misugai	20)	Basongo	JCA Wel	02/10/2005	0,001	0.00	0.00	1.50	7.16	0	0.30	38.00	0		3)	330
=	9,792,662	5%, 8 58	Strona	Man	Muscena	210	राम्बर	IKA Wal	27/10/2005	0.000	0.65	0.00	1.10	7.60	0	000	20.00			110.	180
Ĺ	9,792.523	5%,723	9Atritan	Van	Mesona	210	श्चित्रक	IXA Wal	22/06/2006	0.001	0.02	0.00	QJI	7.90	0	0.21	1.97	0	0	79	196.1

Saragana

															Labora	ry Test						Τ" "
Category	Northings	Eastings	ïaid	Region	District	D	Villege	Distriction	श्चार्वाह	Сойота	T-Karabess	G	Иţ	80 ₄	a	200	(00)	HCO ₁	N ₁	Ås	Orpeis Piceplate	.
1				Ť			"		Date	amilia;	ng!	ngl	ngl	畸	Egi	ng!	뻙	řáj	ng!	اپر	Bg)	lalgement
<u></u>	ļ			<u> </u>			<u> </u>			0	.90	200.0	150.00	4 00.00	20	6	10	•		1,00	0.50	
l	9,617,130	423,86]	19tran	Managa	Grita	116	liu	JICA WAI	18/10/2005	0	38	17.0	5.10	1.60	IJ	0	0.	720	22.1	√1.00	802	
=	9,778,300	603,579	Shima	Maaza	Banda][1	Malaro	IKA WA	1110/3005	0	201	124.0	3697	22.00	žÓ	ı ı	-	402.0	113.1	<100		
	9,651,902	(93,339	Mirin	M##22	Minagui	201	Busonap	JCANA	0210206	G	235	1240	36.97	11.90		,	ň	507.0	111.1			
2 1	9,392,662	576,858	Atron	Man	Mesons	210	Singilia	JICA Wal	27/10/2005		97	77.0	4.86	1.60	85	· · · · ·	- V				0.02	
-	9,792,527	576,723	91lu'nin	Visa	Yusona		Smena		22062006									369.0	52.9	1.00	0.01	OK
<u> </u>	71112	3,4,2	778 888	MAG	ALEXCIA	219	mann .	IA.1 HOL	2210200	0	1.30	57.6	44.62	17.20	- 17	_ 0	0	21.0	28.0	100	0.0]	OK

declare tojnog prikasos a rugi:

These five testing boreholes are in compliance with requirements for yield and water quality for hand pump wells. Therefore, these boreholes will be used for this project and hand pumps shall be installed and platforms shall be constructed in this project.

4) Selection result based on the geophysical prospecting results

Based on the geophysical survey results, the target points which agree with below 2 basic policies of the Basic Design study were eliminated.

- 1) the aquifer is located within 20m from the ground level, or
- the analysis result shows the second layer and third layer are thin and, additionally, encounter a high resistance value.

Finally 57 of the 206 geophysical survey points are eliminated.

5) Results of hydro-geological survey

The potential points for groundwater development are evaluated based on the geological map and groundwater availability map of the development study, geophysical survey of Basic Design Study and in reference to the HESAWA (Health through Sanitation and Water) project by SIDA (Swedish International Development Authority). The main aquifers considered as potential groundwater sources are the decomposed Precambrian rock units (mainly secondary deposits or weathered granite from 20m to 50m in depth from the surface) and granites, NYANZAN rock units (Precambrian rock units) (the target stratum of fissure zone from 20m to 100m).

The character of the aquifer unit is based on the results of the development study and trial boreholes in the Basic Design Study, as follows:

- i Potential (productive) aquifers can be divided into two types: 1) stratum aquifers in the weathered or secondary deposits of Precambrian rock units (mainly granite) and 2) fracture type aquifers.
- ii High yield areas or aquifers are not identified as a zone, but limited to certain locations.
- iii There is quite a high variation of yield by depth and type of aquifer.
- iv Granite is the main fissure water source and productive aquifer in the area.
- v The static water level varies even in aquifers of the same geology.

The geology of well points in the target villages is classified by the geological structure in consideration of the aquifer units, and the success rate of drilling is estimated as shown in Table 2-38 by analyzing the existing drilling records.

Table 2-38: Category of Geological formation and Expected boring success rate

Zone	Description	Expected success rate	Releva numbe of wel
Zone 1	It is very important to comprehend the large geological structure in the area where granite is distributed, and to pay attention to the lineament (a linear structure that reflects the possibility of a fault) of similar structure with the large geological structure zone. The clear structure comes up with the Fissure system and Shear zone. Whether to get the groundwater or not will be decided based on the direction of dip of those faults reflecting this structure. In reference to the data of SIDA, the success rate in those areas is 83% (5 success wells /6 drilling wells: same as above)-88% (7wells /8wells). The distribution of 20m weathered layer indicates high potential for the possibility of development for groundwater.	85%	43
Zone 2	deposits (thickness 20-30m: secondary deposits of basement) and weathered granite (total thickness 40-60m). The success rate is 88% (7 wells/8 wells) The distribution of those strata is limited in the Mwanza and Mara Regions.	85%	Nil
Zone 3	It is very important to comprehend the whole geological structure and lineament clearly in the area of Precambrian rocks of the NYANZAN System. Focus needs to be given to the geological structure of diagonal / orthogonal faults. The stratum above the NYANZAN System is not distributed in the narrow valley distributing the NYANZAN System. So the success rate is below 10-30% in reference to the SIDA data.	20%	3
Zone 4	The Contact zones between granite and NYANZAN System has a high success rate. Probably the contact zones will be affected by the geological activities. The success rate is 50% (1 well/ 2wells) depending on the SIDA data and also JICA wells in SARAGANA are successful (2wells/ 2wells).	75%	12
Zone 5	It is important to pay attention to the Fissure system and Shear zone reflecting the geological structure activities in the area of thick weathered granite and colluvial deposits (coarse deposits). The success rate of those areas is 40% (2 wells/5 wells) in reference to the SIDA data.	40%	65
Zone 6	It is fairly easy to get the groundwater near the geological structure lines with dolerite dyke and alluvial deposits in the granite area. The success rate is 75% (3 wells/4 wells) in reference to the SIDA data.	75%	Nil
Zone 7	It is very important to comprehend the adequate geological structure in case of the limited area of Fracture zone and the thin weathered granite. The success rate is below 10% (1 well/16 wells) in reference to the SIDA data.	10%	8
Zone 8	It is necessary to pay attention to the diagonal / orthogonal lineament against the lineament developing the strike of strata, and also to comprehend the conditions of Fissure zone fully in case of area of sediment rock of PALEOZOIC. The success rate is 50% (3 wells/6 wells) in reference to the SIDA data.	50%	13
Zone 9	It is necessary to comprehend the adequate Fracture zone in the area of volcanic rock of NEOGENE. The success rate is 14% (1 well/7 wells) in SIDA date.	14%	2
Zone 10	The contact zone between the volcanic rock of NEOGENE and granite has possibility to get the groundwater. It will be considered the access rate of 75%.	75%	2
Zone 11	The contact zone between the METAGABBRO, METADOLERITE dyke and granite has possibility to get the groundwater. It will be considered the access rate of 50-75%. It is not synonymous with a fault structure, but a linear structure that reflects	50%	1

The boreholes which success rates are less than 30% are eliminated from this project due to ineffective cost performance.

Screening result of requested Hand Pump Well scheme is shown as follows:

Table 2-39: Screening result of requested Hand Pump Well

Region	District		Village		Request				Elimin	ited well			Selected
		ID	name	Deep Well	M iddle Depth	Total	Other project	Field survey	Water quality	Electrical Prospecting	Success rate	Total	Well Number
M wanza	Sengerema	101	Sogoso	6	3	9	0	2	0	3	0	5	
		102	Sotta	5	2	7	0	ī	I		0	3	
	1	103	Isole	5	2	7	0	1	2	1	0	4	
		104	Busekeseke	4	3	7	0	i	0	3	0	4	3
		105	Katoma	5	3	8	0	ı	0	2		3	
		106	M agulukenda	6	2	8	0	1	0	0	0		-
		107	Nyancheche	5	4	9	0	2	0	-	0	3	
	Kwimba	108	M hula	4	4	8	0	l i	0	i	0	2	
	Maga	109	Kijereshi	8	2	10	0	2	0	4	0	6	4
	Geita	110	Bugalala	5	6	H	ō	4	0	2	0	6	5
		111	Kasota	5	4	9	0	2	0	0	0	2	7
		112	Kamena	5	3	8	0	2	0	1	3	6	2
	İ	113	Ndelema	3	7	10	0	3	0	3	3	9	<u>-</u> 1
		114	Ny ashishima	2]	5	0	0	0	3	0	3	
			Видодо	6	2	8	0	3	0		 	5	3
			Ikina	2 }	. 5	7	0	2	0	2		5	2
		117	Ibondo	7	6	13	0	4	0	1	0	5	- 8
M ara	Bunda		Meharo	4	1	5	Ö	1	0	0	0	1	4
	Musoma		Sirorisimba	4	4	8	. 0	2	2	ī	0	5	3
			Ryamisanga	6	2	8	0	2	0	1	0	3	5
		121	Kisamwene	6	5	II	0	5	0	0	0	5	6
i			Bugoji	7	3	10	0	3	0	4	0	7	3
			Isaba	3	7	10	0	3	0	1	0	4	6
	Tarime		Nyankunguni	5	4	9	0	3	0	2	2	7	2
			Kiwanji	4	I	S	0	0	0	4	0	4	1
			Bisarwi	3	5	8	0	2	0	3	3	8	0
	Rorya		Kisumwa	2	3	5	0	0	0	2	0	2	3
			Nyankonge	2	3	5	0	0	0	1	0	<u>-</u>	4
		1	Masike	5	6	11	0	5	0	3	0	8	3
			Bukama	4	7	11	0	6	0	<u>i</u> l-		- -	4
			Oliyo	5	4	9	0	3	1	2	- 0	6	3
ļ			Tatwe	5	6	11	0	5	0	2	0	7	4
	Screngeti		Busawe	3	0	3	0	0	0	0	0	· · ·	3
			Nyansurura	3	6	9	0	3	ō	0	0	3	6
			Kebancha	4	3	7	0	2	0		ő	3	4
	Tot	1		158	131	289	0	77	6	57	13	153	136

The above average value of estimated success rate for target wells is 53.8% in evaluation of the geological zoning.

General plan of deep well with hand pump

General plan drawings of deep well with hand pump are shown in "2-2-3 Basic Design Drawing".

6) Spring Protection

Current conditions

The current condition of the existing springs at KASOTA and BUSAWE villages are shown as below.

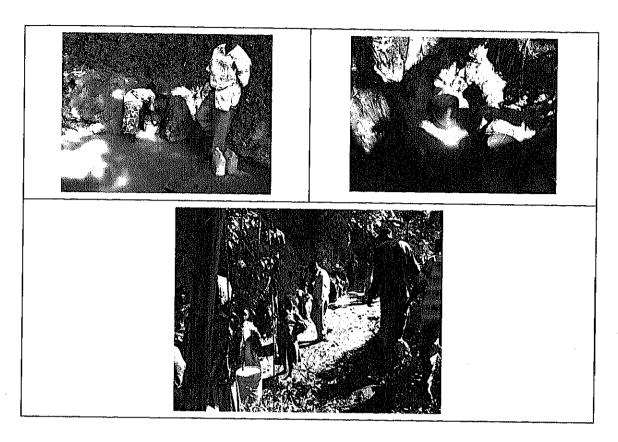


Photo 2-1: Current condition of existing spring at KASOTA village

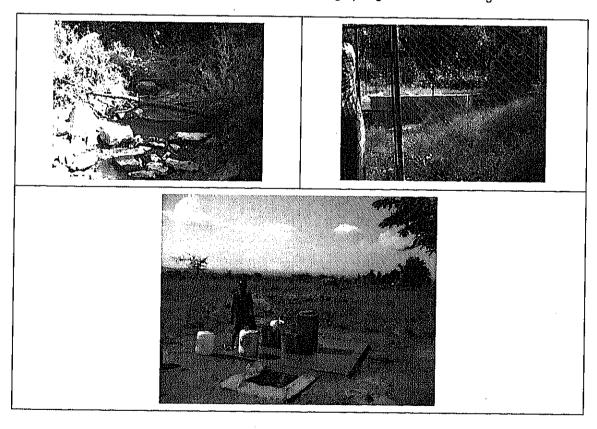


Photo 2-2: Current condition of existing spring at BUSAWE village

Since a facility has already been constructed at a spring in BUSAWE village, the spring protection scheme shall be eliminated from this project. A spring protection scheme shall be planned at KASOTA village.

General plan of spring protection

General plan drawings of spring protection are shown in "2-2-3 Basic Design Drawing".

(2) Selection results

Selection was made originally requested hand pump well scheme with additional 41 locations. Additional 41 locations are raised from eliminated 7 public faucet scheme which are selected based on hydro logically.

The selection results are summarized in Figure 2-16.

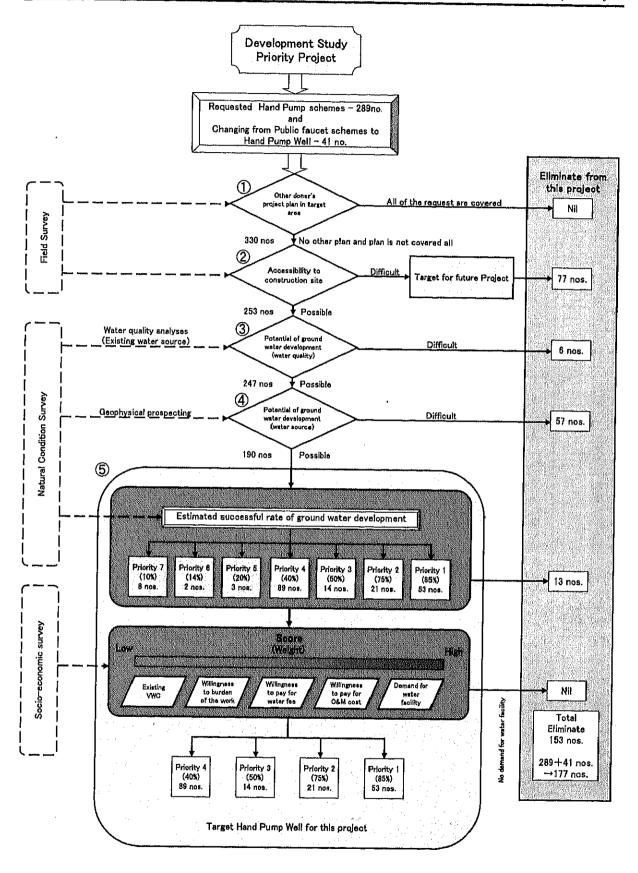


Figure 2-16: Selection result of Hand Pump Well Scheme