IV-2.3 PV system

The rural electrification by PV system has not been disseminated in Peru. One of the reasons is lack of information at local government level. It seems that grid extension is only one solution for rural electrification even if the project is not economically feasible. There are few people who have enough information on PV system at local government.

For the above reasons, PV manual has been prepared for local government in this study. When planning rural electrification, it should be compared with economic feasibility of electrification projects by grid extension and that of PV system. This manual covers basic information of PV project. The information on SHS, BCS, PV system for public facility such as rural school and rural health clinic and water pump system are included.

Manual del Sistema Fotovoltaico Domestico Electrificación Rural en la República del Perú Ministerio de Energia y Minas Equipo de Estudio JICA

CONTENIDO

Non	nenclatura	3
Cap	oítulo 1 Introducción de Sistemas Fotovoltaicos en la Electrificación Rural	4
1	Energía Solar	
•	1.1 Irradiación Solar, Inclinación, Orientación	
	1.2 Sombras y Reflejos	
	1.3 Instrumentos de Medición de la Radiación	
2		7
3		
3	3.1 Mapa de Irradiación Solar	
4	Existencia de Sistemas Fotovoltaicos en el Perú	. ラ 11
4		
	()	
	4.2 Estación de Carga de batería (ECB)	
	4.3 Sistema de bombeo	
	4.4 Educación	
	4.5 Telecomunicaciones	
	4.6 Actividades Productivas	14
Can	vítulo 2 Componentes de un Sistema Fotovoltaico	15
	Panel Solar	
_	1.1 Tipos de Paneles Fotovoltaicos	
2	•	
_	2.1 Clases de baterías	
3		
_	Inversor	
	Cables 21	21
	Puesta a Tierra	22
_		
-	vítulo 3 Metodología de calculo	
	istema solar domiciliario (SFD)	
1	Plan e Instalación	
	1.1 La demanda de energía estimada para una casa	23
	1.2 Dimensionamiento del SFD	
	1.3 Diseño de un sistema óptimo	
2	Aspecto económico	34
	2.1 Costo de equipos	34
	2.2 Costo de mantenimiento	35
	2.3 Costo de Tarifa	36
	2.4 Comparación con las energías convencionales	
D 17	Stación de Carga de Batería (ECB)	
1	Plan e Instalación	
	1.1 La estimación de la demanda de energía	
_		
2	Aspecto Económico	
	2.1 Costo de la instalación	
	2.2 Costo de operación y mantenimiento	
	2.3 Pago por el uso del sistema	47

	2.4	Comparación con energía convencional	48
C. Se	ector I	⁹ úblico Rural	49
		io de una escuela rural.	
	1.1	Demanda de energía	
	1.2	Estimación de la energía de salida	49
	1.3	Capacidad de batería	
	1.4	Componentes del Sistema	
2	Diseñ	io de una posta medica	52
	2.1	Demanda de energía	52
	2.2	Estimación de la potencia de salida	53
	2.3	Capacidad de batería	
	2.4	Componentes del sistema	
3	Boml	beo de agua	56
	3.1	Demanda de agua	56
	3.2	Estimación de la potencia de salida	
	3.3	Componentes del sistema	60
Caní	tulo 4	Operación y Mantenimiento de un Sistema Fotovoltaico	
Спр		Domiciliario	61
1	Func	ionamiento del panel fotovoltaico	
_	1.1	Mantenimiento diario	
	1.2	Mantenimiento mensual	61
	1.3	Mantenimiento annual	
	1.4	Recomendaciones	
2	Func	ionamiento del controlador	63
	2.1	Mantenimiento diario	
	2.2	Mantenimiento mensual	
	2.3	Mantenimiento anual	
	2.4	Recomendaciones	
3	Func	ionamiento de la batería	64
	3.1	Mantenimiento diario	
	3.2	Mantenimiento mensual	
	3.3	Mantenimiento anual:	
	3.4	Recomendaciones	
		paras ahorradoras	
		mendaciones generales del sistema fotovoltaico	
6	Gesti	ón de la Demanda	66
Capí	tulo 5	Aspecto medioambiental	68
	Bater	•	
	1.1	Situación actual.	68
	1.1.1	Reciclaje de batería en provincias	69
		Empresa fabricante de barras de plomo de batería usada	
	1.1.3	Empresa de reciclaje de baterías	
	1.2	Sistema de tratamiento y reciclaje de la batería	72
REF	EREN	ICIAS BIBLIOGRAFICAS	74

Nomenclatura

Cp (W): Potencia de panel

De (Wh): Demanda de energía

H (h): Hora de sol

V (V): Voltaje de sistema

K: Perdidas de diseño

Is (Ah): Carga eléctrica diaria de salida del panel

Ic (Ah): Carga eléctrica diaria total

Cb (Ah): Capacidad de batería

AUT. (día): Días de autonomía

Icon (A): Corriente de diseño del controlador

Im (A): Corriente del panel bajo condiciones nominales

Icr (A): Corriente de carga, consumo eléctrico simultáneo de todos los euipos

instalados

PDmax (%): Profundidad de descarga máxima

Idc (Ah): Corriente eléctrica diaria total de la batería en DC

Ibc (Ah): Corriente diaria requerida para la carga de la batería

Ipm (Ah): Corriente diaria total por panel

Nm (panel): Número de paneles

Capítulo 1 Introducción de Sistemas Fotovoltaicos en la Electrificación Rural

1 Energía Solar

El sol produce constantemente energía electromagnética, que nos llega directamente a la tierra. Asi lo viene haciendo desde hace 4,5 millones de años. Esta radiación que llega del sol es la principal fuente de energía sobre la tierra. Casi la totalidad de energía disponible procede de forma directa o indirecta del sol.

Podemos mencionar por ejemplo, si quisiéramos cubrir todo el consumo con energía solar, necesitaríamos un área de aproximadamente 25 millones de hectáreas que es lo mismo a 500 x 500 km², casi la misma área que utilizamos para cultivar maní o algodón. Como referencia, la actual producción de módulos fotovoltaicos está acercándose a los 100 MWp/día, que es igual a 1 km²al año ⁽¹⁾.

Figura 1.1 Radiación que llega a la tierra

Fuera de la atmósfera la radiación del sol tiene una intensidad de 1350 W/m², en la tierra la máxima intensidad de la radiación es aproximadamente de 1000 W/m², pero en días despejados puede ser un poco más alta. La radiación no está distribuida equitativamente sobre la superficie terrestre, primeramente debido a la forma de la tierra, las áreas alrededor del Ecuador reciben más energía solar que otras partes.

Las áreas desérticas son climas secos y claros, reciben mayor radiación que las áreas tropicales donde la humedad es mucho mayor. Aún más cuando hay fluctuaciones debido a la rotación de la tierra alrededor de su propio eje (fluctuación diaria) y alrededor del sol (fluctuación estacionaria). En días claros la energía solar está distribuida en forma de campana (distribución de Gauss).

1400 1200 1000 800 600 400 200 Hora de sol

Todos estos diferentes efectos hacen que la energía solar fluctúe de región en región y de tiempo en tiempo.

Figura 1.2 Gráfica de Potencia solar

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Tiempo

1.1 Irradiación Solar, Inclinación, Orientación

En el Perú la irradiación promedio es una de las más altas del mundo. Comparada con Holanda, recibimos el doble de energía solar. La fluctuación por estaciones en nuestro país es menor que en las regiones nórdicas. En Holanda por ejemplo, la irradiación promedio en invierno puede ser tan baja como 0.5 kWh-m²/día, mientras que en el verano pueden darse valores como 5 kWh-m²/día, en el Perú la irradiancia promedio anual es de 5 kWh-m²/día (²²).

Tener en cuenta que los valores de irradiación por m² que se dan, están calculados para superficies horizontales. Muchos de los paneles solares se colocan inclinados para captar una mayor irradiación, la captación es recomendable cuando el panel está inclinado en el mismo sentido que el ángulo de latitud. El ángulo mínimo es de 10°, para asegurar que el agua de las lluvias drenen fácilmente, dejando limpia la superficie del panel. A latitudes mayores (> 30° norte o sur) los paneles están inclinados más sobre el ángulo de latitud para tratar de nivelar las fluctuaciones por estaciones (ver diagrama).

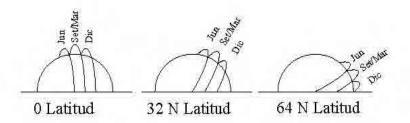


Figura 1.3 Gráfica de diferentes latitudes

1.2 Sombras y Reflejos

Para evitar las sombras en paneles fotovoltaicos primeramente debe considerarse que la sombra crea problemas como el denominado "puntos calientes", que se producen por celdas* que están en sombra y otras en sol, las celdas que reciben radiación están produciendo corriente, que se trasmite a las celdas en sombra, actúando como una resistencia.

En segundo lugar, cualquier sombra tiene su influencia negativa sobre el rendimiento de un sistema solar. Hasta un árbol pequeño puede tener una influencia sustancial sobre el rendimiento, si se encuentra en un lugar equivocado.

* El panel solar esta compuesto de celdas

Figura 1.4 El problema de la sombra

1.3 Instrumentos de Medición de la Radiación

El nombre del instrumento que sirve para medir la energía solar es el solarimetro: Básicamente hay dos tipos de solarimetros el piranómetro y radiómetro, ambos equipos miden la radiación solar tanto directa como difusa.

El Piranómetro tiene una pequeña plancha de metal negro con una termocupla unida a ella. Esta plancha negra se calienta con el aumentando la temperatura, este incremento es medido con una termocupla. La plancha y la termocupla están cubiertas y aisladas por una cúpula de vidrio. La salida de la termocupla es medida para la radiación instantánea total en un momento dado.

El radiómetro es una celda fotovoltaica pequeña que genera electricidad. La cantidad de electricidad es nuevamente medida para la radiación instantánea. Los Solarímetros fotovoltaicos son más económicos que los piranómetros pero menos exactos.

Figura 1.5 Solarímetro y Piranómetro

2 Formas de aprovechamiento de la Energía Solar

Por efecto de la radiación solar se producen los vientos, la fotosintesis de las plantas, los cambios climáticos, entre otros efectos naturales. Por ejemplo, la fuerza de los vientos son utilizados para hacer girar molinos trituradores de maíz.

Casi el 30% de la energía solar que se desarrolla en el exterior de la atmósfera, se consume en el ciclo del agua, que produce la lluvia y la energía potencial de las corrientes de agua que discurren por montañas y ríos. La energía que generan estas aguas en movimiento y al pasar por turbinas se llama energía hidroeléctrica.

Gracias al proceso de fotosíntesis, la energía solar contribuye al crecimiento de la vida vegetal (biomasa), la madera y los combustibles fósiles derivan de vegetales, siendo utilizadas como combustibles primarios . Otros combustibles como el alcohol y el metano también pueden extraerse de la biomasa.

La energía solar directa se puede utilizar en dos campos muy definidos como son:

- Energía solar térmica, aplicándose en colectores solares, diseños de arquitectura bioclimática, cocinas solares, entre otros.
- Energía solar fotovoltaica, en este caso es la utilización de paneles solares para la generación de energía eléctrica en escalas regulares.

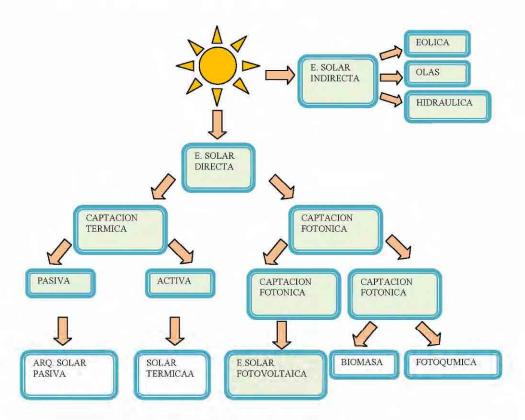


Figura 1.6 La energía del sol

Q

3 Potencial de Energía Solar en el Perú

3.1 Mapa de Irradiación Solar

El Atlas Solar del Perú fue desarrollado por la DEP- MEM y SENAMHI, en Junio de 2003, bajo el Proyecto PER/98/G31 (Electrificación Rural a Base de Energías Fotovoltaicas en el Perú), financiado por el Global Environment Facility (GEF) a través del Programa de la Naciones Unidas para el Desarrollo (PNUD). Uno de sus objetivos más importantes fue crear una base de datos para el desarrollo de la electrificación Fotovoltaica rural. El Atlas fue elaborado basado en la información mensual y anual del Centro Internacional de la Papa (CIP), desde los años 1975 hasta 1990 de la Irradiación Solar (kWh-m²/día) de todos los departamentos del Perú. En el Atlas solar se indica la alta irradiación anual de la zona andina con rangos entre 5.5 y 6.5 kWh-m². La irradiación de la región costera de 5.0 a 6.0 kWh/m² y de la región amazónica alrededor de 4.5 a 5.0 kWh/m². En el siguiente mapa se muestra la irradiación solar del Perú. (3)



Figura 1.7 Mapa de Irradiación Solar del Perú, Promedio Anual

4 Existencia de Sistemas Fotovoltaicos en el Perú

Los sistemas conversores de las energías renovables en especial la energía solar fotovoltaica, son una alternativa técnicamente viable para la generación de energía eléctrica en nuestro país. Sin embargo, dados sus costos de instalación todavía es relativamente alto y su viabilidad económica esta restringida en la actualidad, a ciertas aplicaciones sobre todo en localidades remotas donde no es posible economicamente el tendido de la red eléctrica.

4.1 Sistema Solar Domiciliario (SFD)

Las principales instalaciones de sistemas fotovoltaicos se realizan en zonas rurales alejadas, sustituyendo a los energéticos convencionales como kerosene, velas, pilas, etc.

Figura 1.8 Sistema Fotovoltaico Domiciliario (Isla Taquile)

4.2 Estación de Carga de batería (ECB)

La ECB son utilizadas en áreas aisladas para proporcionar un servicio de carga de batería. Los sistemas están diseñados para cargar baterías, con el fin de satisfacer la demanda del usuario.

Figura 1.9 Sistema Fotovoltaico para carga de baterías

4.3 Sistema de bombeo

Actualmente la tecnología desarrollada en referencia al bombeo solar fotovoltaico nos hace pensar seriamente en este tipo de bombeo, como una solución que brinda muchas ventajas comparativas con respecto a otros sistemas tradicionales, donde las bombas necesitan motores de alta potencia (como son las electrobombas y motobombas), siendo su fuente de energía los combustibles o la energía eléctrica.

Figura 1.10 Sistema de Bombeo Fotovoltaico

4.4 Educación

La instalación de sistemas fotovoltaicos en escuelas rurales, ha permitido instalar equipos audiovisuales e informáticos, para complementar la enseñanza de la población estudiantil, dando enfasis en su educacion elemental.

Figura 1.11 Sistema Fotovoltaico en Escuelas Rurales

4.5 Telecomunicaciones

En el Perú miles de teléfonos públicos operan con electricidad de origen solar en comunidades rurales, permitiendo que sus pobladores establezcan contacto con el exterior. La informacion y el entretenimiento por medio de la radio y la television son beneficios de los programas de electrificación rural.

Figura 1.12 Sistema Fotovoltaico en Telecomunicaciones

4.6 Actividades Productivas

Se considera al sistema fotovoltaico productivo como un instrumento valioso para el desarrollo económico, teniéndose en cuenta dos factores fundamentales: negocios rentables y manejo eficiente del Sistema Fotovoltaico. Para ello es necesario implementar un plan de transferencia y adopcion de tecnología para alcanzar la eficiencia deseada.

Figura 1.13 Sistema Fotovoltaico Productivo

Capítulo 2 Componentes de un Sistema Fotovoltaico

1 Panel Solar

Un panel esta constituida por celdas, la cual la celda solar tiene la capacidad de producir corriente eléctrica a partir de la radiación solar, a partir del fenómeno físico efecto fotovoltaico. La celda solar es el dispositivo de conversion de energía solar a energía eléctrica.

Las celdas solares están hechas de la misma clase de semiconductores, tales como el silicio. En las celdas solares una delgada rejilla semiconductora es especialmente tratada para formar un campo eléctrico, positivo en un lado y negativo en el otro. Cuando la energía luminosa llega hasta la celda solar, los otalmente son golpeados y sacados de los átomos del material semiconductor. Si ponemos conductores eléctricos tanto del lado positivo como negativo de la rejilla, forman un circuito eléctrico, los electrones pueden ser capturados en forma de corriente eléctrica, es decir en electricidad, entonces puede ser usada para suministrar potencia a una carga, por ejemplo encender una lámpara.

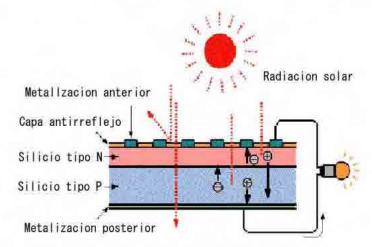


Figura 2.1 Características de la celda fotovoltaica

El panel fotovoltaico esta formado por un conjunto de celdas fotovoltaicas conectadas en serie entre si, de tal forma que se obtenga la tensión y corriente suministrada por el panel hasta ajustarse al valor deseado. Las características eléctricas del panel fotovoltaico viene dado por la curva de tensión – intensidad (V-I).

Figura 2.2 Paneles solares

1.1 Tipos de Paneles Fotovoltaicos

(1) Monocristalino

Basados en secciones de una barra de silicio perfectamente cristalizado en una sola pieza. En laboratorio se han alcanzado rendimientos máximos entre 25% para éste tipo de paneles comerciales en promedio es del 16%.

Figura 2.3 Panel Monocristalino

(2) Policristalino

Los materiales son semejantes al monocristalino aunque en este caso el proceso de cristalización del silicio es diferente. Los paneles policristalinos se basan en secciones de una barra de silicio que se ha estructurado desordenadamente en forma de pequeños cristales. Son visualmente muy reconocibles por presentar su superficie un aspecto granulado. Se obtiene con ellos un rendimiento inferior que con los monocristalinos (en laboratorio es entre 20% y en los módulos comerciales en promedio es del 14%).

Figura 2.4 Panel Policristalino

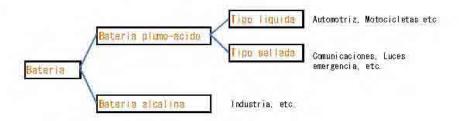
16

(3) Amorfo

Basados también en el silicio, pero a diferencia de los dos paneles fotovoltaicos anteriores, este material no sigue una estructura cristalina alguna. Paneles de este tipo son habitualmente empleados para pequeños dispositivos electrónicos (calculadoras, relojes), en pequeños paneles portatiles y actualmente están siendo construidos al tamaño de los paneles monocristalino y policristalino. Su rendimiento máximo alcanzado en laboratorio es entre el 13% siendo el de los módulos comerciales en promedio del 8%.

Figura 2.5 Panel Amorfo

2 Baterías


La batería es un dispositivo electroquímico el cual almacena energía en forma química. Cuando se conecta a un circuito eléctrico, la energía química se transforma en energía eléctrica. Todas las baterías son similares en su construcción y están compuestas por un número de celdas electroquímicas. Cada una de estas celdas están compuestas de un electrodo positivo y otro negativo además de un separador. Cuando la batería se está descargando un cambio electroquímico se está produciendo entre los diferentes materiales en los dos electrodos.

Tres características principales de una bateria son: la cantidad de energía que puede almacenar, su voltaje y tipo de electrolito. La cantidad de energía que puede ser acumulada por una batería se expresa en watt.hora (Wh). La capacidad (C) de sostener un regimen de descarga esta dada por el número de amperes.horas (Ah)

Las baterías para sistemas fotovoltaicos generalmente son de ciclo profundo, lo cual significa que pueden descargar una cantidad significativa de la energía cargada antes de que requieran recargarse. En comparación, las baterías de automóviles están construidas especialmente para soportar descargas breves pero superficiales durante el momento de arranque; en cambio, las baterías fotovoltaicas están construidas especialmente para proveer durante muchas horas corrientes eléctricas moderadas. Así, mientras una batería de automóvil puede abastecer sin ningún problema 100 amperios durante 2 segundos, una batería fotovoltaica de ciclo profundo puede abastecer 2 amperios durante 100 horas.

2.1 Clases de baterías

En el siguiente diagrama se muestran las clases de baterías más comunes para sistemas fotovolticos, luego se describirán otalmente cada una de ellas.

(1) Batería Plomo - Ácido: Tipo liquida

Es el tipo de batería mas usada en el presente, dado a su bajo costo, es la batería de plomo y ácido sulfúrico con electrolito liquido. En ella los dos electrodos están hechos de plomo y el electrolito es una solución de agua destilada y ácido sulfúrico. Cuando la batería esta cargada, el electrodo positivo tiene un dispositivo de dióxido de plomo y el negativo es plomo. Al descargarse la reacción química que toma lugar hace que tanto la placa positiva como la negativa, tengan un deposito de sulfato de plomo. Como el proceso es químico libera gases (hidrógeno y oxigeno), se recomienda que las baterías se encuentren en áreas ventiladas. El diseño de las tapas de ventilacion permite la evacuación de estos gases, restringiendo al máximo la posibilidad de un derrame del electrolito.

Figura 2.6 Bateria Plomo - Acido

(2) Batería Plomo - Ácido: Tipo Sellada

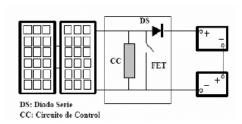
Son baterías plomo – ácido donde el electrolito no es liquido sino un gel. La literatura técnica suele identificar a este tipo de baterías con la abreviatura VRLA, que corresponde a 4 letras en ingles cuyo significado es: plomo – ácido regulada por válvula. Esta batería

no requiere ventilacion al exterior durante el proceso de carga, la caja exterior es hermética. La válvula constituye un dispositivo de seguridad en caso de corto circuito o sobrecarga. Esta hermeticidad evita el derrame de electrolito, disminuyendo el riesgo en su manejo y la convierte en una solución en instalaciones que no requieran mantenimiento y supervisión.

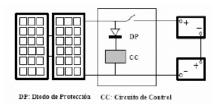
Figura 2.7 Batería Sellada

(3) Baterías Alcalinas

Un tipo de batería alcalina es la Níquel – Cadmio (Ni Cd) es muy diferente a la de las de plomo-ácido. Estas celdas utilizan una base de hidróxido de potasio, como electrolito en lugar de ácido. El electrolito no efectúa cambios químicos con los materiales de las placas; éste solo actúa como un medio de transferencia para los electrones. De tal manera que la gravedad específica del electrolito no cambia con el estado de carga. El polo positivo está compuesto con aleaciones de níquel y el negativo el cadmio. Las baterías NiCd pueden soportar a un congelamiento y descongelarse sin sufrir daño, tampoco son afectadas por las altas temperaturas como las plomo-ácido. Otra ventaja que posee es que no se afectan por sobrecargas y pueden ser descargadas totalmente sin sufrir daño alguno.


Figura 2.8 Batería Níquel-Cadmio

3 Controlador de Carga


Los controladores se incluyen en los sistemas fotovoltaicos para proteger a las baterías contra sobrecargas y descargas excesivas. La función principal del controlador es de cortar el suministro de energía a las baterías cuando hayan alcanzado su carga máxima. Además tienen otras funciones, como la de evitar la sobrecarga de las baterías, para que no se agoten en exceso.

Los numerosos modelos de controladores en el mercado pueden ser agrupados en dos categorías: controladores en serie y controladores en paralelo. Esta clasificación esta relacionada con el paso que toma la corriente de carga, respecto a la batería, cuando el control comienza a restringir el proceso de carga.

En un control en paralelo, cuando el voltaje de la batería alcanza un valor predeterminado (batería cargada), la corriente de los paneles es desviada a un circuito que esta en paralelo en las baterías. Cuando el voltaje de la batería baja por debajo de un valor mínimo, predeterminado por el fabricante, el proceso de carga se restablece nuevamente.

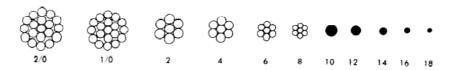
En un control en serie funciona de la misma que el control en paralelo, la única diferencia es que el control de serie no utiliza el diodo serie, que cumple con aislar a las baterías de los circuitos que la preceden, sino que utilizan un interruptor en serie.

En la siguiente figura se muestra un controlador Sun Saver – 6, que funciona con un control en paralelo, además indica los diferentes estados del sistema mediante señales luminosas.

Figura 2.9 Controlador de carga

4 Inversor

El inversor transformará la corriente continua generada (DC) en corriente alterna (AC) para aquellos equipos que así lo requieran (televisor, DVD, computadoras, etc.). Al igual que los equipos de consumo deben de ser de alta eficiencia y usarse prudentemente para no disminuir la eficiencia del sistema, los equipos que se conecten al inversor no deben sobrepasar la potencia de este y habrá que tener en cuenta los picos de arranque de estos equipos pues podrían dañar el inversor.


Figura 2.10 Inversor DC/ AC

5 Cables

El cable de conexión representa un componente indispensable para el transporte de la energia eléctrica entre los diferentes elementos que integran un sistema fotovoltaico. Resulta inevitable que parte de esta energía se pierda en forma de calor, ya que la resistencia eléctrica de un conductor nunca es nula. Los cables usados en instalaciones eléctricas tienen una cobertura exterior que provee aislamiento eléctrica y resistencia mecánica al conductor. Existen dos tipos de conductores: el de un solo alambre y el multialambre.

Los calibres de mayor diámetro no pueden un solo conductor pues su rigidez lo haría poco prácticos. Es por ello que los cables con calibres entre 8 y el 2/0 son fabricados usando varios alambres de menor diámetro.

La siguiente ilustración nos muestra en forma comparativa, los diámetros de varios de los calibres AWG. El diámetro en mm especificado para cada calibre corresponde al del conductor sin aislación alguna. Los valores resistivos, ohms por cada 100m, corresponden al valor de ese calibre a una temperatura de 25°C.

(Fuente: Conversión de la Luz Solar en Energía Eléctrica, Manual Teórico y Práctico sobre los Sistemas Fotovoltaicos, España)

Figura 2.11 Tipos de diámetros de cables

6 Puesta a Tierra

Por lo general la instalación fotovoltaica funciona a modo flotante, lo cual significa que ninguno de sus polos del circuito eléctrico suele conectarse a tierra. Sin embargo aquellas partes más accesibles al usuario como marcos, estructuras, chasis de los equipos instalados, se deben encontrar convenientemente enterradas de manera que la impedancia de la instalación de tierra no supere los 20 ohmios.

Los marcos de los paneles fotovoltaicos se conectan a tierra a través de la estructura metálica de soporte con la que están en contacto, bien directamente o a través del cableado de conexión a tierra.

La estructura del soporte se conecta al electrodo de puesta a tierra, mediante un cable de cobre de sección apropiada. La unión entre el cable y la estructura metálica se lleva a cabo por medio de una grapa atornillada que asegura un contacto duradero y una instalación sencilla.

Capítulo 3 Metodología de calculo

A. Sistema solar domiciliario (SFD)

1 Plan e Instalación

1.1 La demanda de energía estimada para una casa

Para el desarrollo de un adecuado dimensionamiento debemos tener en cuenta la potencia de los artefactos de corriente continua como también de corriente alterna. En el siguiente cuadro se mencionan algunos equipos que habitualmente son utilizados en SFD.

Tabla 3.1 EQUIPOS DE CORRIENTE ALTERNA (AC)

EQUIPOS DE CORRIENTE ALTERNA (AC)	POTENCIA (W)
Computadora	250
Equipo de sonido	60
Lámpara	20
Licuadora	250
Radio	50
Televisor a color	70
DVD	40
Televisor, DVD, Equipos - stand by	10

Tabla 3.2 EQUIPOS DE CORRIENTE CONTINUA (DC)

EQUIPOS DE CORRIENTE CONTINUA (DC)	POTENCIA (W)
Lámpara	9
Lámpara	12
Lámpara	15
Bomba sumergible	150
Radio	10
Radio grabadora	30
Refrigeradora para vacunas	85
Televisor b/n	30

1.2 Dimensionamiento del SFD

En el Diseño del Sistema Fotovoltaico Domiciliario (SFD) hemos realizado el dimensionamiento de tres casos prácticos. A continuación desarrollaremos los pasos a seguir:

1.- Descripción del procedimiento de calculo:

Tabla 3.3 Calculo de demanda

Equipo	Potencia (W)	Cantidad	Horas (h)	Consumo de energía diario (Wh)
TOTAL				

La potencia del panel solar (W) es calculado como se indica a continuación:

$$Cp= De / K / H$$
 (1)

Potencia de Panel: Cp (W) Demanda de Energía: De (Wh)

Hora de sol: H (h) Pérdidas de diseño: K

K = K1 x K2 x K3 x K4 xK 5x K6

K1:	Coef. corrección de temperatura	10°C	1.075
K2:	Factor del panel	Normalmente 0.9 - 0.95	0.90
K3:	Perdida (Panel a Batería)	Normalmente 0.95	0.95
K4:	Controlador		0.95
K5:	Carga / descarga de Batería		0.90
K6:	Perdida (demanda en Batería)		0.95
C-Si	Cristal - Silicio		0.005

El coeficiente de temperatura es calculado como se indica en la formula siguiente:

* Debemos tener en cuenta que la temperatura promedio anual que se esta tomando es la de la ciudad de Puno, de modo que el K1 variará de acuerdo a la ciudad a realizar un proyecto de SFD.

La estimación de carga electrica diaria de salida del panel es calculada como se indica a continuación:

Se calculará el consumo de corriente que nos servirá para luego dimensionar el número de baterías de un SFD.

La carga electrica diaria total requerida por el sistema es calculada como se indica en la siguiente formula:

La capacidad necesaria de la batería es calculado de acuerdo a la siguiente fórmula:

Profundidad descarga máxima: PDmax

- Días de autonomía: 3

-Profundidad de descarga: 40 % (batería modificada Norma Técnica Peruana).

La corriente necesaria del controlador es calculada de acuerdo a la siguiente formula:

$$Im < Icon < Icr$$
 (6)

Corriente de diseño del controlador: Icon (A)

Corriente del panel bajo condiciones nominales: Im (A)

Corriente de carga, consumo eléctrico simultaneo requerido por todos los equipos instalados: lcr (A)

Luego de realizado los cálculos, se hace un cuadro de los equipos y cantidades que va a requerir el SFD.

1.3 Diseño de un sistema óptimo

Para el diseño óptimo de un sistema fotovoltaico se utiliza la radiación solar y para nuestros cálculos se toma la menor radiación del mes del año. En nuestro caso las tres simulaciones la realizaremos en el Departamento de Puno.

Tabla 3.4 Radiación horizontal de anual

	Radiación (kWh/m²)	Temperatura (°C)
Enero	4.6	10.2
Febrero	5.2	10.3
Marzo	5.1	10.4
Abril	5.1	9.1
Mayo	4.6	5.2
Junio	4.5	3.3
Julio	4.6	3.1
Agosto	5.0	5.7
Setiembre	5.5	7,8
Octubre	6.0	9.4
Noviembre	6.0	10.1
Diciembre	5.6	11.0

(1999 SENATI CENERGIA ECOFYS, P31)

En el siguiente cuadro se puede observar la radiación de cada mes, siendo en Junio la radiación mas baja del año, de manera que el diseño de un SFD se realizará con dicho mes.

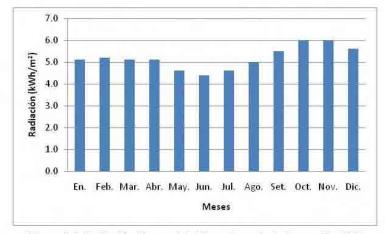


Figura 3.1 Radiación Mensual del Departmento de Puno, año 1999

Tener en cuenta que el Departamento de Puno tiene una latitud de 15.8°. Para una buena radiación optima, debe sumarse una inclinación de 10°; por lo tanto tendrá una inclinación de 26° y el sistema se encontrará orientado hacia el norte.

Para tener un mejor entendimiento se desarrollará una simulación en tres tipos de demanda, para los cuales calcularemos las potencias.

Caso A: Dimensionamiento SFD - 50W

Tabla 3.5 Demanda de Energía (50W)

Demanda	Potencia (W)	Horas (h)	Consumo de energía diario (Wh)
Lámpara en sala	12	4	48
Lámpara en cocina	12	3	36
Lámpara dormitorio	12	2	24
Radio	10	3	30
Total (De)			138

Para realizar los cálculos iniciales se debe tener en cuenta las perdidas por diseño en este caso K1, la temperatura promedio anual varia de acuerdo a la zona de instalación. Para nuestro caso estamos tomando la ciudad de Puno (10°C).

$$K1=1- (C-Si) \times (Tp -25)=1.08$$

 $K = K1 \times K2 \times K3 \times K4 \times K5 \times K6 = 0.75$
 $H = 4.5 (h)$

Por lo tanto, la potencia necesaria del panel fotovoltaico es:

La potencia del panel fotovoltaico debe ser mayor de 41 W. En este caso el panel solar seleccionado deberá ser de 50 W, siendo un panel comercial.

La carga electrica diaria de salida del panel fotovoltaico de 50 W, se calcula como se muestra a continuación:

Is =
$$H \times Cp_{50W} \times K / V = 14.1 (Ah)$$

La carga electrica diaria total que se requiere en el caso A, se calcula como se describe a continuación:

La capacidad de la batería de ser:

La capacidad de la batería deberá ser mayor que 115 Ah. En este caso, una batería de 120 Ah será la elegida a un regimen de descarga de 20 horas (C20).

Luego de realizado los cálculos, se diseñará un cuadro final donde se incluirán los equipos y las cantidades que conformarán el SFD – 50W.

Tabla 3.6 Componentes de SFD-50W

Componentes	Característica	N° de equipos
Panel Solar	50 W	1
Batería	120 Ah,C20	j
Controlador	10 A	1
Lámpara	12 W	3
Radio	10 W	1
Conversor DC/DC	12 V	1

Caso B: Dimensionamiento SFD - 100W

Tabla 3.7 Demanda de Energía (100W)

Demanda	Potencia (W)	Horas (h)	Consumo de energía diario (Wh)
Lámpara en sala	12	4	48
Lámpara en cocina	12	4	48
Lámpara en dormitorio	12	4	48
Televisor b/n	20	5	100
Radio	10	4	40
Total (De)			284

Por lo tanto, la potencia necesaria del panel fotovoltaicos es;

$$K1=1-(C-Si) \times (Tp -25)=1.08$$

 $K = K1 \times K2 \times K3 \times K4 \times K5 \times K6 = 0.75$
 $H = 4.5 (h)$

La potencia del panel fotovoltaico será mayor a 85 W. En este caso, un panel solar de 100 W, será elegido o 2 paneles solares de 50 W.

La carga electrica diaria de salida del panel fotovoltaico 100 W, es calculado como se indica a continuación:

Is =
$$H \times Cp_{100W} \times K / V = 28.1 (Ah)$$

La carga electrica diaria total que se requiere en caso B, se calcula como se describe a continuación:

La capacidad necesaria de la batería es:

La capacidad de las baterías deberá ser mayor que 237 Ah. En este caso, se hará un arreglo de baterías a 240 Ah (2 baterias de 120 Ah con un regimen de descarga de 20 horas).

Luego de realizado los cálculos, se diseñará un cuadro final donde se incluirán los equipos y las cantidades que conformarán el SFD – 100 W.

Tabla 3.8 Demanda de Energía (100W)

Componentes	Característica	N° de equipos
Panel Solar	100 W	1
Bateria	120 Ah,C20	2
Controlador	10 A	1
Lámpara	12 W	3
Televisor b/n	20 W	1
Radio	10 W	1
Conversor DC/DC	12 V	1

Caso C: Dimensionamiento SFD - 300W

Tabla 3.9 Demanda de Energía (300W)

Demanda	Potencia (W)	Horas (h)	Consumo de energía diario (Wh)	Tipo de corriente
Lámpara en sala	12	6	72	DC
Lámpara en cocina	12	6	72	DC
Lámpara en dormitorio	12	5	60	DC
Total		1	204	

DVD	40	2	80	AC
Televisor a color	70	3	210	AC
Equipo de sonido	60	5	300	AC
Funcionamiento Inversor	6	8	48	AC
Total	176		590	

DC Total	204	Wh
Eficiencia del Inversor	90	%
AC Total	656	Wh
Voltaje del sistema	12	V
Total Demanda diaria	860	Wh

Por lo tanto, la potencia (W) necesaria para el arreglo fotovoltaicos es:

$$K1=1- (C-Si) \times (Tp -25)=1.08$$

 $K = K1 \times K2 \times K3 \times K4 \times K5 \times K6 = 0.75$
 $H = 4.5 (h)$

La potencia del panel fotovoltaico debe ser mayor que 256 W. En este caso, el arreglo fotovoltaico es de 300 W, utilizándose 3 paneles solares de 100 W.

La carga electrica diaria de salida de un arreglo fotovoltaico de 300 W es calculado como se muestra a continuación.

Is =
$$H \times Cp_{300W} \times K / V = \underline{71.6 \text{ (Ah)}}$$

La carga electrica diaria total que se requiere en el caso C, se calcula como se muestra a continuación:

La capacidad necesaria de la batería es:

La capacidad de la batería será mayor que 716 Ah. En este caso el arreglo de baterías es de 720 Ah (6 baterias de 120 Ah con un regimen de descarga de 20 horas)..

Potencia del inversor DC/AC

La potencia de un inversor debe ser mayor que la potencia total sistema, la potencia total de la demanda en este caso es 176 W. Por lo tanto, en este caso la potencia del inversor seleccionado es de 200 W.

Potencia tota de demanda < Potencia del inversor

Luego de realizado los cálculos, se diseña un cuadro final donde se incluirán los equipos y las cantidades que conformarán el SFD – 300 W.

Tabla 3.10 Demanda de Energía (300W)

Componentes	Característica	N° de equipos	Tipo de corriente
Panel Solar	100 W	3	DC
Batería	120 Ah,C20	6	DC
Controlador	20 A	— i	DC
Inversor DC/AC	200 W	1	AC
Lámpara	12 W	3	DC
DVD	40 W	1	AC
Televisor a color	70 W	Ï	AC
Equipo de sonido	60 W	1	AC

Precauciones y recomendaciones del SFD

Para asegurar la eficiencia del sistema debe tenerse en cuenta que no debe usarse equipos electrodomésticos con alta potencia.

Tabla 3.11 Equipos que no se deben usar

CUIDADO				
Equipos con Resistencia	Potencia (W)			
Plancha	1000			
Terma eléctrica	1000			
Cocina eléctrica	1000			
Microondas	1000			

En la siguiente tabla recomendamos las horas de uso de algunos equipos de un sistema fotovoltaico domiciliario (SFD).

Tabla 3.12 Horas de uso

Equipos	Horas de uso
Lámpara	3-6
Radio	3 - 5
Radio grabadora	3 - 4
Equipo de sonido	4 - 5
Televisor b/n	3 - 5
Televisor a color	3 - 4
DVD	2 - 3
Computadora	3 - 4
Refrigeradora	5 - 6