## Appendix 5. Other Relevant Data

- 5-1 Technical Memorandum
- 5-2 Confirmation letter from an organization related
- 5-3 Results of the Natural Conditions Survey
- 5-4 Results of Trafic Investigation
- 5-5 Trchnical Documentation (Results of the Study on the Drainage Structures)
- 5-6 Basic Design Drawings

Appendix 5-1. Technical Memorandum

Japan International Cooperation Agency (JICA)

THE BASIC DESIGN STUDY ON THE PROJECT FOR IMPROVEMENT OF LIVINGSTONE CITY ROADS IN THE REPUBLIC OF ZAMBIA

6-Dce-2007

### Memorandum

## Subject: <u>Technical note of Design Value to be used for the Basic Design Study on</u> <u>the Project</u>

The JICA Study Team will propose the following principal standard for the design of captioned project.

|               | Description     | Units | Value                                  |  |  |  |  |  |
|---------------|-----------------|-------|----------------------------------------|--|--|--|--|--|
| Design Speed  |                 | Km/hr | 60                                     |  |  |  |  |  |
| No. of Lanes  |                 | No.   | 2 [4]                                  |  |  |  |  |  |
| Carriageway   | Width           | m     | 6.1 [6.7,14.0]                         |  |  |  |  |  |
| Shoulder wid  | th              | m     | 2.0                                    |  |  |  |  |  |
| Maximum Gr    | adient          | %     | 8                                      |  |  |  |  |  |
| Maximum Su    | perelevation    | %     | 6                                      |  |  |  |  |  |
| Fill Slope    | Granular soil   | Angle | $1:1.5 \sim 2.0$ (depend on soil type) |  |  |  |  |  |
|               | Hard Rock       | Angle | 1:0.5                                  |  |  |  |  |  |
| Cut Slope     | Decomposed Rock | Angle | 1:0.75                                 |  |  |  |  |  |
|               | Other than Rock | Angle | 1:1.0~1.5 (depend on soil type)        |  |  |  |  |  |
| Design Period | 1               | -     | 10 Years                               |  |  |  |  |  |

Note : ( ) = Minimum value, [ ] = Select lane case, and 4 Lane Case

Peter Jubambo Director Department of Infrastructure and Support Services Ministry of Local Government and Housing (MLGH)

(Witness)

Erasmus M. Chilundika Acting Director & CEO Road Development Agency

T. MASUI Chief Consultant of JICA Study Team

#### THE TECHNICAL NOTES ON THE BASIC DESIGN STUDY(I) ON THE PROJECT FOR THE IMPROVEMENT OF LIVINGSTONE CITY ROADS IN THE REPUBLIC OF ZAMBIA

The following issues were confirmed by Livingstone City Council(LCC), Road Development Agency(RDA) and JICA Study team.

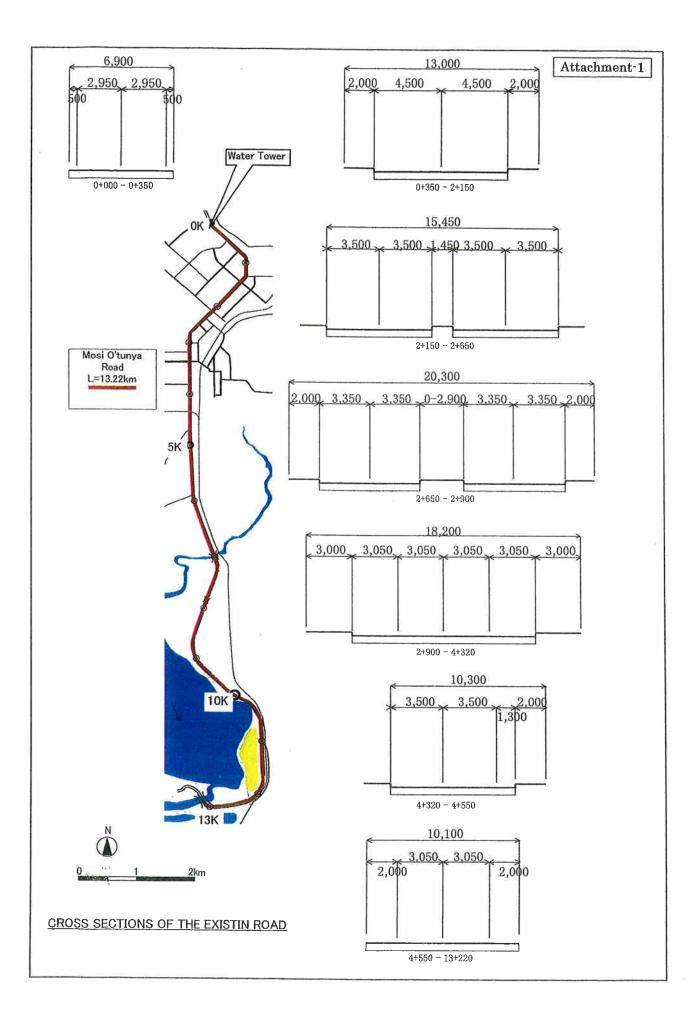
5<sup>th</sup> December 2007

- 1. The proposed design prepared by JICA Study team after the field survey II in Japan principally follows the existing condition, such as the cross section as shown in the attachment--1, the horizontal curve, the vertical curve, the existing drainage facilities along the road, the existing sidewalk and so on.
- 2. The proposed design above mentioned shall refer to the memorandum of the joint inspection 26th November 2007 as shown in the attachment-2
- 3. The design of the project road shall be carried out in accordance with the SATCC design manuals as follows:

- SATCC Draft Code of Practice for the Geometric Design of Trunk Roads, Sept 1998 (Reprinted July 2001)

- SATCC Draft Code of Practice for the Geometric Design of Road Pavements, Sept 1998 (Reprinted July 2001)

- SATCC Draft Code of Practice for the Rehabilitation of Road Pavement, Sept 1998 (Reprinted July 2001)


4. The pavement analysis shall be carried out in accordance with the AASHTO.

KONO TAKUJI Design Engineer(I) JICA Study Team

EDA

GOREEY SINYWIBULULA Director of Engineering Service Livingstone City Council

LAZAROUS NYAWALI Regional Engineer Southern Province of Road Development Agency



## MEMORUNDUM FOR JOINT SITE INSPECTION WITH LCC, RDA AND JICA STUDY TEAM ON THE PROJECT FOR IMPROVEMENT OF LIVINGSTONE CITY ROADS

DATE : 26<sup>th</sup> November 2007

TIME : AM8:30 - PM3:00

#### PARTICIPANTS :

| Mr. Clement Mutale Chisanga<br>Mr. Charles Sichzya<br>Mr. Steven Mwiya | Director of City Planning (LCC)<br>Deputy Director of Engineering Service (LCC)<br>Technician of HMS(Highway Management System) of RDA,<br>Southern Province |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mr. KONO Takuji                                                        | Road Designer I (JICA Study Team)                                                                                                                            |
| Mr. SHIMIZU Nouharu                                                    | Road Designer II (JICA Study Team)                                                                                                                           |
| Mr. HIROSE Sueo                                                        | Natural Condition Surveyor (JICA Study Team)                                                                                                                 |
| Mr. ONODA Shin                                                         | Construction Planner (JICA Study Team)                                                                                                                       |

#### 1. Purpose of Joint Inspection

The joint site inspection was held on 26<sup>th</sup> November 2007 for the purpose of discussing the following the points of view each other on site.

- Actual Situation of Existing Drainage and Subjects to be solved
- Confirmation of Typical Project Components

- Relocation of Utilities

#### 2. Transverse Drainage

- 2-1 It was agreed by LCC, RDA (hereinafter referred as "Local Authority") that the existing drainage along the project road should be cleaned before commencement of construction.
- 2-2 It was confirmed that Local Authority shall carry out a field inspection on the existing drainage situation from maintenance point of view per a month. In addition, Local Authority shall prepare information on the cleaning program/routine maintenance of the drainage facilities on contract base in details.
- 2-3 It was requested by Local Authority that the diameter of pipes should be applied to 600mm in minimum, 900mm in standard in case of replacements.
- 2-4 It was confirmed that the existing drainage under good condition would be remained. However, the existing catch-basin along the shoulder should be replaced by new one (size 1.0m\*1.0m) taking account into facilitating maintenance.
- 2-5 It was confirmed that the existing catch-basin along the road between Kafubu Road and Dry Port should be replaced with a new one. And the transverse drainage shall be newly constructed around Dry Port.

- 2-6 It was confirmed that the corrugated steel pipe and drum steel pipe in town area (from B1 to P10) should be replaced by concrete pipes. And then the existing transverse drainage under pedestrian shall be replaced by the open drain ditch with cover plate instead of the existing pipe. And the inlet/outlet also shall be replaced with new ones, especially the sediment in the inlet shall be constructed soil sump.
- 2-7 It was confirmed that the open drain ditch should be constructed in the median strip in centre town for catchment basin with removable cover.
- 2-8 The open drain ditch with cover plate concrete made shall be constructed at the junction of access road as the case may be necessary.
- 2-9 A ditch shall be constructed along the road from the outlet of P31 to suitable area close to the site.
- 2-10 It was confirmed that the Local Authority do not dump rubbish/debris/silt producing from the cleaning of the existing/proposed drainage facilities beside them anymore. Products removed and should be dumped in a disposal area prepared by Local Authority

#### 3. Road Structures

3-1 It was confirmed that the beginning of project (Km0+000) was set on the road according to the Tender Drawing Document between Zimba – Livingstone which authorized by the Ministry of Works and Supply.

Accordingly the following data will be prepared by Local Authority at the portion mentioned above;

- Horizontal curve
- Vertical curve and the elevation at the end of the project
- Cross section
- Pavement
- Others if required.
- 3-2 It was agreed by Local Authority to provide both documents of Urban Development Plan including the community development and SEED Project to JICA Study Team.
- 3-3 It was requested by the Local Authority that the proposed drainage direction should not go to the railway in the border area. In addition, the following were requested by NHCC at the site in the design;
  - To utilize the existing drainage conditions of the site
  - To protect the proposed drainage from being damaged by heavy vehicles
  - To improve the Island in the parking space beside the Immigration Office to accommodate Tourists there.
- 3-4 It was agreed by the Local Authority that the access roads for private area shall be paved by ?
- 3-5 The width of the proposed pedestrian around border facility section shall be planned from 70cm to 100cm depending on the site condition.

2

- 3-6 The road structure (mound kerb/flat kerb) from the border facility to the end of the Project shall be maintained as it is actual. However, it should be examined as planed such as the heavy vehicle should not park on the shoulder.
- 3-7 It was agreed by the Local Authority that the existing drainage shall be rehabilitated and land granding along the service road which was requested accordingly by the Local Authority.

#### 4. Existing Bridges

- 4-1 It was agreed by the Local Authority that the methodology of partial repairing works for existing bridges shall be rust proof treatment for corroded reinforcement after removing concrete.
- 4-2 It was requested by Local Authority that the safety facility shall be planned back and forth of existing bridges.
- 4-3 And it was confirmed by both the Local Authority and the consultant, the substructure of the bridge is still functioned enough.
- 4-4 Local Authority shall inform to the consultant about the design information of the bridge, such as the design life, the design load, the constructed year.

#### 5. Relocation of Public Utilities

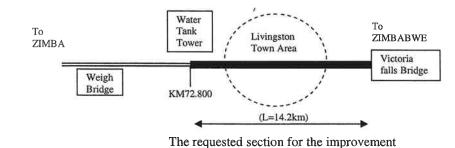
- 5-1 It was agreed by Local Authority to give the unit price of relocation of public utilities to JICA Study Team.
- 5-2 The Local Authority shall prepare the required information to estimate the quantities of them, such as the location map, layout map and the drawings to show their structure details.

#### 6. Others

- 6-1 It was agreed by the Local Authority that it shall coordinate with related Authorities to obtain clearance and supporting letter for environmental issues (EPB).
- 6-2 Regarding on the items of 4-5(Additional Requests) in MD signed on 21<sup>st</sup> November 2007 in Lusaka, Local Authority shall prepare concrete evidence in detail for clearing the maintenance problems on them.
- 6-3 It was agreed by Local Authority that Local Authority shall give the information concerning place of base camp, disposal area, and borrow pit.
- 6-4 Local Authority will prepare plan/program to use the proposed facilities (Parking Area, Cycling Road, and the others) as requested by them under this project.
- 6-5 Local Authority will prepare suggestions to show the location of the proposed bus stop based on their community development plan to the Study team.
- 6-6 Local Authority will prepare a traffic control/management plan on Livingsutone city as a design refference.

3

#### **Technical Notes**


#### on the Basic Design Study

## on the Project for Improvement of Livingstone City Roads in the Republic of Zambia

DATE: October 10, 2007VENUE: Department of Infrastructure & Support Services, MLGH

The following issues were confirmed by the Road Development Agency (RDA), Ministry of Local Government and Housing (MLGH), Livingstone City Council (LCC) and JICA Study team.

1. Lusaka Head office of RDA under the Ministry of Works and Supply (MOWS) confirmed that the improvement on the requested section, as shown in the figure below, of T1 (Mosi O'Tunya road) under Japan Grand Aide is based on the request (Overlay) from LCC through MLGH submitted in July of 2006.



Note: KM72.8000 of T1 starting from Zimba to Livingston financed under 9<sup>th</sup> EU Fund

- 2. Accordingly, the existing weigh bridge was excluded from the improvement section above as the EU will fund works from Zimba to Water tank tower in Livingstone.
- 3. MLGH confirmed the request prepared by LCC in July of 2006 as shown in the attached Figure-1.

Masui Tetsumi Chief Consultant JICA Study Team

Daniel Mulonga Acting Manager-Planning & Design Road Development Agency

Peter/Lubambo Director

Department of Infrastructure and Support Services Ministry of Local Government and Housing

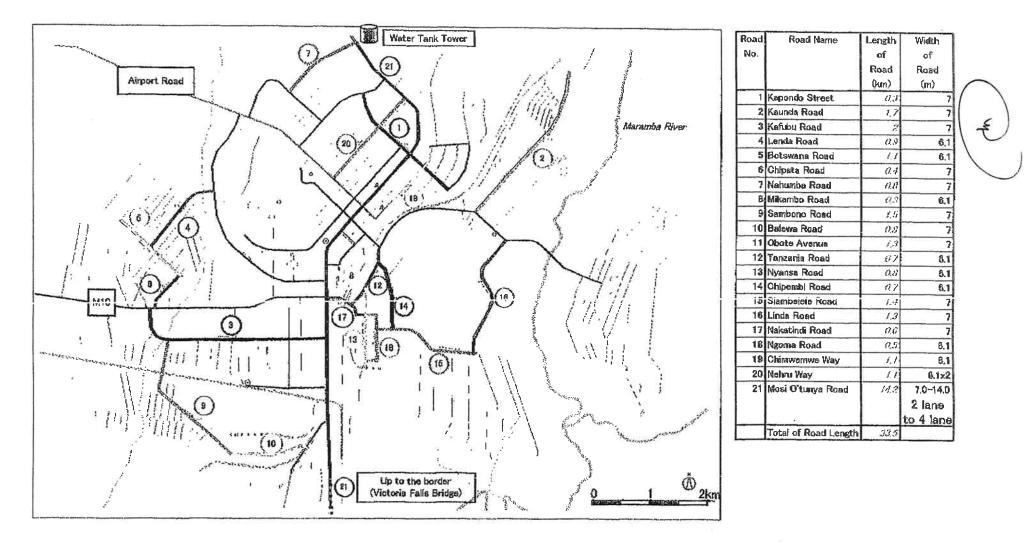
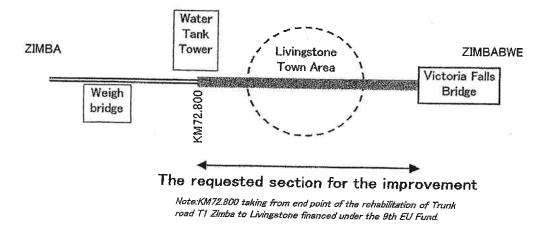



Figure-1 Requested Roads


0

## THE TECHNICAL NOTES ON THE BASIC DESIGN STUDY(I) ON THE PROJECT FOR THE IMPROVEMENT OF LIVINGSTONE CITY ROADS IN REPUBLIC OF ZAMBIA

The following issues were confirmed by Road Development Agency(RDA), Livingstone City Council(LCC) and JICA Study team.

12<sup>th</sup> October , 2007

 Southern province regional office of RDA confirmed that the improvement on the requested section, as shown in the figure below, of T1(Mosi O'Tunya road) under Japan Grand Aid is based on the request (Overlay) from LCC through Ministry of Local Government and Housing (MLGH) submitted in July of 2006



- 2. Accordingly, the existing weighbridge was excluded from the improvement section explained above.
- 3. LCC confirmed the request prepared by LCC in July of 2006 as shown in the attached Figure-1.

KONO TAKUJI Road Design Engineer (I) JICA Study Team

4

MUBUYAETA KAPINDA Regional Engineer Southern Province of Road Development Agency

CHARLES SICHIZYA Depty Director of Engineering Service Livingstone City Council

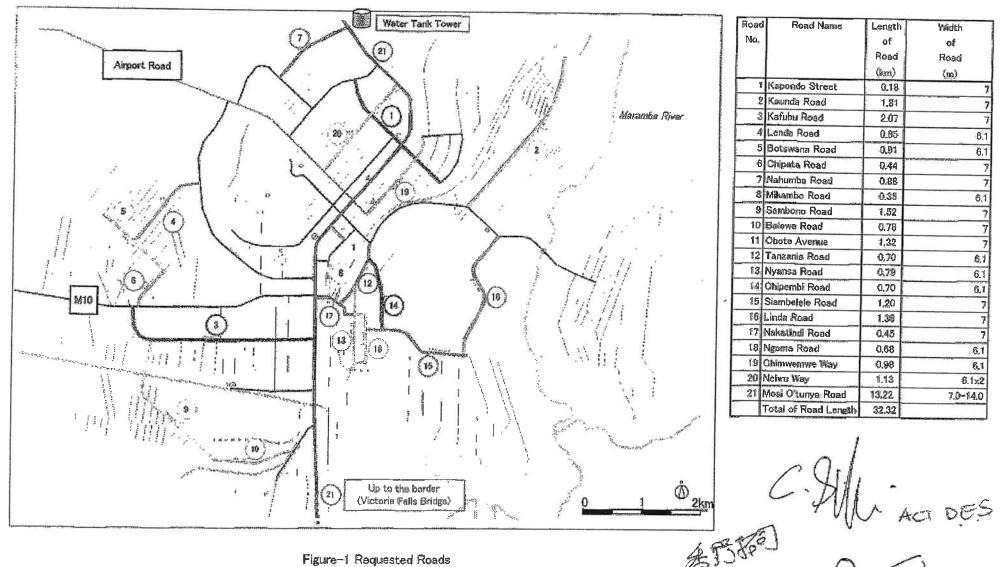



Figure-1 Requested Roads

Appendix 5-2. Confirmation letter from an organization related



| NATIONAL HERICAGE C                    | ONSERVATION COMMISSION  |
|----------------------------------------|-------------------------|
| SOUTH-WEST REGION                      | ine                     |
| Chishimba Falls Road                   |                         |
| P .O. Box 60124                        | 1.32                    |
| Tel: 260-03-323662, Fax: 03-260-323653 | REPUBLIC OF ZAMERA      |
| E-mail: nhccsowe@zamnet.zm             | MUINESTONE CITY COUNTER |

OFFICE OF THAT SHERE THE

2007

SINTER C

S.FWERTON CONTRACT

Ref: NHCC/CONF/501/01/3

Livingstone -Zambia

PATRAMERICS INCOMPLYCATION

6<sup>th</sup> November, 2007

The Town Clerk Livingstone City Council P.O. BOX 60029 LIVINGSTONE

## ATTN: DIRECTOR CITY PLANNING

Dear Sir

## RE: REHABILITATION OF MOSI-OA-TUNYA ROAD

Reference is made to your letter dated 20<sup>th</sup> October 2007 on the above subject wherein you were seeking guidance on how far the walk way should go and the width it should have.

Firstly, we would like to emphasis the fact that the area in question is indeed limited in size and is in the World Heritage Site and any significant excavation would result in the loss of wilderness value. Secondly, on the limited section is the last viewing point which is popular to foreign tourists.

In this regard and as discussed on the phone with you, we suggest that the walkway can go as far as the bridge at the width of 1.3 metres, but we advise that the envisaged excavation work should not reach the boundary wire fence of the National Monument.

Considering that some portion of earth will be scrapped away, we request through your office that the contractor can consider putting a reinforced fence to secure the National Monument boundary after walkway and drainage have been done.

We hope our suggestion will be valuable in your project design.

Yours Sincerely NATIONAL HERITAGE CONSERVATION COMMISSION

## MUYUMBWA NDIYOI ACTING REGIONAL DIRECTOR For/EXECUTIVE DIRECTOR

Cc: Acting Planner Cc: Site Manager - VFWHS

# Livingstone City Council

OFFICE OF THE TOWN CLERK

P.O BOX 60029 Telephone: 323847/323790 Tax: 260-3-322149 Telex: LCC ZA 24032



Town Clerk's office Civic Centre Livingstone Zambia

14th February 2008

Construction Project Consultants Inc YSK Bldg 3-23-1 Takadanobaba Shinjuku-ku Tokyo 169-0075 J A P A N

| ст.         | 1                 | JF<br>LE GI        | ZAIS<br>TY C | HA<br>DUNCIL |
|-------------|-------------------|--------------------|--------------|--------------|
| Rout and an | 1.66)***2.56 > ve | , <del></del>      | 3 2008       | 71           |
| offi        | \$2 62.           | THE<br>BOX<br>NGS1 | 60029        | CLERK        |

Attention: Mr Masui

Dear Sir

# RE: IMPROVEMENT OF MUSI -OA- TUNYA ROAD - TREE CUTTING

As a follow up to the site visit we had with yourselves, we agree that the numbers of trees to be removed are as indicated below:-

- 1. Junction of Airport with Musi -Oa -Tunya maximum number of trees to be removed is two (2).
- 2. Junction of M10 (Nakatindi road) with Musi -Oa- Tunya maximum number of trees to be removed is four (4).

Yours faithfully LIVINGSTONE CITY COUNCIL

# G KALENGA TOWN CLERK/CHIEF EXECUTIVE

cc Town Clerk cc Parks Superintendent cc Director of Engineering Services

CC/ckb..

ALL CORRESPONDENCE TO BE ADDRESSED TO THE TOWN CLERK



NATIONAL HERITAGE CONSERVATION COMMISSION south-west region chishimba Fails Road P.O. Box 60124 Tel: 260-03-323662, Fax: 03-260-323653 E-mail: nhccswr@zamnet.zm Livingstone - Zambia

#### NHCC/501/01/3

13<sup>th</sup> December, 2007

The Town Clerk Livingstone City Council P.O. Box 60029, LIVINGSTONE.

Dear Sir.

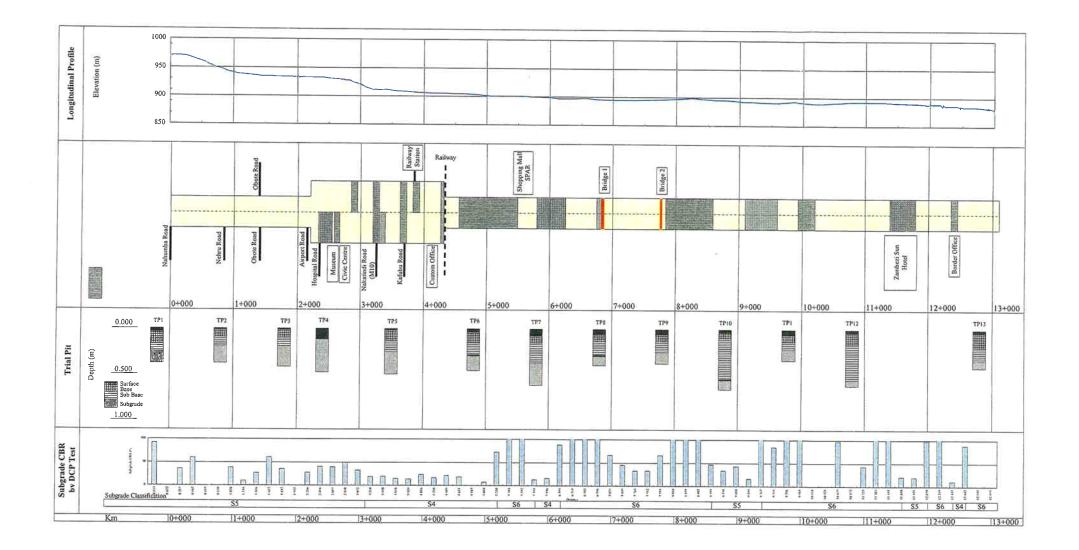
## <u>REQUEST TO DRAIN STORM WATER THROUGH THE PROJECTED AREA</u> <u>AT THE VICTORIA FALLS BORDER</u>

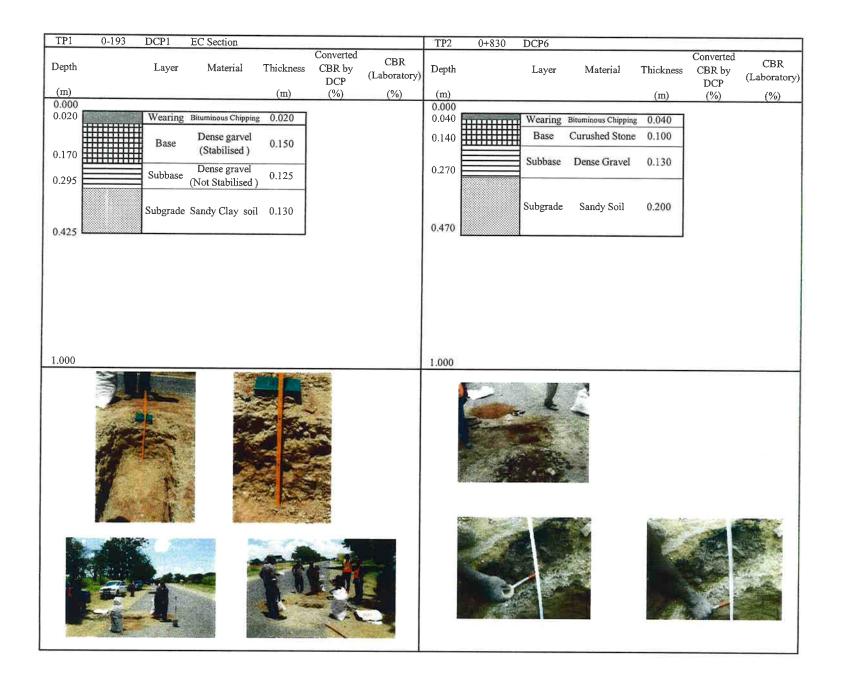
Reference is made to your letter referenced LCC/103/29/07 dated 30<sup>th</sup> November 2007 on the above subject.

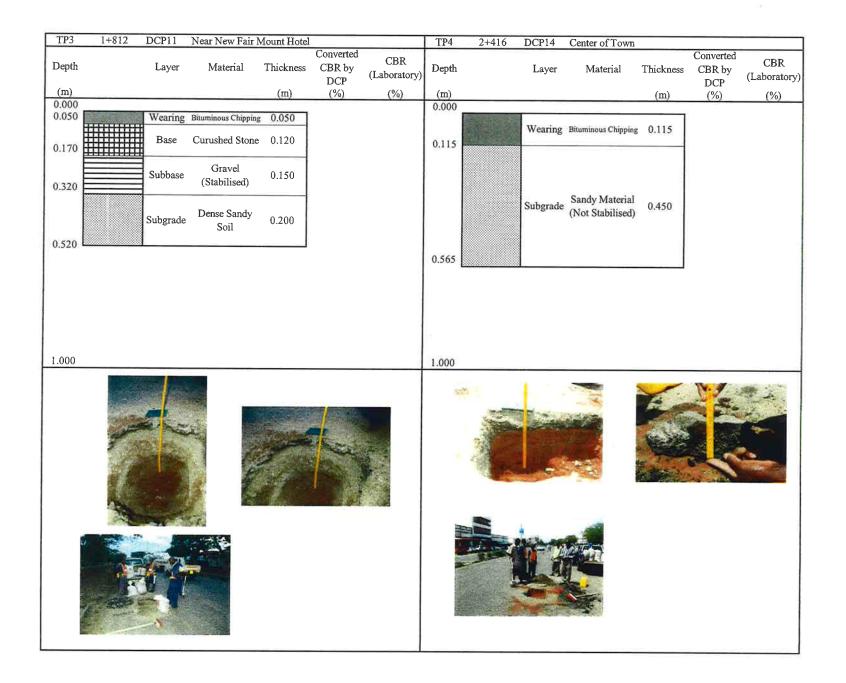
Your request to use the existing drainage and natural waterways is granted. However, we would like to indicate that the project should make every effort to enhance the natural environment rather than detract from it.

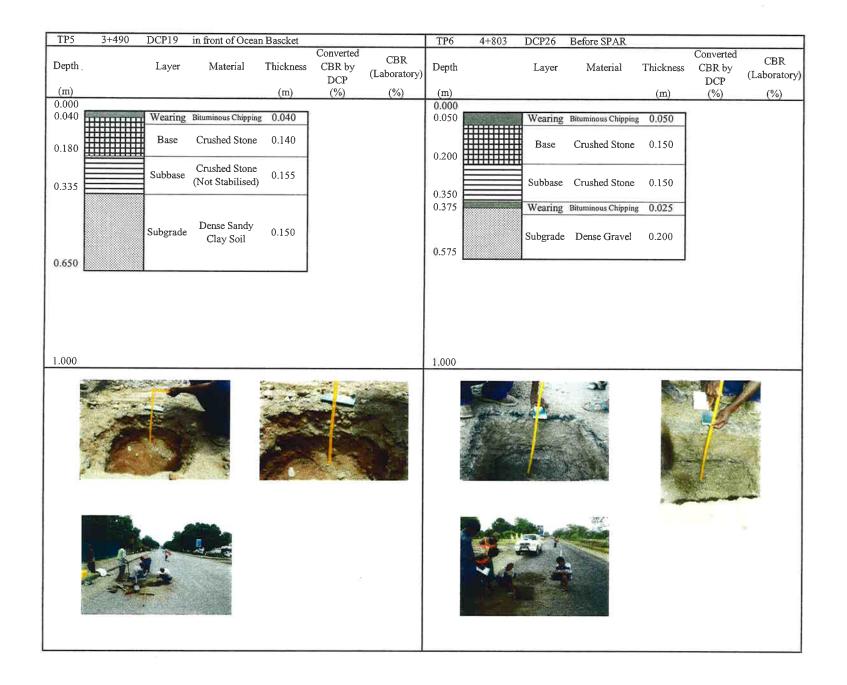

As discussed with your staff and consultants, the storm water should be allowed to spread and not to be concentrated.

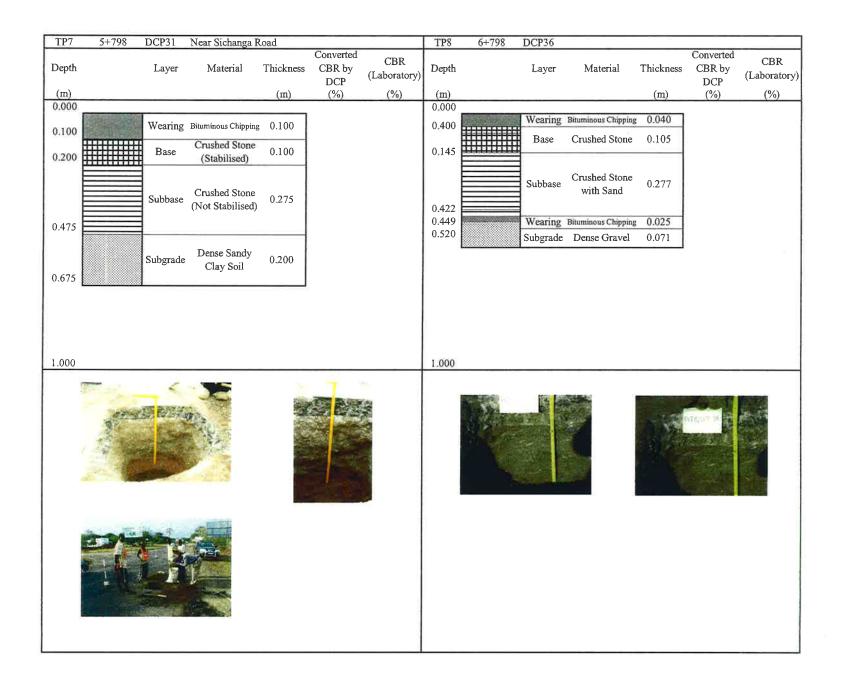
We hope our response will be valuable to the progress of the project.

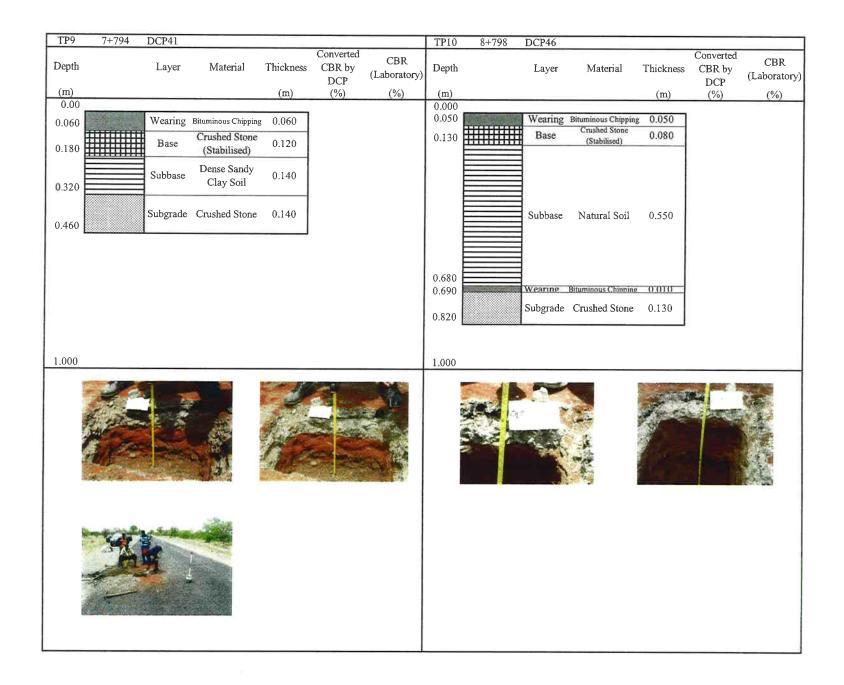

Yours faithfully,

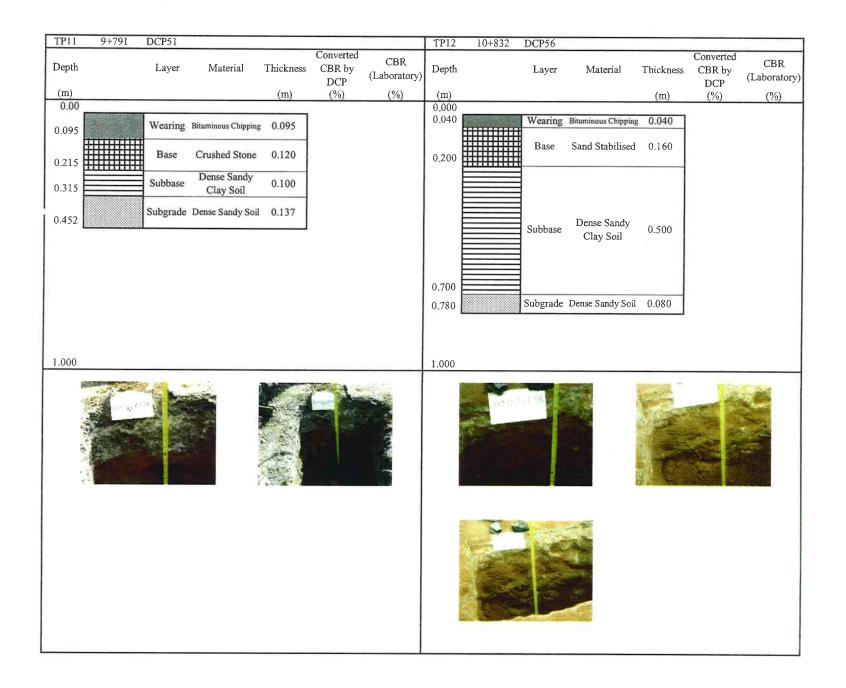

Muyumbwa Ndiyoi Acting Regional Director

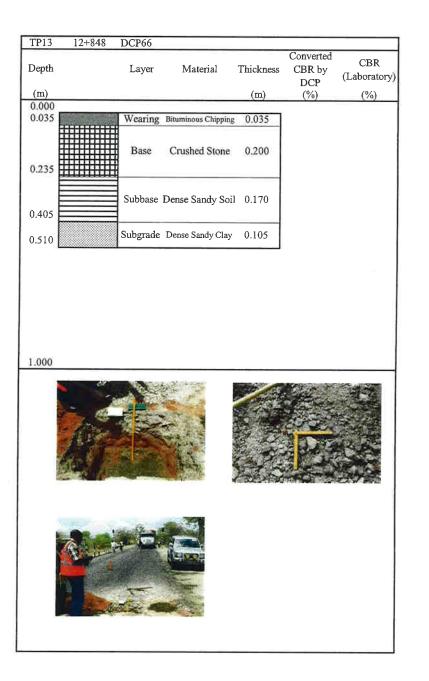

Cc. Executive Director Act- Director Conservation Services Site Manager - VF Appendix 5-3. Results of the Natural Conditions Survey





Subgrade Classification SI - CBR 2 S2 : CBR 3-4 S3 - CBR 5-7 S4 : CBR 5-7 S4 : CBR 8-14 S5 : CBR 15-29 S6 : CBR 230














Appendix 5-4. Results of Trafic Investigation

| Description   |          | Motorcycle<br>and<br>Scooter | Light Motor<br>Vehicles<br>Cars | Micro Bus<br>/Mini Bus<br>Taxis<br>approx. (9-<br>15 seats) | Light<br>Delivery<br>Vehicle | Small Bus<br>(25-40<br>seats) | Large Bus<br>(50-70<br>seats) | Rigid<br>Single Unit<br>Truck | Rigid<br>Single Unit<br>Truck | Single<br>Trailer<br>Truck | Single<br>Trailer |         | Mu      | ulti Trailer Tr. | uck     |         | Other<br>Transport<br>Bicycles,<br>Cart, etc | Total  | Total<br>(Vehicle) | Heavy<br>Vehicle | commercial<br>vehicles ratio |
|---------------|----------|------------------------------|---------------------------------|-------------------------------------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------|-------------------|---------|---------|------------------|---------|---------|----------------------------------------------|--------|--------------------|------------------|------------------------------|
|               |          |                              |                                 |                                                             |                              | 2 axles                       | 3 or 4 axles                  | 2 axles                       | 3 or 4 axles                  | 5 axles                    | 6 axles           | 5 axles | 6 axles | 7 axles          | 8 axles | 9 axles |                                              |        |                    |                  | (%)                          |
| T1 North Side | 1-2/2-1  | 52                           | 4,562                           | 617                                                         | 1,671                        | 300                           | 22                            | 218                           | 58                            | 9                          | 29                | 3       | 21      | 41               | 48      | 1       | 66                                           | 7,717  | 7,599              | 750              | 9,9                          |
|               | 1-3/3-1  | 16                           | 3,127                           | 273                                                         | 667                          | 149                           | 22                            | 147                           | 28                            | 2                          | 18                | 3       | 10      | 30               | 28      | 2       | 30                                           | 4,547  | 4,502              | 435              | 9,7                          |
| Total         |          | 68                           | 7,689                           | 890                                                         | 2,338                        | 448                           | 44.                           | 365                           | 86                            | 11                         | 47                | 6       | 31      | 71               | 76      | 3       | 95                                           | 12,263 | 12,101             | 1,185            | 9,8                          |
| T1 South Side | 1-2/2-1  | 52                           | 4,562                           | 617                                                         | 1,671                        | 300                           | 22                            | 63                            | 13                            | 1                          | 8                 | 1       | 8       | 15               | 17      | 2       | 13                                           | 7,360  | 7,296              | 446              | 6.1                          |
|               | 2-3/3-2  | 15                           | 1,087                           | 180                                                         | 436                          | 103                           | 31                            | 53                            | 32                            | 12                         | 10                | 8       | 4       | 16               | 12      | 1       | 26                                           | 2,023  | 1,983              | 280              | 14.1                         |
| Total         | _        | 67                           | 5,649                           | 797                                                         | 2,107                        | 402                           | 53                            | 116                           | 45                            | 13                         | 18                | 9       | 12      | 30               | 29      | 3       |                                              | 9,383  | 9,278              | 726              | 7.8                          |
| T1 Average    | 1-2/2-1/ | 67                           | 6,669                           | 843                                                         | 2,222                        | 425                           | 48                            | 240                           | 66                            | 12                         | 32                | 7       | 21      | 50               | 52      | 3       | 67                                           | 10,823 | 10,689             | 955              | 8,9                          |
|               | 2-3/3-2  |                              |                                 |                                                             |                              |                               |                               |                               |                               |                            |                   |         |         |                  |         |         |                                              |        |                    |                  |                              |
| Total         |          | 67                           | 6,669                           | 843                                                         | 2,222                        | 425                           | 48                            | 240                           | 66                            | 12                         | 32                | 7       | 21      | 50               | 52      | 3       | 67                                           | 10,823 | 10,689             | 955              | 8.9                          |
| %             |          |                              | 62.4                            | 7,9                                                         | 20,8                         | 4.0                           | 0.4                           | 2.2                           | 0.6                           | 0,1                        | 0,3               | 0.1     | 0.2     | 0.5              | 0.5     | 0,0     | · · · · · · · · · · · · · · · · · · ·        |        |                    |                  |                              |
| M10           | 1-3/3-1  | 16                           | 3,127                           | 273                                                         | 667                          | 149                           | 22                            | 147                           | 28                            | 2                          | 18                | 3       | 10      | 30               | 28      | 2       | 30                                           | 4,547  | 4,502              | 435              | 9,7                          |
|               | 2-3/3-2  | 15                           | 1,087                           | 180                                                         | 436                          | 103                           | 31                            | 104                           | 42                            | 14                         | 20                | 9       | 8       | 24               | 22      | 1       | 66                                           | 2,159  | 2,079              | 376              | 18,1                         |
| Total         |          | 31                           | 4,214                           | 453                                                         | 1,102                        | 251                           | 52                            | 250                           | 70                            | 16                         | 38                | 12      | 18      | 54               | 49      | 3       | 95                                           | 6,706  | 6,580              | 811              | 12,3                         |
| %             |          |                              | 64.0                            | 6.9                                                         | 16.7                         | 3.8                           | 0.8                           | 3.8                           | 1.1                           | 0,2                        | 0,6               | 0,2     | 0,3     | 0,8              | 0.7     | 0.0     |                                              |        |                    |                  |                              |
| Border        | 1-2/2-1  | 10                           | 762                             | 195                                                         | 216                          | 73                            | 8                             | 42                            | 23                            | 6                          | 19                | 2       | 22      | 30               | 33      | 1       | 41                                           | 1,477  | 1,428              | 255              | 17.8                         |
| Total         |          | 10                           | 762                             | 195                                                         | 216                          | 73                            | 8                             | 42                            | 23                            | 6                          | 19                | 2       | 22      | 30               | 33      | 1       | 41                                           | 1,477  | 1,428              | 255              | 17.8                         |
| %             |          |                              | 53.3                            | 13.6                                                        | 15.1                         | 5,1                           | 0.5                           | 2,9                           | 1.6                           | 0.4                        | 1.3               | 0_1     | 1.5     | 2,1              | 2.3     | 0.0     |                                              |        | 1                  |                  |                              |

## Trafic counting Survey Spot



Appendix 5-5. Trchnical Documentation (Results of the Study on the Drainage Structures)

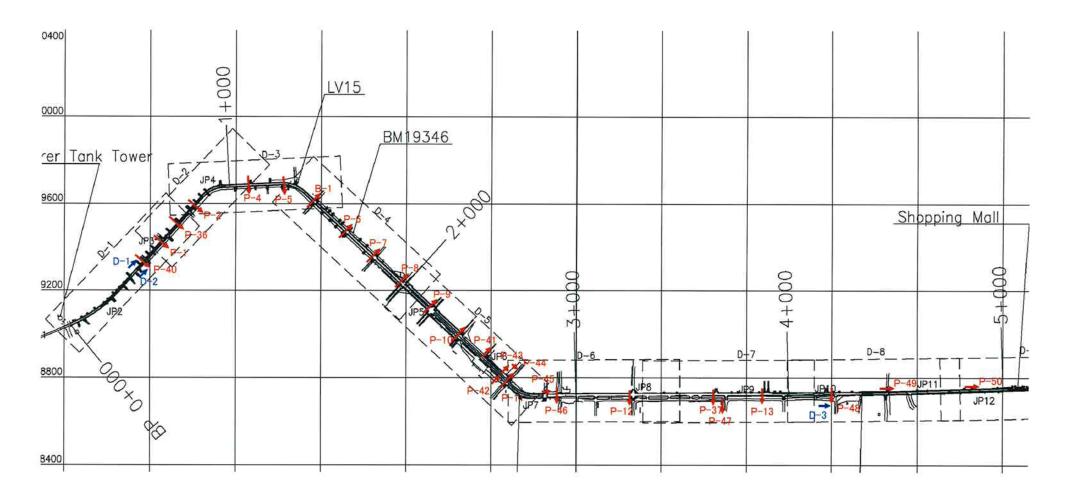



Figure of Plan of Drainage Facilites

## Account of drainage facilities (Check of discharge)

| No.   | Location                 | Catalanata a   | Di                  | ischarge (          | Q)                           |                            | Coefficien       |                                                                                                                | Gradient<br>PH | 1                | Area                        | Hydraulic<br>mean | Discharge<br>velocity | Discharge<br>capacity     |            |         |
|-------|--------------------------|----------------|---------------------|---------------------|------------------------------|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------|----------------|------------------|-----------------------------|-------------------|-----------------------|---------------------------|------------|---------|
| INU.  | Location                 | Catchment area | (m <sup>3</sup> /s) | (m <sup>3</sup> /s) | Total<br>(m <sup>3</sup> /s) | Туре                       | roughness<br>(n) |                                                                                                                | H2<br>(m)      | Slope (I)<br>(%) | A<br>A<br>(m <sup>2</sup> ) | depth<br>R (m)    | V<br>(m⁄s)            | Qc<br>(m <sup>3</sup> /s) | Evaluation | Remarks |
| D-    | 1 0+450 Left             | A-I            |                     |                     | 0.037                        | U Drain 300×300            | 0.01             | and a second |                | 4.000            | 0.090                       | 0.900             | 12.429                | 1.119                     | O.K        |         |
|       | 2 0+450 Left             | A-2            |                     |                     | 0.093                        | U Drain 300?300            | 0.01             |                                                                                                                |                | 4.000            | 0.090                       | 0.900             | 12.429                | 1.119                     | O.K        |         |
| P- 4  | 0 0+450 Cross            | A-1            |                     |                     | 0.043                        | Pipe Φ 600                 | 0.01             |                                                                                                                |                | 2.000            | 0.283                       | 0.150             | 2.662                 | 0.753                     | O.K        |         |
|       | 1 0+580 Cross            | A-3            |                     |                     | 0.014                        | Existing Pipe $\Phi$ 350   | 0.01             |                                                                                                                |                | 2.000            | 0.096                       | 0.087             | 1.851                 | 0.133                     | O.K        |         |
| 3     | 6 0+645 Cross            | A-4            |                     |                     | 0.007                        | Existing Pipe $\Phi$ 350   | 0.01             |                                                                                                                |                | 2.000            | 0.096                       | 0.087             | 1.851                 | 0.178                     | O.K        |         |
|       | 2 0+805 Cross            | A-5            |                     | )                   | 0.018                        | Existing Pipe $\Phi$ 300   | 0.01             |                                                                                                                |                | 2.000            | 0.096                       | 0.087             | 1.851                 | 0.178                     | O.K        |         |
|       | 4 1+085 Cross            | A-6            |                     |                     | 0.012                        | Existing Pipe $\Phi$ 300   | 0.01             | 5                                                                                                              |                | 2.000            | 0.096                       | 0.087             | 1.851                 | 0.178                     | O.K        |         |
|       | 5 1+245 Cross            | A-7            |                     |                     | 0.018                        | Existing Pipe $\Phi$ 300   | 0.01             |                                                                                                                |                | 2.000            | 0.096                       | 0.087             | 1.851                 | 0.178                     | O.K        |         |
|       | 1 1+420 Cross            | A-8, C-1~C-4   | 0.360               | 5.447               | 5.807                        | Existing Box 1m×1m         | 0.01             | 5                                                                                                              |                | 0.500            | 1.000                       | 3.000             | 9.806                 | 9.806                     | O.K        |         |
|       | 6 1+625 Cross            | A-9,C-5        | 0.019               | 0.396               | 0.415                        | Existing Pipe $\Phi$ 600   | 0.01             | 5                                                                                                              |                | 2.000            | 0.283                       | 0.150             | 2.662                 | 0.753                     | O.K        |         |
|       | 7 1+805 Cross            | A-10,C-6       | 0.017               | 0.693               | 0.710                        | Existing Pipe $\Phi$ 600   | 0.01             | 5                                                                                                              |                | 2.000            | 0.283                       | 0.150             | 2.662                 | 0.753                     | O.K        |         |
|       | 8 Designed by SEED Proje |                |                     |                     |                              |                            |                  |                                                                                                                |                |                  |                             |                   | Brood                 | 01100                     | Unt        |         |
| -     | 9 2+160 Cross            | A-12,C-8       | 0.017               | 1.119               |                              | Pipe $\Phi$ 900            | 0.01             | 5                                                                                                              |                | 2.000            | 0.636                       | 0.235             | 3.590                 | 2.283                     | O.K        |         |
| 1(    |                          | A-13,C-9       | 0.029               | 1.278               | 1.307                        | Pipe $\Phi$ 900            | 0.01             | 5                                                                                                              |                | 2.000            | 0.636                       | 0.235             | 3.590                 | 2.283                     | O.K        |         |
| 41    |                          | A-14           |                     |                     | 0.024                        | Pipe $\Phi$ 600            | 0.01             | 5                                                                                                              |                | 2.000            | 0.283                       | 0.150             | 2.662                 | 0.753                     | O.K        |         |
| 42    |                          | A-15           |                     |                     | 0.063                        | Pipe $\Phi$ 600            | 0.01             | 5                                                                                                              |                | 2.000            | 0.283                       | 0.150             | 2.662                 | 0.753                     | O.K        |         |
| 43    |                          | A-15,16        |                     |                     | 0.089                        | Pipe $\Phi$ 600            | 0.01             | 5                                                                                                              |                | 2.000            | 0.283                       | 0.150             | 2.662                 | 0.753                     | O.K        |         |
| 44    |                          | A-15,16,17     |                     |                     | 0.121                        | PipeΦ600                   | 0.01             | 5                                                                                                              |                | 2.000            | 0.283                       | 0.150             | 2.662                 | 0.753                     | O.K        |         |
| 11    |                          | C-10           |                     |                     | 1.584                        | Renewed Pipe $\Phi$ 1000   | 0.01             | 5                                                                                                              |                | 2.000            | 0.785                       | 0.250             | 3.742                 | 2.937                     | O.K        |         |
| 48    |                          | C-18           |                     |                     | 0.030                        | Renewed Pipe $\Phi$ 600    | 0.01             | 5                                                                                                              |                | 4.400            | 0.283                       | 0.150             | 3.948                 | 1.117                     | O.K        |         |
| 46    |                          | C-18,19        |                     |                     | 0.042                        | Pipe $\Phi600$             | 0.01             | 5                                                                                                              |                | 0.500            | 0.283                       | 0.150             | 1.331                 | 0.377                     | O.K        |         |
| 12    |                          | C-20           |                     |                     | 0.053                        | Existing Pipe $\Phi$ 600   | 0.01             | 5                                                                                                              |                | 0.500            | 0.283                       | 0.150             | 1.331                 | 0.377                     | O.K        |         |
| 37    |                          | C-21           |                     |                     | 0.063                        | Existing Pipe $\Phi$ 600   | 0.01             | 5                                                                                                              |                | 0.500            | 0.283                       | 0.150             | 1.331                 | 0.377                     | O.K        |         |
| 13    |                          | C-22           |                     |                     | 0.037                        | Existing Pipe $\Phi$ 600   | 0.013            | 5                                                                                                              |                | 0.500            | 0.283                       | 0.150             | 1.331                 | 0.377                     | O.K        |         |
| 48    |                          | C-23           |                     |                     | 0.051                        | Pipe $\Phi$ 600            | 0.01             | 5                                                                                                              |                | 0.500            | 0.283                       | 0.150             | 1.331                 | 0.377                     | O.K        |         |
| 47    |                          | C-24,25        |                     |                     | 0.151                        | Renewed Pipe $\Phi$ 600    | 0.01             |                                                                                                                |                | 0.500            | 0.283                       | 0.150             | 1.331                 | 0.377                     | O.K        |         |
| D- 3  |                          | C-26,27        |                     |                     | 0.181                        | Masonry Drain 1020×600×700 | 0.03             | 3                                                                                                              |                | 0.500            | 0.567                       | 0.275             | 0.997                 | 0.565                     | O.K        |         |
| P- 49 |                          | C-28           |                     |                     | 0.040                        | Renewed Pipe $\Phi$ 900    | 0.015            | 5                                                                                                              |                | 0.500            | 0.636                       | 0.235             | 1.795                 | 1.142                     | O.K        |         |
| 50    | 0 4+850 Left             | C-28,29        |                     |                     | 0.078                        | Renewed Pipe $\Phi$ 900    | 0.01             | 5                                                                                                              |                | 0.500            | 0.636                       | 0.235             | 1.795                 | 1.142                     | O.K        |         |
|       |                          |                |                     |                     |                              |                            |                  |                                                                                                                |                |                  |                             |                   |                       |                           |            |         |
|       |                          |                |                     |                     |                              |                            |                  |                                                                                                                |                |                  |                             |                   |                       |                           |            |         |
|       |                          | 4              |                     |                     |                              | Discharge Capaci           | ty               |                                                                                                                |                |                  |                             |                   |                       |                           |            |         |
|       |                          |                |                     |                     |                              |                            |                  |                                                                                                                |                |                  |                             | A                 | R                     |                           |            |         |
|       |                          |                |                     |                     |                              | Manning's form             |                  |                                                                                                                |                |                  | $\Phi$ 300                  | 0.075             | 0.071                 |                           |            |         |
|       |                          |                |                     |                     |                              | $V=1/n \times R^{2/3}$     | $< I^{1/2}$      |                                                                                                                |                |                  | $\Phi$ 350                  | 0.096             | 0.087                 |                           |            |         |
|       |                          |                |                     |                     |                              | V L/II/XIX /               | ×1               |                                                                                                                |                |                  | $\Phi 600$                  |                   | 0.150                 |                           |            |         |
|       |                          |                |                     |                     |                              |                            |                  |                                                                                                                |                |                  | $\Phi$ 900                  | 0.636             | 0.235                 |                           |            |         |
|       |                          |                |                     |                     |                              |                            | n :              | Coeffici                                                                                                       | ent of rou     | Ighness          | Φ1000                       | 0.785             | 0.250                 |                           |            |         |
|       |                          |                |                     |                     |                              |                            |                  |                                                                                                                | ic mean c      | lepth            | $\Phi$ 1200                 | 1.131             | 0.300                 |                           |            |         |
|       |                          |                |                     |                     |                              |                            | 1 :              | Slope                                                                                                          |                |                  |                             |                   |                       |                           |            |         |
|       |                          |                |                     |                     |                              |                            |                  |                                                                                                                |                |                  |                             |                   |                       |                           |            |         |
|       |                          |                |                     |                     |                              | $Qc=A \times V$            |                  |                                                                                                                |                |                  |                             |                   |                       |                           |            |         |
|       |                          |                |                     |                     |                              | QU 11/11                   |                  |                                                                                                                |                |                  |                             |                   |                       |                           |            |         |
|       |                          |                |                     |                     |                              |                            |                  |                                                                                                                |                |                  |                             |                   |                       |                           |            |         |
|       |                          |                |                     |                     |                              |                            |                  |                                                                                                                |                |                  |                             |                   |                       |                           |            |         |
|       |                          |                |                     |                     |                              |                            |                  |                                                                                                                |                |                  |                             |                   |                       |                           |            |         |

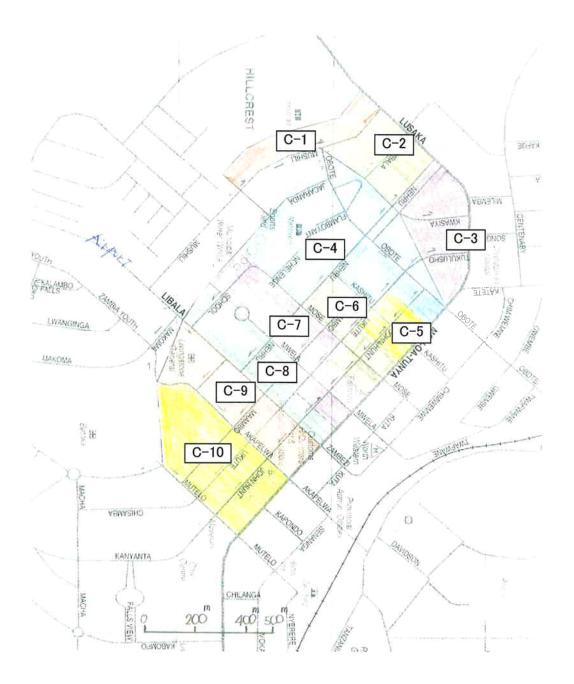



Figure of Abutting Areas

| Area<br>(m <sup>3</sup> )<br>65,000<br>73,000<br>104,000 | Discharge<br>Coefficient<br>0.5<br>0.5<br>0.5     | Rainfall Intensity<br>(mm/hr)<br>61.8<br>61.8                                                                                             | Discharge<br>(m <sup>3</sup> /s)<br>0.558                            | Rainfall Intensity<br>(mm/hr)<br>71.3                                                         | Discharge<br>(m <sup>3</sup> /s)<br>0.644                                                                                                                                                                                                                                                                                                         | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 73,000                                                   | 0.5                                               |                                                                                                                                           |                                                                      |                                                                                               | 0.644                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                          |                                                   | 61.8                                                                                                                                      | 0.607                                                                |                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 104,000                                                  | 0.5                                               |                                                                                                                                           | 0.627                                                                | 71.3                                                                                          | 0.723                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                          | 0.0                                               | 61.8                                                                                                                                      | 0.893                                                                | 71.3                                                                                          | 1.030                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 308,000                                                  | 0.5                                               | 61.8                                                                                                                                      | 2.644                                                                | 71.3                                                                                          | 3.050                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40,000                                                   | 0.5                                               | 61.8                                                                                                                                      | 0.343                                                                | 71.3                                                                                          | 0.396                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70,000                                                   | 0.5                                               | 61.8                                                                                                                                      | 0.601                                                                | 71.3                                                                                          | 0.693                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 135,000                                                  | 0.5                                               | 61.8                                                                                                                                      | 1.159                                                                | 71.3                                                                                          | 1.337                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 113,000                                                  | 0.5                                               | 61.8                                                                                                                                      | 0.970                                                                | 71.3                                                                                          | 1.119                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 129,000                                                  | 0.5                                               | 61.8                                                                                                                                      | 1.107                                                                | 71.3                                                                                          | 1.277                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 160,000                                                  | 0.5                                               | 61.8                                                                                                                                      | 1.373                                                                | 71.3                                                                                          | 1.584                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                          | 40,000<br>70,000<br>135,000<br>113,000<br>129,000 | 40,000         0.5           70,000         0.5           135,000         0.5           113,000         0.5           129,000         0.5 | 40,0000.561.870,0000.561.8135,0000.561.8113,0000.561.8129,0000.561.8 | 40,0000.561.80.34370,0000.561.80.601135,0000.561.81.159113,0000.561.80.970129,0000.561.81.107 | 40,000         0.5         61.8         0.343         71.3           70,000         0.5         61.8         0.601         71.3           135,000         0.5         61.8         1.159         71.3           113,000         0.5         61.8         0.970         71.3           129,000         0.5         61.8         1.107         71.3 | 40,000         0.5         61.8         0.343         71.3         0.396           70,000         0.5         61.8         0.601         71.3         0.693           135,000         0.5         61.8         1.159         71.3         1.337           113,000         0.5         61.8         0.970         71.3         1.119           129,000         0.5         61.8         1.107         71.3         1.277 |

## Catchment Areas (Adjacent Areas)

Discharge capacity

Rationali's formula

 $Q=(1/3.6\times10^6)\times C\times\gamma\times a$ 

- C : Discharge Coefficient
  γ : Rainfall Intensity (mm/hr)
  a : Catchment Area

# Catchment Areas (Carriageway)

|    |          |   |   |     |          |   |                  |               |                |                           |                          | Ostalassat                       |                                  | Discharge of                     | f Open Drain                     | Discharge | of Culvert |  |
|----|----------|---|---|-----|----------|---|------------------|---------------|----------------|---------------------------|--------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------|------------|--|
|    | Location |   |   |     |          |   |                  | Length<br>(m) | breadth<br>(m) | Catchment<br>Area<br>(m³) | Discharge<br>Coefficient | Rainfall<br>Intensity<br>(mm/hr) | Discharge<br>(m <sup>3</sup> /s) | Rainfall<br>Intensity<br>(mm/hr) | Discharge<br>(m <sup>3</sup> /s) | Remarks   |            |  |
| A- | 1        |   | + | 0   |          |   | +                |               | Left           | 450                       | 6                        | 2,700                            | 0.8                              | 61.8                             | 0.037                            | 71.3      | 0.043      |  |
| A- | 2        | 0 | + | 0   |          | 0 | +                |               | Right          | 450                       | 15                       | 6,750                            | 0.8                              | 61.8                             | 0.093                            | 71.3      | 0.107      |  |
| A- | 3        | 0 | + | 450 | -        | 0 | +                |               | Left           | 130                       | 7                        | 910                              | 0.8                              | 61.8                             | 0.012                            | 71.3      | 0.014      |  |
| A- | 4        | 0 | 1 | 580 | <u> </u> | 0 | - <del>4</del> 4 | 645           | Left           | 65                        | 7                        | 455                              | 0.8                              | 61.8                             | 0.006                            | 71.3      | 0.007      |  |
| A- | 5        | 0 |   | 645 | $\sim$   | 0 | +                |               | Left           | 160                       | 7                        | 1,120                            | 0.8                              | 61.8                             | 0.015                            | 71.3      | 0.018      |  |
| A- | 6        | 0 |   | 980 | $\sim$   | 1 | +                |               | Left           | 105                       | 7                        | 735                              | 0.8                              | 61.8                             | 0.010                            | 71.3      | 0.012      |  |
| A- | 7        |   | + | 85  |          | 1 | +                |               | Left           | 160                       | 7                        | 1,120                            | 0.8                              | 61.8                             | 0.015                            | 71.3      | 0.018      |  |
| A- | 8        | 0 | + | 0   |          | 1 | +                | 420           |                | 1420                      | 16                       | 22,720                           | 0.8                              | 61.8                             | 0.312                            | 71.3      | 0.360      |  |
| A- | 9        | 1 | + | 420 | $\sim$   | 1 | +                | 625           | Right          | 205                       | 6                        | 1,230                            | 0.8                              | 61.8                             | 0.017                            | 71.3      | 0.019      |  |
| A- | 10       | 1 | + | 625 | $\sim$   | 1 | +                | 805           | Right          | 180                       | 6                        | 1,080                            | 0.8                              | 61.8                             | 0.015                            | 71.3      | 0.017      |  |
|    | 11       | 1 | + | 805 | $\sim$   | 1 | +                | 980           | Right          | 175                       | 6                        | 1,050                            | 0.8                              | 61.8                             | 0.014                            | 71.3      | 0.017      |  |
| A- | 12       | 1 | + | 980 | $\sim$   | 2 | +                |               | Right          | 180                       | 6                        | 1,080                            | 0.8                              | 61.8                             | 0.015                            | 71.3      | 0.017      |  |
| A- | 13       | 2 | - | 160 | $\sim$   | 2 | +                | 345           | Right          | 185                       | 10                       | 1,850                            | 0.8                              | 61.8                             | 0.025                            | 71.3      | 0.029      |  |
| A- | 14       | 2 |   | 345 | $\sim$   | 2 | +                | 495           | Right          | 150                       | 10                       | 1,500                            | 0.8                              | 61.8                             | 0.021                            | 71.3      | 0.024      |  |
| A  | 15       | _ | + | 380 | $\sim$   | 2 | +                | 620           |                | Parking                   |                          | 4,000                            | 0.8                              | 61.8                             | 0.055                            | 71.3      | 0.063      |  |
| A- | 16       | 2 | + | 495 | $\sim$   | 2 | +                | 620           | Right          | 125                       | 10                       | 1,250                            | 0.8                              | 61.8                             | 0.017                            | 71.3      | 0.020      |  |
| A- | 17       | 2 |   | 495 | $\sim$   | 2 |                  | 620           | Left           | 125                       | 16                       | 2,000                            | 0.8                              | 61.8                             | 0.027                            | 71.3      | 0.032      |  |
| A- | 18       | 2 | + | 650 | $\sim$   | 2 | +                | 840           | Left           | 190                       | 10                       | 1,900                            | 0.8                              | 61.8                             | 0.026                            | 71.3      | 0.030      |  |
| -  | 19       | 2 | + | 840 | $\sim$   |   | +                | 915           | Left           | 75                        | 10                       | 750                              | 0.8                              | 61.8                             | 0.010                            | 71.3      | 0.012      |  |
| A- | 20       | 2 | + | 915 | $\sim$   | 3 | +                | 250           | Left           | 335                       | 10                       | 3,350                            | 0.8                              | 61.8                             | 0.046                            | 71.3      | 0.053      |  |
| A- | 21       | 3 | + | 250 | $\sim$   | 3 | +                | 645           | Left           | 395                       | 10                       | 3,950                            | 0.8                              | 61.8                             | 0.054                            | 71.3      | 0.063      |  |
| A- | 22       | 3 | + | 645 | $\sim$   | 3 | +                | 880           | Left           | 235                       | 10                       | 2,350                            | 0.8                              | 61.8                             | 0.032                            | 71.3      | 0.037      |  |
| A- | 23       | 3 | + | 880 | $\sim$   | 4 | +                | 205           | Left           | 325                       | 10                       | 3,250                            | 0.8                              | 61.8                             | 0.045                            | 71.3      | 0.051      |  |
| A- | 24       | 3 | + | 280 | $\sim$   | 3 | +                | 690           |                | 410                       | 17                       | 6,970                            | 0.8                              | 61.8                             | 0.096                            | 71.3      | 0.110      |  |
| A  | 25       | 3 | + | 280 | $\sim$   | 3 | +                | 690           |                | 410                       | 20                       | 8,200                            | 0.25                             | 61.8                             | 0.035                            | 71.3      | 0.041      |  |
| A- | 26       | 3 | + | 710 | $\sim$   | 4 | +                | 200           |                | 490                       | 17                       | 8,330                            | 0.8                              | 61.8                             | 0.114                            | 71.3      | 0.132      |  |
| A- | 27       | 3 | + | 710 | $\sim$   | 4 | +                | 200           |                | 490                       | 20                       | 9,800                            | 0.25                             | 61.8                             | 0.042                            | 71.3      | 0.049      |  |
| A  | 28       | 4 | + | 200 | $\sim$   | 4 | +                | 450           | Left           | 250                       | 10                       | 2,500                            | 0.8                              | 61.8                             | 0.034                            | 71.3      | 0.040      |  |
| A- | 29       | 4 |   | 450 |          | 4 |                  | 850           | Left           | 400                       | 6                        | 2,400                            | 0.8                              | 61.8                             | 0.033                            | 71.3      | 0.038      |  |

Τ.