資料 7. その他の資料・情報

Japan International Cooperation Agency (JICA)

THE BASIC DESIGN STUDY ON THE PROJECT FOR IMPROVEMENT OF LIVINGSTONE CITY ROADS IN THE REPUBLIC OF ZAMBIA

6-Dce-2007

Memorandum

Subject: <u>Technical note of Design Value to be used for the Basic Design Study on the Project</u>

The JICA Study Team will propose the following principal standard for the design of captioned project.

	Description	Units	Value
Design Speed		Km/hr	60
No. of Lanes		No.	2 [4]
Carriageway	Width	m	6.1 [6.7,14.0]
Shoulder widt	th	m	2.0
Maximum Gr	adient	%	8
Maximum Su	perelevation	%	6
Fill Slope	Granular soil	Angle	1:1.5~2.0 (depend on soil type)
	Hard Rock	Angle	1:0.5
Cut Slope	Cut Slope Decomposed Rock		1:0.75
	Other than Rock	Angle	1:1.0~1.5 (depend on soil type)
Design Period	1	¥ 15	10 Years

Note: () = Minimum value, [] = Select lane case, and 4 Lane Case

Peter Lubambo

Director

Department of Infrastructure and Support Services

Ministry of Local Government and Housing (MLGH)

T. MASUI

Chief Consultant of JICA Study Team

(Witness)

Erasmus M. Chilundika Acting Director & CEO Road Development Agency

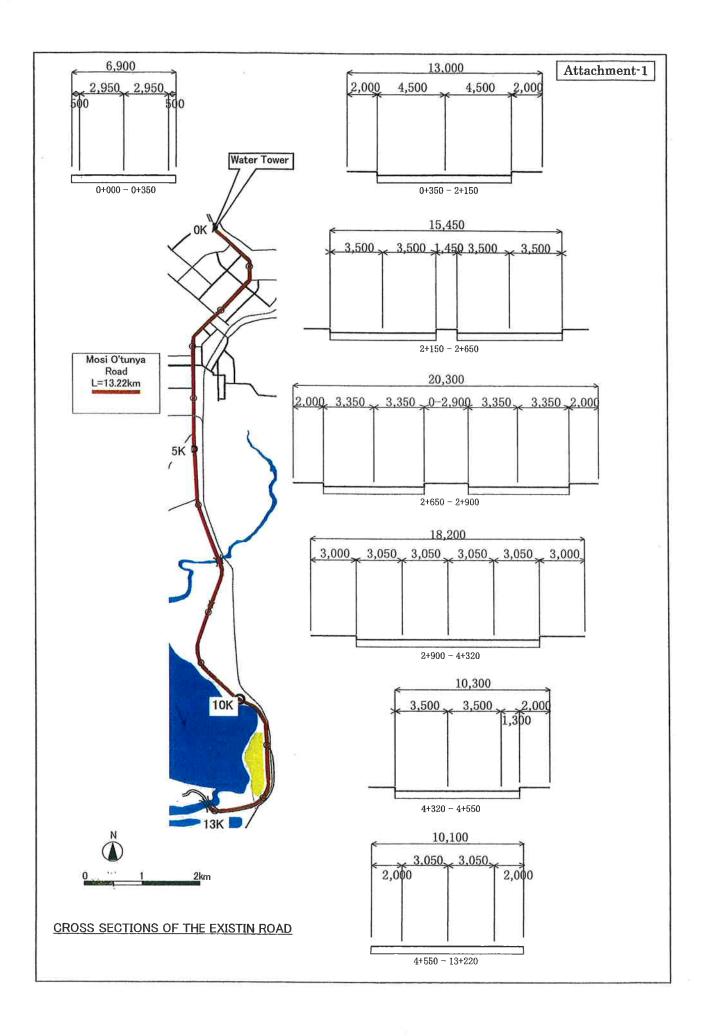
57

THE TECHNICAL NOTES ON THE BASIC DESIGN STUDY(I) ON THE PROJECT FOR THE IMPROVEMENT OF LIVINGSTONE CITY ROADS IN THE REPUBLIC OF ZAMBIA

The following issues were confirmed by Livingstone City Council(LCC), Road Development Agency(RDA) and JICA Study team.

5th December 2007

- 1. The proposed design prepared by JICA Study team after the field survey II in Japan principally follows the existing condition, such as the cross section as shown in the attachment—1, the horizontal curve, the vertical curve, the existing drainage facilities along the road, the existing sidewalk and so on.
- 2. The proposed design above mentioned shall refer to the memorandum of the joint inspection 26th November 2007 as shown in the attachment-2
- 3. The design of the project road shall be carried out in accordance with the SATCC design manuals as follows:
 - ~ SATCC Draft Code of Practice for the Geometric Design of Trunk Roads, Sept 1998 (Reprinted July 2001)
 - SATCC Draft Code of Practice for the Geometric Design of Road Pavements, Sept 1998 (Reprinted July 2001)
 - SATCC Draft Code of Practice for the Rehabilitation of Road Pavement,
 Sept 1998 (Reprinted July 2001)


4. The pavement analysis shall be carried out in accordance with the AASHTO.

SONO TAKUI

KONO TAKUJI Design Engineer(I) JICA Study Team GOREEY SINYWIBULULA

Director of Engineering Service
Livingstone City Council

LAZAROUS NYAWALI
Regional Engineer
Southern Province of
Road Development Agency

MEMORUNDUM FOR JOINT SITE INSPECTION WITH LCC, RDA AND JICA STUDY TEAM

ON THE PROJECT FOR IMPROVEMENT OF LIVINGSTONE CITY ROADS

DATE

: 26th November 2007

TIME

: AM8:30 - PM3:00

PARTICIPANTS:

Mr. Clement Mutale Chisanga

Director of City Planning (LCC)

Mr. Charles Sichzya

Deputy Director of Engineering Service (LCC)

Mr. Steven Mwiya

Technician of HMS(Highway Management System) of RDA,

Southern Province

Mr. KONO Takuji

Road Designer I (JICA Study Team)

Mr. SHIMIZU Nouharu

Road Designer II (JICA Study Team)

Mr. HIROSE Sueo

Natural Condition Surveyor (JICA Study Team)

Mr. ONODA Shin

Construction Planner (JICA Study Team)

1. Purpose of Joint Inspection

The joint site inspection was held on 26th November 2007 for the purpose of discussing the following the points of view each other on site.

- Actual Situation of Existing Drainage and Subjects to be solved
- Confirmation of Typical Project Components
- Relocation of Utilities

2. Transverse Drainage

- 2-1 It was agreed by LCC, RDA (hereinafter referred as "Local Authority") that the existing drainage along the project road should be cleaned before commencement of construction.
- 2-2 It was confirmed that Local Authority shall carry out a field inspection on the existing drainage situation from maintenance point of view per a month. In addition, Local Authority shall prepare information on the cleaning program/routine maintenance of the drainage facilities on contract base in details.
- 2-3 It was requested by Local Authority that the diameter of pipes should be applied to 600mm in minimum, 900mm in standard in case of replacements.
- 2-4 It was confirmed that the existing drainage under good condition would be remained. However, the existing catch-basin along the shoulder should be replaced by new one (size 1.0m*1.0m) taking account into facilitating maintenance.
- 2-5 It was confirmed that the existing catch-basin along the road between Kafubu Road and Dry Port should be replaced with a new one. And the transverse drainage shall be newly constructed around Dry Port.

- 2-6 It was confirmed that the corrugated steel pipe and drum steel pipe in town area (from B1 to P10) should be replaced by concrete pipes. And then the existing transverse drainage under pedestrian shall be replaced by the open drain ditch with cover plate instead of the existing pipe. And the inlet/outlet also shall be replaced with new ones, especially the sediment in the inlet shall be constructed soil sump.
- 2-7 It was confirmed that the open drain ditch should be constructed in the median strip in centre town for catchment basin with removable cover.
- 2-8 The open drain ditch with cover plate concrete made shall be constructed at the junction of access road as the case may be necessary.
- 2-9 A ditch shall be constructed along the road from the outlet of P31 to suitable area close to the site.
- 2-10 It was confirmed that the Local Authority do not dump rubbish/debris/silt producing from the cleaning of the existing/proposed drainage facilities beside them anymore. Products removed and should be dumped in a disposal area prepared by Local Authority

3. Road Structures

3-1 It was confirmed that the beginning of project (Km0+000) was set on the road according to the Tender Drawing Document between Zimba – Livingstone which authorized by the Ministry of Works and Supply.

Accordingly the following data will be prepared by Local Authority at the portion mentioned above;

- Horizontal curve
- Vertical curve and the elevation at the end of the project
- Cross section
- Pavement
- Others if required.
- 3-2 It was agreed by Local Authority to provide both documents of Urban Development Plan including the community development and SEED Project to JICA Study Team.
- 3-3 It was requested by the Local Authority that the proposed drainage direction should not go to the railway in the border area. In addition, the following were requested by NHCC at the site in the design;
 - To utilize the existing drainage conditions of the site
 - To protect the proposed drainage from being damaged by heavy vehicles
 - To improve the Island in the parking space beside the Immigration Office to accommodate Tourists there.
- 3-4 It was agreed by the Local Authority that the access roads for private area shall be paved by chipping.
- 3-5 The width of the proposed pedestrian around border facility section shall be planned from 70cm to 100cm depending on the site condition.

- 3-6 The road structure (mound kerb/flat kerb) from the border facility to the end of the Project shall be maintained as it is actual. However, it should be examined as planed such as the heavy vehicle should not park on the shoulder.
- 3-7 It was agreed by the Local Authority that the existing drainage shall be rehabilitated and land granding along the service road which was requested accordingly by the Local Authority.

4. Existing Bridges

- 4-1 It was agreed by the Local Authority that the methodology of partial repairing works for existing bridges shall be rust proof treatment for corroded reinforcement after removing concrete.
- 4-2 It was requested by Local Authority that the safety facility shall be planned back and forth of existing bridges.
- 4-3 And it was confirmed by both the Local Authority and the consultant, the substructure of the bridge is still functioned enough.
- 4-4 Local Authority shall inform to the consultant about the design information of the bridge, such as the design life, the design load, the constructed year.

5. Relocation of Public Utilities

- 5-1 It was agreed by Local Authority to give the unit price of relocation of public utilities to JICA Study Team.
- 5-2 The Local Authority shall prepare the required information to estimate the quantities of them, such as the location map, layout map and the drawings to show their structure details.

6. Others

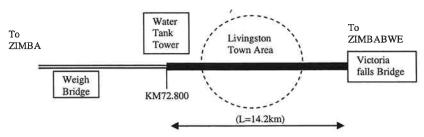
- 6-1 It was agreed by the Local Authority that it shall coordinate with related Authorities to obtain clearance and supporting letter for environmental issues (EPB).
- 6-2 Regarding on the items of 4-5(Additional Requests) in MD signed on 21st November 2007 in Lusaka, Local Authority shall prepare concrete evidence in detail for clearing the maintenance problems on them.
- 6-3 It was agreed by Local Authority that Local Authority shall give the information concerning place of base camp, disposal area, and borrow pit.
- 6-4 Local Authority will prepare plan/program to use the proposed facilities (Parking Area, Cycling Road, and the others) as requested by them under this project.
- 6-5 Local Authority will prepare suggestions to show the location of the proposed bus stop based on their community development plan to the Study team.
- 6-6 Local Authority will prepare a traffic control/management plan on Livingsutone city as a design refference.

Technical Notes

on the Basic Design Study

on the Project for Improvement of Livingstone City Roads in the Republic of Zambia

DATE


: October 10, 2007

VENUE

: Department of Infrastructure & Support Services, MLGH

The following issues were confirmed by the Road Development Agency (RDA), Ministry of Local Government and Housing (MLGH), Livingstone City Council (LCC) and JICA Study team.

1. Lusaka Head office of RDA under the Ministry of Works and Supply (MOWS) confirmed that the improvement on the requested section, as shown in the figure below, of T1 (Mosi O'Tunya road) under Japan Grand Aide is based on the request (Overlay) from LCC through MLGH submitted in July of 2006.

The requested section for the improvement

Note: KM72.8000 of T1 starting from Zimba to Livingston financed under 9^{th} EU Fund

- 2. Accordingly, the existing weigh bridge was excluded from the improvement section above as the EU will fund works from Zimba to Water tank tower in Livingstone.
- 3. MLGH confirmed the request prepared by LCC in July of 2006 as shown in the attached Figure-1.

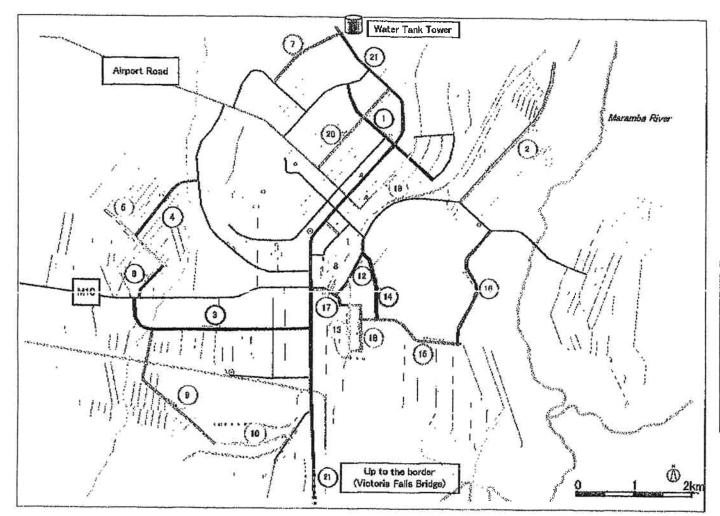
Masui Tetsumi

Chief Consultant

JICA Study Team

Director

Peter/Lubambo


Department of Infrastructure and Support Services

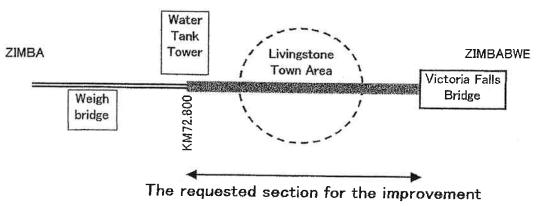
Ministry of Local Government and Housing

Daniel Mulonga

Acting Manager-Planning & Design

Road Development Agency

Road	Road Name	Length	Width
No.		of	of
	1	Road	Road
		(km)	(m)
1	Kapondo Street	0,3	7
2	Kaunda Road	1.7	7
3	Kafubu Road	2	7
4	Lenda Road	0.9	6.1
5	Botswana Road	1.1	6,1
6	Chipata Road	0.4	7
7	Nahumba Road	o.a	7
8	Mikambo Road	0.3	6,1
9	Sambono Road	1,5	7
10	Balewa Road	0.9	7
11	Obate Avanua	1,3	7
12	Tanzaria Road	67	6.1
13	Nyansa Road	0.8	8.1
14	Chipembi Road	ñ7	6.1
iō	Siambelele Road	£.4	7
16	Linda Road	1.3	7
17	Nakatindi Road	0,6	7
18	Ngoma Road	0.5	8,1
19	Chimwemwe Way	1,1	8,1
20	Nelvu Way	1.1	6.1×2
21	Mosi O'tunya Road	14.2	7.0-14.0
			2 lane
			to 4 lane
	Total of Road Length	33,5	



THE TECHNICAL NOTES ON THE BASIC DESIGN STUDY(I) ON THE PROJECT FOR THE IMPROVEMENT OF LIVINGSTONE CITY ROADS IN REPUBLIC OF ZAMBIA

The following issues were confirmed by Road Development Agency(RDA), Livingstone City Council(LCC) and JICA Study team.

12th October, 2007

 Southern province regional office of RDA confirmed that the improvement on the requested section, as shown in the figure below, of T1(Mosi O'Tunya road) under Japan Grand Aid is based on the request (Overlay) from LCC through Ministry of Local Government and Housing (MLGH) submitted in July of 2006

Note:KM72.800 taking from end point of the rehabilitation of Trunk road T1 Zimba to Livingstone financed under the 9th EU Fund.

- 2. Accordingly, the existing weighbridge was excluded from the improvement section explained above.
- 3. LCC confirmed the request prepared by LCC in July of 2006 as shown in the attached Figure-1.

KONO TAKUJI

Road Design Engineer (I)
JICA Study Team

CHARLES SICHIZYA

Depty Director of Engineering Service Livingstone City Council

MUBUYAETA KAPINDA

Regional Engineer Southern Province of Road Development Agency

Road	Road Name	Length	Width
No.		of	of
		Road	Road
		(km)	(m)
1	Kapondo Street	0.18	7
2	Kaunda Road	1,81	7
3	Kafubu Road	2.07	7
4	Lenda Road	0.85	6,1
5	Botswana Road	0.91	6.1
6	Chipata Road	0.44	7
7	Nahumba Road	0.88	7
8	Mikambo Road	0.35	6. 1
9	Sambono Road	1.52	77
10	Balewa Road	0.78	7
11	Obote Avenue	1,32	7
12	Tanzania Road	0.70	6.1
13	Nyansa Road	0.79	6.1
14	Chipembi Road	0.70	6.1
15	Siambelele Road	1,20	7
16	Linda Road	1.36	7
17	Nakatindi Road	0.45	7
1.8	Ngoma Road	0.68	6.1
19	Chimwemwe Way	0,98	6.1
20	Nčimu Way	1.13	6.1x2
21	Mosi O'tunya Road	13.22	7.0-14.0
	Total of Road Length	32,32	

Figure-1 Requested Roads

表行行

Que l'

TIONAL HERITAGE CONSERVATION COMMISSION

SOUTH-WEST REGION Chishimba Falls Road P .O. Box 60124 Tel: 260-03-323662 Fa

Tel: 260-03-323662, Fax: 03-260-323653 E-mail: nhccsowe@zamnet.zm

Livingstone -Zambia

REPUBLIC OF FAMILY SWINGSTONF CITY COUNCIL OFFICE OF THAT SHERETES

ROOK YOU B

TOWN PLANNING

Ref: NHCC/CONF/501/01/3

6th November, 2007

The Town Clerk Livingstone City Council P.O. BOX 60029 LIVINGSTONE

ATTN: DIRECTOR CITY PLANNING

Dear Sir

RE: REHABILITATION OF MOSI-OA-TUNYA ROAD

Reference is made to your letter dated 20th October 2007 on the above subject wherein you were seeking guidance on how far the walk way should go and the width it should have.

Firstly, we would like to emphasis the fact that the area in question is indeed limited in size and is in the World Heritage Site and any significant excavation would result in the loss of wilderness value. Secondly, on the limited section is the last viewing point which is popular to foreign tourists.

In this regard and as discussed on the phone with you, we suggest that the walkway can go as far as the bridge at the width of 1.3 metres, but we advise that the envisaged excavation work should not reach the boundary wire fence of the National Monument.

Considering that some portion of earth will be scrapped away, we request through your office that the contractor can consider putting a reinforced fence to secure the National Monument boundary after walkway and drainage have been done.

We hope our suggestion will be valuable in your project design.

Yours Sincerely

NATIONAL HERITAGE CONSERVATION COMMISSION

MUYUMBWA NDIYOI ACTING REGIONAL DIRECTOR For/EXECUTIVE DIRECTOR

Cc:

Acting Planner

Cc:

Site Manager - VFWHS

Livingstone City Council

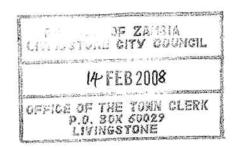
OFFICE OF THE TOWN CLERK

P.O BOX 60029

Telephone: 323847/323790

Fax: 260-3-322149
Felex: LCC ZA 24032

Town Clerk's office Civic Centre Livingstone Zambia


(立木の伐採許可19一)

14th February 2008

Construction Project Consultants Inc YSK Bldg 3-23-1 Takadanobaba Shinjuku-ku Tokyo 169-0075 J A P A N

Attention: Mr Masui

Dear Sir

RE: IMPROVEMENT OF MUSI -OA-TUNYA ROAD - TREE CUTTING

As a follow up to the site visit we had with yourselves, we agree that the numbers of trees to be removed are as indicated below:-

- 1. Junction of Airport with Musi -Oa -Tunya maximum number of trees to be removed is two (2).
- 2. Junction of M10 (Nakatindi road) with Musi -Oa- Tunya maximum number of trees to be removed is four (4).

Yours faithfully LIVINGSTONE CITY COUNCIL

/ /d KALENGA TOWN CLERK/CHIEF EXECUTIVE

cc Town Clerk

cc Parks Superintendent

cc Director of Engineering Services

CC/ckb..

ALL CORRESPONDENCE TO BE ADDRESSED TO THE TOWN CLERK

NATIONAL HERITAGE CONSERVATION COMMISSION

SOUTH-WEST REGION Chishimba Falls Road P.O. Box 60124 Tel: 260-03-323662, Fax: 03-260-323653 E-mail: nhccswr@zamnet.zm Livingstone -Zambia

(NHCC, 半非水計画人の了解19一)

NHCC/501/01/3

13th December, 2007

The Fown Clerk
Livingstone City Council
P.O. Box 60029,
LIVINGSTONE.

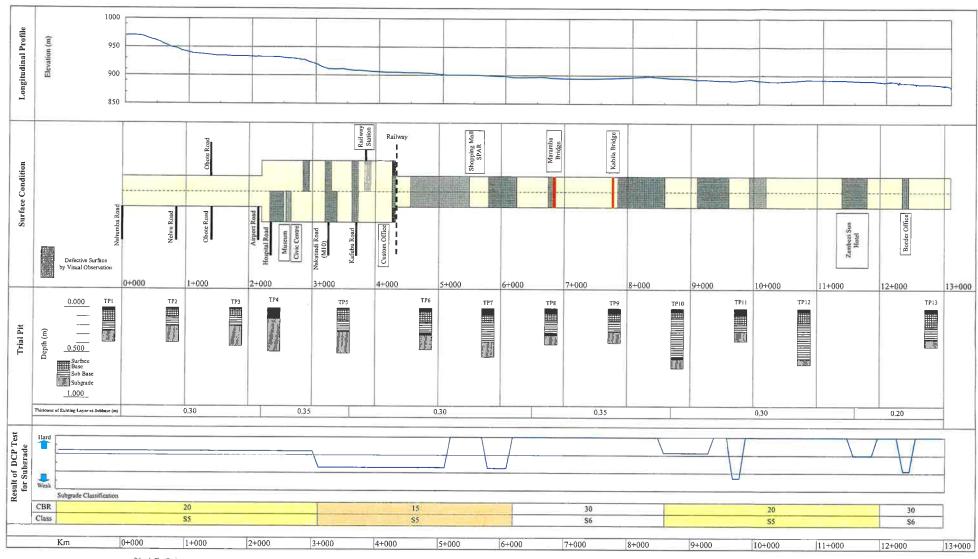
Dear Sir.

REQUEST TO DRAIN STORM WATER THROUGH THE PROJECTED AREA AT THE VICTORIA FALLS BORDER

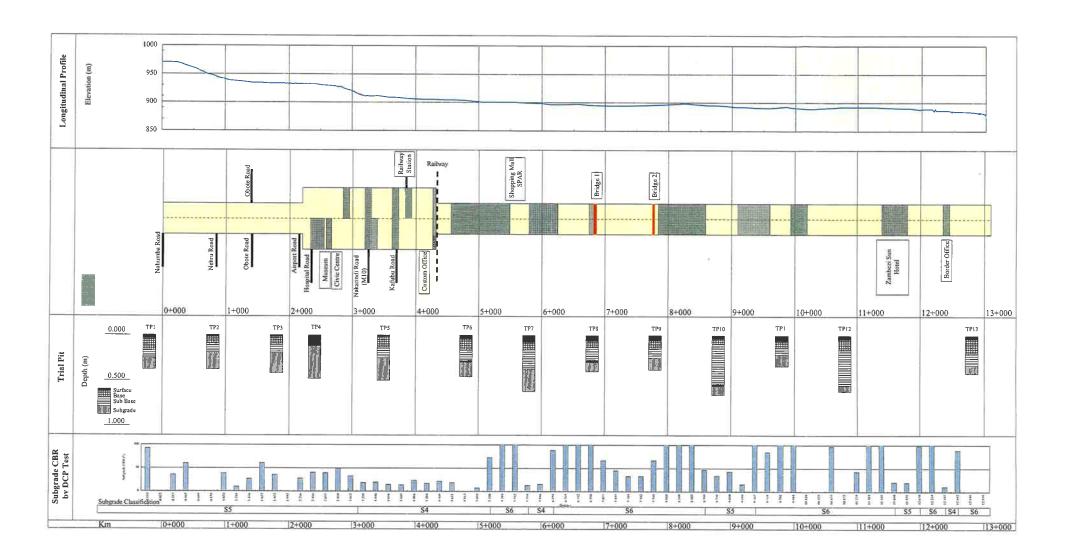
Reference is made to your letter referenced LCC/103/29/07 dated 30th November 2007 on the above subject.

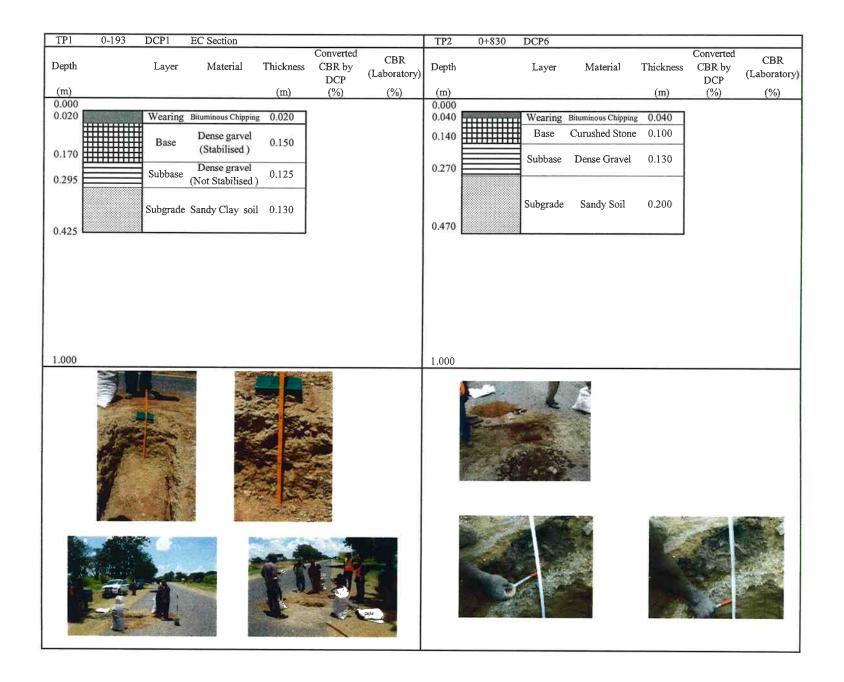
Your request to use the existing drainage and natural waterways is granted. However, we would like to indicate that the project should make every effort to enhance the natural environment rather than detract from it.

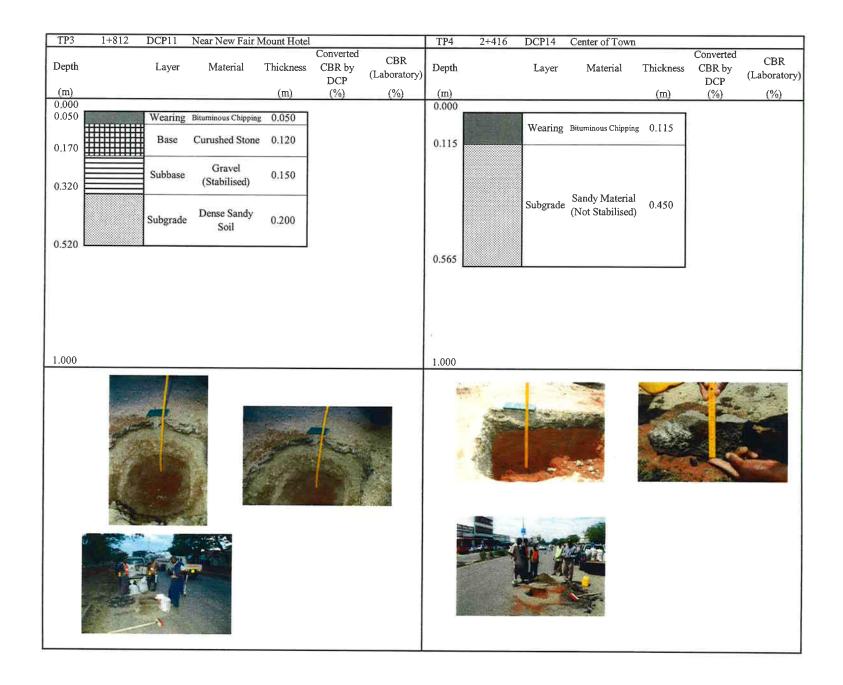
As discussed with your staff and consultants, the storm water should be allowed to spread and not to be concentrated.

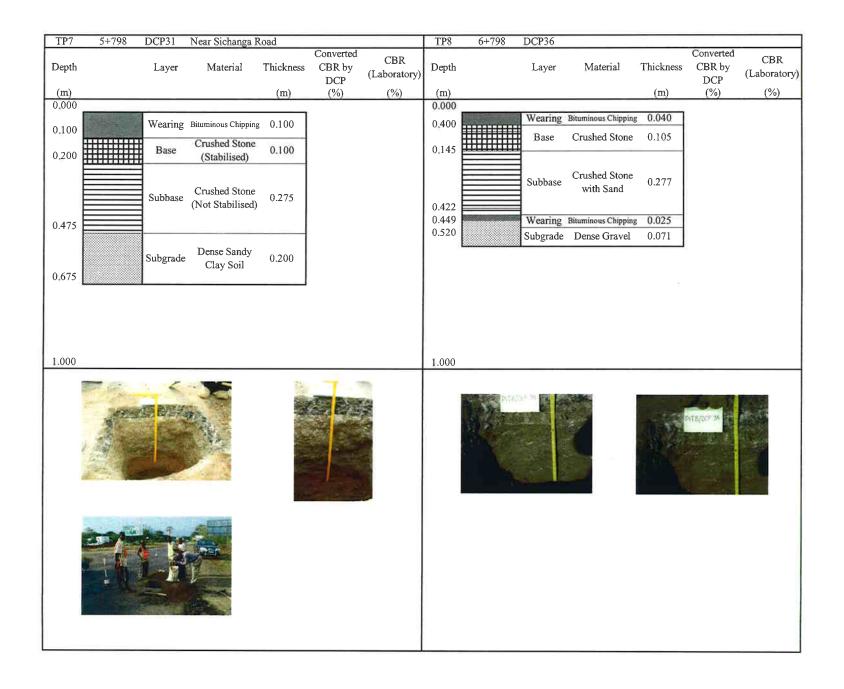

We hope our response will be valuable to the progress of the project.

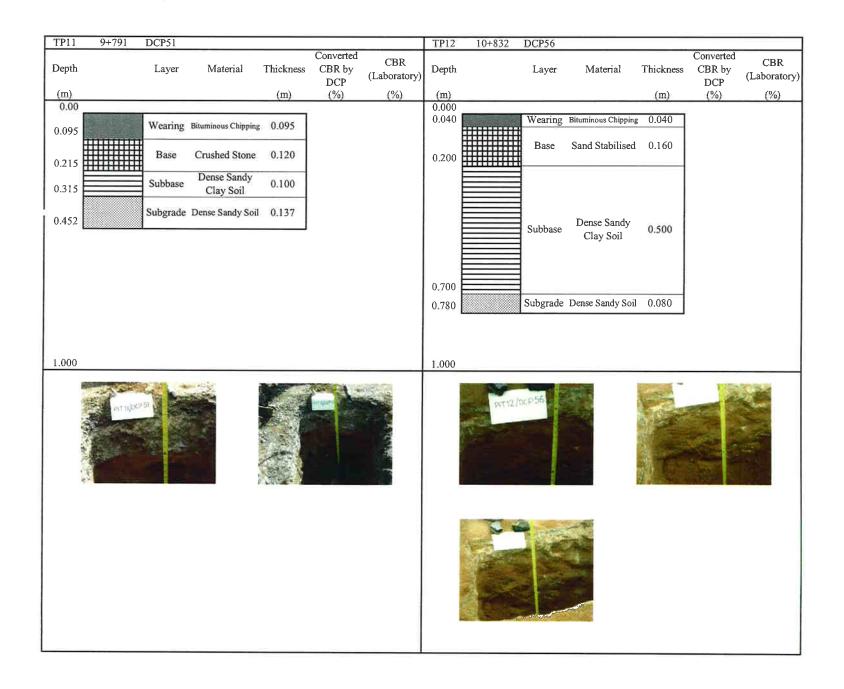
Yours faithfully,

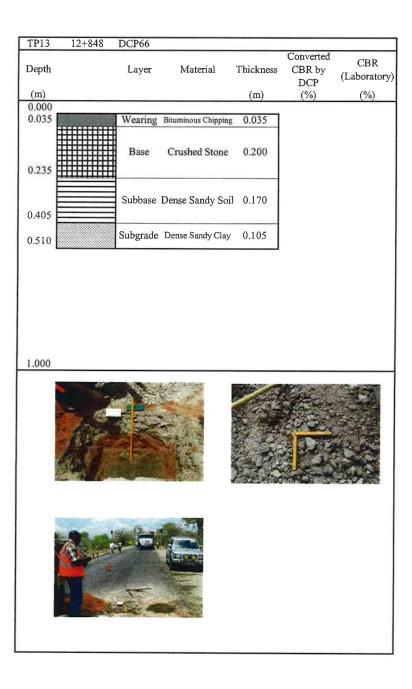

Muyumbwa Ndiyoi Acting Regional Director


Cc. Executive Director
Act- Director Conservation Services
Site Manager - VF

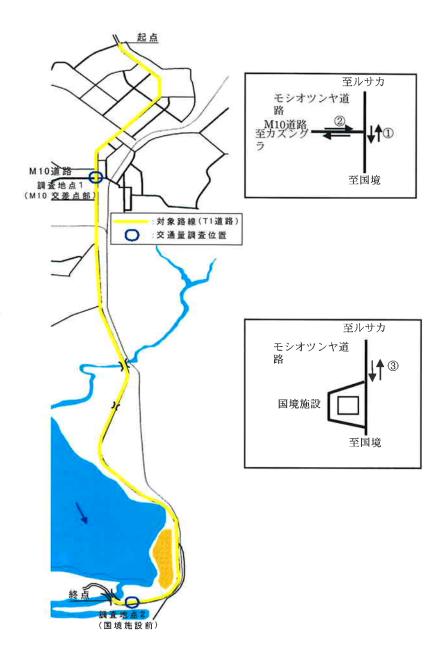


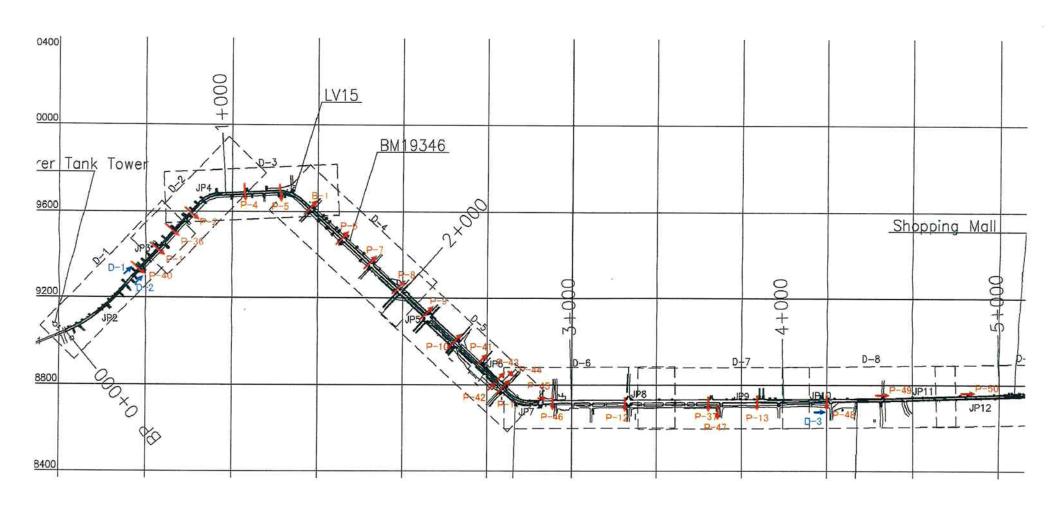

Subgrade Classification S1 | CBR 2 S2 | CBR 3-4 S3 | CBR 5-7 \$4 | CBR 8-14 S5 | CBR 15-29 S6 | CBR >30



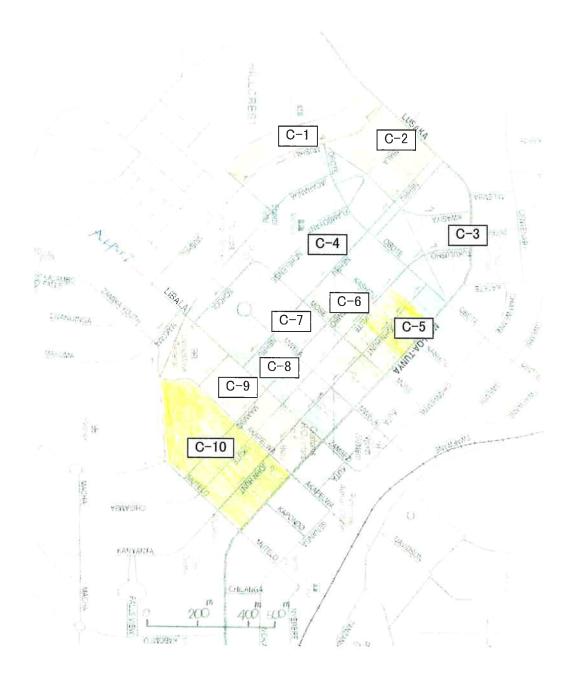


TP5	3+490	DCP19	in front of Ocean	Bascket			TP6	4+803	DCP26	Before SPAR			
Depth	-	Layer	Material	Thickness	Converted CBR by DCP	CBR (Laboratory)	Depth		Layer	Material	Thickness	Converted CBR by DCP	CBR (Laboratory)
(m)				(m)	(%)	(%)	(m)				(m)	(%)	(%)
0.000 0.040			21 7 227 7				0.000						
0.040		Wearing	Bituminous Chipping				0.050		Wearing	Bituminous Chipping	0.050		
0.180		Base	Crushed Stone	0.140			0.200		Base	Crushed Stone	0.150		
0.335		Subbase	Crushed Stone (Not Stabilised)	0.155			0.350		Subbase	Crushed Stone	0.150		
			Dense Sandy				0,375		Wearing	Bituminous Chipping	0.025		
		Subgrade	Clay Soil	0,150			0.575		Subgrade	Dense Gravel	0.200		
0.650													
1.000							1.000						
									1				
								1					de .


TP9	7+794	DCP41					TP10	8+798	DCP46			-	
Depth		Layer	Material	Thickness	Converted	CBR				Material	Thickness	Converted	CBR
Deptil		Layer	мачепан	1 mckness	CBR by DCP	(Laboratory)	Depth		Layer	iviatenai	1 mckness	CBR by DCP	(Laboratory)
(m)				(m)	(%)	(%)	(m)				(m)	(%)	(%)
0.00	100000	Wearing	Bituminous Chipping	0.060			0.000 0.050	10° A 2 CT	Wearing	Bituminous Chipping	0.050		
0.060			Crushed Stone				0.130		Base	Crushed Stone (Stabilised)	0.080		
0.180		Base	(Stabilised)	0.120						(Stabused)			
		Subbase	Dense Sandy	0.140							1		
0.320			Clay Soil								- 1		
		Subgrade	Crushed Stone	0.140					Subbase	Natural Soil	0.550		
0.460											*		
							1						
							0.680		1		- 1		
							0.680		Wearing	Bituminous Chinning	0.010		
							0.820		Subgrade	Crushed Stone	0.130		
							0.820		1				
1.000							1.000						
						The state of the s		[2]	†:0.0%-4	The second second		A STATE	4



Description		Motorcycle and Scooter	Light Motor Vehicles Cars	Micro Bus /Mini Bus Taxis approx. (9- 15 seats)	Light Delivery Vehicle	Small Bus (25-40 seats)	Large Bus (50-70 seats)	Rigid Single Unit Truck	Rigid Single Unit Truck	Single Trailer Truck	Single Trailer	Multi Trailer Truck				Other Transport Bicycles, Cart, etc	Total	Total (Vehicle)	Heavy Vehicle	commercial vehicles ratio	
						2 axles	3 or 4 axles	2 axles	3 or 4 axles	5 axles	6 axles	5 axles	6 axles	7 axles	8 axles	9 axles					(%)
Γ1 North Side	1-2/2-1	52	4,562	617	1,671	300	22	218	58	9	29	3	21	41	48	. 1	66	7,717	7,599	750	9,9
	1-3/3-1	16	3,127	273	667	149	22	147	28	2	18	3	10	30	28	2	30	4,547	4,502	435	9,7
Total		68	7,689	890	2,338	448	44	365	86	11	47	6	31	71	76	3	95	12,263	12,101	1,185	9,8
1 South Side	1-2/2-1	52	4,562	617	1,671	300	22	63	13	1	8	1	8	15	.17	2	13	7,360	7,296	446	6,1
	2-3/3-2	15	1,087	180	436	103	31	53	32	12	10	8	4	16	12	1	26	2,023	1,983	280	14.1
Total		67	5,649	797	2,107	402	53	116	45	13	18	9	12	30	29	3	38	9,383	9,278	726	7,8
Γ1 Average	1-2/2-1/	67	6,669	843	2,222	425	48	240	66	12	32	7	21	50	52	3	67	10,823	10,689	955	8.9
Trivolage	2-3/3-2	- 0,	0,000	040	2,222	720		2,40	- 00	12	32		21	30	52	3	07	10,023	10,009	900	6,5
Total	1	67	6,669	843	2,222	425	48	240	66	12	32	7	21	50	52	3	67	10,823	10,689	955	8.9
%			62,4	7,9	20,8	4,0	0.4	2,2	0.6	0,1	0,3	0.1	0.2	0.5	0.5	0.0					
M10	1-3/3-1	16	3,127	273	667	149	22	147	28	2	18	3	10	30	28	2	30	4,547	4,502	435	9,7
	2-3/3-2	15	1,087	180	436	103	31	104	42	14	20	9	8	24	22	1	66	2,159	2,079	376	18.1
Total		31	4,214	453	1,102	251	52	250	70	16	38	12	18	54	49	3	95	6,706	6,580	811	12,3
%			64.0	6,9	16.7	3.8	0.8	3.8	1.1	0,2	0,6	0.2	0.3	0.8	0.7	0.0					·/
Border	1-2/2-1	10	762	195	216	73	8	42	23	6	19	2	22	30	33	1	41	1,477	1,428	255	17.8
Total		10	762	195	216	73	8	42	23	6	19	2	22	30	33	1	41	1,477	1,428	255	17.8
%		0	53,3	13,6	15.1	5.1	0.5	2.9	1.6	0.4	1.3	0.1	1.5	2.1	2.3	0.0					


資料 7-5 技術資	資料(排水構造物の検言	寸資料)	

排水構造物の計画図

Account of drainage facilities (Check of discharge)

No.	Location	Catchment area	D	scharge (۵)	Туре	Coefficient of		Gradient H	1	Area	Hydraulic mean	Discharge velocity	Discharge capacity	E l	în ı
		Odtomient area	(m³/s)	(m³/s)	Total (m³/s)	туре	roughness (n)	H1 (m)	H2 (m)	Slope (I) (%)	A (m ²)	depth R (m)	V (m/s)	Qc (m³/s)	Evaluation	Remarks
	1 0+450 Left	A-I			0.037	U Drain 300×300	0.015			4.000	0.090	0.900	12,429	1.119	O.K	
	2 0+450 Left	A-2			0.093	U Drain 300?300	0.015			4.000	0.090	0.900	12.429	1.119	O.K	
P- 4		A-1			0.043	Pipe Φ 600	0.015			2.000	0.283	0.150	2.662	0.753	O.K	
_	1 0+580 Cross	A-3			0.014	Existing Pipe Φ 350	0.015			2.000	0.096	0.087	1.851	0.178	O.K	
3		A-4			0.007	Existing Pipe Φ 350	0.015			2.000	0.096	0.087	1.851	0.178	O.K	
	2 0+805 Cross	A-5			0.018	Existing Pipe Φ 300	0.015			2.000	0.096	0.087	1.851	0,178	O.K	
	4 1+085 Cross	A-6			0.012	Existing Pipe Φ 300	0.015			2.000	0.096	0.087	1.851	0.178	O.K	
	5 1+245 Cross	A-7			0.018	Existing Pipe Φ 300	0.015			2.000	0.096	0.087	1.851	0.178	O.K	
	1 1+420 Cross	A-8、C-1∼C-4	0.360	5.447	5.807	Existing Box 1m×1m	0.015			0.500	1.000	3,000	9.806	9.806	O.K	
	5 1+625 Cross	A-9,C-5	0.019	0.396	0.415	Existing Pipe Φ 600	0.015			2.000	0.283	0.150	2.662	0.753	O.K	
	7 1+805 Cross	A-10,C-6	0.017	0.693	0.710	Existing Pipe Φ 600	0.015			2.000	0.283	0.150	2.662	0.753	O.K	
	B Designed by SEED Proje													***************************************	0.71	
	2+160 Cross	A-12,C-8	0,017	1.119	1.136	Ріре Ф 900	0.015			2.000	0.636	0.235	3.590	2,283	O.K	
1(A-13,C-9	0.029	1.278	1.307	Pipe Ф 900	0.015			2.000	0.636	0.235	3.590	2.283	O.K	
4:		A-14			0.024	Pipe Φ 600	0.015			2.000	0.283	0.150	2.662	0.753	O.K	
42		A-15			0.063	Pipe Φ 600	0.015			2.000	0.283	0.150	2.662	0.753	O.K	
43		A-15,16			0.089	Pipe Φ 600	0.015			2.000	0.283	0.150	2.662	0.753	O.K	
44		A-15,16,17			0.121	Pipe Φ 600	0.015			2.000	0.283	0.150	2.662	0.753	O.K	
11		C-10			1.584	Renewed Pipe Φ 1000	0.015			2.000	0.785	0.250	3.742	2.937	O.K	
45		C-18			0.030	Renewed Pipe Φ600	0.015			4.400	0.283	0.150	3.948	1.117	O.K	
46		C-18,19			0.042	Ріре Ф 600	0.015			0.500	0.283	0.150	1.331	0.377	O.K	
12		C-20			0.053	Existing Pipe Φ 600	0.015			0.500	0.283	0.150	1.331	0.377	O.K	
37		C-21			0.063	Existing Pipe Φ 600	0.015			0.500	0.283	0.150	1.331	0.377	O.K	
13		C-22			0.037	Existing Pipe Φ 600	0.015			0.500	0.283	0.150	1.331	0.377	O.K	
48		C-23			0.051	Pipe Φ 600	0.015			0.500	0.283	0.150	1.331	0.377	O.K	
47	The second secon	C-24,25			0.151	Renewed Pipe Φ600	0.015			0.500	0.283	0.150	1.331	0.377	O.K	
D- 3		C-26,27			0.181	Masonry Drain 1020×600×700	0.03			0.500	0.567	0.275	0.997	0.565	O.K	
P- 49		C-28			0.040	Renewed Pipe Φ900	0.015			0.500	0.636	0.235	1.795	1.142	O.K	
50	4+850 Left	C-28,29			0.078	Renewed Pipe Φ 900	0.015			0.500	0.636	0.235	1.795	1.142	O.K	
						Discharge Capaci	ty									
												A	R			
						Manning's forr	nula				Ф300	0.075	0.071			
						$V=1/n\times R^{2/3}$	т1/2				Ф 350	0.096	0.087			
						V=1/n×R /	\1				Φ 600		0.150			
											Φ900	0.636	0.235			
							n :	Coefficie	nt of ro	ighness	Ф1000	0.785	0.250			
									c mean	depth	Φ1200	1.131	0.300			
								Slope								
						0 1 1 1 1										
						$Qc=A\times V$			2							

隣接地流域図

Catchment Areas (Adjacent Areas)

		Catchment	Discharge	Discharge of O	pen Drain	Discharge of	Culvert	
No). 	Area (m³)	Coefficient	Rainfall Intensity (mm/hr)	Discharge (m³/s)	Rainfall Intensity (mm/hr)	Discharge (m³/s)	Remarks
C-	1	65,000	0.5	61.8	0.558	71.3	0.644	
C-	2	73,000	0.5	61.8	0.627	71.3	0.723	
C-	3	104,000	0.5	61.8	0.893	71.3	1.030	
C-	4	308,000	0.5	61.8	2.644	71.3	3.050	
C-	5	40,000	0.5	61.8	0.343	71.3	0.396	
C-	6	70,000	0.5	61.8	0.601	71.3	0.693	
C-	7	135,000	0.5	61.8	1.159	71.3	1.337	
C-	8	113,000	0.5	61.8	0.970	71.3	1.119	
C-	9	129,000	0.5	61.8	1.107	71.3	1.277	
C-	10	160,000	0.5	61.8	1.373	71.3	1.584	

Discharge capacity

Rationali's formula

Q=
$$(1/3.6 \times 10^6) \times C \times \gamma \times a$$

C : Discharge Coefficient
 γ : Rainfall Intensity (mm/hr)
 a : Catchment Area

Catchment Areas (Carriageway)

												0.4.1		Discharge of	Open Drain	Discharge	of Culvert	
				Lo	catio	on				Length (m)	breadth (m)	Catchment Area (m³)	Discharge Coefficient	Rainfall Intensity (mm/hr)	Discharge (m³/s)	Rainfall Intensity (mm/hr)	Discharge (m³/s)	Remarks
A-	1	0	_	0	~	0	+	450	Left	450	6	2,700	0.8	61.8	0.037	71.3	0.043	
Α-	2	0	+	0	_	0	+		Right	450	15	6,750	0.8	61.8	0.093	71.3	0.107	
Α-	3	0	_	450	_	0	-	580	Left	130	7	910	0.8	61.8	0.012	71.3	0.014	
Α-	4		+	580	~	0	- 11		Left	65	.7	455	0.8	61.8	0.006	71.3	0.007	
Α-	5		+	645	~	0	+		Left	160	7	1,120	0.8	61.8	0.015	71.3	0.018	
A-	6	0	±	980	~	1	+		Left	105	7	735	0.8	61.8	0.010	71.3	0.012	
Α-	7	1	+	85	~	1	+		Left	160	7	1,120	0.8	61.8	0.015	71.3	0.018	
Α-	8	0	+	0	~	1		420		1420	16	22,720	0.8	61.8	0.312	71.3	0.360	
A-	9	1	+-	420	~	_	+		Right	205	6	1,230	0.8	61.8	0.017	71.3	0.019	
Α-	10	1	+	625	~	1	+		Right	180	6	1,080	0.8	61.8	0.015	71.3	0.017	
-	11	1	+	805	~	1			Right	175	6	1,050	0.8	61.8	0.014	71.3	0.017	
A-	12	1		980	~	2	_	160	Right	180	6	1,080	8.0	61.8	0.015	71.3	0.017	
A-	13		+	160	\sim	2	+	345	Right	185	10	1,850	8.0	61.8	0.025	71.3	0.029	
A-	14	2	+	345	\sim	2	+	495	Right	150	10	1,500	0.8	61.8	0.021	71.3	0.024	
	15	2	+	380	~	2		620		Parking		4,000	0.8	61.8	0.055	71.3	0.063	
Α-	16	2	+	495	\sim	2		620	Right	125	10	1,250	0.8	61.8	0.017	71.3	0.020	
A-	17	2	+	495	\sim	2	+	620	Left	125	16	2,000	0.8	61.8	0.027	71.3	0.032	
Α-	18	2	+	650	\sim	2	+	840	Left	190	10	1,900	8.0	61.8	0.026	71.3	0.030	
Α-	19	2	±.	840	\sim	_	+	915	Left	75	10	750	0.8	61.8	0.010	71.3	0.012	
Α-	20	2	+	915	\sim	3	+	250	Left	335	10	3,350	8.0	61.8	0.046	71.3	0.053	
A-	21	3	+	250	~	3	+	645	Left	395	10	3,950	0.8	61.8	0.054	71.3	0.063	
Α-	22	3	+	645	\sim	3	+	880	Left	235	10	2,350	0.8	61.8	0.032	71.3	0.037	
Α-	23	3	+	880	\sim	4	+	205	Left	325	10	3,250	8.0	61.8	0.045	71.3	0.051	
Α-	24	3	+	280	\sim	3	+	690		410	17	6,970	0.8	61.8	0.096	71.3	0.110	
Α-	25	3	+	280	\sim	3	+	690		410	20	8,200	0.25	61.8	0.035	71.3	0.041	
Α-	26	3	+	710	~	4	+	200		490	17	8,330	0.8	61.8	0.114	71.3	0.132	
Α-	27	3	+	710	\sim	4	+	200		490	20	9,800	0.25	61.8	0.042	71.3	0.049	
Α-	28	4	+	200	\sim	4	+	450	Left	250	10	2,500	0.8	61.8	0.034	71.3	0.040	
Α-	29	4		450		4		850	Left	400	6	2,400	0.8	61.8	0.033	71.3	0.038	