6.2 Geotechnical Investigation and Construction Material Survey

Geological surveys and investigations were conducted to obtain information on the subsurface geological condition required for the preliminary design of the proposed bridges and roads on the F/S roads. The survey is comprised of:

- i) Geotechnical investigation for bridges
- ii) Road alignment soil survey
- iii) Road construction material investigation.

The objectives of geological surveys were:

- i) To obtain necessary geological data for bridge design
- ii) To obtain data on subgrade strength of study routes for pavement design
- iii) To obtain information for weak foundation countermeasure planning
- iv) To obtain latest information/data on possible borrow pits and quarries as well as physical properties of the materials.

6.2.1 Geological Investigation for Bridges

(1) Bridge Location and Methodology

The survey and investigation works covered 36 bridges consisting of seven bridges with a span of > 40 m, 13 bridges with a span of 20 - 40 m, and 17 bridges with a span of < 20 m. Figure 6.2.1 shows location of these bridges.

Mechanical boring was carried out at abutments for the bridge between 20 m and 40 m in length. An additional boring at river center was carried out for the bridge of more than 40 m in length. Sub surface geological investigation was made by core drilling to identify the type of soil and rock layers, and details of physical and mechanical condition. Core samples were taken at a 1 meter depth interval. The SPT based on ASTM D1586 was conducted with an interval 1.50 meter up to the layer of N > 50 blows or reached to bedrock layer. During SPT operation, the soil samples were taken and kept in plastic sack with sampling data information on it. These N-values were recorded in drilling logs. For rock layers, value of presentation RQD (Rock Quality Destination) for identifying rock strength was observed and recorded in "geological drilling log".

Cone Penetrating Tests (CPT) was carried out for the bridges less than 20 m in length to identify the foundation soil classification, the bearing capacity and friction of each layer. Used appliance is Dutch Cone Penetrometer with the capacity of 2.5 ton.

As to details of the investigation results, Appendix E is referred.

Figure 6.2.1 Location of Bridges

(2) Bridges > 20 m in Length

Table 6.2.1 shows a list of the bridges, of which length is more than 20m, subjected to geological investigation.

No	Bridge ID No	Route	Bridge	Number of	Bridge Name / River
			Length (m)	Bore Hole	Name
1	1-16	Mamminasa Bypass	25	2	Ticcekang River
2	1-19	Mamminasa Bypass	60	2	Pahundukang River
3	1-26	Mamminasa Bypass	25	2	Kaccikang River
4	1-28	Mamminasa Bypass	16	2	Jenemanjalling River
5	1-31	Mamminasa Bypass	154	3	Jeneberang No.1
6	4-1	Abdullah Daeng Sirua	35	2	
7	4-5	Abdullah Daeng Sirua	60	2	Tallo River
8	3-2	Hertasning	20	2	Tallo River
9	2-1	Maros – Middle Ring Road	40	2	
10	2-2	Maros – Middle Ring Road	40	2	
11	2-6	Middle Ring Road,	136	3	Tallo River
		Trans-Sulawesi Mamminasata			
12	2-7	Middle Ring Road	50	2	
13	2-8	Middle Ring Road	50	2	
14	2-9	Middle Ring Road	50	2	
15	2-11	Middle Ring Road Access,	393	3	Jeneberang No.2
		Trans-Sulawesi Mamminasata			
16	2-12	Middle Ring Road Access	35	3	Bayoa River
17	2-14	Middle Ring Road Access	20	2	Barombong River
18	2-18	M.R.R. Access - Takalar	40	3	
19	1-5	Mamminasa Bypass	126	3	Maros

 Table 6.2.1
 List of Bridge for Bore Hole Investigation (L>20m)

(2) Investigation Results for Major Bridges (L>100m)

Four major bridges exceeding 100m in length exist on the F/S roads. Since accurate geological information is essential for bridge planning and design, three (3) boring tests were carried out for each major bridge.

- 1) Bridge Number 1-5, Maros Bridge, on Mamminasa Bypass
 - i) Bore Hole 08 at Left Bank
 - In depth 0 13.0 m, type of material is clay sand, dark brown reddish, soft, plastic and cohesive. Loose at 0 m 5 m.
 - In depth >13.0 m, type of material is limestone, dark gray color, soft to hard and massive at 12.5 m 15.0 m.
 - ii) Bore Hole 09 at River Center (River Bed)
 - In depth 0 7 m, type of material is clay sand, dark brown reddish, soft, plastic and cohesive. Loose at 0 m 5 m.
 - At deepness > 7m, type of material is limestone, dark gray color, soft to hard and massive at 7.0m 10.0 m.
 - iii) Bore Hole 10 at Right Bank
 - In depth 0 13.0 m, type of material is clay sand, dark brown reddish, soft, plastic and cohesive. Loose at 0 m 5 m.
 - In depth >13.0 m, type of material is limestone, dark gray color, soft to hard and massive at 13.0 m 15.0 m.

Figure 6.2.2 shows boring logs for the above three investigations and a geological cross section for the Maros Bridge site.

Figure 6.2.2 Boring Logs and Geological Cross Section for Maros Bridge on Mamminasa Bypass

- 2) Bridge Number 1-31 (Jeneberang Bridge No.1) on Mamminasa Bypass
 - i) Bore Hole 01 at Right Bank
 - In depth 0 1.5 m, represented of top soil, high plasticity, dark brown color, many crop roots, and high consolidation. SPT Value on 1.5 m from ground surface is 12 blows/foot.
 - In depth 1.5 4.0 m, represented of clay silt, brown color, and high plasticity. SPT Value on this layer t is 38 blows/foot.
 - In depth > 4.00 m, represented of a soft to hard soil consist of pebble stone, dark grey color, compact and massive. SPT Value on this layer is 70 blows/foot.
 - ii) Bore Hole 2 at Left Bank
 - In depth 0 1.5 m, represented of top soil, dark brown color, many crop roots, high consolidation. SPT Value on 1.5 m from ground surface is 7 blows/foot.
 - In depth 1.5 6.0 m, represented of clay silt, black color, soft, high plasticity. SPT Value on this layer is 32 blows/foot.
 - In depth > 6.0 m, represented of hard soil of pebble stone, dark grey color, compact and uniform. SPT Value on this layer is 60 blows/foot.
 - iii) Bore Hole 3 at River Center (River Bed)
 - In depth 0 1.5 meters represented of top soil, dark brown color, many crop roots, high consolidation. SPT Value on 1.5 meter from ground surface is 7 blows/foot.
 - In depth 1.5 5.0 m, represented of clay silt, black color, soft, high plasticity. SPT Value on this layer is 25 blows/foot.
 - In depth > 5.0 m, represented of hard soil consist of pebble stone, dark grey color, compact and uniform. SPT Value on this layer is 60 blows/foot.

Figure 6.2.3 shows boring logs for the above three investigations and a geological cross section for the Jeneberang No.1 Bridge site.

Final Report

Figure 6.2.3 Boring Logs and Geological Cross Section For Jeneberang No.1 Bridge on Mamminasa Bypass

- 3) Bridge Number 2-6 (Tallo Bridge) on Trans-Sulawesi Mamminasata Road
 - i) Bore Hole 13 at Left Bank
 - In depth 0 4.0 m, represented of top soil, clay sand, dark brown reddish, soft, plastic, cohesive, and loose. SPT Value 4.0 m from ground surface is 40 blows/foot.
 - In depth 5.7 -10.0 m, represented of clay stone, dark gray, compact, soft to hard and uniform. SPT Value on 6 meter from ground surface is 50 blows/foot.
 - ii) Bore Hole 14 at River Bed
 - In depth 0 3.0 m, represented of top soil and clay sand, dark brown reddish, soft, plastic, cohesive, loose. SPT Value on 3 m from ground surface is 50 blows/foot.
 - In depth > 3.0 m, represented of clay stone, dark gray, compact, soft to hard and uniform.
 SPT Value on 4 m is 50 blows/foot.
 - iii) Bore Hole 15 at Right Bank
 - In depth 0 7.5 m, represented of top soil, clay sand, dark brown reddish, soft, plastic, cohesive, loose. SPT Value on 5.0 m from ground surface is 20 blows/foot.
 - In depth 7.5 -10.0 m, represented of clay stone, dark gray, compact, soft to hard and uniform. SPT Value on 7.5 m is 50 blows/foot.

Figure 6.2.4 shows boring logs for the above three investigations and a geological cross section for the Tallo Bridge site.

Figure 6.2.4 Boring Logs and Geological Cross Section for Tallo Bridge on Trans-Sulawesi Mamminasata Road

- 4) Bridge Number 2-11 (Jeneberang No.2 Bridge) on Trans-Sulawesi Mamminasata Road
 - i) Bore Hole 1 at Right Bank
 - In depth 0 1.5 m, represented of top soil, high plasticity, dark brown color, many crop roots, and high consolidation. SPT Value on 1.5 m from ground surface is 10 blows/foot.
 - In depth 1.5 6.0 m, represented of clay silt, black color, clay, and high plasticity. SPT Value on this layer is 15 blows/foot.
 - In depth 6.0 14.0 m, represented of soft to hard soil consist of Pebble stone, dark grey color, compact and uniform. SPT Value on this layer is 41 blows/foot.
 - In depth 14.0 m 23.5 m, represented of soft to hard soil consist of Pebble stone, grey color, compact and uniform. SPT Value on this layer is 50 blows/foot.
 - In depth >23.5 m, represented of hard, black, compact and uniform. SPT Value on this layer is 60 blows/foot.
 - ii) Bore Hole 2 at River Basin
 - In depth 0 1.5 m, represented of top soil, high plasticity, dark brown color, many crop roots, and high consolidation. SPT Value on 1.5 m from ground surface is 5 blows/foot.
 - In depth 1.5 6.0 m, represented of clay silt, black color, clay, and high plasticity. SPT Value on this layer is 15 blows/foot.
 - In depth 6.0 10.0 m, represented of soft to medium hard soil consist of Pebble stone, dark grey color, compact and uniform. SPT Value on this layer is 17 blows/foot.
 - In depth 10.0 m 18.5 m, represented of soft to medium hard soil consist of Pebble stone, grey color, compact and uniform. SPT Value on this layer is 25 blows/foot.
 - In depth >27.0 m, represented of hard, black, compact and uniform layer. SPT Value on this layer is 50 blows/foot.
 - iii) Bore Hole 3 at Left Bank
 - In depth 0 1.5 m, represented of top soil, high plasticity, dark brown color, many crop roots, and high consolidation. SPT Value on 1.5 m from ground surface is 13 blows/foot.
 - In depth 1.5 6.5 m, represented of clay silt, black color, clay, and high plasticity. SPT Value on this layer is 13 blows/foot.
 - In depth 6.5 18.0 m, represented of soft to medium hard soil consist of Pebble stone, dark grey color, compact and massive. SPT Value on this layer is 25 blows/foot.
 - In depth 18.0 24.0 m, represented of soft to hard soil consist of Pebble stone, grey color, compact and uniform. SPT Value on this layer is 30 blows/foot.
 - In depth > 26.0 m, represented of hard, black, compact and uniform layer. SPT Value on this layer is 50 blows/foot.

Figure 6.2.5 shows boring logs for the above three investigations and a geological cross section for the Jeneberang No.2 Bridge site.

Figure 6.2.5 Boring Logs and Geological Cross Section for Jeneberang No.2 Bridge on Trans-Sulawesi Mamminasata Road

(2) Other Bridges 20 – 100 m in Length

Refer to Appendix E as to the geotechnical investigation results of bridges of which length is 20 - 100 m.

6.2.2 Road Alignment Soil Survey

(1) Location and Methodology

The road alignment soil survey was conducted for the four F/S roads. The survey is comprised of test pits excavation for observation and sampling, laboratory tests (CBR, soil classification, etc.) and Dynamic Cone Penetrometer (DCP) tests. The quantity of survey by the F/S roads is indicated in the following stable.

No.	Name of Roads Section			Length (km)		Quantity	
			Total	Survey	Test Pit	CBR Lab	DCP
1	Mamminasa bypass I	Mamminasa bypass I			14	14	82
			19	19	11	11	66
2	Trans-Sulawesi Roads	Maros - MRR	23	23	12	12	70
	Mamminasata Section	Middle Ring Road	7	5	5	5	22
		MRR - Access	9	9	5	5	25
		MRR Access - Takalar	22	22	10	10	68
3	Hertasning Road			8	3	3	25
4	Abdullah Daeng Sirua Road	Abdullah Daeng Sirua Road			8	8	23

Table 6.2.2List of Soil Survey for the F/S Roads

The subgrade survey, including CBR test, DCP test and laboratory test, was carried out to obtain the data of sub-soil conditions of the study routes. The test pits were excavated at 2 km along the study routes and the DCP tests were carried out 3 points per 1 km.

Psitions of the test pit excavation and DCP tests are as follows:

i). For road widening section

ii). For new road section

Location of the test pit is 10 cm outside from the edge of asphalt pavement and dimension is 90 cm square on shoulder for road widening. For new road, test pit is excavated at the centre line of the study road. Minimum size of test pit is 1.0 m x 1.0 m and 1.0 m depth. The test pit is excavated up to subgrade layer. Thickness, type and condition of existing pavement layers and subgrade soil layers were observed and recorded.

Undisturbed soil was sampled for the CBR test. The CBR mould was pushed into test pit base, and then brought them to Laboratory for testing. Sampling for physical soil test is carried out for disturbed soil. The sample is kept in plastic bags, and then brought to laboratory for testing.

Laboratory tests consist of:

-	Soaked CBR Test	(AASHTO T.193 - 00)
-	Specific Gravity Test	(AASHTO T.100 – 03)
-	Moisture Content	(AASHTO T.101 – 00)
-	Grain Size Analysis	(AASHTO T. 88 – 00)
-	Atterberg Limit Test	(AASHTO T.89 – 02)

Dynamic Cone Penetrometer (DCP) tests were carried out to know CBR value of subgrade required for pavement design. The test covers up to 100 cm depth of subgrade. Investigation interval is at 300 meters.

(2) Survey Results

1) Trans-Sulawesi Mamminasata Road

The existing pavement layer thickness of Perintis Kemerdekaan Road and Sungguminasa (Boka) – Takalar road are as shown in Table 6.2.3. The average asphalt concrete and base thicknesses of the existing pavement for Perintis Kemerdekaan Road are 17 cm and 50 cm, respectively. Those for Sungguminasa (Boka) – Takalar road are 15 cm and 26 cm, respectively.

Table 6.2.3 Existing Pavement Thickness of Perintis Kemerdekaan Road

Section A, Perintis Kemerdekaan Road					
No	Station Point	Laye	er Thickness ((cm)	
		Asphalt	Base	Subgrade	
1	0+000	20	45	35	
2	2+000	18	62	20	
3	4+000	18	52	32	
4	6+000	18	52	30	
5	8+000	20	50	30	
6	10+000	15	45	40	
7	12+000	18	52	30	
8	14+000	15	55	30	
9	16+000	18	52	30	
10	18+000	15	45	40	
12	20+000	15	45	40	
13	22+000	15	45	40	
A	verage	17	50	33	

and Sungguminasa (Boka) – Takalar Road

Section C, Sungguminasa - Takalar Road

No	Station Point	Layer Thickness (cm)		
		Asphalt	Base	Subgrade
1	0+000	20	40	40
2	2+000	20	40	40
3	4+000	10	35	55
4	6+000	10	20	70
5	8+000	10	20	70
6	10+000	10	20	70
7	12+000	12	20	68
8	14+000	20	20	60
9	16+000	20	20	60
10	18+000	15	20	65
A	verage	15	26	60

Source: JICA Study Team

Sections B (Middle Ring Road) and Section C (Middle Ring Road Access) are new roads. Subgrade soil of those sections is mostly silty clay covered by top organic soil.

The average CBR values of subgrade for Tarns-Sulawesi Mamminasata Road by laboratory tests and DCP are 3.4% and 2.2%, respectively as indicated in Table 6.2.4.

	8					
Item		Section A	Section B	Section C	Section D	Average
CBR	%	6.8	3.1	2.7	0.9	3.4
Liquid Limit	LL (%)	53.8	41.5	56.2	41.1	48.2
Plastic Limit	PL (%)	40.0	29.1	38.6	27.8	33.9
Plasticity Index	PI	13.8	12.5	17.0	13.3	14.1
CBR by DCP	%	2.3	2.0	2.2	2.1	2.2

 Table 6.2.4
 Subgrade Soil Characteristics for Trans-Sulawesi Mamminasata Road

Source: JICA Study Team

2) Mamminasa Bypass

Mamminasa Bypass is new road construction mostly passing through paddy fields and cultivated or uncultivated lands. The average CBR values of subgrade for Mamminasa Bypass by laboratory tests and DCP are 4.6% and 2.2%, respectively as indicated in Table 6.2.5.

Table 6.2.5 Subgrade Soil Characteristics for Mamminasa Bypass

Item		North	South	Average
CBR	%	3.2	6.0	4.6
Liquid Limit	LL (%)	50.5	54.6	52.5
Plastic Limit	PL (%)	31.8	30.4	31.1
Plasticity Index	PI	18.7	24.5	21.6
CBR by DCP	%	2.3	2.2	2.2

Source: JICA Study Team

3) Hertasning Road and Abdullah Daeng Sirua Road

Hertasning Road (only Section D) is widening of the existing road. Abdullah Daeng Sirua Road is either new construction of additional two lanes, widening of the existing road, or new construction (Section F).

Tables 6.2.6 and 6.2.7 show the pavement composition of the existing Hertasning Road and Abdullah Daeng Sirua Road.

		_			-
No	Station Point	Layer Thickness (cm)			
		Layer I		Layer II	Layer III
1	2+000	Asphalt : 20	ст	Base : 30 cm	Gravel : 50 cm
2	4+000	Asphalt : 15	ст	Base : 15 cm	Gravel : 70 cm
3	6+000	Asphalt : 15	cm	Base : 50 cm	Clay: 40 cm

 Table 6.2.6
 Existing Pavement Layers for Hertasning Road

Table 6.2.7	Existing Pavement Layers for	r Abdullah Daeng Sirua Road
--------------------	------------------------------	-----------------------------

No	Station Point	Layer Thickness (cm)		
		Layer I	Layer II	Layer III
1	0+000	Asphalt : 20 cm	Base : 30 cm	Gravel : 50 cm
2	6+000	Asphalt : 10 cm	Base : 30 cm	Gravel : 60 cm
3	8+000	Asphalt : 10 cm	Base : 30 cm	Silt : 60 cm
4	10+000	Sandy gravel : 20 cm	Sandy silt : 80 cm	
5	12+000	Sandy gravel : 20 cm	Clay : 20 cm	Sandy silt : 60 cm
6	14+000	Top soil 20 cm	Clayey silt : 80 cm	
7	16+000	Top soil 20 cm	Clayey silt : 80 cm	
8	18+000	Top soil 20 cm	Clayey silt : 80 cm	

The average CBR values of subgrade for Hertasning Road by laboratory tests and DCP are 1.7% and 3.4%, respectively. The average CBR value of subgrade for Abdullah Daeng Sirua Road by DCP is 2.3% as indicated in Table 6.2.8.

Table 6.2.8Subgrade Soil Characteristics for Hertasning Roadand Abdullah Daeng Sirua Road

ltem		Hertasning Road	AD Sirua Road
CBR	%	1.7	-
Liquid Limit	LL (%)	44.3	55.6
Plastic Limit	PL (%)	29.7	36.5
Plasticity Index	PI	14.6	19.2
CBR by DCP	%	3.4	2.3

Source: JICA Study Team

6.2.3 Road Construction Material Investigation

(1) Investigation for Material Sources

Construction material source survey was carried out to obtain information on available materials for road construction for coarse aggregate, fine aggregate and borrow soil. The JICA Study Team identified several material sources near the F/S roads. Site observation, sampling, recording, laboratory tests and available quantity estimate are made by material source.

(2) Laboratory Tests of Materials

Sampling for the coarse aggregate materials (sandy gravel), fine aggregates (sand) and borrow materials was made at river bed or at quarries and brought to laboratory for testing. The following laboratory tests were conducted:

i) Coarse Aggregate

- Sieve Analysis	(AASHTO T27 – 99)
- Specific Gravity and Absorption	(AASHTO T85 – 91)
- Los Angeles Aberration Test	(AASHTO T96 – 02)
- Sodium Soleplate Soundness	(AASHTO T 104 – 99)
- Flakiness Index	(BS 812 Section 105.1 - 1989)
- Potential Alkali-Silica Reactivity	(ASTM C – 289)
ii) Fine Aggregate	
- Sieve Analysis	(AASHTO T27 – 99)
- Specific Gravity and Absorption	(AASHTO T84 – 00)
- Organic impurities	(AASHTO T21 – 00)
- Sand Equivalent	(AASHTO T 176 – 02)
- Sodium Soleplate Soundness	(AASHTO T 104 – 99)
- Potential Alkali-Silica Reactivity	(ASTM C – 289)
iii) Borrow Soils	
- Sieve Analysis	(AASHTO T88 – 00)
- Atterberg Limit	(AASHTO T89 – 02)
- Moisture Density Relations	(AASHTO T99 – 01)
- Specific Gravity	(AASHTO T100 – 03)
- CBR Test	(AASHTO T 193 – 99)

(3) Location and Estimated Quantity of Materials

The following Table 6.2.9 and Figure 6.2.6 show material sources, distance from Makassar and estimated quantities available for the F/S road construction. Refer to Appendix E as to the laboratory tests results of these materials.

Item	No	Name of Quarry	Distance from Makassar	Estimated Quantity (m ³)
Coarse Aggregate	1	Lekocaddi Area	55 km	100.000
	2	Lekopancing Area	20 km	250.000
	3	Borong Bulu Area	15 km	250.000
	4	Madinging Village	10 km	200.000
Fine Aggregate	1	Lekopancing Area	20 km	30.000
	2	Mangasa Village	10 km	50.000
	3	Bili-bili Village	15 km	150.000
Borrow Materials	1	Carangki Hill	18 km	50.000
(CBR > 6%)	2	Moncong Loe Hill	10 km	1,500.000
	3	Bollangi Hill	15 km	100.000
	4	Sela Village	20 km	100.000

 Table 6.2.9
 Location and Estimated Quantity of Construction Materials

Final Report

6-68

6.3 Topographic Survey and Mapping

(1) **Objective**

The objective of the topographic survey works is to prepare 1:5,000 scale photo mosaics, road profile, road cross-sections, flat plan topographic maps and their digital data as basic materials used for the preliminary design of the F/S and Pre F/S roads.

(2) Location of Survey Works

The locations of the survey works (for existing roads and proposed roads) are shown in Table 6.3.1.

No 1 Ma 2 Tra 3 He 4 Ab 5 Ou Suite	Doute (or Section)	Aerial pł Mosaikii	Route Survey	
	Koute (of Section)	Proposed Road	Improvement (Existing) Road	Length (km)
1	Mamminasa Bypass	42	0	42
2	Trans Sulawesi Mamminasata Section	15	43	58
3	Hertasning Road	10	0	10
4	Abdullah Daeng Sirua Road	10	8	18
5	Outer Ring Road	9	5	0
	Sub-Total	86	56	
	Total		142	128

 Table 6.3.1
 Locations of Topographic Surveys

(3) Scope of Works

The scope of topographic survey works included the following:

- 1) 1:5,000 Scale Digital Photo Mosaicking
 - i) 1:10,000 Scale Aerial Photography (Coverage area : 142 line-km in total) including Photo Scanning and Contact Printing.
 - ii) Ground Control Survey (40 points in total) including Monumentation, GPS Survey and Leveling.
 - iii) Preparation of Photo Mosaics
 - Aerial Trianglation (160 models in total)
 - DTM and 5m Contour Generation (Length : 86km, Width : 2.3km)
 - 1m Contour Plotting (Length : 56km, Width : 100m) / Including Photo Image Rectification, Photo Mosaiking and Photo Mosaic Compilation
 - iv) Output
- 2) Route Survey

- i) Road Centerline Survey (Length : 128 km, 7,680 points in total)
- ii) Road Profile Section Survey (Length : 128km in total)
- iii) Road Cross-Section Survey (Width : 100m, 7,680 sections in total)
- iv) Preparation of Flat Plan (Length : 128km, Width : 100m, Contours: 1m)
- v) Output

(4) Aerial Photography

Aerial photography covering the existing and proposed roads and their surrounding areas of approximately 142 line-km for 1:5,000 scale digital photo mosaiking was carried out as shown in **Figure 6.3.1**.

Figure 6.3.1 Flight Map of Aerial Photography

(5) Ground Control Survey

Ground control survey was carried out to prepare necessary horizontal (planimetric position) and vertical (height) control data for photo control points (control point) along the existing and proposed roads and their surrounding areas for aerial triangulation for 1:5,000 scale digital photo mosaiking.

1) GPS Survey

GPS survey was carried out to determine X and Y coordinates of the control points. A list of Coordinates by GPS UTM projection is shown in **Table 6.3.2** and **Figures 6.3.2** – **6.3.6**.

		Central Me	eridian = 117°;	Zone = 50	(Longitu	de 114°-120	D°)	<u>h</u>	
		Point of Coor	dinate		Converger	nsi		Hight	
No.	Point	North	East	1	Grid		Scale Factor	Ellipsoide	Zone
		Y (meter)	X (meter)	•		•		(meter)	
1	AZ-1	9,398,845.057	770,062.148	0	-13	51.32907	1.00050285	55.688	50
2	AZ-2	9,407,881.966	772,987.202	0	-13	47.61720	1.00052252	66.915	50
3	AZ-3	9,418,159.815	764,238.120	0	-13	7.14021	1.00046433	55.050	50
4	AZ-4	9,423,055.927	783,568.893	0	-13	57.50492	1.00059544	68.164	50
5	AZ-6	9,431,823.206	770,493.620	0	-13	6.73019	1.00050575	56.194	50
6	AZ-7	9,431,433.325	777,022.161	0	-13	26.25059	1.00055000	59.451	50
7	BP-01	9,447,718.226	785,432.051	0	-13	26.78174	1.00060858	57.081	50
8	BP-01B	9,418,707.306	764,392.690	0	-13	6.85494	1.00046534	55.098	50
9	BP-02	9,445,644.201	785,263.074	0	-13	29.34789	1.00060738	59.447	50
10	BP-02A	9,419,111.093	769,040.660	0	-13	20.11216	1.00049604	61.345	50
11	BP-02B	9,426,071.983	770,625.987	0	-13	15.12470	1.00050663	57.768	50
12	BP-04	9,430,426.768	770,275.301	0	-13	8.03822	1.00050429	56.463	50
13	EP-04	9,426,841.935	786,396.003	0	-14	0.26302	1.00061539	87.148	50
14	GPS-10	9,436,481.871	778,620.115	0	-13	23.65764	1.00056100	75.722	50
15	GPS-41	9,398,139.212	770,736.886	0	-13	54.38794	1.00050737	54.933	50
16	GPS-42	9,398,834,178	769,478.035	0	-13	49.54825	1.00049895	55.854	50
17	GPS-43	9,401,725,905	771,880.621	0	-13	52.88591	1.00051505	59.513	50
18	GPS-43A	9,402,849,794	770,732.663	0	-13	47.80637	1.00050734	60.536	50
19	GPS-44	9,404,836,804	772,130,396	0	-13	49.29021	1.00051674	62.941	50
20	GPS-44A	9,404,625,437	772,877,680	0	-13	51.86173	1.00052178	62.079	50
21	GPS-45	9,407,216,644	774,195,401	0	-13	52.21500	1.00053070	67.166	50
22	GPS-46	9,407,826,205	772,898,846	0	-13	47,42802	1.00052192	66.781	50
23	GPS-46A	9 407 303 333	772 343 290	0	-13	46.47892	1.00051817	66.304	50
24	GPS-47	9,408,160,683	770,065,490	0	-13	38.38248	1.00050287	64,451	50
25	GPS-48	9 409 848 091	770,987,595	0	-13	38.81879	1.00050905	68,132	50
26	GPS-49	9 412 355 684	769 333 151	0	-13	30.34814	1.00049799	67.529	50
27	GPS-49A	9 412 037 151	770 749 702	0	-13	35.04908	1.00050746	69.555	50
28	GPS-50	9 416 104 719	770.366.487	0	-13	28,23481	1.00050489	64,768	50
29	GPS-50A	9 416 130 916	769 173 758	0	-13	24.63721	1.00049692	64,881	50
30	GPS-51	9 418 510 500	769 813 534	0	-13	23,24210	1.00050119	60,706	50
31	GPS-51A	9 418 077 414	767 745 158	0	-13	17.68871	1.00048743	59,292	50
37	GPS-52	9 418 176 877	764 355 448	0	-13	7 53472	1.00046510	55 044	50
32	GPS-52	9 419 433 336	764 483 334	0	-13	6 13587	1.00046593	55 931	50
34	GPS-52	9 417 903 992	776 788 022	0	-13	44.84374	1.00054839	69.272	50
25	GPS-54	9 420 386 458	781 426 566	0	-13	55 05280	1.00058045	64 767	50
35	CDS 55	9,420,300.450	783 204 379	0	-13	57 69293	1.00059288	76 249	50
37	GPS-55	9 423 168 036	783 557 306	0	-13	57.30713	1.00059536	65.600	50
37	GPS-50	9,423,100.030	777 390 254	0	-13	38 67451	1.00055253	67 596	50
20	CPC 59	0 424 057 081	773 505 711	0	-13	25 14343	1.00053203	59 500	50
39	CPC 50	0 423 627 683	768 100 745	0	-13	11 37882	1.00032005	56 520	50
40	GP3-37	9,425,027.005	760,177.743	0	-13	11.50785	1.00050003	56.816	50
41	GP3-60	0 426, 390.711	775 042 121	0	-13	30 13418	1.00054261	57 524	50
42	GPS-01	9,420,407.770	780 273 220	0	-13	42 43166	1.00057244	58.078	50
43	GP3-02	9,420,700.370	782 605 470	0	-13	40 74791	1.00058932	61 995	50
44	GP3-03	9,420,010.011	784 270 147	0	-13	56 77490	1.00050932	61.812	50
40	GPS 45	9,424,900.700	787 312 429	0	-13	1 22/17	1.00062100	79 808	50
40	GPS-00	9,420,001.138	780 402 145	0	-14	40 87504	1.00057322	59.070	50
4/	GP3-00	9,420,100.319	774 941 412	0	-13	24 26924	1.00057555	56 204	50
40	GP5-6/	7,420,333.008	770 251 049	0	-13	10 72174	1.00053510	56 594	50
49	CPC 40	9,420,440.379	770 145 551	0	-13	8 35002	1.00050242	55 654	50
50	GP3-09	9,429,924.219	774 680 020	0	-13	21 80350	1.00053404	58 279	50
51	GPS-70	9,429,704.007	772 051 601	0	-13	14 24304	1.00053401	54.542	50
52	GPS-/1	9,431,336.177	775 047 044	0	-13	21 602 47	1.00052229	60.320	50
53	GP5-72	9,432,441.723	//5,94/.011	0	-13	21.0934/	1.00054264	60.329	50

 Table 6.3.2
 List of Coordinates by GPS UTM Projection

No.		Point of Coordinate			Converge	nsi		Hight	
	Point	North	East		Grid		Scale Factor	Ellipsoide	Zone
		Y (meter)	X (meter)	٠		"		(meter)	
54	GPS-73	9,431,530.224	776,955.355	0	-13	25.91831	1.00054955	60.882	50
55	GPS-74	9,431,117.692	781,764.001	0	-13	40.49115	1.00058281	61.509	50
56	GPS-75	9,430,937.822	784,730.045	0	-13	49.38031	1.00060362	97.096	50
57	GPS-76	9,432,914.864	784,205.074	0	-13	44.96192	1.00059992	77.693	50
58	GPS-77	9,435,294.570	787,871.402	0	-13	52.06505	1.00062589	74.213	50
59	GPS-78	9,435,834.148	784,883.687	0	-13	42.65001	1.00060470	63.748	50
60	GPS-79	9,436,035.744	779,216.505	0	-13	26.01659	1.00056512	69.070	50
61	GPS-80	9,441,574.338	780,379.020	0	-13	21.37881	1.00057318	68.125	50
62	GPS-81	9,440,465.853	781,997.640	0	-13	27.60721	1.00058445	60.389	50
63	GPS-82	9,440,292.142	787,388.197	0	-13	43.28122	1.00062245	61.517	50
64	GPS-83	9,442,209.022	785,525.227	0	-13	35.13597	1.00060923	59.253	50
65	GPS-84	9,444,471.124	785,226.904	0	-13	30.96647	1.00060713	59.276	50
66	GPS-85	9,444,626.230	787,610.947	0	-13	37.50624	1.00062404	59.851	50
67	2002064	9,421,985.329	770,801.086	0	-13	21.33467	1.00050781	61.183	50
68	2002066	9,422,108.994	774,844.223	0	-13	33.10915	1.00053512	63.627	50
69	2002067	9,420,480.342	776,181.583	0	-13	39.37601	1.00054424	65.827	50
70	2002069	9,418,336.403	773,857.317	0	-13	35.51128	1.00052841	67.620	50
7.1	2002071	9,419,178.407	769,088.944	0	-13	20.16233	1.00049636	61.550	50
72	2003054	9,420,744.072	764,566.833	0	-13	4.59863	1.00046648	55.718	50
73	N.4009	9,440,155.650	782,608.759	0	-13	29.80609	1.00058872	65.185	50
74	N1.4030	9,398,841.799	770,106.353	0	-13	51.46952	1.00050314	55.735	50
75	N1.4028	9,419,205.723	816,517.661	0	-15	40.93728	1.00084026	1094.425	50

Figure 6.3.2 GPS Network for Mamminasa Bypass

Figure 6.3.3 GPS Network for Trans Sulawesi Mamminasata Road

Figure 6.3.4 GPS Network for Hertasning Road

Figure 6.3.5 GPS Network Route for Abdullah Daeng Sirua Road

Figure 6.3.6 GPS Network for Outer Ring Road

2) Aerial Triangulation

Aerial triangulation was carried out based on the coordinates shown in Table 6.3.3.

Dura	Madala	Number of		Number of	Flight	Flight WGS 84					UTM 50S (WGS 84)					
Run	models	Models	Line-Km	Photograph	Hight (m)	Coordinate		1	atitu	de		Lo	ongitu	ıde	Y (m)	X (m)
1	17.0	16997.5	15.64	18.0	1624.4	Up	S	4	58	19.93520	BT	119	35	27.55980	787,331.575	9,449,844.824
						Down	S	5	6	48.73050	BT	119	35	34.56030	787,485.115	9,434,205.459
2	18.0	20000.1	18.40	19.0	1624.4	Up	S	4	58	20.21070	BT	119	34	37.56880	785,790.558	9,449,842.384
_						Down	S	5	8	18.60000	BT	119	35	34.92290	785,971.847	9,431,443.148
3	18.0	19000.2	17,48	19.0	1624.4	Up	S	4	59	39.10500	BT	119	33	48.36650	784,264.470	9,447,423.422
	10,000	- 1.1 Stored W/1253	14140/07-24		de contra a	Down	S	5	9	7.77300	BT	119	33	56.20080	784,436.696	9,429,944.050
4	9.0	9001.7	8.28	10.0	1624.4	Up	S	5	1	55.88270	BT	119	34	48.21580	786,092.708	9,443,212.202
						Down	S	5	4	3.91000	BT	119	30	51.78440	778,790.315	9,439,305.785
5	13.0	13036.6	11.99	14.0	1624.4	Up	S	5	2	44.62540	BT	119	32	11.77470	781,265.078	9,441,732.994
						Down	S	5	8	40.66000	BT	119	29	32.45760	776,312.602	9,430,809.580
6	16.0	16001.8	14.72	17.0	1624.4	Left	S	5	7	57.39070	BT	119	27	22.36590	772,309.003	9,432,154.919
		1.0			1	Right	S	5	7	55.51180	BT	119	35	20.08170	787,030.616	9,432,154.649
7	20.0	20000.0	18.40	21.0	1624.4	Left	S	5	8	48.29020	BT	119	25	23.18550	768,630.616	9,430,604.649
						Right	S	5	8	45.93980	BT	119	35	20.28540	787,030.616	9,430,604.649
8	20.0	20000.0	18.40	21.0	1624.4	Left	S	5	9	38.72470	BT	119	25	23.37670	768,630.616	9,429,054.649
	692562	0.000	1122-2022	and the second		Right	S	5	9	36.36790	BT	119	35	20.48960	787,030.616	9,429,054.649
9	20.0	19866.9	18.28	21.0	1624.4	Left	S	5	10	29.15910	BT	119	25	23.56840	768,630.616	9,427,504.649
					1 201010	Right	S	5	10	26.81220	BT	119	35	16.72020	786,908.144	9,427,504.649
10	21.0	20866.4	19.20	22.0	1624.4	Left	S	5	11	19.70790	BT	119	24	53.91630	767,711.065	9,425,954.649
					Contactory a	Right	S	5	11	17.24020	BT	119	35	16.92550	786,908.144	9,425,954.649
11	20.0	20000.0	18.40	21.0	1624.4	Left	S	5	12	10.25690	BT	119	24	24.23410	766,790.616	9,424,404.649
						Right	S	5	12	7.89660	BT	119	34	21.39410	785,190.616	9,424,404.649
12	21.0	21000.0	19.32	22.0	1624.4	Left	S	5	13	0.80620	BT	119	23	54.56540	765,870.616	9,422,854.649
						Right	S	5	12	58.32520	BT	119	34	21.59930	785,190.616	9,422,854.649
13	20.0	20000.0	18.40	21.0	1624.4	Left	S	5	13	51.35560	BT	119	23	24.89580	764,950.616	9,421,304.649
			12010020	14100-44	er manezar a	Right	S	5	13	48.99820	BT	119	33	22.08990	783,350.616	9,421,304.649
14	22.0	21999.5	20.24	23.0	1624.4	Left	S	5	14	42.01880	BT	119	22	25.37730	763,111.065	9,419,754.649
	-	10.00				Right	S	5	14	39.42740	BT	119	33	22.29490	783,350.616	9,419,754.649
15	22.0	21999.5	20.24	23.0	1624.4	Left	S	5	15	32.45500	BT	119	22	25.55360	763,110.615	9,418,204.649
			0.0000000			Right	S	5	15	29.85660	BT	119	33	22.50040	783,350.616	9,418,204.649
16	14.0	14003.8	12.88	8 15.0	1624.4	Up	S	5	14	33.60130	BT	119	25	43.32020	769,210.280	9,419,989.965
	2003	The second is	0000000		110000	Down	S	5	21	29.69230	BT	119	26	34.17370	770,726.618	9,407,196.126
-17	6.0	6015.3	5.53	7.0	1624.4	Up	s	5	20	19.94930	BT	119	25	52.67370	769,456.775	9,409,344.607
	-					Down	S	5	21	48.78730	BT	119	28	28.93950	774,259.450	9,406,595.086
18	13.0	13018.3	018.3 11.98	.98 14.0	1624.4	Up	S	5	20	59.82720	BT	119	28	15.29630	773,845.249	9,408,101.509
						Down	s	5	27	1.21740	BT	119	25	49.80330	769,319.142	9,397,012.839
[ata]	240	212807 55	297 0	220		-				-				\sim	~	~
out	310	012001.00	201.0	320			1	10	1		1		10			

 Table 6.3.3
 List of Coordinate Scale of Aerial Photography