Appendix for Chapter 10

Cost Estimation

Appendix 10.1 Cost Function for STP

The cost function which can be used in Syria is examined. The cost function in Japan is used as a base.

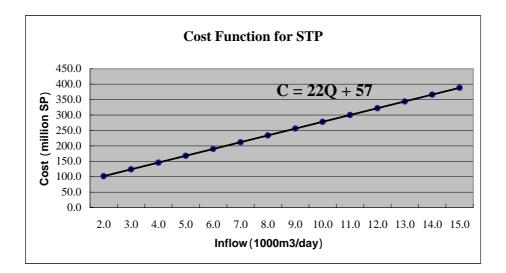
 $\begin{array}{ll} \mbox{The Cost Function in Japan [Source: The Japan Sewege Works Association]} \\ C_J = 327.75Q + 854.31 \qquad [Million Yen] \\ \mbox{Note: 1) } Q: 10^3 \, m^3/day \\ 2) \mbox{ Treatment Method }: Oxidation Ditch \\ 3) \mbox{ Including Sludge Thickening and Dewatering Facility} \\ 4) \mbox{ Including Overhead costs} \end{array}$

Referring to the above-mentioned function,

As a result of studying the existing track record, the design data in syria and the track record in a developing country, The compensating rate by which the above-mentioned function is multiplied is set to **0.15**.

Therefore,

 $\begin{array}{ll} C_{SYR} = \ 0.15 \times (327.75 Q + 854.31) \\ = \ 49.16 Q + 128.15 & [Million Yen] \\ = \ 21.85 Q + 56.96 & [Million SP] & (1SP = \textbf{2.25} Yen) \\ say = \ \textbf{22Q} + \textbf{57} & [Million SP] \end{array}$


Note: 1) Q : 10³ m³/day [Daily average Flow]

2) Treatment Method : Oxidation Ditch

3) Including Sludge Thickening and Dewatering Facility

4) Including Overhead costs

Inflow(1	10^3m^3 / day)	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0
Cost	(Million SP)	101.6	123.6	145.6	167.7	189.8	211.8	233.8	255.9	277.9	300.0	322.0	344.1	366.1	388.2

In addition, the Correction factor by the difference in a treatment system was set up in consideration of a treatment process and the existence of equipment as follows.

Correction factor

[Wastewater Treatment]		[Sludge Treatment]	
Oxidation Ditch	1.0 (Basis)	Thickening	
Contact aeration process	0.8	Mechanical Thickening	1.0 (Basis)
Wet-land process	0.6	Gravel Thickening	0.95
		<u>Dewatering</u>	
		Mechanical Dewatering	1.0 (Basis)
		Drying Bed	0.75

The above-mentioned Cost function is multiplied by this Correction factor for every treatment system.

Appendix 10.2 Project Cost Estimation

(1) Slunfeh Project

Description	Unit	Quantity	Uni	t Price	(Unit : S Amount
Sewerage Treatment Plant	set	3	28 17	Mil.SP/set	84,504,00
$Q = \frac{610 \text{ m}^3/\text{day}}{100000000000000000000000000000000000$	301	5	20.17	WIII.51 / Set	04,504,00
$C = 22Q + 57 \ [Q = 10^3 m^3 / day]$					
= 70.42 Mil.SYP					
[Correction factor] <i>Wastewater treatmnent</i>					
Submerged attached methods 0.8					
Sludge treatment No Sludge treatment 0.5					
No Studge treatment 0.5					
Total 28.168 Mil.SYP				Sub-total	84,504,00
Pipelines					
Dia.100mm PVC	m	1,000	2000	SP/m	2,000,00
Dia.250mm PVC	m	7,900	3000	SP/m	23,700,00
Dia.300mm PVC	m	7,200	3500	SP/m	20,700,00
Dia.400mm PVC	m		4500	SP/m	
Dia.500mm HDPE	m		6000	SP/m	
Dia.600mm HDPE	m		8000	SP/m	
Dia.700mm HDPE	m		10500	SP/m	
Dia.800mm HDPE	m		12500	SP/m	
Dia.900mm HDPE	m		15500	SP/m	
Dia.1000mm HDPE	m		18000	SP/m	
			10000	Sub-total	25,700,0
Pumping Station					
$Q = <1m^3/min$	set	2	0.7	Mil.SP/set	1,340,0
$Q = \langle 3m^3 / min \rangle$	set		1	Mil.SP/set	
$Q = m^3/min$	set		0	Mil.SP/set	
$C = 7.6Q^{0.598} [Q = m^3/min]$					
= Mil.SYP					
				Sub-total	1,340,0
Construction Cost (1)					111,544,00
Engineering Services Cost $(2) = (1)*10\%$					11,154,400
hysical Contingency $(3) = (1)*10\%$					11,154,400
Compensation and Project-related Expense (4)					
Land Acquisition Cost	m ²	1000	1000	SP/m ²	1,000,0
	m^2	2000	0	SP/m ²	
Administration Cost (5% of Construction Cost (1))					5,577,2
Institutional Development Cost (3% of Construction C	ost(1))			3,346,3
				Sub-total	9,923,520
otal Project Cost (1)+(2)+(3)+(4)					143,776,32

(2) Banias Project

IC IC <th colspa<="" th=""><th>it Price Mil.SP/set</th><th>Amount 462,954,000</th></th>	<th>it Price Mil.SP/set</th> <th>Amount 462,954,000</th>	it Price Mil.SP/set	Amount 462,954,000
Q= 19,560 m³/day Image: space sp	Mil.SP/set	462,954,000	
C= 22Q+57 [Q=10 ³ m ³ /day]			
= 487.32 Mil.SYP [Correction factor] Wastewater treatmnent Oxidation Ditch Process 1.0			
[Correction factor] Wastewater treatment Image: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: styl			
Oxidation Ditch Process 1.0 Image: style sty			
Sludge treatment Image: state of the state			
Gravity Thickening 0.95 Image: matrix for the second sec			
Mechanical Dewatering 1.0 Image: matrix and the second s			
Total 462.95 Mil.SYP Image: matrix and the system of			
Pipelines m 2000 Dia.100mm PVC m 4,980 3000 Dia.250mm PVC m 1,680 3500 Dia.400mm PVC m 1,540 4500 Dia.500mm HDPE m 3,640 6000 Dia.600mm HDPE m 4,620 8000 Dia.700mm HDPE m 10500 00 Dia.800mm HDPE m 12500 Dia.900mm HDPE m 18000 Pumping Station ge <1m ³ /min set 10 0.7 Q= <1m ³ /min set 8 1 Qe <1m ³ /min set 8 1 Q= <1m ³ /min set 8 1 1 1 1 Q= <1m ³ /min			
Dia.100mm PVC m 2000 Dia.250mm PVC m 4,980 3000 Dia.300mm PVC m 1,680 3500 Dia.400mm PVC m 1,540 4500 Dia.500mm HDPE m 3,640 6000 Dia.600mm HDPE m 4,620 8000 Dia.700mm HDPE m 10500 Dia.800mm HDPE m 10500 Dia.900mm HDPE m 12500 Dia.900mm HDPE m 18000 Pumping Station Q= <1m ³ /min set 10 0.7 Q= <3m ³ /min set 8 1 Q= m ³ /min set 0 C= 7.6Q ^{0.598} [Q=m ³ /min] Image: Construction Cost (1) Image: Construction Cost (2) = (1)*10%	Sub-total	462,954,000	
Dia.100mm PVC m 2000 Dia.250mm PVC m 4,980 3000 Dia.300mm PVC m 1,680 3500 Dia.400mm PVC m 1,540 4500 Dia.500mm HDPE m 3,640 6000 Dia.600mm HDPE m 4,620 8000 Dia.700mm HDPE m 10500 Dia.800mm HDPE m 10500 Dia.900mm HDPE m 12500 Dia.900mm HDPE m 18000 Pumping Station Q= <1m ³ /min set 10 0.7 Q= <3m ³ /min set 8 1 Q= m ³ /min set 0 C= 7.6Q ^{0.598} [Q=m ³ /min] Image: Construction Cost (1) Image: Construction Cost (2) = (1)*10%			
Dia.300mm PVC m 1,680 3500 Dia.400mm PVC m 1,540 4500 Dia.500mm HDPE m 3,640 6000 Dia.600mm HDPE m 4,620 8000 Dia.600mm HDPE m 10500 Dia.700mm HDPE m 10500 Dia.800mm HDPE m 12500 Dia.900mm HDPE m 12500 Dia.1000mm HDPE m 18000 Pumping Station Q= <1m ³ /min set 10 Q= <3m ³ /min set 8 1 Q= <3m ³ /min set 8 1 Q= m ³ /min set 0 0 Construction Cost (1) m 1 1	SP/m	(
Dia.400mm PVC m 1,540 4500 Dia.500mm HDPE m 3,640 6000 Dia.600mm HDPE m 4,620 8000 Dia.700mm HDPE m 10500 Dia.800mm HDPE m 10500 Dia.800mm HDPE m 12500 Dia.900mm HDPE m 15500 Dia.1000mm HDPE m 18000 Pumping Station Q= <1m ³ /min set 10 Q= <3m ³ /min set 8 1 Q= <7.6Q ^{0.598} [Q=m ³ /min] Image: Construction Cost (1) Image: Construction Cost (2) = (1)*10%		14,940,000	
Dia.500mm HDPE m 3,640 6000 Dia.600mm HDPE m 4,620 8000 Dia.700mm HDPE m 10500 Dia.800mm HDPE m 12500 Dia.900mm HDPE m 12500 Dia.900mm HDPE m 15500 Dia.1000mm HDPE m 18000 Pumping Station set 10 0.7 Q = <1m³/min		5,880,000	
Dia.600mm HDPE m 4,620 8000 Dia.700mm HDPE m 10500 Dia.800mm HDPE m 12500 Dia.900mm HDPE m 15500 Dia.1000mm HDPE m 18000 Pumping Station Q = <1m ³ /min set 10 0.7 Q = <3m ³ /min set 8 1 Q = <3m ³ /min set 8 1 Q = <7.6Q ^{0.598} [Q=m ³ /min] Image: Cost (2) = (1)*10% Image: Cost (2) = (1)*10%		6,930,000	
Dia.700mm HDPE m 10500 Dia.800mm HDPE m 12500 Dia.900mm HDPE m 15500 Dia.1000mm HDPE m 18000 Pumping Station Q= <1m ³ /min set 10 0.7 Q= <3m ³ /min set 8 1 Q= <1m ³ /min set 8 1 Q= <10 ⁸ /min set 0 0 C= 7.6Q ^{0.598} [Q=m ³ /min] I I I Image: I		21,840,000	
Dia.800mm HDPE m 12500 Dia.900mm HDPE m 15500 Dia.1000mm HDPE m 18000 Pumping Station m 18000 Q= <1m ³ /min set 10 0.7 Q= <3m ³ /min set 8 1 Q= <3m ³ /min set 8 1 Q= <7.6Q ^{0.598} [Q=m ³ /min] 0 0 Empineering Services Cost (2) = (1)*10%		36,960,000	
Dia.900mm HDPE m 15500 Dia.1000mm HDPE m 18000 Pumping Station get 10 0.7 Q= <1m ³ /min set 10 0.7 Q= <3m ³ /min set 8 1 Q= m ³ /min set 0 C= 7.6Q ^{0.598} [Q=m ³ /min] 0 0 = Mil.SYP 0 0 Construction Cost (1) 0 0 0 Engineering Services Cost (2) = (1)*10% 0 0			
Dia.1000mm HDPE m 18000 Pumping Station a a $Q = <1m^3/min$ set 10 0.7 $Q = <3m^3/min$ set 8 1 $Q = <3m^3/min$ set 8 1 $Q = set 0 0 C = 7.6Q^{0.598} [Q=m^3/min] a 0 = Mil.SYP a a = Mil.SYP a a = Mil.SYP a a = Mil.SYP a a = Mil.SYP a a = Mil.SYP a a = Mil.SYP a$			
Pumping Station Image: set and the set of			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sub-total	86,550,000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mil.SP/set	6,700,000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mil.SP/set	8,000,000	
$C = 7.6Q^{0.598} [Q = m^3/min]$ $= Mil.SYP$ Construction Cost (1) Engineering Services Cost (2) = (1)*10%	Mil.SP/set	C	
= Mil.SYP			
Engineering Services Cost $(2) = (1)*10\%$			
Engineering Services Cost $(2) = (1)*10\%$			
Engineering Services Cost $(2) = (1)*10\%$	Sub-total	14,700,000	
		564,204,000	
		56,420,400	
Physical Contingency $(3) = (1)*10\%$		56,420,400	
Compensation and Project-related Expense (4)			
Land Acquisition Cost m^2 51,000 2500	SP/m ²	127,500,000	
Administration Cost (5% of Construction Cost (1))	~ / //	28,210,200	
Institutional Development Cost (3% of Construction Cost (1))		16,926,120	
		172,636,320	
Total Project Cost $(1)+(2)+(3)+(4)$	Sub-total	849,681,120	

(3) Mayadin Project

(3) Mayadın Project				(Unit : SP)
Description	Unit	Quantity	Unit Price	Amount
Sewerage Treatment Plant	set	1	295.2 Mil.SP/s	et 295,200,000
Q= $15,300 \text{ m}^3/\text{day}$				
C= 22Q+57 $[Q=10^3 m^3/day]$				
= 393.6 Mil.SYP				
[Correction factor] Wastewater treatmnent				
Oxidation Ditch Process 1.0				
Sludge treatment				
Mechanical Thickening 1.0				
Drying Bed 0.75				
Total 295.20 Mil.SYP			Sub-tota	al 295,200,000
Pipelines				
Dia.100mm PVC	m		2000 SP/m	(
Dia.250mm PVC	m		3000 SP/m	(
Dia.300mm PVC	m		3500 SP/m	(
Dia.400mm PVC	m	3,500	4500 SP/m	15,750,000
Dia.500mm HDPE	m		6000 SP/m	(
Dia.600mm HDPE	m		8000 SP/m	(
Dia.700mm HDPE	m	1.000	10500 SP/m	(
Dia.800mmHDPEDia.900mmHDPE	m	1,000	12500 SP/m 15500 SP/m	12,500,000
Dia.1000mm HDPE	m m		13300 SP/m 18000 SP/m	
	111		Sub-tota	al 28,250,000
Pumping Station				
$Q = <1m^3/min$	set		0.7 Mil.SP/s	et (
$Q = \langle 3m^3 / min \rangle$	set	2	1 Mil.SP/s	et 2,000,000
Q= m ³ /min	set		0 Mil.SP/s	et (
C= $7.6Q^{0.598}$ [Q=m ³ /min]				
= Mil.SYP				
			Sub-tota	al 2,000,000
Construction Cost (1)				325,450,000
Engineering Services Cost $(2) = (1)*10\%$				32,545,000
Physical Contingency $(3) = (1)*10\%$				32,545,000
Compensation and Project-related Expense (4)				
Land Acquisition Cost	m^2	59,000	0 SP/m^2	(
Administration Cost (5% of Construction Cost (1))				16,272,500
Institutional Development Cost (3% of Construction (Cost (1))		9,763,500
			Sub-tota	al 26,036,000
Total Project Cost (1)+(2)+(3)+(4)				416,576,000

(4) Malkieh Project

					(Unit : SP)
Description	Unit	Quantity	Uni	t Price	Amount
Sewerage Treatment Plant	set	1	117.3	Mil.SP/set	117,330,000
Q= $4,520 \text{ m}^3/\text{day}$					
$C = 22Q + 57 [Q = 10^3 m^3 / day]$					
= 156.44 Mil.SYP					
[Correction factor] Wastewater treatmnent					
Oxidation Ditch Process 1.0					
Sludge treatment					
Mechanical Thickening 1.0					
Drying Bed 0.75					
				a 1 1	
Total 117.33 Mil.SYP				Sub-total	117,330,000
Pipelines					
Dia.100mm PVC	m		2000	SP/m	0
Dia.250mm PVC	m		3000	SP/m	0
Dia.300mm PVC	m		3500	SP/m	0
Dia.400mm PVC	m		4500	SP/m	0
Dia.500mm HDPE	m	100	6000	SP/m	600,000
Dia.600mm HDPE	m		8000	SP/m	0
Dia.700mm HDPE	m		10500	SP/m	0
Dia.800mm HDPE	m		12500	SP/m	0
Dia.900mm HDPE	m		15500	SP/m	0
Dia.1000mm HDPE	m		18000	SP/m	0
		1	1	Sub-total	600,000
Pumping Station					
$Q = \langle 1m^3/min \rangle$	set		0.7	Mil.SP/set	0
$Q = \langle 3m^3 / min \rangle$	set		1	Mil.SP/set	0
$Q = m^3/min$	set		0	Mil.SP/set	0
$C = 7.6Q^{0.598} [Q = m^3/min]$	500		0	1.11.01 / 500	
= Mil.SYP					
			1	Sub-total	0
Construction Cost (1)					117,930,000
Engineering Services Cost $(2) = (1)*10\%$					11,793,000
Physical Contingency $(3) = (1)*10\%$					
					11,793,000
Compensation and Project-related Expense (4)	2	26.000	0	CD / ²	
Land Acquisition Cost	m^2	26,000	0	SP/m ²	0
Administration Cost (5% of Construction Cost (1))	Dest (1))			5,896,500
Institutional Development Cost (3% of Construction (LOST (1))		Sub-total	3,537,900 9,434,400
				Sub-ibidi	
Total Project Cost $(1)+(2)+(3)+(4)$					150,950,400

(5) Thawra Project

					(Unit : SP)
Description	Unit	Quantity	Uni	t Price	Amount
Sewerage Treatment Plant	set	1	182.5	Mil.SP/set	182,484,900
Q= $17,890 \text{ m}^3/\text{day}$					
C= 22Q+57 [Q= $10^{3}m^{3}/day$]					
= 450.58 Mil.SYP					
[Correction factor] Wastewater treatmnent					
Wet-land 0.6					
Sludge treatment					
No Thickening 0.90					
Drying Bed 0.75					
Total 182.48 Mil.SYP				Sub-total	182,484,900
Pipelines					
Dia.100mm PVC	m		2000	SP/m	0
Dia.250mm PVC	m		3000	SP/m	0
Dia.300mm PVC	m		3500	SP/m	0
Dia.400mm PVC	m		4500	SP/m	0
Dia.500mm HDPE	m	100	6000	SP/m	600,000
Dia.600mm HDPE	m	1,300	8000	SP/m	10,400,000
Dia.700mm HDPE	m		10500	SP/m	0
Dia.800mm HDPE	m		12500	SP/m	0
Dia.900mm HDPE	m		15500	SP/m	0
Dia.1000mm HDPE	m		18000	SP/m Sub-total	0 11,000,000
Pumping Station					
$Q = <1m^3/min$	set		0.7	Mil.SP/set	0
$Q = \langle 3m^3/min \rangle$	set		1	Mil.SP/set	0
$Q = m^3/min$	set		0	Mil.SP/set	0
$C = 7.6Q^{0.598} [Q = m^3/min]$			Ŭ		
= Mil.SYP					
				Sub-total	0
Construction Cost (1)					193,484,900
Engineering Services Cost $(2) = (1)*10\%$					19,348,490
Physical Contingency $(3) = (1)*10\%$					19,348,490
Compensation and Project-related Expense (4)					
Land Acquisition Cost	m^2	24,000	0	SP/m ²	0
Administration Cost (5% of Construction Cost (1))	•				9,674,245
Institutional Development Cost (3% of Construction	Cost (1))			5,804,547
• · · · ·				Sub-total	15,478,792
Total Project Cost (1)+(2)+(3)+(4)					247,660,672

(6) Muzerib Project

Q= $3.990 \text{ m}^3/\text{day}$ Image: construction of the second sec	(0) Muzerid Project					(Unit : SP)
Q= $3.990 \text{ m}^3 \text{day}$ C= $22Q+57 \text{ [Q=10}^3 \text{ m}^3 \text{day]}$ = 144.78 Mil.SYP [Correction factor] Wastewater treatment Wet-land 0.6 Sludge treatment Drying Bed 0.75 Total 58.64 Mil.SYP Sub-total 58.635.94 Dia.100mm PVC m 3000 SP/m	Description	Unit	Quantity	Uni	t Price	Amount
Q= $3.990 \text{ m}^3 \text{day}$ C= $22Q+57 \text{ [Q=10}^3 \text{ m}^3 \text{day]}$ = 144.78 Mil.SYP [Correction factor] Wastewater treatment Wet-land 0.6 Sludge treatment Drying Bed 0.75 Total 58.64 Mil.SYP Sub-total 58.635.94 Dia.100mm PVC m 3000 SP/m	Sewerage Treatment Plant	set	1	58.64	Mil.SP/set	58,635,900
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$C= 22Q+57 [Q=10^3 m^3/day]$					
Wet-land 0.6 Image: mathematic construction of the construction of t	= 144.78 Mil.SYP					
Sludge treatment Image: state of the system o	[Correction factor] Wastewater treatmnent					
No Thickening 0.90 Image: matrix of the second se						
Drying Bed 0.75 Image: Mark Stress of the						
Total 58.64 MiLSYP Sub-total 58,635,94 Pipelines m 2000 SP/m 58,635,94 Dia.100mm PVC m 3000 SP/m Dia.250mm PVC m 3000 SP/m Dia.300mm PVC m 3500 SP/m Dia.400mm PVC m 5,800 4500 SP/m Dia.400mm PVC m 5,800 4500 SP/m Dia.500mm HDPE m 4,000 6000 SP/m Dia.700mm HDPE m 10500 SP/m Dia.800mm HDPE m 12500 SP/m Dia.900mm HDPE m 18000 S0,100,00<	× · · · · · · · · · · · · · · · · · · ·					
Pipelines n 2000 SP/m Dia.100mm PVC m 3000 SP/m Dia.300mm PVC m 3500 SP/m Dia.300mm PVC m 3500 SP/m Dia.300mm PVC m 3500 SP/m Dia.400mm PVC m 5,800 4500 SP/m Dia.500mm HDPE m 4,000 6000 SP/m 26,100,00 Dia.600mm HDPE m 4,000 6000 SP/m 24,000,00 Dia.600mm HDPE m 10500 SP/m 26,100,00 Dia.700mm HDPE m 10500 SP/m 26,100,00 Dia.800mm HDPE m 10500 SP/m 26,100,00 Dia.900mm HDPE m 15000 SP/m 20,100,00 Sub-total 50,100,00 Sub-total 50,100,00 Sub-total 50,100,00 Q= <1m ³ /min set 0.7	Drying Bed 0.75					
Dia.100mm PVC m 2000 SP/m Dia.250mm PVC m 3000 SP/m Dia.400mm PVC m 3500 SP/m Dia.400mm PVC m 5,800 4500 SP/m Dia.400mm HDPE m 4,000 6000 SP/m 24,000,00 Dia.600mm HDPE m 4,000 SP/m 24,000,00 Dia.600mm HDPE m 10500 SP/m 24,000,00 Dia.900mm HDPE m 10500 SP/m 24,000,00 Dia.900mm HDPE m 12500 SP/m 24,000,00 Dia.900mm HDPE m 12500 SP/m 24,000,00 Dia.900mm HDPE m 18000 SP/m 24,000,00 Dia.900mm HDPE m 18000 SP/m 25,010,00 Pumping Station set 0.7 Mil.SP/set 2 24,500,00 Q = <1n ³ /min <td>Total 58.64 Mil.SYP</td> <td></td> <td></td> <td></td> <td>Sub-total</td> <td>58,635,900</td>	Total 58.64 Mil.SYP				Sub-total	58,635,900
Dia.100mm PVC m 2000 SP/m Dia.250mm PVC m 3000 SP/m Dia.400mm PVC m 3500 SP/m Dia.400mm PVC m 5,800 4500 SP/m Dia.400mm HDPE m 4,000 6000 SP/m 24,000,00 Dia.600mm HDPE m 4,000 SP/m 24,000,00 Dia.600mm HDPE m 10500 SP/m 24,000,00 Dia.900mm HDPE m 10500 SP/m 24,000,00 Dia.900mm HDPE m 12500 SP/m 24,000,00 Dia.900mm HDPE m 12500 SP/m 24,000,00 Dia.900mm HDPE m 18000 SP/m 24,000,00 Dia.900mm HDPE m 18000 SP/m 25,010,00 Pumping Station set 0.7 Mil.SP/set 2 24,500,00 Q = <1n ³ /min <td>Pipelines</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Pipelines					
Dia.300mm PVC m 3500 SP/m Dia.400mm PVC m 5,800 4500 SP/m 26,100,00 Dia.500mm HDPE m 4,000 6000 SP/m 24,000,00 Dia.600mm HDPE m 8000 SP/m 24,000,00 Dia.600mm HDPE m 10500 SP/m 10600 SP/m Dia.900mm HDPE m 15500 SP/m 10160,00 Sub-total 50,100,00 Pumping Station m 18000 SP/m Sub-total 50,100,00 Pumping Station set 0.7 Mil.SP/set Sub-total 50,100,00 Q = <1m ³ /min set 0.7 Mil.SP/set Sub-total 50,100,00 Q = <1m ³ /min set 0.7 Mil.SP/set Sub-total 50,100,00 Q = <1m ³ /min set 0 Mil.SP/set Sub-total Sub-total Sub-total Sub-total Sub-total Sub-total Sub-total <td< td=""><td>Dia.100mm PVC</td><td>m</td><td></td><td>2000</td><td>SP/m</td><td>0</td></td<>	Dia.100mm PVC	m		2000	SP/m	0
Dia.400mm PVC m 5,800 4500 SP/m 26,100,00 Dia.500mm HDPE m 4,000 6000 SP/m 24,000,00 Dia.600mm HDPE m 8000 SP/m 24,000,00 Dia.700mm HDPE m 10500 SP/m 10 Dia.900mm HDPE m 12500 SP/m 10 Dia.900mm HDPE m 15500 SP/m 10 Dia.900mm HDPE m 18000 SP/m 10 Dia.1000mm HDPE m 18000 SP/m 10 Q= <1m ³ /min set 0.7 Mil.SP/set 1 10,000 Q= <3m ³ /min set 0 Mil.SP/set 1 10,873,590 Q= <10.598		m				0
Dia.500mm HDPE m 4,000 6000 SP/m 24,000,00 Dia.600mm HDPE m 8000 SP/m 10500 SP/m Dia.700mm HDPE m 10500 SP/m 10500 SP/m Dia.800mm HDPE m 12500 SP/m 10500 SP/m Dia.900mm HDPE m 15500 SP/m 10500 SP/m Dia.1000mm HDPE m 18000 SP/m 100,00 Sub-total 50,100,00 Pumping Station set 0.7 Mil.SP/set Q= <1m³/min		m				0
Dia.600mm HDPE m 8000 SP/m Dia.700mm HDPE m 10500 SP/m Dia.800mm HDPE m 12500 SP/m Dia.900mm HDPE m 15500 SP/m Dia.1000mm HDPE m 15500 SP/m Dia.1000mm HDPE m 18000 SP/m Output m 18000 SP/m Sub-total 50,100,00 Pumping Station set 0.7 Mil.SP/set Sub-total 50,100,00 Q = <1m ³ /min set 1 Mil.SP/set Sub-total 50,100,00 Q = <3m ³ /min set 1 Mil.SP/set Sub-total 50,100,00 Q = <1m ³ /min set 0 Mil.SP/set Sub-total Sub-total 50,100,00 Q = <1m ³ /min set 1 Mil.SP/set Sub-total Sub-total Sub-total Construction Cost (1) sub-total sub-total Sub-total Sub-total <td< td=""><td></td><td>m</td><td></td><td></td><td></td><td>26,100,000</td></td<>		m				26,100,000
Dia.700mm HDPE m 10500 SP/m Dia.800mm HDPE m 12500 SP/m Dia.900mm HDPE m 15500 SP/m Dia.1000mm HDPE m 18000 SP/m Dia.1000mm HDPE m 18000 SP/m Sub-total 50,100,00 Pumping Station Sub-total 50,100,00 Q = <1m³/min		m	4,000			24,000,000
Dia.800mm HDPE m 12500 SP/m Dia.900mm HDPE m 15500 SP/m Dia.1000mm HDPE m 18000 SP/m Sub-total 50,100,00 Pumping Station sub-total 50,100,00 Q= <1m ³ /min set 0.7 Mil.SP/set Q= <3m ³ /min set 1 Mil.SP/set Q= m^3/min set 0 Mil.SP/set Q= n^3/min set 0 Mil.SP/set C= 7.6Q ^{0.598} [Q=m ³ /min] = Mil.SYP = Mil.SYP Construction Cost (1) 108,735,900 Engineering Services Cost (2) = (1)*10% 10,873,590 Compensation and Project-related Expense (4) Land Acquisition Cost m ² 49,000 500 SP/m ²						0
Dia.900mm HDPE m 15500 SP/m Dia.1000mm HDPE m 18000 SP/m Sub-total 50,100,00 Pumping Station sub-total 50,100,00 Q = $<1m^3/min$ set 0.7 Mil.SP/set Q = $<3m^3/min$ set 1 Mil.SP/set Q = $<3m^3/min$ set 0 Mil.SP/set Q = $(-7.6Q^{0.598} [Q=m^3/min]]$ 0 Mil.SP/set = Mil.SYP 0 Mil.SP/set Construction Cost (1) 108,735,900 10,873,590 Engineering Services Cost (2) = (1)*10% 10,873,590 Physical Contingency (3) = (1)*10% 10,873,590 Compensation and Project-related Expense (4) 10,873,590 Land Acquisition Cost m² 49,000 500 SP/m² 24,500,00 Administration Cost (5% of Construction Cost (1)) 3,262,0° 33,198,872 33,198,872						0
Dia.1000mm HDPE m 18000 SP/m Sub-total 50,100,00 Pumping Station Sub-total $50,100,00$ Q = <1m ³ /min set 0.7 Mil.SP/set Q = <3m ³ /min set 1 Mil.SP/set Q = <m<sup>3/min set 0 Mil.SP/set Q = m³/min set 0 Mil.SP/set Q = 7.6Q^{0.598} [Q=m³/min] = Mil.SYP = Mil.SYP Sub-total Construction Cost (1) 108,735,900 Engineering Services Cost (2) = (1)*10% 10,873,590 Physical Contingency (3) = (1)*10% 10,873,590 Compensation and Project-related Expense (4) Land Acquisition Cost (5% of Construction Cost (1)) 5,436,79</m<sup>						0
Sub-total 50,100,00 Pumping Station set 0.7 $Q = < 1m^3/min$ set 0.7 $Q = < 3m^3/min$ set 1 $Q = < 3m^3/min$ set 0 $Q = < 7.6Q^{0.598}$ $Q = m^3/min$ set $C = 7.6Q^{0.598}$ $Q = m^3/min$ set $= Mil.SYP$ set 0 $= Mil.SYP$ sub-total Construction Cost (1) 108,735,900 Engineering Services Cost (2) = (1)*10% 10,873,590 Physical Contingency (3) = (1)*10% 10,873,590 Compensation and Project-related Expense (4) 10,873,590 Land Acquisition Cost m² 49,000 500 SP/m² 24,500,00 Administration Cost (5% of Construction Cost (1)) state of the set of the						0
Pumping Station set 0.7 Mil.SP/set $Q = <1m^3/min$ set 1 Mil.SP/set $Q = <3m^3/min$ set 1 Mil.SP/set $Q = set 0 Mil.SP/set Q = set 0 Mil.SP/set Q = set 0 Mil.SP/set C = 7.6Q^{0.598} [Q = m^3/min] = Mil.SYP = Mil.SYP = Mil.SYP Construction Cost (1) 108,735,900 Engineering Services Cost (2) = (1)*10% 10,873,590 Physical Contingency (3) = (1)*10% 10,873,590 Compensation and Project-related Expense (4) Land Acquisition Cost m² 49,000 500 SP/m² 24,500,00 Administration Cost (5% of Construction Cost (1)) 3,262,0° 3,3198,872$	Dia.1000iiiii HDFE	111		18000		50,100,000
Q= <1m ³ /min set 0.7 Mil.SP/set Q= <3m ³ /min set 1 Mil.SP/set Q= m^3/min set 0 Mil.SP/set C= 7.6Q ^{0.598} [Q=m ³ /min] = Mil.SYP = Mil.SYP Sub-total Construction Cost (1) 108,735,900 Engineering Services Cost (2) = (1)*10% 10,873,590 Compensation and Project-related Expense (4)	Pumping Station					· · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		set		0.7	Mil SP/set	0
Q= m^3/min set 0 Mil.SP/set C= 7.6Q ^{0.598} [Q=m ³ /min] Image: Construction Cost (0, 0) Image: Construction Cost (1, 0) Image: Construction Cost (1, 0) Image: Construction Cost (1, 0) Image: Construction Cost (2, 0) Image: Construction Cost (1, 0) <th< td=""><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>						0
$C = 7.6Q^{0.598}$ [Q=m ³ /min]	•					0
$= Mil.SYP \qquad \qquad$		sei		0	WIII.51/Set	
Sub-totalSub-totalSub-totalSub-totalConstruction Cost (1)I08,735,900Physical Contingency (3) = (1)*10%10,873,590Compensation and Project-related Expense (4)Land Acquisition Cost m^2 49,000500SP/m²24,500,00Administration Cost (5% of Construction Cost (1))Sub-total33,198,872						
Construction Cost (1) 108,735,900 Engineering Services Cost (2) = (1)*10% 10,873,590 Physical Contingency (3) = (1)*10% 10,873,590 Compensation and Project-related Expense (4) 10,873,590 Land Acquisition Cost m^2 Administration Cost (5% of Construction Cost (1)) 5,436,79 Institutional Development Cost (3% of Construction Cost (1)) 3,262,07 Sub-total 33,198,872						
Construction Cost (1) 108,735,900 Engineering Services Cost (2) = (1)*10% 10,873,590 Physical Contingency (3) = (1)*10% 10,873,590 Compensation and Project-related Expense (4) 10,873,590 Land Acquisition Cost m^2 Administration Cost (5% of Construction Cost (1)) 5,436,79 Institutional Development Cost (3% of Construction Cost (1)) 3,262,07 Sub-total 33,198,872					G1- 4-4-1	0
Image: Contingency (2) = (1)*10%Image: 10,873,590Physical Contingency (3) = (1)*10%Image: 10,873,590Compensation and Project-related Expense (4)Land Acquisition Cost m^2 49,000500SP/m²24,500,00Administration Cost (5% of Construction Cost (1))5,436,79Institutional Development Cost (3% of Construction Cost (1))3,262,07Sub-total33,198,872	Construction Cost (1)				Sub-total	108 735 000
Physical Contingency $(3) = (1)*10\%$ 10,873,590Compensation and Project-related Expense (4)10,873,590Land Acquisition Costm²49,000500SP/m²24,500,00Administration Cost (5% of Construction Cost (1))5,436,795,436,79Institutional Development Cost (3% of Construction Cost (1))3,262,07Sub-total33,198,872						
Compensation and Project-related Expense (4) m ² 49,000 500 SP/m ² 24,500,00 Administration Cost (5% of Construction Cost (1)) 5,436,79 Institutional Development Cost (3% of Construction Cost (1)) 3,262,07 Sub-total 33,198,872						
Land Acquisition Cost m^2 49,000500SP/m²24,500,00Administration Cost (5% of Construction Cost (1))5,436,79Institutional Development Cost (3% of Construction Cost (1))3,262,07Sub-totalSub-total					I	10,070,070
Administration Cost (5% of Construction Cost (1))5,436,79Institutional Development Cost (3% of Construction Cost (1))3,262,07Sub-total33,198,872		m^2	49 000	500	SP/m^2	24 500 000
Institutional Development Cost (3% of Construction Cost (1)) 3,262,0' Sub-total 33,198,872	1	m	49,000	500	SP/m	
Sub-total 33,198,872		Tost (1))			
Total Project $Cost(1) + (2) + (3) + (4)$ 162 601 05			//		Sub-total	<u>33,198,872</u>
10(a) 110(c) (0) (1) + (2) + (3) + (4)	Total Project Cost (1)+(2)+(3)+(4)					163,681,952

(7) Zabadani Project

					(Unit : SP)
Description	Unit	Quantity	Uni	t Price	Amount
Sewerage Treatment Plant	set	1	-	Mil.SP/set	509,300,000
$Q = 22,200 \text{ m}^3/\text{day}$			*Refer		nate in F/S report
$C = 22Q+57 [Q=10^3 m^3/day]$					_
= - Mil.SYP					
[Correction factor] Wastewater treatmnent					
Pumping Station 1.1					
Oxidation Ditch Process 1.0					
Sludge treatment					
Gravity Thickening 0.95					
Mechanical Dewatering 1.0					
				~	
Total Mil.SYP				Sub-total	509,300,000
Pipelines					
Dia.100mm PVC	m		2000	SP/m	0
Dia.250mm PVC	m		3000	SP/m	0
Dia.300mm PVC	m		3500	SP/m	0
Dia.400mm PVC	m		4500	SP/m	0
Dia.500mm HDPE	m		6000	SP/m	0
Dia.600mm HDPE	m		8000	SP/m	0
Dia.700mm HDPE	m		10500	SP/m	0
Dia.800mm HDPE	m	100	12500	SP/m	1,250,000
Dia.900mm HDPE	m		15500	SP/m	0
Dia.1000mm HDPE	m		18000	SP/m	0
	-	1		Sub-total	1,250,000
Pumping Station					
$Q = <1m^3/min$	set		0.7	Mil.SP/set	0
$Q = \langle 3m^3/min \rangle$	set		1	Mil.SP/set	0
Q= m ³ /min	set		0	Mil.SP/set	0
$C= 7.6Q^{0.598} [Q=m^3/min]$					
= Mil.SYP					
	1				
				Sub-total	0
Construction Cost (1)					510,550,000
Engineering Services Cost $(2) = (1)*10\%$					51,055,000
Physical Contingency $(3) = (1)*10\%$					51,055,000
Compensation and Project-related Expense (4)					,,0000
Land Acquisition Cost	m ²	55,000	0	SP/m ²	0
Administration Cost (5% of Construction Cost (1))	111	55,000	0	Sr/III	25,527,500
Institutional Development Cost (3% of Construction Cost (1))	Cost (1))			25,527,500
Institutional Development Cost (570 of Constituction	COSt (1	.,,		Sub-total	40,844,000
				Suo total	
Total Project Cost $(1)+(2)+(3)+(4)$					653,504,000

Appendix for Chapter 11 Economic Analysis for Master Plan Priority Area

 $\begin{array}{c} 5\%\\ 1.25\\ 462,000\\ 5\%\\ 176,900\\ 70\\ 40\%\\ 0.82\\ 3.00\\ 0.9\end{array}$

Sludge produced (m³/day)

O&M costs Economic benefits Tourism development	0	0	-6,940	-65,725	2012	\$107	2014	2015	2016	2017	2018	2019	2020	1202	7707	2023	2024	2025
Health benefits - productive time lost Health benefits - medical expenditure Treated wastewater use Use of sludge Net economic benefits	0	•	-6,940	-65,725	-95,891	40,879 886 1,235 729 47 38,887	43,822 957 1,334 795 50 43,123	46,977 1,033 1,441 866 53 46,261	50,359 1,116 1,556 944 57 49,627	53,985 1,205 1,680 1,029 61 61 53,238	57,872 1,301 1,814 1,121 66 54,980	62,039 1,405 1,959 1,221 71 61,267	66,506 1,517 2,115 1,329 76 65,724	71,294 1,626 2,268 1,437 81 81	76,427 1,743 2,431 1,554 87 73,140	81,930 1,868 2,606 1,680 93 75,405	87,829 2,003 2,793 1,816 100 84,082	94,153 2,147 2,995 1,963 107 90,153
Assumptions Assumptions Cumulative inflation (at 7.2% p.a.) Pepulation forecast for MP priority area Generated wastewater / treated water (m ³ /day) Total population of Syria (2006) Pepulation as % of the total Syria Capital expenditure, total (SP '000) Economic benefit from one tourist (SP '000) Estim. number of tourists in MP priority area / year Extron-years lost due to ilness, total in Syria Gross domestic income per capita (SP '000) Medical water-related exp. / capita (SP '000) Economic value of treated water (SP '000)	1.0000 2.560 1.437 2.1,061,000 0.012% 177,427 5% 177,427 5% 176,900 0.82 0.82 3.00	1.0720 2.580 1.463	2,600 1,489 1,489	1.2319 1,515	1.3206 2,640 1,541	1.4157 2,660 1,568	1.5176 2,680 1,594	2,700 1,620 1,620	2.720 2.720 1.647	2,740 1,675	2.0042 2.760 1.702	2.1485 2,780 1,730	2.3032 2,800 1,757	2.4691 2,800 1,772	2.6468 2.800 1.787	2.8374 2.800 1,803	3.0417 2.800 1.818	2,800 1,833

(1) Economic Analysis for Master Plan Priority Area in Lattakia

AM11-2

(2) Economic Analysis for Master Plan Priority Area	Plan Pri	ority A	rea in	in Tartous	8													
Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
(<i>SP thousands</i>) Economic costs Capital expenditure, excl. tax O&M costs	0	0	0 -164,284	-235,188	-235,188 -326,921 -281,261	-281,261	-17,832	-18,135	- 19,441	-20,841	-22,341	-26,234	-25,674	-27,523	-42,944	46,036	-52,585	-52,904
Economic benefits Tourism development Health benefits - productive time lost Health benefits - medical expenditure Treated wastewater use Use of sludge							20,868 22,208 30,972 6,436 1,219	22,370 24,564 34,259 7,177 1,306	23,981 27,194 37,927 8,028 1,400	25,707 30,076 41,945 8,964 1,501	27,558 33,231 46,346 9,994 1,609	29,542 36,685 51,163 11,125 1,725	31,669 40,464 56,433 12,368 1,849	33,950 44,643 62,261 13,779 1,983	36,394 49,214 68,637 15,329 2,125	39,014 54,212 75,608 117,031 2,278	41,823 59,675 83,226 18,899 2,442	44,835 65,644 91,550 20,947 2,618
Net economic benefits EIRR =	0 3.2%	0	0 -164,284	-235,188	-235,188 -326,921 -281,261	-281,261	62,652	70,235	77,689	85,852	94,788	102,281	115,259	127,110	126,630 139,829		151,039	170,072
Assumptions Cumulative inflation (at 7.2% p.a.) Population forecast for MP priority area Generated wastewater / treated water (m ³ /day) Total population of Syria (2006) Population as % of the total Syria Capital expenditure, total (SP '000) Taxes (overall arearge) Economic benefit from one tourist (SP '000) Estim, number of tourists in MP priority area Person-yeans lost due to Illness, total in Syria Gross domestic income per capita (SP '000) Achievable reduction of filness, total in Syria Gross domestic income per capita (SP '000) Achievable reduction of filness Medical water-related exp. / capita (SP '000) Economic value of treated water (SP'm ⁵) Studge produced (m ³ /day)	$\begin{array}{c} 1.0000\\ 50.340\\ 9.796\\ 0.21,061\\ 0.239\%\\ 1.060,688\\ 1.060,688\\ 1.25\\ 2.20,000\\ 1.25\\ 5\%\\ 1.75\\ 0.82\\ 0.82\\ 3.00\\ 3.00\\ 3.00\end{array}$	1.0720 52,320 10,315	1.1492 54.300 10,834	1.2319 56.280 11,353	1.3206 58.260 11,872	1.4157 60.240 12.391	1.5176 62.220 12,910	64,200 13,429 13,429	1.7440 66.300 14,012	68,400 14,596	2.0042 70,500 15,179	2,1485 72,600 15,763	74.700 16,346	2.4691 76,880 16,988	79,060 17,630	2.8374 81.240 18.272	3.0417 83.420 18.914	3.2607 85.600 19.556

(3) Economic Analysis for Master Plan Priority Area	r Plan Pri	ority A	rea in .	in Deir-Ez-zor	z-z <i>or</i>													
Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
<i>(SP thousands)</i> Economic costs Capital expenditure, excl. tax O&M costs	0	0	-17,168	-17,168 -137,252 -189,689 -159,223	-189,689	-159,223	-12,010	-11,389	-12,209	-13,088	-14,031	-17,325	-16,124	-17,285	-26,892	-28,828	-34,137	-33,129
Economic benefits Tourism development Health benefits - productive time lost Health benefits - medical expenditure Treated wastewater use Use of sludge							1,138 32,980 45,995 902 526	1,220 36,502 50,908 1,008 564	1,308 40,131 55,969 1,120 605	1,402 44,093 61,495 1,244 648	1,503 48,418 67,527 1,380 695	1,611 53,137 74,108 1,528 745	1,727 58,285 81,287 1,691 799	1,852 63,585 88,679 1,864 856	1,985 69,346 96,713 2,053 918	2,128 75,606 105,445 2,259 984	2,281 82,409 1114,933 2,485 1,055	2,446 89,800 125,240 2,731 1,131
Net economic benefits EIRR =	0 14.7%	•	-17,168	-17,168 -137,252 -189,689 -159,223	-189,689	-159,223	69,005	78,249	86,320	95,147	104,797	113,061	126,867	138,695	143,205	156,611	167,971	187,087
Assumptions Cumulative inflation (at 7.2% p.a.) Population forecast for MP priority area Generated wastewater / treated water (m ³ /day) Total population of Syria 2006) Population as % of the total Syria Capital expenditure, total (SP '000) Taxes (overall average) Economic benefit from one tourist (SP '000) Economic benefit from one tourist (SP '000) Estim. number of tourists in MP priority area / year Expected increase of the number of tourists is y Person-yeans lost due to illness, total in Syria Gross domestic income per expita (SP '000) Achievable reduction of filmess Medical water-related exp. / capita (SP '000) Economic value of treated water (SP/m ⁵) Sludge produced (m ³ /day)	1.0000 74,400 8,105 21,061,000 353% 529,824 1,25 1,25 1,25 1,25 170 40% 0,50 0,50 0,50 0,50	1.0720 77,400 8,563	1.1492 80,400 9,022	1.2319 83,400 9,481	1.3206 86,400 9,939	1,4157 89,400 10,398	1.5176 92,400 10,856	1.6269 95,400 11,315	1.7440 97,840 11,735	1.8696 100,280 12,154	2,0042 102,720 12,574	2.1485 105.160 12.993	2.3032 107,600 13,413	2.4691 109,500 13,790	2.6468 111.400 14,166	2.8374 113.300 14,543	3.0417 115,200 14,919	3.2607 117,100 15,296

Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
(SP thousands)																			
Economic costs Capital expenditure, excl. tax O&M costs	0	0	-6,189	-49,328	-69,276	-57,623	-6,211	-4,928	-5,283	-5,664	-6,071	-8,793	-6,977	-7,480	-11,319	-12,134	-16,242	-13,945	
Economic benefits Tourism development Health benefits - productive time lost Health benefits - medical expenditure Treated wastewater use U se of sludge							569 10,986 15,322 304 155	610 11,938 16,649 334 166	654 12,945 18,054 365 178	701 14,035 19,574 400 191	752 15,216 21,220 437 205	806 16,493 23,002 478 220	864 17,876 24,930 522 235	926 19,337 26,968 570 252	993 20,916 29,170 622 271	1,064 22,622 31,550 678 290	1,141 24,465 34,121 740 311	1,223 26,457 36,898 807 333	
Net economic benefits	0	0	-6,189	-49,328	-69,276	-57,623	20,970	24,603	26,735	29,046	31,554	31,986	37,215	40,321	40,381	43,780	44,224	51,439	
EIRR = <u>Assumptions</u> Cumulative inflation (at 7.2% n.a.)	11.4%	1.0720	1.1492	1.2319	1.3206	1.4157	1.5176	1.62.69	1.7440	1.8696	2.0042	2.1485	2.3032	2.4691	2.6468	2.8374	3.0417	3.2607	
Population forecast for MP priority area	28,260	28,680	29,100	29,520	29,940	30,360	30,780	31,200	31,560	31,920	32,280	32,640	33,000	33,300	33,600	33,900	34,200	34,500	
Generated watewater / treated water (m²/day) Total population of Syria (2006) Total population as % of the total Syria Capital expanditure, total (SP '000) Taxes (overall average) Economic benefit from one tourist (SP '000) Economic benefit from one tourist (SP '000) Estim. number of tourists in MP priority area / year Expected increase of the number of tourists by Person-years lost due to illness, total in Syria Gross domesit income per eapita (SP '000) Achievable reduction of illness Medical water-related exp. / capita (SP '000) Economic value of treated water (SP/m ⁵) Sludge produced (m ³ /day)	3.170 21.061.000 192.017 5% 6.000 5% 176.900 4.07 0.82 0.82 0.50 2.8	3,252	3,334	3,416	3,498	3,581	3,063	3,745	3,824	3,903	3,983	4,062	4,141	4,216	4,292	4,367	4,443	4,518	

AM11-5

(4) Economic Analysis for Master Plan Priority Area in Hassakeh

(5) Economic Analysis for Master Plan Priority Area in Raqqa	r Plan Pri	ority A	rea in	Raqqa															
Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
(SP thousands)																			
Economic costs Capital expenditure, excl. tax	0	0	-9,626	-77,456 -115,814		-96,875													
O&M costs							-8,397	-7,272	-7,796	-8,357	-8,959	-11,888 -10,295		-11,036	-16,966	-18,187	-22,730	-20,900	
Economic benefits																			
Tourism development							569	610	654	701	752	806	864	926	993	1,064	1,141	1,223	
Health benefits - productive time lost							31,631	34,704	38,162	41,939	46,062	50,560	55,468	60,995	67,030	73,618		88,649	
Health benefits - medical expenditure							44,114	48,400	53,223	58,490	64,240	70,514	77,359	85,067	93,484	102,671	112,698	123,635	
Treated wastewater use							1,036	1,146	1,273	1,412	1,565	1,732	1,915	2,126	2,357	2,611	2,889	3,194	
Use of sludge							327	350	376	403	432	463	496	532	570	611	655	702	
Net economic benefits	0	0	-9,626	-77,456 -115,814		-96,875	68,952	77,588	85,516	94,185	103,659	103,659 111,724 125,311	125,311	138,078	138,078 146,898 161,777		174,804	195,801	
EIRR =	24.1%																		
Assumptions																			
Cumulative inflation (at 7.2% p.a.)	1.0000	1.0720	1.1492	1.2319	1.3206	1.4157	1.5176	1.6269	1.7440	1.8696		2.1485	2.3032	2.4691			3.0417	3.2607	
Population forecast for MP priority area	76,140	78,220	80,300	82,380	84,460	86,540	88,620	90,700	93,040	95,380	97,720	00,060	102,400	105,040			112,960	115,600	
Generated wastewater / treated water (m^3/day)	10,076	10,474	10,873	11,272	11,670	12,069	12,467	12,866	13,330	13,794		14,722	15,186	15,727			17,348	17,889	
Total population of Syria (2006)	21,061,000																		
Population as % of the total Syria	0.362%																		

Assumptions			
Cumulative inflation (at 7.2% p.a.)	1.0000	1.0720	1.1492
Population forecast for MP priority area	76,140	78,220	80,300
Generated wastewater / treated water (m ³ /day)	10,076	10,474	10,873
Total population of Syria (2006)	21,061,000		
Population as % of the total Syria	0.362%		
Capital expenditure, total (SP '000)	315,549		
Taxes (overall average)	5%		
Economic benefit from one tourist (SP '000)	1.25		
Estim. number of tourists in MP priority area / year	6,000		
Expected increase of the number of tourists by	5%		
Person-years lost due to illness, total in Syria	176,900		
Gross domestic income per capita ('SP '000)	70		
Achievable reduction of illness	40%		
Medical water-related exp. / capita (SP '000)	0.82		
Economic value of treated water (SP/m ³)	0.50		
Sludge produced (m^3/day)	5.9		

aa
5
a
ea in .
rec
2
Ü,
5
1
4
u
Pla
er
St
la
for
5
ŝ
ssi
na
~
ŭ
u
и
20
E
Ġ
Ċ

Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
(<i>SP thousands</i>) Economic costs Capital expenditure, excl. tax O&M costs	0	0	-31,586	-68,008	-89,256	4,022	-3,103	-3,326	-3,566	-3,822	-6,228	4,393	-4,709	-5,048	-7,061	-10,586	-8,115	-8,699
Economic benefits Tourism development Health benefits - productive time lost Health benefits - medical expenditure Treated wastewater use Use of sludge						17,696 12,652 17,645 1,400 67	18,970 13,849 19,314 1,540 72	20,336 15,152 21,132 1,693 77	21,801 16,530 23,054 1,862 83	23,370 18,028 25,143 2,046 89	25,053 19,656 27,413 2,247 95	26,857 21,425 29,880 2,467 102	28,790 23,346 32,560 2,706 109	30,863 25,387 35,407 2,969 117	33,085 27,601 38,494 3,255 126	35,468 30,002 41,843 3,567 135	38,021 32,606 45,474 3,907 144	40,759 35,429 49,411 4,278 155
Net economic benefits EIRR =	0 26.1%	•	-31,586	-68,008	-89,256	45,372	50,570	54,987	59,680	64,765	68,141	76,235	82,695	89,578	95,375	100,294 111,894		121,178
Assumptions Cumulative inflation (at 7.2% p.a.) Population forecast for MP priority area Generated wastewater / treated water (m ³ /day) Total population of Syria (2006) Total population of Syria (2006) Capital expenditure, total (SP '000) Taxes (overall average) Economic breaft from one tourist (SP '000) Estim. number of tourists in MP priority area / year Estim. number of tourists in MP priority area / year Estim. number of tourists in MP priority area / year Estim. number of tourists in MP priority area / year Estim. number of tourists in MP priority area / year Gribevable reduction of illness, total in Syria Gribevable reduction of illness. total in Syria Medical water-related exp. / capita (SP '000) Economic value of treated water (SP/m ⁵) Sludge produced (m ³ /day)	$\begin{array}{c} 1.0000\\ 34,000\\ 2,615\\ 2,615\\ 2,615\\ 0.161,000\\ 0.161\%\\ 198,789\\ 198,789\\ 198,789\\ 198,789\\ 198,789\\ 128\\ 200,000\\ 1,25\\ 200,000\\ 1,25\\ 1,25\\ 200,000\\ 000\\ 1,25\\ 000\\ 1,25\\ 000\\ 000\\ 0.82\\ 3.00\\ 1.3\end{array}$	1.0720 34,800 2.694	35,600 2,773 2,773	1.2319 36,400 2.852	1.3206 37,200 2.931	1,4157 38,000 3,010	1.5176 38,800 3,089	39,600 3,168 3,168	1. 7440 40,300 3,250	1.8696 41,000 3,332	2.0042 41.700 3.413	2.1485 42,400 3,495	3,577 3,577	2.4691 43.720 3.660	2.6468 340 3.744	2.8374 44,960 3.827	3.0417 45,580 3.911	3.2607 46.200 3.994

(7) Economic Analysis for Master Plan Priority Area	Plan Pri	ority A		Damas	in Damascus Rural	ral												
Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
(<i>SP thousands</i>) Economic costs Capital expenditure, excl. tax O&M costs	0	-24,848 -145,038		-357,740 -204,802	-204,802	-24,572	-25,276	-27,683	-349 -30,306	-9,197 -33,163	-38,406	-39,663	-43,350	47,341	-51,682	-59,418	-61,534	-67,112
Economic benefits Tourism development Health benefits - productive time lost Health benefits - medical expenditure Treated wastewater use Use of sludge						100,869 18,918 26,385 8,096 1,421	108,132 20,616 8,889 1,523	115,917 22,460 31,324 9,754 1,633	124,263 24,405 34,037 10,685 1,751	133,210 26,514 36,978 11,701 1,877	142,801 28,800 40,166 12,807 2,012	153,083 31,278 43,622 14,012 2,157	164,105 33,963 47,367 15,324 2,312	175,921 36,804 51,328 16,744 2,478	188,587 39,877 55,614 18,288 2,657	202,165 43,202 60,252 19,967 2,848	216,721 46,799 65,268 21,794 3,053	232,325 50,690 70,695 23,780 3,273
Net economic benefits EIRR =	0 18.0%	-24,848 -145,038		-357,740 -204,802		129,696	141,112	151,772	162,736 166,043	166,043	186,169	202,333	217,410	233,456	250,684	266,168	289,048	310,378
Assumptions Cumulative inflation (at 7.2% p.a.) Population forecast for MP priority area Generated water (m ³ /day) Generated water (tm ³ /day) Total population of Syria (2006) Population as % of the total Syria Capital expenditure, total (SP '000) Taxes (overall average) Economic benefit from one tourist (SP '000) Estim, number of tourists in MP priority area Percoversan solute of the number of tourists by Percovers and the to Illness, total in Syria Gross domestic income per capita (SP '000) Achievable reduction of filness Medical water-related exp. / capita (SP '000) Economic value of treated water (SP/m ³) Studge produced (m ³ /day)	1.0000 52.120 15.303 21,661,000 0.247% 781,025 5% 1,140,025 5% 1,140,025 5% 1,140,025 176,900 176,900 176,900 176,900 3.00 3.275	1.0720 53,060 15,724	1.1492 54,000 16,145	1.2319 54.940 16,566	1.3206 55,880 16,987	1,4157 56,820 17,408	1.5176 57,760 17,829	1.6269 58,700 18,250	1.7440 59,500 18,651	1.8696 66,300 19,052	2.0042 61,100 19,452	2. 1485 19,853 19,853	2.3032 62.700 20.254	2.4691 63,380 20,643	2.6468 64.060 21,033	2.8374 64.740 21,422	3.0417 65.420 21,812	3.2607 66.100 22,201

2022 2023 2024 2025	-9,197 -8,596 -103,164 -113,653 -112,872 -121,869 -165,879 -187,869 -205,703 -207,794	338,464 362,834 388,958 416,962 275,727 301,131 328,764 358,816 384,544 419,974 458,513 500,424 43,458 47,795 52,530 57,700 6,753 7,239 7,760 8,319	876,314 943,864 1,023,062 1,126,108	28.806 29.580 30.355 31.130 2.2 2.2 2.0 2.0
2021	2 -121,869 -1	315,731 252,376 351,978 39,489 6,299	837,706	28,031 1.8
2019 2020	l3,653 -112,87	274.744 294.526 210.983 230.919 294.249 322.052 32.563 35.856 5.482 5.876	698,886 770,481	2.6,505 27,256 2.0 1.8
2018 2	103,164 -1	256,291 192,683 268,727 29,550 5,113	644,088	25,755 2.0
6 2017	-349 -9,197 -82,949 -89,596	223,020 239,078 160,484 175,890 223,819 245,306 24,278 26,796 4,450 4,770	303 588,277	2.4.254 25.004 2.0 1.9
2015 2016	0 - -76,789 -82,	208,041 223, 146,353 160, 204,112 223, 21,977 24, 4,151 4,	503,694 548,303	23,503 24,
2014	0 -76,613	194,068 133,225 185,804 19,902 3,872	456,386	2.2
2 2013	### -594,982 -33,435	159,444 32,456 45,265 10,225 1,535	### -381,027	21,330 22,055
2011 2012	-990,696 ######		-990,696 ######	20,606 21.
2010	-24,848 -380,832		-24,848 -380,832 .	19,882
2009			0 -24,84	19,157
2008	0		•	18,433 764,641 15.0% 25.5% 3.2% 14.7% 11.4% 24.1% 24.1% 26.1%
		conomic benefits Tourism development Health benefits - productive time lost Health benefits - medical expenditure Treated wastewater use Use of sludge		Generated wastewater / treated water ('000 m ³ /year) Unit O&M cost (SP/m ³ , in 2008 prices) NPV for Master Plan Total (at 10%) Average EIRR for Master Plan Lattakia Tartous Deir-Ez-zor Hasskeh Raqqa Daraa Daraa

(8) Economic Analysis for Master Plan Average

Appendix for Chapter 12

	-		Tuble III 20101 The Description of Euge	
No	Map (Layer) Name	Туре	Source	Description
1	ORGAN_PLAN	Polygon	Provided by Regional Planning of Ministry of Housing and Construction	The polygon for organization plan
2	BOUND_VILLAGE	Polygon	Provided by General Organization of Remote Sensing	Boundary for village or small city
3	WR	Point	Prepared by JICA study team from the result for field survey, 2007	The point for water resources
4	WPS_I	Point	Prepared by JICA study team from the result for field survey, 2007	The point for industrial plant
5	WPS_L	Point	for field survey, 2007	The point for livestock
6	SEWER	Polyline	Prepared by JICA study team from the result for field survey, 2007	Sewer line
7	STP	Point	Prepared by JICA study team from the result for field survey, 2007	The point for sewerage treatment plant
8	PS	Point	Prepared by JICA study team from the result for field survey, 2007	The point for pumping station

Appendix 12.1 Definition of Attribute Data

Table A12.1.1 The Description of Layers

No	Map (Layer) Name	No.	Field Name	Туре	With	Unit	Description
	* • •	1	id	Integer	15	-	Key ID
1	ODCAN DI AN	2	Name	String	50	-	Name of the area for organization plan
1	ORGAN_PLAN	3	Pop	Integer	15	person	Population of the area for organization plan
		4	Remark	String	50	-	Remark
		1	id	Integer	15	-	Key ID
_		2	Name	String	50	-	Name of the village or small city
2	BOUND_VILLAGE	3	Рор	Integer	15	person	Population of the village or small city
		4	Remark	String	50	-	Remark
		1	ID	Integer	15	-	Key ID
		2	LAT_DEG	Integer	9	degree	Latitude (degree)
		3	LAT_MIN	Integer	9	minute	Latitude (minute)
		4	LAT_SEC	Integer	9	second	Latitude (second)
		5	LON_DEG	Integer	9	degree	Longitude (degree)
		6	LON_MIN	Integer	9	minute	Longitude (minute)
		7	LON_SEC	Integer	9	second	Longitude (second)
		8	Name	String	50	-	Name of the water resource
3	WR (Water Resources)						Intake method
							<category></category>
		9	I Method	Integer	1		1: Surface water
		9	I_Ivietilou	Integer	1	-	2: Groundwater
							3: Spring
							4: Others
		10	Amount_D	Integer			Design amount of intake water
		11	Amount_A	Integer			Actual amount of intake water
		12	Remark	String	50		Remark
4	WPS_I	1	ID	Integer	15		Key ID
	(Industrial Plant)	2	LAT_DEG	Integer	9	degree	Latitude (degree)
		3	LAT_MIN	Integer	9	minute	Latitude (minute)
			LAT_SEC	Integer			Latitude (second)
		5	LON_DEG	Integer		Ų	Longitude (degree)
		6	LON_MIN	Integer			Longitude (minute)
		7	LON_SEC	Integer		second	Longitude (second)
		8	Name	String	50		Name of the industrial plant
							Industry sector
							<category></category>
							1: Olive
		9	I_Sector	Integer	2		2: Food
			_	U			3: Chemical
							4: Construction material
							5: Fablic 6: Others
		10	Como TD	Integra	10		
		10	Capa_TD	Integer	10	-	Design capacity of the industrial pretreatment facility
		11	Capa_TA	Integer	10		Actual capacity of the industrial pretreatment
		11	Capa_1A	Integer	10	-	facility
		12		Integar	10		Design amount of dischage
			Dis_D	Integer			Actual amount of dischage
			Dis_A Dis_LAT_DEG	Integer			
			Dis_LAT_DEG	-		-	Latitude (degree)
1		13	Dis_LAT_MIN	meger	9	minute	Latitude (minute)

Table A12.1.2	The Definition	of Attribute Data
---------------	----------------	-------------------

No	Map (Layer) Name	No.	Field Name	Туре	With	Unit	Description
	· · · ·	16	Dis_LAT_SEC	• •			Latitude (second)
			Dis_LON_DEG		9	degree	Longitude (degree)
		18	Dis_LON_MIN	Integer	9	minute	Longitude (minute)
			Dis_LON_SEC	-	9	second	Longitude (second)
		20	WQ_BOD	Integer	5	mg/L	Water quality for BOD
							Type of discharge
							<category></category>
							1: Drainage or river
		21	Type_Dis	Integer	1	_	2: Sewer
		21	Type_Dis	integer	1	_	3: Utilization for agriculture
							4: Others
							5: Non discharge
							6: Unknown
			Remark	String	50	-	Remark
		1	ID	Integer	15	-	Key ID
			LAT_DEG	Integer			Latitude (degree)
			LAT_MIN	Integer			Latitude (minute)
			LAT_SEC	Integer			Latitude (second)
			LON_DEG	Integer		-	Longitude (degree)
			LON_MIN	Integer			Longitude (minute)
			LON_SEC	Integer	9	second	Longitude (second)
		8	Name_L	String	50	-	Name of Location
							Species of livestock
							<category></category>
		9	S_Live	Integer	1	-	1: Sheep
							2: Cow 3: Poulty
5							4: Others
		10	Num_H	Integer	10	No	Number of heads
	WPS_L		Dis_LAT_DEG	-			Latitude (degree)
	(Livestock)		Dis_LAT_MIN	· ·		-	Latitude (minute)
			Dis_LAT_SEC				Latitude (second)
			Dis_LON_DEG	-			Longitude (degree)
			Dis_LON_MIN	-		-	Longitude (minute)
			Dis_LON_SEC	-			Longitude (second)
			WQ_BOD	Integer	5		Water quality for BOD
				0.5			Type of discharge
							<category></category>
							1: Drainage or river
		10	Tuna Dia	Integer	1		2: Sewer
		10	Type_Dis	Integer	1	-	3: Utilization for agriculture
							4: Others
							5: Non discharge
							6: Unknown
			Remark	String	50	-	Remark
6	SEWER		ID	Integer	15	-	Key ID
	(Sewer)		Name_L	String	50		Neme of area
		3	C_Area	Integer		m ²	Catchment area of sewer
		4	S_Pop	Integer			Served population of sewer
			Length	Integer			Length
		6	Diameter	Integer	5	mm	Diameter

No	Map (Layer) Name	No.	Field Name	Туре	With	Unit	Description
		7	C_Year	String	4	year	Construction year
		8	R_Year	String	50	year	Reparing record (year)
		9	Remark	String	50	-	Remark
		1	ID	Integer	15	-	Key ID
		2	LAT_DEG	Integer	9	degree	Latitude (degree)
		3	LAT_MIN	Integer	9	minute	Latitude (minute)
		4	LAT_SEC	Integer	9	second	Latitude (second)
		5	LON_DEG	Integer	9	degree	Longitude (degree)
		6	LON_MIN	Integer	9	minute	Longitude (minute)
		7	LON_SEC	Integer	9	second	Longitude (second)
		4	Name	String	50	-	Name of sewerage treatment plant
		5	S_Area	Integer	15	m ²	Served area
							Treatment method
	STP						<category></category>
7	(Sewerage Treatment						1: Activated Sludge
'	Plant)	6	T Mathad	Integra	1		2: Extended Airation
	i iaiit)	6	T_Method	Integer	1	-	3: Wet Land
							4: Oxidation Ditch
							5: Lagoon
							6: Others
		7	Capa_D	Integer	10	m ³ /day	Design capacity of sewerage treatment plant
		8	Capa_A	Integer	10	m ³ /day	Actual capacity of sewerage treatment plant
		9	S_Pop	Integer	15	person	Served population of sewerage treatment
							plant
		10	C_Year	String	4	year	Construction year
		11	R_Year	String	50	year	Reparing record (year)
		12	Remark	String	50	-	Remark
		1	ID	Integer	15	-	Key ID
		2	LAT_DEG	Integer	9	degree	Latitude (degree)
		3	LAT_MIN	Integer	9	minute	Latitude (minute)
		4	LAT_SEC	Integer	9	second	Latitude (second)
		5	LON_DEG	Integer	9	degree	Longitude (degree)
		6	LON_MIN	Integer	9	minute	Longitude (minute)
	PS	7	LON_SEC	Integer	9	second	Longitude (second)
6	(Pumping Station)	4	Name	String	50	-	Name of pumping station
	(i uniping station)	5	Num_PD	Integer	2	No	Design number of pumps
		6	Num_PA	Integer	2	No	Actual number of pumps
		7	Capa_D	Integer	10	m ³ /day	Total design capacity of pumps
		8	Capa_A	Integer	10	m ³ /day	Total actual capacity of pumps
		9	C_Year	String	4	year	Construction year
		10	R_Year	String	50	year	Reparing record (year)
		11	Remark	String	50	-	Remark

"D" Streams					Governorates									
Contents	Nur	nber	Rural Dar'aa Tartous Lattakia Raqqa Dier-ez-zor Hassakeh											
Concents	Ivui	noer	Damascus	Dai aa	Tattous	LattaKia	Кацца	Diel-ez-zoi	Hassaken					
Large rivers	01	1												
Small river from 5-10 meters	02	1				1	1							
River under 5 meters	02	2	1	1	1	. 1	1	1	1					
Seasonal stream dry in summer	03	0	1	1	1	. 1	1	1	1					
Channel wish its width is more than 5 meters	04	1	1				1	1						
Channel wish its width is less than 5 meters	04	2	1	1	1	. 1	1	1	1					
Underground channel	04	3	1	1	1	. 1	1	1	1					
Dam	05	1		1	1		1							
A dam with a serviceable road for vehicles	05	2												
A dam with a path	05	3												
A dam with a (unknown)	05	4												
Waterfalls	06	1												
A dam to narrow a water path	06	2												
Spring	07	1	1	1	1	. 1	1	1	1					
Permanent well	07	2	1	1	1	. 1	1	1	1					
Seasonal well	07	3	1	1	1	. 1	1	1	1					
Factory	07	4	1		1		1							
Circular big tank	08	1	1	1	1	. 1	1	1	1					
Square big tank	08	2	1	1	1	. 1	1	1	1					
Spring	08	3	1	1	1		1		1					
Cattle water sources	08	4		1	1		1	1	1					
Permanent swamp	09	1	1	1	1	. 1	1	1						
Seasonal swamp	09	2	1	1	1	. 1	1	1	1					
Fish pool	09	3		1										
Water mill	10	1			1	. 1	1		1					
Fire mill	10	2	1	1	1	. 1	1	1	1					
Wind mill	10	3					1	1	1					
Waterwheel	11	1												
Wells in a house	11	2	1			1	1	1	1					
Water Pipe line under ground	12	0	1	1	1	. 1	1	1	1					
Water Pipe line above ground	12	2	1	1	1	. 1	1	1	1					
Swimming pool	12	3						İ						
Lakes	13	0		1			1							
Artificial lakes	13	1												
Valleys	13	2												
Marine boarders	13	3			1									

Table A12.1.3 The GEC's Definition of Attribute Data for the Basic Digital Map and the Ascertainment of Presence for Layers in Seven Governorates

"C" Settlements lines					G	overnorat	tes		
Contents	Nur	nber	Rural	Dar'aa	Tartous	Lattakia	Raqqa	Dier-ez-zo	Hassakeh
Settlement curves	01	0	Damascus 1	1	1	1	1	r 1	1
Intermittent curves	01	1	1	1	1	1	1	1	1
Curves under sea	01	2							
Stony collapse between 1-3 m	02	1		1		1	1	1	
Stony collapse between 3-10 m	02	2	1	1	. 1	1	1	1	1
Stony collapse more than 10 m	02	3		1	1	1	1	1	1
Rocky sweep	03	0	1	1	. 1		1	1	1
"P" Communities	•	•		,	G	overnorat	tes	,	
Contents	Nur	nber	Rural Damascus	Dar'aa	Tartous	Lattakia	Raqqa	Dier-ez-zo r	Hassakeh
Stony or asphalts building	01	1	1	1	1	1	1	1	1
(unknown)	01	2						1	
Governmental building	02	1	1	1	1	1	1	1	1
School	02	2	1	1	. 1	1	1	1	1
A precarious wall	03	1		1		1	1	1	1
A good wall	03	2		1	1	1	1	1	1
Barbed	03	3				1	1	1	1
Airport	04	1		1	1		1	1	
Sailing flying centre	04	2				1	1	1	1
Airstrip	04	3				1			
Barracks	04	4							
Governmental hospital	05	1	1	1				1	1
Governmental hospital	05	2						1	
Playground	05	3					1		
Mosque	06	1		1			1		
Church	06	2							
A small mosque	06	3	1	1	1	1	1	1	1
A small church	06	4	1	1	1	1		1	1
Islamic graveyard	07	1	1	1	1	1	1	1	1
Christian graveyard	07	2			1		1		1
Jewish graveyard	07	3							
Islamic sepulcher	07	4	1	1	1	1	1	1	1
Christian sepulcher	07	5	1	1	1				1
Quarry	08	1	1	1	1	1	1	1	1
Cave	08	2	1	1	1	1	1		
Wreckage	08	3	1	1	1	1	1	1	1
Animal yard	08	4	1	1	1		1		
Volcano areas	10	0		1	1				
Stones	10	1	1		1	1			

"G" Plant cover					C	Governorate	es		
Contents	Nur	nber	Rural	Dar'aa	Tartous	Lattakia	Raqqa	Dier-ez-zor	Hassakeh
		i	Damascus						
Olive	01	0							
Cypress	02	0		1					
Citrus fruits	03	0							
Oak	04	0							
Forest	05	0							
Fruitful trees	06	0	1	1	1	1	1	1	1
Palm trees	07	0							
Vine grape	08	0							
Spiny fig	09	0							
High forest and plants	10	0							
Rice farm	11	0							
Low grass	12	0							
Fence of large trees	13	0							
Fence of small trees	14	0							
Boarders between different areas	15	0							
"R" Roads		I			[Governorate	es	ļ	
Contents	Nu	nber	Rural	Dar'aa	Tartous	Lattakia	Raqqa	Dier-ez-zor	Hassakeh
			Damascus						
Highway	01	1	1	1	1	1		1	1
First class road	01	2	1	1	1	1	1	1	1
Road in the city	01	3	1	1	1	1	1	1	1
Second class road	01	4	1	1	1	1	1		1
Third class road	01	5	1	1	1	1	1	1	1
Stony road but not asphalt	02	1	1	1	1	1		1	1
Earthy road serviceable in summer	02	2	1	1	1	1	1	1	1
Non serviceable road for vehicles	02	3	1	1	1	1	1	1	1
Impact of Romanian path /1st class	02	4	1	1		1		1	
Digging road	02	5				1	1	1	1
Pavement in the sea	02	6							
Road Supporter wall	03	1							1
Trees road	04	1							
Mineral bridge	05	1	1				1	1	1
Wooden or cement bridge	05	2	1					1	1
Bridge	05	3	1	1	1	1	1	1	1
Small bridge	05	4	1	1	1	1	1	1	1
Normal single Railroad	06	1	1	1	1	1	1	1	1
Tight single Railroad	06	2	1	1	1				1
Railroad near the road	06	3							
A small train station	07	1				1			
Stop station on a normal way	07	2							
Railway in a tunnel	07	3				1			
Impact of a neglectful railroad	07	4		1					

A railway cut the road	07	5					
A railroad passes under the road	07	6					
A railroad passes above the road	07	7					
Impact of an old Romanian arch	08	0					
Under construction road	08	1	1	1			1

"O" Others			Governorates							
Contents	Nur	nber	Rural Damascus	Dar'aa	Tartous	Lattakia	Raqqa	Dier-ez-zor	Hassakeh	
International boarders	01	1	1	1	1	1	1	1	1	
Governorates boarders	01	2		1		1				
Provinces boarders	01	3								
Suburbs boarders	01	4								
Energy transporting line without poles	02	1	1	1	1	1	1	1	1	
Energy transporting line with poles	02	2				1	1	1	1	
Telephone line above ground	02	3		1		1	1	1	1	
Telephone line under ground	02	4					1	1		
Gasoline station	03	1	1	1	1	1	1	1	1	
Petrol well	03	2					1	1	1	
Petrol tank	03	3	1	1	1	1	1	1	1	
Petroleum pipe lines	04	0	1	1	1	1	1	1	1	
Reinforce stations	05	1				1	1		1	
Sending and receiving stations	05	2	1		1	1	1	1	1	
Geodetic points - degrees 1-2 -	06	1								
Geodetic points degree 3 and less	06	2								
Settling place	07	1								
Buoy	07	2								
(unknown)	07	3			1	1				
Gas pipe lines	08	0						1		
International boarders	08	1								
Agricultural arboretum	09	0								

The basic digital map provided from regional planning in the ministry of housing and construction has various layers. JICA Study Team considered the utilization of these layers such as wells and geodetic points. However, attribute data in each layer is encoded and it is impossible to obtain the information for code due to the military secret. Therefore, JICA Study Team determined to utilize the features regarding basic map, such as road, river, channel, drainage, railway, contour, bridge and administrative boundary.

	.1 The Attenuces List of	GIS Training for Introductory Part					
Governorate	Name of Participants	Position					
Hassakeh	Goraine Mally	Engineer, General establishment of potable water and sewage					
Deir-ez-zor	Mazen Abdul Kareem	Director, General establishment of potable water and sewage					
Raqqa	Mouhammad AlFandi	Engineer, General Establishment of potable water and sewerage					
Rural Damascus Hassan AlAswad		Engineer, General establishment of potable water and sewage					
Lattalia	Naji Ali	GIS Team Manager, General Sewerage Company					
Rural Damascus	Bassam Abarid	Engineer of study department, General Establishment of potable water and sewerage					
Tartous	Wajdi Abboud	Engineer in general establishment of potable water and sewage					
-	Nour elHouda Bilal	Engineer, General company of studying and consulting (GCEC)					
Ministry of Housing and Construction	Eyad Ali	Engineer, Department of Sewerage, Ministry of Housing and Construction					
Ministry of Housing and Construction Ghassan Tarboush		Engineer, Department of Sewerage, Ministry of Housing and Construction					
Ministry of Housing and Construction	Maher AlKhateeb	Engineer, Department of Sewerage, Ministry of Housing and Construction					
Ministry of Housing and Construction Wessal Khalil		Engineer, Department of Sewerage, Ministry of Housing and Construction					

Appendix 12.2 Attendees List of GIS Training

Table A12.2.1 The Attendees List of	GIS Training for Introductory Part
	Sis maning for marouactory rare

Table A12.2.2 The Attendees List of GIS Training for Application Part

Governorate	Name of Participants	Position
Lattakia	Manal Ibrahim	Mechanical Engineer, General Establishment of potable water and sewerage
Lattakia	Naji Ali	GIS Team Manager, General Sewerage Company
Tartous	Rami Suleiman	Engineer, General Establishment of potable water and sewerage
Tartous	Nadeem yousef	Engineer, General Establishment of potable water and sewerage
Tartous	Dami Momga	Engineer, General Establishment of potable water and sewerage
Tartous	Ali Thabet Ahmad	Engineer, General Establishment of potable water and sewerage
Deir-ez-zor	Wael Al Khalaf	Engineer, General Establishment of potable water and sewerage
Deir-ez-zor	Sami Malla Hammoud	Engineer, General Establishment of potable water and sewerage
Raqqa	Mohammad Al Fandi	Engineer, General Establishment of potable water and sewerage

Governorate	Name of Participants	Position			
Raqqa	Mohammad Ahmad Al Khalil	Engineer, General Establishment of potable water and sewerage			
Rural Damascus	Yousef Deeb	Supervisor of civil engineering, General Establishment of water and sewerage			
Rural Damascus	Sahar AL-Haidar	Mechanical Engineer, General Establishment of potable water and sewerage			
Rural Damascus	Rasha Bouhasson	Engineer, General Establishment of potable water and sewerage			
Rural Damascus	Hassan Ali Al-Ali	Civil Engineer of Department of study and design, General Establishment of potable water and sewerage			
Rural Damascus	Sami Mersal	Head of GIS unit, General Establishment of potable water and sewerage			
Rural Damascus	Atef Asaad	Staff of IDM Project			
Rural Damascus	Bassam Abarid	Engineer of study department, General Establishment of potable water and sewerage			
Da'raa	Mohamad Almasalmeh	Studies Manager, General Establishment of potable water and sewerage			
Da'raa	Nasir Salem	Studies Department, General Establishment of water and sewerage			
Da'raa	Akram Talib	Studies Department, General Establishment of potable water and sewerage			
Da'raa	Khadijeh Khattab	Engineer, General Establishment of potable water and sewerage			

Appendix 12.3 The Pictures in the GIS Training

Pic-1 Explanation of GIS database

Pic-3 Field survey by using GPS

Pic-2 Explanation of GIS license by MHC

Pic-4 Explanation of flow of the training

Pic-5 Explanation of definition for GPS

Pic-6 Q & A in the field

Appendix 12.4 Questionnaire of Field Survey regarding the Formulation for Sewerage Database (in Arabic)

	G 100 100 0.0000	1
المعاقلة	زرقع مصدر المياء	ID:
الموم: 1 /2007	وقت أهذ البيانات	

Table A12.4.1 The Questionnaire for Water Resources

	1	ed 21 ar 80	()° ()'()" N	Y =
			()° ()'()" E	X =
	2	اسم المتطقة					
نقطة المأهد							فياد سطحية
	3	نرع المأهذ	H				مباد جوغبة
			H				سع) غر دلک
	4	غرارة المأط					(التصميمي (م3/ برم
	•	2001/1					(الفطي (م3/ بوم

WGS48 و يجب أن يكون الإسلاط GPS ميثم قياس الإحاقيات بواسطة جهاز

L;	
دار الثقنية تتحمل مسؤولية جمع البيانات	تتحمل الوزارة مسؤولية اليبانات ونتأكد دار الظنية من صحتها

	WPS-I (مصادر تلوث المياه (المنشآت
: المعاقطة	:رقم المندأة الصناعية ID:
البوم: / 2007/	وقت تُعدَ البيانات

Table A12.4.2 The Questionnaire for Industrial Plants

	1	الأهدائيات	()° ()'()" N	Y =
	'		()° ()'()" E	X =
	2	اسم المتطقة					
	H						نون روية
	ستاعة 3		Ц				
		فطاع الصناعة	H-			بعياتية	
			H-			واد بقاء	
			н				یچ غرنگ
	وهدة المعلجة لمياه الصرف الصناعي 4	-				التصميمي (م3/ بوم	
المعل		وهدة المعلجة لمياه الصرف الصناعي					لفطي (م3/ بوم
مس	H						التصديمي (م3/ بوم
	5	خزارة المصرف					الفطى (م3/ بوم
	6	نوعية مياء العصرف			E	BOD mg	(في هال تم فياسها) ا
		()° ()'()" N	Y =	
			()° ()'()" E	X =
							ير (الاسم
	7	إحداثيات المصرف	H				ببكة صرف (الاسم
				والرى	الزراعة	تستطام في	u l
							غر نگ
							بو هد
							ر معروف

WOS48 و يجب أن يكون الإسلاط OPS سرتم قرض الإستانيات بواسطة جهاز

مالعظات	
دار الثقلية تتحمل مسؤولية جمع البيانات	نتحمل الوزارة مسؤولية البيانات وتتأكد دار الثقية من صحفها

المواشي -2	WPS-L (مصادر تلوث المياه (
المحافظة:	: ID; زقم موقع حظيرة المواتني
النوم: / /2007	وقت أخذ البيانات
	راسم الشغص المنزول عن المنبح

Table A12.4.3 The Questionnaire for Livestock

WOS48 و يجب أن يكون الإسلاط OPS سوتر فراس الإحداثيات بواسطة جهاز

المراجعة	
دار الظلية تتحمل مسؤولية جمع الببانات	تتحمل الوزارة مسؤولية البيانات ونتأك دار التظية من صحتها

	SEWER شبكات الصرف الصحي -3
:المحافظة	:D ترقم شبكة الصرف الصحي
2007/ / :	وقت أهذ البيانات اليو
	سم الشخص المنوول عن المنبح

Table A12.4.4 The Questionnaire for Sewer

	بنود المسح العظي	الونحدة	نوع المطومات
	اسم العرقع 1		
	منطقة التخديم 2	2+	
	عدد الأشخاص المخدمين 3	نسمة	
شيكة الصرف الصحر	طول الشبكة 4		
	الفطر 5	44	
	سنة الإنتناء 6	-	
	سعل تنظيف وترميم شبكة الصرف 7	-	

WG548 و بعد أن يكون الإسلاط GPS سيتم قيتي الإحداثيات براسطة جهاز

ملاحظات	
دار التقنية تتحمل مسؤولية همع البيانات	تتعمل الوزارة مسؤولية البيقات وتتأكد دار التقية من صحتها

 419-	STP محطات معالجة الصرف الص
: المحافظة	رغم معطة المعالجة: ID:
البوم: / /2007	وقت أهذ البيانات

Table A12.4.5 The Questionnaire for Sewerage Treatment Plants

	1	الاهدائيات	()* (11)" N	Y =
	1	wigitab 3	()°()'()" E	X =
	2	اسم معطة المعلجة					
	3	مساهتها	2*				
محلة المالجة	4	طريقة المعلجة			، النهائي	ت خضراء	الحماة النشطة (الترسيب الأولى + حرض التفاعل التهوية المطولة (التهوية + الترسيب النهائي الأراضي الرطبة (الترسيب الأولى + استعمال بنات (خنادق الأكسدة (حوض التفاعل + الترسيب النهائم موضى اعر ذلك
	5	طقة للملجة	-				(التصميمية (د3/ يوم (الفطية (د3/ يوم
	6	عدد الأشخاص العاملين					
	7	سنة الإنتناء					
	8	سجل الصيانة					
	9	توقر المعططات					إهارطة المكان
							الموقع العام

WGS48 و بعب أن يكرن الإسلاط GPS سيتم قياس الإحداثيات بواسطة هية.

دار الثقلية تتحمل مسؤولية همع البيانات	لتحمل الوزارة مسؤولية البيانات وتتأكد دار التقنية من صحتها

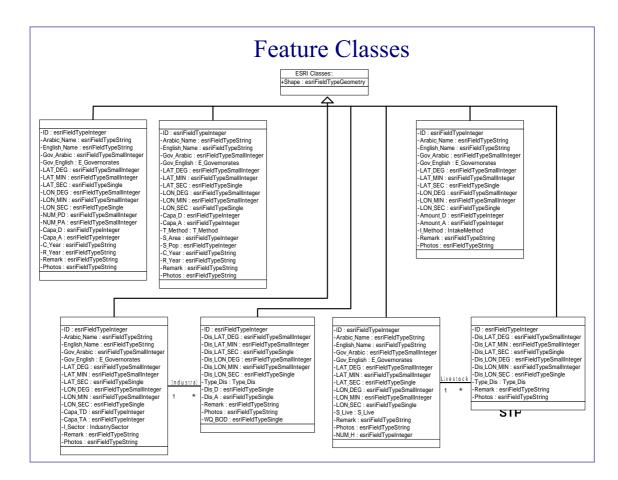
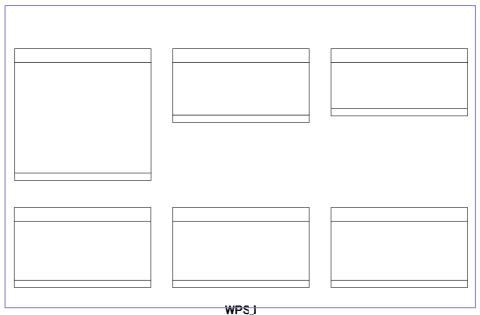

à bit a dir	ر قد محطة الضح	ID:	
	G	10.	
البوم: / 2007	وقت أخذ البيانات		

Table A12.4.6 The Questionnaire for Pumping Stations


محطة الضخ	1	الاهائيات	()*()'()''N Y=
			()"()"E X=
	2	اسم معطة الضخ	
	3	هود المضغاث	: التصميمي
			: الفعلي
	4	غزارتها	:{التصميمية (م3/ بوم
			:[الفحية (د3/ بوم
	5	منبة الإنتياء	
	6	سجل الصيانة	
	7	توفر المغططات	زهارطة المكان
			الدوقع العام

WOS48 و يجب أن يكون الإسلاط OPS سؤد قياس الإحاليات بواسطة ههاز

بالاحظات	
دار التقلية تتحمل مسؤولية جمع البيانات	نتحمل الوزارة مسؤولية البيلك ونتأكد دار الظنية من مسعتها

Appendix 12.5 Figure of the GIS Data Model

WPS_I_DIS

Figure A12.5.1 GIS Data Model

Appendix 12.6

Schedule and Target Locations of Field Survey regarding the Formulation for Sewerage Database in Seven (7) Governorates

Table A12.6.1 Schedule and Target Locations of Field Survey regarding the Formulation for Sewerage Database in Rural Da	mascus
---	--------

No	Covernorete	ID No.	Nome	Data	Time	Dereen	North			East		North	Foot	
No.	Governorate	ID NO.	Name	Date	Time	Person	Deg	Min	Sec	Deg	Min	Sec	North	East
1	Rural Damascus	WR 01	Khan El-Arous	2007/1/21	14:30	Ghassan Naddaf	33	46	38.750	36	34	45.000	33.7774306	36.5791667
2	Rural Damascus	WR 02	Arrhaibeh	2007/1/22	9:00	Ghassan Naddaf	33	48	50.440	36	38	56.930	33.8140111	36.6491472
3	Rural Damascus	WR 03	Deir Attieh	2007/1/22	12:00	Ghassan Naddaf	34	4	36.060	36	46	48.880	34.0766833	36.7802444
4	Rural Damascus	WR 04	Kara	2007/1/22	13:30	Ghassan Naddaf	34	9	11.340	36	36	50.810	34.1531500	36.6141139
5	Rural Damascus	WR 05	Jaramanah	2007/1/23	9:45	Ghassan Naddaf	33	29	23.922	36	20	31.626	33.4899783	36.3421183
6	Rural Damascus	WR 06	Attall	2007/1/24	12:00	Ghassan Naddaf	33	35	33.666	36	19	29.748	33.5926850	36.3249300
7	Rural Damascus	WPS-I 01	SAR Factory for detergents in Adra	2007/1/21	12:00	Ghassan Naddaf	33	35	30.450	36	31	5.550	33.5917917	36.5182083
8	Rural Damascus	WPS-I 02	Kara Slaughterhouse	2007/1/22	14:30	Ghassan Naddaf	34	9	35.740	36	45	51.750	34.1599278	36.7643750
9	Rural Damascus	WPS-I 03	Tamico	2007/1/22	12:00	Ghassan Naddaf	33	29	44.898	36	22	20.420	33.4958050	36.3723389
10	Rural Damascus	WPS-I 04	New Indusrial Co. Al-Mliha	2007/1/23	12:30	Ghassan Naddaf	33	30	1.940	36	20	30.900	33.5005389	36.3419167
11	Rural Damascus	WPS-L 01	Alktaifeh Cow Farmer	2007/1/21	15:15	Ghassan Naddaf	33	45	15.610	36	33	7.000	33.7543361	36.5519444
12	Rural Damascus	WPS-L 02	Arrhaibeh Sheep Farmer	2007/1/22	10:45	Ghassan Naddaf	33	43	35.940	36	43	36.280	33.7266500	36.7267444
13	Rural Damascus	WPS-L 03	Seidnaya Poultry	2007/1/24	11:15	Ghassan Naddaf	33	40	25.416	36	20	10.536	33.6737267	36.3362600
14	Rural Damascus	STP 01	Adra STP	2007/1/21	13:00	Ghassan Naddaf	33	36	49.130	36	30	16.810	33.6136472	36.5046694
15	Rural Damascus	STP 02	Deir Attieh STP	2007/1/22	12:30	Ghassan Naddaf	34	6	21.200	36	47	29.870	34.1058889	36.7916306
16	Rural Damascus	STP 03	Kara STP	2007/1/22	14:45	Ghassan Naddaf	34	10	10.770	36	46	5.190	34.1696583	36.7681083
17	Rural Damascus	STP 04	Attawani	2007/1/24	9:45	Ghassan Naddaf	33	45	54.270	36	29	52.902	33.7650750	36.4980283
18	Rural Damascus	STP 05	Harran Alawameed	2007/1/21	11:00	Ghassan Naddaf	33	26	48.750	36	34	8.460	33.4468750	36.5690167
19	Rural Damascus	PS 01	Adra PS	2007/1/21	10:30	Ghassan Naddaf	33	36	23.720	36	31	29.540	33.6065889	36.5248722
20	Rural Damascus	PS 02	Hattitet Attourkman	2007/1/23	10:20	Ghassan Naddaf	33	26	0.126	36	26	11.340	33.4333683	36.4364833
21	Rural Damascus	PS 03	Alghozlanieh	2007/1/23	11:00	Ghassan Naddaf	33	23	52.500	36	27	34.170	33.3979167	36.4594917

No	Coursersorete		Nome	Data	Time	Dereen	North		North East			North	East	
No.	Governorate	ID No.	Name	Date	Time	Person	Deg	Min	Sec	Deg	Min	Sec	NOTUT	East
1	Dar'aa	WR 01	Mezereeb - Swida	2007/2/4	11:35	Ghassan Naddaf	32	42	18.786	36	0	24.930	32.7052183	36.0069250
2	Dar'aa	WR 02	Mezereeb Lake	2007/2/4	11:45	Ghassan Naddaf	32	42	16.632	36	1	22.956	32.7046200	36.0230433
3	Dar'aa	WR 03	Mzereeb - Dar'aa	2007/2/4	11:50	Ghassan Naddaf	32	42	15.204	36	1	23.292	32.7042233	36.0231367
4	Dar'aa	WR 04	Tafas	2007/2/4	12:15	Ghassan Naddaf	32	45	28.332	36	2	14.850	32.7578700	36.0374583
5	Dar'aa	WR 05	Western Dam - Asheikh Meskeen	2007/2/4	13:45	Ghassan Naddaf	32	49	25.746	36	6	59.796	32.8238183	36.1166100
6	Dar'aa	WR 06	Eastern Dam of Dar'aa	2007/2/4	14:00	Ghassan Naddaf	32	36	8.508	36	6	48.330	32.6023633	36.1134250
7	Dar'aa	WPS-I 01	Asheikh Miskeen Olive Oil Factory	2007/2/5	14:00	Ghassan Naddaf	32	52	23.940	36	9	48.840	32.8733167	36.1635667
8	Dar'aa	WPS-I 02	Acmafield Pharmaceutical - A'alkeen	2007/2/5	14:20	Ghassan Naddaf	33	16	27.756	36	13	36.720	33.2743767	36.2268667
9	Dar'aa	WPS-I 03	Aspco Pharmaceutical - A'alkeen	2007/2/5	14:30	Ghassan Naddaf	33	14	13.542	36	13	4.458	33.2370950	36.2179050
10	Dar'aa	WPS-I 04	Alyarmook Macarony	2007/2/5	14:40	Ghassan Naddaf	32	37	36.900	36	7	14.580	32.6269167	36.1207167
11	Dar'aa	WPS-I 05	Al-Issa Olive Oil Factory	2007/2/5	14:50	Ghassan Naddaf	32	37	10.680	36	10	8.520	32.6196333	36.1690333
12	Dar'aa	WPS-L 01	Dar'aa Cows Center	2007/2/5	11:25	Ghassan Naddaf	32	41	28.554	36	2	27.147	32.6912650	36.0408742
13	Dar'aa	WPS-L 02	Syrian-Lybian Company (Mzereeb)	2007/2/5	12:30	Ghassan Naddaf	32	45	47.814	36	0	31.902	32.7632817	36.0088617
14	Dar'aa	STP 01	Dar'aa STP	2007/2/5	10:34	Ghassan Naddaf	32	39	10.500	36	2	30.160	32.6529167	36.0417111
15	Dar'aa	STP 02	Da'el	2007/2/5	14:30	Ghassan Naddaf	32	46	18.796	36	6	22.792	32.7718878	36.1063311
16	Dar'aa	PS 01	Dar'aa PS	2007/2/5	11:00	Ghassan Naddaf	32	39	5.090	36	2	33.490	32.6514139	36.0426361
17	Dar'aa	PS 02	Tafas PS	2007/2/5	12:00	Ghassan Naddaf	32	44	24.780	36	1	44.892	32.7402167	36.0291367
18	Dar'aa	PS 03	Da'el PS	2007/2/5	14:35	Ghassan Naddaf	32	46	16.224	36	6	24.072	32.7711733	36.1066867

Table A12.6.2 Schedule and Target Locations of Field Survey regarding the Formulation for Sewerage Database in Dar'aa

NL	0		News	Data	T '	Demos	North		East			N I a sette	East	
No.	Governorate	ID No.	Name	Date	Time	Person	Deg	Min	Sec	Deg	Min	Sec	North	Edsi
1	Lattakia	WR 01	Terjano wells	2007/2/1	14:40	Jamal Al-Ali	35	31	1.740	36	0	11.910	35.5171500	36.0033083
2	Lattakia	WR 02	November 16th Dam	2007/2/2	9:00	Jamal Al-Ali	35	37	21.060	35	55	17.256	35.6225167	35.9214600
3	Lattakia	WR 03	Balloran Dam	2007/2/2	13:45	Jamal Al-Ali	35	45	54.198	35	54	3.492	35.7650550	35.9009700
4	Lattakia	WR 04	Assen Spring	2007/2/2	14:00	Jamal Al-Ali	35	15	19.460	35	58	6.500	35.2554056	35.9684722
5	Lattakia	WPS-L 01	Fedio Farm	2007/2/2	14:10	Jamal Al-Ali	35	29	31.764	35	51	56.184	35.4921567	35.8656067
6	Lattakia	STP 01	Alharra	2007/2/1	13:05	Jamal Al-Ali	35	32	58.632	35	58	48.990	35.5496200	35.9802750
7	Lattakia	STP 02	Habbeet	2007/2/1	14:15	Jamal Al-Ali	35	33	25.728	36	1	48.966	35.5571467	36.0302683
8	Lattakia	STP 03	Marj Me'erban	2007/2/1	15:00	Jamal Al-Ali	35	28	17.010	36	2	26.790	35.4713917	36.0407750
9	Lattakia	STP 04	Bhamra	2007/2/1	16:00	Jamal Al-Ali	35	26	53.946	36	0	31.230	35.4483183	36.0086750
10	Lattakia	PS 01	Lattakia Port Gate	2007/2/1	10:30	Jamal Al-Ali	35	30	39.330	35	46	19.830	35.5109250	35.7721750
11	Lattakia	PS 02	Afamia	2007/2/1	11:00	Jamal Al-Ali	35	32	37.614	35	46	16.722	35.5437817	35.7713117
12	Lattakia	PS 03	Côte d'Azur	2007/2/1	11:30	Jamal Al-Ali	35	35	6.420	35	44	47.550	35.5851167	35.7465417
13	Lattakia	PS 04	Ibn Hani /1/	2007/2/1	11:45	Jamal Al-Ali	35	34	59.580	35	43	37.614	35.5832167	35.7271150
14	Lattakia	PS 05	Ibn Hani /2/	2007/2/1	12:00	Jamal Al-Ali	35	35	5.682	35	44	0.642	35.5849117	35.7335117
15	Lattakia	PS 06	Domserkho	2007/2/1	12:12	Jamal Al-Ali	35	33	16.854	35	46	18.822	35.5546817	35.7718950
16	Lattakia	PS 07	Lattakia Southern Coast	2007/2/2	10:00	Jamal Al-Ali	35	30	7.290	35	46	29.844	35.5020250	35.7749567
17	Lattakia	PS 08	Ala'aeedoun Palestinian Refugee Camp	2007/2/2	10:23	Jamal Al-Ali	35	30	20.526	35	47	56.556	35.5057017	35.7990433
18	Lattakia	PS 09	Al-syaha Southern Part	2007/2/2	11:00	Jamal Al-Ali	35	30	14.448	35	48	43.530	35.5040133	35.8120917

Table A12.6.3 Schedule and Target Locations of Field Survey regarding the Formulation for Sewerage Database in Lattakia

Nie	Governorate	ID No.	Name	Date	Time	Person	North		h		East		North	East
INO.	Governorate	ID NO.	Name	Date	Time	Person	Deg	Min	Sec	Deg	Min	Sec	NORT	Easi
1	Tartous	WR 01	Alkashfeh	2007/1/30	10:05	Mouhammad Al-Mouhammad	34	49	21.270	36	1	49.446	34.8225750	36.0304017
2	Tartous	WR 02	Ras Alkhshoufeh	2007/1/30	10:54	Mouhammad Al-Mouhammad	34	49	29.934	36	2	49.381	34.8249817	36.0470502
3	Tartous	WR 03	Ba'amra	2007/1/30	12:20	Mouhammad Al-Mouhammad	34	47	4.320	36	7	50.466	34.7845333	36.1306850
4	Tartous	WR 04	Ashmameess	2007/1/30	13:00	Mouhammad Al-Mouhammad	34	52	13.764	36	9	55.140	34.8704900	36.1653167
5	Tartous	WR 05	Assafssafeh	2007/1/30	12:00	Mouhammad Al-Mouhammad	34	43	18.762	36	2	5.652	34.7218783	36.0349033
6	Tartous	WPS-I 01	Tartous Cementary Plant	2007/1/29	10:40	Mouhammad Al-Mouhammad	34	58	4.404	35	53	27.876	34.9678900	35.8910767
7	Tartous	WPS-I 02	Tartous Modern Olive Oil Factory	2007/1/29	14:15	Mouhammad Al-Mouhammad	34	55	49.644	35	53	15.756	34.9304567	35.8877100
8	Tartous	WPS-I 03	Safeeta Slaughterhouse	2007/1/30	12:00	Mouhammad Al-Mouhammad	34	48	39.168	36	7	47.262	34.8108800	36.1297950
9	Tartous	WPS-I 04	Ismael Mahmoud Othman Olive Oil Factory - Almandarah	2007/1/31	9:00	Mouhammad Al-Mouhammad	34	49	9.978	36	5	40.770	34.8194383	36.0946583
10	Tartous	WPS-I 05	Al-Khaleel Olive Oil Factory - Almandarah	2007/1/30	9:30	Mouhammad Al-Mouhammad	34	49	11.340	36	5	33.450	34.8198167	36.0926250
11	Tartous	WPS-I 06	Al-Hassan Olive Oil Factory -Safita	2007/1/30	10:00	Mouhammad Al-Mouhammad	34	50	4.776	36	8	1.950	34.8346600	36.1338750
12	Tartous	WPS-L 01	Zahed Cow Farmer - Ad-Dkika	2007/1/30	11:15	Mouhammad Al-Mouhammad	34	40	54.714	36	5	54.666	34.6818650	36.0985183
13	Tartous	STP 01	Ta'aneeta	2007/1/29	12:31	Jamal Al-Ali	35	7	0.936	36	2	35.622	35.1169267	36.0432283
14	Tartous	STP 02	Areemal Azahabieh	2007/1/29	13:39	Jamal Al-Ali	35	1	37.602	35	53	45.138	35.0271117	35.8958717
15	Tartous	STP 03	Ashera'a	2007/1/29	14:00	Jamal Al-Ali	35	0	14.400	35	54	2.904	35.0040000	35.9008067
16	Tartous	STP 04	Al-Mughra Safita	2007/1/30	9:45	Jamal Al-Ali	34	47	21.600	35	57	39.900	34.7893333	35.9610833
17	Tartous	PS 01	Ala'ajameh	2007/1/29	9:34	Jamal Al-Ali	34	55	53.568	35	52	53.556	34.9315467	35.8815433
18	Tartous	PS 02	Moushwar	2007/1/29	10:00	Jamal Al-Ali	34	53	14.358	35	52	43.716	34.8873217	35.8788100

Table A12.6.5 Schedule and Target Locations of Field Survey regarding the Formulation for Sewerage Database in Deir-ez-Zor
Table A12.0.5 Benedule and Target Elocations of Field But vey regarding the Formulation for Bewerage Database in Den-eL-Elor

NL	0		N la const	Data	T	Demos	North		North		North		East		Nextle	East
INO.	Governorate	ID No.	Name	Date	Time	Person	Deg	Min	Sec	Deg	Min	Sec	North	East		
1	Deir-ez-Zor	WR 01	Eupherate Intake 1 - 17 April Station	2007/2/8	9:50	Ghassan Naddaf	35	20	27.354	40	9	28.224	35.3409317	40.1578400		
2	Deir-ez-Zor	WR 02	Eupherate Intake 2 - Hatleh Station	2007/2/8	9:55	Ghassan Naddaf	35	20	9.110	40	9	33.060	35.3358639	40.1591833		
3	Deir-ez-Zor	WR 03	Eupherate Intake 3 - Othmanyeh	2007/2/8	10:10	Ghassan Naddaf	35	20	25.302	40	9	15.330	35.3403617	40.1542583		
4	Deir-ez-Zor	WR 04	Eupherate Intake 4 - Main Water Station	2007/2/8	10:35	Ghassan Naddaf	35	20	46.470	40	7	36.838	35.3462417	40.1268994		
5	Deir-ez-Zor	WR 05	Eupherate Intake 5 - Al-Beghelyeh (1)	2007/2/8	11:00	Ghassan Naddaf	35	21	47.472	40	6	14.748	35.3631867	40.1040967		
6	Deir-ez-Zor	WR 06	Eupherate Intake 6 - Al-Beghelyeh (2)	2007/2/8	11:05	Ghassan Naddaf	35	21	55.704	40	6	6.376	35.3654733	40.1017711		
7	Deir-ez-Zor	WPS-I 01	Deir-ez-zour slaughter house	2007/2/7	10:45	Ghassan Naddaf	35	19	6.768	40	9	43.554	35.3185467	40.1620983		
8	Deir-ez-Zor	WPS-I 02	Sugar Factory	2007/2/7	11:40	Ghassan Naddaf	35	22	32.464	40	13	22.040	35.3756844	40.2227889		
9	Deir-ez-Zor	WPS-I 03	Texture Factory	2007/2/7	12:30	Ghassan Naddaf	35	22	19.182	40	13	3.204	35.3719950	40.2175567		
10	Deir-ez-Zor	WPS-I 04	Paper Factory	2007/2/7	13:30	Ghassan Naddaf	35	22	27.132	40	9	21.984	35.3742033	40.1561067		
11	Deir-ez-Zor	WPS-I 05	New Dumping Site - Palmyra Road	2007/2/8	11:30	Ghassan Naddaf	35	9	31.950	39	55	56.976	35.1588750	39.9324933		
12	Deir-ez-Zor	WPS-I 06	Old Dumping Site-Deir-ez-zour Damascus	2007/2/8	12:00	Ghassan Naddaf	35	16	28.218	40	2	34.824	35.2745050	40.0430067		
			Road													
13	Deir-ez-Zor	WPS-L	Deir-ez-zour cow farmer	2007/2/7	10:00	Ghassan Naddaf	35	17	49.176	40	10	54.372	35.2969933	40.1817700		
		01														
14	Deir-ez-Zor	STP 01	Deir-ez-zour STP	2007/2/7	11:00	Ghassan Naddaf	35	16	4.686	40	10	43.002	35.2679683	40.1786117		
15	Deir-ez-Zor	PS 01	Deir-ez-zour Main Pumping Station	2007/2/7	11:00	Ghassan Naddaf	35	18	30.462	40	10	10.206	35.3084617	40.1695017		
16	Deir-ez-Zor	PS 02	main dischage point in Deir-ez-zour	2007/2/7	11:45	Ghassan Naddaf	35	18	38.934	40	10	1.878	35.3108150	40.1671883		
17	Deir-ez-Zor	PS 03	Othmanyeh Discharge point	2007/2/7	11:20	Ghassan Naddaf	35	19	58.930	40	9	34.968	35.3330361	40.1597133		

No	Covernarate	ID No.	Nome	Dete	Time	Person	North		North East		Morth	East		
No.	Governorate	ID NO.	Name	Date	Time	Person	Deg	Min	Sec	Deg	Min	Sec	North	Lasi
1	Raqqa	WR 01	Al-Jallab River	2007/2/11	9:30	Ghassan Naddaf	36	41	55.326	38	59	48.882	38.9672050	38.9969117
2	Raqqa	WR 02	Tal As-samen Pumping Station	2007/2/11	12:30	Ghassan Naddaf	36	13	17.562	38	58	1.938	36.2215450	38.9672050
3	Raqqa	WR 03	Al-Mughleh Pumping Station	2007/2/11	15:15	Ghassan Naddaf	35	47	54.600	39	29	32.106	35.7985000	39.4922517
4	Raqqa	WR 04	Raqqa Main Pumping Station	2007/2/12	10:00	Ghassan Naddaf	35	55	51.876	39	0	19.794	35.9310767	39.0054983
5	Raqqa	WPS-I 01	Olive Oil Factory	2007/2/12	13:20	Ghassan Naddaf	36	3	34.218	38	58	35.754	36.0595050	38.9765983
6	Raqqa	WPS-I 02	Raqqa slaughter house	2007/2/12	9:15	Ghassan Naddaf	35	56	12.276	39	1	37.836	35.9367433	39.0271767
7	Raqqa	WPS-I 03	Sugar Factory	2007/2/12	9:30	Ghassan Naddaf	35	58	35.024	39	2	8.910	35.9763956	39.0358083
8	Raqqa	STP 01	Al-Sabkha STP	2007/2/11	14:35	Ghassan Naddaf	35	48	51.906	39	16	25.830	35.8144183	39.2738417
9	Raqqa	STP 02	Al-Karama STP	2207/2/11	16:05	Ghassan Naddaf	35	51	45.732	39	16	46.950	35.8627033	39.2797083
10	Raqqa	STP 03	Al-Mansoura STP	2007/2/12	10:50	Ghassan Naddaf	35	50	7.848	38	44	17.718	35.8355133	38.7382550
11	Raqqa	PS 01	Tal Abyadh Discharge Point	2007/2/12	10:00	Ghassan Naddaf	36	41	6.318	38	58	47.286	36.6850883	38.9798017
12	Raqqa	PS 02	Ein El-Arous Discharge Point	2007/2/12	10:20	Ghassan Naddaf	36	40	14.994	38	56	26.490	36.6708317	38.9406917
13	Raqqa	PS 03	Tal hamam Discharge Point	2007/2/11	11:30	Ghassan Naddaf	36	30	5.708	39	5	6.948	36.5015856	39.0852633
14	Raqqa	PS 04	Hazimeh Discharge Point	2007/2/11	13:00	Ghassan Naddaf	36	12	54.360	38	50	2.400	36.2151000	38.8340000
15	Raqqa	PS 05	Mughleh Kabeereh Discharge Point	2007/2/11	15:30	Ghassan Naddaf	35	47	50.748	39	29	54.480	35.7974300	39.4984667
16	Raqqa	PS 06	City Main Discharge Point	2007/2/11	9:00	Ghassan Naddaf	35	56	9.138	39	1	39.750	35.9358717	39.0277083
17	Raqqa	PS 07	Al-Thawra Discharge Point	2007/2/12	11:40	Ghassan Naddaf	35	50	37.398	38	33	11.754	35.8437217	38.5532650
18	Raqqa	PS 08	Debsy Faraj Discharge Point	2007/2/12	13:20	Ghassan Naddaf	35	52	29.568	38	9	54.744	35.8748800	38.1652067

Table A12.6.7 Schedule and Target Locations of Field Survey regarding the Formulation for Sewerage Database in Raqqa

						_		North	า	East		:		_
No.	Governorate	ID No.	Name	Date	Time	Person	Deg	Min	Sec	Deg	Min	Sec	North	East
1	Hassakeh	WR 01	Eastern Dam	2007/2/9	12:45	Ghassan Naddaf	36	20	51.241	40	46	33.078	36.3475669	40.7758550
2	Hassakeh	WR 02	Ras El-ein	2007/2/9	16:00	Ghassan Naddaf	36	50	51.756	40	3	56.460	36.8477100	40.0656833
3	Hassakeh	WR 03	Al-Kharrabat	2007/2/9	16:30	Ghassan Naddaf	36	51	13.776	40	4	9.318	36.8538267	40.0692550
4	Hassakeh	WR 04	As-Saffan Dam	2007/2/10	10:15	Ghassan Naddaf	37	8	46.938	42	6	22.776	37.1463717	42.1063267
5	Hassakeh	WR 05	Al-Mansoura Dam	2007/2/10	11:00	Ghassan Naddaf	37	11	5.466	42	9	39.954	37.1848517	42.1610983
6	Hassakeh	WR 06	Al-Uijeh wells	2007/2/10	13:30	Ghassan Naddaf	37	2	54.714	41	14	42.720	37.0485317	41.2452000
7	Hassakeh	WR 07	Al-Hilaleyeh Wells (1)	2007/2/10	13:50	Ghassan Naddaf	37	4	10.692	41	10	16.620	37.0696367	41.1712833
8	Hassakeh	WR 08	Al-Hilaleyeh Wells (2)	2007/2/10	14:00	Ghassan Naddaf	37	3	21.696	41	10	58.734	37.0560267	41.1829817
9	Hassakeh	WPS-I 01	Dumping Site	2007/2/9	10:40	Ghassan Naddaf	36	26	5.304	40	42	10.086	36.4348067	40.7028017
10	Hassakeh	WPS-I 02	Ras El-ein slaughter house	2007/2/9	16:00	Ghassan Naddaf	35	50	15.198	40	4	55.530	35.8375550	40.0820917
11	Hassakeh	WPS-I 03	Al-Malikyeh slaughter house	2007/2/10	11:15	Ghassan Naddaf	37	10	58.620	42	8	56.088	37.1829500	42.1489133
12	Hassakeh	WPS-I 04	Al-Kamishli slaughter house	2007/2/10	13:15	Ghassan Naddaf	37	0	44.400	41	15	22.458	37.0123333	41.2562383
13	Hassakeh	WPS-I 05	Al-Kamishli Dumping Site	2007/2/10	14:00	Ghassan Naddaf	37	4	9.882	41	10	14.142	37.0694117	41.1705950
14	Hassakeh	WPS-I 06	Al-Hassakeh slaughter house	2007/2/9	14:30	Ghassan Naddaf	36	30	11.178	40	46	12.984	36.5031050	40.7702733
15	Hassakeh	WPS-L 01	Tal Tamer Cow Farmer	2007/2/9	13:55	Ghassan Naddaf	36	40	25.368	40	22	8.478	36.6737133	40.3690217
16	Hassakeh	WPS-L 02	Arabic Company for raising livestock	2007/2/10	14:30	Ghassan Naddaf	37	0	53.550	41	12	25.608	37.0148750	41.2071133
17	Hassakeh	STP 01	Hassakeh STP	2007/2/9	12:20	Ghassan Naddaf	36	30	20.310	40	49	9.168	36.5056417	40.8192133
18	Hassakeh	STP 02	Ras El-Ein STP	2007/2/9	15:17	Ghassan Naddaf	36	50	17.682	40	4	50.592	36.8382450	40.0807200
19	Hassakeh	PS 01	Al-Khabour discharge points (1)	2007/2/9	11:00	Ghassan Naddaf	36	29	46.914	40	45	12.420	36.4963650	40.7534500
20	Hassakeh	PS 02	Al-Khabour discharge points (2)	2007/2/9	11:05	Ghassan Naddaf	36	29	46.914	40	45	12.420	36.4963650	40.7534500
21	Hassakeh	PS 03	Al-Khabour discharge points (3)	2007/2/9	11:09	Ghassan Naddaf	36	29	45.546	40	45	9.726	36.4959850	40.7527017
22	Hassakeh	PS 04	Jaghjagh River PS	2007/2/9	11:30	Ghassan Naddaf	36	29	59.028	40	45	40.656	36.4997300	40.7612933
23	Hassakeh	PS 05	Hassakeh PS	2007/2/9	12:15	Ghassan Naddaf	36	30	23.150	40	47	42.408	36.5064306	40.7951133
24	Hassakeh	PS 06	Ras El-Ein PS	2007/2/9	15:16	Ghassan Naddaf	36	50	21.270	40	4	50.706	36.8392417	40.0807517
25	Hassakeh	PS 07	Al-Malikyeh discharge point	2007/2/10	10:55	Ghassan Naddaf	37	11	2.496	42	9	56.424	37.1840267	42.1656733
26	Hassakeh	PS 08	Jaghjagh River entrance point	2007/2/10	12:45	Ghassan Naddaf	37	3	47.130	41	13	38.922	37.0630917	41.2274783
27	Hassakeh	PS 09	AL-Kamishli discharge points on Jaghjagh River	2007/2/10	14:00	Ghassan Naddaf	37	2	15.372	41	14	25.050	37.0376033	41.2402917

Table A12.6.8 Schedule and Target Locations of Field Survey regarding the Formulation for Sewerage Database in Hassakeh

Appendix for Chapter 13 RESULTS OF THE STAKEHOLDER MEETINGS

13.1 Attendants List of the 1st Stakeholder Meetings at Three Governorates

Table A13.1.1 Attendants List of the 1st Stakeholder Meeting at Lattakia

No.	Name	Organization	Position
1	Zahed Haj Eisa	Lattakia Governorate	Governor
2	Waseem Falloh	MHC	Director of the project
3	Eisam Madani	MHC	Engineer
4	Ghassan Al-tarboush	MHC	Engineer
5	Thaer hatem	MHC	Engineer
6	Sablaa Kafora	Lattakia Sewage Co.	Electrical engineer
7	Miassa Tezini	Lattakia Sewage Co.	Civil engineer
8	Bassem Saeeda	Lattakia Sewage Co.	Civil engineer
9	Rami Tonjal	Lattakia Sewage Co.	Mechanical engineer
10	Ghattfan Al Khory	Technical Service Directorate of Tartous	Civil engineer/studying
11	Reda Abd Alrahman	Technical Service Directorate of Tartous	Civil engineer
12	Wessam Mouhamad Ahmad	Technical Service Directorate of Tartous	Civil engineer/studying
13	Ossama Shaaban Khadour	Technical Service Directorate of Tartous	Civil engineer/studying
14	Mais Samaan	Technical Service Directorate of Tartous	Civil engineer/studying
15	Majd Daooud	Drikesh city concil	Head
16	Aimn Mouhamad	Drikesh city concil	Civil engineer
17	Ahmad Asaad	Drikesh city concil	Civil engineer
18	Attef Laika	Water Resource Directorate of Lattakia	Electrical engineer
19	Rala Abed	Water Resource Directorate of Lattakia	Civil engineer/sanitary
20	Yamen Selman	Directorate of Environment Affairs of Lattakia	Chemical engineer
21	Hossin Ionidy	Environment Search High Institution in Lattakia	Teacher
22	Abd Allah Moustfa	Slenfa municipality	Head
23	Thanaa Badour	Slenfa municipality	Engineer
24	Lama Ahmad	Directorate of Environment Affairs of Lattakia	Engineer/Director
25	Rabab Alkhaeer	Coast Association of Environment Protection (NGO)	Head of association
26	Nabeel Naser	Water Establishment	Civil engineer
27	Jalaal Jdid	Water Establishment	Civil engineer
28	Alaa Aldin Zen	General Company for Remote Sensing	Informatics engineer
29	Dr. Mouhamad Habib	Water Establishment in Lattakia	
30	Nizar Mouhamad Saan	Badder Shikh Council	
31	Ghazeieh Haidar	Lattakia Sewage Co.	Civil engineer
32	Merna Ghaafar	Lattakia Sewage Co.	Technical observer
33	Lara Maiia	Lattakia Sewage Co.	Civil engineer
34	Naji Ali	Lattakia Sewage Co.	Civil engineer
35	Suhail Shaheen	Lattakia Sewage Co.	Civil engineer
36	Osamah Dallol	Technical services in Tartous	Civil engineer
37	Hasan Hussein	Technical services in Tartous	Civil engineer
38	Hasan Barhom	Technical services in Tartous	Civil engineer
39	Faizeh Ismaeel	Technical services in Tartous	Civil engineer
40	Ali Eisa	Technical services in Tartous	Civil engineer
41	Ali Estanboul	Water Resource Directorate in Lattakia	Civil engineer
42	Nazeeh Boreesh	Water Resource Directorate in Lattakia	Civil engineer
43	Kais Hoarrah	Water Resource Directorate in Lattakia	Civil engineer
44	Ibraheem	Water Resource Directorate in Lattakia	Dr. Civil engineer
45 46	Senan Deeb Dr. Mahmoud Fahoum	Friend Environment Society in Lattakia Coast Pool	EIA Department Scientific Research
			Directorate
47	Rawan Jweim	Al-baath Newspaper	Manager
48	Lbodon Sahyoun	Slenfa Municipality	Technical observer
49	Eisa Fareed Ali	Remote Sensing	Head of coast department
50	Nezar Srour	Water of Lattakia	Engineer of water resources
51	Rana Ibraheem	Remote Sensing	Technician

No.	Name	Organization	Position
52	Seba Hurairah	Remote Sensing	Technician
53	Ahmad Badawi	Baladuna Newspaper	Journalist
54	Abd-alnaser		Engineer
55	Eiva Hour	Lattakia Sewage Co.	Architect engineer
56	Micheel Al-khouri	Slenfa City Council	Head
57	Jaber Hasan Hasan	Tartous services	Head of water and sewage
58	Dr. Ikbal Al-fadel	Teshreen University, Friend Environment Society	department Professor
59	Eid Eisa Hassan		Civil engineer
60	Fahd Joud	Water Resource Directorate	Chemical engineer
61	Haitham Shaheen	High Institute of Environment Research, Teshreen University	Dean
62	Suhair Al-raiies	Coast Association of Environment Protection	Head of association (physician)
63	Layla Othman	Remote Sensing	Geological
64	Omaima Eisa	Al-sheikh Bader City Council in Tartous	Engineer
65	Aatef Afeef	Teshreen Newspaper	Journalist
66	Yehia Masri	Head of services and maintenance in city council	Engineer
67	Mamoud Ahmad		Journalistic photographer
68	Yousef Maiia	Teshreen Newspaper	Journalist
69	Zakareiia Al-eisa	Al- haffeh City Council	Head of council
70	Osamah Jardi	Water Resource Directorate in Lattakia	Engineer of chemistry
71	Emad Ali	Governorate	
72	Sameer Al-ali	Meridien	Manager
73	Adham Jarkas	Panias city council	Head of council
74	Mahn Fawzi	Al-kurdaha city	Head of council
75	Jamal Nassour	Lattakia	Agriculture
76	Hassan Baddour	Lattakia	Manager of agriculture
77	Thaeer Hatem		Engineer
78	Bieer Mousa	Remote sensing	Administrative
79	Waleed Hasan	Technical services directorate	Head of solid waste
80	Louai Hasan	Executive office in Tartous	Engineer
81	Fayez Zaiiat	Jableh city council	Head of council
82	Mustafa	Jableh city	Manager
83	Emad Khaloof	Services Directorate	Head of sewage studies
84	Serar Ez-aldeen Yousef	Technical services directorate in Tartous	Topographical engineer
85	Rudaina Al-ali	Directorate of Environment Affairs of Tartous	Head of lab
86	Lama Harfoush	Directorate of Environment Affairs of Tartous	Chemical engineer
87	Shadi Al-zaza	Water Resources Information Directorate	Mechanical engineer
88	Yamen Mansour	Al-watan Journal	Journalist
89	Muna Ismaeel	Remote Sensing	Administrative
90	Sahar Eisa	Supporting Center of Local Agriculture	Manager of center
91	Deema Mohamad	Television	Announcer
92	Ammar Ali	Television	Cameraman
93	Yousef Saker	Television	Cameraman assistant
94	Alaa Ghadeer	Television	Cameraman assistant
95	Nedal	Television	Cameraman assistant
96	Hirotumi sano	JICA Study Team	Team Leader
97	Ryunan Matsue	JICA Study Team	EIA
98	Nagham Salman	JICA Study Team	Interpreter
99	Louay Khalil	JICA Study Team	Engineer / supporter

No.	Name	Organization	Position
1	Mahamad Ali	Sewage Department, MHC	Director
2	Jamal Al-jarad	Sewage Department, MHC	Engineer
3	Ghassan Al-tarboush	MHC	Engineer
4	Eiad Ali	MHC	Engineer
5	Wesal Khalil	MHC	Engineer
6	Maher Al-khateeb	MHC	Engineer
7	Waseem Falloh	MHC	Director of the project
8	Thaer hatem	MHC	Engineer
9	Seham Kiwan	Ministry of Irrigation	Head of study section in water resources directorate in Dar'aa
10	Ammar Al-aasmi	Ministry of Irrigation	Analytic lab/residual effect
11	Ammar Abo Habs	Ministry of Irrigation	Engineer /controlling of water quality department
12	Eisa Al-sulaiman	Ministry of Interior	Engineer
13	Abd-alhakeem Saad Al-deen	Water Resources Directorate of Damascus	Head of execution section
14	Mohamad Raja A-adawi	Water Resources Directorate of Dar'aa	Chemist
15	Sameer Abo Habash	Daed city council	Head of council
16	Ahmad Al-yosef	GCEC	Engineer
17	Ahmad shikhani	GCEC	Treatment plant
18	Asmaa khaled	GCEC	Treatment plant
19	Ghassan al-zeghat	GCEC	Sewage directorate
20	Maisaa Abd-allah	Technical Services Directorate of Dar'aa	Engineer
21	Manal Al-masri	Technical Services Directorate of Dar'aa	Engineer
22	Kefah Al-sharea	Technical Services Directorate of Dar'aa	Engineer
23	Hadeel Al-kuifi	technical services directorate in Dar'aa	Engineer
24	Mohamad Al-zobani	Al-mzereib city council	Head of council
25	Abd-alkareem Al-baridi	Dar'aa services	Engineer in technical matters
26	Mazyed	Dar'aa services	Engineer in sewage section
27	Douraid Al-shaheen	Al-joulan Municipility for Emigrants	Engineer /head of technical office
28	Yehya	Al-zabadani Municipality	Engineering projects department
29	Yosef Deeb	Water Establishment of Rural Damascus	Supervisor engineer
30	Fayrouz Al-krad	Dar'aa Water Establishment	Engineer
31	Galaa Al-farhat	Dar'aa Water Establishment	Engineer
32	Khadeja Erseil	Dar'aa Water Establishment	Engineer
33	Safwan Al-akrad	Dar'aa city council	Engineer/Head of operation section
34	Kenda Al-aswad	Technical Services Directorate of Dar'aa	Engineer
35	Huda Zeid	Directorate of Environment Affairs of Rural Damascus	Engineer
36	Heba Khattab	Directorate of Environment Affairs of Dar'aa	Engineer
37	Mohamad Barakat	Dar'aa Water Establishment	Head of studies section
38	Ibraheem Abbas	Dar'aa city council	Engineer
39	Yousef Al- shehadat	Technical services in Dar'aa	Head of sewage section
40	Ali Al-zoubi	Dar'aa Governorate	Head of association
41	Khaled Fandi	Dar'aa Water Establishment	General manager
42	Mohamad Awwad	Al-zabadani city council	Manager of declaration office
43	Raeifah Abo-zaid	Directorate of Environment Affairs of Dar'aa	Waste section
44	Husam Al-kerad	Directorate of Environment Affairs of Dar'aa	Engineer of EIA
45	Farouk Al-aadli	Damascus University	Professor
46	Bachar Ibrahim	Damascus University	Professor/Agriculture
. ~		······	

Table A13.1.2 Attendants List of the 1st Stakeholder Meeting at Damascus

No.	Name	Organization	Position
47	Shebli Al-shami	Damascus University	Professor / water engineering
48	Madyan Nasra	Directorate of Environment Affairs of Rural Damascus	assistance of environment manager
49	Mazen Yaghi	Rural Damascus Governorate, Environment Pioneer Association	Member of executive office
50	Mohamad Al-masri	Secret office of Dar'aa Governorate	Manage of following
51	Jamal Ayyash	Secret office of Dar'aa Governorate	Technical office
52	Salah Al-omari	Secret office of Dar'aa Governorate	Technical office
53	Ghazi Mousa	Dar'aa Governorate	Head of village council
54	Yasmeen Al-khouli	Al-zabadani Municipality	Projects department
55	Nuha Othman	Dar'aa Eater Establishment	Sewage section
56	Nazeih Sharaf Al-deen	Water Establishment of Rural Damascus	Head of sewage section
57	Mohamad Fadel Wardeh	UNDP	National director in abilities building project
58	Hekmat Abo Hamdan	Environment Pioneer Association (NGO)	Head of administration council
59	Husam Safadi	Local consulting company	Manager
60	Khaled Al-Khateeb	Dar'aa Governorate	Mayor of Yadoda Village
61	Suhail Ali Al-Humsi	Dar'aa Governorate	Baath Party
62	Yomiko Honda	JICA Syrian Office	Project Formulation Advisor
63	Nawras Khaled	JICA Syrian Office	Program office
64	Nada Cat	JICA Study Team for Urban Planning Project	Interpreter
65	Maisaa maasarani	Damascus Governorate	Counterpart of Urban Planning Project
66	Hirotumi sano	JICA Study Team	Team Leader
67	Ryunan Matsue	JICA Study Team	EIA
68	Toshiaki Ruike	JICA Study Team	Sewage Treatment Plant Planning / Water Quality Analysis
69	Seiichi Hanafusa	JICA Study Team	Sewerage Facility Design
70	Atsushi Toyama	JICA Study Team	Mechanical, Electrical Design / Cost Estimation
71	Louay Khalil	JICA Study Team	Engineer / supporter
72	Kawthar Sharab	JICA Study Team	Supporter
12			

I Dr. Wassim FALOUH MHC National Team Leader 2 Ghassam AL-TXRBOUSH MHC Counterpart Team 3 Eng, Ahmad AL YOUSH GCEC - An Inascues Counterpart Team 4 Eng, Salin IBRAHIM GCEC - At Hassakeh Supervisor Engineer 7 Motuaa AL-MARIMOUD Technical Services - Deir-Ezzor Head of severage section 8 Mohamad KLMIRIDAWOD Directorate of Environment Affairs of Al Hor enanger 9 Mohamad KLMIRIDAWOD Directorate of Environment Association Administration council member 10 Gorge SHAIO Directorate of Environment Association Administration council member 12 Mohamad Al Wate Establishment of Al Hassakeh Head of severage department 13 Dr Ormar ABD Volunteers for Environment Association Administration council member 14 Eng. Omar AL MOULA Al Forat University - Faculy of the association , A furat University Teacher 15 Adnan IBRAHIM Media Deir-Eiz-zor center 16 Eng. Is Al Din AL Al Hassakeh Directorate	No.	Name	Organization	Position
2 Chassan AL-TARBOUSH MHC Counterpart Team 4 Eng. Therr JANM MHC Counterpart Team 4 Eng. Salin IBRAHIM GCEC - Danascus Counterpart Team 5 Eng. Salin IBRAHIM GCEC - Al Hassakch Supervisor Engineer 6 Fag. Nahi JASSIM GCEC - Al Hassakch Supervisor Engineer 7 Motana AL-HASAN Baldann enwspaper Journalist 9 Mohamad L-HASAN Baldann enwspaper Journalist 9 Mohamad L-HASAN Baldann enwspaper Journalist 10 Gorge SHAIO Directorate of Environment Association Hassakch 11 Mahmoad AL-NAIRAS Volunteers for Environment Association The head of the association , A Furat University - Faculty of Tacher 13 Dr Omar AL MOULLA Al Furat University - Faculty of Tacher Teacher 14 Eng. ShahHIM Media Deir-Ez cor center Teacher 15 Adaan IBRAHIM Media Deir-Ez cor center The Head of Topograph Department 17 Nihad DRIKY Al Baath New				
3 Eng. Tharr JANIM MHC Counterpart Team 4 Eng. Ahmad AL YOUSSIF GCCC - Damascus Counterpart Team 5 Eng. Salin IBRAHIM GCEC - AI Hassakch Supervisor Engineer 6 Fing. Nabil JASSSIM GCEC - AI Hassakch Supervisor Engineer 7 Motaaa AL-MAHMOUD Technical Services - Deir-Ez-zor Head of severage section 8 Mohamad AL-HASAN Baladna newspaper Journalist 9 Mohamad Khalil DAWOD Deire-tz-zor city council Eng. Technical observer 10 Gorge SHAIO Hussakch Head of severage department 11 Mahmoud AL-NAIRAS Volunteers for Environment Association Afurat University 13 Dr Oran ABD Volunteers for Environment Association 14 Eng. Ormar AL MOULLA AI Furat University Facult University Technical Services - AL Raqqa 15 Adman BRAHIM Media Deir-Ez-zor center Eng. 16 Eng. Bal AI AI Hassakch Directorate Executive Office Member 17 Nihad DRIKY				
4 Eng. Ahmad ALYOUSSIF GCEC - Cal Hassakeh Supervisor Engineer 5 Eng. Sabil JBRSHIM GCEC - Al Hassakeh Supervisor Engineer 7 Monaaz AL-MAHMOUD Technical Services - Deir-Ez-zor Head of sewerage section 8 Mohamad LL-HASAN Baladana newspaper Journalist 9 Mohamad LL-HASAN Baladana newspaper Journalist 10 Gorge SHAIO Directorate of Environment Affairs of Al Vice manager 11 Mahmaud AL-NAIRAS Volunteers for Environment Association Administration council member 12 Mohanad AL Water Establishment of Al Hassakeh Head of sewerage department 13 Dr Omar AL Mouteers for Environment Association The head of the association , A 14 Eng. Omar AL MOULA Al Furat University - Faculty of Teacher 15 Adnan IBRAHIM Media Deir-Ez-zor center Ideing . Is Al Din AL I Hassakeh Directorate Executive Office Member 16 Eng. S. Is Al Din AL Al Hassakeh Directorate Executive Office Member 17				1
5 Eng. Salih IBRAHIM GCEC - AI Hassakeh Supervisor Engineer 6 Eng. Nabil JASSSIM GCEC - AI Hassakeh Supervisor Engineer 7 Mohamad AL-MARMOUD Technical Services - Deir-Ez-zor Head of sewerage section 8 Mohamad Khail DAVOD Deir-Ez-zor tity council Eng. Technical observer 10 Gorge SHAIO Hassakeh Vice manager 11 Mahmad AL-NAIRAS Volunteers for Environment Association Administration council member 12 Mohamad AL Water Establishment of AI Hassakeh Head of the association , A 13 Dr Omar ABD Volunteers for Environment Association A 14 Eng. Omar AL MOULLA AI Furat University Faculty of Action of the association , A 15 Adan IBRAHIM Media Deir-Ez-zor center Eng. Isaah Newspaper Journalist 18 Ayar BLAT AI Hassakeh Directorate Executive Office Member Izerbical Services - AL Raqqa The Head of Topograph 19 Eng. Talaat TALAA AI Hassakeh city council The Head of Topog			-	
6 Eng. Nabil JASSSIM GCEC - AI Hassakeh Supervisor Engineer 7 Mouaza AL-MAHMOUD Technical Services - Deir-Ez-zor Head of sewerage section 8 Mohamad AL-HASAN Baladna newspaper Journalist 9 Mohamad AL-HASAN Deir-Ez-zor city council Eng. Technical observer 10 Gorge SHAIO Directorate of Environment Affairs of AI Vice manager 11 Mahmoud AL-NARAS Volunteers for Environment Association Administration council member 12 MOHAMAD AL Water Establishment of AI Hassakeh Head of sewerage department 13 Dr Omar AL Muere Establishment of AI Hassakeh The head of the association , A furat University - Faculty of Adman IBRAHIM Media Deir-Ez-zor center 14 Eng. Omar AL MOULLA AI Furat Newspaper Journalist Deir-Ez-zor center 15 Adman IBRAHIM Media Deir-Ez-zor center Eng. The Head of Topograph 18 Ayasa BLAT AI Hassakeh Directorate Executive Office Member The head of Topograph 19 Eng. TalatatrALAA AI Hassakeh				
7 Mouaz AL-MAHMOUD Technical Services - Deir-Ez-zor Head of severage section 8 Mohamad Khali DAWOD Deir-Ez-zor city council Eng. Technical observer 9 Mohamad Khali DAWOD Deir-Ez-zor city council Eng. Technical observer 10 Gorge SHAIO Directorate of Environment Association Administration council member 11 Mahmoud AL-NAJRAS Volunteers for Environment Association Administration council member 12 Mohamad KI Water Establishment of Al Hassakeh Head of severage department 13 Dr Omar ABD Volunteers for Environment Association A Furt University 14 Eng. Omar AL MOULLA AI Furat University - Faculty of ALI and TalkAAHM Al Hassakeh Directorate Executive Office Member 15 Adnan IBRAHM Al Hassakeh Directorate Executive Office Member The Head of Topograph 19 Eng. Talaat TALAA Al Hassakeh city council Vice manager severage section The Head of Topograph 20 Eng. Talaat TALAA Al Hassakeh city council Vice manager severage section The head of Topograph 21 Mahmoud AL RAHIL Al Hassakeh city council Vice manager severage section The head of severage section 22 Eng. Shakhmous Mohamad Samin D	-	6		
8 Mohamad AL-HASAN Baladan newspaper Journalist 9 Mohamad Khalil DAWOD Deir-Ez-zor city council Eng. Technical observer 10 Gorge SHAIO Directorate of Environment Affairs of Al Hassakeh Eng. Technical observer 11 Mahmoud AL-NAJRAS Volunteers for Environment Association Administration council member 12 MohAMAD Water Establishment of Al Hassakeh Head of sewerage department 13 AL-RAZAK Al Furat University - Faculty of AL-RAZAK The head of the association , A Furat University 14 Eng. Omar AL MOULLA Al Furat University - Faculty of ALI The head of the association , A Furat University 15 Adnan IBRAHIM Media Deir-Ez-zor center Eng. 16 Eng. Al Din AL IBRAHIM Al Hasakeh Directorate Executive Office Member 17 Nihad DRIKY Al Baath Newspaper Journalist Head of Topograph Department 19 Eng. Talaat TALAA Al Hasakeh city council Vice manager swerage section 21 Mahmoud AL RAHIL Al Hasakeh city council Technical Services 22 Eng. Shaa	-			
9 Mohamad Khalil DAWOD Deir-Ez-zor city council Eng. Technical observer 10 Gorge SHAIO Directorate of Environment Affairs of All Massakeh Vice manager 11 Mahmoud AL-NAJRAS Volunteers for Environment Affairs of All MoHAMAD Administration council member 12 Mohamad All Water Establishment of Al Hassakeh Head of severage department 13 Dr Oran ABD Volunteers for Environment Association He head of the association , A Furat University 14 Eng. Omar AL MOULLA Al Furat University - Faculty of All Teacher Eacer 15 Adnan IBRAHIM Media Deir-Ez-zor center Eacer 16 Eng. Is Al Din AL, IBRAHIM Al Basakeh Directorate Executive Office Member 18 Ayasu BLAT Al Purat Newspaper Iournalist 18 Ayasu BLAT Al Purat Newspaper Papariment 20 Eng. Talaat TALAA Al Hassakeh city council Vice manager sewerage section 21 Mahmoud AL RAHIL Al Hassakeh city council Technical Services - AL Basaseh 23 En				
In Directorate of Environment Affairs of Al Hassakeh Vice manager 11 Mahmoud AL-NAJRAS Volunteers for Environment Association Administration council member 12 MothAMAD Water Establishment of Al Hassakeh Head of sewerage department 13 AL-RAZAK Volunteers for Environment Association The head of the association , A Furat University 14 Eng. Omar AL MOULLA Al Furat University - Faculty of Agriculture The head of the association , A Furat University 15 Adnan IBRAHIM Media Deir-Ez-zor center Encher 16 BRAHIM Al Hassakeh Directorate Executive Office Member 17 Nihad DRIKY Al Baath Newspaper Journalist 18 Ayara BLAT Al Furat Newspaper Photographer 19 Eng. Nadah AL OJILY Technical Services - AL Baaqa The Head of Topograph Department 20 Eng. Abd Al Iatif General Establishment of Drinking Water General Manager 21 Mahmoud AL RAHIL Al Hassakeh Agriculture Directorate Agriculture Engineer 23 Eng. Abd Al Iatif General Establishment at Dirite.z.zor<	-			
Instruction Instruction Administration council member 11 Mahmoud AL-NAJRAS Volunteers for Environment Association Administration council member 12 MOHAMAD Water Establishment of Al Hassakeh Head of sewerage department 13 Dr Omar ABD Volunteers for Environment Association The head of the association , A Furat University 14 Eng. Omar AL MOULLA Al Furat University - Faculty of ALI The head of the association , A Furat University 15 Adnan IBRAHIM Media Deir-Ez-zor center 16 IBRAHIM Al Hassakeh Directorate Executive Office Member 17 Nihad DRIKY Al Baath Newspaper Journalist 18 Ayaar BLAT Al Furat Newspaper Photographer 19 Eng. Adah AL OJILY Technical Services - AL Raqqa The Head of Topograph Department 20 Eng. Abd Al Al Hassakeh city council Technical Services Eng. 21 Mahmoud AL RAHIL Al Hassakeh city council Technical Services Eng. 23 Eng. Abd Al latif General Establis	-		Directorate of Environment Affairs of Al	
I2 Mouhanad MOHAMAD AL- RAZAK Water Establishment of Al Hassakeh Head of sewerage department 13 Dr Omar ABD Volunteers for Environment Association AL-RAZAK The head of the association , A Furat University 14 Eng. Omar AL MOULLA ALI Al Furat University Faculty of Fund Teacher 15 Adnan IBRAHIM Media Deir-Ez-zor center Eng. 16 Eng. Is Al Din AL IBRAHIM Al Hassakeh Directorate Executive Office Member 17 Nihad DRIKY Al Baath Newspaper Journalist Department 20 Eng. Talaat TALAA Al Hassakeh city council Vice manager sewerage section 21 Mahmoud AL RAHIL Al Hassakeh city council Technical Services - AL Hassakeh Engineer 22 Eng Shakhmous Technical Services - AL Hassakeh Engineer 23 Eng. Abd Al latif General Establishment of Drinking Water General Manager 24 Eng. Shamsa AL JASSIM Raqqa Director Agriculture Engineer 25 Hasan AL MOUSTAFA	11	-		-
Image: Dr Omar ABD Volunteers for Environment Association The head of the association , A Furat University 14 Eng. Omar AL AIL TAZAK Teacher Furat University 15 Adnan IBRAHIM Media Deir-Ez-zor center Teacher 15 Adnan BRAHIM Media Deir-Ez-zor center Executive Office Member 16 Eng. 1s AI Din AL Baath Newspaper Journalist Durnalist 18 Aysar BLAT AI Furat Newspaper Photographer The Head of Topograph Department 20 Eng. Talaat TAL-AA AI Hassakeh city council Vice manager sewerage section 21 Mahmoud AL RAHIL AI Hassakeh city council Technical Services - AL Hassakeh Engineer 23 Eng. Abd <al pathil<="" td=""> AI Hassakeh city council Technical Services - AL Hassakeh Engineer 24 Eng. Abd<al pathil<="" td=""> AI Hassakeh city council Tector Engineer 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer Director 26 Eng. Mason AL SALIH Water Establishment at Al Has</al></al>		Mouhanad AL		
Instruction Eng. Omar AL MOULLA ALI AI Furat University Faculty of Agriculture Teacher 15 Adnan IBRAHIM Media Deir-Ez-zor center 16 Eng. Is Al Din AL IBRAHIM Al Hassakeh Directorate Executive Office Member 17 Nihad DRIKY Al Baath Newspaper Journalist 18 Aysar BLAT Al Furat Newspaper Photographer 19 Eng. Wadah AL OJILY Technical Services - AL Raqqa The Head of Topograph 20 Eng. Talaat TALAA Al Hassakeh city council Vice manager sewerage section 21 Mahmoud AL RAHIL Al Hassakeh city council Technical Services 22 Eng. Shakhmous Technical Services - AL Hassakeh Engineer 23 Eng. Abd Al latif General Stablishment of Drinking Water General Manager 24 Eng. Shamsa AL JASSIM Braqa Directorate of Environment Affairs of Raqa Director 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer Agriculture Engineer 26 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor	13	Dr . Omar ABD	Volunteers for Environment Association	The head of the association, AL Furat University
15 Adnan IBRAHIM Media Deir-Ez-zor center 16 Eng. 1s Al Din AL IBRAHIM Al Hassakeh Directorate Executive Office Member 17 Nihad DRIKY Al Baath Newspaper Journalist 18 Aysar BLAT Al Furat Newspaper Photographer 19 Eng. Wadah AL OJILY Technical Services - AL Raqqa The Head of Topograph Department 20 Eng. Talaat TALAA Al Hassakeh city council Tice manager sewerage section 21 Mahmoud AL RAHIL Al Hassakeh city council Technical Services - AL Hassakeh 23 Eng. Shakhmous MOUHMAD Technical Services - AL Hassakeh Engineer 24 Eng. Shamsa AL JASSIM General Establishment of Drinking Water General Manager 24 Eng. Shamsa AL JASSIM Directorate of Environment Affairs of Raqqa Director 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer 26 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor Head of sewerage section 27 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor Head of the council 29 Mohamad Amin Directorate of Environment Affairs	14	Eng. Omar AL MOULLA		
16 IBŘAHIM Al Flassakeh Directorate Executive Onice Member 17 Nihad DRIKY Al Baath Newspaper Journalist 18 Aysar BLAT Al Furat Newspaper Photographer 19 Eng. Vadah AL OJILY Technical Services - AL Raqqa Department 20 Eng. Talaat TALAA Al Hassakeh city council Vice manager sewerage section 21 Mahmoud AL RAHIL Al Hassakeh city council Technical Services - AL Hassakeh Engineer 23 Eng. Shakhmous Technical Services - AL Hassakeh Engineer 24 Eng. Abd Al latif General Establishment of Drinking Water General Manager 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer Agriculture Engineer 26 Eng. Talal AL HIEJI Al Hassakeh Agriculture Directorate Agriculture Engineer 28 Eng. Mazin ABD AL Water Establishment at Dir-Ez-zor Head of sewerage section 7 Eng. Makain AL JAZi ALALI Al Houara City Council Head the Technical Department 29	15	Adnan IBRAHIM		Deir-Ez-zor center
18 Aysar BLAT Al Furat Newspaper Photographer 19 Eng. Wadah AL OJILY Technical Services - AL Raqqa The Head of Topograph Department 20 Eng. Talaat TALAA Al Hassakeh city council Vice manager sewerage section 21 Mahmoud AL RAHIL Al Hassakeh city council Technical Services 22 Eng. Shakhmous MOUHMAD Technical Services - AL Hassakeh Engineer 23 Eng. Abd Al latif IBRAHIM General Establishment of Drinking Water General Manager 24 Eng. Shamsa AL JASSIM Directorate of Environment Affairs of Raqqa Director 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer 26 Eng. Hasson AL SALIH Water Establishment at Direztorate Agriculture Engineer 27 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor Head of sewerage section 7 KARIM Directorate of Environment Affairs of RAMADAN Director 29 Mohamad Amin RAMADAN Directorate of Environment Affairs of RAMADAN Directorate of Environment Affairs of Vice Manager 31 Mohamad ALHAIO Deir-Ez-zor city coun	_	IBRAHIM		
19 Eng. Wadah AL OJILY Technical Services - AL Raqqa The Head of Topograph Department 20 Eng. Talaat TALAA Al Hassakeh city council Vice manager severage section 21 Mahmoud AL RAHIL Al Hassakeh city council Technical Services 22 Eng. Shakhmous Technical Services - AL Hassakeh Engineer 23 Eng. Abd Al latif General Establishment of Drinking Water General Manager 24 Eng. Shamsa AL JASSIM Directorate of Environment Affairs of Director 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer 26 Eng. Talal AL HIEJI Al Hassakeh Agriculture Directorate Agriculture Engineer 28 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor Head of sewerage section 29 Mohamad Amin Directorate of Environment Affairs of Director 30 Eng. Abd Al Aziz ALALI Al Houara City Council Head the Technical Department 31 Mohamad Adnan ELLAWI Water Establishment at Deir-Ez-zor General Manager 32 Mohamad AL HAIO Dierectorate of Environment Affairs of <td< td=""><td>-</td><td></td><td></td><td></td></td<>	-			
19 Eng. Wadan AL ODLY Technical services - AL Radqa Department 20 Eng. Talaat TALAA AI Hassakeh city council Vice manager sewerage section 21 Mahmoud AL RAHIL AI Hassakeh city council Technical Services - AL Hassakeh 22 Eng. Abd Al latif General Establishment of Drinking Water General Manager 23 IBR.AHIM Directorate of Environment Affairs of Raqqa Director 24 Eng. Shamsa AL JASSIM Directorate of Environment Affairs of Raqqa Director 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer 26 Eng. Talal AL HIEJI AI Hassakeh Agriculture Directorate Agriculture Engineer 27 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor Head of sewerage section 28 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor General Manager 29 Mohamad Anin Directorate of Environment Affairs of Director 31 Mohamad AL HAIO Deir-Ez-zor General Manager 32 Mohamad AL HAIO Deir-Ez-zor city council The Head of the council 33 Eng. Taha SHLASH AI Hassakeh Agriculture Director	18	Aysar BLAT	Al Furat Newspaper	
20 Eng. Talaat TALAA Al Hassakeh city council Vice manager sewerage section 21 Mahmoud AL RAHIL Al Hassakeh city council Technical Services 22 Eng. Shakhmous Technical Services - AL Hassakeh Engineer 23 Eng. Abd Al Iatif General Establishment of Drinking Water General Manager 24 Eng. Shakhmous Directorate of Environment Affairs of Raqqa Director 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer Agriculture Engineer 26 Eng. Mala AL HIEJI Al Hassakeh Agriculture Directorate Agriculture Engineer 27 Eng. Masin ABD AL Water Establishment at Deir-Ez-zor Head of sewerage section 28 Eng. Malana Amin Directorate of Environment Affairs of RAMADAN Director 29 Mohamad Atin Dier-Ez-zor General Manager Engineer 31 Mohamad AtlAIAI Al Houara City Council Head of the council Head of the council 33 Eng. Abd Al Aziz ALALI	19	Eng. Wadah AL OJILY	Technical Services - AL Raqqa	
21 Mahmoud AL RAHIL Al Hassakeh city council Technical Services 22 Eng Shakhmous Technical Services - AL Hassakeh Engineer 23 Eng Abd Al latif General Establishment of Drinking Water General Manager 24 Eng. Shamsa AL JASSIM Directorate of Environment Affairs of Raqqa Director 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer 26 Eng. Talal AL HIEJI Al Hassakeh Agriculture Directorate Agriculture Engineer 27 Eng. Masson AL SALIH Water Establishment at Deir-Ez-zor Head of sewerage section 28 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor Head of sewerage section 29 Mohamad Amin Directorate of Environment Affairs of Director 30 Eng. Abd Al Aziz ALALI Al Houara City Council Head the Technical Department 31 Mohamad Adnan ELLAWI Water Establishment at Deir-Ez-zor General Manager 32 Mohamad AL HAIO Deir-Ez-zor city council The Head of the council 33 Eng. Taha SHLASH Al Hassakeh Agriculture Directorate Head of sew	20	Eng . Talaat TALAA	Al Hassakeh city council	
22 Eng. MOUHMAD Shakhmous Technical Services - AL Hassakeh Engineer 23 Eng. Abd Al latif IBRAHIM General Establishment of Drinking Water General Manager 24 Eng. Shamsa AL JASSIM Directorate of Environment Affairs of Raqqa Director 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer 26 Eng. Talal AL HIEJI Al Hassakeh Agriculture Directorate Agriculture Engineer 27 Eng. Mazin ABD AL Water Establishment at Al Hassakeh Engineer 28 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor Head of sewerage section 29 Mohamad Amin Directorate of Environment Affairs of Deir-Ez-zor Director 30 Eng. Abd Al Aziz AL ALI Al Houara City Council Head the Technical Department 31 Mohamad Adnan ELLAWI Water Establishment at Deir-Ez-zor General Manager 32 Mohamad AL HAIO Deir-Ez-zor city council The Head of the council 33 Eng. Taha SHLASH Al Hassakeh Agriculture Directorate Head Section - Head of sewerage department 36				
23 IBRAHIM General Establishment of Drinking Water General Manager 24 Eng. Shamsa AL JASSIM Directorate of Environment Affairs of Raqqa Director 25 Hasan AL MOUSTAFA Euphrates Friends Association Lawyer 26 Eng. Talal AL HIEJI Al Hassakeh Agriculture Directorate Agriculture Engineer 27 Eng. Masion AL SALIH Water Establishment at Al Hassakeh Engineer 28 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor Head of sewerage section 29 Mohamad Amin Directorate of Environment Affairs of RAMADAN Director 30 Eng. Abd Al Aziz AL ALI Al Houara City Council Head the Technical Department 31 Mohamad Adnan ELLAWI Water Establishment at Deir-Ez-zor General Manager 32 Mohamad AL HAIO Deir-Ez-zor city council The Head of the council 33 Eng. Taha SHLASH Al Hassakeh Agriculture Directorate Head of sewerage department 34 Eng Sahir ABD ALLAH Directorate of Environment Affairs of Deir-Ez-zor Vice Manager - Lab. Chef 35 Abd Allah AL SATOUF <	22		Technical Services - AL Hassakeh	Engineer
24Eng. Snamsa AL JASSIMRaqqaDirector25Hasan AL MOUSTAFAEuphrates Friends AssociationLawyer26Eng. Talal AL HIEJIAI Hassakch Agriculture DirectorateAgriculture Engineer27Eng. Hasson AL SALIHWater Establishment at AI HassakchEngineer28Eng. Mazin ABD ALWater Establishment at Deir-Ez-zorHead of sewerage section29MohamadAmin RAMADANDirectorate of Environment Affairs of Deir-Ez-zorDirector30Eng. Abd AI Aziz AL ALIAI Houara City CouncilHead the Technical Department31Mohamad Adnan ELLAWIWater Establishment at Deir-Ez-zorGeneral Manager32Mohamad AL HAIODeir-Ez-zor city councilThe Head of the council33Eng. Taha SHLASHAI Hassakch Agriculture Directorate Deir-Ez-zor city councilHead Section - Head of Environment Friends Club34Eng Sahir ABD ALLAHDirectorate of Environment Affairs of Deir-Ez-zorVice Manager - Lab. Chef Deir-Ez-zor35Abd Allah AL SATOUFAI Thawra City Council - RaqqaHead of sewerage department36Ibrahim MATTARAI Furat NewspaperJournalist37Fouad AL KHALFMediaJournalist38Bassil AL JASSIMMediaEditor - Journalist39Yasser AL ISSAAI Watan NewspaperJournalist40Adnan AL HOUSENAI Kamishly City CouncilSewerage Department41Mashaal LOKOAI Kamishly City CouncilSewerage Department42 </td <td>23</td> <td>6</td> <td>General Establishment of Drinking Water</td> <td>General Manager</td>	23	6	General Establishment of Drinking Water	General Manager
25Hasan AL MOUSTAFAEuphrates Friends AssociationLawyer26Eng. Talal AL HIEJIAl Hassakeh Agriculture DirectorateAgriculture Engineer27Eng. Hasson AL SALIHWater Establishment at Al HassakehEngineer28Eng. Mazin ABD ALWater Establishment at Deir-Ez-zorHead of sewerage section29MohamadAminDirectorate of Environment Affairs of Deir-Ez-zorDirector30Eng. Abd Al Aziz AL ALIAl Houara City CouncilHead the Technical Department31Mohamad Adnan ELLAWIWater Establishment at Deir-Ez-zorGeneral Manager32Mohamad AL HAIODeir-Ez-zor city councilThe Head of the council33Eng. Taha SHLASHAl Hassakeh Agriculture DirectorateHead Section - Head of Environment Friends Club34Eng Sahir ABD ALLAHDirectorate of Environment Affairs of Deir-Ez-zorVice Manager - Lab. Chef35Abd Allah AL SATOUFAl Thawra City Council - RaqqaHead of sewerage department36Ibrahim MATTARAl Furat NewspaperJournalist37Fouad AL KHALFMediaJournalist38Bassil AL JASSIMMediaEditor - Journalist39Yasser AL ISSAAl Watan NewspaperJournalist39Yasser AL ISSAAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader43Ryunan MATSUEJICA Study Team	24	Eng. Shamsa AL JASSIM		Director
26 Eng. Talal AL HIEJI Al Hassakeh Agriculture Directorate Agriculture Engineer 27 Eng. Hasson AL SALIH Water Establishment at Al Hassakeh Engineer 28 Eng. Mazin ABD AL Water Establishment at Deir-Ez-zor Head of sewerage section 29 Mohamad Amin Directorate of Environment Affairs of RAMADAN Directorate of Environment Affairs of Director 30 Eng. Abd Al Aziz AL ALI Al Houara City Council Head the Technical Department 31 Mohamad Adnan ELLAWI Water Establishment at Deir-Ez-zor General Manager 32 Mohamad AL HAIO Deir-Ez-zor city council The Head of the council 33 Eng. Taha SHLASH Al Hassakeh Agriculture Directorate Head Section - Head of Environment Friends Club 34 Eng Sahir ABD ALLAH Directorate of Environment Affairs of Deir-Ez-zor Vice Manager - Lab. Chef 35 Abd Allah AL SATOUF Al Thawra City Council - Raqqa Head of sewerage department 36 Ibrahim MATTAR Al Furat Newspaper Journalist 37 Fouad AL KHALF Media Journalist 38 Bassil AL JASSIM Media Bournalist 39	25	Hasan AL MOUSTAFA		Lawver
27 Eng. Hasson AL SALIH Water Establishment at Al Hassakeh Engineer 28 Eng. Mazin ABD AL KARIM Water Establishment at Deir-Ez-zor Head of sewerage section 29 Mohamad Amin RAMADAN Directorate of Environment Affairs of Deir-Ez-zor Director 30 Eng. Abd Al Aziz AL ALI Al Houara City Council Head the Technical Department 31 Mohamad Adnan ELLAWI Water Establishment at Deir-Ez-zor General Manager 32 Mohamad AL HAIO Deir-Ez-zor city council The Head of the council 33 Eng. Taha SHLASH Al Hassakeh Agriculture Directorate Head Section - Head of Environment Friends Club 34 Eng Sahir ABD ALLAH Directorate of Environment Affairs of Deir-Ez-zor Vice Manager - Lab. Chef 35 Abd Allah AL SATOUF Al Thawra City Council - Raqqa Head of sewerage department 36 Ibrahim MATTAR Al Furat Newspaper Journalist 38 Bassil AL JASSIM Media Editor - Journalist 39 Yasser AL ISSA Al Watan Newspaper Journalist 39 Yasser AL ISSA Al Kamishly City Council Sewerage Department 41 Mashaal LOKO				
28 Eng. Mazin ABD AL KARIM Water Establishment at Deir-Ez-zor Head of sewerage section 29 Mohamad RAMADAN Directorate of Environment Affairs of Deir-Ez-zor Director 30 Eng. Abd Al Aziz AL ALI Al Houara City Council Head the Technical Department 31 Mohamad Adnan ELLAWI Water Establishment at Deir-Ez-zor General Manager 32 Mohamad AL HAIO Deir-Ez-zor city council The Head of the council 33 Eng. Taha SHLASH Al Hassakeh Agriculture Directorate Head Section - Head of Environment Friends Club 34 Eng Sahir ABD ALLAH Directorate of Environment Affairs of Deir-Ez-zor Vice Manager - Lab. Chef 35 Abd Allah AL SATOUF Al Thawra City Council - Raqqa Head of sewerage department 36 Ibrahim MATTAR Al Furat Newspaper Journalist 37 Fouad AL KHALF Media Journalist 38 Bassil AL JASSIM Media Editor - Journalist 39 Yasser AL ISSA Al Watan Newspaper Journalist 40 Adnan AL HOUSEN Al Kamishly City Council Sewerage Department 41 Mashaal LOKO Al Kamishly City Council	27	6		
29Mohamad RAMADANAmin Directorate of Environment Affairs of Deir-Ez-zorDirector30Eng. Abd Al Aziz AL ALIAl Houara City CouncilHead the Technical Department31Mohamad Adnan ELLAWIWater Establishment at Deir-Ez-zorGeneral Manager32Mohamad AL HAIODeir-Ez-zor city councilThe Head of the council33Eng. Taha SHLASHAl Hassakeh Agriculture DirectorateHead Section - Head of Environment Friends Club34Eng Sahir ABD ALLAHDirectorate of Environment Affairs of Deir-Ez-zorVice Manager - Lab. Chef35Abd Allah AL SATOUFAl Thawra City Council - RaqqaHead of sewerage department36Ibrahim MATTARAl Furat NewspaperJournalist38Bassil AL JASSIMMediaJournalist39Yasser AL ISSAAl Watan NewspaperJournalist40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader44Louay KHALILJICA Study TeamSupporter / supporter		Eng. Mazin ABD AL	Water Establishment at Deir-Ez-zor	
30Eng. Abd Al Aziz ALALIAl Houara City CouncilHead the Technical Department31Mohamad Adnan ELLAWIWater Establishment at Deir-Ez-zorGeneral Manager32Mohamad AL HAIODeir-Ez-zor city councilThe Head of the council33Eng. Taha SHLASHAl Hassakeh Agriculture DirectorateHead Section - Head of Environment Friends Club34Eng Sahir ABD ALLAHDirectorate of Environment Affairs of Deir-Ez-zorVice Manager - Lab. Chef Deir-Ez-zor35Abd Allah AL SATOUFAl Thawra City Council - RaqqaHead of sewerage department36Ibrahim MATTARAl Furat NewspaperJournalist37Fouad AL KHALFMediaJournalist38Bassil AL JASSIMMediaEditor - Journalist39Yasser AL ISSAAl Watan NewspaperJournalist40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader44Louay KHALILJICA Study TeamSupporter / supporter	29	Mohamad Amin		Director
31Mohamad Adnan ELLAWIWater Establishment at Deir-Ez-zorGeneral Manager32Mohamad AL HAIODeir-Ez-zor city councilThe Head of the council33Eng. Taha SHLASHAl Hassakeh Agriculture DirectorateHead Section - Head of Environment Friends Club34Eng Sahir ABD ALLAHDirectorate of Environment Affairs of Deir-Ez-zorVice Manager - Lab. Chef35Abd Allah AL SATOUFAl Thawra City Council - RaqqaHead of sewerage department36Ibrahim MATTARAl Furat NewspaperJournalist37Fouad AL KHALFMediaJournalist39Yasser AL ISSAAl Watan NewspaperJournalist40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader44Louay KHALILJICA Study TeamEIA	30			Head the Technical Department
32Mohamad AL HAIODeir-Ez-zor city councilThe Head of the council33Eng. Taha SHLASHAl Hassakeh Agriculture DirectorateHead Section - Head of Environment Friends Club34Eng Sahir ABD ALLAHDirectorate of Environment Affairs of Deir-Ez-zorVice Manager - Lab. Chef35Abd Allah AL SATOUFAl Thawra City Council - RaqqaHead of sewerage department36Ibrahim MATTARAl Furat NewspaperJournalist37Fouad AL KHALFMediaJournalist38Bassil AL JASSIMMediaEditor - Journalist39Yasser AL ISSAAl Watan NewspaperJournalist40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader44Louay KHALILJICA Study TeamEIA				*
33Eng. Taha SHLASHAl Hassakeh Agriculture DirectorateHead Section - Head of Environment Friends Club34Eng Sahir ABD ALLAHDirectorate of Environment Affairs of Deir-Ez-zorVice Manager - Lab. Chef35Abd Allah AL SATOUFAl Thawra City Council - RaqqaHead of sewerage department36Ibrahim MATTARAl Furat NewspaperJournalist37Fouad AL KHALFMediaJournalist38Bassil AL JASSIMMediaEditor - Journalist39Yasser AL ISSAAl Watan NewspaperJournalist40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader43Ryunan MATSUEJICA Study TeamEIA44Louay KHALILJICA Study TeamSupporter / supporter				
34Eng Sahir ABD ALLAHDirectorate of Environment Affairs of Deir-Ez-zorVice Manager - Lab. Chef35Abd Allah AL SATOUFAl Thawra City Council - RaqqaHead of sewerage department36Ibrahim MATTARAl Furat NewspaperJournalist37Fouad AL KHALFMediaJournalist38Bassil AL JASSIMMediaEditor - Journalist39Yasser AL ISSAAl Watan NewspaperJournalist40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader43Ryunan MATSUEJICA Study TeamEIA44Louay KHALILJICA Study TeamSupporter / supporter				Head Section - Head of
35Abd Allah AL SATOUFAl Thawra City Council - RaqqaHead of sewerage department36Ibrahim MATTARAl Furat NewspaperJournalist37Fouad AL KHALFMediaJournalist38Bassil AL JASSIMMediaEditor - Journalist39Yasser AL ISSAAl Watan NewspaperJournalist40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader43Ryunan MATSUEJICA Study TeamEIA44Louay KHALILJICA Study TeamSupporter / supporter	34	Eng Sahir ABD ALLAH		
36Ibrahim MATTARAl Furat NewspaperJournalist37Fouad AL KHALFMediaJournalist38Bassil AL JASSIMMediaEditor - Journalist39Yasser AL ISSAAl Watan NewspaperJournalist40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader43Ryunan MATSUEJICA Study TeamEIA44Louay KHALILJICA Study TeamSupporter / supporter	35	Abd Allah AL SATOUF		Head of sewerage department
38Bassil AL JASSIMMediaEditor - Journalist39Yasser AL ISSAAl Watan NewspaperJournalist40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader43Ryunan MATSUEJICA Study TeamEIA44Louay KHALILJICA Study TeamSupporter / supporter				
38Bassil AL JASSIMMediaEditor - Journalist39Yasser AL ISSAAl Watan NewspaperJournalist40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader43Ryunan MATSUEJICA Study TeamEIA44Louay KHALILJICA Study TeamSupporter / supporter	37	Fouad AL KHALF	* *	Journalist
40Adnan AL HOUSENAl Kamishly City CouncilSewerage Department41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader43Ryunan MATSUEJICA Study TeamEIA44Louay KHALILJICA Study TeamSupporter / supporter	38	Bassil AL JASSIM	Media	Editor - Journalist
41Mashaal LOKOAl Kamishly City CouncilSewerage Department42Hirofumi SANOJICA Study TeamTeam Leader43Ryunan MATSUEJICA Study TeamEIA44Louay KHALILJICA Study TeamSupporter / supporter	39	Yasser AL ISSA		Journalist
42Hirofumi SANOJICA Study TeamTeam Leader43Ryunan MATSUEJICA Study TeamEIA44Louay KHALILJICA Study TeamSupporter / supporter	40	Adnan AL HOUSEN		
43Ryunan MATSUEJICA Study TeamEIA44Louay KHALILJICA Study TeamSupporter / supporter	41			
44 Louay KHALIL JICA Study Team Supporter / supporter	42			Team Leader
	43			
45 Amal HASAN IICA Study Toom Intermedian				
45 Amai FASAN JICA Suuy ream Interpreter	45	Amal HASAN	JICA Study Team	Interpreter

Table A13.1.3 Attendants List of the 1st Stakeholder Meeting at Deir-Ez-zor

13. 2 Photos of the 1st Stakeholder Meetings at Three Governorates

1. Circumstances of the Meeting Lattakia, Meridien Hotel (2007-02-27)

2. Introduction the projects to local TV Lattakia, Meridien Hotel (2007-02-27)

3. Circumstances of the Meeting Damascus, Sheraton Hotel (2007-03-01)

4. Questions and answers Damascus, Sheraton Hotel (2007-03-01)

5. Circumstances of the Meeting Deir-Ez-zor, Furat Cham Hotel (2007-03-04)

6. Introduction Environmental and Social Considerations to local TV, Deir-Ez-zor, Furat Cham Hotel (2007-03-04)

13. 3 Newspaper Account of the 1st Stakeholder Consultation Meeting

28/2/200

بلدنا | اللاذقية من | أحمد بدبوي

عُقد صباح أمس في عريديان اللاذفية مؤتمز دراسة وتطوير نظم الصرف الصحي في الجمهورية العربية السورية, الذي سنقوم به وزارة الإسكان والتعمير بالتعاون مع فريق الوكالة اليابانية للتعاون

الدولي جايكا . محافظ اللاذقية السيد (اهد حاج سيُّ ذكر أن المساهمات العديدة التي قامت بها وكالة "جايكا" في رفع المستوى البيئي في سورية، من مساهمتها في مشروع إدارة النفايات الصلبة في المحافظة والتر اشتطت على دراسة إعادة تأهيأ مكب البضة ودراسة إعادة تأهيل معمل السماد في موقع البصة ودراسة إنشاء المظمر الصحر المشترك لمدن المحافظة الأربعة في موقع "القاسية"، بالإضافة إلى فروع إدارة جمع التغايات، ومشروع تحديث وتطوير العمل المرفئي في اللاذقية ، وفتع قسم هند، الميكاترونيك في جامعة تشرين. والعديد من المساهمات الأخرى،

من جانبة قام السيد " هيروقومي ساتو" رئيس فريق وكالة جايكا يتقديم عرض موجز عن دراسة الوكالة. حيث شرح الإرشادات البيئية بين الجانب السوري وجايكا مبينا أن أهـداف الدراسة هي مراجعة خطط التطوير الموجودة

ى قطاعات الـه s١١ الوطنية, وصياغة الخطة الرئيس للمحافظة للمناطق ذات الأولوية والتى تهدف إلى التحكم بتلوث الميآه وتحسين الصحة العاما وإجراء دراسة جدوى للمنطقة ذات الأولويية بالتعاون مع الموظف النظراء السوريين، بالإضافة إلى القيام بنقل المعرفة التقنية إلى الموظفين النظراء السوريين أثناء الدراسة، وقام السيد " سائو يتقديم برنامج للدراسة ومراحلها التى تضم المسح الاستطلاعي وتحضير الخطة الركيسية. ودراسة الجدوى الاقتصادية في المنطقة ذات الأولوية .

600

مراجعة خطط التطوير مراجعة خطط التطوير الموجودة من أهداف الدراسة

ثم قام السيد "ريونان مانسوي" الممسؤول عن تقديم الأتر البيلي ومسع أستبيان العلاقات الرئيسية بين سورية وجايكا الرئيسية بين سورية وجايكا والتي تضمنت تعريفا بالبنود الرئيسية، والتي تشمل المفاهيم الأساسية للخطوط الرئيسية لجايكا, وإجراءات الاعتبارات البيلية

Wednesda

والاجتماعية. وتـم عـرض مخطط اجتـماع المعنيين الاستـشاري وهـدف الفحص البيئي الأول

تبلغ مدة المشروع 16 شهراً وهو عبارة عن ثلاث مراحل

الدكتور * بسام فلوح * مدير

المشروع الوطني اتفاوير نظم الصرف الصحي في الجمهورية العربية السورية ، ذكر بأن مدة المشروع 16 شهراً، بدأ في نعاية وهو عبارة عن ثلاث مراحل ونقوم الآن بمراجعة الدراسات الإقليمية الآن بمراجعة الدراسات الإقليمية وهي درعا وريف دمشق واللاقية وطرطوس والرقة والحسكة ودير الزور، حضر المؤتمر المعندس محمد حلمي أزهري رئيس مجلس مدافظة الللاذقية، وأعضاء من الحمات المعانة.

With the Cooperation of JICA:

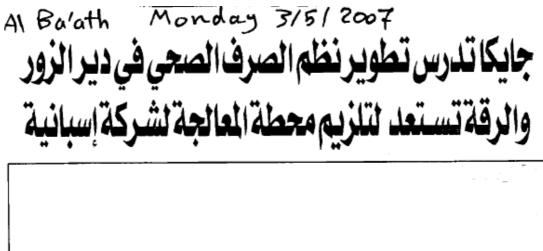
The Stakeholder Meeting of the Study on Sewerage System Development In the Syrian Arab Republic

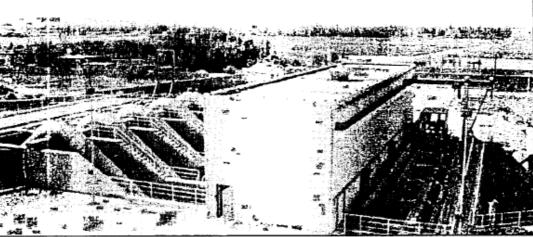
(Baladna Newspaper, Wednesday 28/2/2007)

The meeting was held yesterday morning at Le Meridian Hotel of Lattakia, which is cooperated between the Ministry of Housing and Construction and the JICA Study Team.

During the opening statement, Mr. Zahid Haj Mousa, the governor of Lattakia, mentioned the various contribution of JICA in the fields of ascending the environmental level in Syria such as; the management of solid wastes project in Lattakia, the study of rehabilitation of *Al Bassa* dumpster, the study of rehabilitation of *Al Bassa* fertilizers facility, the study of initiating the joint sanitary dumpster of the governorate four cities in *Al Kassiya* zone, the management of wastes gathering of Lattakia, the project of developing and modernizing the work in Lattakia

port, inaugurating the mechatronics department in Tishreen University, and many others.


Mr. Hirofumi Sano, the team leader of the JICA Study Team gave a summary of the study, and explained the environmental instructions between the Syrian and JICA sides showing that the targets of the study are the revision of the existing development plans in the national sanitary sewerage sections, the formation of the Master Plan in accordance to the prioritized areas which aims to control the water pollution, the improvement of the public health status, and the implementation of the feasibility study concerning the prioritized areas with the coordination of the Syrian counterparts, including the technical knowledge conveying to them during the study period as well. After that, Mr. Sano showed the outline and the progress of the JICA study phases which include the field study task, the preparation of the Master Plan, and the preparation of the Feasibility Study for the prioritized areas.


Dr. Ryunan Matsue, Environmental Impact Assessment and the Social Relations Questionnaire Survey expert, showed Syrian and JICA guidelines for the Environmental and Social Considerations, which includes a definition of the main terms consisting of the JICA guidelines and the Environmental and Social Considerations procedures.

A presentation of the Stakeholder Meeting and the target of the 1st environmental questionnaire survey have been shown.

In closing address, Dr. Wassim Fallouh, the manager of the national sewerage development project in the Syrian Arab Republic, mentioned that the period of the project is 16 months, started in the end of 2006 and ends in March 2008, which consists of three phases, the first one we are executing is to review all the regional studies that have taken a place in Dar'aa, Rural Damascus, Lattakia, Tartous, Raqqa, Hassakeh and Deir-Ez-zor governorates.

Mouhamad Helmi Al Azhari, the chief of Lattakia Governorate Council and the members of the concerned sides also attended the Meeting.

دير الزور- نهاد دريعي/ الرقة- حمود العجاج:

بحث فريق جايكا الياباني في قندق فرات الشام بدير الزور مع الجهات المعنية امس تطوير نظم الصرف الصحي بمحافظة در دير الزور بهدف مراجعة خطط التطوير الموجودة في قطاعات الصرف الصحي الوطنية وصياغة الخطة الرئيسية للمحافظة ذات الاولوية والتي تهدف الى التحكم بتلوث المياه وتحسين الصحة العامة واجراء دراسة جدوى للمنطقة ذات الاولوية بالتعاون مع الموظفين النظراء السوريين والقيام بنقل المعرفة التقنية إليهم اثناء الدراسة. هذا وتحدث السيد هيروفومي سانو رئيس فريق جايكا عن هذه الدراسة والتي تاتي ضمن ثلاث مراحل في المسح الاستطلاعي للتحقق من الوضع الحالي لقطاعات الصرف فريق جايكا عن هذه الدراسة والتي تاتي ضمن ثلاث مراحل في المسح الاستطلاعي للتحقق من الوضع الحالي لقطاعات الصرف الصحي والخطة العلاجية ضمن الخطة الرئيسية لتطوير نظام الصرف في سبع محافظات اما دراسة الجدوى فهي من خلال الصحي والخطة العلاجية ضمن الخطة الرئيسية لتطوير نظام الصرف في سبع محافظات اما دراسة الجدوى فهي من خلال الصحي والنفية تقدم الجانب الاسباني بقرض لتمويل محطة معالجة لمجاري مدينة الرقة. وني وزارة المورية المورية المورية الاسبانية تقدم الجانب الاسباني بقرض لتمويل محطة معالجة لمجاري مدينة الرقة. ونكر مدير الصرف الصحي في وزارة الاسكان بانه ثمت موافاة الجانب الاسباني بقرض لتمويل محطة معالجة لمجاري مدينة الرقة. ون مر المر التعاون الفني بين الحكومة السورية الاسكان بانه ثمت موافاة الجانب الاسباني بقرض لتمويل محطة معالجة لمجاري مدينة الرقة. ونكر مدير الصرف الصحي في وزارة الاسكان بانه ثمت موافاة الجانب الاسباني بقرض لتمويل محطة معالجة لمجاري مدينة الرقة. ونكر مدير الصرف الصحي في وزارة منها لتنينة الرقة ومن خلال لحظ عدد السكان والغزارات مشيراً الى ان الشركات الخمس التي تقدمت بالعروض للمرة الاولى لم تتاهل أي منها لتنفيذ المشروع وفق الشروط الملوبة. علماً ان الوزارة تقوم حالياً باستبدال الخلوط الرئيسية للصرف الصحي في ومنها لتنفيذ المشروع وفق السروط المطوبة. علماً الوزارة تقوم حالياً باستبدال الخطوط الرئيسية للصرف الصحي في مدينة الرقة كما باشرت بتنفيذ محطة الضع التي ستضع المي محطة المعالجة. يذكر ان محطة المالجة القر، وستضع عند الرقة تفوق كلفتها الرامرار لس وتتوضع بالقرب من معط القرميد وعلى بعد نحو ٢٢ كيلو متراً شرق الرقة، وستضع عند استشارها حداً لتلوث ميوار الفرات حيث ان معظم مج

JICA Studies the Sewerage System Development in Deir-Ez-zor Governorate (Al Ba'ath Newspaper; Monday 5/3/2007)

Yesterday, JICA Study Team and the concerned sides held the 1st Stakeholder Meeting in Furat

Cham Hotel in Deir-Ez-zor about the development of the sewerage system for the targets of the revision of the existing development plans in the national sanitary sewerage sections, the formation of the Master Plan in accordance to the prioritized areas, which aims to control the water pollution, to improve the public health status, and to implement the Feasibility Study concerning the prioritized areas with the coordination of the Syrian counterparts, including the technical knowledge transfer to them during the study period as well.

Mr. Mr. Hirofumi Sano, the team leader of the JICA Study Team, appointed that this study consists of three phases of the field surveying to examine the current status of the sanitary sewerage sections, and the amendment plan in accordance of the Master Plan of the sewerage systems development in the seven governorates of (Rural Damascus, Dar'aa, Tartous, Lattakia, Raqqa, Deir-Ez-zor, Hassakeh). The Feasibility Study is going to be executed through a choosing an experimental project and contracting with local consultants.

13. 4 Minutes of the 1st Stakeholder Meeting at Three Governorates

Based on the agreement between Ministry of Housing and Construction (hereafter called as MHC) and Japan International Cooperation Agency (hereafter called as JICA), MHC in collaboration with the JICA Study Team organized a Stakeholder Consultation Meeting from 27 February to 4 March 2007 at Lattakia, Damascus and Deir-Ez-zor, respectively. The place and timing of the Meetings are showed as **Table A13.4.1**.

Items	Lattakia	Damascus	Deir-Ez-zor
Timing	10:00 - 12:50	10:00 - 13:00	10:00 - 12:30
	27 February 2007	1 March 2007	4 March 2007
Place	Meridien Hotel	Sheraton Hotel	Furat Cham Hotel
Target Areas	Lattakia and Tartous	Rural Damascus and	Deir-Ez-zor, Raqqa and
	Governorates	Dar'aa Governorates	Hassakeh Governorates

Table A13.4.1 Place and Timing of the 1st Stakeholder Consultation Meeting

13.4.1 1st Stakeholder Meeting at Lattakia

(1) Opening Address, by Mr. Zahed Haj Eisa, Lattakia Director

The Meeting was started by an opening address by Governor of Lattakia Governorate, Mr. Zahed Haj Eisa, who introduced the situation of various JICA's projects in Lattakia and emphasized the importance of this essential project to reach the total integrated management of sanitary sewerage system. He also thanked the government of Japan and JICA for the efforts in the field of environment.

(2) Presentation Part I, by Mr. Hirofumi SANO, Team Leader, JICA Study Team

Mr. SANO explained the background and objectives of the Study, study target area, outline and the progress of the Study. He also explained that supporting on Stakeholder Meeting is one of important contents as the JICA Study Team.

(3) Presentation Part II, by Dr. Ryunan MATSUE, Environmental Impacts Assessment Expert, JICA Study Team

Dr. MATSUE firstly explained the objectives and basic concepts of the JICA Guidelines for Environmental and Social Considerations. Then, he explained the procedures of environmental and social considerations after introducing some key words used in the JICA's Guidelines. He informed that this meeting is held according to the JICA's Guidelines in order to disclose information of the Study to the public. Finally, He mentioned that an IEE (Initial Environmental Examination) level study will be conducted by MHC in collaboration with the JICA Study Team.

(4) Presentation Part III, by Dr. Ryunan MATSUE, Environmental Impacts Assessment Expert, JICA Study Team

In this part, Dr. MATSUE explained the plan Stakeholder Consultation Meeting during the implementing period of the Study and informed that there will be 2 stakeholder meetings for the M/P target governorates, and additional stakeholder meeting will be held only for F/S target governorate. He also explained the results of scoping and study methods in IEE level study in detail.

(5) Questions & Answers

The main topics discussed in the Meeting are summarized as below:

1) Eng. Ghatfan KHOURY, Chief of the Technical Services – Tartous

What is the JICA's vision and procedures about the benefits of this study according to the characteristics of the coastal area? (such as the heavy population growth, the heavy rainfall, special geological and topographical features and the faults the water flats in this area.)

Mr. SANO

We will review local master plan and then after we finish JICA's master plan we can compare the results and maybe we will modify it or not but we will considerate the results of local master plan and the characteristics of coastal area.

Dr. MATSUE

During M/P, we will take consideration into the special situation of the coastal area, however the scale of the STP project is not so big so there are not serious impacts of the construction of the STP on the environment such as geological and topographical. On the other hand, implementation of STP project will improve sea water quality.

2) Dr. Eng. Mohamad HABIB, Establishment of Drinking Water - Lattakia

There is a local master plan for sewerage projects in the coastal area, the question is what is your suggestions about construction separated STPs or one central STP?

The basic future problem of the STP project in the coastal area is the odor problem with which four existing STPs in Lattakia is faced. How can we deal with these problems?

Mr. SANO

We will decide separated STP or central one based on the examination of geographical conditions, economic, financial, social and environmental.

Dr. MATSUE

To solve the odor problem we should think about this matter in the study stage not after the construction of STP. This odor problem would be minimal or neglected If we had conducted an effective environmental and social considerations such as selecting proposed STP location far from residential area.

However, as countermeasures to solve existing problems, planting around STP or using soil filter beds to treat the collected odor from covered wastewater and sludge treatment facilities may be recommended.

3) Mr. Michael AL-KHOURY, The Chief of the City Council of Safita

We have a sewerage network which is mixed with rainfall drainage. What is the impact of this sewerage system on the STP's performance and what are the appreciated measures?

Mr. SANO

We should evaluate this system and maybe we should modify it such as using combined sewer overflow (CSO) control measures or using separate system. We can send you the Japanese

measures for CSO control by e-mail.

4) Dr. Suheir RAIES, The Syrian Coast Society for Environmental Protection – NGO

We have no medical wastes treatment plant in Lattakia and other cities of coastal area. Would you take into consideration the special situation of medical wastes and other harmful substances generated from factories in this project?

There is no future vision for medical wastes (like medical drugs, cancer treatment, etc...) treatment before throwing it into sewerage system

Mr. SANO

We have an expert taking in charge of Industrial Wastewater Treatment Planning in our team and he will give some recommendations and suggestions on the treatment of industrial wastewater or medical wastewater.

Dr. Wassim, MHC

There are many EIA committees for monitoring the private sector industries and the hospitals and there is a suggested plan for pre-treatment and monitoring system.

5) Eng. Jaber HASAN, Technical Services – Tartous

Does the JICA's study take into consideration the olive mill wastes that have high concentrations of COD and BOD which are about more than ten times of domestic wastewater?

What is affected distance range of the offensive odor?

Mr. SANO

We will take the olive mill wastes into our consideration and we will suggest a pre-treatment process before discharging it into the sewerage system.

Dr. MATSUE

The affected area of offensive odor varies with the climate conditions in different season and odor strength. In this project we have a plan to conduct a questionnaire survey on residents near existing STP in Syria to estimate the affected area of offensive odor.

6) Eng. Rabab AL-KHIER, The Syrian Coast Society for Environmental Protection – NGO

There are no any executive instructions to force the industries and the hospitals to make a pretreatment for their wastes. Also, government (such MHC) should provide the pre-treatment facilities for hospitals and factories.

In our region we have a very old and bad sewerage system. How can we use it in the future? Does JICA side carry out follow-up activities after the Study?

Dr. MATSUE

We should firstly evaluate its condition and capacity and then make a decision to restore or replace it. Basically, we should use existing sewerage system as possible.

According to JICA guidelines, MHC should confirm the implementing situation of environmental and social considerations during construction and operation stages after this development study is terminated. If necessary, JICA may offer another cooperation project to follow-up the Study.

7) ENG.Eid HASSAN, Technical Services – Tartous

Does the JICA's study take into consideration on the impacts of construction work of pipelines system on existing infrastructures, and take into consideration on reusing the treated water and sludge.

Dr. MATSUE

This is a very important point and we will pay attention on this matter by IEE level study, and the results of IEE level study will be showed in 2^{nd} Stakeholder Meeting.

(6) Closing Address, by Dr. Wassim Fallouh, MHC

Dr. Wassim thanked stakeholders for their participation and their valuable comments to the Study.

Annex I: Attendants List

13.4.2 1st Stakeholder Meeting at Damascus

(1) Opening Address, by Mr. Mohamad Ahmad Al-Gradatt, Director of Sewerage Department of MHC

The Meeting was started by an opening address by Director of Sewerage Department of MHC, Mr. Mohamad Ahmad Al-Gradatt, who welcomed and thanked attendants for their participation, and mentioned that the Stakeholder Meeting is organized by MHC in collaboration with the JICA Study Team. He also thanked JICA for their cooperation in many fields especially in training our staff. Finally, he hoped stakeholders could give useful comments and suggestions.

(2) Presentation Part I, by Mr. Hirofumi SANO, Team Leader, JICA Study Team

Mr. SANO explained the background and objectives of the Study, study target area, outline and the progress of the Study. He also explained that supporting on Stakeholder Meeting is one of important contents as the JICA Study Team.

(3) Presentation Part II, Mr. Maher Al-khateeb, MHC

Mr. Maher explained briefly the reason why EIA knowledge is necessary for sanitary engineer and what items have been taken into consideration in an EIA study for a sewerage project.

(4) Presentation Part III, by Dr. Ryunan MATSUE, Environmental Impacts Assessment Expert, JICA Study Team

Dr. MATSUE firstly explained the objectives and basic concepts of the JICA Guidelines for Environmental and Social Considerations. Then, he explained the procedures of environmental and social considerations after introducing some key words used in the JICA's Guidelines. He informed that this meeting is held according to the JICA's Guidelines in order to disclose information of the Study to the public. Finally, He mentioned that an IEE (Initial Environmental Examination) level study will be conducted by MHC in collaboration with the JICA Study Team.

(5) Presentation Part IV, by Dr. Ryunan MATSUE, Environmental Impacts Assessment Expert, JICA Study Team

In this part, Dr. MATSUE explained the plan Stakeholder Consultation Meeting during the implementing period of the Study and informed that there will be 2 stakeholder meetings for the M/P target governorates, and additional stakeholder meeting will be held only for F/S target governorate. He also explained the results of scoping and study methods in IEE level study in

detail.

(6) Questions & Answers

The main topics discussed in the Meeting are summarized as below:

1) Eng. Housam AL-SAFADI, Consultant Engineer

In Syria, existing sewerage system is combined system. In JICA study, whether a separated system will be proposed? And is there any economical feasibility study for the selection?

For the item No. 23 which is facility design of sewerage system including sewage treatment plant, are you going to design only one STP in each governorate or more? And for the item No. 34 which is the technology transfer, are you going to transfer the technology and the information to other governorates which are not included in this study? I suggest making training courses to local staff about 20 persons at each governorate.

What is correlation between JICA Guidelines for Environmental and Social Considerations and other International Organizations' guidelines (such as EU Guidelines, ADB Guidelines)? When and where can I have the final results of this study, and maybe it is better to present this study and its results on special website.

Mr. SANO

For the first question, it is dependent on the climate conditions in the studied area for example the coastal area has rainfall more than 1,000 mm per year so it is suitable to design separated system, however, for the area like Damascus which has rainfall less than 300 mm so it is preferred to design combined system and a feasibility study will be made for the priority area which is only located in the Rural Damascus according to MHC.

And we will prepare a report which includes all details about feasibility study and the all recommendations etc...

For another point, the time is very limited so the priority is to finish the study and maybe later we will discuss the training courses but now we have counter-partners staff from MHC who can follow up the project in the future because these staffs will have enough experience through technology transfer of this study.

Dr. MATSUE

New JICA Guidelines are modified in 2004 by referring EU Guidelines, World Band Environmental Sourcebook, ADB Environmental Assessment Guidelines etc.

According to JICA Guidelines, JICA encourage the recipient government to disclose and present information about environmental and social consideration to local stakeholders. For the acquisition of final results of this study, we hope you could have soft or hard copies of reports from MHC.

2) Dr. Eng. Farouk AL-ADLI, University of Damascus – Civil Engineering Faculty

Do you take into consideration the characteristics of each area in your study like topographical features? Because sometimes we have to design many pumping stations to pump wastewater, therefore, I suggest that several separated (or small) STPs not one central STP should be designed.

Mr. SANO

Both central STP and small STPs will be discussed in the study, and we know that the small STP is easier for the management, but there are many other considerations we should take such as topographical, economic and financial conditions.

Dr. MATSUE

On the other hand, environmental and social also should be considered, for example, we have to make examination to compare reuse and discharge of treated wastewater and sludge, and odor problem.

3) Dr. Eng. Bashar EBRAHIM, University of Damascus – Agriculture Engineering Faculty

My question is about the sludge and how can we reuse it? For example, is there any decision to use it in the agriculture directly or we need secondary sludge treatment in order to reuse it?

I suggest that if it is possible to make long term training courses to our local staff like another JICA's technical cooperation projects.

Also I suggest a pilot project, to transfer the JOKASOW technology to Syria if it possible.

Dr. MATSUE

The sludge reuse for agriculture is one of our considerations in this study but we should make

examination on heavy metals in STP sludge and soil in agricultural land in order to evaluate whether we can apply the STP sludge for agriculture or not. In the IEE level study, we will collect the related information and also hope stakeholders to give us your supports.

For second question, although our project is a development project, we will conduct training as much as possible to C/Ps. Actually, every day JICA Study Team is working with C/P team from MHC and GCEC, technology transfer has been carried out during our daily works. We also hope in the future another JICA's technical cooperation project will be conducted in the field of sewerage.

Mr. SANO

In Master Plan study, JOHKASOU technology will be examined as one of alternatives for treatment method selection. For the details, we will send you JOHKASOU information if necessary.

4) Expert from GCEC

In many of our villages there are not any sewerage systems. Do you take into consideration on Syrian economical ability when you prepare M/P?

Why did you put (D) for air pollution item and (C) for odor item and why did you separate these two items for IEE level study?

Mr. SANO

The time is limited to cover all Syria so we will put a master plan to sewerage system include the proposed STPs and then in the future the local specialists should take the decision about the local problems. In master plan study we will pay our attention on Syrian economical ability when we selection treatment method.

Dr. MATSUE

In general, we can say that odor item is included in air pollution item. However, here air pollution means total suspended particulate (TSP) matter, NOx, SOx, lead (Pb) and so on. On the other hand, for sewerage system odor problem is a common and important item because for almost STPs the offensive may emitted from wastewater and sludge treatment facilities. Therefore, we separated odor and air pollution.

5) Hekmat ABOU MOHAMD, The Environmental Avant-Garde – Rural Damascus Area –

NGO

Are you going to take into consideration the loss of water quantities after the treatment process in the proposed STP? Because bad water quality is better than no water.

Dr. MATSUE

We understood some people used to use raw wastewater for irrigation. However, if you use raw wastewater that is not meet water quality standard for irrigation use, some damage may occur in the future. We prefer to use treated wastewater with good quality rather than to loss a little water quantity.

6) Mr. Ali AL-ZOUABI, The Agriculture Association of Dar'aa

What are the impacts of STP on human and groundwater etc. and what is affected rang of odor?

Dr. MATSUE

Actually, there is a positive impact of the sewerage project on public health condition because the water environment will be improved after implementation of the project. However, some adverse impacts may generated by the project such as groundwater pollution at sludge disposal site, odor problem around STP area. Affected rang of odor is normally from few hundred meters to few kilometers depending on climate conditions and odor strength. In this project we have a plan to conduct a questionnaire survey on residents near existing STP in Syria to estimate the affected area of offensive odor.

(7) Closing Address, by Ms. Yomiko HONDA, Project Formulation Advisor, JICA Syrian Office

Ms. Honda thanked stakeholders for their participation and explained that the time is limited for the Study, therefore, it is difficult to cover whole Syria and other related fields. She expected that sustainable development for sewerage system in Syria could be achieved through the implementation of the projects.

Annex II: Attendants List

13.4.3 1st Stakeholder Meeting at Deir-Ez-zor

(1) Opening Address, by Dr. Wassim Fallouh, MHC

The Meeting was started by an opening address by Dr. Wassim Fallouh, who welcomed and thanked attendants for their participation and mentioned that the Stakeholder Meeting is organized by MHC in collaboration with the JICA Study Team. He also thanked JICA for their cooperation in many fields especially in training our staff. Finally, he hoped stakeholders could give useful comments and suggestions.

(2) Presentation Part I, by Mr. Hirofumi SANO, Team Leader, JICA Study Team

Mr. SANO explained the background and objectives of the Study, study target area, outline and the progress of the Study. He also explained that supporting on Stakeholder Meeting is one of important contents as the JICA Study Team.

(3) Presentation Part II, Mr. Thaer Hatem, MHC

Mr. There explained briefly the reason why EIA knowledge is necessary for sanitary engineer and what items have been taken into consideration in an EIA study for a sewerage project.

(4) Presentation Part III, by Dr. Ryunan MATSUE, Environmental Impacts Assessment Expert, JICA Study Team

Dr. MATSUE firstly explained the objectives and basic concepts of the JICA Guidelines for Environmental and Social Considerations. Then, he explained the procedures of environmental and social considerations after introducing some key words used in the JICA's Guidelines. He informed that this meeting is held according to the JICA's Guidelines in order to disclose information of the Study to the public. Finally, He mentioned that an IEE (Initial Environmental Examination) level study will be conducted by MHC in collaboration with the JICA Study Team.

(5) Presentation Part IV, by Dr. Ryunan MATSUE, Environmental Impacts Assessment Expert, JICA Study Team

In this part, Dr. MATSUE explained the plan Stakeholder Consultation Meeting during the implementing period of the Study and informed that there will be 2 stakeholder meetings for the M/P target governorates, and additional stakeholder meeting will be held only for F/S target governorate. He also explained the results of scoping and study methods in IEE level study in detail.

(6) Questions & Answers

The main topics discussed in the Meeting are summarized as below:

1) Eng. Abd Al Latif IBRAHIM, General Manager of the General Establishment of Drinking Water- Raqqa

Can we know the priority area from the preliminary stage?

Mr. SANO

Our study includes examination on the current status of sewerage sector and review of existing development plan for whole Syria (phase I) and establishment of Master Plan for prioritized areas (4 Areas, 7 Governorates) Rural Damascus, Dar'aa, Tartous, Lattakia, Raqqa, Dier-Ez-zor, Hassakeh (phase II), and the Feasibility Study as a pilot project in selected priority area (phase III).

2) Eng. Taha SHLASH, Al Hassakeh Agriculture Directorate, Head of Environment Friends Club – NGO

Is it possible to apply anaerobic treatment method for domestic wastewater treatment? Whether the situation of shortage of water in Hassakeh is taken into consideration in your study?

Dr. MATSUE

We will take into consideration on reusing treated water for irrigation. And there are some advantages for anaerobic treatment such as no energy consumption for oxygen transfer, energy being produced in the form of methane which can be used as fuel. However generally speaking, anaerobic treatment is usually used for industrial wastewater containing high concentration of organic matters, while aerobic treatment is usually used for sewerage treatment because of following reasons:

- The effluent from an anaerobic treatment system usually requires post-treatment for removal of remaining BOD or COD and ammonia before the effluent can be discharged into receiving water body.
- Little practical experience has been gained with the application of the process to the sewerage treatment.
- Sensitivity of anaerobic bacteria to environmental factors (temperature, pH, and some physical parameters etc.)

3) Dr. Omar ABD AL-RAZAK, AL Furat University, The Head of the Association Volunteers for Environment – NGO

What kind of technology that will be used in STP, considering the fact that the wastewater sometime contains toxic components?

Mr. SANO

We will take into consideration on what you have mentioned during the study.

4) Mouhanad AL MOHAMAD, Al Hassakeh Water Establishment, Head of the Sewerage Department

I want to know if you will offer us only a study in this project or you will execute it (including construction).

Mr. SANO

Unfortunately, we will only conduct a study on sewerage system development, but as next step, Syrian side may request other donors including Japan to execute it.

5) Eng. Is Al Din AL IBRAHIM, Al Hassakeh Directorate - Executive Office Member

How can we know about the results of your study?

Mr.SANO

We will submit a lot of reports to MHC, moreover, we will introduce the results of our Master Plan study.

6) Mr. Hasan AL MOUSTAFA, Euphrates Friends Association – NGO

Did you take into consideration the agricultural wastes in your study, as you know it is very dangerous especially in our area?

Dr. MATSUE

We understood you are talking about no-point source control. However, the purpose of this study is to formulate Master Plan for sewerage system in prioritized area, and maybe the agricultural wastes should be included by another study.

(7) Closing Address, by Mr. Ghassan Al-tarboush, MHC

Mr. Ghassan thanked stakeholders for their participation and their valuable comments to the Study.

Annex III: Attendants List

13.5 Attendants List of the 2nd Stakeholder Meetings at Three Governorates

Table A13.5.1 Attendants List of the 2nd Stakeholder Meeting at Deir-Ez-zor

No.	Name	Organization	Position
1	Kusay Al-Sarraj	Deir-Ez-zor (DZR) Executive Bureau	Member
2	Wassim Fallouh	MHC	Director of the project
3	Ghassan Al-tarboush	MHC	Engineer
4	Thaer Janem	MHC	Engineer
5	Sami Malla Hammoud	Water Establishment of DZR	Engineer
6	Ahmad Manba'a	Water Establishment of DZR	Technical Observer
7	Ali Kalash	Water Establishment of DZR	Technical Observer
8	Suleiman Al-Ali	Water Establishment of DZR	Supervisor
9	Mahmoud Al-Hanat	Water Establishment of DZR	Technical Observer
10	Mazen Alabed Alkarim	Water Establishment of DZR	Head of sewerage Dept.
11	Muhammad Amin Ramadan Al-Khalaf	Directorate of Environment Affairs of DZR	Director
12	Wassim Al-Mahmoud	Environment Directorate	Engineer
13	Ahmad Faqeer	DZR-Sugar Company	Head of Planning and Statistics Dept.
14	Faysal Othman	DFEA	Engineer
15	Raed Mandil	DZR-Planning Directorate	Head of Section
16	Bassil Khallouf	DZR- City Council	Head of Sewerage Dept.
17	Yaser Al-Husein Al-Mazzan	DZR-City Council	Technical Affairs Manager
18	Abd Al-Naser Sultan	DZR-Planning Directorate	Economist
19	Lazikin Khalil	A'mouda City	
20	Mahmoud Alrahil	Al Hasaka city council- Technical Services	Assistant Manager
21	Dulkhosh Abd-Allah	Hassakeh-Technical Services Directorate	Head of Solid waste Dep.
22	Isameel Al-Darwish	Al-Hassakeh Municipality	Eng./Head of Sewerage Office
23	Abd Al-Baset Misto	A'mouda City	
24	Dr.Azad Ali	GCEC-Hassakeh	Chairman of Hassakeh Center
25	Ahmad AL yousef	GCEC - Damascus	Engineer
26	Ma'ad Al-Madlaji	GCEC	Director of North-eastern Branch
27	Ali Akkur	GCEC-Aleppo	Engineer
28	Muhammad Jalal Alhayyo	DZR City council	Head of the council
29	Mahmoud Jasem Alnajras	Volunteers for Environment Association NGO	Administration council member
30	hasan Al-Mustafa Al-Hasan	Euphrates Friends Association NGO	Chairman
31	Idmon Isaak	Countryside Knowledge Network NGO	Al-Bawwabeh-Site Manager/Malkieh
32	Raed alnageshbandi	Volunteers for Environment Association	Journalist

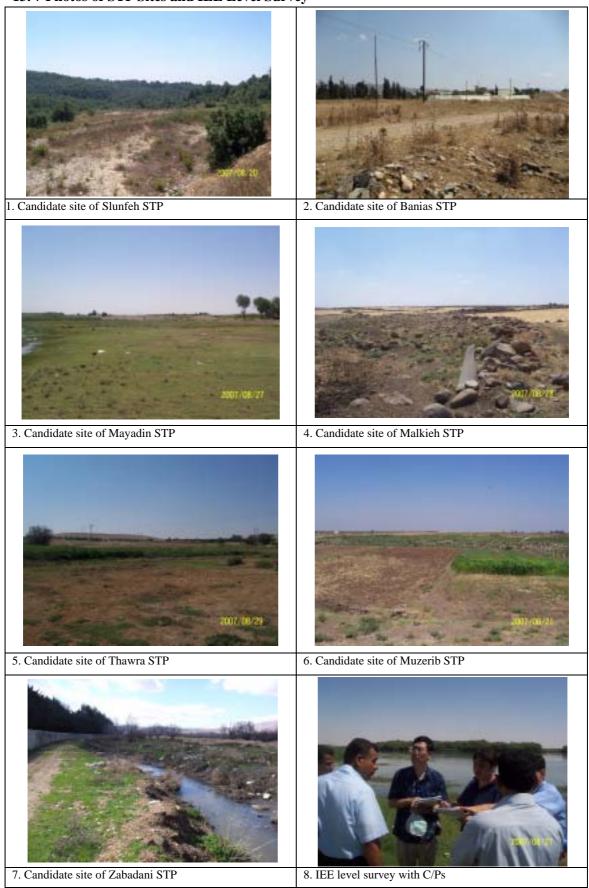
No.	Name	Organization	Position
33	Ahmad Al-Yousufi	Private sector	
34	Bashir Al-Yousufi	Private sector	
35	Fouad Khalaf	Syrian TV	Editor
	Almuhammad		
36	Adnan Ibrahim	Syrian TV	Photographer
37	Mayumi Murakami	JICA Syria Office	Assistant Resident
			Representative
38	Nawras Khaled	JICA Syria Office	
39	Hirofumi Sano	JICA Study Team	Team Leader
40	Ryunan Matsue	JICA Study Team	EIA
41	Amal Hasan	JICA Study Team	Interpreter
42	Issa Mahmoud	JICA Study Team	Dr. Engineer/Interpreter
43	Louay Khalil	JICA Study Team	Engineer/supporter

No.	Name	Organization	Position
1	Nabil Abu Kaf	Lattakia Governorate	Vice Governor
2	Waseem Falloh	МНС	Director of the project
3	Rafiq Fuddah	Lattakia Sewerage Co.	Engineer
4	Ghassan Al-tarboush	MHC	Engineer
5	Thaer Janem	МНС	Engineer
6	Sablaa Kafora	Lattakia Sewerage Co.	Electrical engineer
7	Miassa Tezini	Lattakia Sewerage Co.	Civil engineer
8	Fadel Habseh	Lattakia Sewerage Co.	Technical observer
9	Imad Khalluf	Technical Service Directorate of Tartous	head of sewerage studies section
10	Usama Khaddur	Technical Service Directorate of Tartous	Civil engineer/ Sewerage studies section
11	Isam Jouni	Water establishment	General manager
12	Aasef Ibrahim	Tartous Sewerage Co.	Civil engineer
13	Kamal muhanna	Tartous Sewerage Co.	Civil engineer
14	Mais Samaan	Technical Service Directorate of Tartous	Civil engineer/ sewerage studies section
15	Fadia qarah Falah	Lattakia Water Establishment	Electrical engineer
16	Nahla Khuri	Lattakia Water Establishment	Electrical engineer
17	Shadi Abdo	Lattakia Water Establishment	Civil engineer
18	Nadim Yousef	Tartous Water Establishment	Civil engineer
19	Arwa Ghanem	Tartous Water Establishment	Mechanical engineer
20	Souhel Sallum	Water Resources Directorate	Agricultural Engineer
21	Muhammad Qassab	Jableh city council	Head of Services Dept.
22	Hamed Husein	Tartous city council	Head of Sewerage Section
23	Mazhar Hasan	Tartous city council	Head of Services Dept.
24	Samer Ahmad	Lattakia Sewerage Co.	General Director
25	Souher Alrayyes	Coast Association of Environment Protection (NGO)	Head of association
26	Haitham Gharib	Coast Association of Environment Protection (NGO)	Member
27	Mahmud Hamdan Musa	Technical Service Directorate of Tartous	Civil engineer
28	Maisaa Ramadan	Technical Service Directorate of Tartous	Civil engineer
29	Mais Hasan	Technical Service Directorate of Tartous	Engineer
30	Mazen Ghannum	Tartous Water Establishment	Engineer
31	Rihab Saliha	Lattakia Sewerage Co.	Eng./Head of Sewerage Dept.
32	Muhammad Habib	Lattakia Water Establishment	Dr. Engineer
33	Munther Aljabiri	General Co.for Building and Construction	Civil engineer
34	Bader Istivan	Lattakia Water Establishment	Mechanical engineer
35	Faruq Alqasiri	Water resources Directorate	Civil engineer
36	Muhammad Abed Alrazzaq	Water resources Directorate	Engineer Assistant
37	Ibrahim dib	Water resources Directorate	Eng./Head of Water Quality Section
38	Ahmad Zugheb	Homs Sewerage Co.	Assistant General manager
39	Ranim Shuhadeh	Lattakia Sewerage Co.	Technical observer
40	Nisreen Rae`d	Lattakia Sewerage Co.	Engineer
41	Rami Tonjal	Lattakia Sewerage Co.	Engineer
42	Ahmad Alyousef	GCEC	Civil engineer
43	Ghatfan Alkhuri	Technical Service Directorate of Banias	Engineer
44	Hasan Hasan	Technical Service Directorate of Banias	Engineer

Table A13.5.2 Attendants List of the 2nd Stakeholder Meeting at Lattakia

No.	Name	Organization	Position
45	Rida Abed Alrahman	Technical Service Directorate of Banias	Engineer
46	Fayizeh Ismae`el	Technical Service Directorate of Tartous	Engineer
47	Ula Sulaiman	Technical Service Directorate of Tartous	Engineer
48	Muhammad Uthman	Technical Service Directorate of Tartous	Engineer
49	Imad Aldin Issa	Lattakia Water Establishment	Environmental Eng.
50	Ahmad Qasir	Tishreen University	PhD/Professor
51	Bassam Qasir	Lattakia Water Establishment	Engineer
52	Linda Ibrahim	Lattakia Water Establishment	Civil engineer
53	Fadwa Ghanem	Tartous Water Establishment	Engineer
54	Hala Hasan	Tartous Water Establishment	Civil engineer
55	Lara Darweesh	Lattakia Sewerage Co.	Technical observer
56	Tamara U`qbor	Lattakia Sewerage Co.	Administrative Affairs
57	Naji Ali	Tartous Sewerage Co.	Civil engineer
58	Waddah Sulaiman	Technical Service Directorate of Tartous	Civil engineer
59	Nabil Naser	Lattakia Water Establishment	Studies Manager
60	Ahmad Wazzan	Tishreen University	PhD/Professor
61	Haitham Jinad	Tishreen University	PhD/Professor
62	Badia Abed Alhadi	Lattakia Water Establishment	Engineer
63	Maisaa Dayyoub	Lattakia Water Establishment	Engineer
64	Nahed Aashur	Lattakia Water Establishment	Engineer
65	Ahmad Asa`d	Durekish city council	Engineer
66	Reem Issa	Lattakia Sewerage Co.	Technical observer
67	Ali Hilal rustom	Technical Service Directorate of Tartous	Engineer
68	Wisam muhammad Ahmad	Technical Service Directorate of Tartous	Civil engineer
69	Widad Saeed	Lattakia Water Establishment	Engineer
70	Suzan Daher	Lattakia Water Establishment	Engineer
71	Nariman Alhajji	Lattakia Water Establishment	Engineer
72	Louay Alkhatib	Lattakia Water Establishment	Engineer/Head of Coordinating Dept.
73	Mamduh Haj Hasan	Lattakia city council	Engineer
74	Mustafa Darwish	Jableh city council	Engineer/Sewerage Dept.
75	Abd Alrahman Fattuh	Banias city council	Engineer/Head of information Dept.
76	Mohammad Khadam	Banias city council	Engineer/Sewerage system
77	Dawood Almani	"www.allforsyria.org" website	Journalist
79	Ahmad Alyusofi	Private sector	
80	Bashir Alyusofi	Private sector	
81	Hirotumi Sano	JICA Study Team	Team Leader
82	Matsue Ryunan	JICA Study Team	EIA
83	Louay Khalil	JICA Study Team	Engineer/supporter
84	Amal Hasan	JICA Study Team	Interpreter

1Kamal Al-ShiekhaMHSVice Minister2Waseem FallohMHCDirector of the project3Ghassan Al-tarboushMHCEngineer4Eiad AliMHCEngineer5Wesal KhalilMHCEngineer6Maher Al-khateebMHCEngineer7Thaer JanemMHCEngineer8Hanan ShawkiMHCHead of studies Dept.9Ali AbdulmalekMHC10Mohammad AlhajMHC11Shahir Abu AzanMHC12Jamal AljaradaMHC13Muhammad AljaradatMHC	No.	Name	Organization	Position	
3 Ghassan Al-tarboush MHC Engineer 4 Eiad Ali MHC Engineer 5 Wesal Khalil MHC Engineer 6 Maher Al-khateeb MHC Engineer 7 Thaer Janem MHC Engineer 8 Hana Shawki MHC Head of studies Dept. 9 Air Abdulmalek MHC Head of studies Dept. 9 Air Abdulmalek MHC Engineer /Severage Treatment 10 Mohammad Alhaja MHC Engineer /Severage Treatment 12 Jamal Aljarad MHC Engineer /Severage Treatment 13 Muhammad Aljaradat MHC Engineer /Severage Department 14 Abeer Muhammad MHC Eng./Severage Department 15 Hasan Lahham MHC Eng./Severage Department 16 Ahmad Al-yosef GCCR Eng./Severage Department 17 Luai Kharita Technical Services Directorate of Rural Dam Eng./Deirector 18 Fatima Deeb Technical Services Directorate of Rural Dam Eng./Legional planning Manager 19 Younes Albeiton Rural Damascus Governorate Eng./Legional planning Manager 21 Faroug Allabba' Rural Damascus Governorate	1	Kamal Al-Shiekha		Vice Minister	
4 Eiad Ali MHC Engineer 5 Wesal Khalil MHC Engineer 6 Maher Al-khateeb MHC Engineer 7 Thaer Janem MHC Engineer 8 Hanan Shawki MHC Head of studies Dept. 9 Alf Abduhmalek MHC Head of studies Dept. 10 Mohammad Albaj MHC Head of studies Dept. 11 Shahir Abu Azan MHC Engineer / Severage Treatment 12 Jamal Aljarad MHC Engineer / Severage Department 13 Muhammad Aljarada MHC Engineer Severage Department 14 Abeer Muhammad MHC Engineer Severage Department 15 Hassan Lahham MHC Eng./Severage Department Eng./Director 17 Luai Kharita Technical Services Directorate of Rural Damascus Governorate Eng./Regional planning Manager 18 Fatima Deeb Terchnical Services Oirectorate of Eng./Regional planning Manager Eng./Lead of Severage Dept. 21 Faraou A	2	Waseem Falloh	MHC	Director of the project	
5 Wesal Khalil MHC Engineer 6 Maher Al-khateeb MHC Engineer 7 Thaer Janem MHC Engineer 8 Hanan Shawki MHC Head of studies Dept. 9 Ali Abdulmalek MHC Head of studies Dept. 9 Ali Abdulmalek MHC Engineer / Severage Treatment 10 Mohammad Ahjarad MHC Engineer / Severage Treatment 11 Shahir Abu Azan MHC Engineer / Severage Treatment 12 Jamal Aljarad MHC Dr. engineer / Severage Department 13 Muhammad Aljarada MHC Eng./Severage Department 14 Abeer Muhammad MHC Eng./Severage Department 15 Hasan Lahham MHC Eng./Director 16 Ahmad Al-yosef GCEC Eng./Director 17 Luai Kharita Technical Services Directorate of Rural Eng./Dulic relations 18 Fatima Deeb Technical Services Directorate of Rural Eng./Lubic relations 20 Sameer Lagteena Rural Damascus Governorate Eng./Regional planning Manager 21 Farouq Altabha Rural Damascus Governorate Eng./Lubic relations 22 Madyan Nasra <td< td=""><td>3</td><td>Ghassan Al-tarboush</td><td>MHC</td><td></td></td<>	3	Ghassan Al-tarboush	MHC		
6 Maher Al-khateeb MHC Engineer 7 Thaer Janem MHC Engineer 8 Hanan Shawki MHC Head of studies Dept. 9 Ali Abdulmalek MHC Head of studies Dept. 9 Ali Abdulmalek MHC Head of studies Dept. 10 Mohammad Alhaj MHC Engineer/Sewerage Treatment 11 Shahr Ab Azan MHC Engineer/Sewerage Treatment 12 Jamal Aljarad MHC Engineer/Sewerage Treatment 13 Muhammad Aljaradat MHC Dr. engineer/Sewerage Department 14 Abeer Muhammad MHC Eng/Sewerage Department 15 Hasan Lahham MHC Eng/Sewerage Department 16 Ahmad Al-yosef GCEC Eng/Iead of planning Section 17 Luai Kharita Technical Services Directorate of Rural Dam Eng/Head of planning Manager 19 Younes Albeiton Rural Damascus Governorate Eng/Public relations 20 Sameer Laqueena Rural Damascus Governorate Eng/Deputy Director 21 Farouq Altabba' Rural Damascus Governorate Eng/Deputy Director 22 Madyan Nasra Directorate of Environment Affairs of Damascus Eng/Lead of Sewerage Dept.	4	Eiad Ali	МНС	Engineer	
7 Thaer Janem MHC Engineer 8 Hanan Shawki MHC Head of studies Dept. 9 Ai Abdulmalek MHC Head of studies Dept. 10 Mohammad Alhaj MHC Engineer/Sewerage Treatment 11 Shahir Abu Azan MHC Engineer/Sewerage Treatment 12 Jamal Aljaradat MHC Engineer/Sewerage Treatment 13 Muhammad Aljaradat MHC Engineer/Sewerage Department 14 Abeer Muhammad MHC Eng/Sewerage Department 15 Hasan Lahham MHC Eng/Sewerage Department 16 Ahmad Al-yosef GCEC Eng/Director 17 Luai Kharita Technical Services Directorate of Rural Dam Eng/Lead of planning Section 19 Younes Albeiton Rural Damascus Governorate Deny Governorate 20 Sameer Laqueena Rural Damascus Governorate Eng/Lead of planning Manager 21 Farouq Altabba' Rural Damascus Governorate Eng/Lead of Sewerage Dept. 23 Muna Juma' Directorate of Environment Affairs of Rural Damascus Eng/Lead of Sewerage Dept. 23 Muna Juma' Directorate of Environment Affairs of Rural Damascus Eng/Lead of Sewerage Dept. 24 Wadeea' Ji	5	Wesal Khalil	МНС	Engineer	
8 Hanan Shawki MHC Head of studies Dept. 9 Ali Abdulmalek MHC 10 10 Mohammad Alhaj MHC 11 11 Shahir Abu Azan MHC 11 12 Jamal Aljarad MHC 11 13 Muhammad Aljaradat MHC 12 14 Abeer Muhammad MHC 12 15 Hasan Lahham MHC 12 16 Ahmad Al-yosef GCEC Eng/Sewerage Department 17 Luai Kharita Technical Services Directorate of Rural Dam Eng/Aeserage Department 18 Fatima Deeb Technical Services Directorate of Rural Damascus Governorate Eng/Regional planning Manager 19 Younes Albeiton Rural Damascus Governorate Eng/Regional planning Manager 21 Farouq Altabba' Rural Damascus Governorate Eng/Regional planning Manager 22 Madyan Nasra Directorate of Environment Affairs of Damascus Eng/Lab Chief 23 Muna Juma' Directorate of Environment Affairs of Damascus Eng/Head of Sewerage Dept. 24 Wadeea' Jiha Daría Water Establishment Eng/Head of Sewerage Dept. 25 Nazech Sharaf Aldin Water Establishment Engineer <t< td=""><td>6</td><td>Maher Al-khateeb</td><td>МНС</td><td>Engineer</td></t<>	6	Maher Al-khateeb	МНС	Engineer	
9 Ali Abdulmalek MHC 10 Mohammad Alhaj MHC 11 Shahir Abu Azan MHC 12 Jamal Aljarad MHC 13 Muhammad Aljaradat MHC 14 Abeer Muhammad MHC 15 Hasan Lahham MHC 16 Ahmad Al-yosef GCEC 17 Luai Kharita Technical Services Directorate of Rural Dam 18 Fatima Deeb Technical Services Directorate of Rural Dam 19 Younes Albeiton Rural Damascus Governorate Deputy Governorate 20 Sameer Laqteena Rural Damascus Governorate Eng./Deputy Director 21 Farouq Altabba' Rural Damascus Governorate Eng./Deputy Director 23 Muna Juma' Directorate of Environment Affairs of Rural Damascus Eng./Lab Chief 24 Wadeea' Jiha Directorate of Environment Affairs of Rural Damascus Eng./Lad of Sewerage Dept. 25 Nazeeh Sharaf Aldin water Establishment of Rural Damascus Eng./Lad of Sewerage Dept. 26 Fares Uthman Dar'aa Water Establishment Eng./Lead of Sewerage Dept. 28 Khadiija Arhii Dar'aa Water Establishment Eng./Lead of Sewerage Dept. 29 Bassam Aba Zeid Da	7	Thaer Janem	МНС	Engineer	
10 Mohammad Alhaj MHC 11 Shahir Abu Azam MHC 12 Jamal Aljarada MHC 13 Mubammad Aljaradat MHC 14 Abeer Mubammad MHC 14 Abeer Mubammad MHC 15 Hasan Lahham MHC 16 Ahmad Al-yosef GCEC 17 Luai Kharita Technical Services Directorate of Rural Dam 18 Fatima Deeb Technical Services Directorate of Rural Dam 19 Younes Albeiton Rural Damascus Governorate Deputy Governorate 20 Sameer Laqteena Rural Damascus Governorate Eng./Peblic relations 21 Farouq Altabba' Rural Damascus Governorate Eng./Deputy Director 23 Muna Juna' Directorate of Environment Affairs of Damascus Eng./Deputy Director 24 Wadeea' Jiha Directorate of Environment Affairs of Rural Damascus Governorate Eng./Lab Chief 24 Wadeea' Jiha Directorate of Environment Affairs of Rural Damascus Eng./Led of Sewerage Dept. 25 Nazeeh Sharaf Aldin water Establishment Eng./Head of Sewerage Dept. <td>8</td> <td>Hanan Shawki</td> <td>МНС</td> <td>Head of studies Dept.</td>	8	Hanan Shawki	МНС	Head of studies Dept.	
11 Shahir Abu Azan MHC Engineer / Sewerage Treatment 12 Jamal Aljarad MHC Engineer / Sewerage Treatment 13 Muhammad Aljaradat MHC Engineer / Sewerage Treatment 14 Abeer Muhammad MHC Dr. engineer / Sewerage Department 15 Hasan Lahham MHC Eng./Sewerage Department 16 Ahmad Al-yosef GCEC Engineer 17 Luai Kharita Technical Services Directorate of Rural Dam Eng./Director 18 Fatima Deeb Technical Services Directorate of Rural Dam Eng./Head of planning Section 19 Younes Albeiton Rural Damascus Governorate Deputy Governorate 20 Sameer Laqteena Rural Damascus Governorate Eng./Public relations 21 Farouq Altabba' Rural Damascus Governorate Eng./Lab Chief 23 Muna Juma' Directorate of Environment Affairs of Rural Damascus Eng./Lead of Sewerage Dept. 24 Wadeea' Jiha Directorate of Environment Affairs of Rural Damascus Eng./Head of Sewerage Dept. 24 Khadiija Arhil Daría Water Establishment Eng./Head of Sewerage Dept. 25 Nazeeh Sharaf Aldin water Establishment Engineer 24 Wadeea' Jiha Daría Water Est	9	Ali Abdulmalek	МНС		
12 Jamal Aljarad MHC Engineer / Sewerage Treatment 13 Muhammad Aljaradat MHC Engineer / Sewerage Department 14 Abeer Muhammad MHC Dr. engineer / Sewerage Department 15 Hasan Lahham MHC Eng./Sewerage Department 16 Ahmad Al-yosef GCEC Eng./Sewerage Department 17 Luai Kharita Technical Services Directorate of Rural Dam Eng./Director 18 Fatima Deeb Technical Services Directorate of Rural Dam Eng./Head of planning Manager 19 Younes Albeiton Rural Damascus Governorate Deputy Governorate 20 Sameer Laqteena Rural Damascus Governorate Eng./Public relations 21 Farouq Altabba' Rural Damascus Governorate Eng./Deputy Director 23 Muna Juma' Directorate of Environment Affairs of Damascus Eng./Lab Chief 24 Wadeea' Jiha Directorate of Environment Affairs of Rural Damascus Eng./Lab Chief 25 Nazeeh Sharaf Aldin Dar'aa Water Establishment Eng./Head of Sewerage Dept. 26 Fares Uthman Dar'aa Water Establishment Eng./Head of Sewerage Dept. 27 Muhammad Barakt Dar'aa Water Establishment Engineer 30 Jala'a Alfarhan	10	Mohammad Alhaj	MHC		
13 Muhammad Aljaradat MHC Engineer/ Department 14 Abeer Muhammad MHC Dr. engineer/ Department 15 Hasan Lahham MHC Eng/Sewerage Department 15 Hasan Lahham MHC Eng/Sewerage Department 16 Ahmad Al-yosef GCEC Eng/Sewerage Department 17 Luai Kharita Technical Services Directorate of Rural Dam Eng/Head of planning Section 18 Fatima Deeb Technical Services Directorate of Rural Dam Eng/Head of planning Section 19 Younes Albeiton Rural Damascus Governorate Deputy Governorate 20 Sameer Lagteena Rural Damascus Governorate Eng/Regional planning Manager 21 Farouq Altabba' Rural Damascus Governorate Eng/Deputy Director 22 Madyan Nasra Directorate of Environment Affairs of Rural Damascus Eng/Lab Chief 23 Muna Juma' Directorate of Environment Affairs of Rural Damascus Eng/Head of Sewerage Dept. 24 Wadeea' Jiha Dar'aa Water Establishment Eng/Head of Sewerage Dept. 25 Nazech Sharaf Aldin water Establishment Engineer 28 Bassam Aba Zeid Dar'aa Water Establishment Engineer 29 Bassam Aba Zeid Dar'aa Water	11	Shahir Abu Azan	МНС		
13 Muhammad Aljaradat MHC Engineer/ Department 14 Abeer Muhammad MHC Dr. engineer/ Department 15 Hasan Lahham MHC Eng./Sewerage Department 16 Ahmad Al-yosef GCEC Engineer 17 Luai Kharita Technical Services Directorate of Rural Dam Eng./Department 18 Fatima Deeb Technical Services Directorate of Rural Dam Eng./Regional planning Section 19 Younes Albeiton Rural Damascus Governorate Deputy Governorate 20 Sameer Lagteena Rural Damascus Governorate Eng./Regional planning Manager 21 Farouq Altabba' Rural Damascus Governorate Eng./Regional planning Manager 22 Madyan Nasra Directorate of Environment Affairs of Rural Damascus Eng./Lab Chief 23 Muna Juma' Directorate of Environment Affairs of Rural Damascus Eng./Lab Chief 24 Wadeea' Jiha Directorate of Environment Affairs of Rural Damascus Eng./Head of Sewerage Dept. 27 Muhammad Barakat Dar'aa Water Establishment Eng./Head of Sewerage Dept. 28 Khadija Arhil Dar'aa Water Establishment Engineer 29 Bassam Aba Zeid Dar'aa Water Establishment Engineer 31 Ayyoub	12	Jamal Aljarad	МНС	Engineer /Sewerage Treatment	
14Abeer MunammadMHCDepartment15Hasan LahhamMHCEng./Sewerage Department16Ahmad Al-yosefGCECEngineer17Luai KharitaTechnical Services Directorate of Rural DamEng./Director18Fatima DeebTechnical Services Directorate of Rural DamEng./Head of planning Section19Younes AlbeitonRural Damascus GovernorateDeputy Governorate20Sameer LaqteenaRural Damascus GovernorateEng./Regional planning Manager21Farouq Altabba'Rural DamascusGore22Madyan NasraDirectorate of Environment Affairs of DarascusEng./Lab Chief23Muna Juma'Directorate of Environment Affairs of Rural DamascusEng./Lab Chief24Wadeea' JihaWater Establishment of Rural DamascusEng./Lead of Sewerage Dept.25Nazech Sharaf Aldinwater EstablishmentEng./Lead of Sewerage Dept.26Fares UthmanDar'aa Water EstablishmentEng./neer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer20Jala' a AlfarhanDar'aa Water EstablishmentEngineer21Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer29Jala' AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida' AlainiTechnical Services Direct	13	Muhammad Aljaradat	МНС	Engineer/ head of Sewerage	
16Ahmad Al-yosefGCECEngineer17Luai KharitaTechnical Services Directorate of Rural DamEng./Director18Fatima DeebTechnical Services Directorate of Rural DamEng./Head of planning Section19Younes AlbeitonRural Damascus GovernorateDeputy Governorate20Sameer LaqteenaRural Damascus GovernorateEng./Public relations21Farouq Altabba'Rural Damascus GovernorateEng./Public relations22Madyan NasraDirectorate of Environment Affairs of Rural DamascusEng./Deputy Director23Muna Juma'Directorate of Environment Affairs of Rural DamascusEng./Deputy Director24Wadeea' JihaDirectorate of Environment Affairs of Rural DamascusEng./Deputy Director25Nazech Sharaf Aldinwater Establishment of Rural DamascusEng./Head of Sewerage Dept.26Fares UthmanDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer33Yousef Al-shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef Al-shehadatTechnical Services Directorate of Dar'aaEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dara'aEngineer<	14	Abeer Muhammad	МНС		
17Luai KharitaTechnical Services Directorate of Rural DamEng/Director18Fatima DeebTechnical Services Directorate of Rural DamEng/Head of planning Section19Younes AlbeitonRural Damascus GovernorateDeputy Governorate20Sameer LaqteenaRural Damascus GovernorateEng/Regional planning Manager21Farouq Altabba'Rural Damascus GovernorateEng/Public relations22Madyan NasraDirectorate of Environment Affairs of DamascusEng/Lab Chief23Muna Juma'Directorate of Environment Affairs of DamascusEng/Lab Chief24Wadeea' JihaDirectorate of Environment Affairs of Rural DamascusEng/Lead of Sewerage Dept.25Nazeeh Sharaf Aldinwater Establishment of Rural DamascusEng/Head of Sewerage Dept.26Fares UthmanDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Yousef Al-shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayashDirectorate of Environment Affairs of Bassam Aba ZeidDirectorate of Environment Affairs of Dar'aa35Yousef Al-shehadatTechnical Services Directorate of Dar'aaEngineer34RakatDar'aaDar'aaEngineer35Yousef Al-shehadatTechnical Services Directorate of Dar'aaEngineer36Muhammad Aba zeidDirectorate of	15	Hasan Lahham	МНС	Eng./Sewerage Department	
17Luai KharitaDamEng./Director18Fatima DeebTechnical Services Directorate of Rural DamEng./Head of planning Section19Younes AlbeitonRural Damascus GovernorateDeputy Governorate20Sameer LaqteenaRural Damascus GovernorateEng./Regional planning Manager21Farouq Altabba'Rural Damascus GovernorateEng./Public relations22Madyan NasraDirectorate of Environment Affairs of Rural DamascusEng./Deputy Director23Muna Juma'Directorate of Environment Affairs of Rural DamascusEng./Lab Chief24Wadeea' JihaDirectorate of Environment Affairs of Rural DamascusEng./Lead of Severage Dept.25Nazeeh Sharaf Aldinwater EstablishmentEng./Head of Severage Dept.26Fares UthmanDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer30Jala'a AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef Al- shehadatDirectorate of Environment Affairs of Dar'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dara'aEngineer37Shebli Al-shamiDamascus UniversityProfeesor/water engineering38 </td <td>16</td> <td>Ahmad Al-yosef</td> <td>GCEC</td> <td>Engineer</td>	16	Ahmad Al-yosef	GCEC	Engineer	
18Fatima DeebDamEng./Head of planning Section19Younes AlbeitonRural Damascus GovernorateDeputy Governorate20Sameer LaqteenaRural Damascus GovernorateEng./Regional planning Manager21Farouq Altabba`Rural Damascus GovernorateEng./Public relations22Madyan NasraDirectorate of Environment Affairs of DamascusEng./Deputy Director23Muna Juma`Directorate of Environment Affairs of DamascusEng./Lab Chief24Wadeea' JihaDirectorate of Environment Affairs of Rural DamascusEng./Lab Chief25Nazeeh Sharaf Aldinwater Establishment of Rural DamascusEng./Head of Sewerage Dept.26Fares UthmanDar'aa Water EstablishmentEng./Head of Sewerage Dept.27Muhammad BarakatDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida' AlarinTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef Al-shehadatDirectorate of Environment Affairs of Dar'aaEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebl	17	Luai Kharita		Eng./Director	
20Sameer LaqteenaRural Damascus GovernorateEng./Regional planning Manager21Farouq Altabba`Rural Damascus GovernorateEng./Public relations22Madyan NasraDirectorate of Environment Affairs of Rural DamascusEng./Deputy Director23Muna Juma`Directorate of Environment Affairs of Rural DamascusEng./Lab Chief24Wadeea` JihaDirectorate of Environment Affairs of Rural DamascusEng./Leputy Director25Nazeeh Sharaf Aldinwater Establishment of Rural DamascusEng./Head of Sewerage Dept.26Fares UthmanDar'aa Water EstablishmentEng./Head of Sewerage Dept.27Muhammad BarakatDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida` AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al-shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef Al-shehadatDirectorate of Environment Affairs of Dar'aaEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor<	18	Fatima Deeb		Eng./Head of planning Section	
20Sameer LaqteenaRural Damascus GovernorateEng./Regional planning Manager21Farouq Altabba`Rural Damascus GovernorateEng./Public relations22Madyan NasraDirectorate of Environment Affairs of Rural DamascusEng./Deputy Director23Muna Juma`Directorate of Environment Affairs of Rural DamascusEng./Lab Chief24Wadeea` JihaDirectorate of Environment Affairs of Rural DamascusEng./Leputy Director25Nazeeh Sharaf Aldinwater Establishment of Rural DamascusEng./Head of Sewerage Dept.26Fares UthmanDar'aa Water EstablishmentEng./Head of Sewerage Dept.27Muhammad BarakatDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida` AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al-shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef Al-shehadatDirectorate of Environment Affairs of Dar'aaEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor<	19	Younes Albeiton		Deputy Governorate	
21Farouq Altabba`Rural Damascus GovernorateEng./Public relations22Madyan NasraDirectorate of Environment Affairs of Rural DamascusEng./Deputy Director23Muna Juma`Directorate of Environment Affairs of DamascusEng./Lab Chief24Wadeea` JihaDirectorate of Environment Affairs of Rural DamascusEng./Lab Chief25Nazeeh Sharaf Aldinwater Establishment of Rural DamascusEng./Head of Sewerage Dept.26Fares UthmanDar'aa Water EstablishmentEng./Head of Sewerage Dept.27Muhammad BarakatDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer30Jala`a AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer33Yousef Al-shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dara`aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad Adnan					
22Madyan NasraDirectorate of Environment Affairs of Rural DamascusEng./Deputy Director23Muna Juma`Directorate of Environment Affairs of DamascusEng./Lab Chief24Wadeea` JihaDirectorate of Environment Affairs of Rural DamascusEng./Lab Chief25Nazeeh Sharaf Aldinwater Establishment of Rural DamascusEng./Head of Sewerage Dept.26Fares UthmanDar'aa Water Establishment of Rural DamascusEng./Head of Sewerage Dept.27Muhammad BarakatDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer30Jala`a AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dara'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer38Farouk Al-aadliDamascus UniversityProfessor/water engineering39Mah Huey Fong Project)Renuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator					
23Muna Juma`Directorate of Environment Affairs of DamascusEng./Lab Chief24Wadeea` JihaDirectorate of Environment Affairs of Rural DamascusEng./Deputy Director25Nazeeh Sharaf Aldinwater Establishment of Rural DamascusEng./Head of Sewerage Dept.26Fares UthmanDar'aa Water EstablishmentEng./Head of Sewerage Dept.27Muhammad BarakatDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer30Jala`a AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dara'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator	22	· · ·	Directorate of Environment Affairs of		
24Wadeea' JihaDirectorate of Environment Affairs of Rural DamascusEng./Deputy Director25Nazeeh Sharaf Aldinwater Establishment of Rural DamascusEng./Head of Sewerage Dept.26Fares UthmanDar'aa Water EstablishmentEng./Head of Sewerage Dept.27Muhammad BarakatDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer30Jala'a AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida' AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al-shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dar'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator	23	Muna Juma`	Directorate of Environment Affairs of	Eng./Lab Chief	
26Fares UthmanDar'aa Water EstablishmentEng./Head of Sewerage Dept.27Muhammad BarakatDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer30Jala`a AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida` AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dar'aaEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator	24	Wadeea` Jiha	Directorate of Environment Affairs of	Eng./Deputy Director	
26Fares UthmanDar'aa Water EstablishmentEng./Head of Sewerage Dept.27Muhammad BarakatDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer30Jala`a AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida` AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dar'aaEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator	25	Nazeeh Sharaf Aldin	water Establishment of Rural Damascus	Eng./Head of Sewerage Dept.	
27Muhammad BarakatDar'aa Water EstablishmentEngineer28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer30Jala`a AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida`AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dar'aaEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator		Fares Uthman			
28Khadiija ArhilDar'aa Water EstablishmentEngineer29Bassam Aba ZeidDar'aa Water EstablishmentEngineer30Jala`a AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida` AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dar'aaEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator					
29Bassam Aba ZeidDar'aa Water EstablishmentEngineer30Jala'a AlfarhanDar'aa Water EstablishmentEngineer31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida' AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dara'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator	28				
31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida` AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dara'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator					
31Ayyoub AlsharifTechnical Services Directorate of Dar'aaEngineer32Fida` AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dara'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator	30	Jala`a Alfarhan	Dar'aa Water Establishment	Engineer	
32Fida' AlainiTechnical Services Directorate of Dar'aaEngineer33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dara'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator	31	Ayyoub Alsharif	Technical Services Directorate of Dar'aa	Engineer	
33Yousef Al- shehadatTechnical Services Directorate of Dar'aaEngineer34Radwan AlayyashTechnical Services Directorate of Dar'aaEngineer35Yousef AlshadaidehDirectorate of Environment Affairs of Dara'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator	32		Technical Services Directorate of Dar'aa	Engineer	
35Yousef AlshadaidehDirectorate of Environment Affairs of Dara'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Engineer	33	Yousef Al- shehadat	Technical Services Directorate of Dar'aa	-	
35Yousef AlshadaidehDirectorate of Environment Affairs of Dara'aEngineer36Muhammad Aba zeidDirectorate of Environment Affairs of Dar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Eorgineer	34			Engineer	
36Muhammad Aba zeidDar'aaEngineer37Shebli Al-shamiDamascus UniversityProfessor/water engineering38Farouk Al-aadliDamascus UniversityProfessor39Mah Huey FongRenuxey Weida (Malaysia Sewerage Project)Engineer40Muhammad AdnanRenuxey Weida (Malaysia Sewerage Project)Coordinator	35	Yousef Alshadaideh		Engineer	
38 Farouk Al-aadli Damascus University Professor 39 Mah Huey Fong Renuxey Weida (Malaysia Sewerage Project) Engineer 40 Muhammad Adnan Renuxey Weida (Malaysia Sewerage Project) Coordinator	36	Muhammad Aba zeid		Engineer	
38 Farouk Al-aadli Damascus University Professor 39 Mah Huey Fong Renuxey Weida (Malaysia Sewerage Project) Engineer 40 Muhammad Adnan Renuxey Weida (Malaysia Sewerage Project) Coordinator	37	Shebli Al-shami	Damascus University	Professor/water engineering	
39 Mah Huey Fong Renuxey Project) Weida (Malaysia Sewerage Project) Engineer 40 Muhammad Adnan Renuxey Weida (Malaysia Sewerage Project) Coordinator			-		
40 Muhammad Adnan Renuxey Weida (Malaysia Sewerage Project) Coordinator			Renuxey Weida (Malaysia Sewerage		
	40	Muhammad Adnan	Renuxey Weida (Malaysia Sewerage	Coordinator	
	41	Najwa Issa		Project Eng.	


Table A13.5.3 Attendants List of the 2nd Stakeholder Meeting at Damascus

No.	Name	Organization	Position	
		Project)		
10		Renuxey Weida (Malaysia Sewerage		
42	Edwin Thong	Project)	Project Manager	
43	Mohamad Wardeh	UNDP		
44	Hekmat Abo Hamdan	Environment Pioneer Association NGO	Plastic Artist	
45	Uthman Awad	Zamalka society for Environmental Development NGO	Head of the society	
46	Iman Alhourani	Zamalka society for Environmental Development NGO	Member	
47	Sufian Yaseen	Environment Pioneer Association NGO	Member	
48	Husam Safadi	Private Sector	Manager/Consultant	
49	Mahmud Daghmash	Lokos Project NGO		
50	Tayseer Saleh	Cham Hotel	Security	
51	Imad Abu Hubeish	Water Resources Directorate in Dara'a	Eng./Water Quality Monitoring	
52	Ahmad Sulaiman	SANA news Agency	Editor	
53	Ziad Falah	Althawra Newspaper	Photographer	
54	Saleh Hamidah	Alwatan and Althawra Newspaper	Journalist	
55	Badia Alwannous	Tishreen Newspaper	Editor	
56	Muhammad Aljamal	Alba'ath Newspaper	Journalist	
57	Mahjoub Alraqsha	Althawra Newspaper	Journalist	
58	Isam Mahmoud	TV	Correspondent	
59	Issa Malous	SANA news Agency	Photographer	
60	Fadi Aashuri	General Commission of TV and Radio	TV Photographer	
61	Nawras Salman	General Commission of TV and Radio	TV Photographer	
62	Tomita Akiko	JICA Syria Office	Resident Representative	
63	Higashi Kaori	JICA Syria Office		
64	Nawras Khaled	JICA Syria Office	Program office	
65	Hirofumi Sano	JICA Study Team	Team Leader	
66	Ryunan Matsue	JICA Study Team	EIA	
67	Masasshi Kawamura	JICA Study Team	Sewerage Database	
68	Victor Kupriyanov	JICA Study Team	Economist	
69	Toshiaki Ruike	JICA Study Team	Sewage Treatment Plant Planning / Water Quality Analysis	
70	Seiichi Hanafusa	JICA Study Team	Sewerage Facility Design	
71	Atsushi Toyama	JICA Study Team	Mechanical, Electrical Design / Cost Estimation	
72	Louay Khalil	JICA Study Team	Engineer / supporter	
73	Aiman Roumieh	JICA Study Team	Translator	
74	Issa Mahmoud	JICA Study Team	Dr. Engineer/Interpreter	
75	Amal Hasan	JICA Study Team	Interpreter	

13. 6 Photos of the 2nd Stakeholder Meetings at Three Governorates

13. 7 Photos of STP Sites and IEE Level Survey

13.8 Newspaper Account of the 2nd Stakeholder Meeting

دمشق _ محجوب الرقشة

الله - قصل الشيخة معاون وزير الإسعان والتعمير على قباه وزارة الإسكان بانقاد الاجر أمان اللازمة أو بجهة العجز اللذي وتلوث الصامر الثلثية من خلال رصد الامتمادات لنتافذ مشاريع الصرف الصحص في محققات المافلات وخاصة في انتاظ الحرجة الأولزة على الصادر لثلثة - موضحا في اجتماع للعثيث الاستشاري الثالي للتقوير نظام المصرف المارسة وعدم من القنين الماد مراسة توجيهية العارف الصحص في الدارسة حدث القنين إلماد مراسة توجيهية العارف الاستحص في على أغذار مع من القنين إلماد مراسة توجيهية العارف المنحص في علماء أغذار مع شرقة المحصة حد علماء الأشيع معام ال

و اعتبر الكَّينة أن تبنى وقالة جابةاً مراسة تطوير انتمة العسر ف العسمي في سورية على ثلاث مراحل عبر دراسة الدراسات الاقيسينية تعصرف الصحي ووضع خطا رئيسية لسيع معافقات وهي ريف دمشق ودرها و اللائقية وطرطوس ودير الزور والرقة و الحصقة وإعداء دراسة جدون اقتصادية عشر وواحد توتيفر في ريف دمشق من شائسها ان تساهم في وضع است واولويات تنافيذ مقاريع الصرف المسعى في سورية حتى فترة تشاري عاده 10.

قيما أوضّعت السيدة تومينا البيكو مطلة جابكا اعمية دراسة تطوير نظم الصرف الصحي في سورية املة الإستماع لأفكار وطروهات السادة الشاركان في الاجتماع بما يذهكس إيجاباً على هياة للواطلين السورين. تصوير زياد قلاح

Through Cooperation with JICA: Sewerage Plan at 7 Governorates (*Al-Thawra Newspaper, Monday17/9/2007*)

Dr. Kamal Al Sheikha, the Vice Minister of Ministry of Housing and Construction (MHC), has mentioned that the Ministry is taking the necessary measures to handle the problem of water shortage and the contamination of water resources by earmarking the funds for executing the sewerage projects in several governorates particularly in the prioritized areas that affect the water resources. He declared that the 2nd Stakeholder Consultation Meeting for the sewerage system development projects was attended by the resident representative of JICA, the JICA Study Team and a number of stakeholders, and also explained that according to the 10th five-year plan of sewerage guide study in Syria, 89 billion SP will be invested for water sector, 37 billion SP of which were devoted for sewerage projects, and 52 billion SP for drinking water projects.

Dr. Al Sheikha has also mentioned that the JICA Study on sewerage system development in Syria contains three phases including review of the regional sewerage studies and the Master Plan studies for 7 governorates, (i.e. Rural Damascus, Dar'aa, Lattakia, Tartous, Deir-Ez-zor, Raqqa, and Hassakeh), and Feasibility Study for one pilot project in Rural Damascus. The projects will certainly contribute in setting the priorities in implementing the sewerage projects in Syria up to the year 2025.

For her part Ms. Tomita Akiko, the Resident Representative of JICA Syrian Office, has clarified the importance of sewerage development study in Syria, and expressed her wishes to hear the ideas and discussions of the participants in the meeting in a way that would reflect positively on the life of the Syrian citizens.

13. 9 Minutes of the 2nd Stakeholder Meeting at Three Governorates

Based on the agreement between Ministry of Housing and Construction (hereafter called as MHC) and Japan International Cooperation Agency (hereafter called as JICA), MHC in collaboration with the JICA Study Team organized the 2nd Stakeholder Consultation Meeting from 9 September to 16 September 2007 at Deir-Ez-zor, Lattakia and Damascus, respectively. The place and timing of the Meetings are showed as **Table A13.9.1**.

Items	Deir-Ez-zor	Lattakia	Damascus
Timing	11:00 - 15:00	11:00 - 15:00	11:00 - 13:30
	9 September 2007	11 September 2007	16 September 2007
Place	Furat Cham Hotel	Meridien Hotel	Cham Palace Hotel
Target Areas	Mayadin, Malkieh and	Slunfeh and Banias	Zabadani and Muzerib
-	Thawra		

Table A13.9.1 Place and Timing of the 2^{ed} Stakeholder Consultation Meeting

13.9.1 2nd Stakeholder Meeting at Deir-Ez-zor

(1) Opening Address, by Dr. Wassim Fallouh, Ministry of Housing and Construction

The Meeting was started by an opening address by Dr. Wassim Fallouh from Ministry of Housing and Construction, who introduced the current situation of water resources and sewerage sectors in Syrian Arab Republic and the future challenges which will face the authorities in charge of these sectors and explained briefly the essential topics of the Master Plan (M/P) Study and the importance of the cooperation of between JICA Study Team and the MHC side.

(2) Welcome Speech by Mr. Koussai Al SARAJ, Deir-Ez-zor City Executive Council Member

Mr. Koussai welcomed the JICA Study Team and the Ministry of Housing and Construction Team and hoped to have best results of the Master Plan Study and emphasized the important between the JICA and Syrian Arab Republic Government.

(3) Presentation Part I, by Mr. Hirofumi SANO, Team Leader, JICA Study Team

Mr. SANO explained the background and objectives of the Study, study target areas, selection of sanitation system and proposed sewage treatment methods and the location of proposed Sewage Treatment Plant (STP). He also explained that supporting on Stakeholder Consultation Meeting is one of important contents as the JICA Study Team.

(4) Presentation Part II, by Dr. Ryunan MATSUE, Environmental Impacts Assessment Expert, JICA Study Team

Dr. MATSUE firstly explained the benefits of proposed sewerage system. Then, he reviewed the procedures of environmental and social considerations after introducing some key words used in the JICA's Guidelines. He informed that this meeting is held according to the JICA's Guidelines in order to disclose information of the Study to the public. Then, he explained the scope of Initial Environmental Examination (IEE) level study, the results of IEE level studies on the M/P of sewerage systems at Mayadin, Malkieh and Thawra. Finally, He explained the recommendations on mitigation measures for some negative impacts.

(5) Questions & Answers

The main topics discussed in the Meeting are summarized as below:

1) Engineer from Al Hassakeh Governorate

What is the JICA image for the sewerage system in Syrian Arab Republic and do you take into consideration to cover whole Al Hassakeh Areas in the M/P Study? And did you make some quality tests on the wastewater and water in Al Hassakeh Governorate?

Mr. SANO

Water quality will be improved especially after treatment in STP. Furthermore, and in very limit time and budget conditions; the M/P Study covers seven governorates by choosing one target area in each governorate, so, as I explained in my presentation, Malkieh is the target area in Al Hassakeh Governorate.

Dr. MATSUE

We made many water quality tests to the surface water (Lake) and groundwater in Al Malkieh area (the proposed STP location is very near to the Mansoura Dam) and we found that the water quality is very bad after we made (COD, PO₄, NH₃, NO₃, Coliform) tests.

2) Engineer from Al Hassakeh Governorate

Did the JICA Study Team have an idea about the current situation in Al Malkieh area (the sewer system, pipelines network ...). Also, I suggest that it is better to install new individual sewer system in this area because we have heavy precipitation levels in winter.

Mr. SANO

As I have already mentioned in my presentation that we had made a reconnaissance survey in the target areas in M/P Study and Al Malkieh was included in this survey and we collect the existing data and visited this area many times to get real image about the current situation of the sewer network. We will take into our consideration your suggestion about the individual system which depends in our opinion on the pipelines capacity and the engineering characteristics of the network and the topographical and climate condition in the target area.

3) Eng. Abed Al Naser SOULTASN, Head of Planning Section, Deir-Ez-zor Governorate

Did you notice in your study the future human activities in Deir-Ez-zor Governorate especially the new industrial city which locates around 13 km and what are your recommendations and suggestions about the industrial wastewater?

Dr. Wassim FALLOUH, MHC

In Syria, we have a national plan of solid waste management which notices the industrial wastes. In each industrial city, we have special pre-treatment plant in order to treat the industrial wastes before we throw it into the sewer network.

Mr. SANO

We notice the industrial wastewater in our M/P Study and we put some proposed pre-treatment methods depend upon the industry type and we will present our recommendations and suggestions in Interim Report which will submit to the Ministry of Housing and Construction.

4) Eng. Ali Akour, GCEC, Aleppo

I want to suggest a solution to the Malkieh sewer system; we can use the old sewer system as rainfall drainage and in the same time we can install another system for sewerage. Also, I want to ask you about the connection between the proposed STP in Mayadin and the surrounding villages.

Mr. SANO

It is very good suggestion but it depends on the current situation of the old network (leakage points, leakage rate, flow rate capacity, engineering dimensions), the topographical and climate condition. For the second question, we studied Mayadin as the target area in Dier-Ez-zor Governorate but we can suggest some solution for the surrounding area like on-site treatment in

some cases and maybe it is better to connect the local network with proposed STP in other cases.

5) Mr. Edmon ISHAK, NGO, Malkieh

What are the proper procedures which we have to apply to avoid the pollution which results from the dumping site in Malkieh.

Dr. Matsue

We visited solid waste dumping site which locates upstream the dam and it is highly recommended that the Al Malkieh municipality should close this site to protect the groundwater and the dam from leachate pollution because there is no isolation system in the dumping site.

(6) Closing Address, by Ms. Murakamy, Assistant Residential Representative of JICA Syria Office

Ms. Murakamy thanked stakeholders for their participation and explained the importance of the cooperation between JICA and national authorities in Syria especially in water and environment sectors which are vital issues. She expected that sustainable development for sewerage system in Syria could be achieved through the implementation of the projects.

Annex I: Attendants List

13.9.2 2nd Stakeholder Meeting at Lattakia

(1) Opening Address, by Mr. Nabil Abou KAF, Vice Governor of Lattakia Governorate

The Meeting was started by an opening address by Vice Governor of Lattakia Governorate Mr. Nabil Abou KAF, who welcomed and thanked the attendants, and mentioned that the Stakeholder Consultation Meeting is organized by MHC in collaboration with the JICA Study Team. He also thanked JICA for their cooperation in many fields especially in environment sector and the important effort in developing the sewerage system in Syrian. Finally, he hoped stakeholders could give useful comments and suggestions.

(2) Presentation Part I, by Mr. Hirofumi SANO, Team Leader, JICA Study Team

Mr. SANO explained the background and objectives of the Study, study target areas, selection of sanitation system and proposed sewage treatment methods and the location of proposed Sewage Treatment Plant (STP). He also explained that supporting on Stakeholder Consultation

Meeting is one of important contents as the JICA Study Team.

(3) Presentation Part II, by Dr. Ryunan MATSUE, Environmental Impacts Assessment Expert, JICA Study Team

Dr. MATSUE firstly explained the benefits of proposed sewerage system. Then, he reviewed the procedures of environmental and social considerations after introducing some key words used in the JICA's Guidelines. He informed that this meeting is held according to the JICA's Guidelines in order to disclose information of the Study to the public. Then, he explained the scope of Initial Environmental Examination (IEE) level study, the results of IEE level studies on the M/P of sewerage systems at Slunfeh and Banias. Finally, He explained the recommendations on mitigation measures for some negative impacts.

(4) Questions & Answers

The main topics discussed in the Meeting are summarized as below:

1) Eng. Ghatfan KHOURY, Head of Technical Services, Tartous

How did you chose the proper STP locations and why don't you put another alternatives? Also, how can you take the sludge test results of Adraa STP and put it in coastal area study because we know that there is different situation between Damascus which has many industrial activities, and the coastal area which depends on the agricultural activities?

Dr. MATSUE

We know the different nature of the Adra'a sludge and other places because it contains heavy metals concentration more than other places, depending on the industrial activities in Damascus and Rural Damascus areas. On the other hand, we can not find the existing STP which is similar to Banias and Slunfeh STP, thus we have to use existing data (Adraa STP) in the IEE level study to evaluate the impacts of sludge from STP on the environment. In the future, we have to monitor heavy metals concentrations in sludge and soil at Banias and Slunfeh.

Mr. SANO

We depend upon the topographical conditions and demographical situation in the target area in choosing the STP location, because we prefer using the natural gravity to avoid using the pumping stations which have high cost during O/M period. We present only the M/P Study results in this presentation and we will put all details related to the M/P Study in the Interim Report which will submit to Ministry of Housing and Construction.

2) Dr. Haitham Jnad, Tishreen University, Lattakia

I know the importance of this study in vital sector like sewerage system and wastewater and water resources in Syrian Arab Republic. So, I want to suggest some notes and comments as followings:

- JICA Study Team should have real information about the water resources and drinking water consumptions.
- The existing water and wastewater drainage methods
- The demographical distribution in the target areas (especially the difference between summer and winter in some places in coastal areas).
- Using national treated wastewater standards.
- Put solutions for the odor and sludge problems.
- JICA Study Team should involve the advanced studies in the M/P Study if it is possible.

3) Dr. Suheir RAIES, The Syrian Coast Society for Environmental Protection – NGO

We have no medical wastes treatment plant in Lattakia and other cities of coastal area. Would you take into consideration the special situation of medical wastes and other harmful substances generated from factories in this project?

Mr. SANO

Ministry of Health is the responsible of the medical wastes treatment, but in our M/P Study we have some recommendations and suggested pre-treatment methods to treat the medical wastes before throw it into the sewerage system.

The main topics were included in the Comment Sheets are summarized as below:

- The wind direction is very important factor in choosing the STP location especially in Banias.
- After 2025, we will reach at high concentration levels of Heavy Metals in soil by using the sludge in agriculture. How can we use solve this problem in the future.
- Maybe it is better to divide the M/P study into two phases; first one is the comprehensive study, and the second phase is the detailed local study.

(5) Closing Address, by Mr. Ghassan TARBOUSH, Ministry of Housing and Construction

Mr. Ghassan insisted in his speech about the importance of the Sewerage System Development Project which is considered as an essential and important step on the way of developing the sewerage system in Syria which requires also the unification of all the efforts of the concerned authorities in Syria. Then, he thanked stakeholders for their participation.

Annex I: Attendants List

13.9.3 2nd Stakeholder Meeting at Damascus

(1) Opening Address, by Dr. Kamal Al-Sheikha, Vice Minister of Housing and Construction, MHC

The Meeting was started by an opening address by Dr. Kamal Al-Sheikha, who welcomed and thanked attendants for their participation and mentioned that the Ministry of Housing and Construction has started taking the necessary measures for solving the problem of the water shortage and the contamination of the water resources by earmarking the necessary funds to implement the sewerage projects in all governorates. He also thanked JICA for their cooperation in many fields especially in water and environment sectors. Finally, he hoped stakeholders could give useful comments and suggestions.

(2) Speech by Ms. Akiko TOMITA, JICA Resident Representative in Syrian Arab Republic

Ms. Tomita talked about the importance of the cooperation between Syrian Government and JICA in achieving very valuable studies like the development study of the sewerage system in Syria and hoped to share the information and to discuss the outlines of the study with the stakeholders to get the expected benefits from this cooperation.

(3) Presentation Part I, by Mr. Hirofumi SANO, Team Leader, JICA Study Team

Mr. SANO explained the background and objectives of the Study, study target areas, selection of sanitation system and proposed sewage treatment methods and the location of proposed Sewage Treatment Plant (STP). He also explained that supporting on Stakeholder Consultation Meeting is one of important contents as the JICA Study Team.

(4) Presentation Part II, by Dr. Ryunan MATSUE, Environmental Impacts Assessment Expert, JICA Study Team

Dr. MATSUE firstly explained the benefits of proposed sewerage system. Then, he reviewed the procedures of environmental and social considerations after introducing some key words used in the JICA's Guidelines. He informed that this meeting is held according to the JICA's Guidelines in order to disclose information of the Study to the public. Then, he explained the

scope of Initial Environmental Examination (IEE) level study, the results of IEE level studies on the M/P of sewerage systems at Muzerib and Zabadani. Finally, He explained the recommendations on mitigation measures for some negative impacts.

(5) Questions & Answers

The main topics discussed in the Meeting are summarized as below:

1) Eng. Housam Al SAFADI, Consultant, Ex-Minister

We have previous experience in dealing with wetland treatment and oxidation ditch in Syria, did you make an evaluation (performance, effluent results..) for these two treatment methods and what were your results if you made this evaluation

We have cooperation with international organizations in achieving a study for developing the sewerage system in Zabadani Area and this study was funded by World Bank, did you have an idea about this study a what is your opinion.

Can you explain why you evaluated the odor problem as C for Zabadani STP.

Mr. SANO

We visited Al Thawra City (Target Area in Raqqa) and we found good results from the natural treatment which occurred in this area and we found many advantages in using this method, so, by our opinion we found that we can use this treatment methods in Muzerib area because it has same conditions.

We have an idea about all studies which were achieved in Syria about the sewerage system and we make small evaluation about some topics and the results are included in the Interim Report which will be submitted to Ministry of Housing and Construction.

About Muzerib STP, in our viewpoint, we can cover all surrounding area especially Yadoda and after treatment we can throw the treated water to the river (good quality).

Dr. MATSUE

Zabadani is very important tourism city, so the odor problem from STP has to be considered. At Zabadani STP, Oxidation Ditch system is selected, and in order to reduce the odor, a mechanical dewatering system will be used for sludge treatment. In addition, we recommended some mitigation measures like planting a tree belt and establishing buffer zone around the STP location (200-300) m. Therefore we gave C (light impact) to odor item. We also recommended that during O/M period, a monitoring system should be established to check odor level around the STP site, and additional counter measures should be taken if it is necessary.

2) Eng. Jamal JALAL, MHC

What is the water and wastewater standards did you use it in your study? How can we make the resident who produces the wastewater, gets benefits from the treated water?

Can we suggest another treatment method in Zabadani area?

Mr. SANO

We use the Syrian standards in our M/P study, and for the Zabadani STP we suggest Oxidation Ditch (OD) method because it is the best method and it doesn't emit much odor and we take into our consideration the population difference between Summer and Winter, so we suggest to put one or two units in use in winter and six to eight units in summer (high season).

Dr. MATSUE

It is difficult to let each resident who discharge wastewater to get direct benefits from the treated water. We have to consider the economical factor in choosing sewerage system.

3) Eng. Wadeah JIHA, Deputy Director of Damascus Environment Affaires Directorate

Do you have collaboration with the Malaysian side in choosing the STPs locations? In Damascus, we have many problems related to the sewerage system, maybe it is better to cover Damascus in the future study.

Mr. SANO

We started our study before the Malaysian side but in general we have cooperation in sharing the information with Malaysian team. Also, unfortunately, Damascus is not included in the M/P Study.

(6) Closing Address, Dr. Wassim Fallouh, MHC

Dr. Wassim thanked stakeholders for their participation and their valuable comments to the Study.

Annex I: Attendants List

PART II : FEASIBILITY STUDY

Appendix for Chapter 1

Appendix 1.1 Offensive Odor Management on STP

1. Objective and Methodology

Syrians are very much concerned about the Offensive odor. Therefore, the JICA Study Team will make, exceptionally, suggestion to control offensive odor.

Offensive odor problem is one of the risks that could occur at STP. We can avoid this risk by carrying out the processes on Risk Management.

The approach to Risk Management is appropriate to evaluate the risks and formulate measures systematically for particular case considering various conditions. Risk Management aims risk control as the ultimate goal. The procedure comprises three steps as follows.

In addition, offensive odor issue is one of issues related to Sewerage system and also important for Syrian case. However, for evaluating project components, other factors, for example financial aspect also become critical issue for sustainability of project. So .we should never evaluate the project only considering offensive odor hazard. Therefore, the JICA Study Team has considered proposing countermeasure against offensive odor only as Appendix.

Figure A1.1.1 Flowchart of Risk Management

- a To start with, the Risk Factor Analysis which is the most important step, is performed for clarification of offensive odor including what and where the possible risks are. Generally, it is resolved through fact finding survey, Japanese experience or sometimes through brainstorming of some inexperienced rare risk. Regarding offensive odor risk, it can be sorted out using Japanese experience.
- .b Risk Assessment viz. estimation of the degree of offensive odor is performed considering major offensive odor risk factors. Evaluation of major offensive

odor risks can be performed by comparison of several treatment processes.

c Risk Control viz. avoidance of the offensive odor will be proposed for every odor risk, and the risk control which must be carried out as high-priority measures, is determined.

1. Risk factor analysis

Risk Factors about offensive odor at STP are defined as presented in **Table A1.1.1**, corresponding to various treatment processes.

Processes of treatment	Risk factor (Reason of offensive odor)
Inlet channel	Odor generated in pipe where the wastewater conveyed by long pipe, as
Grit removal channel	detention time is long, wastewater become anaerobic in nature, and
	hydrogen sulfide would be generated.
Outlet of Pump	De-aerated offensive odor at outlet is dispersed in the air.
Primary settling tank	Odor would be generated in tank where the wastewater is stored for long
	time.
Reactor	On the process with primary settling tank, de-aerated offensive odor is
	dispersed in the air.
Final sedimentation tank	No odor
Disinfection channel	No odor
Gravel thickening tank	Odor would be generated in tank where the sludge is stored for long
	time.
Anaerobic digestion tank	Odor would be generated in tank where the sludge is stored for very long
	time.
Sludge Drying Bed	Odor would be generated in beds where the sludge is stored for very
	long time.
Mechanical thickening	Less odor
Mechanical dewatering	Less odor

Table A1.1.1Risk Factor Analysis

2. Risk assessment

As Risk factor has been defined, each treatment method could be evaluated.

Conventional Extended Aeration, OD, small Wet land, Submerged Attached Growth, and Conventional Activated Sludge are compared in **Table A1.1.2**. As could be observed in the Table, Conventional Activated Sludge process of treatment would be worst with respect to conditions of offensive odor.

	Evaluations for two processes (Risk assessment)				
Processes of treatment	Conventional	OD	Wet-land	Submerged	Conventional
	Extended		on small	Attached	Activated
	Aeration		STP	Growth	Sludge
Inlet channel	+	+	+	+	+

 Table A1.1.2
 Risk Assessment (relative odor intensity)

The study on sewerage system development in the Syrian Arab Republic

Grit removal channel	+	+	+	+	+
Outlet of Pump	++	++	++	++	++
Primary settling tank			+		+
Reactor/ reed beds	+	+	+	+	++
Final sedimentation tank					
Disinfection channel					
Gravel thickening tank	+	+		+	++
Anaerobic digestion tank					++
Sludge Drying Bed	+++	+++	+++++	+++	+++++
offensive odor grade	9 points	9 points	11 points	9 points	16 points

Note; - Submerged Attached Growth is the case of without primary settling tank.

- Only on primary sludge of Wet-land, concentration of it is high, so thickener is omitted

3. Risk control

1) Proposed countermeasures

After risk assessment, countermeasure has been studied.

Countermeasures are studied for each risk factors, and are categorized into two phases,

one is for the planning phase, the other is for the design and O&M phase, and are listed in **Table A1.1.3**.

Risk factor	Countermeasure of offens	ve odor	
	Planning Phase	Design and O&M Phase	
Odor generated in pipe is discharged in Inlet channel, Grit removal channel, and Outlet of Pump	 To secure appropriate velocity of wastewater in pipe and locate a STP site near town so that the detention time becomes short and to keep wastewater fresh. To select decentralized sewage system, that makes the pipe line short. 	 To cover the tank and use deodorization method Well and immediate removal of the solid remaining 	
Odor generated in Primary settling tank, discharge and dispersed in Reactor.	- To select the processes which can omit primary settling tank, like OD, Conventional Extended Aeration, etc.	- To cover the tank and use deodorization method	
Odor generated in Gravel sludge thickening tank	- To omit Thickening process	- To cover the tank and apply deodorization method	
Odor generated in Anaerobic digestion tank, leak.	To select the sewage treatment method which has long aeration time on reactor, let the sludge stabilize, to neglect this process	To check the leakage of odor, prevent emission of offensive odor.	
Odor generated in Sludge Drying Bed is dispersed in the air.	 To select Mechanical dewatering system. To consider sufficient area that facilitates small depth of sludge in drying beds and could have sufficient contact with air. 	 To apply covered drying bed and deodorization method To surround with plantation taking enough space. To maintain a shallow sludge layer evenly in every beds for proper contact with air. 	
Odor in whole Sludge Treatment Processes	To establish the Wide area Sludge Treatment facility, remove the offensive odor from each STP, as sludge is conveyed to facility.		

 Table A1.1.3
 Risk Control

2) Evaluation of countermeasures for planning phase

Two countermeasures are important to be considered in the planning phase

(Corresponding to the case of M/P on Zabadani);

- a) Countermeasure of sewage network ; short pipe line, and to secure the appropriate velocity
- b) Mechanical dewatering should be applied

The risk of offensive odor would dramatically decrease as presented in the Table A1.1.4;

- a) Conventional extended aeration, OD and Submerged Attached Growth are almost able to reduce the offensive odor at the boundary of STP.
- b) Wet-land would result into small offensive odor, the grade is expected to reduce to 5 point from 11 points by relative odor intensity, but the odor is practically not so strong at the boundary of STP.
- c) Conventional Activated Sludge also improves on the grade of generation of offensive odor, 10 points from 16 points before countermeasures.

Extended Aeration or OD is better in terms of offensive odor, but for project evaluation, financial aspect is more important considering sustainability of project. Therefore, in general, the JICA Study Team would never evaluate the project only considering offensive odor problem.

Table A1.1.4	Re-Assessment after Application of Countermeasures in Planning Phase
	(relative odor intensity)

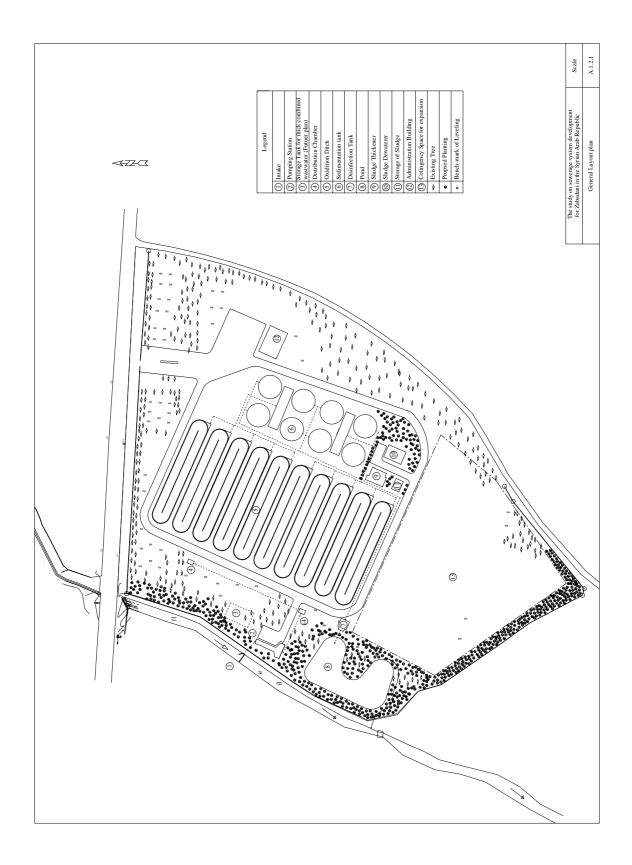
	Evaluations for five processes (Risk assessment)				
Processes of treatment	Conventional	OD	Wet-land	Submerged	Conventional
	Extended		on small	Attached	Activated
	Aeration		STP	Growth	Sludge
Inlet channel					
Grit removal channel					
Outlet of Pump	+	+	+	+	+
Primary settling tank			+		+
Reactor/ reed beds	+	+	+	+	++
Final sedimentation tank					
Disinfection channel					
Gravel thickening tank	+	+		+	++
Anaerobic digestion tank					++
Mechanical dewatering	+	+	++	+	++
offensive odor grade	4 point	4 point	5 point	4 point	10 points

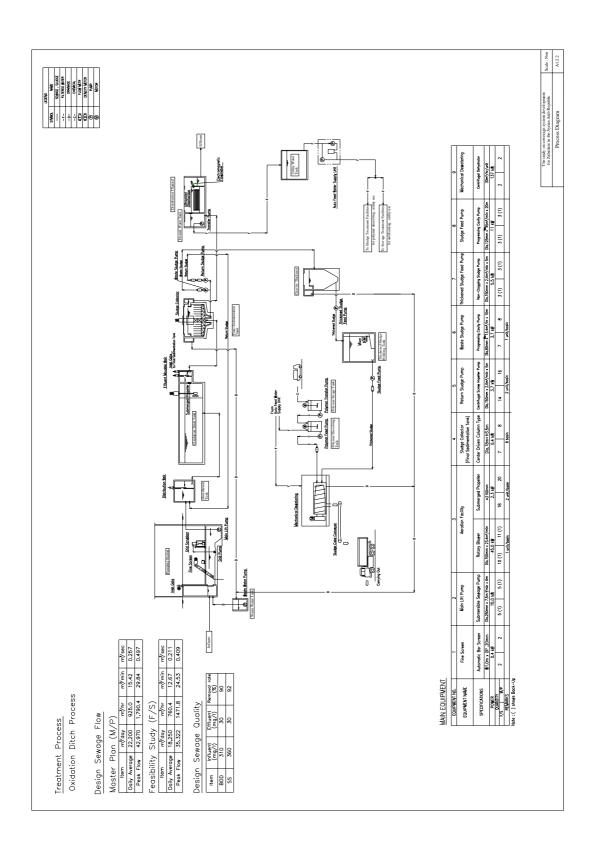
2) Evaluations of countermeasures in Design and O&M Phase

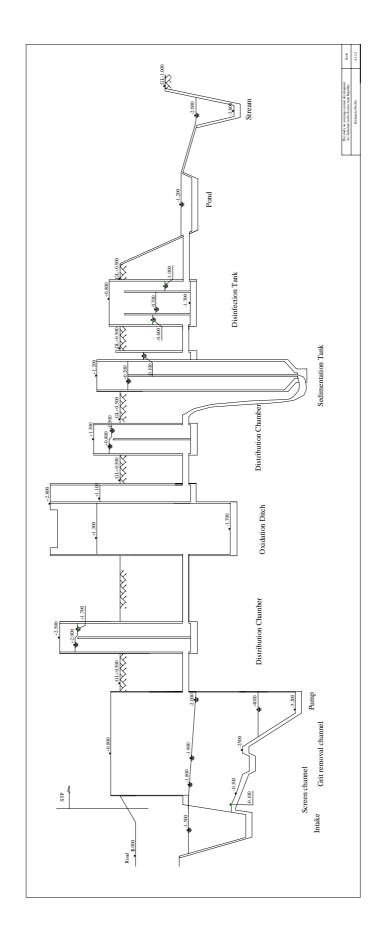
After implementing the countermeasures to be considered in the design phase, which include covering the structure, using deodorization method, well cleaning, etc., risk of offensive odor would decrease. However, other risks, such as deterioration of concrete, power consumption, and so on, would still have chance to occur.

Regarding deterioration of concrete, as the concrete is structurally important, anticorrosion paint must be applied.

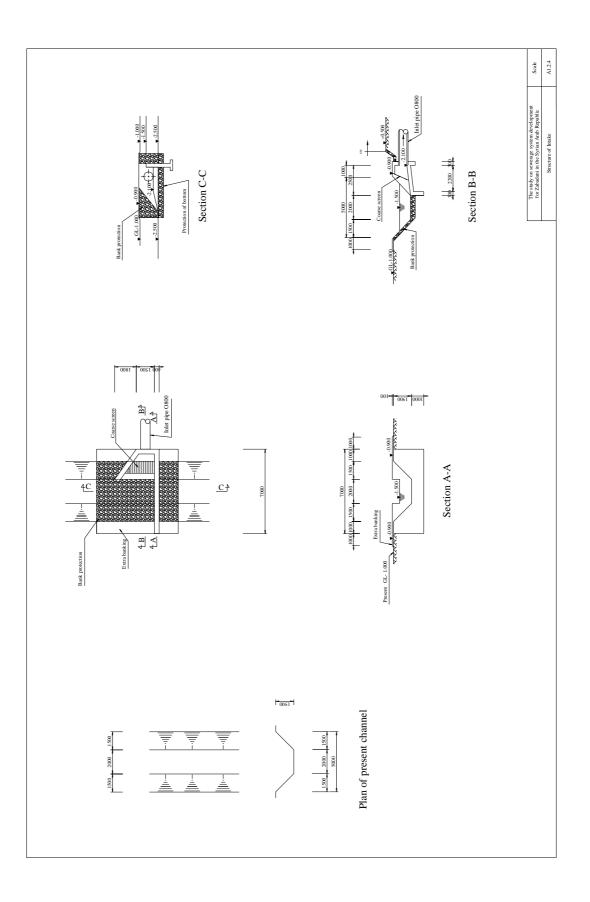
4) Conclusion

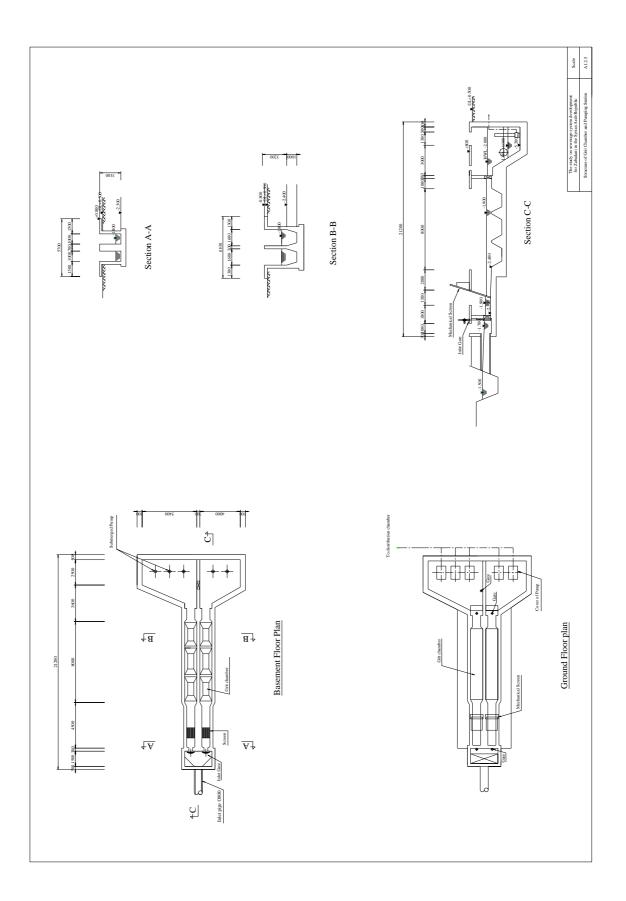

Overall, it is expensive to implement the countermeasure such cover and deodorization carrying out at the design and O&M phase, so it should be applied cover and deodorization cautiously after odor intense was examined at actual target treatment facilities.

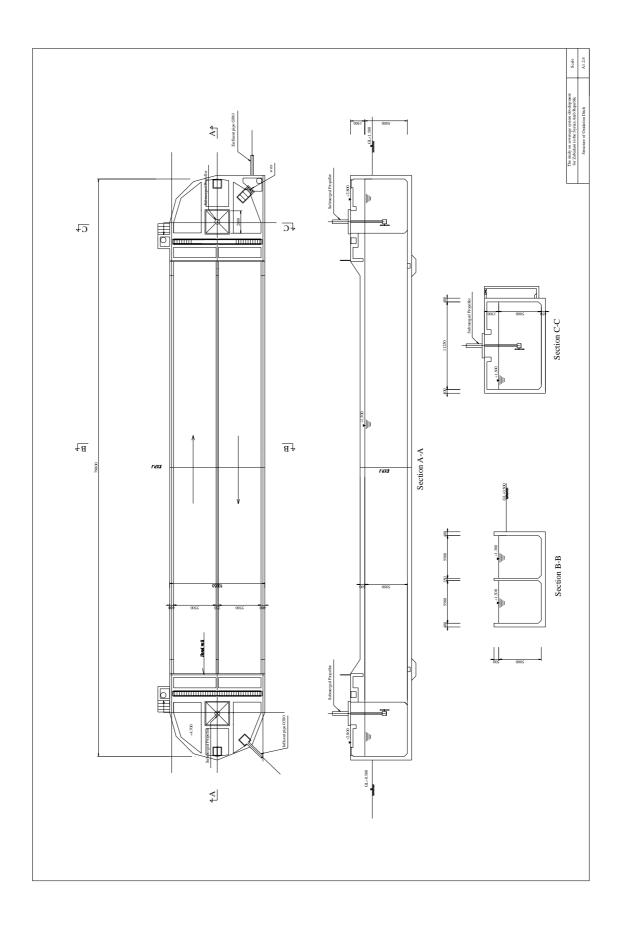

Therefore, countermeasure would be summarized as follow;

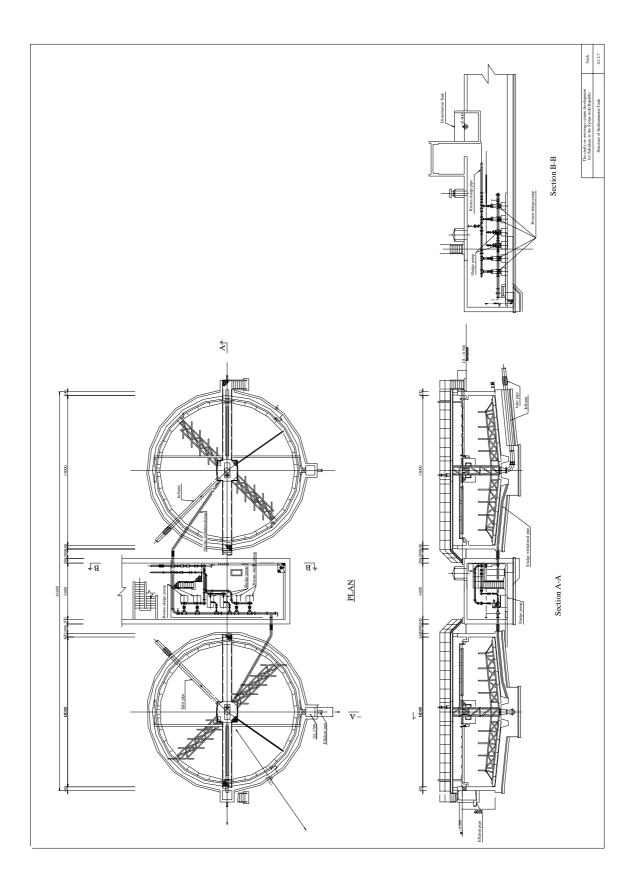

- At the planning phase, following countermeasures are proposed
 - a) to select the treatment method to generate the less offensive odor
 - b) shortening the main trunk to keep wastewater fresh
 - c) to layout odor generated facilities appropriately to not disperse the odor to outside of STP
 - d) to prepare for the land of future deodorization facility
- At the O&M phase, to apply deodorization method after odor intense was examined at actual treatment facilities.

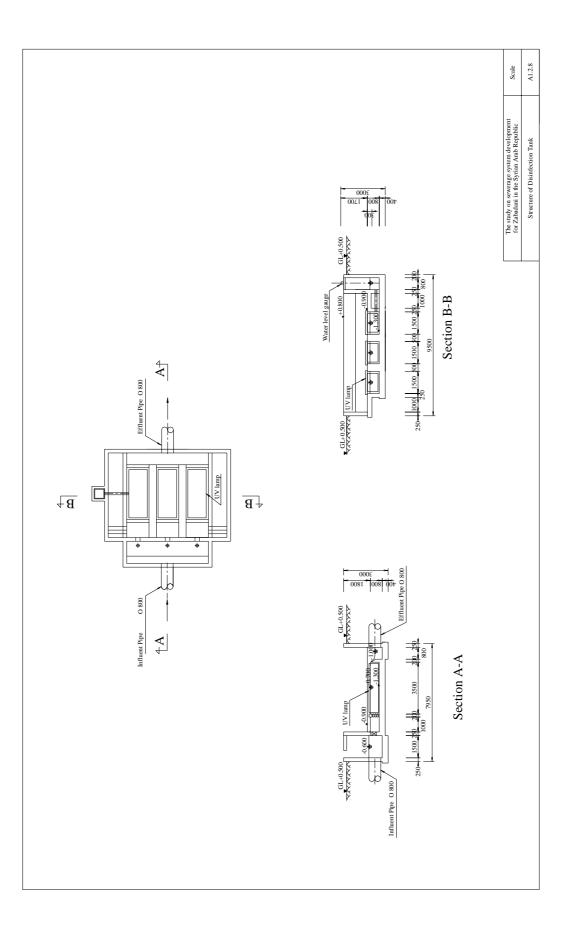
Appendix 1.2 Drawings

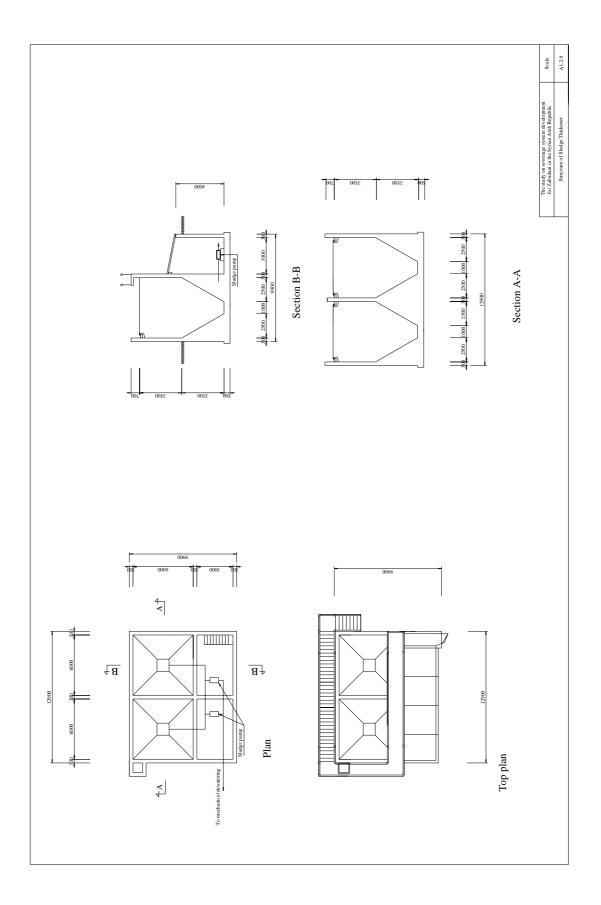

Drawing List for Zabadani STP			
A1.2.1	General Layout Plan		
A1.2.2	Process Diagram		
A1.2.3	Hydraulic Profile		
A1.2.4	Structure of Intake		
A1.2.5	Structure of Pumping Station		
A1.2.6	Structure of Oxidation Ditch		
A1.2.7	Structure of Sedimentation Tank		
A1.2.8	Structure of Disinfection Tank		
A1.2.9	Structure of Sludge Thickener		
A1.2.10	Structure of Sludge Dewatering		

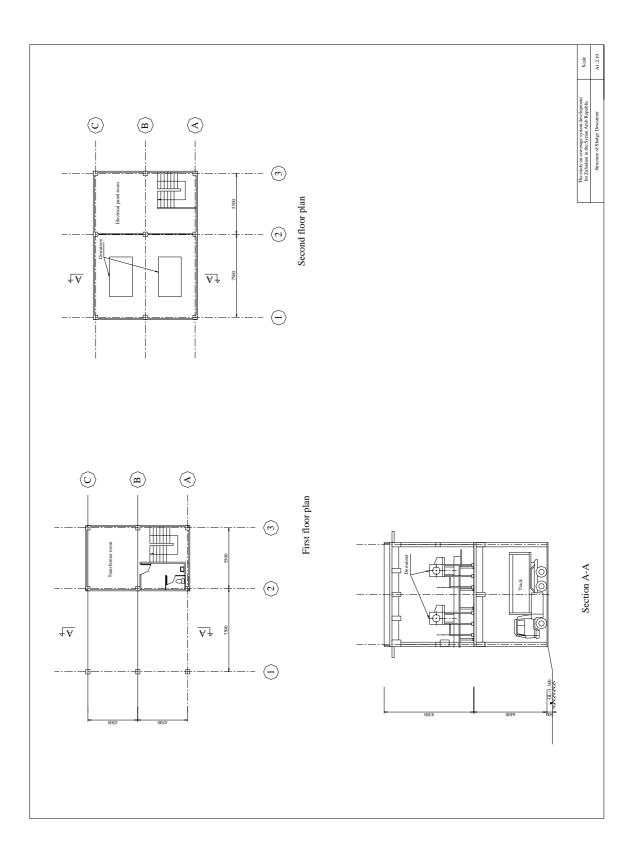







AF1-10





AF1-16

Appendix 1.3 Capacity Calculation

1 BASIC CONDITIONS 1-1 Basic Items (1) Name : Zabadani Sewage Treatment Plant	
(1) Rume : Zabauam bewage Treatment I fant	
(2) Land Area : Approximately $5,500 \text{ m}^2$	
(3) Elevation : + 1200.50 m (Plan)	
(4) Inlet Pipe Level : + 1197.90 m	
(5) Pipe Diameter : 800 mm	
(6) Land Use : -	
(7) Collection System : Combined System Separate System	n
 (8) Treatment Process : Sewage ; Grit chamber + Oxidation ditch + Final sedimentation + Disinfection channel (+Qualizing basin : future Sludge ; Thickening + Dewatering 	
Studge , Thekening Dewatering	
(9) Effluent Point : Barada River through existing channel	
(10) Water Level at the Effluent Poir : High water leve = 1198.00 m Low water level = - m	
(11) Target Year : 2015 (F/S Stage) , 2025 (M/P Stage	e)
1-2 Design Population and Service Area	
Item Year 2015 Year 2025	
Design Population person 48,300 53,500	

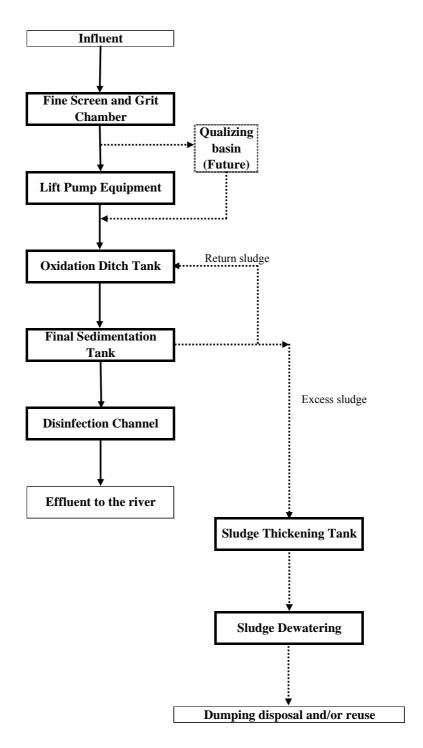
1-3 Design Sewage Flow

ha

(Year 2015)

Service Area

Item	m ³ /day	m ³ /hr	m ³ /min	m ³ /sec	Remarks		
Daily Average	18,250	760.4	12.67	0.211			
Peak Flow	35,322	1,471.8	24.53	0.409			
(Year 2025)							
Item	m ³ /day	m ³ /hr	m ³ /min	m ³ /sec	Remarks		
Daily Average	22,200	925.0	15.42	0.257			
Peak Flow	42,970	1,790.4	29.84	0.497			


-

-

1-4 Design Sewage Quality

Item	Influent	Removal rate	Effluent	Remarks	
Itelli	(mg/l)	(%)	(mg/l)		
BOD	310	90.3	30	Effluent quality regulati 30 mg/l	
SS	360	91.7	30	Effluent quality regulati 30 mg/l	

1-5 Flow Chart (Oxidation Ditch Process)

1-6 Design Criteria for Oxidation Ditch

Items	Unit	Formula or Value*1	Adoption
1-6-1 Grit Chamber			
(1) Water Surface Load	m3/m2/sec	1,800	1,800
(2) Average Velocity	m/sec	0.3	0.3
1-6-2 Lifting Pump Station			
(1) Retention Time	min.	-	4.0
1-6-3 Oxidation Ditch			
(1) BOD-SS Load	kgBOD/kgSS · day	0.03 - 0.05	0.04
(1) BOD-55 Load (2) MLSS Concentration	mg/L	3,000 - 4,000	4,000
(3) Hydraulic Retention Time	hour	24 - 48	16
(4) Return Sludge Ratio	<u>%</u>	100 - 200	150
(5) Oxygen Requirement	kgO ₂ /kgBOD	1.4 - 2.2	1.8
(6) Water Depth	m	1.0 - 3.0	5.0
(7) Width	m	2.0 - 6.0	5.5
1-6-4 Final Sedimentation Tank			
(1) Water Surface Load	m ³ /m ² /day	8 - 12	10
(2) Retention(Settling) Time	hour	6 - 12	10
(3) Water Depth	m	3.0 - 4.0	3.5
(4) Overflow Weir Load	m ³ /m/day	150	150
1-6-5 Disinfection Tank			
(1) Ultraviolet radiation dose	J/m ²	300 - 500	300
(2) Ultraviolet Intencity	W/m ²	175	175
(3) Effective Volume per Lamp		7.6	7.6
1-6-6 Sludge Thickening Tank			
(1) Solid Matter Load	kg/m²/day	60 - 90	75
(2) Water Depth	m	4	3.5
		<u>├</u> ────┤	
		├	
		}	
	<u> </u>	<u> </u>	

*1: Design Criteria in Japan

2-1 Screen and Grit Chamber

Item	Sign	Unit	Calculation F/S M/P		
Туре	-	-	Parallel Flow Type		
Design Sewage Flow	Q1	m ³ /day	Peak Flow 35,322 42,970		
	Q2	m ³ /sec	Peak Flow 0.409 0.497		
Water Surface Load	WSL	m ³ /m ² /day	1,800 1,800		
Required Surface Area	RSA	m ²	Q1/WSL 19.62 23.87		
Basin Number	BN	basin	2 2		
Average Velocity	AV	m/sec	0.3 0.3		
Depth	Н	m	0.5 0.5		
Width	W1	m	Q2/(AV×H×BN) 1.36 1.66		
Therefore	W2	m	1.6 1.6		
Length	L1	m	RSA/(W2×BN) 6.13 7.46		
Therefore	L2	m	8.0 8.0		
Dimension (Width)	W	m	1.6 1.6		
(Depth)	L	m	L2 8.0 8.0		
(Length)	Н	m	Н 0.5 0.5		
(Basin Number)	Ν	basin	2 2		
(Check)		1. 2.			
Water Surface Load			Q1/(W×L×N) 1,380 1,679		
Average Velocity		m/sec	Q2/(W×H×N) 0.256 0.311		
Equipment (1) Fine Screen Type	-	-	Automatic Bar Screen		
Set Number	SSN	set	2 2		
Screen Opening	-	mm	15 to 25 20 20		
Screen face Velocity	Fv	m/sec	0.45 to 0.6 m/sec 0.5 0.5		
Dimention Depth	H2	m	= H 0.5 0.5		
Width	W	m	$Q2/(Fv \times H \times SSN) \qquad \qquad 0.8 \qquad 1.0$		
		m	Therefore 1.6 1.6		
Specification	-	-	W1.0m×H0.6m×SO20mm×0.4kW×2sets		
			(Based on Manufacturer's Information)		
(2) Grit discharge Pump					
Туре	-	-	Submerged Type Sand Pump		
Set Number	PSN	set	Operation Stand-by Total 2 2		
		3	2 - 2		
Sand Pit Volume	Pv	m ³	1.0 1.0		
Operation Time	T		5.0 5.0 D (T		
Discharge Flow Per Unit	Qd	$\frac{m^3}{min}$	Pv / T 0.2 0.2		
	DU	m ³ /min	<i>Therefore</i> 0.2 0.2		
Total Pump Head	PH	m	10.0 10.0 10.0		
Specification	-	-	Dia.100mm×0.2m ³ /min×10m×2sets		

2-2 Lifting Pump Station

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Submersible Pump Type		
Design Sewage Flow	Q1	m ³ /day	Peak Flow	35,322	42,970
	Q2	m ³ /min	Peak Flow	24.53	29.84
Retention Time	RT	min		4	4
Required Volume	RV	m ³	Q2×RT	98.1	119.4
Pump Pit (Width)	W	m		6.0	6.0
(Length)	L	m		10.0	10.0
(Depth)	Н	m		2.0	2.0
(Volume)	V	m ³	W×L×H	120.0	120.0
Equipment					
Pump Unit Number(Total)	UN1	unit	1/4×Q, including 1 stand-by	5	5
Discharge per Unit	DU1	m ³ /min		6.13	7.46
Pump Diameter(V=1.5~3.0m/s	D1 _(V=3.0)	mm	146×(DU2/3.0) ^{0.5} 146×(DU2/1.5) ^{0.5}	209	230
	D1 _(V=1.5)	mm	146×(DU2/1.5) ^{0.5}	295	326
Therefore	D1	mm		250	250
Total Pump Head	PH	m		6.0	6.0
Pump Efficiency	PE	-		0.6	0.6
Axis Power	AP1	kw	0.163×DU1×PH/PE	10.0	12.2
Motor Allowance	MA	-		0.15	0.15
Pump Power	P1	kw	AP1×(1+MA)	11.49	13.98
Therefore				15	15
Specification		-	Dia.250mm×7.5m ³ /min×6m	×15kW×5(1)units

2-3 Oxidation Ditch

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Re-circulation Flow Type		
Design Sewage Flow	Q1	m ³ /day	Average Flow	18250	22,200
	Q2	m ³ /hr	Average Flow	760.4167	925.0
Basin Number	BN	basin		9	10
Inlet BOD Quality	INB	mg/L		310	310
Inlet SS Quality	INS	mg/L		360	360
Return Sludge Concentration	RSC	mg/L		6000	6,000
Return Sludge Ratio	RSR	%		150	150
MLSS Concentration	ML	mg/L	(INS+RSC*RSR/100)/(1+RSR/100)	3,744	3,744
BOD-SS load	BS	kgBOD/kgSS/d		0.04	0.04
Required Volume per basin	RV	m ³ /basin	Q1×INB/BN/(ML*BS)	4,197	4,595
Width	W	m		5.5	5.5
Water Depth	Н	m		5.0	5.0
Length	L1	m	RV/(W×H)	152.6	167.1
Therefore	L2	m		150.0	150.0
Dimension (Width)	W	m		5.5	5.5
(Depth)	Н	m		5.0	5.0
(Length)	L	m		150.0	150.0
(Basin Number)	Ν	basin		9	10
(Check)					
BOD-SS load	BS	kgBOD/kgSS/d	Q1×INB/(W×H×L×N)*ML	0.041	0.045
Hydraulic Retention Time	HRT	hour	W×H×L×N/Q2	48.8	44.6
BOD Volmetric Loading	BL	kgBOD/m ³ /d	Q1×INB*10 ⁻³ /(W×H×L×N)	0.152	0.167
Equipment					
Aerator Type	-		Diffused aeration		
Oxygen Requirement	OR	kgO ₂ /kgBOD		1.8	1.8
Standard Oxygen Requirement	SOR	kgO ₂ /day	Q1×INB×10 ⁻³ ×OR	10,184	12,388
			per basin	1,132	1,239
Blower Number	AN	unit/basin		1	1
Blower Operation Time	OT	hr		12	12
Oxygen Transfer Requirement	SOTR	$kgO_2/hr \cdot unit$	(SOR/24)×(24/OT)×(1/AN)	94.29	103.23
Unit Number(Total)	UN1	unit		9	10
Specification	-	-	Rotary Blower		
			Dia.150mm×23.4m ³ /min×5,6	600mmAq×	45kW
			Submerged propeller		
			Dia.2.0m×2.3kW×2units/bas	in	
			(Based on Manufacturer's Info	ormation)	

2-4 Final Sedimentation Tank

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Radial flow circular type		
Design Sewage Flow	Q1	m ³ /day	Average Flow	18250	22,200
	Q2	m ³ /hr	Average Flow	760.4167	925.0
Basin Number	BN	basin		7	8
Water Surface Load	WSL	m ³ /m ² /day		10.0	10.0
Required Surface Area	A1	m ²	Q1/WSL	1,825	2,220
	A2	m ² /basin	A1/BN	261	278
Water Depth	WD	m		3.5	3.5
Diameter	D1	m	$(4 \times A2/3.14)^{0.5}$	18.22	18.80
Therefore	D2	m		18.0	18.0
Dimension (Diameter)	D	m	D2	18.0	18.0
(Depth)	Н	m	WD	3.5	3.5
(Basin Number)	Ν	basin	BN	7	8
Overflow Weir Load	OWL	m ³ /m/day		150	150
Required Weir Length	WL1	m/basin	Q1/(BN×OWL)	17.38	18.50
Therefore	WL2	m/basin		19.0	19.0
(Check)					
Water Surface Load	WSL	m ³ /m ² /day	$4 \times Q1/(D^2 \times 3.14 \times N)$	10.25	10.91
Retention(Settling) Time	Т	hour	$D^2 \times \pi \times H \times N/(4 \times Q2)$	8.19	7.70
Equipment					
(1) Sludge Collector					
Туре	-		Center Driven Column Type		
Reduction Gears Torque	Т	kg• m	$(P/4) \times D^2 \times$	1944	1944
Fixed Number	Р	kg/m		20	20
Allowance	α	-		1.2	1.2
Motor Power	Р	kw	$(T \times n)^* \alpha / (974 \times \eta)$	0.12	0.12
Therefore				0.4	0.4
Rotation Number	n	rpm	$v/(\pi \times D)$	0.04	0.04
Rake velocity	v	m/min		2.0	2.0
Total Efficiency	η	-		0.7	0.7
Unit Number(Total)	UN1	unit		7	8
Specification	-	-	Dia.18m×H3.5m×0.4kW		

Item	Sign	Unit	Calculation	F/S	M/P
Equipment	Sigii	Unit	Calculation	1/5	1 1 1
(2) Return Sludge Pump					
			Centrifugal Screw Impeller Pump		
Type Return Sludge Volume Ratio	- RR	%	Min.	100	100
Return Studge volume Ratio	КК				
Duran Linit Number	UNI	%	Max.	200 14	200 16
Pump Unit Number	UN DU	unit m ³ /min	2 units per basin	14	
Discharge per Unit			$Q2*(RR_{MAX}/100)/UN/60$		1.927
Pump Diameter(V=1.5~3.0m/		mm	$146 \times (DU2/3.0)^{0.5}$	113	117
	D1 _(V=1.5)	mm	146×(DU2/1.5) ^{0.5}	160	165
Therefore	D1	mm		150	150
Total Pump Head	PH	m		5.0	5.0
Pump Power	P1	kw	Based on Pump Characteristic	3.7	3.7
Specification		-	Dia.150mm×2.0m ³ /min×5m>	< 3.7kW	
(3) Waste Sludge Pump					
Туре	-		Progressing Cavity Pump		
Waste Sludge Volume	WS	t-DS/day	Refer to Mass Balance Cal.	5.283	6.426
Pump Unit Number	UN	unit	1 units per basin	7	8
Discharge per Unit	DU	m ³ /hr	WS/UN*(100/100-SMR)/24	3.931	4.184
Waste Sludge Moisture Ratio	SMR	%	Considering a margin	99.2	99.2
Pump Diameter	D1	mm	More than 80mm	80	80
Total Pump Head	PH	m		10.0	10.0
Pump Power	P1	kw	Based on Pump Characteristic	3.7	3.7
Specification		-	Dia.80mm×13.4m ³ /min×10m	×3.7kW	
			(Based on Manufacturer's Info	rmation)	
		1			

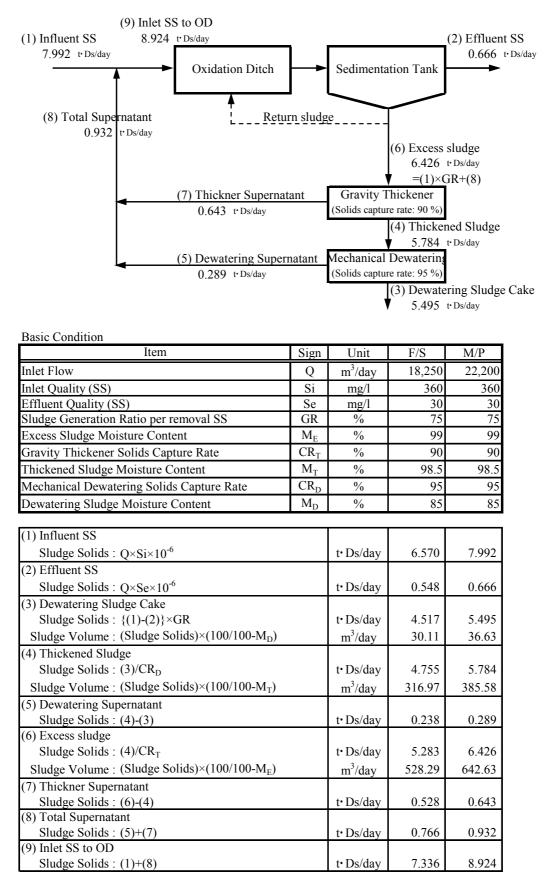
Continue of Final Sedimentation Tank

2-5 Disinfection Channel

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Ultraviolet Disinfection		
Design Sewage Flow	Q1	m ³ /day	Peak Flow	35322	42,970
UV radiation dose	D	J/m ²		300	300
UV Intencity	Ι	W/m ²		175	175
UV Dosing Time	Т	sec	D/I	1.71	1.71
Effective Lolume per Lamp	V	L		7.6	7.6
Treatment Capacity per Lamp	q	m ³ /day	$(V/T)*10^{-3}*(24*60*60)$	383.0	383.0
Required Number of Lamp	n	No.	Q1/q	92.2	112.2
Therefore	n1	No.		120	120
Module Number	М	No.	n1/4	30	30
Dimension (Width)	W	m		1.5	1.5
(Depth)	Н	m		3.5	3.5
(Length)	L	m		0.8	0.8
(Basin Number)	Ν	basin		3	3
			(Based on Manufacturer's Information	tion to install U	V facilities)

2-6 Sludge Thickening Tank

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Rectangular Type		
Design Sewage Flow	Q1	m ³ /day	Average Flow	18250	22,200
	Q2	m ³ /hr	Average Flow	760.4	925.0
Basin Number	BN	basin		2	2
Generated Sludge Solids	GS	t-Ds/day	Refer to Mass Balance Cal.	5.28	6.43
Generated Sludge Volume	GSV	m ³ /day	Refer to Mass Balance Cal.	528.3	642.6
Solid Matter Load	SML	kg/m ² /day		75	75
Required Surface Area	SA1	m ²	(GS*10 ³)/SML	70.4	85.7
	SA2	m ² /basin	SA1/BN	35.2	42.8
Length (=Width)	LW	m	SQRT(SA2)	5.93	6.55
		m	Therefore	6.0	6.0
Water Depth	Η	m		3.5	3.5
Dimension (Length)	L	m/basin		6.0	6.0
(Width)	W	m/basin		6.0	6.0
(Depth)	H	m		3.5	3.5
(Basin Number)	BN	basin		2	2
(Check)		-			
Solid Matter Load	SML	kg/m²/day	$GS \times 10^3 / (L \times W \times BN)$	73.4	89.3
Sludge Thickened Time	Т	hr	(L×W×D×BN)×24/GSV	11.4	9.4


Item	Sign	Unit	Calculation	F/S	M/P
Equipment					
(1) Thickened Sludge Feed Put					
Туре	-		Non-Clogging Sludge Pump		
Thickened Sludge Solids	TS	t-DS/day	Refer to Mass Balance Cal.	4.755	5.784
Pump Unit Number	UN	unit	1 units per Line	2	2
Thickened Sludge Moisture Ra	SMR	%	Considering a fluctuatio Min.	98.5	98.5
C		%	Max.	99	99
Pump Operation Time	OT	hr/day		2	2
Discharge per Unit	DU	m ³ /min	TS*(100/100-SMR)/UN/OT/6	1.981	2.410
Pump Diameter(V=1.5~3.0m/s	$D1_{(V=3.0)}$	mm	146×(DU2/3.0) ^{0.5}	119	131
· · · · · · · · · · · · · · · · · · ·	$D1_{(V=1.5)}$	mm	146×(DU2/1.5) ^{0.5}	168	185
Therefore	D1	mm	,	150	150
Total Pump Head	PH	m		5.0	5.0
Pump Power	P1	kw	Based on Pump Characteristic	5.5	5.5
Specification		_	Dia.150mm×2.4m ³ /min×5m>	< 5.5kW ×3(1)units
(2) Sludge Feed Pump					,
Туре	-		Progressing Cavity Pump		
Capacity of Centrifugal Dehydrato	CD	m ³ /hr/unit		30.0	30.0
Pump Unit Number	UN	unit	1 units per Dehydrator	2	2
Discharge Volume Ratio	DR	%	Min.	50	50
		%	Max.	150	150
Discharge per Unit	DU	m ³ /hr	CD/UN*DR _{Min}	15.00	15.00
			CD/UN*DR _{Max}	45.00	45.00
Pump Diameter	D1	mm		125	125
Total Pump Head	PH	m		20	20
Pump Power	P1	kw		3.7	3.7
Specification		_	Dia.125mm×5.6~44.0m ³ /hr×	11kW×3(1)units
•			(Based on Manufacturer's Info	ormation)	
				,	

Continuation of Sludge Thickening Tank

2-7 Sludge Dewatering

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Centrifugal Dehydrator		
Thickened Sludge Solids	TS	t-DS/day	Refer to Material Balance	4.755	5.784
Thickened Sludge Volume	TV	m ³ /day	Refer to Material Balance	317.0	385.6
Chemical Dosage	CD	%	For Sludge Solids	1.5	1.5
Chemical Dissolve Concentration	DC	%		0.2	0.2
Chemical Specific Gravity	SG	t / m ³		1.0	1.0
Inlet Chemical Volume	CV	m ³ /day	TS*CD/DC/SG	35.7	43.4
Inlet Sludge Volume	V1	m ³ /day	TV+CV	352.6	429.0
Unit Number	UN	Unit		2	2
Operating Day	T1	day/week		6.0	6.0
Operating Time	T2	hour/day		8.0	8.0
Required Dewatering Capacity	RDC	m ³ /hour	V1×7/(T1×T2×UN)	25.7	31.3
Therefore	Р	m ³ /hour		30.0	30.0
Dimension (unit)	N	Unit		2	2
(Capacity)	Р	m ³ /hour		30.0	30.0
(Check)					
Operating Time	Т	hour/day	$V1 \times 7/(T1 \times N \times P)$	6.9	8.3

3-1 Solids Mass Balance Calculation

Appendix 1.4 Separation of Rain Water

1. Outline of Zabadani Valley

The outline of Zabadani valley is shown on **Figure A1.4.7** together with proposed sewerage area. Total area of the basin of the waterway which flows nearby the proposed Zabadani STP is about 10,000 ha. The proposed sewerage area occupies about 1,400 ha of the basin. Concerning outside of the proposed sewerage area, rain water is not mixed with sewage and only rain water flows to downstream. It is absolutely essential that sewage from the proposed sewerage area should not be mixed with the rain water from the outside of the sewerage area. This separation of rain water from sewage will contribute to increasing treatment efficiency at STP and will avoid over sizing trunk sewers.

The rain water is relatively clean and it can be directly used for agricultural or gardening sprinkling. The rain water is also valuable water source by penetrating into ground and natural treatment by soil. From these point of views, the rain water should be separately considered from the sewage and treated as water source by planning underground penetration. In the following sections, method of separation of rain water is described.

2. Evaluation of Existing Trunk Sewer Capacity

There is only one waterway in a Zabadani valley and wastewater flows into the waterway. Originally the waterway is open channel, and in order to prevent diffusion of bad odor, it is replaced by box culvert. The dimension of the culvert is 2m in width and 1.5m in depth near the STP site. All rain water which falls in a valley flows into the culvert. This culvert section is considered as too small taking account of size of the basin and quantity of rain water.

Although annual rail fall is very small, in range of 400mm to 500mm, it sometimes happens that hourly rain fall in winter season reaches 20mm. Based on these conditions and assumption of runoff coefficient as of 0.1, rain water outflow can be calculated as $28 \text{ m}^3/\text{s}$. In the case that flow rate in the culvert is 2 m/s, required section of the culvert will be 14 m^2 (2 m in depth and 7 m in width).

Comparing to the required section of the culvert, section of existing culvert is too small. It is considered that the existing culvert was designed to accommodate only wastewater without rain water, and other reasons for such small section of the existing culvert are as follows.

- The nature of the soil of Zabadani has very high water permeability, and most of rain water has permeated underground. Therefore, it seems that the actual runoff coefficient is smaller than 0.1.
- Although the quantity of rain water is exceeding the capacity of the culvert and overflow

occurs, there will be no damage to human life since the culvert is constructed in farmland.

• Since rain days are very little and amount of rain is very small, it is thought that the rain does not need to be considered.

Calculation conditions (Rational method)

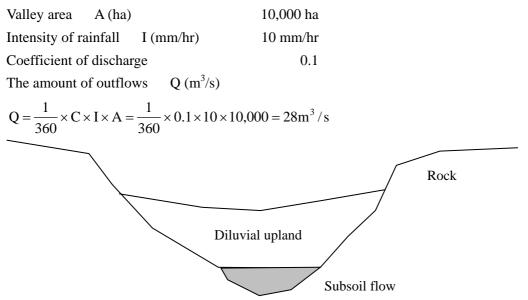


Fig. A1.4.1 Stratum Presumption Figure of Zabadani

3. Measures for Separation of Rain Water

(1) Separation of rain water from mountain and green area

Prevention of rain water inflow to sewer pipe will be achieved by installation of rain water drain pipe in the following three zones, Zones A, B, and C as shown on **Figure A1.4.7**.

1) Zone A: Zabadani upper stream area

Ain Hour and Serghaya are located upstream of Zabadani and these basin area is about 2.600 ha. There is a natural waterway in these areas. Water in the waterway is comparatively clean since basin area is large comparing to population size in the area. The waterway continues to the farm land, crossing the urban area in the west of Zabadani near the mountain. Major part of the waterway is open channel.

This waterway will play an important role to separate rain water from upstream of Zabadani. The capacity of the waterway should be reconsidered since the existing capacity of the waterway seems too small comparing its basin area.

There is an option to construct small-scale dam at south end of the Zone A just before entering the Zabadani area. Potential effects of the dam will be as follows.

- To regulate rain water outflows to Zabadani
- To store rain water
- To accelerate rain water infiltration

There will be a possibility to avoid expansion of the existing waterway to increase its capacity by construction of the dam.

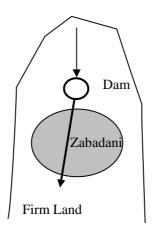


Figure A1.4.2 Schematic Drawing of Zone A

2) Zone B: Farm and mountain land located western part of Zabadani

Vast farmland spreads out in the western part of Zabadani and becomes mountainous area beyond the farmland. Basin area of this zone is about 1,900 ha and quantity of rain water will be significant. Since there is no residence in this zone, sewage is not included in outflow from this area. Under the current situation, all of rain water is flowing into the sewer pipe.

To separate rain water from this area, construction of new waterway in the west side of the sewer pipe will be considered.

It is planned that new trunk sewer will be installed along old abandoned railway. In that case, existing waterway can be used for the drainage for rain water. A schematic drawing is shown in **Figure A1.4.3**:

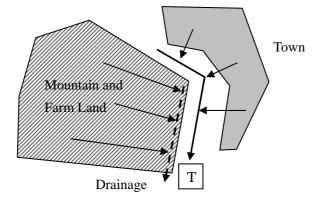


Figure A1.4.3 Schematic Drawing of Zone B

It is desirable that the water way should be open channel and gravel bottom is recommended to accelerate rain water infiltration.

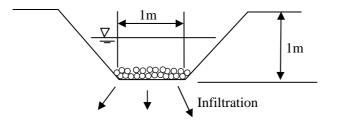


Figure A1.4.4 Schematic Drawing of Drainage

It is also recommended to construct a reservoir in the middle of the waterway expecting the following effects.

- To regulate rain water outflows to down stream
- To store rain water and use rain water for irrigation
- To accelerate rain water infiltration

3) Zone C: Mountain land located eastern part of Zabadani

The mountain land with bare hillside is located in the eastern part of Zabadani, and the rain water flows into a residential area, and is being mixed with sewage. For sake of avoiding such phenomenon, it is possible to separate rainwater and sewage by installation of a waterway on boundary of the residential area. Rain water is intercepted by the new waterway and it passes to Barada River directly.

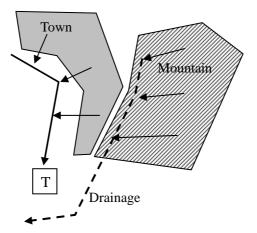


Figure A1.4.5 Schematic Drawing of Zone C

(2) Installation of a road sewer

Generally in Syria, the road sewer is not established because of little precipitation. Rain water flows surface of a road and finally is flowing into the sewer pipe. In order to avoid such situation, construction of a road sewer is recommended to separate rain water on road. Holes will be bored in the bottom of road sewer and rain water enables to permeate underground. Although the rain water which flowed into the road sewer finally flows into a sewer pipe, the amount of inflow decreases by such permeation.

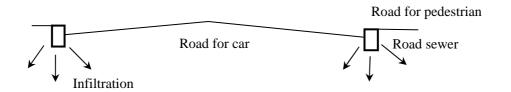


Figure A1.4.6 Schematic Drawing of the Street Gutter

4. Other Measures for Separation

The other measures for rain water separation which are studied and implemented in Japan are described below. Although these measures cannot be applied to Syria immediately and directly, it can be considered as reference in future.

- (1) Infiltration facilities
- The infiltration facilities installed in a school, a park, etc.
- The pedestrian road that has water permeability.
- (2) Facilities for rain water use
- The facility installed near by the house which stores the rain water from the roof.

• The facility installed under the road which stores the rain water that can be used for many purpose, for example pouring and water supply for fire fighting.

5. Meteorological data

Meteorological data in Zabadani is shown in Table A1.4.1:

	1	14	DIC AI		1120000	JI Ulugi	icui uu		Zubuu						
Item	Unit	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Total	Period
Zabadani															
Mean															
Temperature	С	3.8	5.3	8.9	13.6	17.9	22.1	24.8	24.1	25.6	16.0	10.1	6.1	14.9	74-90
Mean Maximum															
Temperature	С	8.7	10.3	14.4	19.8	24.9	29.6	32.5	32.3	30.2	24.1	18.1	11.4	21.4	74-91
Mean Minimum															
Temperature	С	0.0	0.7	3.4	6.7	9.5	13.5	16.3	15.4	12.6	8.2	4.3	1.5	7.6	74-92
Absolute															
maximum															
Temperature	С	18.6	22.0	25.0	30.6	35.0	38.0	41.0	40.0	38.0	32.5	27.0	22.5	41.0	74-93
Absolute															
Minimum															
Temperature	С	-12.6	-13.5	-7.0	-2.5	0.6	6.3	8.8	7.5	6.0	-0.7	-5.0	-6.0	-13.5	74-94
Mean Relative															
Humidity	%	73.0	66.0	57.0	46.0	41.0	34.0	31.0	33.0	39.0	52.0	67.0	72.0	46.0	74-95
Mean of the															
Total															
Precipitation	mm	93.0	100.3	78.0	27.0	9.7	0.3	0.0	0.0	0.0	23.6	53.2	89.2	474.3	78-92
Madaya	T		1		1	1	1		1	1		1	1		
Mean	~									10.1	10.5		4.0		
Temperature	С	3.6	5.1	7.8	11.9	16.1	20.2	22.4	21.3	18.4	12.5	7.4	4.9	12.6	75-89
Mean Maximum	G	0.0	11.5	12.0	10.4	25.6	20.2	22.6	20.0	20.2	22.2	16.5		20.7	74.00
Temperature	С	9.2	11.5	13.9	19.4	25.6	28.2	22.6	30.8	29.3	23.3	16.5	11.4	20.7	74-89
Mean Minimum	С	-0.1	0.0	1.6	4.2	5.7	8.6	10.3	8.8	5.5	3.7	0.7	-0.5	4.0	74-89
Temperature	C	-0.1	0.0	1.0	4.2	5.7	8.0	10.5	8.8	5.5	3.7	0.7	-0.5	4.0	/4-89
Absolute maximum															
Temperature	С	20.5	23.0	26.2	31.0	33.0	36.0	40.5	40.0	36.4	32.6	25.0	21.5	40.5	76-89
Absolute	C	20.5	23.0	20.2	51.0	33.0	30.0	40.5	40.0	30.4	52.0	23.0	21.5	40.5	70-09
Minimum															
Temperature	С	-10.0	-15.5	-12.0	-3.5	-3.0	-0.7	1.5	1.0	0.0	-7.0	-8.5	-9.5	-15.5	76-89
Mean Relative	Ū	10.0	15.5	12.0	5.5	5.0	0.7	1.0	1.0	0.0	7.0	0.5	7.5	15.5	10 07
Humidity	%	7.9	74.0	6.9	60.0	47.0	48.0	77.0	52.0	59.0	67.0	77.0	81.0	53.0	75-89
Mean of the															
Total															
Precipitation	mm	96.4	85.0	92.4	30.0	10.8	0.5	0.0	0.0	0.0	22.5	55.4	80.8	473.8	76-90
Mean Wind															
Spead	m/s	13.0	16.0	13.0	16.0	10.0	10.0	13.0	10.0	10.0	10.0	16.0	13.0	13.0	65-85
Wind Direction		W	W	W	W	W	W	W	W	W	S	S	S	W	65-85

Source: Ministry of defense meteorological department

Proposed drainage plan is shown in **Figure A1.4.7**.

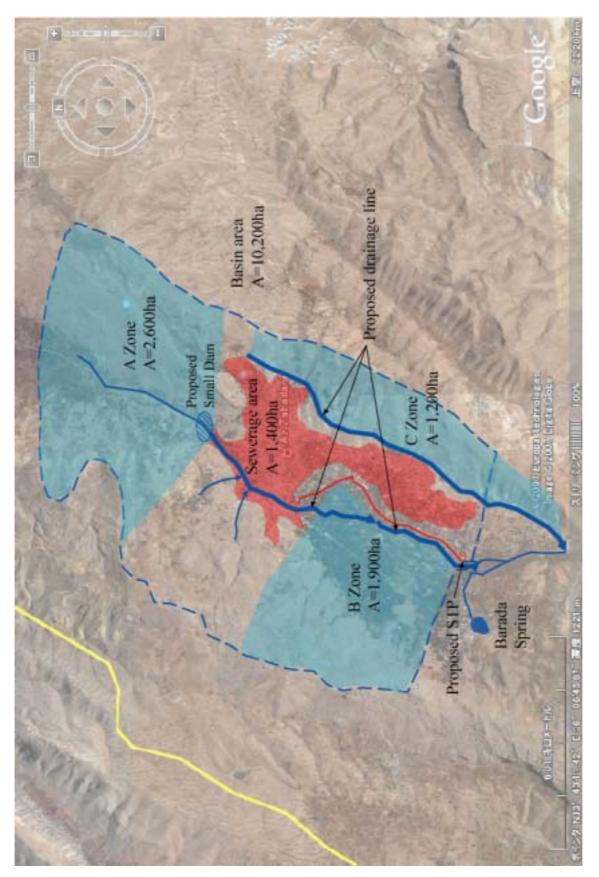
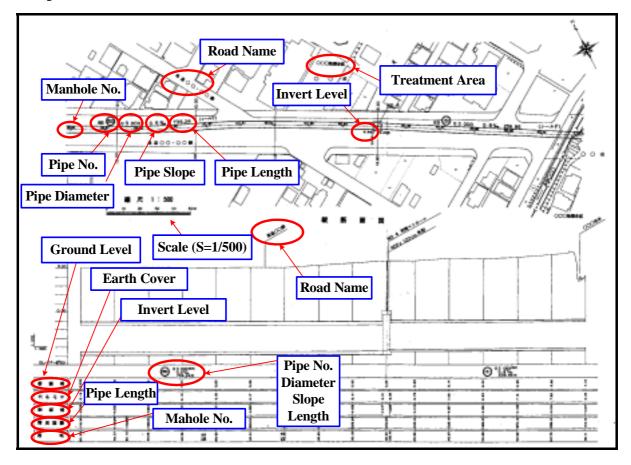


Figure A1.4.7 Proposed Drainage Plan


Appendix for Chapter 3

Sample of sewerage ledgers and records

Pipe No.	Diameter	Pipe Length	Material	Manhe	ole No.	Road Name	Construction	Effluent Pump	Sewer	Cleanig Record
Fipe No.	(mm)	(m)	wateria	Upstreem	Downstreem	Koau Ivaille	Year	Station	Date	Condition
BP-01-001	225	108.63	Clay	BP-01-M001	BP-01-M002	De Zoysa St	1920	Sala Island PS	14/01/2006	Sand 30%

Sample of Sewer Record

Sample of Sewer Network Plan & Profile

Appendix for Chapter 4

Appendix 4.1 Construction Cost

Junci	Cronification	11mit	C+1	FC Por	FC Portion (SP)	LC Por	LC Portion (SP)	Dofomnan
TIGHTS	opecification	UIII	ζιγ	Unit Price	Amount	Unit Price	Amount	Vererence
[Stage-I]								
STP								
Civil/Building work		L_{S}	1		16,227,354		260,370,308	
Mechanical/Electrical work		L_{S}	1		217,980,262		10,365,000	
Pipe		L_{S}	1		0		1,250,000	
Total					234,207,616		271,985,308	
Total Cost (roundup) [SP]					234,208,000		271,986,000	
Total Cost (FC+LC) [SP]					506,194,000	14,000		
[Stage-II]								
STP								
Mechanical/Electrical work		Ls	1		4,157,367		197,680	
Total					4,157,367		197,680	
Total Cost (roundup) [SP]					4,158,000		198,000	
Total Cost (FC+LC) [SP]					4,356,000	5,000		
Grand Total Cost [SP]					510,550,000	50,000		

(ator) a send to the contract of the transmitter sends if and (1)	V- TO'TO' III ACTON	Drage	(0107) 1					
5 m c 1	Croatfing	Trait		FC Portio	FC Portion (Euro €)	LC Poi	LC Portion (SP)	Domonoto
TIGHTS	opecification	UIII	ζιγ	Unit Price	Amount	Unit Price	Amount	Neleiellee
<civil building="" work=""></civil>								
[Direct Cost]								
Pumping station		pc	1		3,410		4,595,988	
Oxidation ditch tank		pc	1		126,500		128,785,800	
Final sedimentation tank		pc	1		30,800		34,694,560	
Disinfection channel		pc	1		770		1,097,788	
Sludge treatment building		pc	1		0		15,000,000	
Administration building		pc	1		0		4,500,000	
Others (land improvement etc.)		pc	1		24,222		28,301,120 Above of	Above of 15%
[Indirect Cost]		L_{S}	1		37,140		43,395,051	Above of 20%
Sub-Total					222,842		260,370,308	
<mechanical erectrical="" work=""></mechanical>								
[Direct Cost]								
Mechanical works		pc	1		1,303,210		4,512,500	
Electrical works		pc	1		1,191,300		4,125,000	
[Indirect Cost]		Ls	1		498,902		1,727,500 Above of	Above of 20%
Sub-Total					2,993,412		10,365,000	
Total Cost					3,216,254		270,735,308	
Total Cost (roundup) [SP]	1 Euro=72.82 SP				234,208,000		270,736,000	270,736,000 1,000 roundup
Total Cost (FC+LC) [SP]					504,9	504,944,000		

(1) Sewerage Treatment Plant Ω = 18 250 m³/dav for Stage-I (2015)

Iteme	Charifination	I Init	Otty	FC Portion (Euro	n (Euro 🖨	LC Poi	LC Portion (SP)	Dafaranca
TICITIS	попранон	OIIII	ζιλ	Unit Price	Amount	Unit Price	Amount	NUCIOUCO
Excavation		m ³	1,400		0	120	168,000	168,000 including surplus soil transport
Backfilling		m^3	600		0	300	180,000	
Gravel		m^3	28		0	360	10,080	
Concrete for leveling		m^3	14		0	2,000	28,000	
Reinforced concrete		m^3	310	10	3,100	9,300	2,883,000	FC portion =R-bar material 2,883,000 10,000*7% = 700sp = 10Euro
including formwork, rebar fabrication and assembly	on and assembly							
miscellaneous work		L_{S}	1		310		326,908	326,908 Above of 10%
Building work		m^2	100		0	10,000	1,000,000	
Total Cost					3,410		4,595,988	

1) Pumping Station

2) UMUAUUU UUUU LAIIN								
Itame	Creeding	I Init	Útry	FC Portio	FC Portion (Euro	LC Poi	LC Portion (SP)	Dafaranca
	opecinication	OIIII	ζιγ	Unit Price	Amount	Unit Price	Amount	NCICICIC
Excavation		m ³	44,000		0	120	5,280,000	5,280,000 including surplus soil transport
Backfilling		m^3	8,000		0	300	2,400,000	
Gravel		m ³	1,800		0	360	648,000	
Concrete for leveling		m^3	900		0	2,000	1,800,000	
Reinforced concrete		m ³	11,500	10	115,000	9,300	106,950,000	FC portion =R-bar material 106,950,000 10,000*7% = 700sp = 10Euro
including formwork, rebar fabrication and assembly	on and assembly							
miscellaneous work		L_{S}	1		11,500		11,707,800 Above of	Above of 10%
Total Cost					126,500		128,785,800	

2) Oxidation ditch tank

Itamo	Cracification	I Init	Otsv	FC Portion (Euro	n (Euro	LC Poi	LC Portion (SP)	Dafaranca
TICITIS	эресписацон	CIIII	ζιλ	Unit Price	Amount	Unit Price	Amount	NUCION
Excavation		m ³	16,400		0	120	1,968,000	1,968,000 including surplus soil transport
Backfilling		m^3	5,600		0	300	1,680,000	
Gravel		m^3	560		0	360	201,600	
Concrete for leveling		m^3	280		0	2,000	560,000	
Reinforced concrete		m^3	2,800	10	28,000	9,300	26,040,000	26,040,000 IC.000*7% = 700sp = 10Euro
including formwork, rebar fabrication and assembly	on and assembly							
miscellaneous work		L_{S}	1		2,800		3,044,960 Above of	Above of 10%
Building work		m^2	120		0	10,000	1,200,000	
Total Cost					30,800		34,694,560	

3) Final sedimentation tank

Ttame	Cnarification	1 Init	Otty	FC Portio	FC Portion (Euro	LC Poi	LC Portion (SP)	Deference
TICITIS	apeutranon	UIII	ζιy	Unit Price	Amount	Unit Price	Amount	NCICICICC
Excavation		m ³	170		0	120	20,400	20,400 including surplus soil transport
Backfilling		m ³	60		0	300	18,000	
Gravel		m ³	13		0	360	4,680	
Concrete for leveling		m^3	6.5		0	2,000	13,000	
Reinforced concrete		m ³	70	10	700	9,300	651,000	1000 = 1000 = 1000 = 700 = 1000 = 1000 = 1000 = 1000 = 1000 = 100000 = 100000 = 100000 = 1000000 = 1000000 = 1000000 = 1000000 = 100000000
including formwork, rebar fabrication and assembly	on and assembly							
miscellaneous work		L_{S}	1		70		70,708	70,708 Above of 10%
Building work		m^2	32		0	10,000	320,000	
Total Cost					770		1,097,788	

4) Disinfection channel

o) binuge u cauncill bunning								
Iteme	Cnarification	1 Init	Otto	FC Portio	FC Portion (Euro	LC Poi	LC Portion (SP)	Dafaranca
TICITIS	оресписацон	OIIII	ζιγ	Unit Price	Amount	Unit Price	Amount	Neleicine
Building work		m^2	750		0	20,000	15,000,000	
Total Cost					0		15,000,000	

5) Sludge treatment building

Items Specification Unit Price Building work m ² 300 Unit Price Building work m ² 300 m ² Building work m ² 100 m ² 100 Building work m ² 100 m ² 100 m ² Building work m ² 100 m ² 100 m ² 100 Building work m ² m ² 100 m ² 100 100 Building work m ² m ² m ² 100 100 100 100 100 100 100 100 100 100 100 100						
		FC Portion (Euro	(Euro €)	LC Poi	LC Portion (SP)	Dafaranca
ork m²2 Im² Im²		Unit Price	Amount	Unit Price	Amount	Neleicine
ork m ² Image: Contract of the state						
	m ²		0	15,000	4,500,000	
Total Cost Total Cost <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Total Cost Total Cost <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Total Cost Total Cost <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Total Cost Total Cost Image: Cost						
Total Cost Total Cost						
Total Cost Total Cost						
Total Cost Total Cost						
Total Cost						
Total Cost						
Total Cost						
Total Cost						
Total Cost						
			0		4,500,000	

7) Mechanical works								
The second	Cunnification	11.014	÷	FC Porti	FC Portion (US\$)	LC Por	LC Portion (SP)	Dofounces
TICHTS	opecinication	UIII	ζιλ	Unit Price	Amount	Unit Price	Amount	Reference
Pumping station facility		L_{S}	1		300,000		750,000	
Oxidation ditch tank facility		L_{S}	1		200,000		500,000	
Final sedimentation tank facility		$L_{\rm S}$	1		225,000		562,500	
Dinsinfection channel facility		L_{S}	1		225,000		562,500	
Sludge thickener facility		L_{S}	1		180,000		450,000	
Sludge dewatering facility		Ls	1		450,000		1,125,000	
Miscellaneous Facility		L_{S}	1		225,000		562,500	
* based on the contractors approximate estimate	te estimate							
Total Cost				US\$	1,805,000		4,512,500	
	1 US\$=0.722 Euro			Euro	1,303,210			

•		

Itame	Creation	I Init	Otty	FC Portion (US\$)	on (US\$)	LC Port	LC Portion (SP)	Dafaranca
TICHIS	opecuication	UIII	λιγ	Unit Price	Amount	Unit Price	Amount	Neterence
Power receiving , Transforming equipment	pment	Ls	1		150,000		375,000	
Operating facility (control center, relay)	ay)	Ls	1		375,000		937,500	
Instrumentation facility		Ls	1		225,000		562,500	
Standby generator		Ls	1		300,000		750,000	
Supervisory control facility		Ls	1		225,000		562,500	
Miscellaneous Facility		L_{S}	1		375,000		937,500	
* based on the contractors approximate estimate	ite estimate							
Total Cost				US\$	1,650,000		4,125,000	
	1 US\$=0.722 Euro			Euro	1,191,300			

8) Electrical works

(2) JEWELAGE IT EAULIEILE FIAIR (= 22,200 m /aay lof Stage-II (2023)	V = 22,200 m /day 10r	orage-	(CZNZ) II						
1	Croatfing	TIN:4	, the	FC Portion (Euro	n (Euro 🖨	LC Por	LC Portion (SP)	Doforman	
TIGHTS	opeciation	UIII	ζιγ	Unit Price	Amount	Unit Price	Amount	Neteretice	
<civil building="" work=""></civil>									
[Direct Cost]									
Pumping station		pc	1		0		0		
Oxidation ditch tank		pc	1		0		0		
Final sedimentation tank		pc	1		0		0		
Disinfection channel		pc	1		0		0		
Sludge treatment building		pc	1		0		0		
Administration building		pc	1		0		0		
Others (land improvement etc.)		pc	1		0		0	Above of 15	15%
[Indirect Cost]		L_{S}	1		0		0	0 Above of 20	20%
Sub-Total					0		0		
<mechanical erectrical="" work=""></mechanical>									
[Direct Cost]									
Mechanical works		pc	1		36,100		125,000		
Electrical works		pc	1		11,476		39,733		
[Indirect Cost]		L_{S}	1		9,515		32,947	32,947 Above of 20	20%
Sub-Total					57,091		197,680		
Total Cost					57,091		197,680		
Total Cost (roundup) [SP]	1 Euro=72.82 SP				4,158,000		198,000	198,000 1,000 roundup	
Total Cost (FC+LC) [SP]					4,35	4,356,000			

(2) Sewerage Treatment Plant Ω = 22 200 m³/day for Stage-II (2025)

1) Mechanical works								
Three c	Crossificantion	11.54	Ģ	FC Portion (US\$)	on (US\$)	LC Poi	LC Portion (SP)	Doforman
IICIIIS	opecinication	UIII	ζιλ	Unit Price	Amount	Unit Price	Amount	Vetetetice
Pumping station facility		L_{S}	1					
Oxidation ditch tank facility		L_{S}	1		20,000		50,000	
Final sedimentation tank facility		L_{S}	1		30,000		75,000	
Dinsinfection channel facility		L_{S}	1					
Sludge thickener facility		L_{S}	1					
Sludge dewatering facility		L_{S}	1					
Miscellaneous Facility		L_{S}	1					
* based on the contractors approximate estimate	te estimate							
Total Cost				US\$	50,000		125,000	
	1 US\$=0.722 Euro			Euro	36,100			

The study on sewerage system development in the Syrian Arab Republic Final Report

Itame	Creating	I Init	ĊĦĊ	FC Portion (US\$)	on (US\$)	LC Por	LC Portion (SP)	Dafaranya
TICITIS	opecurcation	UIII	ζιλ	Unit Price	Amount	Unit Price	Amount	Neleielle
Power receiving, Transforming equipment	pment	L_{S}	1					
Operating facility (control center, relay)	ay)	L_{S}	1		8,830		22,074	
Instrumentation facility		Ls	1		7,064		17,659	
Standby generator		Ls	1					
Supervisory control facility		L_{S}	1					
Miscellaneous Facility		L_{S}	1					
* based on the contractors approximate estimate	te estimate							
Total Cost				US\$	15,894		39,733	
	1 US\$=0.722 Euro			Euro	11,476			

2) Electrical works

					Δ			
Items	Specification	Unit	Qty					Reference
				Unit Price	Amount	Unit Price	Amount	
Dia.800mm	HDPE	m	100		0	12,500	1,250,000	
including Indirect Cost								
Total Cost					0		1,250,000	
Total Cost (roundup) [SP]	1 Euro=72.82 SP				0		1,250,000	1,250,000 1,000 roundup
Total Cost (FC+LC) [SP]					1,2	1,250,000		

Unit : SP

Appendix 4.2 Annual Running Cost for STP

It is assumed that it increases according to the amount of inflow.

				-									
Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
inflow(m3/d)	17,450	17,850	18,250	18,650	19,050	19,450	19,850	20,250	20,640	21,030	21,420	21,810	22,200
ratio	79%	80%	82%	84%	86%	88%	89%	91%	93%	95%	96%	98%	100%
Running Cost													
(10 ³ SP/year)	14,821	15,160	15,500	15,840	16,180	16,519	16,859	17,199	17,530	17,861	18,193	18,524	18,855

Runnig Cost of 2025 (Q=22,200m³/day =design capacity)

(1) Manpower Cost						
Qualifications	Nu	mber	Unit price	An	mount	
Quannoanons	110	moer	(SP/month)	monthly	Yearly	
Manager	1		18,000	18,000	216,000	
Engineer	1		13,500	13,500	162,000	
Supervisor	1		9,000	9,000	108,000	
Skilled labor for O&M	12	(4×3shift)	6,500	78,000	936,000	
Laboratory	3		9,000	27,000	324,000	
Administrator	1		7,000	7,000	84,000	
Driver	2		9,000	18,000	216,000	
Gurd	3	(1×3shift)	9,000	27,000	324,000	
Total	24			197,500	2,370,000	
(2) Power Cost						
				Power	A 1	
Main Equipment	Number	Power	Operation	comsumption	Annual	
Main Equipment	rtuinoer	(kW)	time (hr)	(kWh/day)	power cost	
Fine Screen	2	0.4	24	19		
Lift Pump	4	15	12	720		
(Operation time is equivalent of daily		10	12	, 20		
Rotary Blower	10	45	12	5,400		
Submerged Propeller	20	2.3	24	1.104		
Sludge Collector	8	0.4	24	77	13,410	
Return Sludge Pump	16	3.7	24	1,421	$\times 2.5 \text{ sp/kW}$	
Waste Sludge Pump	8	3.7	4	1,421	\times 31 day/month	
Thickened Sludge Feed Pump	2	5.5	2	22	\times 12 month	
Sludge Feed Pump	2	11	5	110	× 12 monu	
Mechanical Dewatering (unit)	2	137	8	2,192		
Ultraviolet Disinfection Unit	3	137	24	1,008		
	5	14	24	1,008		
Others (10% of above)				1,219		
				, -		
Total		238		13,410	12,471,393	
(3) Chemical Cost						
Polymer for mechanical dewatering						
Consumpton of chemical (kg/day) V=22,20)0×(360-30))/1000×75%	82.4	kg/day	82.4	
design flow (m^3/day)		,		0 5	\times 75 sp/kg	
design sewege quality :SS influent(mg/l)					\times 31 day/month	
design sewege quality :SS influent(mg/l) design sewege quality :SS effluent(mg/l)					\times 31 day/month \times 12 month	
Sludge generation ratio per removal SS(%)					\times 12 monu	
Chemical dosage rate (%) [to dry solids]	1.3%					
Total					2,299,448	
(4) Others 10% of above mentioned items						
(Repair and Maintenance, Laboratory mater	ials, Spare	parts etc.)			1,714,084	
Total (SP)					18,854,925	

Appendix for Chapter 5

Note: only incremental costs and benefits that are relevant to Phase 1 included

2025	-55,483	165,888 41,375 57,219 19,548 6,546	228,548	53,500 18,250 18,250
2024		154,747 1 38,250 52,897 18,235 6,106	212,372 2	3.0417 53.020 18.250
2023	-48,280	144,353 1 35,358 48,897 17,011 5,696	197,339 2	2.8374 52.540 18.250
2022	-45,038	134,658 32,682 45,197 15,868 5,314	183,367	2.6468 52.060 18.250
2021	-42,013	125,614 30,206 41,772 14,802 4,957	170,381	2,4691 51,580 18,250
2020	-39,191	117,177 27,915 38,604 13,808 4,624	158,313	2.3032 51,100 18,250
2019	-36,559	109,307 25,755 35,617 12,881 4,313	147,000	2.1485 50,540 18,250
2018	-34,103	101,965 23,759 32,856 12,016 4,023	136,492	2,0042 49,980 18,250
2017	-31,813	95,117 21,915 30,306 11,209 3,753	126,733	1.8696 49,420 18,250
2016	-29,676	88,728 20,211 27,950 10,456 3,501	117,669	1.7440 48,860 18,250
2015	-27,683	82,769 18,638 25,774 9,754 3,266	109,251	1.6269 48.300 18.250
2014	-25,276	77,210 17,148 23,715 8,889 3,047	101,685	1.5176 47,640 17,829
2013	-24,574	72,024 15,775 21,815 8,096 2,842	93,136	1,4157 46,980 17,408
2012	-204,803		-204,803	1.3206 46,320 16,987
2011	-357,740		-145,038 -357,740 -204,803	1.2319 45,660 16,566
2010	-145,038 -357,740 -204,803		-145,038	1.1492 45,000 16,145
2009	-24,848		-24,848	1.0720 44,340 15,724
2008	0		0 12.9% 108,841	1,0000 43,680 15,303 0,2% 5% 1,225 5% 5% 814,000 70 70 70 202 200 200 200
Year	(<u>SP hiousands)</u> Economic costs Capital expenditures, excl. tax O&M costs	Economic benefits Tourism development Health benefits - productive time lost Health benefits - medical expenditure Treated wastewater use Use of sludge	Net economic benefits EIRR = NPV (at 10%) =	Assumptions Cumulative inflation (at 7.2% p.a.) Population forecast for F/S area Generated watewater / treated water (m ³ /day) Population as % of the total Syria Economic capital cost (SP '000) Taxes (overall average) Economic benefit from one tourist (SP '000) Estim. number of tourists in F/S area Expected increase of the number of tourists by Person-years lost due to water-related diseases Gross domestic income per capita (SP '000) Achievable reduction of illness Medical water-related exp. / capita (SP '000) Achievable reduction of illness Medical water-related exp. / capita (SP '000) Studge produced (m'/day) Price of sludge (SP/m')

Appendix 5.1 Economic Analysis of F/S Project

2021 2022 2023 2024 2025	-42,013 -45,038 -48,280 -51,757 -55,483	e Scena: 3.057 3.307 3.578 3.871 4.187 3.618 3.879 4.158 4.458 4.778	-35,338 -37,852 -40,544 -43,429 -46,518		-35,338 -37,852 -40,544 -43,429 -46,518 -245,606 -283,457 -324,002 -367,431 -413,948	2.4691 2.6468 2.8374 3.0417 3.2607 51,580 52,540 53,020 53,500 9,378 9,465 9,553 9,640 9,727 18,250 18,250 18,250 18,250 18,250
2019 2020	-36,559 -39,191	2,606 2,825 3,149 3,375	-30,804 -32,991	0 0 0 0	-30,804 -32,991 -177,277 -210,268	2.1485 2.3032 50,540 51,100 9,189 9,291 18,250 18,250
2017 2018	6 -31,813 -34,103	5 2,218 2,404 6 2,740 2,937	5 -26,855 -28,762	0 0 0 0 0 0	5 -26,855 -28,762 5 -117,710 -146,472	0 1.8696 2.0042 0 49,420 49,980 4 8,985 9,087 0 18,250 18,250
2015 2016	76 -27,683 -29,676	1,735 1,886 2,045 2,173 2,384 2,556	68 -23,413 -25,075	0 0 0	68 -23,413 -25,075 57 -65,780 -90,855	76 1.6269 1.7440 40 48.300 48.860 52 8.782 8.884 29 18.250 18.250
2013 2014	582 -24,574 -25,276	1,596 1,7 1,979 2,1	<u> -20,999 -21,368</u>	82 0 0 0 0 0 0	0 -20,999 -21,368 <i>0 -20,999 -42,367</i>	1.3206 1.4157 1.5176 16.320 46,980 47,640 8.422 8.542 8.662 17,408 17,829
0 2011 2012	-152,672 -376,568 -215,582		152,672 -376,568 -215,582	572 376,568 215,582 0 0 0 0 0 0 0 0 0	0 0 0	1.2319 45,660 8,302 16,566
2009 2010	0 -26,156 -152,0		0 -26,156 -152,6	26,156 152,672 0 0 0 0 0 0	• 0	20 24 24
Year 2008 (SP thousands)	Cash outflows Capital expenditures O&M costs	Cash inflows Fixed charges Volume-based charges	Net cash flows excluding financing	Funding by Government (subsidy) 100% Funding by Ioan (Ioan repayment) 0% Outstanding Ioan principal balance Interest (% p.a.) 10%	Net cash flows Cumulative cash flows	Other assumptions 1.0000 1.07 Cumulative inflation (at 7.2% p.a.) 1.0000 1.07 Population forecast for F/S area 43,680 44,3 Number of households (@ 5.5 persons) 7,942 8.00 Capital expenditure, total (SP '000) 15,70 770 Capital expenditure, total (SP '000) 770 70 Domesctic severage reade (sPhousehold/year) 120 120 Domestic severage volume-based fee (SP/m ³) 655,700 0.2 Aote: only incremental cash flows that are relevant to Phase 1 included Note: 101

Appendix 5.2 Financial Analysis of F/S Project (Baseline Scenario)

Year	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
(<i>SP thousands</i>) Cash outflows Capital expenditures O&M costs	0	0 -26,156	-152,672 -376,568 -215,582	-376,568	-215,582	-24,574	-25,276	-27,683	-29,676	-31,813	-34,103	-36,559 -	- 191,05-	-42,013 -	-45,038	-48,280	-51,757	-55,483	(0& M
Cash inflows Fixed charges Volume-based charges						0 23,253	0 25,530	0 28,014	0 30,031	0 32,194	0 34,512	0 36,996	0 39,660	0 42,516	0 45,577	0 48,858	0 52,376	0 56,147	Cost R
Net cash flows excluding financing	0	-26,156	0 -26,156 -152,672 -376,568 -215,582	-376,568	-215,582	-1,321	254	331	355	381	408	438	469	503	539	578	619	664	eco
Funding by Government (subsidy) Funding by Ioan (Joan repayment) Outstanding Ioan principal balance Interest (% p.a.)	100% 0% 10%	26,156 0 0	152,672 0 0	376,568 0 0	215,582 0 0	0 0 0	000	0 0 0	000	000	0 0 0	0 0 0	000	0 0 0	000	000	0 0 0	000	very Sce
Net cash flows Cumulative cash flows		• •	• •	• •	• •	-1,321 -1,321	254 -1,067	331 -736	355 -381	381 -0	408 408	438 846	469 <i>1,315</i>	503 <i>1,817</i>	539 2,356	578 2,934	619 3,554	664 4,218	enario)
Other assumptions 1.0000 1.07 Cumulative inflation (at 7.2% p.a.) 1.0000 1.07 Population forecast for F/S area 43,680 44,3 Number of households (@ 5.5 persons) 7.042 8.00 Generated watewater / treated water (m ³ /day) 15,703 15,77 Generated watewater (m ³ /day) 15,703 15,77 Capital expenditure, total (SP 000) 770,978 0 Domesctic severage fixed fee (SP/nousehold/year) 0 2.4 Calculated NPV (SP thousehold) 5.26,500 0 Noue: only incremental cash flows that are relevant to Phase 1 included	1.0000 43.680 7.942 15.303 770,978 0 2.4 -526,500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0720 44,340 8.062 15,724	1.1492 45,000 8,182 16,145	1.2319 45,660 8,302 16,566	1.3206 46,320 8,422 16,987	1.4157 46,980 8,542 17,408	1.5176 47,640 8,662 17,829	1.6269 48,300 8,782 18,250	1.7440 48,860 8,884 18,250	1.8696 49,420 8,985 18,250	2.0042 49,980 9,087 18,250	2.1485 50,540 9,189 18,250	51,100 9,291 18,250	51,580 51,580 9,378 18,250	2.6468 52.060 9.465 18.250	2.8374 52,540 9,553 18,250	3.0417 53.020 9.640 18,250	3.2607 53,500 9,727 18,250)

Appendix 5.3Financial Analysis of F/S Project
(O&M Cost Recovery Scenario)

AF5-4

(50% Ca	pital Cos	t Recover	y Scena	ario)
2025	-55,483	0 134,275 78,70 2	-29,653 0 -1,483	47,656 578	3.2607 53,500 9,727 18,250
2024	-51,757	0 125,257 73,500	-29,653 29,653 -4,448	39,399 -47,078	3.0417 53,020 9,640 18,250
2023	-48,280	0 116,844 68 564	-29,653 59,306 -7,413	31,497 -86,478	2.8374 52,540 9,553 18,250
2022	-45,038	0 108,996 63 950	-29,653 88,959 -10,379	23,927 117,975	2.6468 52,060 9,465 18,250
2021	-42,013	0 0 101,676 108,996 59.663 63.950	-29,653 118,612 -13,344	16,666 141,902 -	2.4691 51,580 9,378 18,250
2020	-39,191	0 94,847 55 656		9,693 158,568 -	2.3032 51,100 9,291 18,250
2019	-36,559	0 88,476		2.990 9,693 16,666 23,927 -168,261 -158,568 -141,902 -117,975	2.1485 50,540 9,189 18,250
2018	-34,103	0 82,534 48 431		-3,462 -171,251 -	2.0042 49,980 9,087 18,250
2017	-31,813	0 76,991 45 178	-29,653 237,224 -25,205	-9,680 -167,789	1.8696 49,420 8,985 18,250
2016	-29,676	0 71,820 42.143	-29,653 266,877 -28,170	- 15,680 - <i>158,109</i>	1.7440 48,860 8.884 18,250
2015	-27,683	0 66,996 30,313	-29,653 296,530 -31,136	-21,476 -15,680 - <i>142,429 -158,109</i>	1.6269 48,300 8,782 18,250
2014	-25,276	0 61,054 35,778	-29,653 326,183 -34,101	-27,975 -120,953	1.5176 47,640 8,662 17,829
2013	-24,574	0 55,609 31.035	-29,653 355,836 -37,066	-35,684 -92,978	1.4157 46,980 8,542 17,408
2012	-215,582	-215 582	107,791 107,791 385,489 -33,159	-33,159 -57,293	1.3206 46,320 8,422 16,987
2011	-376,568	- 376 568 - 215 582	188,284 188,284 277,698 -18,356	- 18,356 -24,134	1.2319 45,660 8,302 16,566
2010	-152,672	-152,672	76,336 76,336 89,414 -5,125	-5,125 -5,779	1.1492 45,000 8.182 16,145
2009	0 -26,156 -152,672 -376,568 -215,582	229 251° 951 92	13,078 13,078 13,078 -654	-654	1.0720 44,340 8.062 15,724
2008	0	-	50% 50% 10%		1.0000 43,680 7,942 15,303 770,978 0 313,600 • 313,600
Year	(<i>SP thousands</i>) Cash outflows Capital expenditures O&M costs	Cash inflows Fixed charges Volume-based charges Net rash flows eveluding financing	Funding by Government (subsidy) Funding by Ioan (Ioan repayment) Outstanding Ioan principal balance Interest (% p.a.)	Net cash flows Cumulative cash flows	Other assumptions 1.0000 1.07 Cumulative inflation (at 7.2% p.a.) 1.0000 1.07 Population forecast for F/S area 43.680 44.3. Number of households (@ 5.5 persons) 7.942 8.00 Generated water valet (m ³ /day) 15.303 15.7.97 8.00 Capital expenditure, total (SP '000) 770.978 0 770.978 Domestic severage volume-based fee (SP/no ³) 313.60 5.6 6 Calculated NPV (SP thousand) .313.60 5.6 6 6

Appendix 5.4Financial Analysis of F/S Project(50% Capital Cost Recovery Scenario)

200 0% 0% 1000 1000 1000 100 7.0 100 10			(r	Inancia	al r	easibility	y Scer	
306 300 301 <th>2000</th> <th></th> <th>-55,483</th> <th>0 249,341</th> <th>193,858</th> <th></th> <th></th> <th>3.2607 53,500 9,727 18,250</th>	2000		-55,483	0 249,341	193,858			3.2607 53,500 9,727 18,250
	1000		-51,757	0 232,594	180,838	-59,306 59,306 -8,896		3.0417 53.020 9.640 18.250
	2073	C#0.#	-48,280	0 216,972	168,692	-59,306 118,612 -14,827	94,559 78,800	2.8374 52.540 9.553 18.250
		77.07	-45,038	0 202,400	157,362	-59,306 177,918 -20,757	77,299 -15,760	2.6468 52.060 9.465 18.250
	1000	1707	-42,013	0 188,806	146,793	-59,306 237,224 -26,688	60,799 - <i>93,058</i>	2.4691 51.580 9.378 18.250
	0000	0-0-	-39,191	0 176,125	136,933	-59,306 296,530 -32,618	45,009 - <i>153,857</i>	2.3032 51.100 9.201 18.250
	2010		-36,559	0 164,295	127,736	-59,306 355,836 -38,549	29,882 -198,866	2.1485 50,340 9,189 18,250
	2016		-34,103	0 153,261	119,157	-59,306 415,142 -44,480	15,372 -228,748	2.0042 49,980 9,087 18,250
	2100		-31,813		111,154	-59,306 474,448 -50,410		1.8696 49,420 8,955 18,250
	2016	0107	-29,676	0 133,365	103,688	-59,306 533,754 -56,341	-11,958 -245,558	1.7440 48,860 8.884 18,250
	2015		-27,683		96,724	-59,306 593,060 -62,271		1.6269 48,300 8,782 18,250
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2014		-25,276	0 113,374	88,098	-59,306 652,366 -68,202	-39,409 -208,746	1.5176 47,640 8,662 17,829
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2013	CTOT	-24,574		78,688	-59,306 711,672 -74,133	-	1.4157 46,980 8.542 17,408
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2012	41.04	-215,582		-215,582	0 215,582 770,978 -66,319	-66,319 -114,587	1.3206 46,320 8,422 16,987
2008 2009 20156 0 -26,156 0 -26,156 0 -26,156 10% 0 10% 26,156 10% -1,308 -1,308 10% 44,340 7,942 8,062 15,724 10,4 10,4 10,4 10,4 10,4 10,4 10,4 10,	2011		-376,568		-376,568	0 376,568 555,396 -36,711		1.2319 45,660 8.302 16.566
2008 2 2008 2 2008 0 0 1 1 1 1 1 1 1 1 1 1	2010	0107	-152,672		-152,672	0 152,672 178,828 -10,249	- 10,249 -11,557	1.1492 45,000 8,182 16,145
200 0% 0% 1000 1000 1000 100 7.0 100 10	0000		-26,156		-26,156	0 26,156 26,156 -1,308	-1,308 -1,308	1.0720 44,340 8.062 15,724
<u>nds</u>) lows expenditures sats was was was was based charges -based charges -based charges -based charges -based charges -based charges -based charges -based frages pan - based frages - cash flows - cash flow	9000	0007	0		0	0% 100% 10%		1.0000 43,680 7,942 15,303 770,978 15,303 770,978 10,0 10,0 10,0 10,0 11,0 11,0
Year (SP thousan Cash outf) Cash inflo Cash inflo Cash inflo Fixed ch Volume Volume Volume Volume Pixed ch Net cash fl Interest (% Outstandin Interest (% Outstandin	V	(SP thousands)	Cash outflows Capital expenditures O&M costs	Cash inflows Fixed charges Volume-based charges	Net cash flows excluding financing	Funding by Government (subsidy) Funding by loan (loan repayment) Outstanding loan principal balance Interest (% p.a.)	Net cash flows Cumulative cash flows	Other assumptions Cumulative inflation (at 7.2% p.a.) Population forecast for F/S area Number of households (@ 5.5 persons) Generated wastewater (treated water (m ³ /day) Capital expenditure, total (SP 000) Domescic severage friced fee (SP/m ³) Capital experiment of thousand) Calculated FTRR Calculated FTRR CALCULATER CALCU

Appendix 5.5 Financial Analysis of F/S Project (Financial Feasibility Scenario)

Note: only incremental cash flows that are relevant to Phase 1 included

Appendix for Chapter 6

RESULTS OF THE 3rd STAKEHOLDER MEETING AND PRE-EIA LEVEL STUDY

6.1 Attendants List of the 3rd Stakeholder Meeting

No.	Name	Organization	Position
1	Wassim Fallouh	MHC	Director of the project
2	Ghassan Al-tarboush	MHC	Engineer
3	Thaer Janem	MHC	Engineer
4	Wisal Khalil	MHC	Engineer
5	Iyad Ali	MHC	Engineer
6	Ahmad AL yousef	GCEC - Damascus	Engineer
7	Zuheir Basatina	Renuxey Weida (Malaysian Com.)	Engineer
8	Adnan Alhamwi	Renuxey Weida (Malaysian Com.)	Engineer
9	Edwin thong	Renuxey Weida (Malaysian Com.)	Project manager
10	Hala Qaddour	Rural Damascus Governorate	Executive Office Member
11	Muhammad Khawandi	Rural Damascus Governorate	Executive Office Member
12	Madyan Nasra	DFEA (R.DAM)	Deputy manager
13	Huda zaid	DFEA (R.DAM)	Waste section chief
14	Muna Juma`a	DFEA (R.DAM)	Laboratory Section Chief
15	Muhammad albush	DFEA (R.DAM)	Engineer
16	Othman Yousef	Zabadani City Council	Mayor
17	Bassam Zaitun	Zabadani City Council	Maintenance Section Chief
18	Bassam Kheito	Zabadani City Council	Technical Office Chief
19	Dureid Ramadan	Zabadani City Council	Executive Office Member
20	Adna Albuqai`i	Farmers Association	Head of the Association
21	Kamal Yousef	Madaya Municipality	Mayor
22	Jiryos Hilal	Bloudan Municipality	Vice Mayor
23	Mustafa Mustafa	Bloudan Municipality	Council Member
24	Issa Rezeq	Bloudan Municipality	Engineer
25	Maha Hilal	Bloudan Municipality	Engineer
26	Nawwaf Ghanem	Madaya Municipality	Technical Office Chief
27	Diyab Khadija	Madaya Municipality	Mayor
28	Ali Alnammus	Madaya council	Member
29	Fares Fares	Bukein Municipality	Mayor
30	Muhammad Badawi		-
30	Kana`an	Bukein Municipality	Technical Office Chief
31	Muhammad Awwad		
	Alrifai`i	Zabadani Municipality	Public Lands Manager
32	Mahmud Burhan	Zabadani	Resident
33	Ahmad Mahmoud	Madaya	Resident
34		(MOA) Zabadani Agriculture	
	Majed Ghuson	Department	Deputy Dep. Chief
35		Zamalka Environmental Association	
	Iman Alhourani	(NGO)	Deputy manager
36	Nabil Tasabihji	-	-
37	Bassam Ghannam	-	-
38	Kinan Tasabihji	-	-
39	Yousef Hammor	-	-
40	Ruyat Yaseen	Environmental pioneers Associations NGO	Administration council member
41	Samir Alsafadi	Syrian Environment Association (NGO)	Chairman
42	Ahmad Yousef	Zabadani Friends Committee (NGO)	Chairman
43	Hikmat Abu Hamdan	Environmental pioneers Associations (NGO)	Chairman
44	Dr Farouq Ala`adili	Damascus University	Professor
45	Nadijda Ala`adili	Damascus University	Engineer
46	Micheil Khayyat	Albaath Newspaper	Journalist
		JICA Syria Office	Resident Representative

Table A6.1.1 Attendants List of the 3rd Stakeholder Meeting at Bloudan

48	Osamu Itagaki	JICA Syria Office(GCWR)	Ex.
49	Tharwat Tarsos	JICA Syria Office	Driver
50	Hirofumi Sano	JICA Study Team	Team Leader
51	Ryunan Matsue	JICA Study Team	EIA
52	Toshiaki Ruike	JICA Study Team	Planning of STP
53	Takashi Watanabe	JICA Study Team	Sewage Planning STP
54	Atsushi Toyama	JICA Study Team	Cost Estimation
55	Seiichi Hanafusa	JICA Study Team	Sewage Planning STP
56	Victor Kupriyanov	JICA Study Team	Economist
57	Yaser Hamida	JICA Study Team	Engineer
58	Amal Hasan	JICA Study Team	Interpreter
59	Nagham Salman	JICA Study Team	Assistant Manager
60	Louay Khalil	JICA Study Team	Engineer/supporter
61	Rafiq DIAB	GTZ	Project Manager

6.2 Photos of the 3rd Stakeholder Meeting and Pre-EIA Level Study

6.3 Minutes of the 3rd Stakeholder Meeting

Based on the agreement between Ministry of Housing and Construction (hereafter called as MHC) and Japan International Cooperation Agency (hereafter called as JICA), MHC in collaboration with the JICA Study Team organized the 3^{rd} Stakeholder Meeting for the F/S of Zabadani Sewerage System on 20th November 2007. The place and timing of the Meeting is showed as **Table A6.3.1**.

Table A6.3.1 Place and Timing of the 3rd Stakeholder Meeting

Timing		Place		Та	rget Areas	
10:00 - 14:00	Bloudan	Grand	Hotel,	Zabadani,	Madaya,	Bukein
20 November 2007	Bloudan (City		and Blouda	an	

6.3.1 Opening Address, by Dr. Wassim Fallouh, Ministry of Housing and Construction

The Meeting was started by an opening address by Dr. Wassim Fallouh from Ministry of Housing and Construction (MHC), who introduced the current situation of sewerage sectors in Syrian Arab Republic and the future challenges which will be faced by the authorities in charge of these sectors, and explained briefly the essential topics of the Feasibility Study (F/S) and the pre-EIA study and insisted on the importance of the cooperation between the JICA Study Team and MHC.

6.3.2 Speech by Ms. Akiko TOMITA, JICA Resident Representative in Syrian Arab Republic

Ms. Tomita talked about the importance of the Zabadani Area as tourist site and explained the reasons to choose this area as the Feasibility Study target (it locates upstream the Fijeh Spring which is the most important water resources for Damascus) and insisted about the sustainability and environment protection of the sewerage projects.

6.3.3 Presentation by Mr. Hirofumi SANO, Team Leader, JICA Study Team

Mr. SANO explained the background and schedule of the Study, and the reasons of selection of pilot project for the F/S of Zabadani area. He also explained that supporting on Stakeholder Meeting is one of important contents as the JICA Study Team.

6.3.4 Presentation Part I, Eng. Ghassan Tarboush, C/P for the Project, MHC

Eng. Ghassan explained the outline of the F/S of Zabadani sewerage system which included the basic condition of the F/S and the proposed sewage treatment method in the STP and the

additional safeguards and the mitigation measures to reduce the offensive odor.

6.3.5 Presentation Part II, Eng. Thaer Janem, C/P for the Project, MHC

Eng. There explained the results of the pre-EIA level study on the F/S of Zabadani sewerage system which included the benefits of proposed sewerage system, the procedures of environmental and social consideration of JICA, the results of IEE and pre-EIA level studies, the recommendations of mitigation measures for impacts.

6.3.6 Questions & Answers

The main topics discussed in the Meeting are summarized as below:

(1) Eng. Othman YOUSEF, Zabadani Mayor

Did you take into consideration the huge increasing of the population during summer season? Are there some STPs in which the same treatment method (OD) is used in Syria? In the upper area of proposed STP site, some people are using sewerage for irrigation. Can we pump up the treated water to that area?

Mr. SANO

We know that Zabadani Area is the most important site for tourists, especially in summer season and we took this issue in our consideration when we estimated the future population.

In Syria, there aren't any STPs using the OD method, but we have experiences in Japan, Philippine, India and other countries.

Eng. Thaer and Dr. MATSUE

We studied several alternatives in choosing the STP location and we found the proposed location is the best for reusing the treated water in irrigation. On the other hand, using raw sewage for irrigation may create damage to soil and agricultural products. For pumping up the treated water to the upstream area, it is possible in technical, but it is very expensive solution.

(2) Mr. Adnan Al BOUKAAI, Head of the Farmers Association

Can you explain the reasons why the STP location is changed from Tieba (downstream of the Zabadani Area, EIB proposed site) to the new site?

You know that Zabadani Area is a very important tourist area and it is very sensitive to the odor problem. Did you take this problem in your consideration during the design and planning stage? And you know that the wind direction is south east which means that the odor will have negative impact on the whole Zabadani area.

Dr. MATSUE and Eng. Thaer

In EIB study, all wastewater from Zabadani area will be collected to one central STP which is located at downstream of the Zabadani area. In our opinion, it is better to select the STP location near the existing wastewater discharge point to avoid constructing long trunk sewer, and to provide treated wastewater to farmers in the same area for irrigation.

We have given much weigh to odor problem. Firstly, during planning stage, we selected OD method and mechanical dewatering system, which will make the odor from the STP to be minimum level. Secondly, the distance between the STP and the nearest house is about 100 m, there will not be odor problem considering the situation at existing STPs using OD method and mechanical dewatering system. Thirdly, tree belt and buffer zone are proposed to mitigate odor. Finally, in future additional deodorization process can be applied if necessary.

(3) Eng. Kamal YOUSEF, Madaya Mayor

Is it possible to cover the STP completely, as you know the proposed location is inside the future residential expanding area and there are many houses locate near the STP and there is children camp located at about 2 km away.

Did you study other alternatives which take the new communities and future expanding in the consideration, such as decentralized sewerage systems? And did you take in your consideration the earthquake problem in Zabadani area which is considered as active area.

Mr. SANO and Eng. Ghassan

We proposed OD method to treat the wastewater and also we proposed the mechanical dewatering method to treat the sludge which requires special room for operation, which means that we will caver the STP partially. It is possible in technical to cover the STP completely but it cost too much.

Dr. MATSUE

We studied several alternatives and we reviewed all studies which were conducted by other organizations like EIB and MHC. We will take all these suggestions in our consideration and

we will include them in our F/S report.

MHC took the earthquake problem in the consideration and it will include this matter in details design study.

(4) Engineer from Zabadani Municipality

What is final disposal method for dewatering sludge?

Dr. MATSUE and Eng. Thaer

There are not isolation systems at existing dumping site to prevent groundwater pollution. In the pre-EIA study, we analyzed heavy metals of the sludge of existing STP and soil at Zabadani area. The results of the analysis show a lower level of heavy metals in the sludge and soil, which means that the sludge can be used for agriculture. But we proposed a monitoring system to check heavy metals in sludge and soil.

(5) Engineer from Zabadani Municipality

As the Zabadani Municipality, we have three questions: Are there any replacement or rehabilitation plans for our very old sewer network (more than 50 years); Did you take into consideration for capacity building plan in sewerage sector?; and did you put any recommendation in your study to employ the local engineers as operation staff in the proposed STP.

Mr, SANO and Dr. Wassim Fallouh

We don't have enough time and budget to make detailed survey on all sewer networks in each community, so we only focus on trunk sewer. For the second point it is very important thing, and MHC will be responsible for this sector. The third point is also very important to create job opportunities for local residents (engineers and other staff) but it is difficult to find qualified staff from the municipalities to STP operation and maintenance.

(6) Mr. Rafiq DIAB, Project Manager, GTZ

In my opinion we should take the following issues in our consideration as national side and foreigner side: We should prepare general plan for integrated water resources management in Zabadani area; we should prepare a regional study including the sewerage system, irrigation system for reusing treated wastewater etc. Finally, we should consider leakage problems (sewerage system and water supply system)

Mr. SANO

We will take it in our consideration

Annex I: Attendants List

6.4 Results of the Pre-EIA Level Survey

6.4.1 Results of Heavy Metals Analysis

In order to estimate the concentrations of typical heavy metals in dewatering sludge from the proposed STP and to evaluate whether dewatering sludge could be reused for agriculture at Zabadani area, the concentrations of heavy metals in dewatering sludge from existing STP (Adraa STP) and in the soil of agriculture land at Zabadani area are analyzed in the pre-EIA level study. The results are summarized in the **Table A6.4.1**.

				Unit: mg/kg
Heavy	Sludge at Adraa	Syrian Sludge Standard,	Soil at Zabadani	Syrian Soil Standard
Metal	STP (& Homs)	Class C (EU)	Area	(EU)
Arsenic (As)	1.7 (2.8)	20 (-)	7.0	20 (-)
Cadmium (Cd)	1.3 (2.2)	20 (20-40)	<1.0	1 (1-3)
Chromium (Cr)	64 (60)	500 (1,000-1,500)	67	100 (100-150)
Copper (Cu)	330 (158)	1,500 (1,000-1,750)	19	100 (50-140)
Lead (Pb)	6.8 (28)	300 (750-1,200)	12	100 (50-300)
Mercury (Hg)	1.2 (10)	15 (16-25)	< 0.05	1 (1-1.5)
Nickel (Ni)	64 (51)	270 (300-400)	45	60 (30-75)
Zinc (Zn)	1,700 (783)	500 (2,500-4,000)	100	200 (150-300)

Table A6.4.1 Results of Heavy Metals Analysis

Source: JICA Study Team, GCEA and MHC

6.4.2 Results of noise survey

During the construction stage, the operation of construction equipment and vehicles may generate noise. Although at this stage precise construction schedules and methods can hardly be determined yet, the possible noise levels caused by the construction of STP may be reasonably estimated by assuming appropriate construction procedures. In this pre-EIA study, a survey on noise in/around STP is carried out in order to evaluate the impact of noise generated during construction stage on nearby residents.

Equivalent continuous A sound level (L_{aeq}) is used to assess noise level. The location map of measuring points is shown in **Figure A6.4.1**. To estimate the noise levels at the nearest houses during STP construction period, following conditions are considered:

- Major noise sources are backhoes (1 m³, 2 sets), bulldozers (8t, 2 sets), dump trucks (4t, 2 sets), truck crane (25t, 1 set) and tractor shovels (1.6 m³, 2 sets);
- The noise levels of selected backhoe, bulldozer, dump truck, truck crane and tractor shovel

are estimated to be 100 dB(A), 100 dB(A), 100 dB(A), 95 dB(A) and 95 dB(A) respectively, and

• The noise declines only caused by distance, trees and ground are considered when the noise levels at sound receiving points are calculated.

Figure A6.4.1 Location Map of Measuring Points for Noise Survey

The results of estimation on the noise levels at survey points are summarized in Table A6.4.2.

Location	Existing Noise Level dB (A)	Estimated Noise Level in Case 1 ¹⁾ dB (A)	Estimated Noise Level in Case 2 ²⁾ dB (A)	Syrian Standard on Noise dB (A)	Remark
STP-1	54	95	108	-	STP
STP-2	47	95	107	-	STP
RA-1	69	70	72	55	House
RA-2	45	51	62	55	House

1): Used construction equipment will be truck crane (1 set)

2): Used construction equipment will be backhoes (2 sets), bulldozers (2 sets), dump trucks (2 sets), truck crane (1 set) and tractor shovels (2 sets). All the equipment will be operated at same time (the highest noise level).

Appendix for Chapter 7

Balanced Regional Planning and Urban Development

First: Balanced regional planning

Background

Social and economic indicators refer to a clear discrepancy between governorates and lack of balance in developmental efforts at the spatial level, which makes regional planning an indispensable tool and mechanism to push the wheel of reform and social, economic and environmental development on the right track within its spatial dimension. This can be achieved by putting an integrated vision involving sector and regional development where the developmental goals are determined for each region and where there is focus on mutual relations domestically among national regions and externally with the regions of neighbouring countries and the world.

There is no doubt that linking between the region's capacity resources, objectives, reality, developmental status, and economic goals on the one hand and its constructional framework and infrastructure comprising the human side on the other hand is a major equation in the process of regional planning. Therefore, it is indispensable in achieving the tenth five-year plan's goals in the process of development and modernization and fulfilling the objectives of national sustainable development.

Previous five-year plans did not include chapters dealing with regional planning and taking into consideration balance between regions and development planning models that link between the central plan and regional and domestic plans for each governorate. However, issues of allocating resources according to regional considerations remained one of the main goals of economic and social development in Syria where horizontal expansion in social and infrastructural sectors and productive establishments seems evident. This expansion; however, lacked planning standards and took place in the absence of models that can achieve developmental balance between governorates and divide Syria into regions and developmental attraction areas. This lack of a regional planning vision has led to a state of internal immigration accompanied by the pressure of high inhabitant growth rates thus causing clear imbalance in distributing development, the individual's income rate and social welfare levels.

That is why the current five-year plan will endeavour to increase regional productivity by mobilizing resources that are scattered in different areas in the country and by putting an end to the current situation of imbalance and integrating regional development plans with the national plan and domestic plans. In seeking to achieve this, there will be focus on improving less developed regions particularly the north eastern region which the tenth five-year plan dedicates a whole chapter to talk about. All this can be fulfilled by adopting and designing a natural and developmental plan that depends on a comprehensive developmental map.

To put it more accurately, the current plan adopts the objectives of economic diversity, optimal exploitation of local and regional resources, encouraging local and foreign investment, coordinating and networking between infrastructure projects and facilities on one hand and economic productive activities on the other, achieving close

linkage between urban development and rural development, and developing cities and service centres and centres of human settlement. This is accompanied by a national policy to determine the priorities of regional projects and implement them in the framework of decentralization, local development, urban and rural planning and environment protection.

Regional planning will deal also with developing service-based cities in addition to creating small service units to which they are connected where they will facilitate land use and the establishment of developmental centres in regions and make services available.

Performance evaluation of the ninth five-year plan

The ninth five-year plan did not depend on a spatial strategy; and its main point of weakness was that it depended on the sector-based dimension and distributing investments to different sectors then coordinating with concerned ministries to study and implement projects thus forgetting abut the regional and spatial dimension that takes into account the settlement economic and social activities. This will help us on a later stage interpret the flaw in development balance indicators at the level of Syrian governorates.

Practically, we can say that the previous five-year plan has yielded a number of developmental projects and programs to address certain priority problems in some governorates where each governorate has its five-year and annual plan. For example, industrial cities were established in Damascus, Damascus countryside and several other governorates. Also, private universities broadly spread in view of the social and economic returns they yield. However, all these efforts and projects were not interrelated within one framework that puts the whole vision of the plan at a national spatial level. For instance, the ninth plan did not determine the strategic and developmental goals for each region neither did it study the mutual relationship between governorates or regions with the aim of reducing the difference in the levels of social and economic development among different governorates.

Therefore and despite what has been achieved in the horizontal expansion of health and educational services and adopting reform policies and measures to raise the social welfare level nationally; yet indicators refer to lack of justice in distributing human development at the level of governorates and even inside one governorate. There is an urgent need to implement more programs and policies that take into consideration local realities and development requirements and priorities in every governorate according to their importance and developmental need.

On the other hand, the ninth five year plan or previous plans did not take into account national, regional and domestic realities and their points of weakness and strength. This, in turn, has led to the raise in environmental imbalance indicators in different Syrian governorates accompanied by the drain and pollution of surface and ground water resources, land deterioration and green areas retrogression, deterioration in air quality, improper disposal of solid waste and growth of arbitrary areas not to forget the cost of environmental damage and its effect on public health, life quality, productivity and revenues. All this has left indirect effect on the national economic performance and sustainable development.

In this regard, reference should be made to the fact that the putting the environmental strategy and action plan in Syria by the ministry of local administration and environment in 2003 is considered a first step towards focusing on the necessity of integrating environmental issues with social and economic development plans. However, this lacks the spatial link between environmental deterioration indicators, which calls for conducting more studies and analysis when preparing the chapter on environment in the current plan for the purpose of linking these indicators together according to different regional and spatial levels.

On the other hand, a review of the reality of construction development (in cities and the countryside) reveals clear imbalance in the hierarchal and synthetic structure of Syrian cities depending on the existence of two relatively big cities which are the capital, Damascus, and Aleppo both of which suffer from increasing inhabitant numbers without taking into account their circumstances and capabilities or inadvance planning for their activities, economic investments and construction expansion. Also, lack of commitment to urban plans and regular expansion led to great losses that clearly affected the national economy as a result of the construction advance, increasing deterioration of agricultural lands, and drain and deterioration of water reserves and life quality in cities.

Statistically, aspects of imbalance resulted by the lack of regional planning are evident in the following:

- Population density lacking water resources in Damascus governorate has reached 14.381 persons/square km in comparison with 29 persons/square km in Deir Ezzor governorate where the Euphrates River is the biggest water resource in Syria.
- The eastern area forms about 41% of the country's area and the inhabitants are 16.9% of the total number of Syrian population. A percentage of 58.1% of poor people are distributed in this area which is one of Syria's poorest areas particularly in some regions such as the steppe despite the availability of natural, animal and human wealth. The percentage of poverty has reached 17.9% in rural areas and 11.2 in urban areas.
- The 2004 Unemployment rate for age categories between 15-24 year olds reached in Hama, Idleb, Hasakeh, Deir Ezzor, Raqqa, and Quneitra the following consecutive percentages 32.6%, 23.1%, 41.4%, 23.1%, 45.1%, 16.1%, and 22.7%. This was due to the focus on agricultural activities while the focus on activities of industry, hotels, and trade prevailed in the governorates of Damascus, Aleppo and Homs where the majority of Syria's urban inhabitants exist in addition to investments and developmental efforts.
- The majority of social and economic activity models and investments prevail in the centres of big cities such as Damascus, Aleppo and Homs due to the availability of production and business requirements. This has resulted in condense immigration to these cities from different areas and the settlement of inhabitants there and therefore the emergence of huge constructional gatherings that need more capabilities than what is locally available. This has also led to crowdedness, traffic

jams, the increase in demand for residences, lack of water, raise in unemployment rates as well as environmental deterioration.

- Syrian governorates suffered from discrepancy in structure and regional and social formation. This was deduced by measuring indicators of human poverty and poor areas where human poverty indicators did not exceed about 5.2% in Damascus in 2002 while it doubled about twice in Aleppo, Idleb and Quneitra, three times in Hasakeh and Raqqa, and four times in Deir Ezzor.
- The 2002 unemployment indicators have shown clear disparity in a number of Syrian governorates where unemployment rate reached its highest point in al Hasakeh at 13.8% while it reached 13.5% in Aleppo, 11.53% in Latakia, and its lowest point at 5.00% in Damascus.

Problems and challenges

- In previous developmental efforts, the lack of adopting regional plans and stressing on increase in production led to initiating programs and developmental projects in areas that already have the readiness, resources and tools to grow, which has resulted in imbalance.
- Lack of linking planning to a strong system of monitoring, follow up and indicators-based effect mearusment has led to ignorance of the nature and size of regional differences, which is necessary to know in order to adopt new redistribution alternatives.
- Increase and disparity in unemployment rates in governorates and regions due to the lack of regional planning in addition to the spread of families under the poverty line in certain less developed governorates (Eastern area governorates).
- Increase in the rates of seasonal & ongoing internal immigration from less developed areas to Damascus and Aleppo and to neighbouring countries in the case of seasonal immigration.
- Prevail of centralization and lack of interest in regional and community development and its tools.
- Lack of scientific methodology and using regional analytical methods (settlement curve, specialization factor) in planning operations.
- Lack of administrative and technical cadres in the area of regional planning at domestic and national levels.

Future vision to adopt regional planning and urban development

The future vision of the next two decades seeks to **establish and integrate the spatial and urban dimension** in all strategies, policies, plans, and sector-based programs and at all levels (national, regional, domestic) depending on implementing the **partnership or participatory method** between the central government and local and regional administrative bodies on one hand and the private sector and civil society on another. This is to be achieved within a framework of **integration**, **flexibility**, **and transparency** in order to draft, implement and evaluate developmental plans and the process of decision-making by adopting a scientific methodology that helps in determining priorities and choosing sustainability standards as a measure in responding to the requirements of contemporary society thus **guaranteeing the availability of development fruits to all society individuals and at all levels: nationally, regionally and domestically.** There is a plan to develop balanced regional planning in Syria during the next two decades where it:

- possesses a planning structure and balanced and progressive administrative divisions (national, regional and local).
- maintains highly-qualified local and regional administrative bodies where they can take part in enhancing administrative and financial decentralization.
- Is Marked by its economic regions that are diversified and integrated economically and balanced socially and in construction.
- Enjoys the ability to enhance the economic and political role of Damascus as an international capital by providing high-level modern services (international banks, international investment companies, airports, fast trains...etc.) and at the same time preserving the rich local constructional fabric and providing present and future needs to local inhabitants.
- Becomes remarkable for the distribution of local and regional capitals (balance attraction points) that are based on creativity, domestic richness, and diversity and that enjoy a high level of modern services and play a local and international economic role. This is a major factor in creating more job opportunities because these centres will be source of attraction for big investments that will serve the whole region with its (regional hospitals, regional universities, big commercial centres, regional parks, big modern transportation station, tourist and cultural regional centres...etc.).
- has medium-size cities that are distinguished with their special developmental aspect such as (tourist cities, commercial cities, technological cities, health cities or cultural cities). These cities are linked to the regional capitals according to a planned hierarchy and multi-centred planned constructional system. Also, they are connected together by modern and developed land transportation networks where those regional capitals become multi-centred developmental attraction points that interact with each other according to a living and active economic, social and constructional dynamism.
- Has qualified villages and rural areas with high level services depending on their resources in sustainable development. Those villages are self-managed and developed by the civil society in partnership with local administration bodies.
- Has land transportation networks that depend on modern technology (fast trains) connecting all regional levels together according to the hierarchy of spatial planning levels.

Long-term objectives

In the framework of quantified objectives to be achieved during two consecutive plans until 2015, a natural long-term plan will be adopted depending on enhancing and involving the spatial dimension in all strategies, policies, programs and developmental economic, social, environmental, constructional and technological projects. This would enable us to divide Syria into regional developmental centres; it would also help us reduce poverty and increase employment rates in less developed governorates. According to the long-term natural plan, there will be allocation of natural resources and distribution of economic capabilities, residential buildings, service and infrastructure centres in each area in order to implement the programs of balanced regional development.

The tenth five-year plan

a. Objectives

regional planning aims at achieving several multi-purpose objectives: economic, social, constructional, environmental, institutional and strategic in order to achieve balanced development of the state. Here is a number of objectives that can be fulfilled by activating regional planning in Syria:

- 1. reducing imbalance between regions and governorates by achieving balanced and sustainable development at the national, regional and domestic levels.
- 2. achieving national social and economic integration by exerting rapid developmental efforts where there is focus on income-generating projects and activities that reduce poverty.
- 3. stress on improving the production by allocating the domestic resources of each geographic region.
- 4. enhancing decentralization and regional administration.
- b. Major quantified objectives at the national and regional levels
 - 1. optimal distribution of revenues at the national level where the Gini Factor is reduced to 25% in regions.
 - 2. reducing poverty indicators at 50% in governorates where poverty indicators are high. These include...
 - 3. reducing unemployment indicators at 50% in governorates where unemployment rates are high such as...
 - 4. increasing Syrian construction by 10%. In other words, adding new human settlement areas in addition to developing remote human settlement areas such as service centers, developmental attraction areas and export points especially at the Iraqi and Turkish borders.
 - 5. increasing regional public utilities and infrastructure and social service establishments in addition to improving their performance by 25% in different regions.

c. Strategy

The strategy aims at limiting economic and social differences between districts in addition to diminishing the phenomenon of urban attraction of the three main cities and intensive focus on economic activities by means of activating relative and competitive advantages of different regions, establishing constructional gatherings in developmental areas, development of urban unorganized areas, and reducing population density until inhabited constructional spaces increase where they can accommodate the expected increase in population in future.

This has to be accompanied by investment in infrastructure which is the backbone of development, sector-based construction of transportation, roads, bridges and tunnels and establishing systems to manage liquid and solid waste and other similar utilities and services that are considered an indispensable and necessary factor in economic renaissance and reform and protecting natural resources.

The following strategies are set to take part in balanced regional and urban development during the tenth five-year plan:

- reducing the current imbalance between regions and governorates and achieving regional and urban balanced development (objective 1).
- Finding integrated planning formulas and time frameworks that connect between national developmental plans and governmental and regional developmental plans.
- Achieving economic, social and regional integration by exerting rapid developmental efforts where there is focus on income-generating projects and activities that reduce poverty particularly in less developed areas (objective 2).
- 1. preparing the main orientations of regional planning in Syria
- 2. building and creating balanced and integrated regions.
 - Stressing production improvement by allocating the local resources for each geographic region (objective 3)
- 3. launching a comprehensive regional plan
- 4. preparing national plans for regional planning in Syria

• Enhancing decentralization and regional administration (objective 4)

- 5. establishing an administrative organising structure comprising urban and regional planning units that are interrelated, coordinated and able to implement the planning mission with all its spatial, economic, social and constructional dimensions.
- 6. building capacities in regional administration and planning.

d. Policies and action plan

• Setting integrated planning formulas that link between the national development plan and governmental and regional plans (strategy 1)

- finding feasible formulas that link between preparation times of developmental plans and governorates and regional local plans with a spirit of coordination and networking.
- Issuing booklets about the structure and content of national, local and regional plans and determining their content and planning methods to be committed to.
- Concluding the natural national plan and dividing Syria into developmental areas and determining planned regions in Syria depending on analytical economic and social causes and the regional environment.

• Preparing main orientations for regional planning in Syria (Strategy 2)

- Establishing the national council for regional planning and urban development (with representatives from the public sector, private sector, and civil society institutions) as well its financing fund and entrusting to it

directive projects, laying out standards and methodologies and suggesting plans and legislations.

- Creating regional development councils that work on drafting and implementing regional plans.
- Giving room to regional investments in governorates' economic and social plans that will be prepared as of 2006.
- Implementing several targeted projects of public benefits and in a balanced way in order to develop cities and regions.
- The regional plan will seek to link between policies of industrial development, agricultural development, education and training, technological development and infrastructure on the one hand and the spatial policy and development of rural and urban centres on the other.
- Enabling the private sector and civil society to take part in building the economic, social, constructional, regional and urban balanced structure.
- Adopting a new methodology of spatial planning and implementing modern and contemporary methods in the management and planning of cities and regions where they are prepared to meet the requirements of the digital age, move to the economy of knowledge and become developmental centres.
- Building developmental regions based on principles of sustainable development and respect of natural resources.
- Improving investment at the macro level by encouraging productive and labour-extensive models, export-based activities and small enterprises to reduce unemployment.
- Directing governmental investments and private sector and civil sector investments in the first stage according to the new regional developmental map of Syria.
- Directing governmental investments towards providing the necessary investment-attracting infrastructure in developing regions such as transportation, communications, drinking water, and sewage...etc.
- Improving the qualification of the cities system by developing medium and small cities where settlement is encouraged through initiating new projects and activities that are linked to a network of roads thus making them integrated with the urban economic system.
- Facilitating optimal access to service centres (educational, health and entertainment...etc.) in all regions equally.

• Putting a comprehensive regional developmental plan (strategy 3)

- preparing a methodological framework to evaluate the status quo and regional differences according to the data of natural national planning.
- Evaluating data and regional information that are currently available and preparing a major map that would help us determine the advantages and obstacles of development in every region according to the programs of the GIS Geographical Information System.
- Preparing the national strategy of regional planning and the principal orientations of urban development by means of:

- 1. **enhancing the economic foundation of every region** based on attaching importance to less developed residential gatherings by providing new job opportunities and improving the quality and quantity of social services.
- 2. supporting networks of residential gatherings in remote governorates. This can be done by optimal distribution of economic activities, social and technical utilities and residences where sector-based networking of governorates' public services is achieved thus enabling inhabitants in a specific residential gathering in a governorate to benefit from the centres services of another governorate and another residential gathering. This can be done according to a gradual process of establishing and developing those service centres (big regional centres, secondary semi-regional centres, local centres, and preliminary service centres), conducting a feasibility study of coexistence and functional integration among these centres, calculating costs and setting regional budgets in the light of this.
- **3. management of environmental resources,** including unirrigated agricultural lands and groundwater resources, and taking part in solving contradictions between developmental projects set in the developmental plans of the region's governorate and the region on one side and standards of environmental considerations, pollution issues and the protection of protected areas and biodiversity on another.
- 4. **improving living standards** and providing main needs that have to do with education, health, residence and income by means of functional and service integration between governorates and residential gatherings of the region with the aim of improving investment in the concerned region's governorates and achieving maximum benefit of financial resources where there is focus on expanding the civil sector contribution.
- Putting a policy to increase the contribution of certain regions in economic and social development of the state.
- Putting a suitable development policy for each region within the framework of development national policy.
- Building a sector-based hierarchal structure that determines promising sectors for each region.
- Putting a vision for the planning and management of lands and providing them with utilities, infrastructure and services by means of:
 - 1. the management of land use and planning working areas as will be proposed by the spatial strategy.
 - 2. preparing urban designs and establishing a coordinating body for cities planning in order to take into account aesthetic and fictional aspects and provide a favourite urban constructional environment in every region in the integrated sense of urban planning and its constructional, social and educational aspects. This can be done by providing appropriate technical and social utilities (services of electricity, transportation, sewage, educational and propaganda establishments, public gardens, health and educational institutions, expanding the

national roads network, establishing and constructing railway networks, and modernising communication and electronic service systems to meet the requirements of this).

3. preparing alternatives in the constructional planning process for every region (development centre) including strategies and assessment mechanisms for developing human settlements, infrastructure, and natural resources.

• Building and creating balanced and integrated regions (strategy 4)

- building regional balanced and developmental attraction centres based on biodiversity, feasibility and developmental integration.
- Those region will be points of attraction for foreign investments that take part in generating more job opportunities and improving the level and quality of citizens' lives.
- Regions will depend on their local resources for the continuity and sustainability of development.
- Adopting an economic methodology and developed technologies to achieve integration and interaction with local and international regions.
- Regions will be able to increase their revenues by collecting regional taxes.
- Regions will be able to receive loans from the market and the development bank to expand their investments and develop their infrastructure.
- Preparing national plans for regional planning in Syria (Strategy 5)
- Preparing a regional developmental map that clarifies the distribution of current economic, social and service activities in Syria.
- Building urban regional observatories.
- Coordinating with information centres at local planning levels through the regional centre.
- Building a regional database in order to support the SPC capacities in drawing and directing its developmental policies based on a regional perspective and the needs of every region.
- Preparing national plans of regional planning according to the bases and methodology of sustainable development.
- Establishing an administrative organizing structure comprising regional and urban planning units that are inter-connected and coordinated in a way they can perform the planning function with all its spatial, economic, social and constructional dimensions (strategy 6)
- Restructuring administrative systems and distributing authorities among the central government, regional planning bodies and local administration bodies.
- Creating a regional organizing structure that can work as a linking point between the central government and local governments and that is supported by working teams responsible for technical affairs, policies support, providing assistance in policies analysis and choosing alternative

policies, setting projects, and evaluation of developmental plans adopted by the region.

- Improving the competence of local administration bodies such as cities councils and municipalities.
- Building a participatory base for different effective parties such as administrative governmental bodies (central, regional and local), NGOs, Scientific Research Centres and Universities, and local inhabitants and civil society organizations, according to a planning methodology starting from the base in order to take part in developmental planning as well as implementation, follow up and assessment of developmental policies.
- Building a modern hierarchal structure of cities and regions in Syria where a study is conducted about their relationship according to the spatial-functional division.

• Building the capacities of workers in regional administration planning (strategy 7)

- Establishing a high-level planning body comprising multi-specialization technical planning cadres such as experts in economic, social, administrative, constructional, urban and rural planning and experts in land use, data collection, artists, surveyors and IT technicians.
- Building scientific and investment institutions and research centres in order to take part in solving problems of regional and constructional development.
- Capacity building in administrative bodies of central, regional and local government.
- Raising the level of regional development by means of regional administration bodies with a developmental vision and creative leading systems.

• Reforms at political, legal and institutional levels and in implementation requirements

- Modernising legislations in order to meet modern policies, objectives, and developmental orientations towards administrative and financial decentralization of governmental administrative bodies.
- Modernization of urban legislations and issuing special laws of urban and regional planning and administration in a way that fulfils modern requirements and addresses activating regional planning in Syria.
- Building regional, virtual networks that provide information and data and linking them to a number of local regional networks.
- Clarifying the terminology of regional and urban planning.
- The availability of legislations that meet modern developmental policies, objectives and orientations and administrative and financial decentralization.
- The availability of legislations and laws on urban planning and management, urban development and regions planning and management.

e. Programs and projects

- The project of enhancing spatial and regional dimensions in development plans
- preparing the theoretical background and working bases of regional planning.
- Analysing the development reality in Syria based on the spatial dimension.
- Analysing and providing available resources (advantages and challenges) from a regional perspective.
- Determining planned regions in Syria.
- Building a planned structure and gradual and balanced administrative divisions (national, regional and local).
- Rearranging and reorganizing the economic, social and constructional structure at the national, regional and local levels.
- Creating a hierarchal and balanced structure of cities and regions (big, medium and small).
- Building a hierarchal sector-based structure that determines necessary sectors in every region.
- Preparing a map for land use in the status quo and at the regional level clarifying the distribution of economic, social and service activities.
- The project of preparing a national strategy for regional planning
- Preparing national plans for regional planning according to the methodology of sustainable development.
- Preparing the distribution plan of industrial and service areas.
- Preparing the distribution plan of scientific research centres and universities as attraction points of technology and information.
- Preparing the distribution plan of constructional and cultural services.
- Preparing the distribution plan of public health services.
- Preparing the plan of information and communication public services.
- Preparing the plan of transportation public services with all their forms (travellers and commodities)
- Preparing the plan of energy public services.
- Preparing the plan of public services for natural and agricultural areas.
- Preparing the plan of sports public services.
- Determining the developmental goal for every region and focusing on mutual relations among regions.
- The project of Big Contemporary Damascus
- Improving the quality and quantity of services provided to the central capital, Damascus, where it can play an economic and political role in the network of big world capitals.
- Providing high-level modern services (banks, international investment companies...etc.)
- The availability of qualitative constructional gatherings with a mixture of local characteristics, international requirements and local inhabitant needs.
- Achieving qualitative transformation in transportation (local, regional and international).
- Controlling constructional expansion and addressing the problem of random residences.
- Getting nature into the heart of the city.
- Improving the standards and quality of living for local inhabitants.

- Adopting the local agenda 21 at the national, regional and local levels as a tool in evaluating work according to sustainable development.
- Establishing developmental linking points in non-developed areas.
- Activating the development of rural growth centers and guaranteeing their effective development.
- Encouraging social and economic development in rural areas.
- The project of building local regional capitals as balance points at the national level with an economic and cultural role at the regional and international levels.
- Improving economic and environmental foundations, infrastructure and services in cities especially economically weak areas in order to make them investment attraction points.
- Controlling urban expansion.
- Enhancing main urban centres.
- Supporting urban attraction points in outskirts according to a multi-centre structure.
- The availability of economic, technological, cultural and tourist development attraction points.
- The availability of high-quality urban transportation networks.
- The program of managing sustainable development in urban and rural areas
- Reducing qualitative discrepancy between urban areas and rural and random residential areas in sewage, waste disposal and water supply.
- Giving priority to poor people living in random residential areas in developmental programs.
- Achieving diversity, coherence and social integration at the local and regional levels.
- Achieving integration between urban areas and rural areas where they support each other.
- Supporting sustainable development and job opportunities in poor rural areas.
- Addressing the problem of random residential areas and organizing them.
- Renewing and reviving cities.
- Controlling urban expansion.
- Using renewable energy in buildings and the constructional system.
- Local use of local wastes in gas production and soil fertilizing.
- Using local systems of water harvesting and water reuse.
- Using lands in energy harvesting operations.
- The program of restructuring governmental administrative systems and authority distribution between the central government, and local and regional planning bodies
- A clear role for regional planning bodies.
- Building capacities in regional and local governmental bodies, supporting policies, providing assistance in analyzing local developmental policies, determining alternative policies and setting projects and assessment of developmental plans adopted by the region.

- the program of improving regional development through bodies with developmental vision and creative leadership.
- Building capacities in central, regional and local governmental bodies
- Training field workers to collect information and data of relevance to the status quo locally and regionally.
- Upgrading and training technical cadres to prepare regional plans.
- Initiating research projects in the field of regional planning and urban development.
- The project of building a national, regional and local database
- Creating a regional database in order to support the SPC capacities in drawing and directing its developmental policies from a regional perspective and according to the needs of every region.
- The availability of regional information centers at the local planning levels where these centers are interconnected by a central communication network.
- The availability of local urban observatories in Syrian governorates.
- Evaluating environmental, social and economic indicators regionally and issuing an annual report with a CD, database and major maps.
- The possibility of exchanging expertise, information and experiences by joining the networks of international sustainable cities.
- The project of sharing local inhabitants in preparing local and regional plans
- Easy, regular and continuous access to information by the e-government system and by making developmental indicators public in order to enhance public participation in decision making.
- Preparing published materials about regional planning (booklets, case studies, best practices...etc.).
- The availability of enabling environment for public participation in decision making.

1.5.6 Achievements and revenues expected from the sector in the plan

- Creating regional developmental centers by achieving economic diversity.
- Taking part in achieving balanced and sustainable development.
- Reducing poverty and human resources development.
- Protecting natural resources and improving the environment quality at the national and local levels.
- Activating the role of the local community specially women and youth categories.
- Putting comprehensive regional plans for urban development and regional planning in Syria.
- Improving living standards by providing new job opportunities in regions and developing areas.
- Upgrading inhabitants to keep pace with the development produced by regional planning.
- Providing main services in regions and developing areas.
- Enhancing social integration and supporting weak and poor categories.

7.5.6 Expected obstacles and challenges in implementation and achieving expected results

The most important challenges that might face the implementation of planning and previous programs cover the following:

- Current political pressures.
- Difficulty in implementing administrative and financial decentralization in a way that guarantees transparency and accountability.
- Weak participation of the civil and private sector.
- Weak financing for projects implementation.
- Weak coordination between concerned parties (governmental, private and civil).
- Lack of implementation and continuous follow up of developmental standards and projects.
- Lack of coordination between administrative levels (central government, regional and local).

8.5.6 Indicators of revenues and performance follow up

- Statistics and regular reports that follow up development at the sector and local level as well as the reports that follow up the plan
- Reports of evaluating training and capacity building which is part and parcel of the program
- The report on the environment status and human resources reports at the local level in case they are available.

There is a Matrix here

Second- Urban development

1.2.5.6 Background

In any economic reform program where we seek sustainable development, good environment for the business sector, and encouraging local and foreign investments there is need for taking care of financial, functional, environmental and asthetic planning of cities. This requires a new mentality of urban planning that covers the two following dimensions:

1. the economic and social dimension: where spatial planning becomes based on a thorough study of the reality and future of the city and its social relationships and

needs such as services, communications, land use, industrial and commercial divisions, expansion possibilities and environment care.

2. the geographic dimension: where the city can be part of comprehensive and balanced regional planning.

Since urban development used to ignore those two strategic dimensions, this led to the lack of functional-spatial integration, discrepancies in policies, problems in population density, cities growth and the development of certain service centers at the expense of others, and difficulty in planning redistribution, upgrading and the implementation of developmental projects.

2.2.5.6 The performance of urban development in the ninth five year plan

As it is the case in pervious five-year plans, the ninth plan dealt with urban development in the context of geometrical development operations. This means that interest in the urban surrounding is limited to infrastructure development (public utilities) with the aim of constructional organization of human gathering areas and topographic survey of those areas.

During the FYP years computerized topographic plans were set to continue the topographic survey plans (at a scale of 1/1000) for all Syrian residential gathering areas (urban and rural) whose population is over 1000 inhabitants.

As for constructional planning, there is an annual public organizing planning operations and sometimes detailed planning (of certain important areas) that put their topographic plans during the previous year.

Topographic survey and organizing planning was conducted in the industrial areas of Aleppo, Homs, Damascus Countryside and Deir Ezzor.

One of the most important achievements of the ninth five-year plan is the topographic survey of Damascus and its active surrounding area as a step to set urban planning studies for this area.

Generally speaking, the ninth plan did not depend on a comprehensive long-term vision in the field of urban development. This is due to the lack of regional planning that determines the relationship between spatial planning and social and economic activities and functions and their geographic distributions where local resources and future orientations are prominent. Therefore, constructional and organizational plans that have been achieved will still be partial plans that need integration and redesign in the light of comprehensive regional and national planning that will be achieved in the tenth plan.

On the other hand, the concept of cities planning and urban development in the ninth five-year plan and previous plans was dominated by the consistency of Syrian society while there was neglect of the issue of cultural diversity which calls for the presence of 'culturally-diversified urban environments" on the territories of the republic. This resulted in preserving special constructional appearances and local traditions and conventions in different Syrian areas. Also, previous plans were dominated by stereotyped ways of dealing where planning operations and constructional organization of residential gatherings where performed under unified and uncontroversial planning that does not take into account the social, environmental and geographical peculiarity of the studied region.

Finally, the ninth plan is criticized for failing to meet the different needs of urban development represented by the necessity to reconsider old constructional plans of cities and towns (particularly governorates' centers), and the importance of reevaluating these plans and modernizing their topographic and organizational designs. This should have been done with emphasis on the necessity to transform those plans into digital formulas, notwithstanding that integrated detailed digital plans will not be feasible economically unless they are employed for public use (to meet all requirements of digitizing plans in Syria) and in local governance administrations and all affairs of the urban region.

2.2.5.6 Problems and challenges

- problems that have to do with the issue of land, borders, continuing occupation of the Golan territories, and lacking a radical treatment and future planning of refugees camps and immigrants areas, which carries the risk of emerging poor districts that lack the necessary required infrastructure for good living. This might turn in the future into the phenomenon of "urban poverty" in certain Syrian regions.
- Excessive population growth and geographical expansion in big cities (on top of which Damascus and Aleppo) which lead to spatial density of inhabitants, industry, trade, transportation, energy consumption, water use, waste production and threatening the environment at the expense of cities archeological centers and neighboring rural areas. This expansion takes place in the absence of strategic studies of its economic and social effects thus leading to crises in residential, services and economic fields and increasing pressure on utilities and infrastructure, which requires big costs for modernizing these cities and compensating for their deteriorating performance.
- Expansion in the functions of big cities and increasing their economic activity thus creating a vicious circle of crises and crises treatment measures. This also caused social-cultural harm to archeological centers and rural areas that are surrounded and covered by the expansion because each lost an important part of its local cultural identity represented by the constructional fabric and related elements such as traditions, conventions and daily life practices where they integrated with a new local social environment that lacks consistency thus leaving negative effects on the historical cultural-urban diversity that distinguished Syria through ages.
- Continuing internal immigration from the countryside to the city and from small cities to big cities in all Syrian governorates seeking work and services, and increase in the relative difference between growth rates in the countryside and the city. This leaves its direct effects on the local economies of the two concerned areas and on their demographic structure particularly imbalance in

constructional structure and lack of balance in gender distribution where most immigrations take place among the youth specially males.

- Lacking a reliable national regional plan in the absence of regional planning studies at the level of governorates and regions. This leads to a lack of a clear, integrated and balanced agenda of land use and also to lacking a central strategic consolidated vision on urban development and improving the conditions of cities that are greatly influenced by contraventions and pressures that derail planning operations off their objective and scientific natural track. The absence of all this leads to the following:
 - pressures of urgent needs of society and the state where planning operations take place in response to scattered and uncalculated projects submitted by the state's institutions (governorates, local administration units, different ministries...etc.) in order to address current urban problems and sometimes to overcome emerging crises.
 - Pressures of the interests of economic institutions that are interested in constructional projects in urban development areas without taking into account current or future plans most of the times.
 - Lack of the law control in the constructional field and spread of contraventions and random urban areas that impose a big burden on the developmental process and cause failure in the implementation of plans making them lagging behind the developments imposed by the community's constructional practices.
 - Lack of requirements and necessary tools of urban planning such as topographic planning surveys, statistical data, and results of social and economic surveys. There are many urban areas in Syria that are not covered by detailed topographic planning surveys. As for cities and towns that implemented their plans, they are not subject to continuous modernization, which makes them not identical with reality and misleading for planners because if they are adopted as they are, the planning decision will not be realistic. Not to mention that several areas in Syria were not subject to operations of property consolidation (such as areas on the borders that have not been marketed yet). In many Syrian areas there are important technical problems (general area networks) that negatively affect the authenticity and accuracy of real estate plans and consequently the accuracy in determining real estate property. Also, the problem of lacking an integrated statistic information system in Syria makes the operations of urban development planning not possible due to their high costs. This is due to the absence of computer digitizing which is still in its beginnings where most plans and above-mentioned data are still in the conventional paper form and they can't be effective tools in contemporary urban planning.
 - irrational use of natural resources in cities, deterioration of the climate and the environment, lack of drinking water resources and the inability to implement projects of water drawing and desalination in urban areas.
 - Lack of implementation of urban development plans and spending on them from public financial resources which are inadequate unless the private sector is involved in funding the implementation of projects after a study of their economic feasibility.

- Weak self capabilities and lack of necessary human resources to manage urban development planning which is still the mission of directorates with limited capacity and unable to keep in pace with the rapid development of urban gatherings. They virtually take care of the geometric dimension and do not have the capacity to take care of the social and economic dimensions. Those directorates are practically responsible for making the constructional planning decision in partnership with governorates' councils and rarely do they seek the help of private sector or civil society institutions expertise (such as the engineers union, organizations...etc.). other reasons behind the bad performance in urban development planning have to do with bureaucratic work systems and the legislations of constructional planning and organization that rely on old foundations, go back to the sixties of last century, and need development and radical modernization.
- No coordination between central administrations of urban planning. The regional planning directorate in the ministry of housing and construction is independent from the directorate of topography and constructional planning in the ministry of local administration and environment.
- There are old legislations and judicial pending issues that need solutions in the field of government dealing with real estate and its assessment of the real value of individual properties. Those issues include nationalization, land reclamation, confiscation, employment and hiring for low financial compensation, public benefit appropriation for unfair financial compensation, lack of implementation of judicial resolutions that have to do with agricultural relations and with evacuating real estate property and lands hired by governmental parties for special governmental affairs (such as the areas of defense affairs). All these make the citizen and investor lose confidence in the credibility and honesty of constructional policies, organizational operations and urban planning. Those problems have to be addressed by means of a clear strategy because the sanctity of real estate individual property is one of the main foundations of the urban development process.
- Retrogression of aesthetic construction in Syrian cities and loss of aesthetic constructional identity, marked for its diversity as result of consecutive Syrian civilizations through ages, in modern urban gatherings. This is due to giving priority to quantified developmental policies over qualitative policies and to manipulation of constructional planning operations by ministries, institutions, and governmental companies that adhere to routine construction and building systems without any participation of the civil society, creative geometric institutions or private economic institutions.
- Incomplete implementation of constructional development plans and stopping projects in many areas and lands for different reasons most of which have to do with the unwillingness of owners and investors to continue their projects or the unwillingness to invest in them as real estate property where those lands are prepared to be built on. Another reason has to do with the lack of deterrent constructional legislations and administrative procedures that address this phenomenon. All this leads to

waste of certain implemented components of the plan and to a big delay in implementing the plan fully.

2.2.5.6 Future vision

in the framework of societal transformation the 2025 vision of Syria, the city will play a pivotal role in providing the necessary foundations for social and economic advancement and moving to the digital age and developed social and economic services and infrastructure. Thus, Syria will be a successful future model for diversified urban environment which, besides being modern, preserves the mixture of Arab-Islamic culture and other cultures where we achieve:

- Vital cities with small modern service centers geographically independent from the expansion of existing big cities where they offer their services to developing rural areas that they are linked to. Those cities enjoy the privileges and services of contemporary cities, are void of illiteracy, poverty and unemployed people and work as economic developmental attraction points that are distributed to all territories of the republic. They include:
 - scientific, technological and cultural cities that attract investors, scientists, researchers and young people from inside and outside Syria.
 - Industrial cities specializing in agricultural and manufacturing industries.
 - Entertainments and summer vacationing cities that provide tourist attraction services.
- Historical cities that are archeologically protected.
- Capital and big cities void of poor districts or random residential gatherings. Those cities contain modern administrative, economic and service centers that are distributed far from their old traditional centers.
- Environmentally-protected areas where there are cities, towns and villages that are void of industries and polluting activities.
- Modern constructional infrastructure institutions that are technically and economically beneficial where they provide transportation, water and sewage, electricity and communications.
- Participatory administration of urban and constructional planning that is open to creative individual initiatives with the direct participation of local governments, women and youth categories, civil society institutions and private economic institutions.
- Guarantee of Syrian citizens rights in benefiting from urban development and safe good living irrespective of their geographical position as well as guarantee of the rights and needs of old people, women, children, and individuals with special needs.

2.2.5.6 Long-term objectives

- The next ten years will witness concluding modern constructional plans of cities and residential gatherings and developing their infrastructure, services and aesthetic environment.
- Putting directive and organizational plans for small urban areas.

• Implementing developmental plans of land use in urban areas.

2.2.5.6 The tenth five-year plan

Objectives

- **1.** enhancing capacity building of urban development planning and improving their organizational, institutional and human frameworks.
- 2. linking urban planning and development to economic and social reform programs and rehabilitation and development of Syria's urban areas in an integrated and balanced manner where there is focus on less developed governorates.
- **3.** improving the urban, physical, natural, and human aspects of big cities, developing small and medium cities, and creating new urban areas according to contemporary standards in order to redistribute service centers and urban development attraction points in Syria.

Major quantified objectives at both the sector-based level and the macro level

- studying and implementing the integrated information system of regional planning, urban development and geographic information.
- Accomplishing 50% of the preliminary plan of land use in existing planned urban areas.
- Conducting a study of alternative and small cities, a study of developing Damascus and Aleppo and a study of developing al Quneitra.
- Re-evaluating constructional plans of 30% of cities and urban gatherings.
- Accomplishing plans of detailed topographic survey and organizational plans of all urban areas in Syria inhabited by over 500 inhabitants.
- Accomplishing 50% of topographic photographs and organizational and directive plans for all urban areas in Syria inhabited by less than 500 inhabitants.
- Conducting preliminary studies of local regional planning.

Strategy

- Enhancing capacity building of urban development planning and improving their organizational and institutional frameworks (Objective 1)
- 1. restructuring the urban development planning sector at the central, regional, and local levels in a way that enhances integration and the government's ability to draft policies and strategies that are suitable for achieving sustainable development in urban areas.
- **2.** enhancing the role of decentralization in the process of development, building local capacities and benefiting of conventional local knowledge in the constructional field.

- Linking urban planning and development to economic and social reform programs and rehabilitation and development of Syria's urban areas in an integrated and balanced way where there is focus on less developed governorates (objective 2)
- 1. adopting the program of modernizing Syrian cities and preparing them for social market economy and competitiveness according to the 2025 vision of Syria, starting to conduct studies of gradual urban development (preliminary, directive, and final), and depending on the private sector and advisory offices in this context.
- Improving urban, physical, natural and human aspects of big cities, developing small and medium cities, and creating new urban regions according to contemporary standards in order to redistribute service centers and urban development attraction points in Syria (objective 3)
 - 1. putting administrative policies for land use and planning programs for human gathering areas in major cities, taking measures to improve the infrastructure adequacy, linking between service centers in cities, and reducing environmental deterioration caused by population density.
 - 2. developing existing small cities and creating new cities that would become development attraction points to attract inhabitants, investments, and the working force, and reducing internal immigration and population density in big cities.
 - **3.** enhancing Arab and international cooperation and coordination with organizations of urban development.

Policies and working plan

- Restructuring the urban development planning sector by expanding its organizational central structure (strategy 1)
 - establishing branches of the national council of regional planning and urban development in governorates and municipalities where there is focus on decentralization in design and implementation of urban development projects and interest in local peculiarity.

(regional planning affairs)

- establishing the national council of regional planning and urban development (comprising representatives of the public sector, private sector and civil society institutions) and its financing fund and entrusting it with the mission of directing projects, setting standards and methodologies and recommending plans and legislations.
- Establishing an administrative technical party that is responsible for the central missions of regional planning and urban development, supporting it with competent human cadres and providing it with the physical and informational requirements for its work.

• Enhancing the role of local administration in taking part in the process of urban development and building local capacities (strategy 2)

- Building a system of national geographic information in order to prepare maps on urban development, exchanging information, and determine the problems and needs of human gathering areas.
- Encouraging the local private sector and civil society institutions to take part in developing the urban environment.
- Preparing and implementing training courses in the field of integrated constructional administration, implementation of urban sustainable development policies, and regular evaluation of those courses and policies.

• Adopting programs of modernizing Syrian cities and preparing them to the social market economy and competitiveness (strategy 3)

- Putting the policies and programs of urban development in the light of the economic development of cities and different areas, transformation possibilities in their economic activity and the requirements of such development and transformation such as a spatial environment, services, infrastructure, and mutual relationship between those cities and their service centers.
- Putting programs for industrial and services resettlement in less developed governorates where counter-immigration from big cities is encouraged.
- Encouraging investment and capital attraction, supporting new opportunities to achieve urban development, and enhancing the capacities of small and medium-size constructional companies and developing their competitiveness and integration.
- Adopting the method of local community participation in the policies and programs of urban development where there is participation in building and maintenance operations through volunteering collective work and costs recovery.
- Cultural sector participation in the projects of developing cities and embellishing them through plastic arts that give Syrian cities with their ethnic, geographic and historical diversities their aesthetic and peculiar culture.
- Rehabilitation of maps and plans that can be used in the GIS (geographical information systems), providing temporally-consecutive satellite images and digitizing topographic designs.
- Preparing medium-scale maps and plans for the studies of local constructional development of cities, governorates centers and their vital surrounding, developmental areas and centers.
- Implementing topographic designs of residential gatherings and their expansion at a major scale of 1/1000 in order to prepare organizational plans.
- Providing orto-photo photographs at a scale of 1/2000-1/5000 in order to prepare directive plans.
- Preparing digital archive and information bank of tourist products that have to do with local administration and environment.

- Digitizing and integrating all topographic, organizational and real estate plans and preparing them as a basis for the GIS in a way that serves the implementation of planning and municipality administration operations.
- Updating information and creating a link with governorates.
- Putting policies to manage land use, planning programs of human gatherings in major cities and taking measures to improve the infrastructure adequacy (strategy 4)

(needs new policies)

- creating a department for land use in the ministry of local administration and environment.
- Reconsidering cities organizational plans in a way that addresses the current reality and future expansion capabilities as well as adopting a new policy of managing land use taking into account residential needs and private sector needs in commercial, industrial and service activities.
- Preparing special projects to develop the centers of major cities (city center) in a way that reveals the constructional identity of Syria.
- Launching projects of infrastructure modernization and development particularly in the sectors of transportation, water, and solid waste in Damascus, Aleppo and other big cities.
- Reducing the level of random expansion in Damascus and Aleppo and the necessity to focus on programs of rural and urban integrated development in order to contain this urban development and encourage counter-immigration.
- Development of small existing cities and creating new cities that can work as development attraction centers as well as reducing internal immigration and population density in big cities (strategy 5)
 - conducting a study of creating alternative cities and specialized cities (technological cities, cultural cities, industrial cities for agricultural and manufacturing industries, entertainment, summer vacationing and tourist cities).
 - Conducting a study of developing existing small and medium cities.
 - Conducing a study about the problem of random urban areas and contravention areas.
 - Supporting free zones projects and implementing taxes and customs facilitation on projects of establishing vital urban areas.
 - Giving rural areas priority in preparing developmental programs specially health, educational and service programs.

• Enhancing Arab and international cooperation and coordination with organizations working in urban development (strategy 6)

- encouraging the programs of "twinning cities and municipalities" with Arab and foreign countries.

- Organizing scientific meetings and Arab and international workshops on constructional organization and benefiting of successful experiences in this field.
- Preparing programs on urban development at the local level and attracting international funding to implement them.
- Organizing cultural local seasons in cooperation with Arab and foreign cultural bodies with the purpose of vitalizing life in Syrian cities and achieving an investment revenue by tourist propaganda.

Reforms at the policies, legal and institutional levels and implementation requirements

- reconsidering and modernizing legislations that have to do with planning and constructional organization in a way consistent with balanced and integrated regional and urban planning.
- Issuing legislations to restructure the organization and administration of the urban development sector and constructional planning.
- Reconsidering the policies, legislations and anti-constitutional practices on preserving individual real estate property.
- Developing and modernizing systems that appreciate the value of lands and real estate property appropriated by the state and adopting the rules of real estate trade in the free market.
- Developing and modernizing the central and conventional methods and relations of planning and the necessity to open to public participation, private sector, civil society institutions and local governance administrations.
- Abolishing construction legislations that allow the settlement of contravention areas, putting firm legal regulations to implement urban development plans and comply by them, and putting legislations to address the problems of random urban areas in order to put an end to their expansion.

2.5.6 Programs and projects

2.2.5.6 The project of creating a general directorate (or body) for regional and urban planning

responsible for the management of regional planning and urban development central missions and providing them with competent human cadres and their financial and informational requirements

the total cost is 300 million SP distributed to the FYP years in the following way:

Table missing

2.2.5.6 The project of establishing the national council for regional and urban planning

Representatives of the public sector, the private sector and civil society institutions take part in this council. It has a fund for financing urban projects and it is entrusted

with directing projects, setting standards and methodologies and recommending plans and legislations.

The total cost is 25 million SP distributed to the FYP years in the following way:

year	2007	2008	2009	2010
percentage	10%	10%	10%	10%

2.2.5.6 The project of conducting a study about developing Damascus and Aleppo and limiting their expansion

Integrated social, economic, constructional, and geometric study

Total cost is 200 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	50%	50%	0%	0%

2.2.5.6 The project of conducting studies about creating alternative cities and new small cities

integrated study of planning 5 cities during the FYP years

Total cost is 200 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	60%	40%	0%	0%

2.2.5.6 The project of conducting studies for the development of existing small and medium cities

(integrated study for planning 30 cities)

Total cost is 450 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	25%	25%	25%	25%

2.2.5.6 Studies of random areas

(integrated social, economic, and constructional study: 10 areas)

Total cost is 200 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	25%	25%	25%	25%

2.2.5.6 Studies of developing northern governorates

Total cost is 90 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	25%	25%	25%	25%

2.2.5.6 Studies of developing al Quneitra governorate

Total cost is 40 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	50%	50%	0%	0%

2.2.5.6 Studies of local urban balance

Total cost is 100 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	40%	30%	20%	10%

The information system

Conducting a study about the creation of an integrated information system for urban planning and topography and linking it to information systems in governorates based on the GIS and statistic data.

Total cost is 72 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	24%	30%	28%	18%

2.2.5.6 Projects of the plans of city centers and development centers

This needs to conduct a study about governorates' central cites and their vital surrounding for the purpose of comprehensive local constructional development in order to plan the use of current and future lands where we can provide proper residential and constructional activity expansions in a way that meets the needs of surrounding environment and developmental goals of areas. This also covers conducing a study about constructional development of peculiar development centers such as Damascus and its vital surrounding (al Zabadani Plain and Sidnaia Plain)-Deir Ezzor and their vital surrounding- Damascus- Dar'a center - Homs-Hama center – Latakia-Tartous Region – Aleppo-Sarakeb center- Latakia-Jericho center- al Gab region- Deir Ezzor-al Bou Kamal Center, covering international roads and neighboring residential gathering by constructional studies to prevent intruding upon international roads and providing safety to neighboring residential gatherings of those roads, and conducting comprehensive studies of constructional development areas, creating areas of future expansion and alternative districts, and development of areas with peculiar nature such as the gathering of (Ma'loula, Jibi'deen, Ein al Teena, al Sarkha, Hala), the gathering of (Qara- Der Atyeah- al Nabk, al Qastal, Yabrood) and al Hamrat gathering in al Raqqa.

Total cost is 100 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	14%	15%	22%	49%

2.2.5.6 Directive photographing

Issuing directive photographing of gatherings whose population is less than 500 inhabitants since issuing detailed organizational photographing of such gatherings requires the financial costs of topographic photographs at a scale of 1/1000 as well as putting detailed organizational plans that reveal the service centers for every gathering on its own.

Those directive plans are put based on ortophoto photographing at a scale of 1/2000 or 1/5000 by using the techniques of aireal photographing or remote sensing in the case of satellite photographs with a resolution suitable to the scale; whereby a study is conducted about every group of small neighboring gatherings in order to provide common services, road connection, future expansion areas, and determine building systems and in a way that guarantees protection of agricultural lands and prevents intruding upon them. Those studies cover small residential gatherings in all regions of the country with priority to the following regions: the coastal area and its mountains, Aleppo countryside, al jazeera region and the steppe gatherings.

Total cost is 80 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	16%	19%	27%	38%

2.2.5.6 Topographic survey

Total cost is 423 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	33%	27%	13%	12%

2.2.5.6 Maps Rehabilitation for the Use of GIS and Satellite Images

Rehabilitating maps at a scale of 1/50000 produced by the public institution of areas with the aim of preparing comprehensive constructional topographic data within the general coordinates of the country. Those maps can be used as a unified area foundation in the GIS studies of comprehensive constructional local studies supported by satellite images with resolutions suitable to the study objectives. Also, they provide continuous updating of changes in residential gatherings and constructional activities and a means to follow up with those changes at the level of all territories of the country where there are digitized maps for all regions in the country ready for the application of GIS and supported by satellite images with 5m resolution. That is why we have to take rapid measures to put such maps and satellite images in the service of constructional development studies.

Total cost is 60 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	16%	24%	42%	18%

2.2.5.6 Digitizing topographic plans and integrating them with real estate and organizational maps

Moving to the digitized forms of city centers topographic planning since the majority of those plans were made in paper forms; then integrating those maps with organizational and real estate maps and using them in computer applications that guarantee regular updating of those plans and good implementation of organizational plans and municipal administration. The projects that will be accomplished during the tenth five-year plan are: Hama, Latakia, Sweida, Dar'a, Homs, Tartous, Idleb, and Deir Ezzor as well as cities of special importance such as Bloudan, Jaramana, Jericho, al Bou Kamal.

Total cost is 90 million SP distributed to the FYP years in the following way:

Year	2007	2008	2009	2010
percentage	11%	16%	24%	49%

5.6 Achievements and expected revenues

- Guarantee of urban expansion and development to meet economic and social development.
- Establishing a solid basis of studies, plans, detailed planning, and informational system for long-term sustainable urban planning and therefore improving the reality of planning and the possibility of its success.
- Preparing integrated detailed plans of required constructional projects and submitting them to donor bodies for investment or direct implementation.

5.6 Obstacles, expected challenges in implementation and expected results

• Delay in legislative and administrative reforms.

- Inability to attract or employ necessary human resources.
- Lack or delay in funding programs and projects.
- Failure in partnership attempts with private sector and civil society.
- Regional political challenges in the Middle East and exerting pressures to prevent good implementation of regional and urban planning.

5.6 Indicators of performance follow up and revenues

The tenth five-year plan programs and projects of urban development can be divided into two main types:

- Programs and projects of building Syrian capacities for urban planning.
- Programs and projects of urban development studies.

The performance of the first is measured by the SPC planned monitoring.

The performance of the second is measured by technical reports of bodies monitoring the studies and supervising them.

The revenues of those programs and projects to cover all planning needs will be direct in this plan.

As for executive economic, social and constructional revenues they will only appear in next plans (eleventh five-year plan)

5.6 Executive Matrix

	strategies	Programs / projects	outcome	Indicators	Implementing body	Time frame
1	Capacity building	Creating a general directorate or body for regional and urban planning	Implementing programs and projects mentioned in the FYP	Results of following up reports issued by SPC	Ministry of local administration and environment	2-4 years
		Establishing the national council for urban and regional planning	Quality of programs and projects mentioned in the FYP	Results of following up reports issued by SPC	SPC in cooperation with the ministry of local administration and environment	1-4 years
		The Information System	Providing contemporary tools of urban planning & other public use	The results of Monitoring & evaluation reports	Ministry of local administration and environment	4 years
		Topographic survey	Providing the basis for spatial reference of planning & future geometric projects	The results of Monitoring & evaluation reports	Ministry of local administration and environment	5 years
		Maps rehabilitation	Providing the basis for spatial reference of planning and future geometric projects	The results of Monitoring & evaluation reports	Ministry of local administration and environment	4 years
		Digitizing plans	Providing the basis for spatial reference of planning and future geometric projects	The results of Monitoring & evaluation reports	Ministry of local administration and environment	4 years
2	Big cities	StudiesofdevelopingDamascus&Aleppo	Finding solutions for the crises of the two cities and their effects on the national economy	The results of Monitoring & evaluation reports	Ministry of local administration and environment	2 years
		Projects of city centers and development centers plans	Putting the basis for sustainable development	The results of Monitoring & evaluation reports	Ministry of local administration and environment	4 years
3	small cities	Studies of creating alternative and small cities	Putting the basis for sustainable development	The results of Monitoring & evaluation reports	Ministry of local administration and environment	2 years
		Studies of developing existing small and medium cities	Putting the basis for sustainable development	The results of Monitoring & evaluation reports	Ministry of local administration and environment	4 years
		Random areas studies	Finding solution to the challenge of urban poverty	The results of Monitoring & evaluation reports	Ministry of local administration and environment	4 years
		Directive photographing	Providing raw materials for urban planning	The results of Monitoring & evaluation reports	Ministry of local administration and environment	4 years
4	Urban balance	Studies of developing northern governorates	Putting the basis for sustainable development	The results of Monitoring & evaluation reports	Ministry of local administration and environment	4 years
		Study of developing al Quneitra governorate	Putting the basis for sustainable development	The results of Monitoring & evaluation reports	Ministry of local administration and environment	2 years
		Studies of local urban balance	Putting the basis for sustainable development	The results of Monitoring & evaluation reports	Ministry of local administration and environment	4 years