THE STUDY

FOR

ESTABLISHMENT OF DIGITAL TOPOGRAPHIC MAPS IN GEORGIA

Final Report

PASCO CORPORATION

March 2008

CURRENCY EQUIVALENTS

Currency Unit = Georgian Lari (GEL) US\$1.00 = 1.5450 (exchange rate February 18, 2008)

PREFACE

In response to a request from the Government of Georgia, the Government of Japan decided to conduct a study on The Study for Establishment of Digital Topographic Maps in Georgia and entrusted to the study to the Japan International Cooperation Agency (JICA).

JICA selected and dispatched a study team headed by Mr. Hisashi MORI of PASCO Corporation and consists of PASCO Corporation between April, 2005 and February, 2008.

The team held discussions with the officials concerned of the Government of Georgia, and conducted field surveys at the study area. Upon returning to Japan, the team conducted further studies and prepared this final report.

I hope that this report will contribute to the promotion of this project and to the enhancement of friendly relationship between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of Georgia for their close cooperation extended to the study.

March 2008

Eiji HASHIMOTO, Deputy Vice President Japan International Cooperation Agency Mr. Eiji HASHIMOTO Vice President for Japan International Cooperation Agency

LETTER OF TRANSMITTAL

Dear Mr. Hashimoto,

We are greatly honored to submit to you the final report on "The Study for Establishment of Digital Topographic Maps in Georgia" that was implemented based on the contract with your Agency.

This report summarized the progress of the study and results of the works over the three years from fiscal year 2005. Pasco Corporation carried out this study from April,2005 to March, 2008, and the outcomes from the works include aerial photographs on the scale of 1/40,000, topographic maps on the scale of 1/50,000, the digital topographic data with GIS database and GIS model systems.

In this report, we also elaborate on approaches to effective use of the topographic data in various fields of decision-making and are convinced that it will contribute to the promising socio-economic development of Georgia.

On behalf of the study team in Pasco Corporation, I would like to express my deepest gratitude to the Geology-Cartography and Geodesy Service and the organizations concerned in the Government of Georgia for their close cooperation extended to the Study Team.

Finally, I wish to convey my sincere appreciation to the officials in JICA, Geographical Survey Institute, the Ministry of Land Infrastructure and Transport, the Ministry of Foreign Affairs and the Embassy of Japan in the republic of Azerbaijan for providing us with suggestive advices and appropriate directions that have been given to us during the implementation of the project.

March, 2008

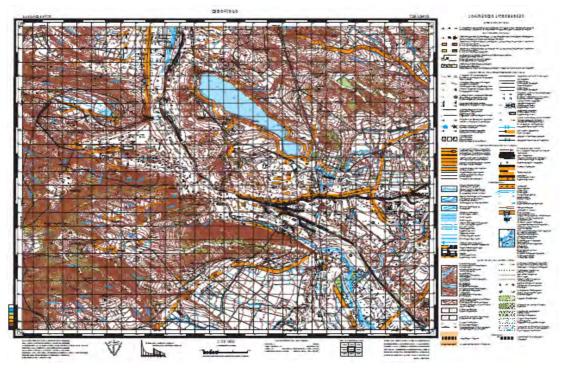
The Study for Establishment of Digital Topographic Maps in Georgia Leader of the Study Team Hisashi Mori

View of Tbilisi city

The Ministry of Environment Protection and Natural Resources of Georgia

Official meeting of the Coordinating Committee

Discussion on the progress report


Scenes of On the Job Training by the Study Team during the project

Presentations by the counterpart personnel in the Workshop

Successful Seminar with many fruits

A sample of the new map sheet (Tbilisi)

CONTENTS

CHAPTER 1.I	NTRODUCTION	1 -
1.1.	Background of the Study	1 -
1.1.1.	Background and progress of the Study	1 -
1.1.2.	Objectives of the Study	3 -
1.2.	Outline of the Study	5 -
1.2.1.	Area targeted in the Study	5 -
1.2.2.	Progress of the work in each year	7 -
1.2.3.	Outcomes of the Study through out 3 years	9 -
1.3.	Implementation schedule	11 -
1.4.	Members of the Study Team	- 12 -
1.4.1.	The 1 st year	- 12 -
1.4.2.	The 2 nd year	- 12 -
1.4.3.	The 3 rd year	- 13 -
1.5.	Equipments of the Study	15 -
CHAPTER 2. S	SUMMARY OF THE STUDY WORK OVER THE PAST 3 YEARS	17 -
2.1.	The works in Georgia (2005)	17 -
2.2.	The works in Japan (2005)	- 18 -
2.3.	The works in Georgia (2006)	- 18 -
2.4.	The works in Japan (2006)	- 21 -
2.5.	The works in Georgia (2007)	21 -
2.6.	The works in Japan (2007)	- 21 -
2.7.	The works in Georgia (2008)	- 22 -
CHAPTER 3. C	GROUND SURVEY AND AERIAL PHOTOGRAPHY	- 23 -
3.1.	Ground Control Point Survey	- 23 -
3.1.1.	Installation of aerial signals	23 -
3.1.2.	Geodetic control network survey	24 -
3.1.3.	Leveling	31 -
3.1.4.	Collection of existing control point coordinate data	- 32 -
3.2.	Aerial Photography	35 -
3.2.1.	Planning and implementation	36 -
3.2.2.	Specifications	- 36 -
3.2.3.	Inspection of Photographs	37 -
3.2.4.	Scanning of aerial photographic films	- 38 -
3.3.	Aerial Triangulation	- 40 -
3.3.1.	Outline of the work (Scope of the aerial triangulation)	- 40 -
3.3.2.	Method of triangulation	- 40 -

3.3.3.	Results	42 -
3.4.	Creation of orthphotographs	43 -
3.4.1.	Objective of the work	43 -
3.4.2.	Method of creating orthophotos	43 -
CHAPTER 4. C	CREATION OF GEOGRAPHIC INFORMATION (TOPOGRAPHIC MAP)	- 46 -
4.1.	Discussion on map specifications and map symbols	46 -
4.1.1.	Surveying standards	46 -
4.1.2.	Map specifications	46 -
4.1.3.	Map symbol and marginal information	46 -
4.2.	Updating of the existing maps	51 -
4.3.	Newly Creation of Digital Map Data	54 -
4.3.1.	Digital plotting	55 -
4.3.2.	Data compilation	57 -
4.4.	Field Verification and Completion	58 -
4.4.1.	Field Verification	58 -
4.4.2.	Field Completion	61 -
4.5.	Construction of GIS	65 -
4.5.1.	Establishment of a national GIS database	65 -
CHAPTER 5. C	CONSTRUCTION OF GIS MODEL SYSTEMS	86 -
5.1.	Setting up and Managing the Coordinating Committee	86 -
5.2.	Creation of GIS Model Systems	89 -
5.3.	Selection of Themes for GIS Model Systems	90 -
5.4.	Preparation of Database for GIS Model Systems	91 -
5.5.	Items and Methodology of Preparing GIS Model Systems	91 -
5.5.1.	GIS Model for Urban Development (Greater Tbilisi)	92 -
5.5.2.	GIS Model for Forest Management and Reforestation (Zestaphoni)	93 -
5.5.3.	GIS Model for Facilitating Environmental Protection (Kutaisi North)	95 -
5.5.4.	GIS Model for Enhancing the Possibility of Developing Tourism(Borjomi))- 96 -
5.5.5.	GIS Model for Optimization of Agricultural Land Use (Mtskheta)	97 -
5.5.6.	GIS Model for Contribution to Information of Educational Improve	ement
	(Tbilisi)	98 -
5.6.	Prospects of use of GIS Models	99 -
CHAPTER 6.7	FECHNOLOGY TRANSFER	101 -
6.1.	Items for Technology Transfer	101 -
6.1.1.	OJT	101 -
6.1.2.	Training in Japan	102 -
6.2.	On-the-Job Training	103 -
6.2.1.	OJT for Ground Control Survey	103 -

6.2.2.	OJT for Filed Verification and Completion	104 -
6.2.3.	OJT for digital plotting (Vectorization; for internal verification)	105 -
6.2.4.	OJT for Updating of the existing map	110 -
6.2.5.	OJT for Establishment of GIS database	112 -
6.2.6.	OJT for Creation and Use of GIS Model Systems	122 -
6.2.7.	OJT for Map symbolization	125 -
6.3.	Training in Japan	130 -
6.3.1.	Digitization of existing maps	130 -
6.3.2.	Generation of annotation data	131 -
6.3.3.	Aerial triangulation	132 -
6.3.4.	Introduction to GIS	135 -
6.4.	Workshop	137 -
6.4.1.	Workshop	137 -
6.4.2.	Seminar	139 -
6.5.	Overall evaluation on the Technology Transfer	141 -
CHAPTER 7.	DISSEMINATION OF GEOGRAPHIC INFORMATION AND BUILDIN	GA
	SHARING SYSTEM	143 -
7.1.	Spatial Data Center	144 -
7.1.1.	Systemizing Spatial Data Center	144 -
7.1.2.	Functions of Spatial Data Center	145 -
7.2.	Dissemination of Topographic Data (including GIS Database)	145 -
7.2.1.	Need Appraisal	146 -
7.2.2.	Building Network for Marketing	149 -
7.2.3.	Rough Estimate of Sales by the Enterprise	150 -
7.3.	Data Sharing System	155 -
7.3.1.	Basic Policy of Data Sharing	155 -
7.3.2.	Methodology of Data Sharing	156 -
CHAPTER 8.	ISSUES TO BE CONSIDERED IN FUTURE	159 -
8.1.	Application of Acquired Technology	159 -
8.2.	Promotion of uses of Topographic Data	159 -
8.2.1.	Methodology	159 -
8.2.2.	Organizational Development	160 -
8.3.	Promotion of wider utilization in applying GIS models	160 -
8.4.	Discussion on the possibility of updating the remaining map sheets	163 -
ANNEX A	MAP SPECIFICATIONS	

ANNEX B DETAILS ABOUT GIS MODEL SYSTEMS

LIST OF FIGURES

Figure 1.2.1	Revised Study Area and demarcation of responsibility	6 -
Figure 1.5.1	Aspect of Computer Network	16 -
Figure 3.1.1	Landmarks selected at the existing control points	23 -
Figure 3.1.2	Specifications and installation of aerial signals (landmarks)	24 -
Figure 3.1.3	GPS observation network	26 -
Figure 3.1.4	A sample loop closing error in coordinate computation	27 -
Figure 3.1.5	An example of "point description"	30 -
Figure 3.1.6	GPS observation at one of landmark	31 -
Figure 3.1.7	Leveling along the existing route	32 -
Figure 3.1.8	Existing leveling route with benchmarks	34 -
Figure 3.2.1	Aircraft used for the aerial photography	35 -
Figure 3.2.2	Diagram of aerial photography by GPS Kinematic Method	35 -
Figure 3.2.3	Flight index map	38 -
Figure 3.2.4	Scanning of a roll film by Ultrascan 5000	38 -
Figure 3.2.5	Rotation needed for reversed flight direction	39 -
Figure 3.2.6	Scanned image opened with Adobe Photoshop	39 -
Figure 3.2.7	Scanning process of aerial photographs	40 -
Figure 3.3.1	Process flow of adjustment	41 -
Figure 3.3.2	Allocation of control points in each block	42 -
Figure 3.4.1	The process of generating semi orthphotos	44 -
Figure 3.4.2	Sheet design of mosaicked orthophotos	45 -
Figure 3.4.3	Output files, Geo Tiff, cutting off into the format of newly designed	map
sheet		45 -
Figure 4.1.1	Layout of a Map Sheet with Legends for All Symbols	50 -
Figure 4.2.1	Comparison of Raster Data with Vector Data	52 -
Figure 4.2.2	Drape of planimetric data	53 -
Figure 4.2.3	Area with chronological change	54 -
Figure 4.3.1	Positions of Aerial Photographs used for creating new maps	54 -
Figure 4.3.2	Summit Evolution for stereo digital plotting	56 -
Figure 4.3.3	Digitized Data created by the digital plotting system	57 -
Figure 4.3.4	Sample of Marginal Information	58 -
Figure 4.4.1	Scene in filed verification	59 -
Figure 4.4.2	Scene in preliminary photo-interpretation	60 -
Figure 4.4.3	Scene in conducting field matching	64 -
Figure 4.4.4	Sample of draft map with descriptions about corrections	64 -
Figure 4.5.1	Concept of GIS Data	65 -

Figure 4.5.2	Work Flow of GIS data Creation	66 -
Figure 4.5.3	UML class diagram of GIS database	67 -
Figure 4.5.4	UML model of Transportation Package	67 -
Figure 4.5.5	UML model of Water_System Package	70 -
Figure 4.5.6	UML model of Building Package	73 -
Figure 4.5.7	UML model of Landform Package	76 -
Figure 4.5.8	UML model of Plottage Package	78 -
Figure 4.5.9	UML model of Object Package	81 -
Figure 4.5.10	UML model of Boundary Package	83 -
Figure 5.1.1	Coordinating Committee and its Activities	86 -
Figure 5.2.1	Flow-chart showing Steps in Creating the GIS Model Systems	89 -
Figure 5.3.1	Location and Guide Areas of Each GIS Model	91 -
Figure 5.5.1	Potential Area for Settlement Expansion and Alignment for New	Road
Develop	ment	93 -
Figure 5.5.2	Forest Conservation Status between 1993 and 2005	94 -
Figure 5.5.3	Highly Vulnerable Forest in the Model Area	95 -
Figure 5.5.4	Possible Extension of Tourist Route	96 -
Figure 5.5.5	Potential Land for Agricultural Development	97 -
Figure 5.5.6	Ratio of Students per Teacher in each District of Tbilisi	98 -
Figure 6.2.1	Scene in creating point description	104 -
Figure 6.2.2	Scene in OJT for field verification	104 -
Figure 6.2.3	Scene in OJT for field completion	105 -
Figure 6.2.4	Technology transfer on digital plotting using the digital photogram	metric
system		106 -
Figure 6.2.5	Map sheets adopted for OJT in digital plotting	107 -
Figure 6.2.6	Work Flow of Digital Plotting and Compilation in the OJT	108 -
Figure 6.2.7	Data digitized by ArcGIS	· 111 -
Figure 6.2.8	Technology transfer	- 113 -
Figure 6.2.9	Aspect of CUI and GUI	- 115 -
Figure 6.2.10	Work Flow of Rectification	116 -
Figure 6.2.11	Comparison of Original Raster Data with Rectified Raster Data	· 117 -
Figure 6.2.12	Sample of error correction	- 118 -
Figure 6.2.13	Difference of data structure between Geodatabase and ArcInfo covera	ge
		- 119 -
Figure 6.2.14		
Figure 6.2.15	Line Symbols Created with Simple Functions	128 -
Figure 6.2.16		
Figure 6.2.17	Point Symbol Using the Brush	128 -

Figure 6.2.18	Map Editing 129 -
Figure 6.2.19	A sample of annotation for "Tbilisi" 129 -
Figure 6.3.1	Exercise on the operation of the Illustrator using existing map image data
	- 132 -
Figure 6.3.2	Index map of aerial photos used (\blacktriangle indicates control points and + tie
points)	- 133 -
Figure 6.3.3	Control points and Aerial signal 134 -
Figure 6.3.4	Example of map layout 136 -
Figure 6.3.5	Bird's-eye view created in the training 137 -
Figure 6.4.1	Presentation by the Study Team 140 -
Figure 6.4.2	Participants attended the Seminar 140 -
Figure 7.1.1	Options for Establishing the Spatial Data Center (SDC) 144 -
Figure 7.2.1	Cases of Dissemination of Topographic Data 146 -
Figure 7.2.2	Diagram of a Model Showing the Scheme of Selling Mapping Data 149 -
Figure 7.3.1	Tasks for Building Data Sharing System 155 -
Figure 7.3.2	Concept to help figure out the System Image 156 -
Figure 7.3.3	Ideal Steps for Realization of Data Sharing Systems 157 -

LIST OF TABLES

Table 1.2.1	Revised work volume	7 -
Table 1.2.2	Summary of the Study works in the 1 st year	7 -
Table 1.2.3	Summary of the Study works in the 2 nd year	8 -
Table 1.2.4	Summary of the Study works in the 3 rd year	8 -
Table 1.2.5	Out comes of the Study from the Study	9-
Table 1.5.1	List of the installed equipments	15 -
Table 2.3.1	The list of the OJT staff assigned to each group	19 -
Table 3.1.1	List of GPS coordinates obtained by the computation	28 -
Table 3.1.2	Verification of GPS observation accuracy	- 29 -
Table 3.1.3	List of existing benchmarks	- 33 -
Table 3.3.1	Results of adjustment computation of residual error	42 -
Table 3.3.2	Accuracy standards for standard deviation of residual errors	43 -
Table 3.3.3	Accuracy standards for maximum of residual errors	43 -
Table 4.1.1	Basic structure of symbolization	48 -
Table 4.1.2	Category of geographical names grouped	49 -
Table 4.5.1	List of GIS data for Transportation	67 -
Table 4.5.2	List of GIS data for Water_System	70 -
Table 4.5.3	List of GIS data for Building	-73 -
Table 4.5.4	List of GIS data for Landform	- 76 -
Table 4.5.5	List of GIS data for Plottage	78 -
Table 4.5.6	List of GIS data for Objects	81 -
Table 4.5.7	List of GIS data for Boundaries	83 -
Table 5.1.1	Priority Fields and Corresponding Governmental Organizations	87 -
Table 5.1.2	Coordinating Committee Meetings held during the Project Period and	1 the
Agenda	Thereof	88 -
Table 5.3.1	Model Area and Theme for each GIS Model	90 -
Table 5.5.1	List of Used Major Data in this GIS Model System	92 -
Table 5.5.2	List of Used Major Data in this GIS Model System	94 -
Table 5.5.3	List of Used Major Data in this GIS Model System	95 -
Table 5.5.4	List of Used Major Data in this GIS Model System	96 -
Table 5.5.5	List of Used Major Data in this GIS Model System	97 -
Table 5.5.6	List of Used Major Data in this GIS Model System	98 -
Table 6.2.1	Equipment and Materials Used in the OJT for Digital Plotting 1	107 -
Table 6.2.2	List of ArcInfo command 1	113 -
Table 6.2.3	List of topological rule for polygon feature	119 -
Table 6.2.4	List of topological rule for line feature 1	120 -

Table 6.2.5	List of topological rule for point feature 121	-
Table 6.2.6	Summary of OJTs Conducted Regarding the Creation of GIS Models 122	-
Table 6.2.7	Functions of the Tools 127	-
Table 6.3.1	Training items and technology transfer intended 130	-
Table 6.3.2	Data used, etc 132 -	-
Table 6.3.3	Training items and technology transfers intended 133	-
Table 6.4.1	Program of the Workshop 138	-
Table 6.4.2	Program of the Seminar 139	-
Table 6.5.1	OJT for Ground Control Point Survey 141	-
Table 6.5.2	OJT for Field Verification and Completion 142	-
Table 6.5.3	Map Symbolization 142	-
Table 7.2.1	Result of User's Stance on the Usage of Map Data 148	-
Table 7.2.2	Pricing of Data Products 150	-
Table 7.2.3	Prospected Demand Estimated under Certain Assumption for Printed Map	s
(Deman	ud Case – 1) 152 -	-
Table 7.2.4	Prospected Demand Estimated under Certain Assumption for Printed Map	s
(Deman	ud Case – 2) 152 -	-
Table 7.2.5	Prospected Demand Estimated under Certain Assumption for Printed Map	s
(Deman	ud Case – 3) 152 -	-
Table 7.2.6	Comparison of Sales Amount in 3 Cases 153	-
Table 7.2.7	Prospected Demand Estimated under Certain Assumption for Printed Map	
	- 153 -	-
Table 7.2.8	Comparison of Sales Amount in 3 Cases of Unit Price 154	-

LIST OF ABBREVIATIONS

CAD	Computer-Aided Design	
DEM	Digital Elevation Model	
DGC	Department of Geodesy and Cartography	
DTM	Digital Terrain Model	
EPNR	Environment Protection and Natural Resources	
GCGS	Geology-Cartography and Geodesy Services	
GCP	Ground Control Point	
GIS	Geographic Information System	
GPS	Global Positioning System	
JICA	Japan International Cooperation Agency	
MSL	Mean See level	
MST	Multi-sensor Triangulation	
NGO	Non-Governmental Organization	
OJT	On-the-Job Training	
RMS	Root Mean Square	
SGC	Service of Geodesy and Cartography	
SIA	Spatial Information Agency	
TIN	Triangulated Irregular Network	
UML	Unified Modeling Language	
UNDP	United Nations Development Program	
UTM	Universal Transverse Mercator	
WGS 84	World Geodetic System 1984	

Chapter 1. Introduction

1.1. Background of the Study

1.1.1. Background and progress of the Study

Necessity for the Project

Georgia is currently carrying forward national development and democratization, and the country is in absolute need for foreign assistance in shifting to a market-based economy, developing social infrastructure and environmental protection, supporting refugees, etc. through land reform. More concretely, accurate ascertainment of geographical information which underlies the national land is among top priority issues. However, in the aspect of national basic map, there has been no revision conducted so as to keep the topographic maps up to date since 1980s during the former Soviet era, and the obsolete geographical information has been one of the hindrances to planning and formation of national development programs and smooth implementation of relevant projects.

Therefore, it is a common understanding that immediate construction of national spatial basic data (geographical information) reflecting the most recent situation and digitization of map data for easy use are vital for smooth realization of all sorts of national development plans. Accordingly, the government of Georgia submitted an official request to the government of Japan in January 2004, which has successfully led to the implementation of the Project.

Progress of the Study

This Project started in April, 2005, in response to the request of the Government of Georgia to the Government of Japan. The Study Team finished the aerial photography and ground control point surveys in July 2005. The field verification was carried out in October and November 2006. In the course of the Project implementation in the 1st year, the organizational reforms took place by the Government of Georgia, and accordingly affected all spheres of administration including the field of geodesy and cartography. As a result, the number of staff members of the former Geodesy and Cartography was reduced to six only, and the name of the organization was changed from DGC (Department of Geodesy and Cartography) to SGC (Service of Geodesy and Cartography). This new organization, as the counterpart of this Project, consisted of six (6) persons selected through an examination held by the ministry. They were assigned to take charge of mainly

execution of the national mapping program, cadastral mapping and so on, as well as inviting tenders for mapping works.

The Study Team consulted Japan International Cooperation Agency (JICA), the official agency responsible for the implementation of the technical international cooperation program in Japan, concerning this restructuring, and sought for a countermeasure involving a dispatch of the representative of JICA London office to Georgia to investigate the situation of the SGC in due way. As a result of discussion with the SGC, the Study Team and JICA reached consensus that the implementation of the work through On–the-Job Training (hereinafter referred to as the OJT), which had been expected in January 2006, should be postponed to the next stage, owing to the lack of technically-eligible personnel in the SGC.

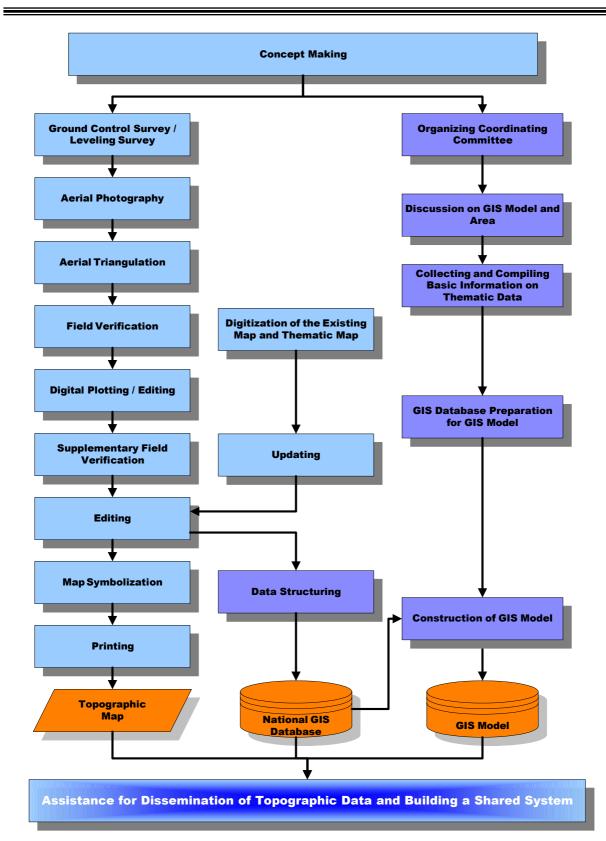
Meanwhile, the ministry newly established the Spatial Information Agency (hereinafter referred to as the Agency) in January 2006, to share the works partly to support the SGC in the technical aspect. The ministry and the Agency pledged to address the OJT in cooperation with the SGC, and conducted interviews in February 2006 to choose qualified personnel who took part in the OJT from among nearly 50 candidates. Consequently, 10 eligible staff members enrolled in the Agency.

Restart of the Study and amendments to the volume

The work in the 2^{nd} year (2006) was thus undertaken by the new counterpart body comprising of staff of both the SGC and the Agency after the JICA Project Consultation held from 31^{st} July to 3^{rd} August, 2006.

In this Project Consultation necessary information on the possibility of project implementation was given out by the SGC to judge whether space and human resources for conducting the OJT were duly prepared. The JICA missions for the consultation confirmed all the necessary conditions and approved the restart of the Study.

Meantime the SGC was reorganized again by affiliating with the Service of Geology and changed the name as the Geology-Cartography and Geodesy Services (GCGS). The function of the former SGC, however, remains unchanged in terms of implementing the Study and has been taken over in conducting map production and maintaining the related works.


1.1.2. Objectives of the Study

In this study work, the items noted below were carried out for the purpose of providing technical assistance in making available the latest geographic information that would be helpful in formulating mid- and long-term national development planning in Georgia and putting those data to help create GIS model systems, disseminating geographical information, including GIS databases, and building a system for sharing that information and promoting wider use of the digital map data.

- Provision of digital maps (1:50,000)
- Creation of GIS databases in priority fields of national development
- Creation of GIS model systems using the above databases
- Technology transfer relating to these works
- Dissemination of geographic information and assistance in building a shared system

The following is a conceptual diagram showing a work flow and major items of the works.

1.2. Outline of the Study

1.2.1. Area targeted in the Study

At the beginning of this Project the areas to be mapped by the Study included the regions where industries key to state development are located and populations are concentrated, as well as the regions around that area, covering approximately 30,000km² of land (out of 69,700Km² national territory). The new Study Area is shown in Figure 1.2.1 below.

However, JICA and the Georgian sides agreed that the area of mapping production by OJT would change from 9,000km² to approximately 3,000km², because the production capacity of the Georgian side had been reduced due to the reorganization of the former DGC.

In accordance with the decrease in OJT area, finally the Study covered an area of approximately 24,000km².

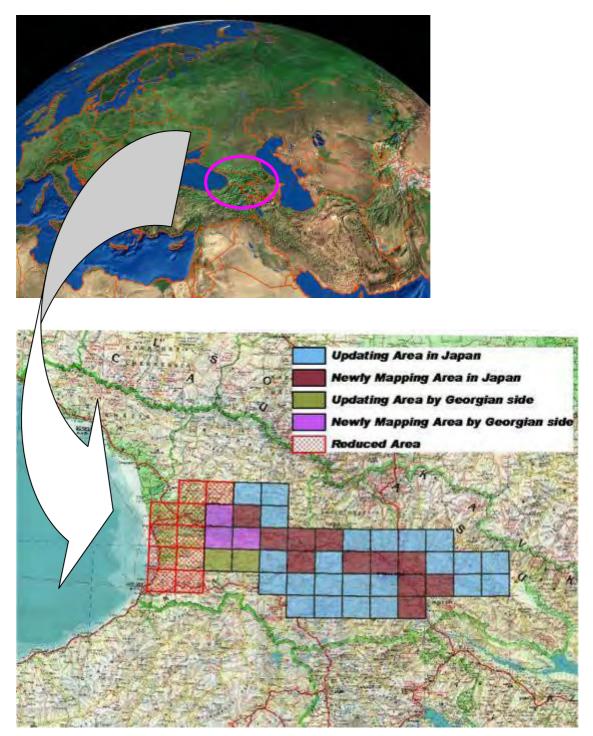


Figure 1.2.1 Revised Study Area and demarcation of responsibility

Table 1.2	.1 Revised work	k volume
Work Item	Portion	Area (km ²)
Newly Mapping	Japan	6,750
	Georgia(OJT)	1,840
Updating	Japan	14,130
	Georgia(OJT)	1,230
Total Area		Approx. 24,000

1.2.2. Progress of the work in each year

(1) The work done in the 1^{st} year

The following table summarizes the details and volume of the work in the 1st year.

Item	Quantity and Area	Description
Discussion about	Overall area	Decision on survey standards, symbolization
map symbolization		and specifications.
		Discussion with the counterpart based on
		Georgia's existing map symbols.
Aerial photography	Targeted Area:	Scale: 1:40,000.
	30,000 km ²	Panchromatic film (BW).
		Lateral overlap:60±5%.
		Adjacent overlap:30±5%.
Creation of	196 scenes covering the	For 49sheets.
Orthophotos	area of 30,000 km ²	
Digital mapping	Existing maps for 14,130	Plotting scale : 1:50,000.
(For updating)	km ² was vectorized in	The vectorization of existing maps and
	Japan.	digitization for feature updating were done in
		2 nd year.
Digital mapping	3,500 km ² of new maps	Producing new topographic maps using the
(Newly plotting)	were plotted in Japan.	digital plotter for the rest of updating areas.
Field Verification	Area targeted for new maps	Preliminary photo-interpretation.
		Verification and checking of geographic
		features.
Creation of GIS	Entire area of the mapping	Design of GIS database.
databases		

Table 1.2.2Summary of the Study works in the 1st year

GIS Model Systems	Selection of GIS themes and	Preparation of basic data and digitalization of
	model areas.	thematic maps.

(2) The work done in the 2^{nd} year

The following table summarizes the details and volume of the work in the 2^{nd} year.

Item	Area Targeted	Description
Digital mapping	Feature updating was	Total updated area 15,360km ² .
(Updating)	done for 14,130 km ² in	The area for the OJT was decreased due to the
	Japan	reform of the counterpart.
	* The rest of 1,230 km ² was	
	done by the OJT	
Digital mapping	6,750 km ² of new maps	Producing new topographic maps using the
(Newly plotting)	were plotted in Japan.	digital plotter for the rest of updating areas.
	* The rest of 1,840 km ² was	
	done by the OJT	
Map symbolization	Maps covering 10,500 km ²	Symbolizing topographic data using
	were symbolized	Illustrator.
Creation of GIS	Area covering 24,000 km ²	Design and creation of GIS data from digital
database		topographic data.
Creation of GIS	For 6 model areas	Generation and digitization of basic data
Model Systems		including thematic maps collected from each
		member of the Coordinating Committee.
Field Verification	Area targeted for updating	Verification and checking of ground features.
	map sheets	

Table 1.2.3Summary of the Study works in the 2nd year

(3) The work done in the 3^{rd} year

The following table summarizes the details and volume of the work in the 3rd year.

Table 1.2.4Summary of the Study works in the 3rd year

Item	Area Targeted	Description
Compilation of	21,000 km ² was done in	Editing the digital plotting data.
digital topographic	Japan.	
data	* The rest of 3,000 km ² was	

	done through the OJT									
Map symbolization	Maps covering the rest of	Symbolizing topographic data using								
	10,500 km^2 were	Illustrator.								
	symbolized									
Field completion	Area targeted for all map	Confirmation and checking of geographica								
	sheets(24,000 km ²)	names and ground features.								
Creation of GIS	Area covering 24,000 km ²	Technical transfer of the creation of GIS								
database		database to the counterpart.								
Creation of GIS	For 6 model areas	Construction of GIS Model Systems and								
Model Systems		Technical Transfer through the work shop and								
		feedback from the task force members.								

1.2.3. Outcomes of the Study through out 3 years

The outcomes of the works as final results are as follows:

Table 1.2.5Out	comes of the Study from t	he Study
Item	Quantity	Remarks
Negative films of aerial photographs	1 set	Covering 30,000 km ²
Scanned images of aerial photographs	1 set	
Contact prints of aerial photographs	1 set	Panchromatic films
Flight index sheet of aerial photographs	1 set	
Result of field survey	1 set	Ground Control Points
Result of aerial triangulation	2 blocks	1,441 models
Films for printing maps	1 set	Scale: 1:50,000
Digital data file of topographic maps	5 sets	
Topographic maps	500 copies	Scale: 1:50,000
		250 copies in English
		250 copies in Georgian
GIS model system	1 set	6 models for
		Coordinating
		Committee
Inception report	10 copies of English	
	10 copies of Russian	
Interim report	10 copies of English	As per request of the

Table 1.2.5Out comes of the Study from the Study

Chapter **1** Introduction

	10 copies of Georgian	counterpart, Report in Georgian was prepared instead of Russian
Progress report	10 copies of English	
	10 copies of Georgian	
Draft final report : Main report	10 copies of English	
	10 copies of Georgian	
: Summary	10 copies of English	
	10 copies of Georgian	
Final report : Main report	10 copies of English	
	10 copies of Georgian	
: Summary	10 copies of English	
	10 copies of Georgian	

1.3. Implementation schedule

The following table shows each process of the Study.

					2005						2006						2006						2007)8
							year												l year												3rd y						
	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	5	7	8	9	10	11	12	1	2	3
[Work Items] .Work in Georgia																																					
[Aerial Photography] [GPSSurvey, Leveling, Pricking] [Digitization of existing maps] [Aerial Triangulation] [Field verification]				<u></u>																																	
[Generation of DEM and coutours] [Digital plotting and compilation] [Map symbolization]						5.: 5::																															
[Generation of GIS database]																																					
[Generation of GIS model system] [Field completion] [Supplementary digital compilation]																										E						::::::	::::::	::::			
[Comfirmation of data for printing] [Creation of film for printing] [Creation of data file] [Map printing] [Assistance in establishing a GIS data distribution and sharing system] [Seminar and Workshop]																																	E				1
[Report] [Inseption report] [Interim report] [Progress report] [Draft final report] [Final report]																																					

Chapter 1 Introduction

1.4. Members of the Study Team

The members of the Study Team and their dispatch from Japan to Georgia for the Study are as follows;

1.4.1. The 1st year

TITLE	NAME	STUDY PERIOD
Team Leader	Fujio ITO	25 Apr 14 May. 2005
		28 Jan. – 10 Feb. 2006
Project Adviser	Hisashi MORI	04 Apr 06 Jun. 2005
Supervisor for aerial Photography	Timo JARVINEN	28 Apr. – 26 Jul. 2005
Supervisor for control Survey	Yutaka NAKADA	27 Apr. – 24 Jun. 2005
Supervisor for field verification 1	Sadao MATSUMOTO	27 Aug. – 09 Nov. 2005
Supervisor for field verification 2	Toshinori OTSU	27 Aug. – 09 Nov. 2005
Supervisor for revision of existing	Akihiro SUGITA	27 Apr. – 24 Jun. 2005
map		
Supervisor for construction GIS model	Hidetoshi KAKIUCHI	27 Apr 15 May 2005
system		
Supervisor for map symbolization	Takashi SHIMONO	27 Apr. – 15 May 2005
Interpreter	Makiko UEHARA	27 Apr. – 24 Jun. 2005
Coordinator	Kensuke KIMURA	27 Apr. – 01 Jun. 2005
		27 Aug 18 Sep. 2005

1.4.2. The 2nd year

TITLE	NAME	STUDY PERIOD
Deputy Leader	Hisashi MORI	29 Jul. – 23 Aug. 2006
		22 Jan. – 20 Feb. 2007
Supervisor for digital plotting and	Minori ONAKA	12 Aug 25 Sep. 2006
compilation		22 Jan 07 Mar. 2007
Supervisor for GIS Database	Awadh Kishor SAH	12 Aug 25 Sep. 2006
		22 Jan 07 Mar. 2007
Supervisor for construction GIS model	Akihiro SUGITA	12 Aug 25 Sep. 2006
system		22 Jan 07 Mar. 2007
Supervisor for map symbolization	Toshinori OTSU	12 Aug 25 Sep. 2006
		22 Jan 07 Mar. 2007
Coordinator	Kensuke KIMURA	12 Aug 10 Sep. 2006
		22 Jan. – 20 Feb. 2007

Chapter 1 Introduction

TITLE	NAME	STUDY PERIOD
Team Leader	Hisashi MORI	20 May - 08 Jun. 2007
		31 Jan. – 29 Feb. 2008
Project adviser	Hisashi MORI	24 Oct 20 Nov. 2007
Supervisor for Supplementary Field	Sadao MATSUMOTO	20 May – 27 Jul. 2007
Verification 1		
Supervisor for Supplementary Field	Akihiro SUGITA	20 May – 27 Jul. 2007
Verification 2		
Supervisor for GIS Database	Awadh Kishor SAH	16 Jan. – 29 Feb. 2008
Supervisor for construction GIS model	Akihiro SUGITA	24 Oct 23 Dec. 2007
system		16 Jan. – 29 Feb. 2008
Supervisor for map symbolization	Toshinori OTSU	24 Oct 23 Dec. 2007
		16 Jan. – 29 Feb. 2008
Coordinator	Kensuke KIMURA	20 May – 03 Jun. 2007
		24 Oct 21 Nov. 2007
		31 Jan. – 29 Feb. 2008

1.4.3. The 3rd year

						2005										20	06											20	007							2008
							1st Y	Year				2nd Year										3rd	Year													
Position	Name	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2
Leader	Fujio ITO																																			
	Hisashi MORI																																			
Deputy Leader	Hisashi MORI																																			
Project Adviser	Hisashi MORI																																			
	Timo JARVINEN																																			
GPS Survey	Yutaka NAKADA																																			
- 101d Varitiontion 1	Sadao MATSUMOTO																																			
Field Varification 2	Toshinori OTSU																																			
	Akihiro SUGITA																																			
Revision of	Akihiro SUGITA																																			
Digital Platting and	Minori ONAKA																																			
Preparation of GIS Database	Awadh Kishor SAH																																			
	Takashi SHIMONO	l																																		
	Toshinori OTSU																																			
Construction GIS Model System	Hidetoshi KAKIUCHI																																			
	Akihiro SUGITA																																			
nterpreter	Makiko UEHARA																																			
	Kensuke KIMURA																																			

Chapter 1 Introduction

1.5. Equipments of the Study

The equipments for the digital mapping and GIS were newly introduced into the counterpart office and the systems were used for the OJT.

The systems were constructed a system network, as shown in Figure 1.5.1.

The network system consists of 14 desktop computers, 4 laptop computers, two A0-size color plotter, an A0-size roll-type color scanner, an A3-size laser color printer, digital photogrammetric software, GIS software and map symbolization software.

Table 1.5.1	List of the installed equipments	
Item	Model	QTY
Scanner	HP DesignJet 4200	1
Printer	HP Color laserJet 5550n	1
Printer	HP DesignJet 4000ps	2
	HP Officejet 7313	1
Workstation (Desktop Computer)	HP xw8200	2
	HP xw4300	4
	HP dc7600	6
	HP dx2000	2
Laptop Computer	Fujitsu Siemens Celsius H230	2
	HP nx7010	2
GPS	Leica GPS System 1200	4
Digital Level	Leica Digital Level Sprinter100	4
Total Station	Leica TC805	2
SOFTWARE	Arc View 9.1 single use	6
	Arc View 3.3	1
	Arc Info 9.1	1
	Spatial Analyst	1
	3D Analyst	1
	Network Analyst	1
	ERDAS IMAGINE 8.7 Professional	1
	Virtual GIS	1
	Leica LPS DTM	1
	Leica LPS PRO600	1
	Autodesk CAD	2

Table 1.5.1List of the installed equipments

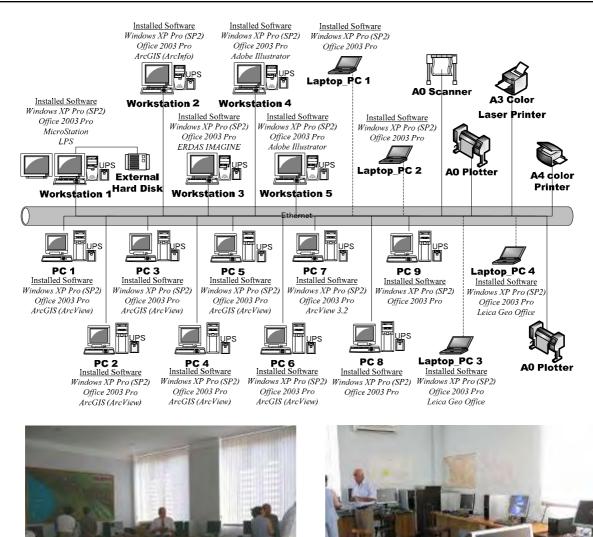


Figure 1.5.1 Aspect of Computer Network

Chapter 2. Summary of the Study Work Over the Past 3 Years

200	5/04/06 - 2006/03/31	2006/06/01 - 2007/03/30	2007/05/10 - 2008/03/28
	1st Year	2nd Year	3rd Year
	2006/01/01	2007/01/01	2008/01/01
005/04/01			2008/0

2.1. The works in Georgia (2005)

The work in Georgia for fiscal year 2005 was two-phased: the 1st work took place between April and November 2005 and the second work from January to March, 2006. The following works were carried out.

- Discussion on map symbolization: WGS84 and the UTM (<u>Universal</u> <u>Transverse Mercator</u>) coordinates were chosen as the survey standards by consultation with the counterpart. Further, 154 items were newly adopted as map symbols for the new maps to be created.
- Aerial photography: 1,447 aerial photos of 73 courses were taken with a scale of 1:40,000 over the Study Area of 30,000km².
- Control point survey: 33 ground control points were newly set up for GPS observation. Leveling was also carried out in order to obtain data for height correction in aerial triangulation.
- Field verification: Using the orthophotographs mentioned above, identification of geographical features and description items on maps and verification with photo images were conducted for digitization work to be held in Japan.
- Operation of and advice on the coordinating committee: In order to facilitate effective use of geographic information, the Study Team provided support in gathering organizations that use digital topographic data and setting up the coordinating committee. Working groups to promote use and utilization of the data for GIS model systems and task forces, composed of experts, were also established under the coordinating committee and three strategy meetings were held.

2.2. The works in Japan (2005)

The following works were conducted in Japan in parallel with the work in Georgia.

- Aerial triangulation: Digital aerial triangulation was conducted using GCP data and coordinate data of existing benchmarks obtained in Georgia. The results of adjustment calculation were accurate at an appropriate level and they were utilized in the digital mapping of new map.
- Generation of DEM and orthophotographs: Orthophotographs with a scale of 1:20,000 were generated based on the aerial triangulation results and digital images for easy field verification. 196 scenes cover the entire Study Area.
- Acquisition of existing map data (contours, waters, etc.): Existing data on contours, waters and forests were purchased as existing topographic data in the ArcGIS format with approval of the DGC. The data were checked, corrected and used as digital plotting data.
- Vectorization of existing topographic map data: Topographic data of basic map information items, such as roads, vegetation, railways, transmission wire, etc., were digitized based on the existing maps.
- Digital plotting and compilation of new maps: An area of 3,500m² of the Study Area was newly digitized with the digital plotter in the work in Japan for the 1st year.
- Training of counterparts: Two counterpart personnel visited Japan between November 14th, 2005 and December 9th, 2005 to participate in the technology transfer sessions on aerial triangulation, vectorization of existing map data, generation of annotation data, and an introduction to GIS. These sessions were held in Pasco Corporation.

2.3. The works in Georgia (2006)

The work in Georgia for the 2^{nd} year was carried out under the reformed new organization that had taken over the basic policy that had been adopted preliminary. The member of counterpart was grouped into 3 groups on consideration with ability and experience of each staff to achieve a most optimum effect by the technology transfer.

The following is the list of counterpart staff who took part in the OJT works.

#	Name	Organization	Field
#		-	
	Sasha Avetisov	GCGS	Supervisor on plotting,
			symbolization and field
			verification
1	Zaza Mdzeluri	Agency	Plotting , GIS, Field
			verification
			Responsible for IT
2	Otar Demetrashivili	Agency	Plotting, GIS, Field
			verification
3	Maka Devidze	Agency	Plotting, GIS
4	Bela Chalauri	Agency	Plotting, Symbolization
5	Galina Matchabeli	GCGS	Plotting, Annotation
6	Shalva Rukhadze	GCGS	Symbolization, Annotation,
			Field verification
7	Irakli Gotsadze	Agency	Symbolization, Field
			verification
8	Tedo Gorgozde	Agency	Symbolization, Annotation,
			Field verification
9	Giorgi Peradze	Agency	Symbolization, Field
			verification
10	Khatuna Alasania	GCGS	Symbolization, Annotation
11	Nino Khidirbegishvili	GCGS	GIS Data creation,
			symbolization, Task Force
			meeting organizer
12	Tamar Onashvili	GCGS	GIS thematic map creation
13	Mariam Gigauri	Agency	GIS thematic map creation,
			database creation
(14)*	David Svanadze	Agency	GIS thematic map creation,
			database creation
(15)*	Sopio Khorbaladze	Agency	GIS thematic map creation,
			database creation

Agency: Spatial Information Center

*: They left the agency in midstream.

The following works were carried out in Georgia.

- OJT for aerial triangulation, digital plotting and compilation: Technology on practical work of digital mapping of new maps was transferred using the newly introduced digital photo survey system.
- OJT for updating of the existing maps: Technology on the updating techniques was transferred using the newly introduced digitization and compilation equipment.
- OJT for establishment of GIS database: Technology on the establishment methodology and techniques was transferred using the newly introduced GIS equipment.
- OJT for map symbolization: Technology on the symbolizing techniques was transferred using the newly introduced symbolization equipment.
- OJT for preparation of GIS model systems: Technology on the establishment methodology and techniques was transferred using the newly introduced GIS equipment.
 - a) Although the former DGC was transformed into new body of organization, a Coordinating Committee that had been established in the 1st year continued to sustain the functions of playing a central role in making the best use of geographic information for facilitating the national-level development programs in each field.
 - b) A meeting of the Coordinating Committee was held during the 1st work of Georgia where upon the Study Team confirmed the continuity of the members and their activities.
 - c) Through repeated discussions with the members of individual taskforces under the coordinating committee, the themes and topics that each organization is willing to prioritize were narrowed down and also the GIS model areas best suited to such themes were selected finally in 6 areas.
 - d) Creation of data for GIS Model System was realized. Considering the data source, basically two types of GIS data were included for the GIS Models;
 - A. Those from Topographic Maps so prepared under this Project, such as contour, road, rivers, vegetation, etc.
 - B. Those that collected from the related organizations such as soil, forest including its inventory, etc.
- Discussion of progress report was made at the end of the 2nd year's work for the all staff including Agency personnel.

2.4. The works in Japan (2006)

The following works were conducted in Japan in parallel with the work in Georgia.

- Digital plotting and compilation of new maps: An area of 6,750m² of the Study Area was newly digitized with the digital plotter.
- Updating of the existing maps: An area of 14,130km² of the Study Area was updated with the digital plotter, CAD and GIS software.
- Map symbolization: An area of 10,500km² of the Study Area was symbolized with graphic software while the rest of 10,500km² was done by Georgian side as the OJT.

2.5. The works in Georgia (2007)

The following works were conducted in Georgia in parallel with the work in Japan.

- The field completion was conducted to verify the geographical features, names and description items that were plotted on the draft maps prepared newly in Japan. The field verifications were made by the staff of the SGC and Agency as OJT under supervision of the Study Team. Four (4) groups were formed to carry out the work.
- OJT on construction and analysis of GIS databases and map symbolization were implemented as a means of technology transfer, targeting the counterpart (SGC), by both preparing GIS database for five map sheets and preparing five digital map data.
- For the purpose of extensive use of topographic data as well as GIS database, a series of meetings with the SGC was held to exchange the opinions about a shared system and centralized administration of geographic data, and to discuss and sort out future visions and recommendations thereof.
- Confirmation of printed maps: The Study Team discussed the point of inspection on the map contents with the SGC, and the SGC went over all the map sheets to verify each of them for necessary corrections prior to the creation of printing films.

2.6. The works in Japan (2007)

The following works were conducted in Japan after the field completion.

• Using the newly-plotted and compiled digital maps incorporated with the corrected information from the field completion, which was done prior to this work component, supplemental editing of final map data was carried out for 34

map sheets, equivalent to the mapping area of 21,000km².

- Based on the edited data obtained through the process of supplemental compilation, the structuralization of digital map data to prepare GIS database was carried out in accordance with the specifications discussed in the work in Georgia during the 1st year.
- Development of GIS model systems: GIS models were elaborately created in Japan, using 1:50,000 topographic basic data as well as the data collected and prepared as a database by cooperative participation of the parties concerned in Georgia. The models have resulted in covering the following 6 fields.
 - 1. Urban development
 - 2. Forest management
 - 3. Preservation of natural resources
 - 4. Agricultural Land Use
 - 5. Development of Tourism
 - 6. Educational facility information
- Preparation of printing films :

After the draft maps verified by the SGC in detail and corrected finally on account of authorized proof, printing films for each color plate were created using the Image Setter in Japan.

• The digital data for the 1:50,000 topographic maps created during the third Work in Japan were stored in DVD.

2.7. The works in Georgia (2008)

- Using the printing films created during the fore mentioned work in Japan, 1:50,000 topographic maps were successfully printed by a local subcontractor.
- Seminars and workshops were organized for the purposes of promoting the wider use of GIS databases and digital topographic data and improving the capacity of users in related fields. Not only the parties concerned in this field but also press people were invited so as to leverage such an opportunity to spread the knowledge of the products from the Project.
- The Study Team prepared the draft of final report for achievement throughout the 3 years. The explanation for the contents of the report was given to the counterpart and discussion on the results was also made.