THE STUDY ON
 MONITORING AND EARLY WARNING SYSTEM FOR LANDSLIDES AND FLOODS
 IN SELECTED AREAS IN THE CAPITAL DISTRICT OF BOGOTÁ AND SOACHA MUNICIPALITY IN THE REPUBLIC OF COLOMBIA

FINAL REPORT
VOLUME 4 DATA BOOK 3
TEMPORARY WORKS AND COMMUNITY WORKSHOP

MARCH 2008

JAPAN INTERNATIONAL COOPERATION AGENCY

> PACIFIC CONSULTANTS INTERNATIONAL OYO INTERNATIONAL CORPORATION

THE STUDY ON
 MONITORING AND EARLY WARNING SYSTEM FOR LANDSLIDES AND FLOODS
 IN SELECTED AREAS IN THE CAPITAL DISTRICT OF BOGOTÁ AND SOACHA MUNICIPALITY IN THE REPUBLIC OF COLOMBIA

FINAL REPORT
VOLUME 4 DATA BOOK 3
TEMPORARY WORKS AND COMMUNITY WORKSHOP

MARCH 2008

JAPAN INTERNATIONAL COOPERATION AGENCY

PACIFIC CONSULTANTS INTERNATIONAL

 OYO INTERNATIONAL CORPORATION
CONTENTS OF DATA BOOK 3 TEMPORARY WORKS AND COMMUNITY WORKSHOP

D3.1 Stereo Pictures of Steep Slope in DIVINO NINO1 Location of the Stereo Pictures
2 Location of the Detected Rocks on the Slope
D3.2 STABILITY ANALYSIS OF THE TEMPORARY PROTECTION WALL
1 General
2 Method of the Stability Analysis
3 Stability Analysis of the Temporary Protection Wall (Gabion Wall)
D3.3 DRAWINGS OF THE TEMPORARY WORKS
1 Location Map of the Project
2 General Plan of the Project
3 Temporary Protection Wall
4 Installation of the Temporary Protection Wall
5 Installation of the Temporary Protection Wall
6 Drainage Pit, Sign Board and Conventional Channel
D3.4 PROCEEDINGS OF COMMUNITY WORKSHOP
1 Landslide
2 Flood
3 Seminars

D3.1 STEREO PICTURES
 OF STEEP SLOPE IN DIVINO NINO

LOCATION OF THE RESIDENTIAL BLOCKS IN FRONT OF THE SLOPE

LOCATION OF PHOTOS (LEFT SIDE)

LOCATION OF PHOTOS (RIGHT SIDE)

D3.2 STABILITY ANALYSIS OF THE TEMPORARY PROTECTION WALL

STABILITY ANALYSIS OF THE TEMPORARY PROTECTION WALL

1. General

The gabion wall was recommended as a temporary protection wall for small-scale falling rock from the slope. And the wall is installed after relocation program including the demolition works of existing houses in the emergency zone in Divino Nino area.

As to the material, gabion net of 1.0 m (width) $\times 1.0 \mathrm{~m}$ (height) $\times 4.0 \mathrm{~m}$ (length) will be used due to easy procurement in the area. According to the bouncing height of falling rocks in empirical knowledge and the rock size (D_{100}), the wall consisted in three (3) layers of gabion were required as shown in Figure 1-1. In order to minimize transportation cost of the debris produced in the demolition works, the debris which is available for construction material is utilized to gabion block " g 02 " located in center of the wall and sand mat behind of the wall.

Figure 1-1 Dimensions of the Gabion Wall

2. Method of Stability Analysis

2.1 Present Conditions of the Slope

There are nine (9) residential blocks in the emergency zone in Divino Nino area. From the topographic survey conducted in December 2006 to confirm the slope conditions behind of the residential blocks, the slope angles and height varied from 39 to 75 degrees and 7 to 36 m respectively as shown in Table 2-1.

Table 2- 1
Conditions of the Slope

| No. Perfiles | No.1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 | No.9 | No. 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. Residential Block | 9 | 8 | 7 | 6 | 5 | 4 | 3 | $2 \& 3$ | 2 | 1 |
| Slope Height: H | 7.2 | 8.6 | 22.0 | 18.9 | 10.6 | 29.1 | 33.8 | 35.9 | 16.7 | 14.6 |
| Slope Angle: Θ | 53.0° | 39.2° | 65.7° | 58.2° | 56.5° | 68.4° | 66.6° | 72.3° | 71.5° | 75.1° |

(Source: JICA Study Team)
As to the rocks on the slope behind the residential blocks, 271 rocks in total which may fall in the future were confirmed using the stereo pictures prepared by the Study Team. In the measurement of existing rockfalls, measured existing rocks were converted to the spherical form using formula 2.1.1 and following size distribution of rock are given.
$W=\gamma \cdot \pi \cdot D^{3} / 6$
Where, $\quad W$: Mass of the material $(\mathrm{kN}), \gamma$: Specific mass of the material $\left(\mathrm{kN} / \mathrm{m}^{3}\right), \pi$: Ratio of the circumference of a circle to its diameter (m), D: Diameter of material (m)

Distribution	Diameter (cm)
D_{50}	20
D_{60}	25
D_{70}	35
D_{80}	40
D_{90}	80
D_{100}	175

Figure 2-1 Size Distribution of the Existing Rockfalls

2.2 Method of Stability Analysis of the Temporary Protection Wall

(1) Concept of the Stability Analysis (Resistible Capacity of the Temporary Protection Wall)

The force of a falling rock which menaces the stability of protection wall is expressed by the multiplication of rock mass (m) and falling velocity $\left(V_{0}\right)$.

The velocity of a falling rock to be applied for the wall stability analysis is controlled by slope height as following formula 2.3.1. And the rotating velocity of the wall after receiving the force of a falling rock is estimated using velocity $\left(V_{0}\right)$ as shown in the formula 2.3.2.

The velocity $\left(V_{0}\right)$ by this equation is materialized on the assumption that rocks fall directory to the slope toe and the slope conditions of 1) roughness of the slope surface, 2) protuberances on the slope and slope
angles are not considered.

$$
V_{0}=\sqrt{2 \cdot g \cdot H}
$$

Where, $\quad V_{0}$: Falling velocity of the rocks $(\mathrm{m} / \mathrm{sec})$, g : Gravitational acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$, H: Slope height (m)
$V=\frac{2 \cdot m^{\prime}}{m^{\prime}+\alpha^{\prime} \cdot m^{\prime}} \cdot V_{0}$
Where, V : Rotation velocity of the wall ($\mathrm{m} / \mathrm{sec}$), m ': Weight of the wall (ton), α ': coefficient of the wall form and the arm length from the center of foundation spring, V_{0} : Falling velocity of the rocks ($\mathrm{m} / \mathrm{sec}$)

As shown in Table 2-2, the movement of a falling rock on the slope is controlled by its slope angles, and the actual falling velocity of rock should be reduced through the bouncing and spin due to the slope conditions. Even if the slope height which increases the falling velocity becomes higher, the falling velocity does not always increase in proportion to its slope height due to slope conditions. Therefore the velocity estimated by this equation is overestimated for the temporary protection wall in the viewpoint of its objective.

Table 2-2 Falling Condition of the Rocks according to the Slope Angles

Slope Angles θ	Falling condition of Rocks	Falling Conditions by the slope angles
$75^{\circ}<\theta$	The rocks tend to stay close to the face and land near the toe of the slope.	
$55^{\circ}<\theta<75^{\circ}$	The rocks tend to bounce and spin, with result that they can land a considerable distance from the toe and a wide ditch is required.	
$40^{\circ}<\theta<55^{\circ}$	The rocks will tend to roll down the face and into the ditch and a steep outer face is required to prevent them from rolling out.	

(Source: Landslides Investigation and Mitigation Special Report 247, Transportation Research Board National Research Council, National Academy Press Washington, D.C. 1996)

Since the slope conditions can not be considered to the analysis of falling velocity, it is not suitable for the temporary protection wall to carry out the stability analysis of the wall based on the targeted rock size and slope height. Therefore the resistible capacity of the temporary protection wall is evaluated using several rock size and slope height.

(2) Method of Stability Analysis

As mentioned above, a) direct colliding condition as shown in Figure 2-2 is selected for the stability
analysis. Furthermore the function of sand-mat installed behind the wall is not considered.

a) Direct Colliding

b) Indirect Colliding-1

c) Indirect Colliding-2

Figure 2-2
Colliding Conditions of a Falling Rock
The gabion wall belongs to a flexible body which deforms according to the conditions of the foundation, In this design works, assuming that the gabion wall is a rigid body as shown in Figure 2-3, the model for analysis is stated as follows.

- the protection wall is assumed a rigid body supported by the elastic foundation consisted of 1) share and 2) rotation spring
- the kinetic energy produced by a falling rock should be transmitted to the wall body
- the wall intends to move and rotate until that the transmitted kinetic energy becomes equivalent to the deformation energy produced by an elastic response of its foundation
- the stability of the wall is secured when the deformation energy produced by an elastic response of its foundation is less than the possible absorbing energy determined by admissible displacement of the wall.

Figure 2-3 Structural Model of the Temporary Protection Wall
The conditions for the stability analysis are described as follows.
i) One (1) falling rock which collides to the wall is considered for the stability analysis.
ii) Effective length of the wall for the wall stabilization is considered four (4) times of wall height $(4 \mathrm{H})$. If the wall length is shorter than 4 H , actual wall length should be considered.
iii) Force of a falling rock acts horizontally to the wall
iv) Height of the wall from the ground where a falling rock collides is considered design bouncing height $(=2.0 \mathrm{~m})$
(3) Analysis Flow

As mentioned above, the calculation of required items for stability analysis is shown in Figure 2-4.

Figure 2-4 Flow of the Stability Calculation

3. Stability Analysis of the Temporary Protection Wall (Gabion Wall)

In order to confirm the resistible capacity of the temporary protection wall, 98 cases of following combination of items were carried out. Furthermore a falling rock collides directory with the wall without bouncing and/or spins on the slope, and the function of sand-mat installed behind of the wall is not considered in this analysis.

- Rock size: from 50 to 180 cm every 10 cm
- Slope height: from 10 to 40 m every 5 m

From the result of the analysis, the temporary protection wall is available within the following conditions,
and the wall endures satisfactory in case of a falling rock classified $\left(\mathrm{D}_{90}\right)$.
Table 3-1 Result of the Stability Analysis

Slope Height (m)	10	15	20	25	30	35	40
Rock size (m)	1.3	1.2	1.1	1.1	1.0	1.0	1.0

As an example, in case that the rock with a diameter of 80 cm (D90) on the slope of 40 m height collides directory with the protection wall, the stability analysis of the protection wall is shown as follow.

3.1 Design Criteria

(1) Design Criteria

1) Specific Weight of the Materials to be used

Specific mass of the material to be used for the temporary protection wall is shown in Table 3-1.
Table 3- 2
Specific Mass of the Material

Material	Mass $\left(\mathbf{k N} / \mathbf{m}^{\mathbf{3}}\right)$	Material	Mass (kN/m$\left.{ }^{\mathbf{3}}\right)$
1. Rock/Stone	26.5	5. Concrete	23.0
2. Cobble Stone	18.0	6. Reinforced Concrete	25.0
3. Sand	18.0	7. Gabion*	18.6
4. Bricks	14.0		

Note: \quad The mass of gabion considers 70% porosity of rock mass.
2) Characteristics of the Foundation

Assuming the soil of the foundation is classified the silty sand, the characteristics of the foundation for design are settled as follows:

Specific mass of the soil $\gamma:$	$18.0 \mathrm{kN} / \mathrm{m}^{3}$
Estimated N Value N :	30
Angle of sharing resistance Ø:	30°
Cohesion c $(=12.5 \mathrm{~N})$:	$10 \mathrm{kN} / \mathrm{m}^{2}$

(2) Loads to be considered

1) Dead load

Only weight of the wall body is considered as a dead load. Horizontal pressure of sand-mat behind of the wall is not considered because of that the sand-mat is installed without compacting.
2) Live load

Live load and surcharge load which act to the protection wall are not considered due to its objective.
(3) Combination of the Loads

Load combination for the stability analysis of the wall is shown in Table 3-2. As to the seismic conditions, since the horizontal force produced by the seismic coefficient (kh) is too small, the analysis in this condition is omitted.

Table 3-3 Combination of the Loads

Item	Sormal Condition	Seismic Condition
1. Condition		

Note: *Earth pressure is from sand mat in space between wall and slope.

3.2 Section Capacity of Gabion Wall

Section capacity of the gabion wall is estimated by following formula.
i) Area:
$A=\frac{1}{2} \Sigma\left(x_{i+1} \cdot y_{i}-x_{i} \cdot y_{i+1}\right)$
ii) Geometrical Moment of Area:

$$
\begin{aligned}
& G y=\frac{1}{2} \Sigma\left(y_{i+1}-y_{i}\right)\left\{x_{i}^{2}+\frac{1}{3}\left(x_{i+1}-x_{i}\right) \cdot\left(x_{i+1}+2 x_{i}\right)\right\} \\
& G x=\frac{1}{2} \Sigma\left(x_{i+1}-x_{i}\right)\left\{y_{i}^{2}+\frac{1}{3}\left(y_{i+1}-y_{i}\right) \cdot\left(y_{i+1}+2 y_{i}\right)\right\} \\
& x_{G}=\frac{G_{y}}{A} \\
& y_{G}=\frac{G_{x}}{A}
\end{aligned}
$$

\qquad
iii) Geometrical Moment of Inertia:

$$
\begin{aligned}
& I x=\frac{1}{3} \Sigma\left(x_{i+1}-x_{i}\right)\left\{y_{i}^{3}+\frac{3}{2} y_{i}^{2}\left(y_{i+1}-y_{i}\right)+y_{i}\left(y_{i+1}-y_{i}\right)^{2}+\frac{1}{4}\left(y_{i+1}-y_{i}\right)^{3}\right\} \\
& I y=-\frac{1}{3} \Sigma\left(y_{i+1}-y_{i}\right)\left\{x_{i}^{3}+\frac{1}{6}\left(x_{i+1}-x_{i}\right) \cdot\left(x_{i+1}+2 x_{i}\right)^{2}+\frac{1}{12}\left(x_{i+1}-x_{i}\right)^{3}\right\} \cdots .
\end{aligned}
$$

iv) Moment of Inertia

$$
I_{G}=M\left(\frac{I_{x}+I_{y}}{A}-x_{G}^{2}-y_{G}^{2}\right)
$$

Table 3-4 Geometrical Moment of the Gabion Wall

No. i	$\mathrm{x}(\mathrm{m})$	$y(m)$	A (m^{2})	Gy (m^{3})	Gx ($\mathrm{m}^{\mathbf{3}}$)	$\mathrm{ly}\left(\mathrm{m}^{4}\right)$	Ix (m^{4})	Coordinate of the Wall				
0	0.00	0.00	0.00	0.00	0.00	0.000	0.000					
1	0.00	1.00	0.25	0.00	0.25	0.000	0.167					
2	0.50	1.00	-0.25	-0.13	0.00	-0.042	0.000					
3	0.50	2.00	0.50	0.00	1.00	0.000	1.333	3.0				
4	1.00	2.00	-0.50	-0.50	0.00	-0.333	0.000					
5	1.00	3.00	1.50	0.00	4.50	0.000	9.000					
6	2.00	3.00	1.00	2.00	0.00	2.667	0.000	2.0				
7	2.00	2.00	0.50	0.00	1.00	0.000	1.333					
8	2.50	2.00	1.25	3.13	0.00	5.208	0.000	1.0				
9	2.50	1.00	0.25	0.00	0.25	0.000	0.167					
10	3.00	1.00	1.50	4.50	0.00	9.000	0.000					
11	3.00	0.00	0.00	0.00	0.00	0.000	0.000	0.0				
12	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.0	1.0	2.0	3.0	4.0
Total			6.00	9.00	7.00	16.50	12.00					

From Table 3-2-1, the section capacity of gabion wall is shown as follows.
i) Total weight of the wall:

$$
m=A \cdot \gamma \cdot L=6.00 \times 18.6 \times 12.00=1,335.6 \mathrm{kN}
$$

ii) Mass of the wall:

$$
m^{\prime}=m / g=1,335.6 / 9.8=136.29 t
$$

iii) Center of gravity:

$$
\begin{aligned}
x G & =G y / A=9.00 / 6.00=1.500 \mathrm{~m} \\
y G=G x / A & =7.00 / 6.00=1.167 \mathrm{~m}=S
\end{aligned}
$$

iv) The moment of inertia:

$$
\begin{aligned}
I_{G} & =m^{\prime} \cdot\left(\frac{I x+I y}{A}-x_{G}{ }^{2}-y_{G}{ }^{2}\right) \\
& =136.29 \times\left(\frac{12.00+16.50}{6}-1.500^{2}-1.167^{2}\right) \\
& =115.11 \mathrm{tm}=1,520.1 \mathrm{kNm}
\end{aligned}
$$

3.3 Specific Characteristics of the Foundation

As mentioned in 2.2 Method of Stability Analysis of the Temporary Protection Wall, the wall is assumed as a rigid body supported by share and rotating spring of its foundation.

The horizontal force produced by colliding of a falling rock is transmitted to the wall body, and the moment including wall own weight at the wall bottom is produced according to the intensity of the force. There is a point that the horizontal force which acts to the wall body becomes equal to ultimate bearing capacity of the foundation. The moment when the force reaches to ultimate bearing capacity is expressed as design yield moment.

In this section, the horizontal force which produces a design yield moment is estimated through the ultimate bearing capacity. Furthermore spring constant of the foundation is also estimated from the characteristics of the foundation.

1) Ultimate Bearing Capacity of the Foundation

Ultimate bearing capacity of the foundation is estimated using following formula which considers the eccentric slope of the loads (Horizontal force/Vertical weight).
$Q u=A e\left\{\alpha \cdot k \cdot c \cdot N c+k \cdot q \cdot N q+\frac{1}{2} \cdot \gamma_{1} \cdot \beta \cdot B e \cdot N r\right\}$
Where, Qu: Ultimate bearing capacity considering eccentric load ($k N$), Ae: Effective area of wall footing considering eccentric load $\left(m^{2}\right), \alpha, \beta$: Coefficient of the footing form ($\alpha=\beta=1.0$), k : Additional coefficient for footing depth efficacy $(k$
$=1.0), c$: Cohesion of the foundation $\left(\mathrm{kN} / \mathrm{m}^{2}\right), q$: Surcharge load $\left(\mathrm{kN} / \mathrm{m}^{2}\right), \gamma_{1}, \gamma_{2}$: Specific weight of foundation ($\mathrm{kN} / \mathrm{m}^{3}$), Be: Effective width of wall footing considering eccentric load (m), Nc, Nq, Nr: Bearing capacity factor considering eccentric load

Assuming that the horizontal force by a falling rock is $\mathbf{6 1 0 k \mathbf { N }}$, the required items for the ultimate
bearing capacity of the foundation is estimated as follows.
i) Eccentric Distance eB
$e_{B}=B / 2-\left(m \cdot X_{G}-H_{R} \cdot h\right) / m=3.00 / 2-(1,335.6 \times 1.50-610.0 \times 2.30) / 1,335.6=1.050 m$
Where, $\quad e_{B}$: Eccentric distance (m), B: Width of retaining wall (m), m : mass of the wall (kN), XG: Gravity center of the wall (m), HR: Horizontal force of falling rock $(k N), h$: Height from the ground to the hit point of a falling rock (m)
ii) Effective Width of the Wall considering Eccentric load: Be
$B e=B-2 e_{B}=3.00-2 \times 1.050=0.900 \mathrm{~m}$
Where, Be: Effective width of the wall (m), B: Width of retaining wall (m), eB: Eccentric distance (m)
iii) Effective Area of the Wall Footing
$A e=B e \cdot L=0.900 \times 12.00=10.80 \mathrm{~m}^{2}$
Where, Ae: Effective area of the wall footing $\left(m^{2}\right), B e:$ Effective width of the wall (m), L : Effective length of the wall (m)
iv) Bearing Capacity Factor

The factor of bearing capacity is estimated considering the eccentric slope of the loads. The angle of eccentric load is estimated as follow.
$\tan \theta=H_{R} / m=610.0 / 1,335.6=0.46 \quad\left(\theta=24.55^{\circ}\right)$
Based on the eccentric slope of the loads and Figure 3-1, the factors of bearing capacity are Nr:
$1.60, \mathrm{Nq}: 5.75$ and $\mathrm{Nc}: 11.10$ respectively.

Figure 3-1 Graph for Bearing Capacity Factor

From these factors, the ultimate bearing capacity is computed as follows.

$$
\begin{aligned}
Q u & =A e\left\{\alpha \cdot k \cdot c \cdot N c+k \cdot q \cdot N q+\frac{1}{2} \cdot \gamma_{1} \cdot \beta \cdot B e \cdot N r\right\} \\
& =10.80 \times\left\{1.0 \times 1.0 \times 10 \times 11.10+1.0 \times 0 \times 5.75+\frac{1}{2} \times 18 \times 1.0 \times 0.900 \times 1.60\right\} \\
& =1,338.8 \approx m=1,335.6 \mathrm{kN}
\end{aligned}
$$

2) Spring Constant of the Foundation

As the spring constants of the foundation, following spring constants are estimated.

- Vertical reaction modulus of foundation kv
- Sharing spring constant of foundation: Ks
- Initial rotation constant of foundation: Kr_{0}
i) Vertical Reaction Modulus of Foundation: kv
$k v=\frac{1}{0.3} \cdot \alpha \cdot E_{0} \cdot\left(\frac{B_{v}}{0.3}\right)^{-3 / 4}$
Where, Kv: Vertical reaction modulus of foundation $\left(\mathrm{kN} / \mathrm{m}^{3}\right), E_{0}$: Deformation modulus of foundation ($\mathrm{kN} / \mathrm{m}^{2}$), Bv: Equivalent width of load (m) $B v=\sqrt{B \cdot L}, \alpha$: Coefficient related for deformation modulus based on N value (Normal condition $=1.0$), $B:$ Width of retaining wall $(m), L(=\min 4 H)$: Effective length of the wall (m)

Assuming that the N value of foundation for the wall is 30 , the deformation modulus of foundation $\left(\mathrm{E}_{0}\right)$ is given by following formula.

$$
E_{0}=2,800 \cdot N=2,800 \times 30=84,000 \mathrm{kN} / \mathrm{m}^{2}
$$

Therefore the vertical reaction modulus of foundation is given as follows.

$$
k v=\frac{1}{0.3} \cdot \alpha \cdot E_{0} \cdot\left(\frac{B_{v}}{0.3}\right)^{-3 / 4}=\frac{1}{0.3} \times 1.0 \times 84,000 \times\left(\frac{\sqrt{3.00 \times 12.00}}{0.3}\right)^{-3 / 4}=29,606 \mathrm{kN} / \mathrm{m}^{3}
$$

ii) Sharing Spring Constant of Foundation: Ks

$K s=\frac{B \cdot L}{4} \cdot k_{v}$
Where, Ks: Sharing spring constant (kN/m), B: Width of the retaining wall (m), L: Effective length of the wall $(m), k v$: Vertical reaction modulus of foundation ($\mathrm{kN} / \mathrm{m}^{3}$)

Using the modulus kv estimated as before, the sharing spring constant ks is given by follows.

$$
K s=\frac{B \cdot L}{4} \cdot k v=\frac{3.00 \times 12.00}{4} \times 29,606=266,454 \mathrm{kN} / \mathrm{m}
$$

iii) Initial Rotation Spring Constant: Kr_{0}

$$
K_{r o}=\frac{B^{3} \cdot L}{12} \cdot k v
$$

Where, $\quad K r_{0}$: Initial rotation spring constant of the foundation ($\mathrm{kNm} / \mathrm{rad}$), B: Width of retaining wall (m), L: Effective length of the wall (m), kv: Vertical reaction modulus of fundaiton ($\mathrm{kN} / \mathrm{m}^{3}$)

Using modulus kv estimated as before, the initial rotation spring constant of the foundation is given by follows.

$$
K_{r o}=\frac{B^{3} \cdot L}{12} \cdot k v=\frac{3.00^{3} \times 12.00}{12} \times 29,606=799,362 \mathrm{kNm} / \mathrm{rad}
$$

3.4 Rotation of the Temporary Protection Wall

(1) Moments of the Wall
i) Marginal Uplift Moment: M_{1}

$$
M_{1}=m \cdot B / 6=1,335.6 \times 3.00 / 6=667.8 \mathrm{kN} \cdot \mathrm{~m}
$$

Where, Ml: Marginal uplift moment (kNm), m: Mass of retaining wall (kN), B: Width of the wall (m)
ii) Design Yield Moment: My

$$
M y=H_{R} \cdot h=610.0 \times 2.30=1,403.0 \mathrm{kN} \cdot \mathrm{~m}
$$

iii) Moment produced by the weight of Wall Footing: Mw

$$
M w=m \cdot\left(B / 2-X_{G}\right)=1,335.6 \times(3.00 / 2-1.50)=0 \mathrm{kN} \cdot \mathrm{~m}
$$

iv) Maximum Resistance Moment of the Foundation: Mu

$$
M u=M y+M w=1,403.0+0=1,403.0 \mathrm{kN} \cdot \mathrm{~m}
$$

(2) Rotation Angle of the Wall

$$
\begin{aligned}
& \theta y=\left(\frac{2 M u}{M l}-1\right) \cdot \frac{M l}{K r o}=\left(\frac{2 \times 1,403.0}{667.8}-1\right) \times \frac{667.8}{799,362}=0.00267 \mathrm{rad}=0.15^{\circ} \\
& \theta_{0}=\frac{M w}{K r o}=\frac{0}{799,362}=0 \\
& K r=\frac{M y}{\theta y-\theta_{0}}=\frac{1,403.0}{0.00267-0}=525,468 \mathrm{kNm}
\end{aligned}
$$

(3) Dimension of the Rotated Wall

$$
\begin{align*}
& Z_{1}=\frac{1}{2 S} \cdot\left(S^{2}+e_{0}{ }^{2}-i_{0}{ }^{2}\right)+\sqrt{\frac{1}{4 \cdot S^{2}} \cdot\left(S^{2}+e_{0}{ }^{2}-i_{0}{ }^{2}\right)^{2}+i_{0}{ }^{2}} \\
& l_{1}=Z_{1}-S \\
& l_{2}=l_{1}+H \\
& l=l_{1}+h
\end{align*}
$$

Here,

$$
\begin{aligned}
& e_{0}^{2}=\frac{K r}{K s}=\frac{525,468}{266,454}=1.972 \\
& i_{0}^{2}=\frac{I_{G}}{m}=\frac{1,520.1}{1,335.6}=1.138
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
Z_{1} & =\frac{1}{2 S} \cdot\left(S^{2}+e_{0}^{2}-i_{0}{ }^{2}\right)+\sqrt{\frac{1}{4 \cdot S^{2}} \cdot\left(S^{2}+e_{0}{ }^{2}-i_{0}{ }^{2}\right)^{2}+i_{0}{ }^{2}} \\
& =\frac{1}{2 \times 1.167} \times\left(1.167^{2}+1.972-1.138\right)+\sqrt{\frac{1}{4 \times 1.167^{2}} \times\left(1.167^{2}+1.972-1.138\right)^{2}+1.138} \\
& =2.363 \mathrm{~m} \\
l_{1} & =Z_{1}-S=2.363-1.167=1.196 \mathrm{~m} \\
l_{2} & =l_{1}+H=1.196+3.000=4.196 \mathrm{~m} \\
l & =l_{1}+h=1.196+2.300=3.496 \mathrm{~m}
\end{aligned}
$$

(4) Velocity of the Rotating Wall

$$
V=\frac{2 \cdot m^{\prime}}{m^{\prime}+\alpha^{\prime} \cdot m^{\prime}} \cdot V_{0}
$$

$$
\alpha^{\prime}=\frac{4 \cdot\left(b_{2} \cdot l_{2}-b_{1} l_{1}\right) \cdot\left(l_{2}^{2}+l_{1} \cdot l_{2}+l_{1}^{2}\right)-3 \cdot\left(b_{2}-b_{1}\right) \cdot\left(l_{2}+l_{1}\right) \cdot\left(l_{2}^{2}+l_{1}^{2}\right)}{6 \cdot l^{2} \cdot\left(b_{1}+b_{2}\right) \cdot H}
$$

Where, V : Rotation velocity of the wall ($\mathrm{m} / \mathrm{sec}$), m ': Weight of the wall (ton), α ': coefficient of the wall form and the arm length from the center of foundation spring, V_{0} : Falling velocity of the rocks ($\mathrm{m} / \mathrm{sec}$)

Here,

$$
\begin{aligned}
\alpha^{\prime} & =\frac{4 \cdot\left(b_{2} \cdot l_{2}-b_{1} l_{1}\right) \cdot\left(l_{2}{ }^{2}+l_{1} \cdot l_{2}+l_{1}{ }^{2}\right)-3 \cdot\left(b_{2}-b_{1}\right) \cdot\left(l_{2}+l_{1}\right) \cdot\left(l_{2}{ }^{2}+l_{1}{ }^{2}\right)}{6 \cdot l^{2} \cdot\left(b_{1}+b_{2}\right) \cdot H} \\
& =\frac{4 \times(3.00 \times 4.196-1.00 \times 1.196) \times\left(4.196^{2}+1.196 \times 4.196+1.196^{2}\right)-3 \times(3.00-1.00) \times(4.196+1.196) \times\left(4.196^{2}+1.196^{2}\right)}{6 \times 3.496^{2} \times(1.00+3.00) \times 3.00} \\
& =0.546
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
V & =\frac{2 \cdot W s^{\prime}}{W s^{\prime}+\alpha^{\prime} \cdot m^{\prime}} \cdot V_{0} \\
& =\frac{2 \times 0.72}{0.72+0.546 \times 136.29} \times 28.0=0.54 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

3.5 Stability Evaluation

(1) Wall Rotation Angle and Displacement Distance

1) Wall Rotation Angle and Displacement Distance

$$
\begin{aligned}
K r_{1} & =K s \cdot\left(e_{0}^{2}+l_{1}^{2}\right)=266,454 \times\left(1.972+1.196^{2}\right)=906,587 \mathrm{kNm} \\
\delta d & =\sqrt{\frac{\alpha^{\prime} \cdot m^{\prime} \cdot l^{2} \cdot V^{2}}{K r_{1}}} \\
& =\sqrt{\frac{0.546 \times 136.29 \times 3.496^{2} \times 0.54^{2}}{906,587}} \\
& =0.017 \mathrm{~m}
\end{aligned}
$$

Here,

$$
\begin{aligned}
& \theta_{L}=\frac{\delta d}{l}=\frac{0.017}{3.496}=0.0049=0.28^{\circ} \\
& \delta_{L}=\delta d-h \cdot \theta_{L}=\delta d \cdot\left(1-\frac{h}{l}\right)=0.017 \times\left(1-\frac{2.300}{3.496}\right)=0.0058 m
\end{aligned}
$$

2) Rotating Deformation Energy: E_{ML} and Horizontal Deformation Energy: E_{HL}

$$
\begin{aligned}
& E_{M L}=\frac{1}{2} \cdot k r \cdot \theta_{L}^{2}=\frac{1}{2} \times 525,468 \times 0.0049^{2}=6.31 \mathrm{~kJ} \\
& E_{H L}=\frac{1}{2} \cdot K s \cdot \delta_{L}^{2}=\frac{1}{2} \times 266,454 \times 0.0058^{2}=4.48 \mathrm{~kJ}
\end{aligned}
$$

3) Absorbing Energy: E_{M}

$$
\begin{align*}
& E_{M}=\frac{M y \cdot\left(\theta y-\theta_{0}\right)}{2}+M y \cdot\left(\theta a-\theta_{y}\right) \\
& \theta a=\mu \cdot \theta_{y} \\
& \ldots . ~
\end{align*}
$$

Here,

$$
\begin{aligned}
\theta a= & \mu \cdot \theta y=5.0 \times 0.00267=0.0134 \mathrm{rad}=0.76^{\circ} \leq 2.0^{\circ} \\
E_{M} & =\frac{M y \cdot\left(\theta y-\theta_{0}\right)}{2}+M y \cdot(\theta a-\theta y) \\
& =\frac{1,403.0 \times(0.00267-0)}{2}+1,403.0 \times(0.0134-0.00267) \\
& =16.93 \mathrm{~kJ}
\end{aligned}
$$

4) Stability Evaluation

Stability condition of the wall is that the rotating deformation energy E_{ML} should be less than the absorbing energy of the foundation E_{M}.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{ML}}=6.31 \mathrm{~kJ} \\
& \mathrm{E}_{\mathrm{M}}=16.93 \mathrm{~kJ}
\end{aligned}
$$

Therefore,

$$
F s=\frac{E_{M}}{E_{M L}}=\frac{16.93}{6.31}=2.68 \geq F s=1.00 \quad \text { OK }
$$

3.6 Result of the Stability Analysis

Result of the stability analysis is shown in Table 3-5.
Table 3-5 Result of the Stability Analysis (1/3)

Dia. Rock	Weight (kN)	Slope Height (H)	10	15	20	25	30	35	40
		Velocity (V_{0})	14.00	17.15	19.80	22.14	24.25	26.19	28.00
0.5	$\begin{gathered} 1.73 \\ (0.18) \end{gathered}$	V	0.07	0.08	0.10	0.11	0.12	0.13	0.14
		$\theta_{\text {L }}$	0.001	0.001	0.001	0.001	0.001	0.001	0.001
		δ_{L}	0.0007	0.0009	0.0010	0.0012	0.0013	0.0014	0.0015
		$\mathrm{E}_{\text {ML }}$	0.10	0.15	0.20	0.25	0.30	0.35	0.39
		E_{HL}	0.07	0.11	0.14	0.18	0.21	0.25	0.29
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	171.25	114.17	85.63	68.50	57.08	48.93	42.81
0.6		V	0.12	0.14	0.16	0.18	0.20	0.22	0.23
		$\theta_{\text {L }}$	0.001	0.001	0.001	0.002	0.002	0.002	0.002
		δ_{L}	0.0013	0.0015	0.0018	0.0020	0.0022	0.0024	0.0025
		$\mathrm{E}_{\text {ML }}$	0.29	0.44	0.58	0.73	0.87	1.02	1.17
		E_{HL}	0.21	0.32	0.42	0.53	0.63	0.74	0.84
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	57.94	38.63	28.97	23.18	19.31	16.55	14.48
0.7		V	0.18	0.22	0.26	0.29	0.32	0.34	0.37
		$\theta_{\text {L }}$	0.002	0.002	0.002	0.003	0.003	0.003	0.003
		δ_{L}	0.0020	0.0024	0.0028	0.0031	0.0034	0.0037	0.0040
		$\mathrm{E}_{\text {ML }}$	0.72	1.09	1.45	1.81	2.17	2.54	2.90
		E_{HL}	0.52	0.79	1.05	1.31	1.57	1.84	2.10
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	23.30	15.53	11.65	9.32	7.77	6.66	5.83
0.8		V	0.27	0.33	0.38	0.42	0.47	0.50	0.54
		$\theta_{\text {L }}$	0.002	0.003	0.003	0.004	0.004	0.005	0.005
		δ_{L}	0.0029	0.0036	0.0041	0.0046	0.0050	0.0054	0.0058
		$\mathrm{E}_{\text {ML }}$	1.56	2.33	3.11	3.89	4.67	5.44	6.22
		E_{HL}	1.13	1.69	2.25	2.81	3.38	3.94	4.50
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	10.86	7.24	5.43	4.34	3.62	3.10	2.71
0.9	$\begin{gathered} 10.12 \\ (1.03) \end{gathered}$	V	0.38	0.47	0.54	0.60	0.66	0.72	0.77
		$\theta_{\text {L }}$	0.003	0.004	0.005	0.005	0.006	0.006	0.007
		δ_{L}	0.0041	0.0051	0.0059	0.0065	0.0072	0.0077	0.0083
		$\mathrm{E}_{\text {ML }}$	3.16	4.73	6.31	7.89	9.47	11.05	12.63
		$\mathrm{EHL}_{\mathrm{HL}}$	2.28	3.43	4.57	5.71	6.85	8.00	9.14
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	5.35	3.57	2.68	2.14	1.78	1.53	1.34

Table 3-5Result of the Stability Analysis (2/3)

Dia. Rock	Weight (kN)	Slope Height (H)	10	15	20	25	30	35	40
		Velocity (V0)	14.00	17.15	19.80	22.14	24.25	26.19	28.00
1.0	$\begin{gathered} 13.88 \\ (1.42) \end{gathered}$	V	0.52	0.64	0.74	0.83	0.91	0.98	1.05
		$\theta_{\text {L }}$	0.005	0.006	0.007	0.008	0.008	0.009	0.010
		δ_{L}	0.0057	0.0070	0.0080	0.0090	0.0098	0.0106	0.0114
		$\mathrm{E}_{\text {ML }}$	5.94	8.91	11.88	14.84	17.81	20.78	23.75
		$\mathrm{EHL}_{\text {L }}$	4.30	6.45	8.60	10.74	12.89	15.04	17.19
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	2.84	1.90	1.42	1.14	0.95	0.81	0.71
1.1		V	0.69	0.85	0.98	1.09	1.20	1.29	1.38
		$\theta_{\text {L }}$	0.006	0.008	0.009	0.010	0.011	0.012	0.013
		δ_{L}	0.0075	0.0092	0.0106	0.0118	0.0129	0.0140	0.0149
		$\mathrm{E}_{\text {ML }}$	10.28	15.42	20.57	25.71	30.85	35.99	41.13
		E_{HL}	7.44	11.16	14.89	18.61	22.33	26.05	29.77
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	1.64	1.09	0.82	0.66	0.55	0.47	0.41
1.2	$\begin{gathered} 23.98 \\ (2.45) \end{gathered}$	V	0.89	1.09	1.26	1.41	1.55	1.67	1.79
		θ_{L}	0.008	0.010	0.011	0.013	0.014	0.015	0.016
		δ_{L}	0.0097	0.0118	0.0137	0.0153	0.0167	0.0181	0.0193
		$\mathrm{E}_{\text {ML }}$	17.21	25.81	34.41	43.01	51.62	60.22	68.82
		E_{HL}	12.45	18.68	24.91	31.13	37.36	43.59	49.81
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	0.98	0.65	0.49	0.39	0.33	0.28	0.25
1.3	$\begin{gathered} 30.48 \\ (3.11) \end{gathered}$	V	1.12	1.38	1.59	1.78	1.95	2.10	2.25
		$\theta_{\text {L }}$	0.010	0.012	0.014	0.016	0.018	0.019	0.020
		δ_{L}	0.0122	0.0149	0.0172	0.0192	0.0211	0.0228	0.0243
		$\mathrm{E}_{\text {ML }}$	27.25	40.88	54.51	68.13	81.76	95.39	109.01
		$\mathrm{EHL}_{\text {HL }}$	19.73	29.59	39.45	49.32	59.18	69.04	78.90
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	0.62	0.41	0.31	0.25	0.21	0.18	0.15
1.4	38.07 (3.88)	V	1.39	1.70	1.96	2.20	2.41	2.60	2.78
		θ_{L}	0.013	0.015	0.018	0.020	0.022	0.024	0.025
		δ_{L}	0.0150	0.0184	0.0213	0.0238	0.0260	0.0281	0.0301
		$\mathrm{E}_{\text {ML }}$	41.59	62.38	83.18	103.97	124.76	145.56	166.35
		E_{HL}	30.10	45.15	60.20	75.25	90.31	105.36	120.41
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	0.41	0.27	0.20	0.16	0.14	0.12	0.10

Table 3-5Result of the Stability Analysis (3/3)

Dia. Rock	Weight (kN)	Slope Height (H) Velocity (V0)	$\begin{gathered} 10 \\ 14.00 \end{gathered}$	$\begin{gathered} 15 \\ 17.15 \end{gathered}$	$\begin{gathered} \hline 20 \\ 19.80 \end{gathered}$	$\begin{gathered} 25 \\ 22.14 \end{gathered}$	$\begin{gathered} 30 \\ 24.25 \end{gathered}$	$\begin{gathered} 35 \\ 26.19 \end{gathered}$	$\begin{gathered} 40 \\ 28.00 \end{gathered}$
1.5	$\begin{gathered} 46.83 \\ (4.78) \end{gathered}$	V	1.69	2.07	2.39	2.67	2.93	3.16	3.38
		$\theta_{\text {L }}$	0.015	0.019	0.022	0.024	0.027	0.029	0.031
		δ_{L}	0.0183	0.0224	0.0259	0.0289	0.0317	0.0342	0.0366
		$\mathrm{E}_{\text {ML }}$	61.69	92.54	123.38	154.23	185.07	215.92	246.77
		$\mathrm{EHL}_{\mathrm{HL}}$	44.65	66.98	89.31	111.63	133.96	156.29	178.61
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	0.27	0.18	0.14	0.11	0.09	0.08	0.07
1.6	$\begin{gathered} 56.83 \\ (5.80) \end{gathered}$	V	2.03	2.48	2.87	3.20	3.51	3.79	4.05
		$\theta_{\text {L }}$	0.018	0.023	0.026	0.029	0.032	0.034	0.037
		δ_{L}	0.0219	0.0269	0.0310	0.0347	0.0380	0.0410	0.0439
		$\mathrm{E}_{\text {ML }}$	88.53	132.80	177.06	221.33	265.60	309.86	354.13
		E_{HL}	64.08	96.12	128.16	160.20	192.24	224.28	256.32
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	0.19	0.13	0.10	0.08	0.06	0.05	0.05
1.7	$\begin{gathered} 68.17 \\ (6.96) \end{gathered}$	V	2.40	2.94	3.39	3.79	4.15	4.48	4.79
		$\theta_{\text {L }}$	0.022	0.027	0.031	0.034	0.038	0.041	0.043
		δ_{L}	0.0259	0.0318	0.0367	0.0410	0.0449	0.0485	0.0519
		$\mathrm{E}_{\text {ML }}$	123.88	185.81	247.75	309.69	371.63	433.56	495.50
		E_{HL}	89.66	134.49	179.32	224.16	268.99	313.82	358.65
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	0.14	0.09	0.07	0.05	0.05	0.04	0.03
1.8	$\begin{gathered} 80.92 \\ (8.26) \end{gathered}$	V	2.80	3.43	3.96	4.43	4.85	5.24	5.60
		θ_{L}	0.025	0.031	0.036	0.040	0.044	0.047	0.051
		δ_{L}	0.0303	0.0371	0.0429	0.0479	0.0525	0.0567	0.0606
		$\mathrm{E}_{\text {ML }}$	169.02	253.54	338.05	422.56	507.07	591.59	676.10
		E_{HL}	122.34	183.51	244.68	305.85	367.02	428.20	489.37
		E_{M}	16.89	16.89	16.89	16.89	16.89	16.89	16.89
		Fs	0.10	0.07	0.05	0.04	0.03	0.03	0.02

D3.3 DRAWINGS
 OF THE TEMPORARY WORKS

General Plan of The Temporary Protection Wall

Scale: 1/750

Wall Lengh

Standard Section of the Temporary Protection Wal

Nole:
Construction area as shown in the drawings should be avaiabble with

authrization of the se Municipality.

 confimed, thi contracter should intom usually to IICA Study Tean
about the possibility 0 execution of the works.

JAPAN INTERNATIONAL COOPERATION AGENCY JICA STUDY TEAM
THE STUDY ON EARLY WARNING SYSTEM FOR ANDSLIDES AND FLOODS IN SELECTED AREAS IN MUNICIPALITY IN THE REPUBLIC OF COLOMBIA

Location of the Structures
Scale: 1/1,000

[^0]

Plan: Drainage Pit
Scale: $1 / 50$

Note:
As to the content for sign board, JICA Study Team Soacha Municipality. Soacha Municipality.

$\frac{\text { Sign Board }}{\text { Scale: } 1 / 40}$

\qquad

Foot Passes \qquad
$\frac{\text { Note: }}{\text { 1) } 10}$ foot passes are insalled in front of the existing house.
2) $\mathrm{Fck}=\mathrm{fc}$

[^0]: Frontal View of Temporary Protection Wall

