Annex 2-3 : Lecture Materials for Training

2.3.2 Basic Water Quality

4) Others (hospital wastewater, acid rain etc.)

10	T.tem	Standard volue					
cinna	Nater use	płi	800	-55	00	Thtal colifore	
AA.	Water supply class 1, conservation of natural environment and more listed in A-E	6, 5-8, 5) ng/1 nr less	(25 mg/) or lass	1,5 mg/l or more	50 MPS/100ml or less	
Å	Water supply class 2, Fishery class 1, bathing and uses listed in H-E	6.5-8.5	2 mg/l ot lets	25 ng/1 or Teas	7.5 mg/l or more	1000 MM/(100m) or less	
B.	Water samply class 2. Yisheryclass 2. and uses listed in C-E	6.5-8.5	2 mg/1 or lean	25 ng/t or Tests	5 ag/) at anne	5000 MN/100al or less	
с	Fishery class 3, Industrial mayr class 1 and uses listed in D.E.	6.5-M.S	5 mL/1 or 100m	50 ma() 02 found	5 sg/1 or sore	-	
D	Industrial water class 2: agricultural water and year listed in E	0.0-6.5	8 mg/1 pr less	100 mc/1 or Juni	2 se/l or write	-	
E	Industry water classe S. and conservation of environment	6, 0-8, 5	10 mg/1 or been	Floating Matter such as garlage should not be observed	z ap/1-oz aoro	-	
Drin	king Water Resource	Vater T	reatment	(\$\$<25)	Actual Con	dition of Rivers	

1	Tree	Standard volue					
01000	Water use	10	100	SS	10	Tatal collfore	
AA	Water supply class I, fishery class I, connervation of satural snylronnest, and uses listed in A-C	6.N-8.5	t mit/1 of: Jana	1 mg/1 or line	7/5 mg/l of mini	dő MPN/100ml og jugg	
A	Water supply class 2, and 3, fishery class 2, bathing and news listst in R-C	0.11-8.5	If mu/1 or Jeed	Sing/Los lives	17.5 mg/1 or mb/ro.	1000 MEX/100ml == 1mm	
B	Fishery class 3, industrial water class 1, agricultural water and uses listed in C	6.5-6.5	i ma/1 or Jees	lf ng/l ar	5 mg/1 ist more	9	
c	Industrial satur class 2. and conservation of the environment	6.0-8.5	8 sg/1 or Iree	Floating matter such as arrhage not be observed	2 mg/1 of some	1	

Inter Ratar case Total Nitrage Total Proophar I Conservation of Gaturnal environment and uses listed in J1-V 0.1 m/1 0.005 m/1 0.005 m/1 It Environment of Gaturnal environment and uses listed in J1-V 0.1 m/1 0.005 m/1 0.005 m/1 0.005 m/1 It Water supply classes I, Zand 3 Gaturn type(11 type(1), fishery class 0.2 m/1 0.01 m/1 0.005 m/1 0.005 m/1 It Water supply classes I (special type(1) in duser listed in IV-V 0.4 m/1 0.005 m/1 0.05 m/1 It Water supply class 3 (special type(1) in duser listed in IV-V 0.4 m/1 0.05 m/1 0.05 m/1 V Fishery class 3 (special type(1) in V 0.6 m/1 0.05 m/1 0.05 m/1 V Fishery class 3, industrial, water and conservation of the model in m/1 model 0.m/1 0.1 m/1 V Fishery class 3, industrial, water and conservation of the m/1 com/1 environment 0. m/1 0.1 m/1	in all	i cent i	Standard Value		
I Conservation of Gaturnal environment and uses listed in []=V 0.1 m/l m lister amply classes [, Zand 3 Gatespit types]al types], fishery class 0.2 m/l m lister 0.0 m/l m lister II Water supply classes [, Zand 3 Gatespit types]al types], fishery class 0.2 m/l m lister 0.0 m/l m lister III Water supply classes 1 (type]al types] and uses listed in IV-V 0.4 m/l m/l lister 0.00 m/l m lister III Water supply class 2 (type]al types] and uses listed in IV-V 0.4 m/l m/l lister 0.00 m/l m lister IV Fishery class 3 (type]al types] and user listed in IV-V 0.6 m/l m/l lister 0.05 m/l m lister V Fishery class 3, industrial, m/l suprimitized mater and conservation of the suprimitizement 0 m/l m lister 0.1 m/l m lister	54050r	Katar ann	Total Nitragen	Total Phosphur	
Bit Finter supply classes 1, Zauld 3 (sensyst special types), fishery class 0.2 mg/l cr less 0.0 mg/l cr less III Water supply class 1 (special types) and uses listed in W-Y 0.4 mg/l cr less 0.00 mg/l cr less W Pichery class 3 (special types) and uses listed in W-Y 0.4 mg/l cr less 0.06 mg/l cr less W Pichery class 3 industrial, agricultural vector and conservation of the mirrormetic 0.6 mg/l cr less 0.06 mg/l cr less	ī	Conservation of natural environment and uses fixed in $J\!\!-\!\!V$	0.1 mg/l nr lass	0,005 mg/l or less	
III Vector supply class I (special types) and uses listed in N-V 0.4 mg/l or last. 0.6 mg/l or last. 0.60 mg/l or last. 0.60 mg/l or last. IV Finbery class I and uses listed in V 0.6 mg/l or less. 0.60 mg/l or less. 0.60 mg/l or less. V Finbery class I, industrial, agricultural water and conservation of the emvironment. 0.8 mg/l or less. 0.1 mg/l or less.	ß	Nater supply classes 1, 2 and 3 (except therial types). Fishery class 1, bothing end uses fiated in $\Pi\Pi{-}V$	0.2 mg/l or less	0.01 mg/l or less	
$ \frac{\mathbf{IV}}{\mathbf{V}} = \begin{array}{ll} \mbox{Pichery class 2 and more inted in V} & 0.6 mg/1 & 0.66 mg/1 & or less \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ш	Water supply class 2 (special types) and uses listed in $\mathrm{IV}\text{-}\mathrm{V}$	0.4 mg/l or lase	0.03 mg/1 or lass	
Finihery class 3, industrial, agricultural water and conservation of) ag/1 0,1 mg/1 0,1 mg/1 V the environment or lens or lens or lens	w	Pistery-class 2 and user listed in V	0.6 mg/l or less	0.05 mg/l or less	
	v	Fishery class 3, industrial, agricultural water and connervation of the environment $% \mathcal{T}_{\mathrm{eq}}$	1 mg/1 or leas	0.1 mg/1 or lum	

-	lim	0	COD _{Mn}	Ξu	Staniard volue			
r) ann	Water ann	oll	cop	-00	fotal Orlifora	N-heisine Extractu foil content etc.		
٨	Finnery class L. hathing, conservation of the natural vevicenment, and user tisted in B-C	1,079.3	≤ 982/) an)vee	CS.m/ or les	(1 (000 WW/)00ml in or Jam	Not detectable		
B	Fishery class Z. Industrial easer and the user listed to C	7/8-93	i mg/l or leve ig	i sa/i je les	5	Not detectable		
с	Conservation of the environment	7.6-6.5	* m/l or loss	l mi/l or los	2	~		
_						ų		
	Item	Standar	rd yalaes					
SHACE	Bater 1	ster tai		Total Nitrogen	Total Phagnory			
i.	Conservation of the natural environment and uses listed in II-JV (arrept Timbery classes 2 and 3)				0.2 mm/l on less	8.02 mg/1 Ar lune		
п	F(shery class i, bothing and the uses () itsed in 111-1V (sample finitery class $\mathbb Z$ and 3)				0.3 mg/1	0.02 mg/1 or insu		
ш	Fishers place 2 and the uses ligted	im IV (es	nept fishery	class 3)	0.6-mg/l or less	0.05 mg/1 or less		
īV	Tubery class 3, industrial activ,	and your	rection at b	ahitahis	C eg/i	w.m.m./)		

		iblic Sew	fer System – Syria	i c oapan
No.	Parameter	Unit	Max. Admissible Concentration (Syria)	Max. Admissible Concentration (Japan)
1	pH	pH Unit	6.5 - 9.5	5.0 - 9.0 (5.7 - 8.7)*
2	Water Temp.	°C	35	45 (40)
3	Color	Unit		-
4	TDS	mg/l	2,000	-
5	DO	mg/l		-
6	SS	mg/l	500	600 (300)
7	COD _{Cr}	mg/l	1,600	-
8	BOD ₅	mg/l	• 800 •	600 (300)
9	NO ₃	mg/l	- //	
10	PO4 3.	mg/l	20	(T-P) 32 (20)
11	Cľ	mg/l	600	
12	NH ₃ -N	mg/l	100 Ch	(T-N) 240 (150)
13	EC	µS/cm		eck
14	Turbidity	NTU	It	t! <u> </u>

- 1) Accessibility and safety
- 2) Representative points for water quality (next slide)
- 3) Water intake points (next slide)
- 4) Inflow rivers (next slide)
- 5) Outflow rivers (next slide)
- 6) Place for swimming or recreation
- 7) Other special requirements

2. Determination of Sampling Frequency

- 1) Objectives of monitoring & the type of water body or medium (pollution sources, rivers or lakes, trend monitoring etc.)
- 2) Water quality variability (higher frequency at stations where water quality varies considerably)
 - a) River water quality monitoring depending on parameters being measured (pH, DO), flow variability, seasons etc.
 - b) Lake water quality monitoring low frequency
 - c) Groundwater low frequency for deep and confined aquifers; high frequency for shallow and polluted aquifers
 - d) Industrial wastewater monitoring depending industrial type and scale

13

3) Cost and the available resources

2. Determination o	f Sampling Frequency
Monitoring Target	Sampling Frequency (example)
Rivers	At least 1 time/month
Lakes & Reservoirs	4-12 times/year (for eutrophic lakes/reservoirs: 1 time/month=12 times/year)
Groundwater	1 – 2 times/year (1 time/year for large stable aquifers and 2 times/year for small, shallow aquifers) (for complains, sampling at any time)
Factories' Outlet(s)	1 – 4 times/year (composite sampling is recommended for pollutants load monitoring) (not inform in advance)

River Lake/ Reservoir Ground-water Industrial Wastewater Water Qualit Accident Sampleing Station Accessibility, baseline, intake, pollution sources Accessibility, outflow rivers Complaint & pollution sources All of outlets Accident poin aurounding: Sampling Frequency At least 1 time/month 4-12 times/year 1-2 times/year 1-4 times/year Depending or type & Nun. 4 accident Sampling Patters and Numbers 1 sample/time (or 3 points composit) At least 2 samples in surface & bottom layer At least 1 sample/time bottom layer Composit sample, each 2 sample/time poeration At least 1 sample/time poeration Cost High High Low High Low Parameters See 5. Selection of measuremnt parameters Depending on the type of accident Depending on the type of accident	Summary	y of Sampl	ling Desig	n	Exa	mple
Sampleing Station Accessibility, baseline, intake, pollution sources Accessibility, intake, inflow & outflow rivers Complaint & pollution All of outlets Accident poin aurounding Sampling Frequency At least 1 4-12 1-2 1-4 Depending on type & Num, accident Sampling Patters and Numbers 1 sample/time (or 3 points composit) At least 2 samples in surface & bottom layer At least 1 sample/time bottom layer Composit) At least 1 sample/time operation Compositi and Numbers At least 2 samples operation At least 1 sample/time operation Compositi and Numbers At least 2 samples bottom layer At least 1 sample/time operation At least 1 bottom layer Compositi bottom layer At least 1 bottom layer Depending on the type of accident Cast High High Low High Low Depending on the type of accident		River	Lake/ Reservoir	Ground-water	Industrial Wastewater	Water Quality Accident
Sampling Frequency At least 1 time/month 4-12 times/year 1-2 times/year 1-4 times/year Depending of type & Num. 4 accident Sampling Patters and Numbers 1 sample/time (or 3 points composit) At least 2 samples in surface & bottom layer At least 1 sample/time bottom layer Composit sample/time poperation At least 1 sample/time operation At least 1 sample/time operation Cost High High Low High Low Parameters See 5. Selection of measuremnt parameters Depending on the type of accident Depending on the type of accident	Sampleing Station	Accessibility, baseline, intake, pollution sources	Accessibility, intake, inflow & outflow rivers	Complaint & pollution sources	All of outlets	Accident points and surroundings
Sampling Patters and Numbers 1 sample/time (or 3 points composit) At least 2 samples in surface & bottom layer At least 1 sample/time porration Composit sample, each 2 hours during operation At least 1 sample/time operation Cost High High Low High Low Parameters See 5. Selection of measuremnt parameters Depending on the type of accident	Sampling Frequency	At least 1 time/month	4-12 times/year	1-2 times/year	1-4 times/year	Depending on type & Num. of accident
Cost High High Low High Low Parameters See 5. Selection of measuremnt parameters Depending on the type of accident Depending on the type of accident	Sampling Patters and Numbers	1 sample/time (or 3 points composit)	At least 2 samples in surface & bottom layer	At least 1 sample/time	Composit sample, each 2 hours during operation	At least 1 sample/time
Parameters See 5. Selection of measuremnt parameters the type of accident	Cost	High	High	Low	High	Low
	Parameters	See 5. Selection of	measuremnt para	meters		Depending on the type of accident

6. Cost Effectiveness

1) The number of sampling stations and sampling frequency

- 2) The cost of collecting samples (staff, transport, consumables)
- 3) The cost of analysis (reagents and glassware etc.)
- 4) The cost of data handling and interpretation (cost of reporting)
- 5) Others (participation of training course etc.)

7. Requirements

- 1) Information collection
 - Pollution sources: location, type, water consumption, existing water quality data (raw materials)
 - Rivers: weather (rainfall etc.), existing water quality data (Ministry of Irrigation, WRIC etc.)
 - Analyzing complaints related water quality (the number and classification of complaints)
- 2) Pre-discussion on sampling stations and confirmation
- 3) Preparation of sampling vehicle
- 4) Preparation of equipment and instrument in laboratory (distilled water unit, cleaning sample bottles etc.) 21

		Suggested P	reservation Methor	ds and Storage Ti	mes
No.	Parameter	Recommended Container	Preservation Method	Max. Permissible Storage Trave	Comments
	рН	Plastic*	None, analyze immediately	ő hours	Should be measured on site
2	Water temp.	-	Not applicable	Not applicable	Must be measured on site.
3	EC	Plastic	Refrigeration	24 hours	Should be measured on site
-4	TDS	Plastic	Refrigeration	2/1 hours	Should be measured on site
5	DO		None, analyze immediately	Analyze immediately	Must be measured on site.
6	Color	Plastic	Refrigeration	48 hours	
7	SS	Plastic	Refrigeration	24 hours	
8	COD _{Cr}	Plastic	Refrigeration	24 hours	Analyze as soon as possible
9	BOD₅	Plastic	Refrigeration	24 hours	Analyze as soon as possible
10	NO3-N	Plastic	Refrigeration	24 hours	Analyze as soon as possible
н	PO4 ³⁻	Glass**	Refrigeration	24 hours	1.2
12	Cl	Plastic	Refrigeration	7 days	1
13	NH3-N	Plastic	Refrigeration	24 hours	Analyze as soon as possible
14	Turbidity	Plastic	None required	24 hours	Preferably tested in the field

	ing rour results
Water type	EC (µ s/cm)
De-ionized water	0.5-3
Pure rainwater	<15
Freshwater rivers	0-800
Marginal river water	800-1,600
Brackish water	1,600-4,800
Saline water	>4,800
Seawater	51,500
Industrial waters	100-10,000

Measurement Method?

- Dilution method (titration, standard method)
- Manometer (pressure sensor) method (approved in German, used in this project; unit, mg/L)

```
BOD<sub>5</sub>
```

Reaction time of 5 days is used for measurement of BOD₅.

Chemical Oxygen Demand (COD_{Cr})

Interpreting Your Results

- Generally, COD_{Cr} value > BOD value for same water sample.
- Correlate with BOD (COD_{Cr}=1.5 to 3.0 × BOD)
- Raw sewage: COD=300-700 mg/L (around 60-150 mg/L in effluent of sewage treatment plant)
- Industrial wastewater: COD=tens several thousands mg/L

Laboratory Operation

- 1. Scheme of Environmental Monitoring System
- 2. Reliability of Analyzed Data
- What to do to ensure accuracy and reliability of analyzed data in laboratory?
 3.1 Quality Assurance and Quality Control
 3.2 SOP
 - 3.3 Operation and Maintenance of Laboratory

3.1.2 Definitions Associated with Analytical Quality Assurance(1)

- Quality management
- ✓ <u>Overall management function</u> to determine quality policy, objectives and responsibilities, and to implement by means of quality planning, quality control, quality assurance, and quality improvement

8

- ✓ All planned and systematic activities implemented within the quality system to provide adequate confidence
- ✓ System of documenting and cross referencing management procedures

3.2.1 <u>SOP</u>

What is SOP?

SOP stand for ;

 \underline{S} tandard \underline{O} peration \underline{P} rocedure

13

3.2.2 What is SOP?

- □ <u>A set of written instructions</u> followed by a laboratory
- Kind of unified instruction or manual for analysis
- □ SOPs <u>describe both technical and</u> <u>administrative operational elements</u> under a work plan or a Quality Assurance (QA) Project Plan

3.2.9(2) Indirect Result of SOP

- Decrease in mistakes during monitoring performance
- **Proper layout of equipment and facilities**
- ➤ Improvement of safety of work
- Improvement, maintenance and succession of techniques

22

24

- 3.2.10 How much detail needs to be included in SOP?
- □ No one 'correct' format
- □ Vary with each laboratory and with the type of SOP
- □ Written with sufficient detail with a basic understanding

3.2.11 Writing Styles of SOPs
In a concise, step-by-step, easy-to-read format
Not be unambiguous and not overly complicated
Active voice and present verb tense
Not be wordy, redundant, or overly lengthy

3.2.12 Who should write a SOP?

- Prepared by analysts knowledgeable with the analytical performance and the laboratory's internal conditions
- Subject-matter experts who actually perform the work or use the process
- A team approach for multi-tasked processes

3.3.1 Operation and Maintenance of Laboratory

- 1) Attitude to Accurate Analysis
- 2) Ensuring Safe Operation
- 3) Management and Handling of Reagents
- 4) Management & Maintenance of Facilities & Instrument

26

28

1) Attitude to Accurate Analysis

- **(1)** Overall Understanding of Background to the Environmental Analysis
- ② Cleaning up and Tidying of the Laboratory
- **③** Appropriate Solid Waste Treatment
- Collection and Disposal of Liquid Waste

- 2) Ensuring Safe Operation
- **(1)** Storage of Dangerous Chemicals
- **②**Electrical Wiring in Laboratory

③Handling of High Pressure Gases

- 3) Management and Handling of Reagents
- (1) Grasping the Stock Amount of Reagents
- (2) Reagent Storage and Management Ledger (Inventory Control)
- (3) Storage of Standard Reagents and Maintenance of Accuracy
- **4** Safety Measures
- **(5)** Reagents Required Special Care for Storage

29

25

27

4) Maintenance/Management of Facilities and Instrument
(1) Maintenance and Management of Facilities and Second Second

5) Other Key Factors

① Standard Operating Procedure (SOP)

31

- **(2)** Management of Analysis Records
- (3) Handling of Analysis Data

 a. Unit and Significant figures
 b. Anomalous value
 c. Accuracy management

- **Unit for Water Pollution Indicator**
- ✓ Expression of Analyzed Data
 - NO₃-N : 7mg/L ← NO₃ : 31mg/L
- ✓ Meaning of Analyzed Data
- \Longrightarrow Understanding of analytical method adopted \checkmark Unit of Expression
 - μ g/L, mg/L, kg/L, ... (weight/volume) %, ppm (parts per million), ppb, ..(ratio)

E	etermination method	Analytical Item
Chemical analysis	Volumetric analysis	Hardness(Ca ²⁺ , Mg ²⁺), Alkalinity, Acidity, DO, BOD, COD, etc.
	Gravimetric analysis	SS, VSS, CCE, Freon/N-Hexane extracts, etc.
Instrumental analysis	Absorption spectrophotometry (Colorimetric method) (Visible, UV, IR)	Turbidity, Cl, SO ₄ ² , NH ₄ ⁺ -N, NO ₂ -N, NO ₃ -N, PO ₄ ³⁻ , Color, etc
	Gas chromatography (GC), (GC-MS) Liquid chromatography (LC) Ion chromatography	Volatile organic substances (benzene etc.) Soluble organic substances (pesticide etc.) Inorganic anion, Alkali metal
	Atomic absorption method ICP Emission spectrometer	Metal Metal element, etc.
	Others	Temp., DO, EC, etc.

ю.	Parameter	Method	Instrument
1	pH	Electrode method	sensION1 Portable pH meter
2	Water temp.		Thermometer
3	Color	APHA Platinum-Cobalt method	Colorimeter (DR/890)
4	TDS	Electrode method	sensION5 Portable EC & TDS meter
5	DO	Membrane Electrode method	sensION 6 Portable DO meter
6	SS	Photometric method	Colorimeter (DR/890)
7	COD _{Cr}	Reactor Digestion method	Reactor (DRB 200-1) & Colorimeter (DR/89
8	NO ₃ -N	Cadmium Reduction method	Colorimeter (DR/890)
9	NH3-N	Salicylate method	Colorimeter (DR/890)
0	PO4 ³⁺	Amino Acid method	Colorimeter (DR/890)
1	Cľ	Silver Nitrate Method	Digital Titrator (Model 16900)
2	BOD ₅	Manometric (Pressure sensor) method	OxiTop
3	EC	Electrode method	sensION5 Portable EC & TDS meter

Item	Domestic Wastewater	Rivers	Lakes	Groundwater
pН	0	0	0	0
Water Temp.	0	0	0	0
Color	Δ	0	0	0
TDS	0	0	0	0
DO	Δ	0	0	Δ
SS	0	0	0	Δ
COD	0	0	0	0
BOD ₅	0	0	0	0
NO ₃ ⁻	0	0	0	0
PO4 ³⁻	0	0	0	0
Cl-	0	0	0	0
NH3-N	0	0	0	0
EC	0	0	0	0
Turbidity	Δ	0	0	0
Flowrate	O Simple method	OWRIC	×	×

4.	A	Annual Cost E	Estimatio	on for	Mo	nito Metl	<i>ring</i> hod 1 (1	Example)	
	Itom		Urago	Quantity	Cost	Cost (US\$) Cost		Bomorka	
		nem	Usage	Quantity	Unit	Total	(SP)	Kemarks	
	1	Petrol (10 km/L, 100 km/d × 3d/w × 52w/y)	Information collection, field check and sampling etc.	1,560	0.47	736	39,000	Sampling vehicle	
	2	Consumables (tap, bottle, oil pen, note etc.)	Sampling	1 set	200	200	10,600	· · · · ·	
		Sub-total				936	49,600		
							1	9	

	2) Analysis Co				Μ	ethod	1 (Example)
Re	agents						
	Item	Linne	Quantity	Cost	(US\$)	Cost (SP)	Remarks
		Chage	Quantity	Unit	Total	cos (51)	ACTINATED ST
	pH standards, pH 4.01		2	19	38	1,988	500 ml
1	pH standards, pH 7.00	pH calibration	2	19	38	1,988	500 ml
	pH standards, pH 10.00		2	19	38	1,988	500 ml
2	Conductivity standards, 180 µ s/cm	EC&TDS calibration	1	24	24	1,259	100ml
	Conductivity standards, 1,000 µ s/cm		1	23	23	1,193	100ml
	Conductivity standards, 18,000 µ s/cm		1	23	23	1,193	100ml
3	Turbidity Standards Kit for 2100 P Turbidity Meter	Turbidity calibration	1	644	644	34,119	500 ml for 0.1, 20, 100, 800
4	Reagents (High range 0-1,500 mg/l) for COD_{Cr}	COD _{Cr}	11	84	921	48,826	PK/25
5	Reagents (Low range 0-150 mg/l) for COD _{Cr}	COD _{Cr}	4	84	335	17,755	25/PK
6	Reagents for NO3-N	NO3-N	3	56	169	8,944	100 tests/set
7	Reagents for PO43-	PO43.	3	44	131	6,956	100 tests/set
8	Reagents for Cl	CI.	3	144	431	22,856	100 tests/set
9	Reagents for Ammonia-N	NH3-N	6	175	1,050	55,650	50 tubes/PK
10	Nitrification Inhibitor	BOD	1	256	256	13,581	500g
11	BOD Nutrient Buffer Pillows	BOD	6	16	98	5,168	50 pillows/PK
12	BOD Seed Inoculum	BOD	6	281	1,688	89,438	50 capsules/bottle
13	NaOH Pack	BOD	1	13	13	663	1000g/PK

Annual Cost Estimation for Monitoring							
2) Analysis Cost Method 1 (Example)							
Gl	assware, Consumables, W	Vater Tariff, El	ectrical Ta	ariff et	с.		
				Cost (US\$)		Cost	
Item		Usage Quanti	Quantity	Unit	Total	(SP)	Remarks
1	Glassware (Pipettes, flasks, beakers, cylinders, funnels etc.)	All of parameters	1 set	143	143	7,571	Procured glassware × 20%
2	Other Consumables (Batteries, tap, oil pen, cleaning tissue, detergent etc.)	All of parameters and laboratory salty etc.	1 set	800	800	42,400	Estimated from the results of procurement in first year
3	Water Tariff (3m ³ /d×5d/w×52w/y)	All of Parameters	780	0.29	228	12,090	Lab.
4	Electrical Tariff (6 kW×5d/w×52w/y)	Data Analysis and Reporting etc.	1,560	0.05	74	3,900	Lab.
5	Cost of Equipment Repair and Maintenance	All of equipment	1 set	660	660	34,980	Procured equipment × 2%
	Sub-total				1,905	100,941	

No.	Parameters	Unit Price (USD)	
1	pH	1.5	
2	Water Temperature	1.5	
3	Color	1.5	
4	Total Dissolved Solids (TDS)	4	
5	Dissolved Oxygen (DO)	3	
6	Suspended Solids (SS)	4	ł
7	COD (dichromate)	8	
8	BOD ₅	12	66×24
9	Nitrate (NO3°)	7	sample
10	Phosphate ion (PO43.)	9	15,840
11	Chloride ion (Cl ⁻)	4	(abou
12	Ammonium Nitrogen (NH3-N)	7	890,000
13	Conductivity (EC)	1.5	\frown
14	Turbidity	2	S L
	Total	66	

5. Requirements

- 1) Information collection and confirmation
 - Factories: Location, type, major raw materials and products, water consumption, operation time, existing water quality data, wastewater treatment facility etc. (MI)
 - Domestic wastewater: Population (total and serviced by sewage system), location of outlet, water supply etc.
 - Lakes/reservoirs: Population and area of catchment area, inflow river(s), major pollution sources, water use, outline (volume, surface area, depth etc.)
 - Rivers: weather (monthly rainfall etc.), flow, major pollution sources in catchment area existing water quality data (Ministry of Irrigation, WRIC etc.)
 - Groundwater: Complaints, major pollution sources, geological information etc. 15

5. Requirements

- 2) Preparation of major pollution sources location and sapling station maps.
- 3) Determination of frequency and measurement parameters for each sampling station. □ ζ^M_{List} ≥
- 4) Confirmation of sampling vehicle and budget
- 5) Others (personnel source, cabinet for glassware, bookshelf etc.)

16

6. Operation and Maintenance (O/M) Record

- 1) Equipment O/M Record
- 2) Reagents O/M Record
- 3) Laboratory Safety Management
- 4) Suppliers List
- 5) Waste Treatment O/M Record

1. Operation and Maintenance (O/M) Manual & Records

1) Lab. safety

4

5

6

NH₃-N

COD

- a) Analysis by following SOP (put SOP at each equip.)
- b) Electrical (capacity checking etc.), water
- c) Eating, drinking and smoking
- d) Housekeeping and filing
- e) Toxic reagents storage
- f) Clothing and emergency response etc.
- 2) Management and handling of reagents
 - a) Reagents O/M Record

Ascorbic acid

Salicylate method

Reactor digestion

method

method

b) Storage of standard reagents

- 1. Operation and Maintenance (O/M) Manual & Records
- 3) Maintenance and Management of Equipment a) Equipment O/M Record
- 4) Laboratory Waste Treatment
- 5) Others
 - a) Name list of the staff in charge of laboratory management
- b) Suppliers list

	2. Analysis By Using Low Rang Reagents									
	An	alysis of	low rang NO ₃ -I	N, PO ₄ , NH ₃ -N and	COD (4 new SOPs)					
1	No.	Parameter	Method	Measuring Range	EDL					
	1	NO N	Cadmium	0 to 30.0 mg/L	0.8 mg/L NO3N					
	2	NO ₃ ⁻ -N	reduction method	0 to 5.0 mg/L	0.2 mg/L NO ₃ -N					
	3	PO 2	Amino acid method	0 to 30.00 mg/L	0.14 mg/L PO ₄ ³⁻					
	Δ	PO ₄ 3-	Ascorbic acid	0 to 2 50 mg/I	0.05 mg/L PO 3-					

0 to 2.50 mg/L

0 to 2.50 mg/L (DAM)

0 to 50 mg/L

0 to 2.50 mg/L

0 to 2.50 mg/L (DAM) 0 to 1,500 mg/L

0 to 150 mg/L

0.05 mg/L PO₄3

0.02 mg/l PO43-(DAM)

1 mg/L NH₃-N

0.08 mg/L/NH--N

0.02 mg/l NH₃-N (DAM)

30 mg/L COD

4 mg/L COD

Standard solutions provided by JICA this time					
1) NO ₃ -N (1.0 mg/l)	6) COD _{Cr} (300 mg/l)				
2) NO ₃ -N (10.0 mg/l)	7) COD _{Cr} (1,000 mg/l)				
3) PO ₄ (50 mg/l)	8) BOD (300 mg/l)				
4) NH ₃ -N (10 mg/l)	9) BOD (3,000 mg/l)				
5) NH ₃ -N (50 mg/l)	10) Cl (1,000 mg/l)				
lard solutions provid standard (4.01, 7.00, 10.	led by JICA in Jun. 2005 .00)				

4. Requirements						
1) Environmental monitoring plan modification						
2) Code labeling of samples						
a) Industrial wastewater sample 🖙 DEZ-I-001						
b) Domestic wastewater sample 🛛 🖾 DEZ-D-001						
c) River water sample 🛛 🗠 DEZ-R-001						
d) Lake, dam & reservoir water 🛛 🗁 DEZ-L-001						
e) Groundwater sample 🛛 🗁 DEZ-G-001						
3) Expiring reagents records 🖾 JICA Expert Team						
4) Usage of monitoring data						
5) Filing of catalog, training materials, SOPs, O/M						
manual and records, analysis results, data sheets etc.						
6) Others (2007 budget preparation, staff, furniture,						
tomorrow schedule etc.)						

1. Recommended Calibration Frequency

No.	Instrument	Calibration Frequency
1	DR890 Colorimeter	Not Available
2	SensION1 pH meter	Each measurement (with 3 buffers)
3	SensION 5 Conductivity meter	Once a month
4	SensION 6 DO meter	Each measurement
5	Digital Titrator	Not Available
6	2100P Turbidity meter	Once each week
7	COD Reactor DRB200	Not Available

2. Distilled Water Management

<u>The green light is on, but the</u> <u>instrument does not work</u>

- Check the water level inside the instrument.
- Unscrew the black cap.
- Press the white button.
- Restart the instrument.

3. pH Meter Management

Why does not PH meter calibrate?

- Check the buffer solution whether they are clean or not, whether they are fresh or not, and whether they are expired or not.
- Buffer solutions should be changed frequently.
- During calibration clean the electrode with distilled water to protect the buffers from carrying over.
- Check the gel cartridge whether it is empty or not.

3. pH Meter Management

Why does PH meter take long time to read?

- Because you do not calibrate it frequently.
- Because you did not calibrate it before this measurement.
- Try to swirl the electrode inside the sample.

3. pH Meter Management

BECAREFUL

• When you put the PH meter in the box, unplug the electrode to prevent bending it

4. EC Meter Management

What Solution should I choose to calibrate EC meter?

• Usually, we use 1000 µs solution for calibration, but in some cases when the conductivity of the measuring sample is high, we should calibrate with 18000 µs solution.

5. DO Meter Management

The readings are very high

- Filling the head with filling solution should be done once a month at least.
- Always keep the sponge wet.

6. Colorimeter

- It is not possible for the staff in the DFEAs to calibrate DR 890.
- The only thing that could be done, is to check the results with standards solutions.

Ion (1 mg/l)	EC(μ S/cm) 25°C
Na ⁺ (Sodium)	2.13
K ⁺ (Potassium)	1.84
NH ₃ -N	5.24
Ca ²⁺ (Calcium)	2.6
Mg ²⁺ (Magnesium)	3.82
Cl ⁻ (Chloride)	2.14
F ⁻ (Fluorine)	2.91
NO_3^- (Nitrate)	5.1
SO_4^{2-} (Sulfate)	1.54

Parameters			Concentration		
	Unit	Weak	Medium	Strong	
Solids, Total (TS)	mg/l	350	720	1,200	
1) Dissolved, Total (TDS)	mg/l	250	500	850	
2) Suspended Solids (SS)	mg/l	100	220	325	
BOD ₅ , 20°C	mg/l	110	220	400	
COD _{cr}	mg/l	250	500	1,000	
Nitrogen (Total as N)	mg/l	20	40	85	
1) Organic	mg/l	8	15	35	
2) Ammonia (NH3-N)	mg/l	12	25	50	
3) Nitrites (NO2-N)	mg/l	0	0	0	
4) Nitrates (NO3-N)	mg/l	0	0	0	
Phosphorus (Total as P)	mg/l	4	8	15	
1) Organic	mg/l	1	3	5	
2) Inorganic	mg/l	3	5	10	
Chloride (Cl-)	mg/l	30	50	100	
Sulfate (SO42-)	mg/l	20	30	50	

5. Others (Normal Problems and Solutions)				
1) When should we make reagent blank correction?				
Run the reagent blank correction with each new lot of reagents. It is recommended to make the correction with each new bag of reagent				
For more information about Reagent Blank Correction, please refer to the S.O.P.				
) What should we do with expired reagent or nearly expired?				
 a. When you buy reagent, make sure that they have long life time. b. Classify the reagents by expired date, and start with the reagents which are going to be expired soon. c. If you have some expired reagents, test them with standard solutions <i>periodically</i>. If the results are good, you can use these expired reagents. d. In some cases like expired B.O.D seed you can adjust the amount of the reagents. 				

3) Why doesn't D.O meter work well?

It is very important to make maintenance and cleaning for the D.O probe.
You should make it at least once each two months.

For more information about Reagent Blank Correction, please refer to the S.O.P. and the attached paper.

4) Notes about preparing standards (dilution)

- a. Do not use small pipettes, if possible. (using 5 or 10 ml)
- b. Select suitable flasks.
- c. Use one mark graduated pipettes.
- d. If you are using the same pipette for different concentrations of standards, start with the low concentration then the bigger.

5) The Most In) The Most Important parameters to be measured						
Factory	Parameter						
Oil refinery	pH, temp., TDS, SS, COD, BOD, PO ₄ , Cl ⁻ , NH ₃ , S, oil						
Olive oil	pH, temp., TDS, SS, COD, BOD, PO ₄ , Cl ⁻ , NH ₃ , oil, etc.						
Chemical fertilizer	pH, temp., TDS, SS, COD, BOD, PO ₄ , Cl ⁻ , NH ₃ , S, F ⁻ , CN ⁻ , As, Cu						
Tannery	pH, temp., TDS, SS, COD, BOD, PO ₄ , Cl ⁻ , NH ₃ , S, oil, Cr						
Textile	pH, temp., TDS, SS, COD, PO ₄ , Cl ⁻ , NH ₃ , S, oil, Cr etc.						
Slaughter	pH, temp., TDS, SS, COD, BOD, PO ₄ , Cl ⁻ , NH ₃ , oil, etc.						
Paper making	pH, temp., TDS, SS, COD, BOD, PO ₄ , Cr, NH ₃						
Food processing	pH, temp., TDS, SS, COD, BOD, PO ₄ , Cl ⁻ , NH ₃ , oil, etc.						
Detergent	pH, temp., TDS, SS, COD, BOD, PO ₄ , Cl ⁻ , NH ₃ , surfactants						

1. Sampling & Preservation for Chemical & Biological and Heavy Metals Analysis (Mr. Kimura and Mr. Sato)		
1) Sampling time: Sunday or Mond transportation period and receivi DAM. DFEA)	ay (Considering ng procedure by	
2) Preservation method:		
a) Chemical		
b) Biological (Coliform)		
c) Heavy Metals		
3) Recording form		
,		

Title	Contents of Training	Remarks
Sampling	Selection of sampling point Selection of sampling point Sampling methods (composite) Determination of sampling frequency Selection of measuring parameters	 Sampling for Environ Monitoring Video CD and internet
Analysis and QA/QC	 Basic theory of water chemistry Measuring principle of selected parameters Basic theory & practice of QA/QC Laboratory O/M (layout design, including safety manual etc.) New parameters analysis 	1. Text book of water chemistry 2. Standard Method (APHA, AWWA) 3. Hach's manuals 2. Video CD
Interpretation	 Industrial wastewater characteristics Elementary knowledge of water & wastewater treatment 	1. Text book of industrial wastewater and treatment etc.

4. QA/QC and Others	
1) Sampling location	
a) Continuity for fixed stations	
b) Individual stations (inspection and	l other purposes)
2) SOPs modification (especially for ne	w methods)
3) Internal QC: Standard solution appl	ication
4) External QC: AEC QC system partie (Measuring range and Estimates Detection	cipation
equipment for basic water quality analysis considered.)	have to be
5) Additional parameters analysis	
(Hach manual + reagents with Color	imeter Set)

