Annex 2-3: Lecture Materials for Training

2.3.5 Air Quality

Lecture Material -01 Form for Air Quality Monitoring Data and its Key Points

Air Quality Analysis

Form for Air Quality Monitoring Data and its Key Points

In an environmental monitoring, it is important how to use the data especially for investigation and identification of pollutants. Thus, the obtained data should be input in a unified table, and a report should be prepared periodically (monthly, seasonally, and annually) using input data in accordance with its objectives such as a) description of current environmental situation, b) materials for environmental awareness to the citizens, and c) detailed information for taking an action by decision makers and administrative authorities.

1. Example table for summarization of the results

In an ambient air quality monitoring, the following conditions should be clarified in the monitoring plan:

(1) Type of pollution source:

- a) Fixed sources such as factories,
- b) Mobile sources such as automobiles and airplanes, and
- c) Area (non-point) sources such as smoke by field burning, blowing up of dust and soil.
- 2. The differences in land uses:
 - a) Region of residences.
 - b) Business Region.
 - c) Industrial region.
 - d) Region mixed of residences and industry.
 - e) Region with main roads and bordering.
 - f) Suburban region.
- 3. The differences in the investigation targets:
 - a) The observation of the conformity conditions for environmental standards.
 - b) The prevention of damages before they occur.
 - c) The accumulation of data and the correspondence to the conditions of emergency by the data that allow making decisions.
 - d) Obtaining the basic data for establishing the countermeasures for preventing air pollution in the region.
 - e) Evaluating the effectiveness of the countermeasures from the data that are obtained before after these countermeasures are taken.
 - f) Investigation for the purpose of proper arrangement to fix monitoring station.
 - g) Taking the countermeasures of the complaints.

The subjects of measurements carried out	for detecting pollutants are selected based
on the types of the sources of generation.	

Source	Kind	Atmospheric pollutant
Combustion	Gases, Dusts	SO2, NO _x , CO, HC, C,
		Acids
Car	Gases, Dusts	NO _x , CO, HC, C
Oil refinery	Gases, Dusts, Mists	SO2, H2S, HC, NH3, CO,
		R-SH, Acids
Chemical plant	Gases, Dusts, Mists	SO2, H2S, HC, F, NH3,
		CO, R-SH,
Furnace, electric furnace	Gases, Dusts, Fumes	Acids, F, Cl, SO2, NOx,
and metal refining		CO, HC, C, Fumes
Food and fodder	Gases, Dusts	Malodorous substance
processing		

For monitoring the ambient air quality with respect to investigation targets, the following procedure is implemented:

- 1) The differences in the measuring procedure:
 - a) Continuous measurements for one hour:
 - Automatic continuous monitoring equipment for SO₂, etc.
 - b) Intermittent measurements for one hour Handy sampler with impinger.
 - c) Several hours measurement: Handy sampler, High Volume (Hi-Vol) sampler, Passive sampler.
 - d) Measurements range from one day to several days: High Volume (Hi-Vol) sampler, Passive sampler.
 - e) One week measurements of the average concentration Low Volume (Low-Vol) sampler, Passive sampler.
 - f) Measurements for one month: Dust jar, deposit gauge, PbO₂ method, and Alkali filter paper method.
- 2) The differences in measurements with interval:
 - a) Automatic continuous measurements throughout the year.
 - b) Season measurements.
 - c) Measurements at fixed periods for every month.
 - d) Daily four measurements at morning, noon, evening, and midnight.
 - e) Measurements correspond to necessity.

The following table represents a form of the summary of the results that are collected throughout a month of monitoring as an example.

		Air Quality Meteorological condition	Sulfur dioxide Hi-Vol Sampler Hydrocarbon Dust jar W/D W/S Temp. Humi. Weather $(SO_2)(\mu g/m^3)$ SPM $(\mu g/m^3)$ (HC) $(\mu g/m^3)$ (kg/km ² /month) (16 Direc.) (m/s) () (%)	Ave. Max. Ave. Max. Ave. Max. Falling Pb Zn Most Ave. Ave. Ave.	tx. dust etc. freq.																				value Min · Minimum value
×.		-	Dust (kg/km ² /	Falling Pb	dust																				
,			Hydrocarbon HC) (μg/m ³)	'e. Max.																					
)		-	ii-Vol Sampler SPM (μg/m ³) (ve. Max. Av																					at
•		Air Quality	ulfur dioxide H 02) (µ g/m ³) 5	e. Max. A																					in. : Minimum valu
		-	$(0, NO_2, NO_x)$ S (1^3) (S	NO _x Av	ax. Ave. Max.																				ax. : Maximum value, M
(Month:	FEA]		Nitrogen Oxide (N (µ g/m	NO NO ₂	Ave. Max. Ave. M																				3. : Average value, Ma
		Date	(day)		V	- 0 -	v 4	Average	3 2 1	4	Average		<i>с</i> , 4	Average		2	ς,	4	Average	1	2	ŝ	4	Average	tes: * Ave
I	- - -	Sampling	Points			A			В			С			D					Ш					No

Summary table of monitoring Results (Example)

* Ave. : Average value, Max. : Maximum value, Min. : Minimum value

* In this table, monthly four measurements are assumed.

* For the average values of NO₂, SO₂, etc, multiple daily measurements are assumed.

4

(2) Monthly report of the monitoring results

The following condition is assumed for which monitoring is carried out and a form of the monthly report is prepared.

After the sampling point of the region has been decided, measurement results of the monitoring are assumed. However, the case of 24 hours of continuous measurements can be considered, also the case of fixed periods of measurements at four selected times; morning, noon, evening, and midnight, can be considered.

The case of fixed periods of sampling is mentioned below. The subjects of measurements are selected in accordance with the objective.

After we obtained the data of the suspended particulate matters (SPM), heavy metal or ion analysis will be implemented, then a different form would be considered.

Monthly Report of Air Quality Monitoring Result (Example)

Monitoring Point : Monitoring Month :

	Monitoring Month	:
ľ	DFEA	

Measured	hour	NO	NO2	NOx	SO2	СО	Ox	SPM	HC	W/D	W/S	Temp	Humi
day		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(µg/m3)	(µg/m3)	(16 Drec.)	(m/s)	()	(%)
	8~9												
	12~13												
	16~17												
	20~21												
	Ave.												
	8~9												
	12~13												
	16~17												
	20~21												
	Ave.												
	8~9												
	12~13												
	16~17												
	20~21												
	Ave.												
	8~9												
	12~13												
	16~17												
	20~21												
	Ave.												
	8~9												
	12~13												
	16~17												
	20~21												
	Ave.												
	Max.												
Hourly	Min.												
	Ave.												
Standard exceed	times												

In the monthly report of the automatic continuous measurements, the following data are recorded within a month: hourly maximum value, hourly minimum value, hourly average value, maximum of the daily average values, minimum of the daily average values, average of the daily average values, 98 % of the hourly values, the environmental standard exceed times and days are indispensable.

Also, it is considered, the measurement subjects are selected after the condition of the sources of generation in the region and the situation of the pollution.

The following table represents a form of the case of preparing a monthly report about the monitoring results.

Monthly Report of Air Quality Monitoring Results (Example) Monitoring Point:

Monitoring date (month, year): DFEA

	[DFEA]												
Measu	rement	NO	NO ₂	NO _x	SO ₂	СО	O _x	SPM	HC	W/D	W/S	Temp.	Humi.
da	ay	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(µg/m ³)	(µg/m ³)	(16 Direc.)	(m/s)	()	(%)
	1												
	2												
	3												
	4												
	5												
	6												
	7												
	8												
	9												
	10												
	12												
	13												
	14												
	15												
	16												
	17												
	18												
	19												
	20												
	21												
	22												
	23												
	24												
	25												
	20												
	27												
	20												
	30												
	31												
	Max.												
	Min.												
	Ave.												
Hourly	50%												
	Value												
	98%												
Deiler	Value												
Daily	Max.												
	Min.												
No. of date	Ave.												
collecting	a times												
No. of def	ective data												
Measurem	ent rate											+	
(%)													
Standard													
exceed tim	es											ļ	
Standard													
exceed day	/S		1		1	1	1					1	

Note: For the values that exceed the environmental quality standard, a sign is made at those values so that they can be distinguished easily.

(3) Daily report of the monitoring results

Daily Report of Air Quality Monitoring Results (Example)

Monitoring Point: Monitoring Date:

Monitoring Dat
DFEA

[]		DFE.	A										
Measurement	NO	NO ₂	NO _x	SO_2	СО	O _x	HC	SPM	W/D	W/S	Temp.	Humi.	Solar R.
time	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	(µg/m ³)	(µg/m ³)	(16 Direc.)	(m/s)	()	(%)	(w/m ²)
0~1													
1~2													
2~3													
3~4													
4~ 5													
5~6													
6~7													
7~8													
8~9													
9~10													
10~11													
11~12													
12~13													
13 ~ 14													
14 ~ 15													
15~16													
16~17													
17~18													
18~19													
19~20													
20~21													
21 ~ 22													
22 ~ 23													
23 ~ 24													
Max. value													
Min. value													
Ave. value													
No. of data													
No. of													
defective data													
Measurement													
rate (%)													
Standard													
exceed times													

Note:

For the values that exceed the environmental quality standard, a sign is made at those values • so that they can be distinguished easily.

Regarding the SPM, it is assumed that the sampling is made by Hi-Volume Air Sampler and • for 24 hours.

(4) When arranging individual monitoring results

	Sampling 1	Date :						-		- /	
	Sampling	_	A	point	В	point	C	point	D	point	
	time	Item	ppm	$\mu g/m^3$	ppm	µg/m ³	ppm	µg/m ³	ppm	$\mu g/m^3$	Notes
1		NO									
		NO ₂									
		NO _x									
2		NO									
		NO ₂									
		NO _x									
3		NO									
		NO ₂									
		NO _x									
4		NO									
		NO ₂									
		NO _x									

Nitrogen Oxide (NO, NO₂, NO_x) Monitoring Results (Example)

Sulfur dioxide (SO₂) Monitoring Results (Example)

	Sampling Date:			(-)		8	(1	,	
	Compliant Comp	A point		B point		C point		D point		Notes
	Sampling time	ppm	$\mu g/m^3$							
1										
2										
3										
4										

Carbon Oxide (CO) Monitoring Results (Example)

	Sampling Date :			. ,		0	× ×	1	,	
	Compliant Gran	A point		int B		C point		D	point	Notes
	Sampling time	ppm	$\mu g/m^3$	ppm	$\mu g/m^3$	ppm	$\mu g/m^3$	ppm	$\mu g/m^3$	
1										
2										
3										
4										

Oxidant (Ox) Monitoring Result (Example)

	Sampling Date :			,		0		- /		
	0 1	А	point	В	point	C point		D	point	Notes
	Sampling time	ppm	$\mu g/m^3$	ppm	$\mu g/m^3$	ppm	µg/m ³	ppm	$\mu g/m^3$	
1										
2										
3										
4										

		-	U	× • • /	(Unit: $\mu g/m^3$)
Sampling point	А	В	С	D	Notes
Sampling					
time					
Item					
pH Gl-					
NO ₃ ⁻					
SO_4^2					
$\mathrm{NH_4}^+$					
Pb					
Zn					
Cd					
Cu					
Ni					
Fe					
Mn					
Cr					
V					
Al					
Са					
Mg					
Organic Carbon (O-C)					
Elemental Carbon (E-C)					
Total Carbon (T-C)					

High Volume Air Sampler Monitoring Results (Example)

Monitoring Month :				(Unit : ton/km ³ /Month)					
				Sampli	ng point				Notes
Item	А	В	C	D	E	F	G	Н	
pН									
Water-soluble									
substance									
Cl-									
NO ₃ -									
SO_4^2									
NH4 ⁺									
Ca ²⁺									
Na ⁺									
Water insoluble									
substances									
Extracted									
Materials (Tar)									
Combustibility									
materials									
Ash									
Pb									
Zn									
Cd									
Cu									
Ni									
Fe									
Mn									
Cr									
V									
Mg									

Monitoring Results of the falling dust (Example)

Lecture Material -02

Making of collection element (filter) for Air Quality Analysis

Air Quality Analysis

Making of collection element (filter)

1. NO2 and NOx collection element

- 1. Cut a cellulose fiberglass filter into circular pieces by using a holing tool.
- 2. Put the circular filters on a piece of nylon.
- 3. Prepare absorption solution by following the chart below.
- 4. Distribute a certain quantity of the absorption solution on each circular filter, and then let it dry by following the chart below.
- 5. After drying, put the circular filters into glass (or plastic) containers and close tightly.

(1) Preparing absorption solution for NO_2 and NO_x filter

(2) Preparing sampling filter for NO₂ and NO_x

Note: NO₂ sampling filter can also be used for sampling SO₂

2. SO2 collection element

The method of making the SO2 collection filter paper is the same as the method of making NO2.

3. NH3 collection element

Flow of making of NH3 absorption liquid and Collection element

4. O3 collection element (Draft)

Flow of making of O3 absorption liquid and Collection element

Proposal of the Determination Method for the Environmental Impact Assessment and the Scope of the Regional Investigation

Comparatively, Homs has various big factories. Regarding the investigation plan, we studied the behavior of the air pollutants and the environmental impact depending on the targeted factory.

By considering the weather conditions of Homs region, we predict mathematically the ambient air dispersion and propose a method for determining the necessary scope of the investigation target of the considered stationary source of pollution (factory). Furthermore, by studying the stack effective height we explain the evaluation of the pollutants impact of a stationary source of pollution on the surroundings and the effect of its stack height. This proposed method for determining the necessary scope of the investigation target can also be applied to regions other than Homs.

1. Conclusions

As for the examination results and by considering a factory with a stack of 100 m height, the scope of air quality investigation targets is the area of the radius 10 km. Within this scope, the area of the radius 5 km is established as the important investigation area.

The reasons are explained as follows:

- a) By analyzing the meteorological observation for a whole year, it can be noticed that Homs is dominated by west wind, but various wind directions emerge (but east wind does not). However, in the around-year investigation it is inappropriate to establish an investigation region regarding only west wind direction.
- b) In the seasonally short term investigation, the target area subjected to investigation can be narrowed as can be understood form the Wind Rose.
- c) Tentatively, by assuming a factory with a stack of $80 \sim 90$ m height, the estimated effective stack height is 120 m depending on the discharge gases temperature and flux. In this case, the maximum concentration above the ground, Cmax, occurs within the scope of 10 km from the source of pollution for all air stability classes A ~ D, and Cmax value falls generally in the range $0.020 \sim 0.200$ ppm depending on the atmospheric stability classes.
- d) The maximum concentration at 10 km from the source of pollution has the general value of 0.020 ppm for all classes of atmospheric stability (concentration at the background, BG, should be added to this value).
- e) Depending on the weather conditions, a serious impact is possible on the area which extends within 5 km from the smoke source.
- f) The height of a factory stack is one of the countermeasure methods for greatly

eliminating the environmental impact of that factory on its vicinity.

2. Ambient air dispersion prediction and environmental impact assessment

(1) Meteorological analysis and evaluation

The weather conditions of the targeted region are of great importance for the sake of predicting air quality concentration originated from the pollution sources and determining the scope of investigation. Thus, we analyzed the meteorological data of Kattina village in Homs for the period from Aug. 2006 to Jun. 2007, and evaluated the weather characteristics of Homs region. Figure 2.1 shows the wind rose and the frequency of the wind velocity.

Homs-Kattina (Oct.)

Homs-Kattina (Nov. 2006)

Figure 2.1 (1) Wind Rose

Frequency of the wind velocity

(Homs-Kattina: Feb. 2007)

Frequency of the wind velocity

Figure 2.2 shows the daily change of the maximum, minimum and average temperature of the meteorological data obtained for the period 21 Aug. $2006 \sim 27$ Jun. 2007.

Especially, in the clear nights in winter and in accordance with the radiative cooling, the temperature of the ground surface drops and air temperature becomes higher than ground surface temperature, and this might lead to the formation of an inversion layer. Under such conditions, atmospheric air becomes extremely stable and the pollutants discharged into the vicinity of the ground surface can hardly diffuse, therefore, concentration becomes extremely high.

Figure 2.2 Daily change of the maximum, minimum and average temperature

(2) Atmospheric dispersion model (plume type)

a) The setup condition of the atmosphere dispersion calculation (example)

A	A		
NO _x Concentration in the ex	haust gases	ppm	2000
Exhaust gas flux (total)		m ³ /s	12.56
Considered pollutant flux (Q	(NOx)	m ³ /s	0.02512
Atmospheric stability class	А	m/s	2.0
(A - G) and the setup of	В	m/s	2.0
the wind velocity (U)	С	m/s	3.0
	D	m/s	4.0
	E (Night)	m/s	3.0
	F (Night)	m/s	2.0
	G (Night)	m/s	1.0

Table 1 Setup Condition of the Atmosphere Dispersion Calculation

b) Equation of the atmosphere dispersion model

In the prediction of the concentration of the air pollutants that are discharged from the pollution sources, plume equation of air dispersion is used generally.

• Point source dispersion formula (when wind is blowing)

$$C = \frac{Q}{2 \cdot y} \exp\left\{-\frac{y^2}{2 \cdot y^2}\right\} \cdot \left[\exp\left\{-\frac{(\text{He} - z)^2}{2 \cdot z^2}\right\} + \exp\left\{-\frac{(\text{He}^2 + z)}{2 \cdot z^2}\right\}\right]$$

Where,

- C: Concentration at the forecast point (m^3/m^3)
- y and z: Distances of the horizontal direction (y) and the vertical direction (z) from the point stationary source (stack) to the forecast point (m). (z is the distance from the ground surface to the pollutant sampling point, and usually is set at 1.5 m; the level of human breathing of air).
- Q: Considered pollutant flux in the point stationary source (m_{NOx}^3/s) .
- U: Velocity of the wind (m/s)

(The direction of leeward is assumed to be the direction x).

(By definition: Leeward is the direction in which the wind is blowing).

(By definition: Windward is the direction from which the wind is coming).

He: Effective stack height (m)

 σ_{v} : Dispersion width along the right-angle (horizontal) direction (y), (m).

 σ_z : Dispersion width along the vertical direction (z), (m).

Figure 2.3 Image of the atmospheric dispersion model

Table 2 illustrates the classification of Pasquill atmospheric stability classes. Class "A" indicates extremely unstable ambient air, and thus its dispersion is fast. On the other hand, class "G" indicates extremely stable ambient air, and thus its dispersion is very slow.

Table 2 Pasquill atmospheric stability classes classification

Wind velocity		Solar rac (kW/	liation m ²)	Net radiation (radiation reflected from the earth into the sky during night time (kW/m^2)			
(m/s)	0.60 ~	0.30 ~ 0.60	0.15 ~ 0.30	~ 0.15	-0.020 ~	-0.040 ~ -0.020	~ -0.040
~ 2	А	A - B	В	D	D	G	G
2 ~ 3	A - B	В	С	D	D	Е	F
3 ~ 4	В	B - C	С	D	D	D	Е
4 ~ 6	С	C - D	D	D	D	D	D
6 ~	C	D	D	D	D	D	D

Note: In addition to the above mentioned classification, there is a classification method that takes into account the cloudiness degree.

Regarding the classification of the atmospheric stability classes, the relation between the horizontal dispersion width (σ_y) and the vertical dispersion width (σ_z) with the distance of the pollution source is shown in figure 2.4.

Figure 2.4 Dependency of σ_y and σ_z on the distance of the pollution source and the atmospheric stability classes

(2) Pollutant concentration distribution in the leeward direction

The relation between the pollutants concentration in the main stream of the gaseous pollutants and the distance from the stationary source of pollution is shown in figure 3 (each figure is obtained for a certain effective stack height (He) and all atmospheric stability classes). From these figures we can notice the followings:

• Cmax concentration differs greatly in accordance with the weather conditions, i.e.,

atmospheric stability classes.

- High concentration values are generated when air is unstable.
- When the location of Cmax is at short distance form the pollution source, the concentration Cmax becomes high.
- The higher the effective stack height (He), the longer the distance of Cmax from the pollution source and the smaller the value of Cmax.

Figure 3-(1) Relation between the pollutant concentration and the distance from the stationary source along with the atmospheric stability classes (He: 100m)

Figure 3-(2) Relation between the pollutant concentration and the distance from the stationary source along with the atmospheric stability classes (He: 120m)

Figure 3-(3) Relation between the pollutant concentration and the distance from the stationary source along with the atmospheric stability classes (He: 150m)

Figure 3-(4) Relation between the pollutant concentration and the distance from the stationary source along with the atmospheric stability classes (He: 200m)

Figure 3-(5) Relation between the pollutant concentration and the distance from the stationary source along with the atmospheric stability classes (He: 250m)

Figure 3 Relation between the pollutant concentration and the distance from the stationary source of pollution (each figure is obtained for a certain effective stack height (He) and all atmospheric stability classes)

Figure 4 Relation between Cmax and the effective stack height (He) for the various atmospheric stability classes.

(Point of consideration)

In case of pollution source with a high stack, the more unstable the ambient air is, the bigger the impact of the concentration above the ground, as was mentioned above. But, in case of pollution source with a short stack, conversely, the more stable the ambient air is, the bigger the impact of

the concentration above the ground. Therefore, it is necessary to consider this point.

		1	1	1	1			
Note	Subtract absorbance of the absorption liquid from the sample.		Subtract absorbance of the absorption liquid from the sample.		Absorbance of Blank test solution is subtracted from the sample.	Colored operation avoids direct sunlight.		
Contrast solution of cell	Distilled water	Colored operation to absorption liquid	Distilled water	Blank test solution	Distilled water	Blank test solution	Blank test solution	Blank test solution
Colored liquid	Purplish red	Purplish blue	Light yellow	Blue	Yellow	Blue	Dark-red	Blue
Wave Length	550 nm	560 nm	362 nm	620 nm	400 nm	670 nm	460 nm	620 nm
Leaving time after coloring (min)	15	20	No necessity of leaving	30 or more	10	30	5	50
Flowmeter (L/min)	0.2 – 0.4 (0.4)	0.5 – 2.0 (1.0)	1.0 – 2.0 (1.0)	0.5 – 2.0 (1.0)	0.5 – 1.0 (1.0)	0.5 – 2.0 (1.0)	1.0 – 2.0 (1.0)	1.0 – 2.0 (1.0)
Impinger	Bubbler							
Measuring Method	Saltzman Reaction Method	Pararosaniline Method	Neutral potassium iodide method	Alizarin complexone absorption photometry (ALC)	Nessler Method	Methylene blue Method	Mercury () thiocyanate Method	Pyridine – pyrazolone Method
Measuring Item	Nitrogen Oxides (NO _X)	Sulfur dioxide (SO ₂)	Ozone (O3)	Fluorine (F)	Ammonia (NH3)	Hydrogen sulphide (H2S)	Hydrogen chloride (HCl)	Hydrogen cyanide (HCN)

About the Measurement Item and the Absorbance Measurement

Lecture Material -07

Additional training lecture for air quality SOPs

Air Quality Analysis

Additional training lecture for air quality SOPs

May 28-2007

1. Basic knowledge of chemistry

In this file an explanation of the common items in the air pollutants Standard Operation Procedure (SOPs) is presented.

Matter can be classified into three types; elements, compounds, and mixtures. An element is the simplest type of matter and consists of only one kind of atom (Ex: hydrogen, oxygen, carbon,...). Atom is the smallest form of an element. A compound is a type of matter composed of two or more different elements that are chemically bound together. Molecule is the smallest form of a compound. For example ammonia: it is a compound consists of the element nitrogen (N) and the element hydrogen (H).

An atom is electrically neutral and composed of a positively charged central nucleus surrounded by one or more negatively charged electrons. The atomic nucleus consists of protons, which have positive charges, and neutrons, which have no charges (the only exception is the simplest hydrogen nucleus which does not have neutrons).

The atomic number of an element equals the number of protons in the nucleus of each of its atom. The mass number of an atom is the sum of the total number of protons and neutrons in the nucleus of that atom.

Atomic symbol is a representative of an element name. For example: ${}^{35}_{17}Cl$, where

Cl is for the element chlorine, and 35 is its mass number, and 17 is its atomic number.

(1) Atomic symbol and weight

Carbon atom has been given the number 12 as its atomic weight (mass number), which has been considered as the standard. The other atoms have atomic weights that are relative to the carbon atomic weight.

The element symbol is a term that represents an element's name: H for Hydrogen, O for Oxygen, C for Carbon, N for Nitrogen, S for Sulfur, Cl for Chlorine, Na for Sodium and Ca for Calcium.

Followings are the atomic weights of the elements that are frequently used:

(H: 1), (O: 16), (C: 12), (N: 14), (S: 32), (Cl: 35), (Na: 23), (Ca: 40.1)

(2) Molecular formula and molecular weight

The sum total of the atomic weight of an element is its molecular weight. Both atomic and molecular numbers are absolutes.

(3) Amount of a substance (= mol)

The number of substance entities (atoms or molecules or ions or electrons) in 1 mole of a substance is the Avogadro's number which equals 6.022×10^{23} entity. The

amount of a substance that expresses the molecular weight with the gram unit is called mol: 1000 mol = 1 kmol.

 $\begin{array}{ll} 1 \mbox{ mol of carbon-12 contains } 6.022 \times 10^{23} \mbox{ carbon-12 atoms and weighs 12 g} \\ 1 \mbox{ mol of } H_2O \mbox{ contains } 6.022 \times 10^{23} \mbox{ H}_2O \mbox{ molecules and weighs 18 g} \\ \mbox{ Q1: How many grams are there in 1 mol of } CO_2? \end{array}$

Q2: How many kg are there in 0.5 kmol of O_2 ?

(4) Valence

The outer electrons of an atom, which are the ones involved in chemical bonding, are often called valence electrons.

Valence is the measurement of the power of an atom to combine with others, by the number of Hydrogen atoms it can combine with or displace.

Valence	Element
1	H, F, Cl, Br, Na, K, Ag, Cu, (Hg)
2	O, S, Ca, Ba, Mg, Zn, Cd, (Cu), (Fe), (Pb), Hg, (V)
3	N, P, B, Al, Fe, Ti, (V)
4	C, Si, (Ti), Pb, (V)
5	V

(5) Boyle Charles's law

The physical behavior of a sample of gas can be described completely by four variables: pressure (P), volume (V), temperature (T), and amount (number of moles).

- a) Boyle's law: at constant temperature, the volume occupied by a fixed amount of gas is inversely proportional to the applied (external) pressure: *PV* = constant.
- b) Charles's law: at constant pressure, the volume occupied by a fixed amount of gas is directly proportional to its absolute temperature: V/T = constant.

Therefore, a change of a gas from a state represented by pressure P_1 , volume V_1 , and absolute temperature T_1 to a state represented by pressure P_2 , volume V_2 , and absolute temperature T_2 can be described mathematically as:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Q3: A gas at the following condition: P = 2.5 atm, T = 150 °C, V = 200 m³. Calculate its volume at the standard conditions (P = 1 atm, T = 0 °C)

Note: in the above equation, temperature must be in the Kelvin scale (K) (where: $K = {}^{\circ}C + 273.15$).

(6) Chemical change and reaction equation

$$2H_2 + O_2 \rightarrow 2H_2O$$

Points:

- In a chemical reaction, the kind of atoms and their numbers in the right-hand and left-hand of the reaction equation do not change.
- The mass in the right-hand and the mass in the left-hand of the reaction equation are the same:

$2\mathrm{H}_2$	+	$O_2 \rightarrow$	$2H_2O$
4 g		32 g	2(18) g
36 g			36 g

• The volume ratios of the right-hand and left-hand of the reaction equation are related to each other in an integer number of comparison coefficient:

Note: at the standard conditions (T = 0 °C, P = 1 atm) the standard molar volume equals 22.4 L.

2H ₂ +	$O_2 \rightarrow$	$2H_2O$	(water vapor)
2 mol	1 mol	2 mol	(amount of substances)
2×22.4 L	22.4 L	2×22.4 L	(volume)
2	1	2	(mass)

Q4: What are the mass and the volume of CO_2 and H_2O that are resulted from the combustion of 100 g of Methane (CH₄)

Point 1: writing the chemical reaction equation

Point 2: by observing the reaction equation, examining the relation between the volume and the mass.

CH_4	+ $2O_2$ -	\rightarrow CO ₂	+ 2H ₂ O	(water vapor)
1 mol	2 mol	1 mol	2 mol	(amount of substances)
22.4 L	2×22.4 L	22.4 L	2×22.4 L	(volume)
16 g	64 g	44 g	36 g	(mass)

Mass calculation:

By burning 16 g of CH_4 , 44 g of CO_2 and 36 g of H_2O are released. Therefore, by burning 100 g of CH_4 , the following equations are used to calculate the masses:

$$CO_2 = \frac{100 \times 44}{16} = 275 (g)$$

 $H_2O = \frac{100 \times 36}{16} = 225 (g)$

Volume calculation:

By burning 100 g of CH₄, the following equations are used to calculate the volumes:

$$CO_2 = \frac{100 \times 22.4}{16} = 140 (L)$$
$$H_2O = \frac{100 \times 44.8}{16} = 280 (L)$$

(7) Molar concentration (Molarity)

Molarity is defined as the numbers of moles of solute per liter of solution (the unit is mol/L).

Q5: If we dissolve 10 g of sodium hydroxide (NaOH) in 500 ml of water, what is the molar concentration?

(8) Acid, base, and neutralization

An acid is a substance that produces H^+ ions when dissolved in water, and a base is a substance that produces OH^- ions when dissolved in water.

The number of H⁺ contained in an acid molecule is called the valence of the acid.

The number of OH⁻ contained in a base molecule is called the valence of the base. Acid of valence =1: Hydrochloric acid (HCl), Nitric acid (HNO₃), Acetic acid (CH₃COOH)

Acid of valence =2: Sulfuric acid (H_2SO_4) , sulfurous acid (H_2SO_3)

Base of valence =1: Sodium hydroxide (NaOH), ammonia (NH₃)

Base of valence =2: Calcium hydroxide (Ca(OH)₂), magnesium hydroxide (Mg(OH)₂)

The reaction between an acid and a base is a transfer of hydrogen ion H^+ (proton). The quantitative relation of the neutralization titration is shown as follows:

(Amount of the acid substance) \times (valence number) = (Amount of the base substance) \times (valence number)

Therefore, if the following equation expresses the acid-base neutralization:

 $n_{acid} \times v_{acid} \times a_{acid} = n_{base} \times v_{base} \times a_{base}$

Where, n: concentration (mol/L), v: volume (L), a: valence number

(9) Oxidation and reduction

In oxidation-reduction reaction, the key chemical event is the net movement of

electrons from one reactant to the other. This movement of electrons occurs from the reactant (or atom in the reactant) with less attraction for electrons to the reactant (or atom) with more attraction for electrons. (Oxidation is the loss of electrons, and reduction is the gain of electrons).

a) Points

- Oxidation and reduction are synchronous (take place simultaneously).
- If substances A and B undergo a chemical reaction and A is oxidized, then B is reduced.

b) Definitions

[Definition 1] Transfer of oxygen:

- Oxidation is a reaction in which a substance is combined to oxygen atom.
- Reduction is a reaction in which a substance losses oxygen atom.

[Definition 2] Transfer of hydrogen:

- Oxidation is a reaction in which a substance losses hydrogen atom.
- Reduction is a reaction in which a substance is combined to hydrogen atom.

[Definition 3] Transfer of electron (basic):

- Oxidation is a reaction in which a substance losses electron.
- Reduction is a reaction in which a substance gains electron.

Form example, during the formation of magnesium oxide, Mg undergoes oxidation and O_2 undergoes reduction. The loss and gain are simultaneous, but we can imagine them occurring in separate steps:

Oxidation (electron loss by Mg): $Mg \rightarrow Mg^{2+} + 2e^{-1}$

Reduction (electron gain by O₂): $\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-}$

(Note: atomic number of Mg is 12, and that of O is 8)

Therefore, we say that O_2 oxidizes Mg, and thus O_2 is the oxidizing agent. Similarly, Mg reduces O_2 , and thus Mg is the reducing agent.

c) Oxidation number

Oxidation number is a number assigned to an element in chemical combination which represents the number of electrons lost (or gained, if the number is negative), by an atom of that element in the compound.

Rules:

Oxidation number of a simple substance (an atom in its elemental form) = 0

Oxidation number of H = +1

Oxidation number of O = -2

Oxidation number of alkali metals = +1

Sum of the oxidation numbers of the atoms in a compound = 0

Oxidation number of a polyatomic ion such as SO_4^{-2} equals the valence number of the ion (the ion charge).

Example: Metallic ion (Fe) is a simple atomic substance, therefore, its oxidation number is 0. Oxidation number of Fe in the compound Fe_2O_3 is 3.

Q6: What is the oxidation number of Mn in the compound KMnO₄?

 $KMnO_4 = (1) + MN + (-2 \times 4) = 0$

Thus, Mn = +7

d) Value of oxidizing agent and reducing agent

The value of oxidizing agent and reducing agent is determined depending on the number of electron transfer in 1 mol of both agents.

• Potassium permanganate (KMnO₄) acidic solution

$$2KMnO_4 + 3H_2SO_4 \rightarrow 2MnSO_4 + K_2SO_4 + 3H_2O + 5(O)$$

+2

Oxidation number of Mn atom: +7

Electron transfer: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

Thus, KMnO₄ is an oxidizing agent with the value 5 because 5 mol of electron transfer is deprived.

• Sodium hydrochloride (NaClO)

$$NaClO \rightarrow NaCl + O$$

Oxidation number of Cl atom: +1 -1Electron transfer: $ClO+2e^{-} \rightarrow Cl^{-1} + O$

Thus, NaClO is an oxidizing agent with the value 2.

• The metal sodium (Na)

$$Na \rightarrow Na^+ + e^-$$

Oxidation number of Na atom: 0 + 1

Thus, Na is a reducing agent with value 1 by considering the electron transfer of 1 mol.

• Hydrogen (H)

$$H_2 + (O) \rightarrow H_2O$$

Oxidation number of H: 0 +1

Electron transfer: $H_2 \rightarrow 2H^+ + 2e^-$

Thus, H2 is reduction agent with the value 2.

- Q7: Is Cl₂ an oxidation agent or a reduction agent, and what is the value?
- **Q8:** Is sodium thiosulfate (Na₂S₂O₃) an oxidation agent or a reduction agent, and what is the value?

[Reference]: $2Na_2S_2O_3 + I_2 \rightarrow 2NaI + Na_2S_4O_6$

Q9: Is potassium iodate (KIO₃) an oxidation agent or a reduction agent, and what is the value?

[Reference]: $KIO_3 + 5KI + 3H_2SO_4 \rightarrow 3K_2SO_4 + 3H_2O + 3I_2$

(10) Hydrogen ion exponent (pH)

The number of moles of H⁺ ions in a liquid solution falls in the range $10^0 \sim 10^{-14}$. This expressed, for simplicity, as the term pH:

$$pH = -log [H^+]$$

The concentration of H^+ ion in neutral water is 10^{-7} mol/L therefore its pH equals 7:

$$pH = -log(10^{-7}) = -7(-1) = 7$$

Q10: What are the H^+ ion concentration, pH, and hydroxide ion concentration of

0.004 mol/L hydrochloric acid (HCl)?

- In diluted solution, strong acid and strong alkali ionizes (dissociate into ions) completely.
- The relation ship between hydroxide ion (OH⁻) and hydrogen ion (H⁺) is given as follows:

$$[OH^{-}] \times [H^{+}] = 10^{-14}$$

 $0.004 \text{ mol/L}(\text{HCl}) = 0.004 \text{ mol/L}(\text{H}^+)$

$$pH = -\log [H^+] = -\log(4 \times 10^{-3}) = -(\log 4 + \log 10^{-3})$$

by substituting the value: $\log 4 = 0.602$, we get:

$$pH = -(0.602 - 3) \sim 2.4$$

the concentration of the hydroxide ion (mol/L) is given as:

$$\left[OH^{-}\right] = \frac{10^{-14}}{\left[H^{+}\right]} = \frac{10^{-14}}{4 \times 10^{-3}} = 2.5 \times 10^{-12}$$

2. Method of unit conversion (ppm \leftrightarrow mg/m³)

At the condition of 20 °C and 760 mmHg (1.013 Pa), the following equations are used for unit conversion:

$$ppm = mg / m^{3} \times \frac{24.04}{M}$$
$$mg / m^{3} = ppm \times \frac{M}{24.04}$$

The following table shows the concentration unit conversion of some gases:

C (ppm) = $A \times C$ (mg/m³)

 $C (mg/m^3) = B \times C (ppm)$

Gas name	Chemical formula	Factor	
		А	В
Nitrogen dioxides	NO ₂	0.52	1.91
Nitrogen monoxide	NO	0.80	1.25
Sulfur dioxide	SO_2	0.38	2,66
Ozone	O ₃	0.50	2.00
Hydrogen fluoride	HF	1.20	0.83
Ammonia	NH ₃	1.41	0.71
Hydrogen sulphide	H ₂ S	0.71	1.42
-------------------	-------------------------------	------	------
Hydrogen chloride	HCl	0.66	1.52
Hydrogen cyanide	HCN	0.89	1.12
Carbon monoxide	CO	0.86	1.16
Carbon dioxide	CO ₂	0.55	1.83
Methane	CH4	1.50	0.67
Ethane	C2H6	0.80	1.25
Benzene	C ₆ H ₆	0.31	3.25
Formaldehyde	НСНО	0.80	1.25

3. Other topics

- (1) The duration of leaving a solution as it is before coloring and absorbance measurement (change of coloring intensity).
- (2) The procedure of calculating air pollutants concentration.

Lecture Material -08 Analysis of Air Quality Monitoring Data and Guidance of Assessment Procedure

Air Quality Analysis

1. Analysis of air quality monitoring data and guidance of assessment procedure, etc.

- (1) Correlation analysis
- 1) Correlation between items

	NO	NO ₂	NOx	SO ₂	CO	O3	PM10	NM-HC	W.V.	Temp.	Humi.
NO	-										
NO ₂	NO	-									
NOx	NO	NO ₂	-								
SO ₂	NO	NO ₂	NO _x	-							
CO	NO	NO ₂	NOx	SO ₂	-						
O ₃	NO	NO ₂	NO _x	SO_2	CO	-					
PM10	NO	NO ₂	NOx	SO ₂	CO	O3	-				
NM-HC	NO	NO ₂	NOx	SO ₂	CO	O3	PM10	-			
W.V.	NO	NO ₂	NOx	SO ₂	CO	O3	PM10	NM-HC	-		
Temp.	NO	NO ₂	NO _x	SO_2	CO	O ₃	PM10	NM-HC	W.V.	-	
Humi.	NO	NO ₂	NOx	SO ₂	CO	O3	PM10	NM-HC	W.V.	Temp.	-
Solar R.	NO	NO ₂	NO _x	SO ₂	CO	O ₃	PM10	NM-HC	W.V.	Temp.	Humi.

Table 1-1 Relation between air quality concentration and weather conditions

 $\label{eq:MM-HC:NonMethaneHydrocarbon} W.V.: Wind Velocity \quad Solar R.: Solar Radiation$

NO	NO ₂	NO _x	SO ₂	CO	O3	PM10	NM-HC	Large Veh.	Small Veh.	Passenger car
-										
NO	-									
NO	NO_2	-								
NO	NO ₂	NOx	-							
NO	NO ₂	NOx	SO ₂	-						
NO	NO ₂	NO _x	SO ₂	CO	-					
NO	NO ₂	NOx	SO ₂	CO	O ₃	-				
NO	NO ₂	NO _x	SO ₂	CO	O ₃	PM10	-			
NO	NO ₂	NOx	SO ₂	CO	O3	PM10	NM-HC	-		
NO	NO ₂	NO _x	SO ₂	CO	O3	PM10	NM-HC	Large Veh.	-	
NO	NO ₂	NO _x	SO ₂	CO	O3	PM10	NM-HC	Large Veh.	Small Veh.	-
NO	NO ₂	NO _x	SO ₂	CO	O ₃	PM10	NM-HC	Large Veh	Small Veh	Passenger car
	NO NO NO NO NO NO NO NO	NO NO2 - - NO - NO NO2 NO NO2	NO NO2 NOx - - - NO - - NO NO2 - NO NO2 NOx NO NO2 NOx	NO NO2 NOx SO2 - - - - NO - - - NO NO2 - - NO NO2 - - NO NO2 NOx - NO NO2 NOx SO2 NO <td>NO NO2 NOx SO2 CO - - - - - NO - - - - NO - - - - NO NO2 - - - NO NO2 - - - NO NO2 NOx - - NO NO2 NOx SO2 - NO NO2 NOx SO2 - NO NO2 NOx SO2 CO NO NO2 NOx SO2 CO <tr< td=""><td>NO NO2 NOx SO2 CO O3 - - - - - - - NO - - - - - - NO - - - - - - NO NO2 - - - - - NO NO2 NOx - - - - NO NO2 NOx SO2 - - - NO NO2 NOx SO2 - - - NO NO2 NOx SO2 CO - - NO NO2 NOx SO2 CO 03 -</td><td>NO NO2 NOx SO2 CO O3 PM10 - <</td><td>NO NO2 NOx SO2 CO O3 PM10 NM-HC - - - - - - - - NO - - - - - - - NO - - - - - - - NO NO2 - - - - - - - NO NO2 - - - - - - - NO NO2 NOx SO2 - - - - - NO NO2 NOx SO2 CO - - - - NO NO2 NOx SO2 CO O3 - - NO NO2 NOx SO2 CO O3 PM10 - NO NO2 NOx SO2 CO O3 PM10 NM-HC</td><td>NONO2NOxSO2COO3PM10NM-HCLarge VehNONONONO2NONO2NOxNONO2NOxSO2-I.I.I.NONO2NOxSO2CO-I.I.NONO2NOxSO2COO3PM10I.NONO2NOxSO2COO3PM10-NONO2NOxSO2COO3PM10NM-HC-NONO2NOxSO2COO3PM10NM-HC-NONO2NOxSO2COO3PM10NM-HC-NONO2NOxSO2COO3PM10NM-HCLarge Veh.NONO2NOxSO2COO3PM10NM-HCLarge Veh.NONO2NOxSO2COO3PM10NM-HCLarge Veh.NONO2NOxSO2COO3PM10NM-HCLarge Veh.</td><td>NONO2NOxSO2COO3PM10NM-HCLarge Veh.Small VehIIIIIIIIIIINO-IIIIIIIIIIINO-IIIIIIIIIIIINONO2INOxII<</td></tr<></td>	NO NO2 NOx SO2 CO - - - - - NO - - - - NO - - - - NO NO2 - - - NO NO2 - - - NO NO2 NOx - - NO NO2 NOx SO2 - NO NO2 NOx SO2 - NO NO2 NOx SO2 CO NO NO2 NOx SO2 CO <tr< td=""><td>NO NO2 NOx SO2 CO O3 - - - - - - - NO - - - - - - NO - - - - - - NO NO2 - - - - - NO NO2 NOx - - - - NO NO2 NOx SO2 - - - NO NO2 NOx SO2 - - - NO NO2 NOx SO2 CO - - NO NO2 NOx SO2 CO 03 -</td><td>NO NO2 NOx SO2 CO O3 PM10 - <</td><td>NO NO2 NOx SO2 CO O3 PM10 NM-HC - - - - - - - - NO - - - - - - - NO - - - - - - - NO NO2 - - - - - - - NO NO2 - - - - - - - NO NO2 NOx SO2 - - - - - NO NO2 NOx SO2 CO - - - - NO NO2 NOx SO2 CO O3 - - NO NO2 NOx SO2 CO O3 PM10 - NO NO2 NOx SO2 CO O3 PM10 NM-HC</td><td>NONO2NOxSO2COO3PM10NM-HCLarge VehNONONONO2NONO2NOxNONO2NOxSO2-I.I.I.NONO2NOxSO2CO-I.I.NONO2NOxSO2COO3PM10I.NONO2NOxSO2COO3PM10-NONO2NOxSO2COO3PM10NM-HC-NONO2NOxSO2COO3PM10NM-HC-NONO2NOxSO2COO3PM10NM-HC-NONO2NOxSO2COO3PM10NM-HCLarge Veh.NONO2NOxSO2COO3PM10NM-HCLarge Veh.NONO2NOxSO2COO3PM10NM-HCLarge Veh.NONO2NOxSO2COO3PM10NM-HCLarge Veh.</td><td>NONO2NOxSO2COO3PM10NM-HCLarge Veh.Small VehIIIIIIIIIIINO-IIIIIIIIIIINO-IIIIIIIIIIIINONO2INOxII<</td></tr<>	NO NO2 NOx SO2 CO O3 - - - - - - - NO - - - - - - NO - - - - - - NO NO2 - - - - - NO NO2 NOx - - - - NO NO2 NOx SO2 - - - NO NO2 NOx SO2 - - - NO NO2 NOx SO2 CO - - NO NO2 NOx SO2 CO 03 -	NO NO2 NOx SO2 CO O3 PM10 - <	NO NO2 NOx SO2 CO O3 PM10 NM-HC - - - - - - - - NO - - - - - - - NO - - - - - - - NO NO2 - - - - - - - NO NO2 - - - - - - - NO NO2 NOx SO2 - - - - - NO NO2 NOx SO2 CO - - - - NO NO2 NOx SO2 CO O3 - - NO NO2 NOx SO2 CO O3 PM10 - NO NO2 NOx SO2 CO O3 PM10 NM-HC	NONO2NOxSO2COO3PM10NM-HCLarge VehNONONONO2NONO2NOxNONO2NOxSO2-I.I.I.NONO2NOxSO2CO-I.I.NONO2NOxSO2COO3PM10I.NONO2NOxSO2COO3PM10-NONO2NOxSO2COO3PM10NM-HC-NONO2NOxSO2COO3PM10NM-HC-NONO2NOxSO2COO3PM10NM-HC-NONO2NOxSO2COO3PM10NM-HCLarge Veh.NONO2NOxSO2COO3PM10NM-HCLarge Veh.NONO2NOxSO2COO3PM10NM-HCLarge Veh.NONO2NOxSO2COO3PM10NM-HCLarge Veh.	NONO2NOxSO2COO3PM10NM-HCLarge Veh.Small VehIIIIIIIIIIINO-IIIIIIIIIIINO-IIIIIIIIIIIINONO2INOxII<

 Table 1-2 Relation between air quality concentration and traffic

Veh.: vehicle Large Veh.: Large-scale freight car Small Veh.: Small-scale freight car

a) Aleppo

i) Temperature - Humidity (data of November 2006)

The relation between temperature and humidity is illustrated in figures 1-1 which shows all data (all data indicates measurement of a complete month (24 readings a day for 30 days).

- Data discrepancy is big, i.e., data is greatly scattered. This data represents the monthly weather conditions.
- There is a tendency that when atmospheric temperature rises humidity decreases.
- The relation between temperature and humidity can be divided into two groups.
- Compared to other locations, humidity in the water treatment station is high.

Figure 1-1 Relation between temperature and humidity (hourly data for one month)

For the sake of analyzing the cause of data discrepancy, we investigated temperature and humidity data in the downtown because there is almost no interrelation (discrepancy is the biggest) as can be seen in the figure 1-1. After collecting the recorded data from the weather stations, the relation between temperature and humidity for each hour reading can be represented as shown in table 1-3 and figures 1-2. (**Note:** the hour above each figure means that the data is for the complete considered month at that hour).

Figure 1-2 Relation between temperature and humidity (same hour for 30 days data)

(Data: November 2006)		Х: Т	Temperat	ure	y: Humidity		
Time	Mathematical	R ²	R	Time	Mathematical	R ²	R
	relation				relation		
1	y = 5.990x - 5.17	0.596	0.772	13	y = -0.0266x + 34.0	0.0000	0.000
2	y = 5.598x + 3.38	0.631	0.794	14	y = -1.178x + 58.4	0.016	0.126
3	y = 5.460x + 10.6	0.724	0.851	15	y = -3.572x + 99.0	0.143	0.378
4	y = 5.176x + 17.4	0.735	0.857	16	y = -3.577x + 99.3	0.148	0.385
5	y = 5.048x + 23.1	0.786	0.887	17	y = -1.531x + 64.8	0.021	0.145
6	y = 4.844x + 26.9	0.715	0.846	18	y = 0.406x + 38.2	0.0013	0.036
7	y = 5.040x + 27.5	0.733	0.856	19	y = 1.988x + 18.1	0.029	0.170
8	y = 5.183x + 22.2	0.859	0.927	20	y = 4.441x - 11.6	0.130	0.361
9	y = 5.368x + 4.98	0.745	0.863	21	y = 6.176x - 29.7	0.289	0.538
10	y = 4.798x - 6.42	0.508	0.713	22	y = 6.550x - 28.5	0.374	0.612
11	y = 3.084x + 3.36	0.127	0.356	23	y = 6.191x - 19.1	0.374	0.612
12	y = 1.766x + 14.5	0.051	0.226	24	y = 7.703x - 29.6	0.622	0.789
All da	ta: $y = -1.217x + 70$.47 (R= 0	.200)				
R ² : De	termination coefficie	nt	R: Corre	lation co	efficient		
	: R > 0.8	: R > 0.	.7	: Po	sitive : N	egative	

Table 1-3 The hourly relations between temperature and humidity in Downtown, Aleppo

- In the afternoon, there is no interrelation between temperature and humidity.
- As for the relation between temperature and humidity, all data shows negative • relation (figures 1-1). However, by eliminating the data of afternoon period, a positive

relation is shown by the remaining time zone.

- From the middle of the night until morning the interrelation data scattering is very small (R value is big).
- The data of the dawn time zone shows a strong interrelation (interrelation coefficient is more than 0.8).

Generally, when atmospheric temperature rises humidity decreases (negative relation), and if we observe their hourly changes we can understand this trend. Figure 1-3 shows the hourly change of temperature and humidity in the Downtown of Aleppo within the period $11 \sim 20$ Nov 2006 (total 10 days). However, by studying the hourly data of temperature-humidity relation as shown in figures 1-2, a new learning is gained; it is not necessarily that the relation is negative.

Figure 1-3 Hourly change of temperature and humidity in the Downtown of Aleppo

Figure 1-4 shows the relation between temperature and humidity (data of two days; 48 hours). By excluding unique weather conditions, the data of a short period of time shows high negative interrelation.

Figure 1-4 Relation between temperature and the humidity (tow days data)

By summarizing the above explained subject, the following points can be adopted:

- The generalization of "humidity decrease with atmospheric temperature increase" is realized.
- When the relation between temperature and humidity of a specified hour is positive, it does not mean that when atmospheric temperature increases humidity increases, but it means that "when atmospheric temperature is high, humidity is also high". For the case of high atmospheric temperature, further increase in its temperature results in humidity decrease.

ii) Temperature - Solar Radiation (data of September 2006)

The relation between temperature difference and solar radiation is shown in the figures below.

Note: temperature difference indicates the difference between the temperature readings of two successive hours as shown in the following equation:

Temp. Diff = Temp (at hour 2) -Temp (at hour 1)

- The relation between temperature difference and solar radiation is positive.
- The range of data fluctuation differs for the different measuring points (meteorological stations).
- Regarding water treatment station point (the location of the meteorological station), it is possible that surface water has an effect based on wind direction.

Figure 1-5 Relation between temperature and the solar radiation (one month data)

The red circles in figure 1-5 show drastic atmospheric temperature drop, which is believed to be caused by the passage of cold front. The drastic atmospheric temperature drop occurred in 25 September 2006 at 13:00. Therefore, people in charge of air quality monitoring checked the weather conditions of the days 24, 25 and 26 Sep.

Figure 1-6 shows the weather conditions in Downtown, Aleppo for the three considered days. Form this figure we can realize the following points:

- In 25 Sep. and around 13:00, wind direction was from west to south, then the it changed to the north.
- The atmospheric temperature drop was accompanied by simultaneous humidity increase.
- Solar radiation suffered a big change, which was cause by the change of the weather from clear sky into cloudy.

Comparatively, after 13:00 the wind velocity became so slow that clouds were at a stagnant condition. Under such weather conditions, there is a tendency that air quality concentration became high in the ground vicinity. However, if we continuously collect air quality data we can clearly understand the relation between the front passage and the concentration.

Figure 1-6 Weather condition of Aleppo downtown station with the passage of the cold front.

iii) Wind Direction – Temperature (data of September 2006)

Generally, it can be said that the temperature of a south wind is greater than that of a north wind (south wind is warmer). Figure 1-7 shows the relation between the temperature and wind direction in September. In Aleppo downtown and dying factory areas there is a tendency that the south wind (symbol S) is warmer than the north wind

((symbol N). Contrarily, in water treatment area the tendency is that the north wind (symbol N) is warmer than the south wind (symbol S). Around this station location, a large area extending from east to south is devoted for city wastewater treatment facility that includes an aeration process. Because of the latent heat being expended for evaporating the water, air temperature decreases.

Figure 1-7 Relation between temperature and wind direction

2) Correlation between points (meteorological stations)

a) Temperature

- i) Aleppo (data of November 2006)
 - Average temperature

Downtown: 12.9 ()

Dying Factory:11.6 ()

Water Treatment: 12.3 ()

Figure 1-8 Temperature in different stations in Aleppo

ii) Homs (data of November 2006)

Figure 1-9 Temperature in different stations in Homs

iii) Temperature comparison between Damascene, Homs and Aleppo (Data of November 2006)

Figure 1-10 Temperature comparison between Damascus, Aleppo and Homs

1. Content of Lecture							
	Plan of lecture (1)						
Lecture	Training Items	Contents					
1	Basic knowledge of method for measuring air pollution	 a) Content of lecture b) Introduction c) Sampling method of gaseous matter d) Method for measuring suspended particulate matter (SPM) e) Method for measuring descent dust 					
	Discussion						
2	Gaseous matter measuring method	 a) Method for measuring sulfur dioxide and sulfuric acid mist b) Method for measuring nitrogen oxide c) Method for measuring carbon monoxide d) Method for measuring hydrogen sulphide e) Method for measuring Ozone 					
Z	Disolyssion						
	~						

Lecture	Lecture-1: Basic knowledge of measurements method of air pollution					
	Plar	n of lecture (2)				
Lecture	Training Items	Contents				
3	Sampling of SPM and	a) Content of explanation				
	Consideration in sampling	b) Basic knowledge				
		c) Method for measuring SPM weight				
		 d) Outline of method of heavy metal analysis of SPM 				
4	Passive Sampler Method for Air Pollution Monitoring	a) Outline of Passive sampler for short-term (NO, NO2,SO2,O3)				
	(Simple sampler method)	b) Principle of air quality Passive sampler				
		c) Investigation method that uses passive sampler				
		d) Sampling plan				
		e) Analytical Method for NO, NO2 and NOx				
		e) Calculation of Concentration for NOx, NO2 and NO				
T	ad Com	f) Comparison of Integrated Sampling and Real- Time				
1	Discussion					

Lecture-1: Basic k	nowledge of measurements method of air pollution	Lecture-1: Basic knowledge of measurements method of air pollution
Points to keep in r There are many There is a situa <u>of local industry</u> Clarification of by general polluti Examination of	2. Introduction hind for measuring air pollution kinds of a pollutant. ion showing a special air pollution form by <u>terrain</u> , the <u>kind</u> and <u>weather condition</u> . an research purpose (grasp of degree and trend of pollution int, or grasp of pollution influence from particular source an investigation method)	Correspondence to new environmental problem Global warming (Framework Convention on Climate Change / Kyoto Protocol) Depletion of ozone layer (Vienna Convention for the Protection of the Ozone /Montreal Protocol on Substances that Deplete the Ozone Layer) Acid rain Forest and desertification (Agenda 21 adopted with UNCED (United Nations Conference on Environment and Development : "Earth Convention.")) Biological diversity and wild flora and fauna
Type Pollution for	Feature	Transboundary movement of chemical and toxic waste
No.1 London	It consists mainly of smoke and soot, SPM, SO2 by coal.	(Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal Rotterdam agreement, Stockholm
No.2 Los Angele	s Issuing from petroleum fuel. Hydrocarbon and NO2 become smog form generating O3, peroxide, aldehyde by photochemical reaction. It's mainly caused by vehicle emission, and in addition, terrain and ocean weather condition. Pollution by chemicals drained from industrial zone.	Marine pollution (North-west Pacific Action Plan:NOWPAP) Recycling problem (waste problem)

(1) Regular element and contaminant in atmosphere

1) Regular element of atmosphere

Materials that are included more than the stationary components are considered as contaminats.

The main regular element of atmosphere

Kind of gases	Concer	ntration
	Volume (%)	Weight (%)
Nitrogen (N2)	78.1	77.5
Oxygen (O2)	21.0	23.2
Argon (Ar)	0.93	1.28
Carbonic acid gas (CO2)	0.037	0.057
Neon (Ne)	0.0018	0.0012
Helium (He)	0.0005	0.000072
Methane (CH4)	0.00022	0.00012
Krypton (Kr)	0.00010	0.00029
Nitrous oxide (N2O)	0.00005	0.00015
Hijdrogen (H2)	0.00005	0.00003
Xenon (Xe)	0.00008	0.000036

Lecture-1: Basic knowledge of measurements method of air pollution

2) Air pollutant and classification

Classification of air pollutant

Le	ecture-1: Basic kn	owl	edge of measurem	ents method of air pollution
		Cla	ssification of	air pollutant
	Classification			Air pollutant
	Sulphur compound	ł	SO2, SO3, H2SO4	, H2S, R-SH
	Nitrogen compoun	d	NO, NO2, HNO2, H	INO3, NH3
	Oxygen compound	1	03, PAN, CO, CO	2
	Halogen compoun	d	F, CI, HF, HCI	
	Organic compound	ł	HC, R-CHO, Halog	jen compound
	Particulate matter		Fry Ash, CaCO3,	C, ZnO, PbCl2, NaF,
			Secondary genera	ation particle
			Source of air	pollutant
	Source		Kind	Atmospheric pollutant
	Combustion	Gas	es, Dusts	SO2, NOx, CO, HC, C, Acids
	Car	Gas	es, Dusts	NOx, CO, HC, C
	Oil refinery	Gas	es, Dusts, Mists	SO2, H2S, HC, NH3, CO, R-SH, Acids
	Chemical plant	Gas	es, Dusts, Mists	SO2, H2S, HC, F, NH3, CO, R-SH,
	Furnace, electric furnace and metal refining	Gas	es, Dusts, Fumes	Acids, F, Cl, SO2, NOx, CO, HC, C, Fumes
	Food and fodder processing	Gas	es, Dusts	Malodorous substance

Lecture-1: Basic knowledge of measurements method of air pollution	Lecture-1: Basic knowledge of measurements method of air pollution
(3) Selection of investigation place	(4) Selection of method for measuring
Points to keep in mind for selection of research point a) <u>Consideration for land-use</u> : House, commerce, industry, and the rural districts, etc. * Grasp the characteristics according to each industrial area. b) Give consideration to relation between main source of pollution and main direction of the wind * Set up point on the leeward of main direction of the wind too(B.G. point).	 2 classifications of method for measuring of air environment Grasp the situation of air pollution in the whole area It can be figure out the contamination status to some extent by the method for NO2 simple sampler and dust fall. Scientific judgment for the petition of the pollution issue * Grasp of the absolute density of the specific pollutant is indispensable
 c) Relation between height of source and the highest concentration (C_{nac}) point *As the standard, the C_{max} point is a distance 10-20 times the height of the source. d) Decision of number of points *When grasping wide area concentration distribution, set one point in each 5km2 as a rough guide. *when grasping the influence from a road, it is 20m, 50m, 100m or 200m from windward, the road edge of windward or the road edge of leeward. 	 2) Classification from the measurement time perspective a) Multiplication metrology * Deposit gauge, PbO2 method of SO2 measurement, passive sampler b) Time metrology * SO2 with impinger : Pararozarinin method, NOX: Saltsman method c) Automatic continuous metrology * Chemiluminescence method, Conductometric method, FID method, Fluorescent brightness method
Points to keep in mind to decide measuring point. a) Points that can represent the surrounding area	 d) Density metrology at moment * Detection tube method

- b) Points that are not covered by buildings or trees
- c) Attention on sampling height *1.5m above the ground is enough for gase ground is heeded for SPM and dust fall. us matter, but 3 ~ 10m above the

(remarks) The watch is always an ideal in an important point by an automatic continuous metrology, but before that, it is necessary to understand the basis of the measuring method.
 There are collection efficiency of the sample, analysis accuracy, operativeness, a labor, and coshetc. as a consideration matter.

Lecture-1: Bas	ic knowledge of	measurements metho	od of air pollution
Out	line of measur	ring method of a	air pollution
		ing mourou or e	
pollutant	Accumulation measuring method	Time and instantaneous measuring method	Automatic continuous measurement method
Particulate matt	er		
Dust fall	Deposit gauge Dust jar	Petore plate method	
SPM	Low-vol. sampler	H-vol. sampler Digital SPM meter	rays absorption method Digital SPM meter Piezoelectric balance method
Gaseous matter			
SO2, SO3	PbO2 method	Pararosaniline method	UV fluorescence method
	Alkali filter method	Detection tube method	Flame photometry
	Passive sampler	Passive sampler	Solution conductivity method
NO, NO2	Passive sampler	Saltzman method Passive sampler	Chemiluminescence method Absorptiometry
H2S	Zinc acetate cylinder method	Methylene Blue method Detection tube method	SO2 conversion IR absorption Test paper photoelectric method
CO		Detection tube method	NDIR法
03, Ox	Rubber crack method	KI Absorptiometry (Ox) Passive sampler	Chemiluminescence method (O3) UV absorption method (O3) KI Absorptiometric (Ox)
HCSAR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FID method	FID method
Other gases		Impinger method Detection tube method	

(5) Capacity correction method of the collection atmosphere and conversion method of measurements 1) Capacity correction method of the collection atmosphere The following three ideas exist as a capacity correction method. 0 ,760 mm-Hg (1013mb)...(Japan: Chimney exhaust gas) 20 ,760 mm-Hg (1013mb) ...(Japan: Ambient air) 25 ,760 mm-Hg (1013mb) The general type of the capacity correction method is shown below about and listed above. (0, 760 mm-Hg) $V_0 = \times \frac{273}{273 + t} \times \frac{p}{760}$ v : Collection capacity (20 , 760 mm-Hg) p : The atmospheric pressure t : Temperature

, 760 mm-Hg, 24.05 at 20 , 760 mm-Hg

Gas 1 mole = 22.41 at 0

ſ	Lecture-1: Basic knowledge of measurements method of air pollution
ŀ	4) Gas absorption method
ŀ	 Method with the gas absorption bottle (Impinger)
ŀ	 It is a method of absorbing the target gas element to the absorption liquid.
ľ	 With the absorption liquid, for an alkaline gas, the acidic solution is general, and for acid gas, alkaline solution is general. Prepare suitable
l	absorption liquid for the target gas element.
ŀ	NO2 : Saltzman absorption liquid
ŀ	SO2 : Mercuric chloride (HgCl2)absorption liquid
ŀ	Cl : o-Tolidine dihydrochloride absorption liquid
ŀ	HCI : Distilled water
ŀ	 F compound : Distilled water (Sampling for a long time)
ŀ	 H2S : (ZnSO4 + NaOH + (NH4)2SO4) solution
ŀ	Ox : Neutral potassium iodide (KI) absorption liquid
ŀ	NH3 : Boric acid solution
	There are some types of impingers, and we use it properly according to the purpose.

Flow meter

Sampling bag for gas analysis made of poly vinyl fluoride (Tedlar) (Most gases OK, such as acid gas, alkaline gases, and VOC)

- Saran bag (material with low reactiveness such as gases of freon system
- polyethylene bag (material with low reactiveness such as gases of freon system and CO) $% \left({{{\rm{CO}}}} \right)$

L	ecti	ire-1: Basic knowledge	of measurements method of air pollution		
5) Gas adsorption method				
	It is a method of making the solid adsorbent adsorb a target gas element.				
		General adsorbent			
		Absorbent	Feature		
	a)	Silicagel	strongly adsorbs the compound with the polarity radical. (ex : H2O)		
	b)	The activated carbon	advantageous though adsorbs the one of the organic solvent system.		
	c)	Molecular sieve	The function of the molecular sieve can be used.		
	d)	Alumina			
	e)	Alkali filter paper	Adsorption of acid gas		
	f)	PbO2 cylinder	Long-term sampling of SO2 gas in the atmosphere		
	g)	The cold cohesion	cold cohesion to solid. (SF6, fluorocarbon halon gas) The refrigerative is a dry ice - acetone and liquid oxygen.		
	h)	The use of the separation	examine it according to a target gas.		

Lecture-1: Basic knowledge of measurements method of air pollution		
2) Each particle size LV-Sampler (Andersen LV-Sampler) Measurement method : Classify with multistep and porous impactor method Measuring range: 0.4 μ m ~ >10 μ m, 8 steps + Backup filter Suction flowing quantity :28.3 / min Diameter of filter paper :80 mm		
PM10 SPM PM2.5 P		
Structure of Andersen sampler and calmness to human body respiratory organ		

		ige of measur	ements meth		ution
Rain		Fog		Cigarette	
Mist		SO3 mist			
			NH4CI fume		Gas molecule
	Charcoa	dust fly ash	Smol	e of MgO	
_	Cement dust		Lamp soot		
	Pollen	Bacteria		Virus	
1000 10					
(µm)					

3) HV Sampler

```
      PM10 (SPM)

      Measurement method : Porous impactor method
Monotreme impactor method
Cyclone method

      Measuring range:<10 μ m
PM10 > 10 μ m 50% cut
SPM > 10 μ m 100% cut (Japan)

      Suction flowing quantity :800 ~ 1500 / min
Filter paper size : 8 x 10 inch (203 x 254 mm) or 120 mm

      TSP
```

Measurement of the mass concentration of total suspended particulate matter. (No classification)

4) Each particle size HV-Sampler

Measurement method : Classify with multistep and porous impactor method Measuring range : 0.4 pm ~ 10 μm, 4 steps + Backup filter Suction flowing quantity : About 4000 / min

Lectu	.ecture-1: Basic knowledge of measurements method of air pollution				
(4)	ray absorption met	hod			
SP	M collection: Glass fiber filte	ər			
> 1	10 µ m cut: Cyclone method	or multistep metho	od		
Co	mposition of sampling part	•			
	Filter sending system				
	Collection nort				
	Steady flow device				
	Pomp				
	Detector (Geiger – Muller	counter or lonizati	on chamber)		
	ray source				
	ray source	Half - life	Coverage	1	
			(mg / cm2)		
	¹⁴ C	5730Y	0.01~10		
	³⁵ S	87d	0.02 ~15		
	1470	0.07	0.02 - 20		

3.8) 28Y

Bad

4'TI

0.02 ~ 20 0.1 ~ 100 0.4 ~ 400

Lecture-1 Basic knowledge of measurements method of air pollution					
5. Measuring method of dust fall					
(1) Outline					
1) The main	1) The main dust fall measuring method				
Name	Main use country	Sampler	Method of collection	Collection period	Main analysis item
(A) Deposit gauge	Britain	30cm rote	Ground:< 5m 0.02N-CuSO ₄ 10ml	One month	Infusible element
(B) Dust jar	USA	Cylinder type Inside : 11.2 cm Depth: 20.3 cm	The fourth floor rooftop 500 ~ 1500 ml H ₂ O	One month	Dissolubility
(C) APCD method	USA	Jar Inside : 10.8cm Capacity: 3.5	Suitable height 3000 ml H ₂ O	One month	element
(D) APCA standard method	USA	Cylinder type Inside: 15~20 cm Depth: 27 cm Polyethylene	Ground ;2.5 ~ 15m Rooftop: 1.2 m	30 ± 2 day	
(E) Standard methods of analysis for bygienic	Japan	<u>Standard type</u> (British standard) <u>Simple type</u> Jar Inside: 15-16	Ground:>5m Applies to (A). 0.02N-CuSO ₄ 10ml	One month One month	
chemists.		Depth: 26 cm Capacity : 6			

Lecture-1: Basic knowledge of measurements method of air pollution

(3) Calculation Dust fall etc. are calculated by the unit of t/km²/30 day. Dust fall etc. = 1.273 ---**x** - × 10⁴ (t/km²/30 day) w 30 \mathbf{D}^2 n w : Analysis value of Dust fall etc. D : Diameter of dust meter (inside diameter) n : Days of collection (n = 28 ~ 32 days) Subtract the weight of the added copper sulfate. 0.02N-CuSO₄ 10ml = 0.0178 g (CuSO₄·H₂O) Bad < 1

Lecture-2, Gaseous matter measuring method

e) Calculation

5000

Get sulfur dioxide concentration in the sample atmosphere from the following expression.

$$C = \frac{A \times v}{A_s \times V} \times \frac{273 + t}{273}$$

 $\label{eq:constraint} \begin{array}{l} C:Sulfur \ dioxide \ concentration \ (ppm) \\ A:Absorbance \ of \ test \ (sample) \ solution \\ A_S:Absorbance \ of \ standard \ solution \\ V:Amount \ of \ sample \ air \ suck \ (L) \\ v:Absorption \ liquid \ measure \ (mL) \\ t:Temperature \ in \ gas \ meter \ (\) \end{array}$

Lecture-2, Gaseous matter measuring method

(2) Sulfuric acid mist (for reference)

The sampling of the sulfuric acid mist usually uses LV-sampler.

(Sampling)

- a) Filter paper : For instance, Whatman No.1
- b) Flow velocity : 20 /min ~ 30 /min
- c) Collection time : 1 hr ~ 6 hr
 - (The collection time is decided according to the pollution density.)

(Operation)

- a) Filter paper division into 1/2
- b) The furnace paper is added in T.B. T solution (2 ml).
- c) Titration : 0.01N- Borax (Na $_2B_4O_7 \cdot 10H_2O$)
- * When the alkaline component is in the sample : Sulfuric acid and back titration R addition to excessive of the borax solution.

b) Sa	Itzman coefficient and error margin factor
	Factor on Saltzman metrology
(Coll	ection efficiency)
	Composition of absorption liquid
	Structure of sorbent tube
	Absorption liquid measure (liquid level and bubbler's positions)
	Suck speed
	Microbore of glass filter of sorbent tube
(NO	; (solution) / NO ₂ (in air) ratio)
	Reagent composition
(Errc	r margin given to concentration)
	Collection efficiency and NO ₂ - / NO ₂ ratio
	Accuracy of measuring instrument
	Evaporation of absorption liquid
	Analysis time

Leo	cture-2, Gaseous ma	atter measuring method			
3.	3. Method for measuring carbon monoxide (CO)				
(1)	(1) Measuring Method				
	There are a lot of kinds of measuring methods of the carbon monoxide. Three easy operation methods are outlined today. Outline of measuring method		e carbon monoxide. d		
	Measuring method	Measuring range	Feature		
	Detector tube method	1 ~ 30 ppm 25 ~ 2000 ppm	Simplicity Promptness		
	Infrared absorption method	0 ~ 20, 50, 100, 1000 ppm 0 ~ 10, 20, 50, 100 %	Analysis of bag collection Automatic continuous measurement		
	Gas chromatography method	FID: >1.0 ppm TCD: >0.1 %	Analysis of bag collection		
	FID: Flame Ionization	detector			
	TCD: Thermal conduc	tivity detector			

Lecture-2 , Gaseous matter measuring method The main detecting tube (part)				
Element name	Scale range (ppm)	Measuring range (ppm)	Disc	coloration
Carbon manavida (00)	1~30	1~30	M/h :4 a	Dark brown
Carbon monoxide (CO)	50 ~ 1000	25 ~ 2000	winte	Dark brown
Hydrogen cyanide (HCN)	0.2 ~ 7	0.2 ~ 7	Yellow	Pink
Hydrogen fluoride (HF)	0.2 ~ 10	0.09 ~ 72	Yellow	Brown
Sulfur dioxide (SO2)	0.2 ~ 5	0.05 ~ 10		
Ammonia (NH3)	1~30	0.5 ~ 78		
Hydro chloride (HCI)	1~20	0.2 ~ 76		
Chlorine (Cl2)	0.05 ~ 1.0	0.025 ~ 2.0		
Nitrogen dioxide (NO2)	0.5 ~ 30	0.5 ~ 125		
Ozone (O3)	0.05 ~ 0.6	0.025 ~ 3		
Benzene (C6H6)	0.1 ~ 10	0.1 ~ 65	White	Deep green
Ukudaa san aulahida (UOP)	2.5 ~ 60	0.25 ~ 120	White	Brown
Hydrogen sulphide (H23)	1~6	0.5 ~ 12	Light yel	low Pink
Acetone (CH3COCH3)	50 ~ 4000	50 ~ 12000	Yellow	Red
Xylene (C6H4(CH3)2)	2~80	2~80	White	Brown
Ethyl acetate (CH3CO2C2H5)	20 ~ 800	20 ~ 800	Yellow	Dark brown
Styrene (C6H5CH:CH2)	2 ~ 25	2 ~ 100	White	Yellow
Trichloroethylene	5~100	2 ~ 250	Yellow	Purplish red
(CI2C:CHĆI)	0.25~ 4.0	0.125 ~ 8.8	Yellow	Purple

Lecture-2, Gaseous matter measuring method

(3) Infrared absorption method

Outline The accuracy of this method is very high.

Bad

 The accuracy of this method is very high.
 Analysis object (Continuous measurement and bag analysis)

 a) Ambient air
 b) Vehicle exhaust
 c) Chimney measurement of factory

 Measurement elements other than CO : NOx, SO₂, CO₂, CH₄
 In the measuring instrument for the source : The multicomponent simultaneous measurement is also possible.
 Measuring range

 NOx : 0 ~ 50ppm ··· 5000ppm
 SO₂ : 0 ~ 50ppm ··· 100%
 CO₂ : 0 ~ 20ppm ··· 100%
 CH₂ : 0 ~ 20ppm ··· 100%

Lec 4.	Lecture-2 . Gaseous matter measuring method 4. Method for measuring hydrogen sulphide (H2S)				
(1	(1) Measuring Method				
	There are the main thr	ee kinds of measure	ement of the hydrogen sulfide.		
	Other methods have the iodimetry method, the controlled potential electrolysis method, lon electrody method, and the gas chromatography, etc.		d, the controlled potential , and the gas		
	Measuring method	Measuring range	Feature		
	Detector tube method	0.25 ~ 120 ppm	Simplicity		
		1 ~ 40 %	Promptness		
	Silver nitrate volumetric determination method	10 ~ 500 ppm	The sensitivity is bad.		
	Methylene Blue method 5 ~1000 ppm If a lot of sample gases as sucked, the sensitivity is raised.		If a lot of sample gases are sucked, the sensitivity is raised.		
	Bad Dec				

Lecture-3 , Sampling of SPM and Consideration in sampling	Lecture-3, Sampling of SPM and Consideration in sampling	
1 . Content of explanation		
(1) Basic knowledge	2. Basic knowledge (1) Definition and classification of Aerosol and SPM	
1) Definition and classification of Aerosol and SPM		
2) Existence situation of SPM in the atmosphere	Name State Formation mechanism	
	Dust Solid Crushing of solid, Lifting by car and win	d
	Fume Solid Re-condensation of solid made steam	
(2) Method for measuring SPM weight	Mist Liquid Crushing of liquid, Condensation of stea	ım
	Fog Liquid Condensation of steam	
	Smoke Solid + Liquid Combustion of organic compound	
(3) Outline of method of heavy metal analysis of	Ash Solid Nonflammable particle generated from combustion process	
Bad Contraction	Bad Contraction	

 Concentration of SPM in the atmosphere The SPM concentration has the expressions of the particle count concentration, the mass concentration, and the relative concentration, etc. 				
Object	Concentration expression method	Interchangeability of concentration expression		
Solute conc. in solution Volume ratio (V/V ppm)	Weight ratio(W/W ppm)	There is a single meaning relation, and conversion is easy.		
Gas conc. in Air	Mole conc. (m mol/L)			
Concentration of aerosol	Particle count conc. (SPM No./cm ³) Mass conc. (mg/m ³) Relative conc. (mg/m ³)	The aerosol has differences among the size, the specific gravity, and the shape etc. of the particle. The conversion of the density indication among is not simple except a special case.		

Lecture-3, Sampling of SPM and Consideration in sampling

Relation between particle count conc. and mass conc. according to particle size

Particle size (D)	Weight conc. of one particle	Particle count in particle 1mg
(µm)	(mg/m ³)	
0.1	0.52 × 10 ⁶	1.9 × 10 ¹²
0.5	0.65 × 10 ⁴	1.5 × 10 ¹⁰
1	0.52 × 10 ³	1.9×10 ⁹
5	0.65 × 10 ¹	1.5 × 10 ⁷
10	0.52	1.9×10 ⁶
Sad C .		

-			
1	ecture-3.	Sampling of SPM and Conside	eration in sampling
L			
L			
	Genera	ation mechanism of particle and	feature of chemical composition
L	Generation		
L	mechanism	Natural source	Artificial source
L		Ocean (Na, Cl, Mg, SO4 ⁻² , K)	Fixed source
L	T	Soil (Si, Al, Fe, Ca, Ti)	(Heavy metal, Org-C, E-C)
L	narticle	Forest fire	L Factory and incineration plant J
L	(Typical	Volcanic activity (Has SOa)	(V Org-C E-C)
L	element)	Plant pollen	[Car. ship, and airplane]
L		Others	Others
L		Sulphur compound	Sulphur compound (SO ₂)
L		(H ₂ S, CH ₃ S ₂ CH ₃ , etc.)	Lit originates in the fossil fuel.
L	Secondary	the biological activity 1	(It originates in combustion)
L	(Cause	Nitrogen compound	Hydrocarbon compound
L	element)	(NOx, NH ₃ , N ₂ O, etc.)	(Hydrocarbon)
L		It originates in the biological	It originates in the industrial
		activity. J	activity and combustion.]
	200	Hydrocarbon compound	
	7	[Plant origin]	
1			

Lecture-3, Sai	mpling of SPM and Consid	leration in sampling
Featu	ure of Primary particle ar	nd secondary particle
	Primary particle	Secondary particle
Generation	The particle is discharged	This particle is changing of the
mechanism	directly from the source	material discharged as a gas
	as a particle.	into the particle by the
		photochemical reaction and the
		neutralizing reaction.
Particle	Coarse particle	Fine particle
diameter	Crushing is a subject,	(The aitken particle when
	and there is a limit in	generating it coagulates and
	making minutely.)	grows up to 0.1< r<1.0µm with
		other particles.)
Typical	Soil particle and sea salt	Sulfate and nitrate aerosol
particle	particle	
Sad.	2 × 1	

Lecture-3 , Sa	mpling of SPM and Consideration i	in sampling
	対流圏粒子(粒径Dp < 40 µ m)の発生	源と発生量
	発生源	発生量(10⁶T/Year)
自然発生	Primary particles (A) Soil and rock (B) Sea salt (C) Forest fire (D) Volcanic activity Secondary particles (E) Sulfate from H2S (F) Ammonium salt from NH3 (G) Nitrate from NOx (H) Hydrocarbon from plant	$ \begin{array}{c} 100 & \sim & 500 \\ 300 \\ 3 & \sim & 150 \\ 25 & \sim & 150 \\ 130 & \sim & 200 \\ 80 & \sim & 270 \\ 60 & \sim & 430 \\ 75 & \sim & 200 \\ \end{array} $
	小 計 (1) Primary particles	773 ~ 2200
人為発生	Secondary particles (J) Sulfate from SO2 (K) Nitrate from NOx (L) Hydrocarbon Compound	130 ~ 200 30 ~ 35 15 ~ 90
Dad		185 ~ 415
É		958 ~ 2615

Lec	ture-3 , Sampling o	f SPM and Consideration in sampling								
(3)	(3) Type of filter Cellulose fiber filter Glass fiber filter Quartz fiber filter Teflon fiber filter									
(4)	Analytical approach	of Heavy metal								
	Analytical method	Metal								
	Atomic absorption spectrophotometer	Fe, Mn, Zn, Pb, Ni, V, Cr, As, Ag, Al, Ti, Si, Ge, Be, Co, W, Mo,								
	Emission spectrophotometer	Fe, Mn, Zn, Cd, Pb, Cu, Ni, V, Cr, Hg, Se, Bi, Sn, As, Ag, Na, K, Al								
	Flame spectrophotometer	Na, K, Ca, Mg, Sr, Zn								
	spectrophotometer	Fe, Mn, Zn, Cd, Pb, Cu, Ni, V, Cr, Hg, Se, Sn, As, Ag, Al, Si, Ti, Sb, Tl, Ge, Zr, Co, W, Mo, Be								
	Polarograph	Fe, Mn, Zn, Cd, Pb, Cu, Ni, V, Cr, Hg, Se, Sn, Sb, As, Ag, At, Ti, Zr, Co, W, Mo, Be								

cture-3, S	ampling	of SPM an	d Consid	eration in	sampling	3						
(Metal content in Glass fiber filter paper) (µg/14 in ² = µg/35.56cm ²)												
Maker	Toyo Rosi	Mine Safety Appllances	Gelman Instrument	Whatman	Whatman	Kimoto Elektric						
Brand name	GB-100 R	M.S.A. 1106BH	Gelman A	Whatman GF/A ('69. Dec.)	Whatman GF/A ('70. Dec.)	PF-2						
Material	Glass fiber	Glass fiber	Glass fiber	Glass fiber	Glass fiber	Polystyrene						
Fe	55.2	85	64	220	120	66						
Ni	4	7	1	7.5	5.2	<0.5						
Mn	2.1	2.5	1.5	15	10	1.5						
Cr	2.2	3.2	1.8	5	3.3	1.5						
Sb	-	20	15	30	17	15						
Pb	4.5	50	10	40	15	6						
Zn	9	15	4625	25000	3175	18						
Cd	<0.1	<0.1	<0.1	1.0	<0.1	<0.1						
Cu	1.5	900	1.1	2.6	1.8	5.3						
Ca	280	650	550	3250	1250	420						
S Mg a	252	a 3000	320	800	300							
Na	5600	275	3150	20500	10000	195						
к	395	7	325	415	840	150						

ecture-3 , Sampling of SPM and Consideration in sampling											
al cont	tent in	memb	orane f	ilter pa	aper)	(µ	g/47	mm)			
1	Toyo Ro	si		Satrius	;		Millipore				
тм-5	TM-3	TM-2	MF-14	MF-40	MF-50	MF-NC	MF-PH	MF-HA			
0.1	0.3	0.45	0.1	0.3	0.45	0.1	0.3	0.45			
0.9	0.8	1.5	0.6	0.3	0.4	1.3	2.0	1.7			
< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
0.8	0.8	0.9	0.6	0.6	0.6	0.6	0.6	0.6			
0.2	0.2	0.1	<0.1	<0.1	<0.1	0.2	0.1	<0.1			
0.5	0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
0.70	1.23	0.30	0.75	0.50	0.95	0.57	0.55	0.23			
1.8	1.7	1.7	0.1	0.2	0.2	0.4	<0.1	0.04			
8.70	5.25	6.60	9.25	13.0	8.60	3.75	6.25	6.50			
1.50	1.15	1.45	0.60	1.35	1.10	0.85	1.15	1.30			
83.5	52.0	44.0	8.8	16.5	15.5	6.7	9.4	10.0			
1.32	1.08	1.10	3.88	2.30	1.75	2.55	2.92	3.62			
	. Sam al cont TM-5 0.1 0.9 < 0.5 0.8 0.2 0.5 0.70 1.8 8.70 1.50 83.5 ↓3.32	Sampling of al content in Toyo Ro TM-5 TM-3 0.1 0.3 0.9 0.8 < 0.5	Toyo Rosi TM-5 TM-3 TM-2 0.1 0.3 0.45 0.9 0.8 1.5 < 0.5	Joing of SPM and Coral content in membrane f Toyo Rosi TM-5 TM-3 TM-2 MF-14 0.1 0.3 0.45 0.1 0.9 0.8 1.5 0.6 < 0.5	Sampling of SPM and Consideral content in membrane filter particular filter filter particular filter fi	, sampling of SPM and Consideration in sal content in membrane filter paper) Toyo Rosi Satrius TM-5 TM-3 TM-2 MF-14 MF-40 MF-50 0.1 0.3 0.45 0.1 0.3 0.45 0.9 0.8 1.5 0.6 0.3 0.4 < 0.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

Lecture 4. Passive Sampler Method for Air Pollution Monitoring

Content of explanation

- 1. Outline of Passive sampler for short-term (NO, NO2, SO2, O3)
- 2. Principle of air quality passive sampler
- 3. Investigation method that uses Passive sampler
- 4. Sampling Plan

Dod D

- 5. Analytical Method for NO, NO2 and NOx
- 6. Calculation of Concentration for NOx, NO2 and NO
- 7. Comparison of Integrated Sampling and Real-Time Monitors

ture 4. Passive	Sampler Method for Air Pol	llution Monitoring
	Lowest detectable	range
NO2	24 hr 2.3 ppb	168 hr 0.32 ppb
NOx	24 hr 2.3 ppb	168 hr 0.32 ppb
SO2	24 hr 3.8 ppb	168 hr 0.54 ppb
O3	24 hr 2.7 ppb	168 hr 0.39 ppb
	Upper detectable ra	ange
NO2	24 hr <25 ppm	168 hr <3.6 ppm
NOx	24 hr <25 ppm	168 hr <3.6 ppm
SO2	24 hr <25 ppm	168 hr <3.6 ppm
2005	* 24 hr <0.8 nnm	168 hr <0 11 nnm

	Refrigerated Storage Method	Frozen Storage Method
Sealed in glass vial pouch	90 days	1 year
Resealed in vial, after opening	90 days	
Loaded sampler in bag placed in orange vial with lid	90 days	
Exposed loaded sampler, in bag placed in orange vial with lid	14 days	
Extracted solution in water, in sealed vial	90 days	
Recommended sampling height : 2.5 M	leters	

Lecture 4. Passive Sampler Method for Air Pollution Monitoring

(3) Calculation of Concentration Data

Table (1) Calculation of Concentration Data For NOx , NO2 and NO

Compound	E	Blank A	bsorba	ance	Slope	Temp. (ºC)	R. H. (%)	Conc. Conversion Coefficient					
	Bt 1	Bŧ 2	Βŧ 3	Averag e				αNO2	αNO				
NOx				(1)=	G =	(20ºC)	-70%	α ^{NO2} = (56)	ανο = (60)				
NO ₂				(2)=				Q NO2 =	α(NO =				
Slope : Slope α NO2 = 56 and Please follow the relative	Slope : Slope of the Standard Curve R. H. : Relative Humidity Conc. : Concentration gNO2 = 56 and gNO = 60 when Temperature = 20°C and Relative Humidity = 70%. Please follow the table of the manual about other combinations of the temperature and the relative humidity.												
Sa.	9 5	$\overline{\searrow}$	*	~		-							

Lectur	e 4. Passive Sampler Metho	od for	Air Pollution Mon	itoring			
т	able (2) Calculation of Co	ncent	tration Data For NO	x , NO	2 and	NO	
	Specification				Sar	nples	
	Sample Number			1	2	3	4
	Sample Location						
	Sampling Time (min)	(3)	= (3)				
	Sample Absorbance	(4)	= (4)				
NOx	Absorbance	(5)	= (4) - (1)				1
	Solution Concentration (µg/ml)	(6)	= (5) / G				
	Collected Weight (ng)	(7)	= (6) × 8 × 1000				1
	Concentration (ppb)	(8)	= (13) + (15)				
	Sample Absorbance	(9)	= (9)				
NO ₂	Absorbance	(10)	= (9) - (2)				
	Solution Concentration (µg/ml)	(11)	= (10) / G				
	Collected Weight (ng)	(12)	= (11) × 8 × 1000				
	Concentration (ppb)	(13)	= 00N02 × (12) / (3)				
NOS	Collected Weight (ng)	(14)	= (7) - (12)				
	Concentration (ppb)	(15)	$= \alpha NO \times (14) / (3)$				

Lecture 4. Passive Sa	ampler Me	ethod for Air F	Pollution Monitoring
[Calculation exam	nple]		
(Setting of calculation	n conditior	n)	
Sampling time:	Feb. 26 10:	18 ~ Feb. 27 1	0:10 = 1450 min
Absorbance :		Sample	Paper blank
	NOx	0.343	0.149 (Average)
	NO2	0.094	0.009 (Average)
Conc. Conversi (Amount of collection a) Amount of colle = ((0.343 - 0.1 b) Amount of colle = ((0.094 - 0.1 c) Amount of colle = 1844 - 808	on Coeffic) ection NOx 149) / 0.841 ection NO2 009) / 0.841 ection NO (= 1036 ngN	ient : α _{No2} = (In the NO2 co 5) ×8 ml = 1.84 5) ×8 ml = 0.80 (In the NO2 con NO2	(56), α _{NO} = (60) nversion) 4 μg NO2 (= 1844 ngNO2) 8 μg NO2 (= 808 ngNO2) version)
(How to obtain parts-	per-billion	(ppb) concentr	ation)
a) NO (ppb) = (α _{NO}	×W _{NO})/t		
= 60 ×	1036/143	2 = 43 (ppb)	
b) NO2 (ppb) = (α_{h})	102 × W _{NO2})	/t	
Stallow anti - Bio	808/143	2 = 32 (ppb)	-
	(hhn) + M	ox(phu) = 75(pnb)	
= 43 (1	JUD) + 32 ($uuu = v_2 + uuu$	

Lectur αl	re 4. I NO an	Passiv nd αNC	ve Sar D2 as	nj a	oler Me functio	thod on of	for Ai tempe	r Polli erature	e P	tion Mo and rel	nitori ative	ng humic	lity
Temp (ºC)	R.H. (%)	02 NO2	ανο		Temp (ºC)	R.H. (%)	Q NO2	ανο		Temp (ºC)	R.H. (%)	00 NO2	ανο
-10	50	84	61		7	60	65	62		24	70	55	59
-9	50	83	61		8	60	64	62		25	80	53	61
-8	50	81	61		9	60	64	61		26	80	52	61
-7	50	80	61		10	60	63	61		27	80	52	60
-6	50	79	61		11	60	63	61		28	80	52	60
-5	50	78	61		12	60	62	60		29	80	52	59
-4	50	77	61		13	60	62	60		30	80	52	59
-3	50	76	60		14	60	61	60		31	80	52	58
-2	50	75	60		15	70	58	63		32	80	51	58
-1	50	74	60		16	70	58	62		33	80	51	57
0	50	74	60		17	70	57	62		34	80	51	57
1	60	68	64		18	70	57	61		35	80	50	57
2	60	68	63		19	70	57	61		36	80	50	56
3	60	67	63		20	70	56	60		37	80	50	56
4	60	66	63		21	70	56	60		38	80	50	56
5 5	_ 60 _	66-	63	5	_22	70	56	60		39	80	49	55
6 <	< 60 \	65	62		23	70	55	59	Ì	40	80	49	55
	Temp	: Temp	eratur	e ((°C) F	.н. : I	telativa	Humi	di	ity(%)			

8

