The basic idea of statistics for chemical analysis

20/01/2007 KIMURA,K (JET)
Spread (how wide), Variable (how different), Distribution
A ceirtain variable's spread is the degree to which values on the variable differ from each other. If every score on the variable were about equal, the variable would have very little spread. The distributions shown on the right have the same mean but differ in spread: The distribution on the
 bottom is more spread out.

Standard Deviation and Variance

The variance and the standard deviation are measures of how spread out a distribution is. In other words, they are measures of variability.

The variance is computed as the average squared deviation of each number from its mean. For example, for the numbers 1,2 , and 3 , the mean is 2 and the variance is:

$$
\sigma^{2}=\frac{(1-2)^{2}+(2-2)^{2}+(3-2)^{2}}{3}=0.667
$$

The standard deviation formula is very simple: it is the square root of the variance. It is the most commonly used measure of spread.
$\sigma=0.816$

If the standard deviation is small, the spread of each number is small.

Coefficient of Variation (CV) = Relative Standard Deviation (RSD), Representative Value of Stability

CV is computed by dividing a standard deviation of a particular group of values by its mean (usually shown as $\%$. In analyses, if values are obtained from repeated measurement accurately, the CV should be small. For example,
if the values from repeated measurement of 0.50 ppm are: $0.44,0.46,0.55 .0 .59,0.41$, the CV = 14.0 (\%)
if the values from repeated measurement of 0.50 ppm are: $0.49,0.48,0.51 .0 .49,0.50$, the CV = 2.06 (\%)
if the values from repeated measurement of 0.50 ppm are: $0.49,0.49,0.49 .0 .49,0.49$, the $\mathrm{CV}=0.00(\%)$

As the CV is computed by a formula shown below, it will get small when the standard deviation is small (stable). And it will get small when the mean is large. This means that measurements of higher concentrations are easier than lower concentrations when they have the same stability. In other words, CV of higher concentrations is smaller (better) than lower concentrations. Thus, lowest concentration of a calibration curve is measured repeatedly for the confirmation of CV. The target CV for metal analysis is set as 10% for this project.

$$
\mathrm{CV}=\frac{\text { Standard Deviation }}{\text { Mean }}
$$

Correlation Coefficient (r)

A correlation coefficient is a number between - 1 and 1 which measures the degree to which two variables (i.e. X and Y , concentration and Abs) are linearly related. If there is perfect linear relationship with positive slope between the two variables, we have a correlation coefficient of 1 ; if there is positive correlation, whenever one variable has a high (low) value, so does the other. If there is a perfect linear relationship with negative slope between the two variables, we have a correlation coefficient of - 1 . Some applications show only square of correlation coefficient (r^{2}) due to the procedure of calculation. In this case we can simply calculate the square root of it and get the correlation coefficient.

المفهوم الأساسى للإحصاء فى التحاليل الكيميائية

2007-7-10 كوجي كيمورا (فريق خبراء جايكا)

الانتشار (إلى أي مدى ممتد)، التغير (إلى أي مدى مختلف)، التوزع
 متساوية فإن المتغير يكون صغير الانتثـار جدأ . اللتوز عان الموضحان في الأسفل يملكان نفس المتوسط لكنهما مختلفان من ناحية الانتشار : الثوزع في الأسفل أكثرا انتشارأ للخارج.

الانحراف المعياري و التباين

إن الثنباين و الانحر اف المعياري هما مقياسان للتعبير عن مدى الانتتار إلى الخارج. بكلمة أخرى، هها مقياسان للتغير.

يحسب التباين كتوسط مجموع مربعات ناتج طرح كل رقم من المتوسط الحسابي. على سبيل المثال: المتوسط الحسابي للأعداد 1، 2، 3 هو 2 و بالتالي فابن الثباين هو

$$
\sigma^{2}=\frac{(1-2)^{2}+(2-2)^{2}+(3-2)^{2}}{3}=0.667
$$

إن صيغة الانحر اف المعياري بسيطة جدأ : هي عبارة الجذر التربيعي للتباين. و هي أكثر مقياس شائع
للانتشتار. $\sigma=0.816$

كل ما كان الانحر اف المعياري صغيرأ، كل ما كان انتشار جميع الأرقام صغير|
 عامل التباين (CV) = الاتحراف المعياري النسبي (RSD)

القيمة الممثلة للاستقرار

$$
\mathrm{CV}=\frac{\text { Standard Deviation }}{\text { Mean }}
$$

يحسب عامل التباين بقسمة الانحر اف المعياري لمجمو عة معينة من القتم على المتوسط الحسابي (عادة تحسب
كنسبة مئوية \%). في التحاليل: إذا حصلنا على قيم دقيقة متكررة فإن عامل التباين يجب أن يكون صنير . على 0 الـى

$$
C V=14.0(\%)
$$

أما إذا كانت القيم الناتجة من قياس متكرر ل 0 ppm 0.50 هي : 0.49, 0.48, 0.51, 0.49, 0.50 فان عامل التباين هو

$$
\mathrm{CV}=2.06(\%)
$$

أما إذا كانت القيم الناتجة من قياس متكرر ل 0 ppm هي : 0.50 مان $0.49,0.49,0.49,0.49,0.49$ فإن عامل الثباين هو

$$
\mathrm{CV}=0.00(\%)
$$

بما أن عامل التباين يحسب بالمعادلة الظاهرة أدناه فإن قيمته ستكون صغيرة عندما تكون قيمة الانحراف المعياري صغيرة (مستقرة). كما أنها ستكون صغيرة في حال كان المتوسط الحسابي صغير ألـ هذا يغني أن قياسات التر اكيز العالية أسطل من التراكيز الأدنى عندما تملك نفس الإستيرا أصغر (أفضل) من التراكيز المنخفضة. و بالثنالي: يتم قياس الثنر اكيز المنخفضة من منحني المعايرة للتأكد من عامل التباين. إن عامل التباين المطلوب لتحليل المعادن في هذا المشروع هو 10\%.

معامل الارتباط (r)
إن معامل الارتباط هو عدد بين -1 و 1 و هو يو يوس درجة الارتباط الخطي بين متغيرين (على سبيل المثال وأو تركيز و امتصاص). إذا كانت هناك علاقة الخطية ممتازة مع ميل موجب بين المتنيرين فيكون لاينا معامل ارتباط 1 : إذا كان هناك ارتباط موجب فهزا يعني أنه إذا كانت قيمة أحد المتنيرين كبيرة (أو صغيرة) فإن فيمة المتغير الأخر تكون أيضأ كبيرة (أو صغيرة). أما إذا كانت العلاقة الخطية ممتازة مع ميل سالب بين
 الستخذمة في الحساب. فنقوم ببساطة في هذه الحالة بحساب الجذر التربيعي فنحصل على معامل الارتباط.

Basic Idea of Dilution

1. Very Basic Idea

There are ideas of content and concentration for expressing some material's amount in something (like water). The content is the exact weight of the material in water (for example) and the concentration is the rate which the material occupies in water.

If you put 100 mg of salt in water, the content is always 100 mg whatever the amount of water is. Putting 100 mg of salt in 1 L of water and in 10 L of water doesn't make any difference for the content because it's always 100 mg .

If you put 100 mg of salt in water of 1 L , it makes 100 mg salt / L water $(\mathrm{mg} / \mathrm{L})$. If you have 1 L of water of $100 \mathrm{mg} / \mathrm{L}$ concentration with salt, you have 100 mg salt as the content. If you lose 0.5 L of water of $100 \mathrm{mg} / \mathrm{L}$ concentration with salt, now you have 50 mg salt as the content but the concentration is still $100 \mathrm{mg} / \mathrm{L}$.

The formula for getting the concentration or content is really simple. You just have to care about the unit when you check if the formula you set is correct.

Concentration (mg/L) = content (mg) / amount of water (L)
If you put 100 mg of salt in water of 1 L ,
$100(\mathrm{mg}) / 1(\mathrm{~L})=100(\mathrm{mg} / \mathrm{L})$

If you lose 0.5 L of water of $100 \mathrm{mg} / \mathrm{L}$ concentration with salt,
$100(\mathrm{mg} / \mathrm{L}) \times 0.5(\mathrm{~L})=50(\mathrm{mg})$
Now you have 50 mg salt as the content but the concentration is still $100 \mathrm{mg} / \mathrm{L}$.

2. Units for concentration

The standard unit for concentration is mg / L. Often ppm is used instead of mg / L. Actually ppm represents rate (result of division of same units). For this reason, accurately speaking, mg / L does not equal ppm . But in accordance with customary practice, we use ppm as mg / L and ppb as $\mu \mathrm{g} / \mathrm{L} . \mu$ (micro) is $1 / 1,000$ of m (milli), so 1 ppm is $1,000 \mathrm{ppb}$ and 1 ppb is 0.001 ppm . ppm means Parts Per Million ($1 / 1,000,000$) and ppb means Parts Per Billion ($1 / 1,000,000,000$). For the same circumstances, usually $\%$ means $\mathrm{g} / 100 \mathrm{~mL}$.

Exercise

1) How many ppm are $5 \mathrm{mg} / \mathrm{L}$?
2) How many ppm are $500 \mu \mathrm{~g} / \mathrm{L}$?
3) How many ppm are $10 \mathrm{~g} / \mathrm{L}$?
4) How many ppm are $3 \mu \mathrm{~g} / \mathrm{mL}$?
5) How many ppb are $3 \mu \mathrm{~g} / \mathrm{L}$?
6) How many ppb are $0.5 \mathrm{mg} / \mathrm{L}$?
7) How many ppm are 300 ppb ?

5ppm
0.5 ppm

10,000ppm
3ppm
3 ppb
500ppb
0.3 ppm

3. Practical Calculation

1) Now you have 65% of Nitric Acid $\left(\mathrm{HNO}_{3}\right)$. Consider the following case of dilution.

To get 10 L of $5 \% \mathrm{HNO}_{3}$ solution, how much amount of original acid do you need?
$65 \% \div 5 \%=13$ you need to dilute 13times
$1: 13=\mathrm{x}: 10(\mathrm{~L}) \quad 13 \mathrm{x}=10(\mathrm{~L}) \quad \mathrm{x}=10(\mathrm{~L}) / 13=0.77(\mathrm{~L})$
Thus, you dilute 0.77 L of $65 \% \mathrm{HNO}_{3}$ to 10 L and get $5 \% \mathrm{HNO}_{3}$
2) Now you have 100 ppb of Ag standard solution. Consider the following case of dilution.

To get $10,20,30,50 \mathrm{ppb}$ of solutions, what kinds of rates are necessary if you want to prepare $20 \mu \mathrm{~L}$ of each solution?
$100 \mathrm{ppb} \div 10 \mathrm{ppb}=10 \quad$ you need to dilute 10 times for preparing 10 ppb
$1 \mathrm{x}+9 \mathrm{x}=20(\mu \mathrm{~L}) \quad 10 \mathrm{x}=20(\mu \mathrm{~L}) \quad \mathrm{x}=20(\mu \mathrm{~L}) / 10=2(\mu \mathrm{~L})$
So you dilute $2 \mu \mathrm{~L}$ of 100 ppb to $20 \mu \mathrm{~L}$ and get 10 ppb
$100 \mathrm{ppb} \div 20 \mathrm{ppb}=5$ you need to dilute 5 times for preparing 20ppb
$1 \mathrm{x}+4 \mathrm{x}=20(\mu \mathrm{~L}) \quad 5 \mathrm{x}=20(\mu \mathrm{~L}) \quad \mathrm{x}=20(\mu \mathrm{~L}) / 5=4(\mu \mathrm{~L})$
So you dilute $4 \mu \mathrm{~L}$ of 100 ppb to $20 \mu \mathrm{~L}$ and get 20 ppb
You can repeat this procedure to get others but usually you have to calculate only the first one and multiply it according to the rate.

10ppb $\leftarrow 2$ std +18 diluent

```
    \downarrow\times2 \downarrow\times2
```

$20 \mathrm{ppb} \leftarrow 4$ std $+(20-4)$ diluent
30ppb $\leftarrow 6$ std $+(20-6)$ diluent $(\times 3)$
$40 \mathrm{ppb} \leftarrow 8$ std $+(20-8)$ diluent $(\times 4)$
$50 \mathrm{ppb} \leftarrow$ 10std $+(20-10)$ diluent $(\times 5)$

Exercise

(1) Laboratory A uses 40 L of 5% acidified water for soaking apparatus. They change it every 2 months. How many liters of 70% acid do they need per year?
(2) To prepare 5 ppm of standard solution, how many times do you dilute 1000 ppm standard solution? And what kinds of glassware do you need at least?

200times
1 mL pipette, 100 mL flask
(3) To prepare 10 ppb of standard solution, how many times do you dilute 1000 ppm standard solution? And what kinds of glassware do you need at least?

100,000times
1 mL pipette $* 2,5 \mathrm{~mL}$ pipette, 100 mL flask $* 2,50 \mathrm{~mL}$ flask
(4) You have 150 mL of 50 ppm Cd solution and 350 mL of 100 ppm As solution. If you put them together, how many ppm of Cd and As solution do you have?

15 ppmCd
70ppmAs
(5) Fill in the tables below for the dilution for the furnace method. Make each step of solution $20 \mu \mathrm{~L}$.

Table 1. Calibration Curve for Cr

Concentration (ppb)	Volume of $\operatorname{Std}(10 \mathrm{ppb})$ $(\mu \mathrm{L})$	Volume of Diluent $(\mu \mathrm{L})$
0	0	20
1	2	18
2	4	16
4	8	12
6	12	8

Table 2. Calibration Curve for Al

Concentration (ppb)	Volume of Std(50ppb) $(\mu \mathrm{L})$	Volume of Diluent $(\mu \mathrm{L})$
0	0	20
5	2	18
10	4	16
20	8	12
30	12	8

1. الفكرة الأولية

يوجد مبادئ للتعبير عن محتوى و تركيز بعض المواد في أشياء أخرى (كالماء). المحتوى هو الوزن الدقيق للمادة الموجودة في الماء (على سبيل المثال) أما التركيز فهو النسبة التي تحتلّها المـادة في الماءو إن وضعت 100 ملغ من الملح في الماء فان المحتوى هو دوماً 100 ملغ مهما كانت كمية الماء. إن وضع 100 ملغ من الملح في 1 ليتر من المـاء أو في 10 ليتر من الماء فلن يكون هناكّ أي فرق في المحتوى لأن المحتوى هو دوماً 100 ملغ. إن وضعت 100 ملغ من الملح في 1 ليتر من الماء فنلك يعطي تركيز 100 ملغ اليتر ماء (ملغلل). إذا كان لايك 1 ليتر من الماء ذو تركيز الملح 100 ملغل، فلديك 100 ملغ من الملح كمحتوى. فإن فقّت نصف ليتر من المـاء ذو تركيز الملح 100 ملغل فيكون بـلثك لايك 50 ملغ من الملح كمحتوى لكن التركيز يبقى 100 ملغله. إن معادلة التركيز سهلة جدأً فقط عليك أن تنتبه للوحدة عند وضع المعادلة.

التركيز (ملغال) = المحتوى(ملغ)|كمية الماء (ليتر) ففي حال وضعت 100 ملغ من الملح في 1 ليتر من الماء

100(ملغ) \} 1 (ليتر) = 1 0 0 (ملغله)

في حال فقتت نصف ليتر من المـاء ذو تركيز الملح 100 ملغله
100(ملغل) 0.5 (ليتر) = 50 (ملغ)
فلايك الآن 50 ملغ من المحتوى لكن التركيز بقي 100 ملغال.
2. واحدات التركيز

إن الوحدة القياسية للتركيز هي ملغله. في أغلب الأحيان تستخدم وحدة ppm عوضاً عن ملغل. في الحقيقة ppm عن نسبة (نتيجة قسمة واحدات متماثلة). لهذا اللببب فإن كلمة ملغله لا تقابل بالمعنى الدقيق ppm.

 بالمليون 10000001) و كلمة ppb هي اختصار لParts Per Billion (جزء بالثليون 1000000000\1). لنفس الظروف فإته عادة \% تعني غ100مل.

1.كم ppm في كل 5 ملغلـ؟

3.كم ppm في كل 10 غلـ؟
4.كم ppm في كل3 ميكروغرام|مل؟
5.كم ppb في كل 3 ميكروغرامرل؟
6.كم ppb في كل 0.5 ملغله؟

2. حساب عملي
1.لديك 65\% من حمض الأزوت. لندرس حالة التّديد التالية. للحصول على 10 ليتر من حمض الأزوت ذو التركيز 5\%، كم هي الكمية التي تحتاجها من الحمض الأصلي؟ 65\% \% \div \%
$1: 13=x: 10(\mathrm{~L}) \quad 13 \mathrm{x}=10(\mathrm{~L}) \quad \mathrm{x}=10(\mathrm{~L}) / 13=0.77(\mathrm{~L})$ بالتّلي يجب أن تمدد 0.77 (L) 0 ل من حض الأزوت \% (L) إلى 10 ليتر للحصول على حمض الأزوت 5\%.
2.لديك ppb100 من محلول ستاتنر الفضة. لندرس حالة التمديد التالية.

للحصول على تراكيز 10، 20، 30 من المحلول فما هي النسب المطلوبة في حال كنت تريد تحضير 20 ميكروليتر من كل محلول؟
ppb 10 إذاً عليك بالتمديد 10 مرات لتحضير 10 =ppb10 \div ppb100 $1 \mathrm{x}+9 \mathrm{x}=20(\mu \mathrm{~L}) \quad 10 \mathrm{x}=20(\mu \mathrm{~L}) \quad \mathrm{x}=20(\mu \mathrm{~L}) / 10=2(\mu \mathrm{~L})$
 ppb 20 إذاً عليك بالتمديد 5 مرات لتحضير 5 =ppb20 \div ppb100 $1 \mathrm{x}+4 \mathrm{x}=20(\mu \mathrm{~L}) \quad 5 \mathrm{x}=20(\mu \mathrm{~L}) \quad \mathrm{x}=20(\mu \mathrm{~L}) / 5=4(\mu \mathrm{~L})$
 يمكثك تكرار هذه الإجرائية بسهولة للحصول على التراكيز الأخرى لكن عادة يتوجب عليك فقط حساب أول تركيز و من ثم تقوم بالضرب حسب النسبة

```
10ppb \leftarrow 2std + 18 تمدي
    \downarrow\times2 \ < 2
20ppb \leftarrow4std + (20-4) تمديا
30ppb \leftarrow6std + (20-6) تمديد (` ) % )
40ppb \leftarrow 8std + (20-8) (× ) * 4)
50ppb \leftarrow 10std + (20-10) (% )
```


تمارين

1. مخبر A يستظدم 40 ليتر من الماء المحمض 5\% لنقع الأدوات. يتم تغير الماء كل شهرين مرة. كم ليتر يلزم من الحمض ذو التركيز 69\% خلال عام واحد؟
2.كم مرة يجب تمديد ppm1000 من محلول ستادر لتحضير ستاندر ppm5 ؟ و مـا هي الزجاجيات التي ستحتاجها؟
3.كم مرة يجب تمديد ppm1000 من محول ستادر لتحضير ستّاندر ppm10 ؟ و ما هي الزجاجيات التي ستحتاجها؟
4.لديك 150 مل من ppm50 محول كادميوم و 350 مل من 100 ppm من محلول الزرنيخ. في حال خلطهما معاً فكم ppm لايك من الكادميوم و من الزرنيخ؟
5.قم بملئ الجداول التالية للتمديد في طريقة الفرن بحيث يكون الحجم في كل خطوة 20ميكروليتر.

جدول 1 المنحني العياري للكروم		
Concentration (ppb)	Volume of Std(10ppb) ($\mu \mathrm{L}$)	Volume of Diluent $(\mu \mathrm{L})$
0		
1		
2		
4		
6		

جدول 1 المنحني العياري للألمنيوم

Concentration (ppb)	Volume of $\operatorname{Std}(50 \mathrm{ppb})$ $(\mu \mathrm{L})$	Volume of $(\mu \mathrm{L})$
0		
5		
10		
20		
30		

Let's take a look at following examples.
ex. 1)
If the repeated results of measurements are :
0.345675
0.345679
0.345677 ,
the digits " 0.34567 " are always stable and the last one is uncertain.

ex. 2)

If the repeated results of measurements are:
0.345012
0.345020
0.345107 ,
the digits " 0.345 " are always stable and the last 3 digits are uncertain.

ex. 3)

If the repeated results of measurements are :
0.345012
0.349020
0.344107 ,
the digits " 0.3 " are always stable and the last 5 digits are uncertain. The second decimal place " 4 " is not stable after rounding (half adjust).

Now, among 3 examples above, which is the most accurate measurement and which is the least one?
And how many digits are significant (meaningful) for each example?

If your analysis's significant di gits are 2, you always guarantee the accuracy of the results expressed with 2 digits.
When you get the results like:
4.567 then you express 4.6,
4.567 with 10 times dilution, then you express 46
4.567 with 100 times dilution, then you express 460
4.567 with 1000 times dilution, then you express 4600

When your significant digits are 2, you cannot give out a result like 4570, 4567, 4567.0 or 4567.00 because you are not sure about 3rd or more digits after the first 2 digits. "When you are not sure about anything, do not report it.", that's the idea of significant digits.

لنلقي نظرة على الأمثلة النتالية.

مثال 1
في حال كانت نتائج قياس ما هي:
0.345675
0.345679
0.345677

فان الخانات "0.34567" دومأ ثابتة بييما الخانة الأخيرة متغيرة.

> مثال 2
> في حال كانت نتائج قياس ما هي:
> 0.345012
> 0.345020
> 0.345107

فإن الخانات "0.345" دومأ ثابتة بينما الخانات الثلاث الأخيرة متغيرة.

مثال 3
في حال كانت نتائج قياس ما هي:
0.345012
0.345020
0.345107

فإن الخانات "0.3" دومأ ثابتة بينما الخانات الخمس الأخيرة متغيرة. إن الخانة العشرية الثانية "4" ليست مستقرة بعد الثندوير (نصف تعديل).

ما هو القياس الأكثر دقة و القياس الأقل دقة بين الأمثلة الثلاث السابقة؟ و كم خانة ذات دلالة (ذات مغنى) في كل مثال؟

إذا كان عدد الخانات ذات الداللة في التحاليل هو 2 فإنك يجب دوما أن تعبر عن النتائج بخانتين ذات دلالة. عندما تحصل على نتائج مثل: 4.567 يجب أن تكتب 4.6

4.567 مع تدديد 100 مرة يجب أن تكتب 460 مر 460

$$
4.567 \text { مع تدديد } 1000 \text { مرة يجب أن تكتب } 4600
$$

 غير متأكد من الخانة الثالثة أو أي خانة أخرى بعد الخانتين الأوليتين. "عندما تكون غير متأكد من أي شي فلا نقم بنقريره" هذه هي فكرة الخانات ذات الدلالة.

Comprehension Check Sheet

21/8/2007 KIMURA,K (JET)

The variance is computed as the average squared deviation of each number from its mean. For example, for the numbers 1,2 , and 3 , the mean is 2 and the variance is:

$$
\sigma^{2}=\frac{(1-2)^{2}+(2-2)^{2}+(3-2)^{2}}{3}=0.667
$$

The standard deviation formula is very simple: it is the square root of the variance. It is the most commonly used measure of spread. $\sigma=0.816$

Q. 01

If the standard deviation is small, how is the spread of each number (large of small)?

Q. 02

What kind of representative value is Coefficient of Variation (CV) ?

Q. 03

What is the relationship between CV and Relative Standard Deviation (RSD) ?

Q. 04

What kind of value divides a Standard Deviation to give out CV?

Q. 05

Which CV is smaller between the group of " $0.44,0.46,0.55 .0 .59,0.41$ " or " $0.49,0.48$, $0.51 .0 .49,0.50$, ?

Q. 06

Which measurement is easier to get the same CV between higher concentrations or lower ones ?

Q. 07

How many percents are the criteria for CV of quantitation limits for the metal analysis?

Q. 08

What kind of representative value is Correlation Coefficient (r)?

Q. 09

How much is the criteria for r of calibration curves for the metal analysis?

Q. 10

If you have 0.5 L of water of $100 \mathrm{mg} / \mathrm{L}$ concentration with salt, how many mg of salt do you have?

Q. 11

1) What kind of units do ppm and ppb represent usually?
2) How many ppm are $500 \mu \mathrm{~g} / \mathrm{L}$?
3) How many ppm are $10 \mathrm{~g} / \mathrm{L}$?
4) How many ppm are $3 \mu \mathrm{~g} / \mathrm{mL}$?
5) How many ppb are $0.5 \mathrm{mg} / \mathrm{L}$?
6) How many ppm are 300 ppb ?
7) Now you have 65\% of Nitric Acid (HNO3). To get 10L of 5\%HNO3 solution, how much amount of original acid do you need?

Q. 12

Laboratory A uses 40L of 5\% acidified water for soaking apparatus. They change it every 2 months. How many liters of 70% acid do they need per year?

Q. 13

You have 150 mL of 50 ppm Cd solution and 350 mL of 100 ppm As solution. If you put them together, how many ppm of Cd and As solution do you have?

Q. 14

Fill in the tables below for the dilution for the furnace method. Make each step of solution $20 \mu \mathrm{~L}$.

Table Calibration Curve for Cr

Concentration (ppb)	Volume of Std(10ppb) $(\mu \mathrm{L})$	Volume of Diluent $(\mu \mathrm{L})$
0		
1		
2		
4		
6		

Q. 15

Now you have 1ppm of Cu solution, which choice is the best to waste?
a. Dispose of it into the "Heavy Metal" waste
b. Dispose of it into the "Acidified Water" waste after dilution to make it less than 1 ppm (Max. Limit)
c. Dispose of it into the "Acidified Water" waste
d. Dispose of it into the sewage after dilution to make it less than 1 ppm

Q. 16

Now you have 100ppb of As solution, which choice is the best to waste?
a. Dispose of it into the "Heavy Metal" waste
b. Dispose of it into the "Heavy Metal" waste after dilution to make it less than 100ppb (Max. Limit)
c. Dispose of it into the "Acidified Water" waste after dilution to make it less than 100 ppb
d. Dispose of it into the sewage after dilution to make it less than 100 ppm

Q. 17

What are the most two significant differences in samplings for metal analysis from the normal ones?

Q. 18

What helps samples to be preserved for metal analysis?

Q. 19

What does the preservation for metal analysis mean?

Q. 20

What are the main components for digestion?

Q. 21

What do quantitation limits represent?

Q. 22

What is the usual position for a quantitation limit in a calibration curve?

Q. 23

How can quantitation limits be set?

Q. 24

Usually CC remains as a line within a limited range like the figure below. In this case, a concentration over 5 ppb given by the calculation is usually (higher / lower) in fact.
Therefore, we have to dilute (more / fewer) times than it seems to be necessary.

Q. 25

For the material " A ", the QL is 0.5 ppb . And for example, if the standard of drinking water for "A" is 5ppb and we were supposed to measure at that level, we can dilute samples (times). When one result is 0.5 ppb , the actual concentration is (ppb), and when another result is $<0.5 \mathrm{ppb}$, the value for reporting will be ($<\mathrm{ppb}$).

Q. 26

Consider how many times the samples can be diluted in the following cases when the minimum levels for reporting are the same as the standards for drinking water.

1) When As's QL is 5ppb and the standard for drinking water is 0.01 ppm , how many times can the sample be diluted?
2) Sample " X " consumes much amount of KMnO_{4} when it is pretreated for Hg. How much amount of sample do you use when it is usually to be used 100 mL ? (when Hg's QL is 0.5 ppb and the standard for drinking water is 0.001 ppm)
3) When Al's QL is 5 ppb and the standard for drinking water is 0.2 ppm , we can dilute samples (times). But we do not usually dilute them hundreds times in order to keep the () of analysis.

Q. 27

Fill in () with adequate words for the flow chart for Data Management.


```
    \downarrow
Attach" Front Page" to the results
    \downarrow
Record dat a in" (__)
    \downarrow
Record the final date in " Adm"" sheet
```


Q. 28

What measure is taken if the correlation coefficient (r) < 0.995 ?

Q. 29

If a sufficient " r " is not obtained with () or more calibrations, note the value in ().

Check if results (concentrations) over the () adopted calibration are obtained. If any, () the pretreated sample and repeat measurements.

Express results with " $<$ " when the concentration is () than the QL.
Set the smallest digit the same as the one of () because you cannot measure smaller amounts than the ().

Handle data in accordance with () significant digits.

Q. 30

Fill in () for examples of handling data
(QL = 0.005, 2 significant digits)

1) If the software gives out 0.003054 , record ()
2) If the software gives out 0.006053 , record ()
3) If the software gives out 0.02063 , record ()
4) If the software gives out 0.5949 , record ()
5) If the software gives out 2.660, record ()
6) If the software gives out 9.952, record ()
7) If the software gives out 10.09, record ()

Q. 31

Interferences and measures to be taken

1) Spectrophotometric interference is caused by background absorption such as (ionization / molecular absorption / influence of viscosity) and is corrected by using (continuous light source / std addition method / matrix modifier) and so on. As background correction, self reversal (SR) is useful because the applicable rage is wider than (D2 / hollow cathode / UV).
2) Physical interference is caused by physical aspects such as (atomic beam / hard-to-dissociate compounds / surface tension) and is modified by using (dilution / Zeeman effect / matrix modifier) and std addition method.
3) Chemical interference is caused by chemical aspects such as (ionization / molecular absorption / smoke generation) or hard-to-dissociate compounds and is modified by using (dilution / background correction / matrix modifier) and std addition method.

كوجي كيمورا 7-8-2007

يُحسب التباين كمتوسط مربعات الفرق بين كل رقم و المتوسط الحسابي. فعلى سبيل المثال بالنسبة للأرقام 1 و 2 و 3 فإن المتوسط الحسابي هو 2 و التباين هو: $\sigma^{2}=\frac{(1-2)^{2}+(2-2)^{2}+(3-2)^{2}}{3}=0.667$

إن معادلة الانحر اف المعياري سهلة جدأ: هو عبارة عن الجذر التربيعي للتباين. و هو المقياس الأكثر شيوعا للانتشار

$$
\sigma=0.816
$$

1 W
في حال كان الانحر اف الميياري صغيرأ فهل سيكون انتثـار الأرقام كبيرأ أ صضغير ا؟

ماذا تمثل قيمة عامل التباين (CV)؟

3 س
ما هي العلاقة بين عامل الثباين (CV) و الانحراف المعياري النسبي (RSD)؟

4 س
ما هي القيمة التي يجب أن يتم تقسيم الانحر اف المعياري عليها للحصول على عامل التباين (CV)؟

أي مجمو عة من الأرقام تملك عامل تباين أصغر الكجمو عة: "0.41 0.44, 0.46, 0.55.0.59, 0.41" أم المجموعة ,0.49" ؟. $0.48,0.51,0.49,0.50, ":$

أي القياسات يكون فيها الحصول على نفس عامل تباين أسهل: التراكيز العالية أم التراكيز المنخفضة؟

كم هي النسبة المئوية الحدية لمعيار عامل التباين من أجل الحدود الكمية لتحليل المعادن؟

ماذا تتثل قيمة معامل الارتباط (r)؟

1) أي نوع من الواحدات يمثل ال ppm و الppb عادئ؟

2) كـ كم تعادل 10 غرام/ليتر بال

3) لايكك حض الأزوت تركيز 65\% . للحصول على 10 ليتر من حمض أزوت تركيز 5\% فكم تحتاج من الحض

مخبر A يستخدم 40 ليتر من الماء المحمض بنسبة 5\% لنقع الأدوات. يتم تنير الماء الكحمض كل شهرين. فكم ليتر من الحمض ذو التركيز 70\% بحاجة خلال عام واحد؟

لديك 150 مل من محلول ستاندر كادميوم 50 ppm و 350 مل من محلول ستاندر الزرنيخ 100 ppm. إذا تم خلطهما سوية فعلى كم ppm من الكادميوم و الزرنيخ سيتم الحصول؟

14 W قم بملئ جدول التمديد التالي من أجل التحليل بطريقة الفرن بحيث يكون الحجم الكلي في كل خطوة 20 ميكروليتر.

جدول منحني المعايرة من أجل الكروم						
Concentration (ppb)	Volume of Std $(10 \mathrm{ppb})$ $(\mu \mathrm{L})$	Volume Diluent $(\mu \mathrm{L})$				
0						
1						
2						

4		
6		

> 1. لديك ppm1 من مطرول النحاس فأي الخيارات هو الأفضل لللتصريف؟ "Heavy Metal"،
2. قم بطرحها في فضلات "Acidified Water" بعد تمديدها لتصبح أقل من 1 "ppm (الحد الأعظمي)
3. قم بطرحها في فضلات "Acidified Water"
4. قم بطرحها في الصرف الصحي بعد تصديدها لتصبح أقل من 1 ppm 1

16 u
لديك ppb 100 من محلول الزرنيخ فأي الخيارات هو الأفضل لللتصريف؟ 1. "Heavy Metal" قم بطرحها في فضلات
2. قم بطرحها في فضلات "Acidified Water" بعد تديدها لتصبح أقل من ppb100 (الحد الأعظمي) 3. قم بطرحها في فضلات "Acidified Water" بعد تمديدها لتصبح أفل من 100 ppb 4. ppb 100 قم بطرحها في الصرف الصحي بعد تمديدها لتصبح أقل من

17 w
ما هما الفرقان الجوهريان في الإعتيان من أجل تحليل المعادن عن الإعتيان العادي؟

18 س
ما الذي يساعد في حفظ العينات في تحليل المعادن؟

19 س
ماذا تعني عطلية الحفظ في تحليل المعادن؟

20 w
ما هما العنصر ان الأساسيان في عملية الهضم؟

21 س
ماذا تمثل الحدود الكمية؟

22 w
ما هو الموقع المعتاد للحد الكمي في منحني المعايرة؟
 يعطي بالحساب تركيزا ((أكبر / أصغر) من التركيز الفطلي. و بالتالي يجب تمديد عدد مرات (أكثر /أقل) مما يظهر أنه ضروي.

 الفعلي هو (ppb) و عندما تكون لدينا نتيجة أخرى > ppb 0.5 فإنه يجب كتابة (ppb).

كم مرة يمكن تدديد العينة في الحالات التالية عندما تكون الحدود الدنيا لكتابة النتائج ممانلة لستاندرات مياه الشرب.

1) عندما يكون الحد الككي للزرنيخ هو 5 ppb و ستاندر مياه الشرب هو 5 ppm 0.01 فكم مرة يككن تمديد الیينة؟
 استخدامها حيث نستخدم عادة في التحليل 100 مل؟ (الحد الكمي للزئبق هو 0.5 (0.001 و و ستاندر مياه الشرب هو (ppm 0.001
2) عندما يكون الحد الككي للألمنيوم هو 5 ppb و ستاندر مياه الثرب هو 0.2 ppm فيكنا تمديد العينة (مرة). لكن لا نقوم عادة بالتمديد عدة مئات من المرات للحفاظ على () التحليل.

إن لم نحصل على قيمة مناسبة لمعامل الارتباط باستخدام (() (تقاط معايرة أو أكثر فسجل القيمة في (تحقق إن كانت النتائج (التراكيز) التي حصلت عليها أكبر من (\quad () تركيز في المنحني العياري. و في حال الحصول على مثل هذه التر اكيز، ((\quad) العينة المعالجة و قم بإعادة القياسات حتى تصبح التر اكيز بين الحد الككي و بين أكبر

نقطة معايرة.
قم بالتنعيير ب ">>" عندما يكون التزكيز (
 قم بمعالجة البيانات مع أخذ (

$$
\text { (الحد الكمي= } 0.005 \text { ، و المطلوب منا خانتين ذات دلالة على الأكثر) }
$$

التداخلات و الإجراءات الواجب اتخاذها

1. تنتج النداخلات الطيفية عن امتصاص الخلفية مثل (التثرد / الامتصاص الجزيئي / تأير اللزوجة) و يتم تصحيحها باستخدام (منبع ضوئي مستمر / إضافة محلول عياري / معدل خليط) و هكذا. بالنسبة لتصحيح الخلفية فإن طريقة العكس الذاتي مفيدة لأنها تطبق على مجال أوسع من مجال (لمبة الايتيريوم / اللمبة المهبطية المفر غة / الأثعة فوق البنفسجية).
2. تنتج النتاخلات الفيزيائية عن الهظاهر الفيزيائية مثل (الحزمة الذرية / المركبات صعبة الفصل / الثوتر السطحي) و يتم تصحيحها باستخدام (التمديد / تأثّثر زيمان / معدل خليط) و بطريقة إضافة محلول عياري.
3. تنتج التداخلات الكيميائية عن المظاهر الكيميائية مثل (الثتشرد / الامتصاص الجزيئي / تولد الاخان) أو المركبات صعبة التفكك و يتم تصحيحها باستخدام (الثتديد / تصحيح الخلفية / معدل خليط) و بطريقة إضافة محلول عياري.

Why and how do we

 measure the metals?لماذا و كيف نقيس المعادن؟

- There are harmful metals like As, Cd, Cr and Hg causing terrible diseases to death.

- They are measured by AAS easily.
- يمكن قياسها بسهولة بواسطة AAS.

Flame Method - metals in water become atoms طريقة اللهب - المعان في الماء تتحول إلى ذرات

The Whole Schedule '06/11 - '07/12 البرنامج الكامل مابين 11-2006 و 12-2007

1. 2006/11-2007/2 (3months, ثلاثة أشهر)

Installation, Operation of AAS, Sampling تركيب، نشتغيل الAAS، إعتيان
2. 2007/6-2007/8 (3months, ثلاثة أشهر)

Monitoring Planning, Sampling, Pretreatment, Measurement
خطة مراقبة، إعتيان، معالجة أولية، قياس عينات
3. $2007 / 11$ - 2007/12 (2months, شهرين)

Practical Measurement, Completion of QA/QC, SOP,O/M
قياس عملي، إكمال ضبط جودة و تأكيد جودة، SOP، تشغيل و صيانة

The Schedule of our Lectures

برنامتج المحاضرات للفترة
2006/11-2007/02

- Measurement (with AAS)
- قياس (بواسطة AAS)

1. Installation of machineries, equipment, apparatus, reagents, gases and so on.
تركيب الأجهزة و المعدات و الأدوات و الكو اشف و الغازات...إلخ
2. Operation of AAS using standard solutions (theoretical and practical)

تشغيل الAAS باستخدام المحاليل العيارية (نظري و عملي)

The Schedule of our Lectures
برنامج المحاضرات لللفترة

$$
2006 / 11-2007 / 02
$$

- Sampling (in fields)

1. Sampling Planning

خطة الاعثيان
2. Observation and selection of sampling stations مر اقبة و اختيار محطات الاعتيان
3. Sampling and Preservation
الاعتيان و الحقظ

