Annex 2-3: Lecture Materials for Training

2.3.1 Environmental Management

The Capacity Development of Environmental Monitoring at Directorates for Environmental Affairs in Governorates

Basic Environmental Monitoring Course Lecture-1: Environmental Management

June 2005

The JICA Expert Team

Training Program of the Basic Environmental Monitoring Course

- 1. Lecture for Basic Environmental Monitoring -Basic Understanding of Environmental Management & Monitoring -Primary Knowledge and Practical Skills of Chemical Analysis -Introduction of Field Training
- 2. Field Training in DFEA -Practical Skills of Sampling, Analysis, and Data Management -Planning and Implementation of Environmental Monitoring
- 3. Follow-up Training -Review of Field Training and Trouble Shooting -Presentation by GCEA and DFEA about Environmental Monitoring -Continuation of Actual Practice

2

Lecture for Basic Environmental Monitoring Lecture-1 to 12

- (1)Necessity of Environmental Management (Lecture-1 to 2) 1)Lessons of Japan 2)Overview of Environmental Management and Monitoring 3)Enforcement of Environmental Measures 4)Water and Air Monitoring
- (2)Basic Theory of Water Quality Analysis (Lecture-3 to 9) 1)Equip. & Structure of Monitoring 2)Sampling, Analytical Theory and Skills, Lab O/M
- (3)Data Management and Public Awareness (Lecture-10 to 11) 1)Objectives and Key Points 2)Approach to the Project
- (4)Summarisation (Lecture-12) 1)Discussion, Q and A 2)Evaluation 3)Certification Conferment

Lecture-1: Environmental Management
 1. Lessons of Japan
2. Environmental Management Plan
3. Enforcement of Environmental Protection
5

- -careless/ignorance of environmental protection
- 3)Delay of Social Infrastructure Development related to Environmental Pollution -low priority on national budget allocation to environmental infrastructure (sewerage pervasion) -5.3 % of total national budget (1970)=1/8 that for road construction

Lecture-1: Environmental Management 1. Lessons of Japan

(2)Spread over the Pollution

1)Water Quality Pollution=Ecological Impacts=Damage to Human Health

2)Minamata disease, Itai-Itai disease, Niigata Minamata disease, Yokkaichi Asthma

3)Damage on Fishery, Drinking Water Facilities

(3)Socail and Public Response

1)Citizens: Violent Fight with Polluters by Fishermen=Safety on Human Life and Economic Activities

2)National Government:

Priority on Economic Growth=Harmonization with Industry Development=Reluctant to strong Enforcement on Environmental Protection

3)Local Government:

Dilemma between Inducing Industry and Environmental Protection=No clear National Policy=Ordinances for Pollution Prevention

Lecture-1: Environmental Management 1. Lessons of Japan

(4)Comprehensive Measures against Environmental Pollution (1966)

1)Pollution control based on Environmental Quality Standards

2)National Pollution Control should be integrated with local preventive measures 3)National and Local Governments are responsible for public investment on pollution control

4)Environmental Quality Standards be set each pollutant category for protection of human health and the environment

5)Government organization be established for pollution control policies= M. of Environment (1970) & National Institute for Environmental Research Center (1974)

6)A Law of Pollution Control be enacted to provide the common principles and basic policies for pollution control=Basic Law for Environmental Pollution Control (1970)

Lecture-1: Environmental Management 1. Lessons of Japan

(5)Pollution Session of the Diet (1970)

1)Basic Position of the National Government on Pollution Control -Deleting "Harmonization Provision"=Pollution Control First from the Basic Law for Environmental Pollution Control

2)More Stringent Control -Control to be extended to the whole country, not only polluted areas -Additional pollutions (7) be under control=Air, Water, Soil, Noise, Vibration, Ground subsidence, and Offensive Odor

3)Identification of the Responsibility of Business Enterprises -Business activities be subject to stringent control -Enacted the Pollution Control Public Works Cost Allocation Law=pollution control cost be included into plans for new ventures

4)Strengthen the Enforcement Power of Local Government -Locally specific solution -More stringent standards and control in addition to the uniform national regulatory standards -Enforcement authority be almost completely transferred to the local government

(6)Lessons Learnt-1

1)Victims: Physically handicapped & Socially handicapped Citizens

2)Recognition: Absolute Loss of Human Life of Sacrificed People

3)Momentam: Movement and Accusation by the Local People and Citizens

10

12

4)Administration: Initiative by the Local Government

	Lecti 1. Le	ire-1: Environmen ssons of Japan	ital Manager	nent	
5)Les	sons Learnt-:	2			
5)P Dela	reventive Me ay of Cause I	asures: No Excuse for dentification	Enforcement	Measures by	
6)C Earl	ost Effectiver ly Stage:	ness of Investment or	n Countermeas	ures in the	
		Cost of Measures (1989)	Economic Dai (1989)	nomic Damages (1989)	
-Min	amata	\$0.123 bil.	\$12.6 bil.	(x100 times)	
-Jint	tu river	\$0.006 bil.	\$2.5 bil.	(x420 times)	
-Yol	kaichi	\$14.8 bil.	\$21 bil.	(x1.4 times)	
-SO	c in total	\$480 bil.	\$6,000 bil.	(x13 times)	
				11	

Lecture-1: Environmental Management 2. Environmental Management Plan

"The Environmental Basic Law (1993)"

Shifting from Command & Control to Comprehensive Framework of Environmental Protection=Vision

1)Building a socioeconomic system fostering an environmentally sound material cycle

2)Ehsuring harmonious coexistence between humankind and $\ensuremath{\mathsf{nat}}\xspace$

3)Achievement of participation by all sectors of society

4)Promotion of international activities

Lecture-1: Environmental Management 2. Environmental Management Plan

Measures in the Basic Environmental Management Plan

(1) Air Environment

Clobal Issues
 Wide Area Pollution Issues (Acid rain, Photochemical oxidant)
 Pollution in Mega-city (Heat island, SPM, NOx)
 Control of Harmful Substances (Organo-chlorinated compound)
 St Regional Amenity (Noise & vibration, offensive odor)
 Air Quality Monitoring

19

(2) Water Environment

- 1) Protection of Water Environment (Quality & Quantity) 2) Reduction of Pollution Loads in Water Use 3) Control of Water Environment in Closed Water Bodies 4) Protection of Marine Environment 5) Compensation to Victims
- 6) Water Quality Monitoring

Lecture-1: Environmental Management 2. Environmental Management Plan

Measures in the Basic Environmental Management Plan

- (3) Soil and Geological Environment
- (4) Solid Waste Management and Recycle
- (5) Environmental Risk Management of Chemical Substances
- (6) Research and Development on Environmental Technology

- (7) Spatial Planning for Coexistence
- (8) Wildlife Conservation and Biodiversity

Le 2.	Lecture-1: Environmental Management 2. Environmental Management Plan		
Meas	sures in the Basic Environmental Management Plar	ı	
(9) Others			
	1) Protection and Wise Use of Environment on Regional Development		
	2) Roles of the Stakeholders 3) Promotion of Self-reliance Activities		
	4) Environmental Impact Assessment		
	5) Measures of Command and Control		
	6) Economic Oriented Measures 7) Development of Social Infrastructure		
	8) Information System		
	9) Pollution Control Plan in the Specific Area		
	10) Public Health and Arbitration of Environmental Disputes		
		21	

	3. Enforcem	ient of Env	vironmental Prote	ction		3.	Enforcement of En
1)Env WQ	vironmental Sta Standards on To>	ndard-3 cic Substances	s for Protection of Hum	an Health	(1)En W(viror Q Stan	imental Standard-4 idards on the Living Enviro
-23 -Uni -Ecc	toxic substances ified standard as ological concentra	(Cd, CN, Pb, C nationwide mi ition of Hg and	Cr ⁶⁺ , As, Hg, PCBs, Org [.] inimum criteria d PCB	-Chlorinated)	-Ri -Cr -Cc	iver: 5 riteria omplia	substances by categorized water boo ance with more than 75% strative target to be achie
-Mo -Be	st stringent consi achieved at once	dering histori	cal lessons		-AC	. Rivers	
-Mo -Be	st stringent consi achieved at once parameters	dering histori	cal lessons	standards	-AC	. Rivers	

Lecture-1: Environmental Management 3. Enforcement of Environmental Protection

(2)Effluent/ Discharge Control and Standard

1)Setting Effluent Standards

-more stringent standards by the local government -additional substances to be controlled -setting provisional effluent standards for emergency (N & P)

2)Discharge Standards for Wastewater Treatment Facilities -setting additional charge on wastewater treatment

3)Designation and Registration of Specific Factories and Facilities

4)Enforcement

-notification to factories for improvement of treatment facilities -check and inspection of treatment plan and its discharge quality -punishment of violation

-orders to improve treatment facilities and to suspend operations

Thank You	
	35

The Capacity Development of Environmental Monitoring at Directorates for Environmental Affairs in Governorates

Basic Environmental Monitoring Course Lecture-2: Environmental Monitoring

June 2005

The JICA Expert Team

Lecture for Basic Environmental Monitoring Lecture-2: Environmental Monitoring

(1)Water Quality Monitoring

(2) Air Quality Monitoring

Lecture-2: Environmental Monitoring 1. Water Quality Monitoring

1.1 Importance of Water Quality Monitoring

-To implement appropriate regulatory actions to control W-pollution -To ensure integrity and comprehensiveness of Ad. enforcement

Thus

-to be properly designed and implemented

- -to be continuously monitored
- -to be prepared a monitoring plan both national and local govern't
- -to be shared and disclosed the measurement records
- -to be published the progress of pollution control (accountability)

Lecture-2: Environmental Monitoring 1. Water Quality Monitoring

1.2 Water Quality Standards

1)Standards for the Human Health and the Living Environment -Uniform standards for the human health -Classified standards for the living environment -Type and water use of water bodies -Consideration of the existing WQ standards by usage a) Standards for fishery (1965) b) Standards for drinking water (1970)
c) Standards for agricultural water (1970) d) Standards for industrial water (1971) 2) Designation of Water Body Classes -Prioritization to more serious polluted water bodies -Current and future water use -Severity and source of pollution -Improvement and/or maintenance of the current conditions -Compliance period considering pollution control technology

Lecture-2: Environmental Monitoring 1. Water Quality Monitoring (2)Water Quality Standards on the Living Environment in Rivers -River: 5 substances -Criteria by categorized water bodies -Compliance with more than 75% of total sampling no. /year Administrative target to be achieved within 5 years in principle DO pH BOD SS 25 2 ; B-E I ; bathing 6.5-8.5 25 7.5 1,000 supply class 2 uses listed in E supply class 3 2 в fishery, class 2, and uses 6.5-8.5 25 5,000

3 ; industrial water, class I, and 6.5-8.5 in D-E

D-E class 2 : agricultural water ; 6.0-8.5 ed in E class 3 ; conservation of living 6.0-8.5

supply c in C-E

С

5

3

5 50

8 100 2 -

10 * 2

Lecture-2: Environmental Monitoring 1. Water Quality Monitoring					
3)Water Quality Standards on the Living Environment in Lakes-2					
-Lakes: T-N -Criteria by -Complianc	, T-P for eutrophication & water bloom categorized water bodies e with more than 75% of total sampling n	o. /year			
Administra	tive target to be achieved within 5 years i	n princi	udarde		
Administra	tive target to be achieved within 5 years i	n princi	ndards T-P		
b.	tive target to be achieved within 5 years i water use nservation of natural environment, and uses listed in II-V	Star T-N 91	idards T-P 0.005		
b.	water use nservation of natural environment, and uses listed in II-V ter supply classesI, 2 and 3 (except for special types), istery class 1, bathing; and uses listed in II-V	Star T-N 0.2	ndards T-P 0.005 0.01		
Administra	water use nservation of natural environment, and uses listed in II-V tier supply classes-I. 2 and 3 (except for special types), istery class 1, bathing; and uses listed in II-V tier supply class-3 (special types), and uses listed in IV-V	T-N 0.2 0.4	T-P 0.001 0.03		
Administra	water use nservation of natural environment, and uses listed in II-V ter supply classes-I, 2 and 3 (except for special types), sharry class 1, bathing and uses listed in III-V ter supply class 3 (special types), and uses listed in IV-V hery class 2, and uses listed in V	Star T-N 0.2 0.4 0.6	dards T-P 0.005 0.01 0.03 0.05		

Lecture-2: Environmental Monitoring 1. Water Quality Monitoring 9)Water Quality Standards on the Living Environment in Estuaries-1

-Estuaries: 7 substances -Criteria by categorized water bodies -Compliance with more than 75% of total sampling no. /year -Administrative target to be achieved within 5 years in principle рН COD DO CG water use NHE Fishery class 1 ; bathing ; conservation of natural environment, and uses listed in B-C 7.5 NC Fishery class 2 ; industrial water and uses listed in C 7.8-8.3 3 5 _ ND ion of living environment Conserv 7.0-8.3 2 8 al hexane extract 10

Le 1.	cture-2: Environmental Monitoring Water Quality Monitoring	
1.3 Method	ology of WQ Monitoring Survey	
(2)Surve	y Timing and Sampling Location-1	
-Rivers	:to cover the lowest water level and the time of active water use	
	:to include a) near intake, b) before & after of major wastewater discharge points and tributaries, c) others required	
	to always include reference stations in the ambient water quality monitoring survey	
		13

Lecture-2: Environmental Monitoring 1. Water Quality Monitoring 1.3 Methodology of WQ Monitoring Survey (2)Survey Timing and Sampling Location-2 -Lakes :to cover stagnation and circulation periods including the time adverse effects to be expected on water use :to select a day with stable WQ conditions following several successive days of relatively calm weather :to include a) center of a lake, b) near intake, c) before & after of major wastewater discharge points, d) near river inflow and outlet points :to always include reference stations in the ambient water quality monitoring survey

Le 1.	cture-2: Environmental Monitoring Water Quality Monitoring		Lecture-2: Environmental Mo 1. Water Quality Monitoring	onitoring
1.3 Method	ology of WQ Monitoring Survey	1.4 \	WQ Monitoring Conditions in Japan (1	995)
		1) 294,491 samples from 5,471 station	s for Toxic substances
(2)Surve	y Timing and Sampling Location-3		-Rivers: 3,973 stations	
-Estuaries	: to cover the time adverse effects to be expected on		-Lakes: 260 stations	
	water use		-Estuaries: 1,238 stations	
	:to carry out together with the survey on rivers inflow	2)	426,701 samples from 6,993 station -Rivers: 4,533 stations	s for Normal substances
	:to conduct at spring tide on a day with minor influence		-Lakes: 428 stations	
	from rain and wind		-Estuaries: 2,132 stations	
	:to select stations considering a) topography, b) local	3)) 10,411 well sites for ground water q	uality
	current and tide, c) local water use, d) location of		-General survey well sites:	4,357 stations
	major wastewater discharge points and river inflow		-Contaminated well sites :	1,659 stations
			-Regular monitoring survey well sites	: 4,395 stations
	to always include reference stations in the ambient			
	water quality monitoring survey 15	1		16

Lecture-2: Environmental Monitoring 1. Water Quality Monitoring

1.5 Monitoring of Discharge/ Effluent Water Quality (1)General

-Factories and Enterprises are requested for report the quality and quantity (pollution load) of their discharge to Governors

-Governors have right to inspect them checking compliance with effluent standards, and to order them taking necessary measures

19

21

-Violation to be punished by the Water Pollution Control Law (imprisonment and/or fine)

-Measurement of discharge/ effluent WQ be done by factories and enterprises themselves

Lecture-2: Environmental Monitoring 1. Water Quality Monitoring 1.5 Monitoring of Discharge/ Effluent Water Quality (2)Parameters and Frequencies -Toxic sub. :at least 1time/month, 4times/sampling day :at least 1time/month for all sub. :rests be considered previous survey results

-Normal sub. :at least 4times/year (3)Survey Timing and Sampling Location :to decide based on specific effluent conditions :to sample at outlets of factories and final treatment facilities :to conduct considering date of the ambient WQ monitoring survey

20

Lecture-2: Environmental Monitoring 1. Water Quality Monitoring

1.6 Institutional Set-up for Water Quality Control

(1)Establishement of In-factory Pollution Control Organization -Supervisor for pollution control> Chief pollution control manager > Pollution control manager = to be qualified by the national government (250,000 certified person in 1995) -Specific registered factories: manufacturing, power plant, etc.

(2)Certified Quality Analysts

-General, Chemical Analysis (air and water), Noise & Vibration

	Lecture-2: Environmental Monitoring 2. Air Quality Monitoring
2.1	Air Quality Pollution
(1) Pollution Sources
	-Fixed (public facilities and factories)
	-Mobile (vehicles= NOx)
(2) Pollutants
	-SOx, NOx, CO, HC, SPM, Dust and Soot, Harmful Pollutants (Cd, HCl, Pb, F)
(3) Detrimental Effects
	-Human health, Photochemical smog, Ecosystem, Global warming, Ozone layer, Acid rain
	27

	Lecture-2 2. Air Qua	: Environmental M lity Monitoring	onitoring
2.2 Aiı	Quality Monit	oring Conditions in Ja	pan
(1)Aml	pient Air (1,711	stations)	
a) F	ixed source	:NOx, SO2, SPM, Dust Heavy metals	=location of sources and hot spot
b) A	mb. condition	:NOx, SO2, CO, SPM, Ox, HC	=normal substances
(2) Mo (410	bile Source 5 stations)	:NOx, SO2, CO, SPM, H	C=road sides, impact by vehicles
			28

	Lecture-2: Envi 2. Air Quality M	ronmental M Ionitoring	lonitoring
2.6 Eq	uipment to be suppli	ed by JICA	
(1)	High Volume Sampler with Filter	: TSP	=1 day, Heavy metals
(2)	Low Volume Sampler with Filter	: SPM(PM10)	=1 week, 1 month, long term
(3)	Handy Type Sampler with Impinger	: NOx, SO2, O	c =1 hour value of gases
(4)	Meteorological observation device	: W-d and W-v Temp, Humid	=1 hour value
(5)	Reagent and Others		

	Lecture-2: 2. Air Qua	Environmental Monitoring ity Monitoring
2.7 M	obile Station in	Japan
(1)	Objectives	
	-Supplemental	data of the fixed stations
	-Coping with th	e complaints from citizens
	-Consideration	of air monitoring system (Nos. of stations, locations)
(2)	Measurement ite	ms : NOx, SO2, CO, SPM, Ox, HC, W-d and W-v, A. Temp, Humidity, solar radiation
(3)	1-2 cars/Govern	orate: limited use
(4)	Characteristics	
	-Advantage	: free from place, time, period
	-Disadvantage	:no continuous data, electricity, security, high O/M cost
		39

10	Them	Standard volue						
cinas	Water use	płi	800	-55	00	Total colifore		
AA.	Water supply class 1, conservation of natural environment and more listed in A-E	6, 5-8, 5) sg/L or less	(25 mg/) or lass	7,5 mg/l or more	50 MPS/100ml or less		
Å	Water supply class 2, Fishery class 1, bathing and uses listed in H-E	6.5-8.5	2 mg/l oc Jobs	25 ng/1 or Teas	7.5 mg/l or more	1000 MMM/100ml or less		
B.	Water samply class 2. Yisheryclass 2. and uses listed in C-E	6.5-8.5	2 mg/1 or less	25 ng/t or Tests	5 mg/) -st write	5000 MN/100ml or less		
C	Fishery class A, Industrial enter class 1 and uses listed in D.E.	0.5 W.S	5 est/) or jobs	50 ma() 02 found	b ag/1 or acre	-		
D	Industrial mater class 2: agricultural water and years listed in E	0.0-8.5	8 mg/1 or less	100 mg/li or Juni	2 se/l or wre	1.00		
E	Industry water class S. and conservation of environment	6, 0-8, 5	in ng/1 ar-	Floating Matter such as garbage should not be closerved	z ep/) or eoro	-		
Drin	king Water Resource	Vater T	reatment	(88<25)	Actual Con	dition of Rivers		

1	Ites			S1/anda	ed solar	
01000	Water use	10	100	SS	10	Tarai califore
AA	Water samply class I, fishery class I, connervation of natural snyironnest, and uses listed in A-C	6.11-8.5	t mit/1 or. Jana	1 mg/1 or loss	7/5 mg/l of mini	00 MPS/100ml of jame
A	Water supply class 2, and 3, fishery class 2, bathing and uses listed in R-C	0.11-8.5	If mu/1 or Jeed	Sha/Lon Linn	17.5 mg/1 or mbyto.	1000 MEX/100ml == 1mm
B	Fishery class 3, industrial water class 1, agricultural water and uses listed in C.	6.5-6.5	a mar/1 or Jees	lfing/lan	5 mg/I to more	9
c	Industrial mater class 2. and conservation of the environment	6.0-8.5	8 sg/1 ar Iree	Floating matter such as arriage set be observed	2 mg/1 or sore	

Inter Kater case Total Nitragen Total Phophan I Conservation of natural environment and uses listed in J)-V 0.1 m/l 0.000 m/l II Conservation of natural environment and uses listed in J)-V 0.1 m/l 0.000 m/l III Exter supply classes 1, 2 and 3 (setting type (la type (l, timber) class 0.2 m/l 0.01 m/l III Exter supply classes 3 (special type (la type (l		i cen	Standa	rd walue
I Conservation of natural environment and uses listed in J)-V 0.1 m/l 0.005 m/l II Enter supply classes 1, 2 and 3 (sciency typecial type), tishery class 0.2 m/l 0.01 m/l II Enter supply classes 1, 2 and 3 (sciency typecial type), tishery class 0.2 m/l 0.01 m/l III Enter supply classes 3 (special type) and uses listed in IV-Y 0.4 m/l 0.03 m/l IV Fishery class 2 (special type) and uses listed us IV-Y 0.6 m/l 0.63 m/l IV Fishery class 2 (industrial, warfieldur type) work on the second of	C44858	Katar ann	Total Nitragen	Total Phosphar
II Vater supply classes 1, 2.and 3 (sensept type(1a) type(), Tishery class 0.2 gg/1 0.01 mg/1 or less III Vater supply class 3 (special type() and uses listed in NV-V 0.4 mg/1 or less 0.60 mg/1 or less IV Fishery class 3 (special type() and uses listed in NV-V 0.4 mg/1 or less 0.65 mg/1 or less IV Fishery class 3 (industrial, warfinitum veter und conservation of the sentement 0.6 mg/1 or less 0.65 mg/1 or less	ī	Conservation of natural environment and uses fixed in $J\!\!-\!\!V$	0.1 mg/l nr lass	0,005 mg/1 or less
III Water suppler class I (special type) and uses listed in IV-Y 0.4 mg/l cr lass 0.00 mg/l cr lass IV Fishery class I and uses listed in V 0.6 mg/l sr less 0.60 mg/l sr less V Fishery class I andasrial, wgrisilturul water und conservation of the servicement 1 mg/l 0.1 mg/l	ġ.	Nator supply classes 1, 2 and 3 (except special types), fishery class 1, bothing and uses listed in $\Pi\Pi^2V$	0.2 mg/l or less	0.01 mg/1 or less
IV Findnery class 2 and user [inted in V 0.6 mg/l or less 0.65 mg/l or less V Endnery class 3, industrial, surjustant water and conservation of the surjustance. 0.1 mg/l or less	Ш	Water supply class 0 (special types) and uses listed in $\mathrm{IV}\text{-}\mathrm{V}$	0.4 mg/l or lase	0.03 mg/1 or loss
V Fishery class 3, industrial, agricultural water and conservation of 1 ag/1 0.1 ag/1 0.1 ag/1	w	Pistery-class 2 and user listed in V	0.6 mg/l or less	0.05 mg/l or less
AT TELL OF THE	v	Fishery class 3, industrial, agricultural water and connervation of the environment $% \mathcal{T}_{\mathrm{eq}}$	1 mg/1 or leas	0.1 mg/1 or lons

-	Item COD _{Mn} St				which to have		
r) ann	Water ann	oll	COD	00	fotal Orlifora	N heiden Extractu foil content etc.	
٨	Fishery class L. hathing, conservation of the natural vertronment, and save tisted in B-C	1,071.3	5 pg/) an)ver	CS.m/ or les	(1) (000 MPA/100ml a or Jam	Not detectable	
B	Fishery class Z. Industrial easer and the user listed to C	7/8-8-3	i mg/l or leve ig	i sa/i te les	5	Not detectable	
c	Conservation of the environment	7.6-8.3	* m/1 or loss	1 mi/l	8	~	
_		-				ų.	
	[ten	Standar	d value				
sing (1)	Bater 1	Total Nitrogen	Total Phagnory				
i.	Conservation of the natural environ (aroupt Timbery classes 2 and 2)	0.2 mm/l on less	0.02 mg/1 Ar line				
п	$P(sharty<) \max i$, bothing and the uses class if and 3)	0.3 mg/1	0.03 mg/1 or insu				
ш	Fishers close 2 and the uses ligted	im IV (ex	cept fishers	class 3)	0.6-ms/1 or less	0.05 mt/l or less	
īV	Tubery class 3, industrial activ,	and yours	restion at b	ahitahis	C eg/i	w.m.m/)	

	into i u	iblic Sew	rei System – Syria	. & Japan
No.	Parameter	Unit	Max. Admissible Concentration (Syria)	Max. Admissible Concentration (Japan)
1	pH	pH Unit	• 6.5 - 9.5 •	5.0 - 9.0 (5.7 - 8.7)*
2	Water Temp.	°C	35	45 (40)
3	Color	Unit	-	-
4	TDS	mg/l	2,000	-
5	DO	mg/l		-
6	SS	mg/l	500	600 (300)
7	COD _{Cr}	mg/l	1,600	-
8	BOD ₅	mg/l	• 800 •	600 (300)
9	NO ₃	mg/l	- /	
10	PO4 3.	mg/l	20 .	(T-P) 32 (20)
11	CI	mg/l	600	-
12	NH ₃ -N	mg/l	100	(T-N) 240 (150)
13	EC	µS/cm		еск
14	Turbidity	NTU	. It	i!

1. Selection Criteria of Sampling Stations - Lake

- 1) Accessibility and safety
- 2) Representative points for water quality (next slide)
- 3) Water intake points (next slide)
- 4) Inflow rivers (next slide)
- 5) Outflow rivers (next slide)
- 6) Place for swimming or recreation
- 7) Other special requirements

2. Determination of Sampling Frequency

Sampling Frequency (example)
At least 1 time/month
4-12 times/year (for eutrophic lakes/reservoirs: 1 time/month=12 times/year)
1 – 2 times/year (1 time/year for large stable aquifers and 2 times/year for small, shallow aquifers) (for complains, sampling at any time)
1 – 4 times/year (composite sampling is recommended for pollutants load monitoring) (not inform in advance)
(not inform in advance)

5. Selection of Measurement Parameters

Summary of Sampling Design								
	River	Lake/ Reservoir	Ground-water	Industrial Wastewater	Water Quality Accident			
Sampleing Station	Accessibility, baseline, intake, pollution sources	Accessibility, intake, inflow & outflow rivers	Complaint & pollution sources	All of outlets	Accident points and surroundings			
Sampling Frequency	At least 1 time/month	4-12 times/year	1-2 times/year	1-4 times/year	Depending on type & Num. of accident			
Sampling Patters and Numbers	1 sample/time (or 3 points composit)	At least 2 samples in surface & bottom layer	At least 1 sample/time	Composit sample, each 2 hours during operation	At least 1 sample/time			
Cost	High	High	Low	High	Low			
Parameters	See 5. Selection of	measuremnt para	meters		Depending on the type of accident			
					19			

6. Cost Effectiveness

1) The number of sampling stations and sampling frequency

- 2) The cost of collecting samples (staff, transport, consumables)
- 3) The cost of analysis (reagents and glassware)

4) The cost of data handling and interpretation (cost of reporting)

5) Others (participation of training course)

7. Requirements

- 1) Information collection
 - Pollution sources: location, type, water consumption, existing water quality data (raw materials)
 - Rivers: weather (rainfall etc.), existing water quality data (Ministry of Irrigation, WRIC)
 - Analyzing complaints related water quality (the number and classification of complaints)
- 2) Pre-discussion on sampling stations and confirmation
- 3) Preparation of sampling vehicle
- 4) Preparation of equipment and instrument in laboratory (distilled water unit, cleaning sample bottles)

21

Thank You ! Mow many years is necessary to restore a eutrophicated lake ?

		Suggested P	reservation Methor	ls and Storage Tir	mes
No.	Parameter	Recommended Container	Preservation Method	Max. Permissible Storage Time	Comments
	рН	Plastic*	None, analyze immediately	6 hours	Should be measured on site
2	Water temp.	-	Not applicable	Not applicable	Must be measured on site.
3	EC	Plastic	Refrigeration	2.4 hours	Should be measured on site
-4	TDS	Plastic	Refrigeration	24 boars	Should be measured on site
5	DO		None, analyze immediately	Analyze immediately	Must be measuradion site.
6	Color	Plastic	Refrigeration	48 Hours	
7	SS	Plastic	Refrigeration	24 hours	
8	COD _{Cr}	Plastic	Refrigeration	24 hours	Analyze as soon as possible
9	BOD₅	Plastic	Refrigeration	24 hours	Analyze as soon as possible
10	NO ₃ '-N	Plastic	Refrigeration	24 hours	Analyze as soon as possible
н	PO4 ³⁻	Glass**	Refrigeration	24 hours	1-2
12	CI	Plastic	Refrigeration	7 days	
13	NH3-N	Plastic	Refrigeration	24 hours	Analyze as soon as possible
14	Turbidity	Plastic	None required	24 hours	Preferably tested in the field

Interpret	ing Your Results
Water type	EC (µ s/cm)
De-ionized water	0.5-3
Pure rainwater	<15
Freshwater rivers	0-800
Marginal river water	800-1,600
Brackish water	1,600-4,800
Saline water	>4,800
Seawater	51,500
Industrial waters	100-10,000

What is it and why does it matter?

Cl⁻: usually present in natural waters. Indicator that shows the influences of human activity and/or seawater.

Biochemical Oxygen Demand (BOD)

What is it and why does it matter?

Biochemical Oxygen Demand (BOD) is defined : as the quantity of DO which is able to oxidize the organic components in water with the assistance of microorganisms and under defined experimental conditions

Importance of BOD measurement

BOD of special importance in assessment of polluted surface water and wastewater.

Indispensable as basic data for sewage works.

Biochemical Oxygen Demand (BOD)

Measurement Method?

• Dilution method (titration, standard method)

• Manometer (pressure sensor) method (approved in German, used in this project; unit, mg/L)

BOD₅

Reaction time of 5 days is used for measurement of BOD₅.

Chemical Oxygen Demand (COD_{Cr})

What is it and why does it matter?

Chemical Oxygen Demand (COD_{Cr}) is defined : as the quantity of oxygen consumed by organic matter from boiling acid potassium dichromate (K₂Cr₂O₇)

 Chemical Oxygen Demand (COD_{Cr})
 Chemical Oxygen Demand (COD_{Cr})

 Importance of COD measurement
 Industrial and discharge

 COD of special importance in assessment of polluted surface water and wastewater.
 Industrial and discharge

 Rapid and frequent monitoring water quality (2 hours)
 Organic mate

 Indispensable as basic data for sewage works
 Others

COD_{Cr}

A reaction time of 2 hours (BOD 5 days) is normally used for the measurement of COD_{Cr} Chemical Oxygen Demand (COD_{Cr})

Interpreting Your Results

- Generally, COD_{Cr} value > BOD value for same water sample.
- Correlate with BOD (COD_{Cr}=1.5 to 3.0 × BOD)
- Raw sewage: COD=300-700 mg/L (around 60-150 mg/L in effluent of sewage treatment plant)
- Industrial wastewater: COD=tens several thousands mg/L

Ammonia-Nitrogen (NH₃-N)

What is it and why does it matter?

Nitrogen (N): an element that is essential for all forms of life

Phosphate (PO₄)

Measurement Method?

- Reactive, molybdovanadate method
- Reactive, amino acid method (used in this project; unit: mg/L)

The Capacity Development of Environmental Monitoring at Directorates for Environmental Affairs in Governorates

> Basic Environmental Monitoring Course (Lecture-9. Laboratory Operation)

> > 1st Round: 7th June 2005 2nd Round: 14th June 2005

JICA Expert Team

Laboratory Operation

- 1. Scheme of Environmental Monitoring System
- 2. Reliability of Analyzed Data
- What to do to ensure accuracy and reliability of analyzed data in laboratory?
 3.1 Quality Assurance and Quality Control
 - 3.2 SOP
 - 3.3 Operation and Maintenance of Laboratory

3.1.2 Definitions Associated with Analytical Quality Assurance(1)

- Quality management
- ✓ <u>Overall management function</u> to determine quality policy, objectives and responsibilities, and to implement by means of quality planning, quality control, quality assurance, and quality improvement

8

- ✓ Part of quality management focused on <u>providing</u> <u>confidence</u> that quality requirements will be fulfilled [ISO 9000]
- ✓ All planned and systematic activities implemented within the quality system to provide adequate confidence
- ✓ System of documenting and cross referencing management procedures

3.2.1 <u>SOP</u>

What is SOP?

SOP stand for ;

 \underline{S} tandard \underline{O} peration \underline{P} rocedure

13

3.2.2 What is SOP?

- □ <u>A set of written instructions</u> followed by a laboratory
- Kind of unified instruction or manual for analysis
- □ SOPs <u>describe both technical and</u> <u>administrative operational elements</u> under a work plan or a Quality Assurance (QA) Project Plan

3.2.9(2) Indirect Result of SOP

- Decrease in mistakes during monitoring performance
- **Proper layout of equipment and facilities**
- ➤ Improvement of safety of work
- Improvement, maintenance and succession of techniques

22

24

- 3.2.10 How much detail needs to be included in SOP?
- □ No one 'correct' format
- □ Vary with each laboratory and with the type of SOP
- □ Written with sufficient detail with a basic understanding

3.2.11 Writing Styles of SOPs
In a concise, step-by-step, easy-to-read format
Not be unambiguous and not overly complicated
Active voice and present verb tense
Not be wordy, redundant, or overly lengthy

3.2.12 Who should write a SOP?

- Prepared by analysts knowledgeable with the analytical performance and the laboratory's internal conditions
- Subject-matter experts who actually perform the work or use the process
- A team approach for multi-tasked processes

3.3.1 Operation and Maintenance of Laboratory

- 1) Attitude to Accurate Analysis
- 2) Ensuring Safe Operation
- 3) Management and Handling of Reagents
- 4) Management & Maintenance of Facilities & Instrument

26

28

1) Attitude to Accurate Analysis

- **(1)** Overall Understanding of Background to the Environmental Analysis
- ② Cleaning up and Tidying of the Laboratory
- **③** Appropriate Solid Waste Treatment
- Collection and Disposal of Liquid Waste

- 2) Ensuring Safe Operation
- **(1)** Storage of Dangerous Chemicals
- **②**Electrical Wiring in Laboratory

③Handling of High Pressure Gases

- 3) Management and Handling of Reagents
- (1) Grasping the Stock Amount of Reagents
- (2) Reagent Storage and Management Ledger (Inventory Control)
- (3) Storage of Standard Reagents and Maintenance of Accuracy
- **4** Safety Measures
- **(5)** Reagents Required Special Care for Storage

29

25

27

4) Maintenance/Management of Facilities and Instrument
(1) Maintenance and Management of Facilities and Second Second

5) Other Key Factors

- ① Standard Operating Procedure (SOP)
- **(2)** Management of Analysis Records
- (3) Handling of Analysis Data

 a. Unit and Significant figures
 b. Anomalous value
 c. Accuracy management

31

- **Unit for Water Pollution Indicator**
- Expression of Analyzed Data
 - NO₃-N : 7mg/L ← NO₃ : 31mg/L
- ✓ Meaning of Analyzed Data
- \Longrightarrow Understanding of analytical method adopted \checkmark Unit of Expression
 - μ g/L, mg/L, kg/L, ... (weight/volume) %, ppm (parts per million), ppb, ..(ratio)

- centers \rightarrow enables to review past data in a easy way
- Issue environmental reports
- \rightarrow explain citizens about the degradation and improve environmental awareness
- \rightarrow encourage citizens to complain about environmental degradation
- \rightarrow strengthen the cooperation between citizens and authorities

Goal of Data Management

- to identify pollutants to deal with
- to take countermeasures
- to verify effects of the countermeasures
- to publish environmental reports

Data management from the view point of monitoring objectives

At Regional Level

- 1. characterize and identify changes or trends in water/air quality over time;
- identify specific <u>existing or emerging</u> water/air quality problems;
- punish violators of laws and effluent/emission standards;

Bridging Role between <u>Regional</u> monitoring objectives and <u>National</u> monitoring objectives

Procedures of Data Management

1. Prepare the <u>unified recording format</u> by a versatile software (i.e. excel) and use the same format among all DFEA

Key words: good and enough Directions for correct Form Entry, Unit, Method, Essential Digit

see <u>"Example of Recording Format"</u>

3. Form entry of useful relevant data such as weather and monitoring site description.

Key words: Relevant Data, Weather, Site Description

see "Example of Recording Format again"

4. Analyze and evaluate the accumulated data at DFEA before sending to GCEA.

Deal with citizens' complaints or punish violators based on the results.

Key words: Evaluation of Data at Regional Level (DFEA)

Procedures of Data Management
8. Continue monitoring at the same sites for a long time to identify trends and changes in water/air quality

Procedures of Data Management

9. Formulate the environmental laws and standards to control pollution sources or to remedy existing pollutions

Key words: Formulation of Laws and Standards based on the Monitoring Results

Japanese Experience

- how to set standards on living environment -

- Too strict
 - ⇒ standards will lose substance
- Too loose
 - ⇒ standards are meaningless

Appropriate standards considering compliance conditions.

Procedures of Data Management

10. Issue an environmental report at national level periodically to open to the public

Key words: Publication of environmental reports

Summary of Procedures

- 1. Prepare the unified recording format
- 2. Form entry of monitoring data in a chronological order
- 3. Form entry of useful relevant data
- 4. Analyze and evaluate the data at DFEA
- 5. Send the data from DFEA to GCEA
- 6. Analyze and evaluate the accumulated data at GCEA
- 7. Evaluate the monitoring sites
- 8. Continue the monitoring at the same sites over time
- 9. Formulate or modify the environmental
- laws/regulations based on the monitoring results10. Issue an environmental report periodically to open the monitoring results to the public

(Source): Tbilisi Declaration (1977)

Social Groups/Stakeholders

- There are many social groups or stakeholders

Principles (1)

- Consider the environment in its totality: natural and built, technological and social (economic, political, cultural-historical, moral and aesthetic);
- Be a continuous lifelong process, beginning at the pre-school level and continuing through all formal and non formal stages;
- Be interdisciplinary in its approach, drawing on the specific content of each discipline in making a holistic and balanced perspective; ٠
- Examine from local, national, regional and international point of view so that students receive insights into environmental conditions in other geographical areas;
- Focus on current and potential environmental situations while taking into account the historical perspective;
- Promote the value and necessity of local, national and international cooperation in the prevention and solutions of environmental problems

(Source): Tbilisi Declaration (1977)

Principles (2)

- Explicitely consider environmental aspects in plans for development and growth;
- Enable learners to have a role in planning their learning experiences and provide an opportunity for making decisions and accepting their consequences; ٠
- Relate environmental sensitivity, knowledge, problem-solving skills and values clarification to every age, but with special emphasis on environmental sensitivity to the learner's own community in early vears:
- Help learners discover the symptoms and real causes environmental problems.
- Emphasis the complexity of environmental problems and thus the need to develop critical thinking and problem-solving skills
- Utilise diverse learning environments and a broad array of educational approaches to teaching/learning about and from the environment with ude stress on practical activities and first-hand experience

(Source): Tbilisi Declaration (1977)

Kids' Eco-Club

- History: · started in 1995. 10 years experience.
 - · Currently, 4320 clubs, 83200 kids are involved.
- Framework
- - Establish a Eco-Club. · Comprising of several to up to 20 members
 - · school children at primary or secondary schools
 - · Select an adult supporter
- · Registre a Eco-Club to the secretariat of Eco Club
- (1year expiration, renewal possible)
- · When the club is registered, an activity kit is to be distributed to each member of the club.

Phase	Activity	Timeframe
Survey	Environmental Consciousness Survey ->Target Identification Key Person Inventory	Jan- Feb 2005
Year 1		
Plan	Framework set-up Model Area selection	Jun – Jul. 2005
Do	Trial Hands-on Activity (Example) water quality monitoring water pollution mapping wall paper contest	Summer vacation
Check/Plan	Evaluate Hands-on activity Feedback to Year 2 activity	Sep? 2005

Phase	Activity	Timeframe
Year 2		
Do	Trial Hands-on Activity (Example)	2006
	water quality monitoring	
	wall paper contest	
Check/Plan	Evaluate Hands-on activity	2006
	Feedback to Year 3 activity	
Year 3		
Do	Hands-on Activity	2007
Check/Plan	Evaluate Hands-on activity	
	Feedback to Year 4 activity	

An Example of After-school activities Water quality Monitoring Activity

- Targets: School Children
- ♦ Activities:
 - Formation of Eco Club. Its OK for using the existing groups.
 - Water quality sampling w/ support from Experts
 - Presentation at the ceremony
 - · Replicate activities to other schools.
- How about to start a pilot activity, as a extra-curricular activity, during a summer vacation ?

Tentat	ive Plan for Seminars on E.E.
Objective	Technology transfer on the method of
	(a) awareness raising, and (b) E.E.
Organiser	Co-organised by DFEA and JICA Expert Team
Presenter	- DFEAs IEC (Information, Education, and Communication) Officer
	- JICA Expert for Environmental Education
	Core members of the E.E. Forum
Audience	IEC Officers at DFEAs, School
	Teachers
Frequency	Twice a year

Tentat	ive Plan for Media Events
Objective	Awareness raising for
	(a)citizens, and (b) entreprises
Organiser	Organiser: GCEA MOLAE
	Supporter: JICA Expert Team
Presenter	Information & Communication Officer
	JICA Expert Team
	Core members of the E.E. Forum
	Related Environmental NGO
	Kids' Eco-Club Member (school children)
Audience	Citizens, School Children, Mass Media
Frequency	Five times during the project

Round	Expected Date	Tentative Theme of Media Event
Round 1	June, 2005	Tentative title: Environmental Issues in Damascus Intention of the Media Event: Introduction of the project and the JICA expert team Awareness raising for Air and Water Quality Pollution
Round 2	January, 2006	Tentative title: A way to Doctor on Water Quality Intention of the Media Event: - Introduction to the activities of - Eco-Club Launch Program
Round 3	June, 2006	Tentative title: What can we do to stop the environmental pollution? Intention of the Media Event: Introduction to the results of Environmental Pollution Survey Introduction to the Environmental Monitoring
Round 4	January, 2007	Tentative title: Kide/ Eco-Club Festival Intention of the Media Event: - Introduction to the activities of Kids' Eco-Club - Avarding Ceremony for Best Kids' Eco-Club Contents: - Presentation by the Best Kids' Eco-Club on their voluntary monitoring activities - Wall poster Session by the Kids' Eco-Club
Round 5	June, 2007	Tentative Title: Who owes the environmental pollution? Intention of the Media Event: - Awareness raising of the citizens in terms of environmental pollution)

Knowledge/B	ehavio	r of Cc	omplaint
Have you complain?	1.Yes	2. No	Total
Do you know the system?			
1. Yes	52	253	305
	(5.5%)	(26.6%)	(32.1%)
2. No	21	578	599
	(22%)	(60.8%)	(63.1%)
N.A.	2	44	46
Total	75	875	950
	(7.9%)	(92.1%)	(100%)

- .

- SchoolsDay care centre
- Health department:
- Priority should be placed on the Vulnerable Groups
- ElderlyPregnant WomenChildren

Procedures of Risk Communication

- Setting the Goal
- Targeting Audience
- Profiling your target audience
- Developing a message
- Selecting media
- Delivering a message
- Feedback from citizens

Seven Cardinal Rule of Risk Communication?

- Accept and involve the public as a partner
- Plan carefully to evaluate your efforts
- Listen to the publics' specific concerns
- Be honest, frank, and open
- Work with other credible sources
- Meet the needs of the media
- ◆ Speak clearly and with compassion

Tools for Two-Way Communication Tools for Two-way communication can be classified into two categories: Tools for Information Dissemination Tools for Information Gathering & Exchange

Tools for Information Dissemination

- Exhibits
- ♦ Maps
- ♦ Internet
- Indexing Techniques
- Mass Media
- ♦ Special Events
- ♦ Modelling

Р	eriodical Facility Tour	
Objective	To raise an awareness of the facility operation	
Organiser	Facility Operator	
Target	- School children for environmental education	
Stakeholders	- Neighborhood community people	
	- Mass Media (i.e. TV and radio)	
	- Officials at other cities in northwest region	
Activity	- Collect the participants by mass media	
	- Explain the facility operation, in accordance with tour route	
	- Hands on activity are preferable, like fact sheet, visual display, and presentation	
	-Question and Answer time after facility tour	
Merit	- Expected to remove the unreasonable fear of the stakeholders	
		\sim

Tools for Information Gathering & Exchange Poll Surveys / Awareness Survey Telephone Hotline Community Interview Focus Group Discussion

	Telephone Hotline
Objective	To answer the questions/queries, and complaints from the citizens
Organiser	DFEA
Target Stakeholders	Neighboring community
Activity	Hotline is a toll-free telephone line, though which people can ask queries, complaints and information.
	- Assign the hotline staffs - Get the hot line phone number
	- Distribute contact number and the name of contact person
	- Keep a logbook (date/time, contents, action taken
Merits	Citizens will have a good feeling that the facility operator sincerely accept the request or gueries

Organiser Project Owner Target - Neighborhood community Stakeholders - Neighborhood community Activity - Identify the interviewees of community interview - Pre-notification to interviewees on the date of call - Training of interviewers - Carry out community interview - Issue a thank you letter after finishing interview Merits Easy to grasp the level of public concern quickly and correctly, because of the face-to-face communication with interviewees	Objective	To grasp a level of public concern on the facilities
Target Stakeholders - Neighborhood community Activity - Identify the interviewees of community interview - Pre-notification to interviewees on the date of call - Training of interviewers - Carry out community interview - Issue a thank you letter after finishing interview Merits Easy to grasp the level of public concern quickly and correctly, because of the face-to-face communication with interviewees	Organiser	Project Owner
Stakeholders Activity - Identify the interviewees of community interview Pre-notification to interviewees on the date of call Training of interviewers Carry out community interview Issue a thank you letter after finishing interview Merits Easy to grasp the level of public concern quickly and correctly, because of the face-to-face communication with interviewees	Target	- Neighborhood community
Activity - Identify the interviewees of community interview - Pre-notification to interviewees on the date of call - Training of interviewers - Carry out community interview - Issue a thank you letter after finishing interview Merits Easy to grasp the level of public concern quickly and correctly, because of the face-to-face communication with interviewees	Stakeholders	
Pre-notification to interviewees on the date of call Training of interviewers Carry out community interview Issue a thank you letter after finishing interview Merits Easy to grasp the level of public concern quickly and correctly, because of the face-to-face communication with interviewees	Activity	- Identify the interviewees of community interview
- Training of interviewers - Carry out community interview - Issue a thank you letter after finishing interview Merits Easy to grasp the level of public concern quickly and correctly, because of the face-to-face communication with interviewees		- Pre-notification to interviewees on the date of call
Carry out community interview Issue a thank you letter after finishing interview Merits Easy to grasp the level of public concern quickly and correctly, because of the face-to-face communication with interviewees		- Training of interviewers
- Issue a thank you letter after finishing interview Merits Easy to grasp the level of public concern quickly and correctly, because of the face-to-face communication with interviewes		- Carry out community interview
Merits Easy to grasp the level of public concern quickly and correctly, because of the face-to-face communication with interviewees		- Issue a thank you letter after finishing interview
with interviewees	Merits	Easy to grasp the level of public concern quickly and correctly, because of the face-to-face communication
\sim		

F	ocus Group Discussion
Objective	To grasp a level of public concern on the facilities
Organiser	Project Owner in collaboration with DFEA
Target Stakeholder	- Neighborhood community
Activity	- Determine the date and venue convenient for participants
	- Prepare a topic of discussion
	- Select a 'facilitator'
	- Formulate small discussion group
Merits	- Ensure a two-way communication
	- grasp to a detailed level of concern of residents

The Capacity Development of Environmental Monitoring at Directorates for Environmental Affairs in Governorates

Basic Environmental Monitoring Course Lecture-12: Summary and Discussion

June 2005

The JICA Expert Team

Lecture-12: Summary and Discussion

 Lecture-11:
 Environmental Management and Monitoring

 Lecture-21:
 Air and Water Quality Monitoring

 Lecture-31:
 Basic Water Quality Analysis

 Lecture-41:
 Sampling Design

 Lecture-52:
 Sampling Design

 Lecture-61:
 Analytical Theory and Skill-1

 Lecture-72:
 Analytical Theory and Skill-2

 Lecture-81:
 Analytical Theory and Skill-3

 Lecture-91:
 Laboratory Operation

 Lecture-101:
 Data Management

 Lecture-111:
 Public Awareness

Lecture-12: Summary and Discussion
Environmental Monitoring as " <i>Humat Beia"</i>
1. Why is it necessary?
to protect citizens from environmental hazard and to contribute for better environment
-to fulfill your mandates and roles defined by the law with accountability
2. What must be done?
-to evaluate effects of policies and countermeasures
-to decide next plans and countermeasures
-to disclose information and to deal with complaints from citizens
3. When is it started?
-to take preventive and quick actions in advance
to react as soon as possible
-to begin together with policy and commitment
3

Environmental Monitoring as "Humat Beia"

- 4. Where is it conducted?

 the stations for understanding current conditions and assessing future situations
 the stations for recognizing trend and level of pollution
 the stations for checking human livings and natural resource use

 5. Who is in charge?

 the Frontline Staff of DFEA and GCEA in cooperation with citizens and enterprises
 the Frontline Staff should be supported by laws, ministers and governors, citizens, and enterprises
- 6. How is it implemented?
 - -to be strategically, effectively, and comprehensively
 - -to be broad participation of stakeholders and information disclosure
 - -to be better cost performance -to be proud of your duties

Thank you very much	
	7

- الدري (مندي مع محرق محم مدر محق محمر الدر الله)

ا 1) دنیک منده از سنن ا	2) مناه الصرف للمدامل (جودة المياه وكمية الملوثات) [
	مربع المعام المعام المعام المعام المعام المعام (6 & (5) المعام المعام المعام المعام المعام المعام المعام ال المرابع المعام
a treat i treat a	

	اليابان	لأتهار،	بينية _ ا	, الجودة ال	مقاييس	
	fl:==			Standa	nd value	
c 175	later 15-2	på	₿¢0	22	10	Toral colifera
AA	fater supply class L conservation of natural evolution of and uses finited in A-E	5.0-8.F	L मद∕ो ज दिख	्री बद्धी स रिवड	1.5 छनी स लाग	क्षां ७ लिही-देवे हे
٨	Fatur mapping class 2, fistery class 1, tathing and user listed in D-2.	6.58.5	2 द्युनी कर लिव	25 ब्ह्री क रिक	र्ग. व सहती or क⊭र€	1992 WR/10Gal or heas
8	Kater estply class 3, Hisherpulars 2, and uses filoted in C·F	RSRF	3 ug/i or Jana	Sing/lor less	5 कहरी का 16 कर e	\$200 \$855/100at or team
c	Fishery class 3. Industrial water class 1 and uses Hoted in D-F	6.5-K.5	b ngi't or less	50 छनी अ सन्द्र	5 1471 er 16re	-
Þ	federtrial water class 5, appications tates and uses fisted in 8	6.0-6,8	€ अ⊴ी जा विक्र	150 ag/l et Jeas	2 n4:1 or 10:00	-
E	ladarty miter class 3, and concernation of amilyanest	K. G. E. S	विद्युती व्ह दिव्ह	Floring Volter sich as partage absold polte- okomiged	2 ma/1 =+ m.r.è	
		•••				14

	(tea			Stores	া নাও	
c1834	js:se cse	्रम	600	<u>55</u>	Ber	Total coliface
м	Network apply these L. Fickery class L. Encounted for the factoral encitiement, and them itself in A-C.	5.5-1.3	d mg/l or loss	l og i tar less	रि.वे अद्ग्री तथ इन्दर	50 Mileji/Geli oz lezs
A	Pater scrift they 2, and 1, History class 2, hothing and upon Jinest in 1940	6.5-6.5	3 eçil ər Bess	Cazif er less	रे.5 अट्रनि ला कतर	thuh Messianal or los
в	fubriy class 1, interial with class 1, arrivatival with ord sors listed in (6.3°X F	5 22/] (4](33	15 mg-'1 er	5 mg-1 of more	-
c	industrial water class 2. and emistrication of the particulant	6.0-X 5	Sazzion Ins	Elasting satter soft as parkage test be charrend	2 म्यूट) ता इन्दर	-

Γ	يس الجودة البينية - البحيرات	مقاد					
	نروجين والفوسفور الإجمالي)	^{اللن}					
	Itea	Starlard value					
¢1835	Enzer case	tocal Sitemper	Total Phosphorus				
ı	Conservation of natural maximum and uses listed in 11-1	0∟। ऋटी ⊐र Jess	િત 17,75 ag≁ી લ્⊺ાલ્ડ				
11	Valor supply classes 1, 2 and 3 fearing special type), Fishers class 1, hotblog and more fisted in HI-V	ર.2 જ્યાં આ જિલ્લ	0.01 sg/1 nr heat				
u	lister supply class 3 (special syste) and over listed in 11-4	0.4 mg/1 es less	0, N3 28/1 121 1423				
IV	Fishing class 0 and uses lasted in F	0.6 mg/l or less	0.05 sg/l er less				
v	Fishery close 3. indestrial, epricoltural water and conversation of the environment	l agril er less	0.1 ng/l er less				
• .			16				

thes Eathers A the same Hated Is	Tore Nater and Lose 1, Conservations of	şel	1.10	Stan	dard halfee					
A Babay e batting, the pain Hister Is	Nater site lase 1, Conservation of	şti	1.10		1					
A States of the second	last I, Generation of			LO	Total Cristory	Stierne Entraits (cti actoristic)				
	B-C	2,56,5	2 ap.3 or Ivee	7.5 m/l a 105	100 #5(1.62) at hos	úst Lerechedia Ist detvetalte				
B and the s	laus 2. industrial autor cus linted in C	L 1-6,3	रेक्सी ज किंदी ह	dirz-] vri⊫s						
C for and	ten of the endrometer	1.023	इ.स.:] टा]डार	Σ म्हने ज्यान्व	·	-				
.	[tr#					Standard salar				
c)342	Tater -	fistal 3Hright	Trial (brather							
I (renormed	Concernentials of the partneral environments and over theted in 11 16 temper distory classes 2 and 33					A. P.) ang-1 ter foras				
II Fiabers a class 2 a	Fishers also it, bothing and the uses that of in 111-16 (encost fishery class 2 and 3)					0 =0 ±2+1 +7 lof				
S Hickory	Fishery tires 2 and the most littled in DY femory fishery class 20					0 cf ac i ar free				

No Persecoler		Urk	Max Admissible Concentration (Syria)	Max Admissible Concentration (Japan)					
I	2B	FH Unit	\$5-95	50-90(57-8.7)*					
2	Water Temp.	٣	35	45 (45)					
3	Color	Unit	-	-					
4	TDS	15g1	2,000	-					
5	DO	mg1		-					
6	55	mg1	560	600 (300)					
7	cod _o	r:g1	1,600	• :					
8	50Dy	mg!	· . 523 · ·	600 (300)					
9	N0,	mg/i	• //	•					
tû	F0, *	ing î	20	(T-P) 32 (20)					
11	CT	ngi	600						
)2	NB _F N	≓g1	100	42 IT-N) 240 (150)					
13	EC	pS kes	\ \ \ \ \						
14	Tarbidity	NTU	• 1	• •					

	Sampling site description:	weather:											
	City:			Town:			River: DiCode:						
	Year:												
	sampling date (day/month)				1	1	1	1	1	1	1	1	annual average
	sampling time(hh:mm)				:	:	:	:	:	:	:	:	
	Item 54	Method	Unit	Depth	<u>አ</u>							888 B	
(water depth at sampling point	manual	m							1		1	
Í	flow velocity at sampling point	manual	m/s										
	odor	manual		<u> </u>									
	pH	portable colorimeter	••	0m 24	.5.980	<u> </u>	> 5.9						
			-	10m			1	1		1		1	
			-	20m		ļ				1			:
	Temp	portable colorimeter	°C	0m							[1	
			°C	10m		•					1	1	
			°C	20m						5	5		
	Color	portable colorimeter	_				vo	u ca	n fix	the	1 -		
{	Total dissolved solids (TDS)	portable EC/TDS meter	mg/L			e	ssen	tial c	ligit	of ea	ch	7	
	DO	portable DO meter	mg/L		\square	0.	item	ina	dvan	ce h	v	`	
	Total suspended solids (SS)	portable colorimeter	_mg/L		+	60	ittine	n tha	etul	a of	y Cell	,	
Basic Water	COD _{cr}	colorimeter	mg/L		-	30	i cui ig	s uno	зсун	0.01	001	Æ	<u> </u>
Analysis	BOD ₅	culture	mg/L			A						<u> </u>	
14 Directorates	NO ₃	<u>portable</u> colorimeter	mg/L	4.5	ļ	\vdash	\square				F		
	P04 ³⁻	portable colorimeter	mg/L	1940s		ļ				_	 		
	СГ	Digital Titrator	mg/L		20:01	Ē	ND	ļ	Ļ		ļ	Ļ	
	NH ₃ -N	portable colorimeter	mg/L	No.		 	ND s	stands	for N	lot De	etecte	ed	ļ
	Electrical Conductivity	portable EC/TDS meter	· μS/cm										
	Item	Method	1 Init-							1463	13.28		
	(water denth at compling point	manual	m	Series Series	a a casa na java A	- <u>1</u> . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	N 9-01647	E 802324	12/10/201	12566955	, 945 COM	0.097/25	a na station a statio Na station a
	flow velocity at compling point	manual	 m/c				+			·	-	+	
	ader	manual			8 	+					+	1	
	nH	labo nH meter	•	268,949,955 269,949,45	1				<u> </u>	-	+		
	Temp	portable colorimeter	°C										
	Color	portable colorimeter	-						ļ	ļ			
	Total dissolved solids (TDS)	Labo EC meter						-					ļ
	Lotal suspended solids (SS)	Filtrate weigh	mg/L	10040514			+			-		· • · ·	<u> </u>
Chamical P		ton Colort Florteche		CARACTER STREET		+	+	-	-				1
biological water		Ion Select Electrope	mg/L		2					+	+	+	
Analysis		Spectral photometric	mg/L	1279-1779 1971-979-97	21 51	-			<u> </u>	+	+		-
only for		Ion Select Electrope	mg/ L										
<u>Damascus</u>		Solvent Hevane extract	mg/L		5	-			-			·	
	Settleable solids	Filtrate weigh	mg/L				1		1	-	1		
	Fluorides	Ion Select Electrobe	mg/L	CONT.									
	Sulfide-S	Ion Select Electrobe	mg/L		1. 6				ļ	_	-		
	Surfactants	Spectral photometric	mg/L	2000-2000 1920-2000-2000-2000-2000-2000-2000-2000-	8 2								
	Lociony group	colony counter	-					1					
	Cyan (CN)	Ion Select Electrobe	mg/L		X.								
	Item	Method	Unit										
Basic Air	wind direction	wind direction meter	_										
Analysis <u>for</u>	wind speed	wind speed meter	m/s		10.00 P		1						
Damascus,	SOx	manual	μg/m	3									
Homs & Allepo	NOx	manual	µg/m	3	3								
	Pb	HV sampler	µg/m	3	ž						_	_	
	TSP	HV sampler	μg/m	Sector				-		1		_	
	UPM10	LV sampler	∐ g/m	• 1997-199		1	1		1				