The Feasibility Study of the Flood Control Project for the Lower Cagayan River in the Republic of the Philippines Final Report Supporting Report

ANNEX VIII : LAND USE

THE FEASIBILITY STUDY OF THE FLOOD CONTROL PROJECT FOR THE LOWER CAGAYAN RIVER IN THE REPUBLIC OF THE PHILIPPINES

FINAL REPORT

Volume III-2 SUPPORTING REPORT

ANNEX VIII LAND USE

Table of Contents

PART-1 GENERAL

2.1

2.2

2.3

CHAPTER 1 CHAPTER 3 PRESENT CONDITION OF AGRICULTURE VIII_8

Page

····· • 111-0
VIII-8
•

PART II REVIEW OF 1987 MASTER PLAN

CHAPT	ER 4	LAND USE PLAN	VIII-28
4.1	Basic L	and Use Plan	VIII-28
	4.1.1	Land Use Policy	VIII-28
	4.1.2	Basic Land Use Plan	VIII-30
4.2	Agricul	tural Development Plan	VIII-33
	4.2.1	Agricultural Development Potential in the Master Plan Area	VIII-33
	4.2.2	Basic Concepts of Agricultural Development	VIII-33
	4.2.3	Agricultural Development Strategy	
4.3	Irrigatio	on Development Plan	VIII-37
	4.3.1	Basic Development Concept	
	4.3.2	Approach to Irrigation Development Plan	VIII-38
	4.3.3	Main Features of Proposed Irrigation Project	VIII-39
	4.3.4	Water Management	VIII-41
	4.3.5	Cost Estimate	VIII-42
	4.3.6	Prioritization for Candidate Schemes	VIII-42
4.4	Spoil B	ank Plan	VIII-43
	4.4.1	Basic Concept	VIII-43
	4.4.2	Basic Design	VIII-44
	4.4.3	Cost Estimate	VIII-44
4.5	Resettle	ement Plan	VIII-45
	4.5.1	Basic Concept	
	4.5.2	Resettlement Plan	VIII-45

	4.5.3	Basic Design	
		Cost Estimate	
4.6	Suppor	rting Measures	
		Basic Concept	
	4.6.2	Basic Design	
		Cost Estimate	

PART III EASIBILITY STUDY OF PRIORITY PROJECTS

С	НАРТ	TER 5	LAND USE IN PRIORITY PROJECTS FOR FEASIBILITY	
			STUDY	VIII-55
	5.1	Pre-Fea	sibility Study of Alcala Amulung West Pump Irrigation Project	VIII-55
		5.1.1	Proposed Project	VIII-55
		5.1.2	Irrigation Plan	VIII-58
		5.1.3	Drainage Plan	
		5.1.4	River Relocation and Flood Dike Construction Plan	VIII-60
		5.1.5	Farm Road Plan	VIII-60
		5.1.6	Water Management and Operation & Maintenance Plan	VIII-60
		5.1.7	Preliminary Design	VIII-62
		5.1.8	Post-Harvest Facilities	VIII-64
		5.1.9	Implementation Schedule	VIII-65
		5.1.10	Work Quantities	VIII-65
	5.2	Soil Bar	nk Plan	VIII-65
	5.3		ment Site Development Project	
	5.4	Support	ing Measures	VIII-66

List of Tables

		<u>Page</u>
Table 2.2.1	Status of Irrigation Development by Region	VIII-T1
Table 2.2.2	Indicative Ten-Year Irrigation Development Program by NIA	VIII-T2
Table 2.3.1	Recent Rice Production and Import in the Philippines	VIII-T3
Table 3.1.1	Paddy Production	VIII-T4
Table 3.1.2	Corn Production	VIII-T5
Table 4.1.1	Present Land Use to Proposed Land Use Plan in 2020 by	
	SAFDZ Zoning	VIII-T6
Table 4.1.2	Proposed Land Use Plan	VIII-T7
Table 4.2.1	Present Land Use and Example of Agricultural Development	
	Plan	
Table 4.2.2	Paddy and Corn Production Plan	VIII-T9
Table 4.3.1	Projected Paddy Production and Rice Supply	
	under NIA Corporate Plan 1993-2002	VIII-T10
Table 4.3.2	Comparison of Irrigation NIS/NIP in 1987 Master Plan and in	
	1999	VIII-T11
Table 4.3.3	List of Candidate Scheme for Proposed Irrigation	
	Development in Long Term Plan	VIII-T12
Table 4.3.4	List of Candidate Scheme for Proposed Irrigation	
	Development in Long Term Plan and Reviewed Master Plan	VIII-T13
Table 4.3.5	List of Proposed Irrigation Development Scheme in Reviewed	
	Master Plan and Selection of Pre-Feasibility Study Project	VIII-T14
Table 5.1.1	Reference Crop Evapotranspiration	
Table 5.1.2	Calculation of Water Duty for Higher Plain in AAWPIP	VIII-T16
Table 5.1.3	Calculation of Water Duty for Lower Plain in AAWPIP	VIII-T17
Table 5.1.4	Estimate of Monthly Pumping Quantity and Operation Cost for	
	AAWPIP	
Table 5.1.5	Summary of Inundation Analysis for AAWPIP	VIII-T19
Table 5.1.6	List of Main and Lateral/Sublateral Canal with Related	
	Structure	VIII-T20
Table 5.1.7	Summary of Quantities for Alcala Amulung West Pump	
	Irrigation Project	
Table 5.3.1	Resettlement Area for Flood Control Project	VIII-T22
Table 5.3.2	Resettlement Plan for Alcala Amulung West Pump Irrigation	
	Project	VIII-T23

List of Figures

		<u>Page</u>
Figure 2.1.1	Elevation Map	VIII-F1
Figure 2.1.2	Slope Map	
Figure 2.1.3	Soil Map between Alcala and Cabagan	VIII-F3
Figure 2.1.4	Land Use Map	VIII-F4
Figure 2.3.1	Paddy Production, Import and Consumption in Philippines	VIII-F5
Figure 2.3.2	Relation between Irrigated Harvested Area and Yield	VIII-F6
Figure 3.1.1	Present Cropping Pattern in the Cagayan River Basin	VIII-F7
Figure 3.3.1	Subsistence Incidence in the Area by Municipality	VIII-F8
Figure 3.3.2	Vicious Cycle of Farmer's Livelihood in the Lower Cagayan	
	River Area	VIII-F9
Figure 4.1.1	Present Land Use, SAFDZ and Proposed Land Use Plan	VIII-F10
Figure 4.3.1	Example of Projected Paddy Production and Rice Supply by	
	NIA	VIII-F11
Figure 4.3.2	Irrigation Development Scheme in Long Term Plan	VIII-F12
Figure 4.3.3	Irrigation Project Selection for Long Term Plan, Revised	
	Master Plan and Pre-Feasibility Study	VIII-F13
Figure 4.5.1	Layout Plan of Typical Resettlement Area	VIII-F14
Figure 5.1.1	General Layout of Alcala Amulung West Pump Irrigation	
	Project	VIII-F15
Figure 5.1.2	Typical Land Use along the Lower Cagayan River	VIII-F16
Figure 5.1.3	Proposed Cropping Pattern	VIII-F17
Figure 5.1.4	Irrigation Diagram	VIII-F18
Figure 5.1.5	Drainage Diagram	
Figure 5.1.6	Inundation in Drainage Area 2 of AAWPIP	
Figure 5.1.7	Inundation in Lower Pangul Area beside AAWPIP Area	VIII-F21
Figure 5.1.8	Intake Pump Station	VIII-F22
Figure 5.1.9	Booster Pump Station	
Figure 5.1.10	Typical Cross Section of Irrigation Canal	VIII-F25
Figure 5.1.11	Siphon	
Figure 5.1.12	Rice Mill	VIII-F27

PART I GENERAL

CHAPTER 1 GENERAL

This annex consists of three parts, namely 1) general, 2) review of 1987 Master Plan and 3) feasibility study of priority projects. Part I General includes this chapter, present land use in Chapter 2 and present condition of agriculture in Chapter 3. Chapter 4, Land use plan is Part II and Chapter 5 is on land use on priority project for feasibility study is Part III. As important plans on water resources development, basic land use plan, agricultural development plan and irrigation development plan are mainly studied. In addition, spoil bank use plan is required for efficient use of excavated materials in flood control construction works. Resettlement plan assures relocation of affected people by right of way of flood control and irrigation works. Also, the plan is prepared as one of the non-structural countermeasures against flood. Supporting measures for agricultural development or poverty alleviation are presented to realize proposed benefits in the irrigation development project.

CHAPTER 2 PRESENT LAND USE

2.1 Land Classification

The area of the Cagayan River Basin is $27,281 \text{ km}^2$. From viewpoint of land use, land of the basin is classified by topography, weather/inundation, soil, and present land use/vegetation.

(1) Topography

Out of 27,281 km^2 of the Cagayan River Basin, approximately a half of the area is more than 400 m above sea level in elevation (Figure 2.1.1). Area with a land slope over 18% covers more than 60% of the Basin area as seen in Figure 2.1.2 and the table below.

Area by slope in the Cagayan River Basin

Slope	0-3%	- 8%	- 18%	- 30%	- 50%	Over 50%	Total
Area (km ²)	5,127	1,449	3,401	4,132	3,844	9,328	27,281
(%)	18.8	5.3	12.5	15.1	14.1	34.2	100.0
Compared and the DOWN data with a line to start							

Source: converted from BSWM data with adjustment

The land with a slope of not more than 18% is approximately $10,000 \text{ km}^2$ or 37% of the basin.

(2) Weather/Inundation

Three agro-climatic zones (wet, moist and dry zones) are identified in the Region 2 (R-2) by the Bureau of Soil and Water Management (BSWM) of the Department of Agriculture (DA) as below.

Agro-climatic zone	Annual rainfall (mm)	Growing period (day)	Area (%)
Wet	> 2,500	270-320	43
Moist	2,500-1,500	210-270	44
Dry	< 1,500	90-210	13

Source: "Philippine Land and Soils Management Atlas for Cagayan River, Region 2, 1995", BSWM

In the Cordillera Administrative Region (CAR), annual rainfall is high as mentioned in Annex IV, Section 1.1 and 3.4.

The flood-prone areas of R-2 are about 186,000 ha within the inundation areas of the Cagayan River and its tributaries in provinces of Cagayan, Isabela and Nueva Vizcaya, in accordance with "Regional Physical Framework Plan (RPFP), 1993-2022, R-2". It is cited in this RPFP that "the flood-prone areas are presently used as production areas for rice, corn, legumes and vegetables. The establishment of settlements in these areas is not recommended or should be restrained."

Although, many people actually live in the flood-prone area, it is difficult to resettle all the people from a practical viewpoint. Therefore, flood control measures including resettlement and evacuation should be considered.

(3) Soil

In the Cagayan River Basin, low flat lands in the basin are mostly covered with high fertility soils according to BSWM data.

For the lower Cagayan River area of about 50,000 ha, a soil investigation was carried out in this study and a soil map between Alcala and Cabagan is prepared as shown in Figure 2.1.3. It is known from the map that generally clayey soil covers paddy field on the higher plains and silty soil covers corn fields near the river. This suggests higher flood flow velocity on the corn field than on the paddy field.

(4) Present Land Use/Vegetation

Land use in the Basin is derived from (i) the 1987 Master Plan, (ii) detailed back-data for Strategic Agriculture and Fisheries Development Zone (SAFDZ) area distribution compiled by BSWM, R-2 and CAR offices. According to the latest data, forest occupies 42%, grassland 31% and agricultural area is 25% in the Cagayan River Basin (Figure 2.1.4). SAFDZ is explained in 4.1.2.

		0 V				
	Agricultural area	Grassland	Forest	Others	Total	
(i) 1987 MP	4,628	10,702	11,528	423	27,281	
(%)	17.0	39.2	42.3	1.6	100.0	
(ii) SAFDZ	6,764	8,491	11,384	642	27,281	
(%)	24.8	31.1	41.7	2.4	100.0	
Company management	these dom the fallowing					

Land Use in the Cagayan River Basin

Source: prepared based on the following

(i); "The Master Plan Survey on The Cagayan River Basin Water Resources Development" 1987, JICA

(ii); "Area Distribution of Specific/Present Land Use by/per SAFDZ", 1999, BSWM, R-2/CAR

After the 1987 Master Plan (1987 MP), agricultural area increased and grassland decreased in the Cagayan River Basin.

2.2 Present Land Use

According to the above SAFDZ data, present land use by category is described as follows:

(1) Agricultural Area

In the Cagayan River Basin, present agricultural area of 676,400 ha consists of paddy field (472,500 ha) in gross, corn field (137,300 ha) and other diversified

crop fields (66,600 ha). Most of the potentially cultivable area is already used as paddy fields, corn fields and other diversified crop field. In the above table, fruit tree areas are categorized as forest.

- 1) Paddy field and irrigation system
- a) Trend and present status of irrigation service area in the country

The irrigated area increased considerably in 1970s and 1980s in the Philippines. In 1990s, the increase rate became smaller. The total service area of national, communal and private irrigation systems in 1999 is reported about to be 1.35 million ha or 43 % of total potential irrigable area of 3.13 million ha (Table 2.2.1).

b) Service area in the Cagayan River Basin

Along the Cagayan River and its tributaries, there are low and gentle sloped lands, which consist of mainly paddy and corn field areas. In CAR, as one of the world heritage, famous paddy terraces are maintained on steep slopes and also as a tourist attraction.

Based on the National Irrigation Administration (NIA), Central Office (CO) data, potential irrigation development area in the Cagayan River Basin is estimated around 475,000 ha. Existing irrigation service area in the basin is obtained to be 218,000 ha or 46% of potential irrigation development area. The remaining area to be developed by irrigation is about 257,000 ha (54%).

			(Unit: 1,000 ha,%)
	Region 2, excl.Batanes	CAR, 4 provinces	Total
- Potential irrigation	412	63	475
Development area			
- Existing irrigation	188	31	218
Service area	(46%)	(49%)	(46%)
-Remaining	225	32	257
Non-irrigated area	(55%)	(51%)	(54%)

Status of Irrigation Development in the Cagayan River Basin

Source/note: prepared based on the following

"Status of Irrigation Development, Cagayan Valley Region, as of Dec.31,1999", NIA,R-2,

"Inventory of CIS, as of Dec.31,1999", NIA,CAR and etc.

In the Indicative Ten-Year Irrigation Development Program 2000-2009, proposed irrigation developed areas of Region 2 and CAR are 44,121 ha and 6,806 ha, respectively (Table 2.2.2).

2) Upland agricultural land

Corn fields cover the lower area near the Cagayan River channel, where inundation occurs more frequently and undulating land surface is not stable in shape due to erosion and sediment. Vegetable cultivation for the market is mainly conducted under cooler climate condition in CAR and Nueva Vizcaya Province. Vegetables for self-consumption are planted near villages, in general.

(2) Grassland

The grassland is composed of pasture (103,500 ha), wild grasses (471,400 ha) and brush (274,200 ha). The pasture land is developed mainly in hilly areas. The wild grasses and brush are seen in hilly and mountainous areas.

(3) Forest

After drastic decrease in 1970s and 80s, the forest area is comparatively stable in 1990s. Traditional slash-and-burn shifting cultivation, being continued thousands of years, was sustainable with sufficient fallow. Recently, after logging and following slash-and-burn cultivation, former forest is converted to wild grasses and brush lands in many places because of insufficient period of fallow. The forest here includes the fruit tree areas.

(4) Others

Other areas consist of slash-and-burn shifting cultivation or kaingin (200 ha), artificially developed fishpond (11,900 ha) and built-up areas, etc (52,100 ha). The slash-and-burn cultivation area seems too small due to the site reconnaissance. The built-up areas include settlement, industrial, commercial, institutional areas.

In Region 2, settlement areas are concentrated in municipalities which is located along the national highway and main lateral roads, most of which follow the Cagayan River System from Sta. Fe to Aparri. About 20% of Region 2 population in 1990 (the percentage is the same in 1995) is reported in 6 major urban centers (i.e. Tuguegarao, Santiago, Cauayan, Ilagan, Solano and Bayombong), which are expected to be developed as major institutional, commercial, industrial, financial and/or urban centers. (RPFP, R-2)

2.3 **Problems in Land Use**

(1) Geographical Condition

Surrounded by mountain ranges on the east, south and west sides, the Cagayan River Basin is an isolated area because of insufficient transportation system. There are main highway transportation routes to and from Metro Manila, namely (i) Dalton Pass route, (ii) Patapat route and (iii) sea route via Irene Port. These routes, however, are insufficient for transportation.

For example, the main route through Dalton Pass (ref. to General Basin Map) was closed down after the Luzon Earthquake in July, 1990. It was not used until December, 1990, according to a report. Traders took the alternative Patapat route through Ilocos Norte, which is longer and less efficient to Manila. The route also became impassable from September to November, 1990. NFA moved its corn stocks via Irene Port in Santa Ana, Cagayan province using the Navy ships. Land slides and temporary closures of Dalton Pass occur commonly in the wet season. So, such serious isolation may happen anytime.

- (2) Mountainous Area
 - 1) Erosion and Land Slide due to Deforestation

Erosion and land slide bring loss of useful land and road, and also produce more sediment causing riverbed heightening and reservoir capacity reduction particularly in the upper Magat basin. In 1970, forest covered 53% of the national land, but it decreased to be 21% in 1990, or 32% of forest was lost during that 20 years in the country.

At present, reforestation efforts are performed to deforest the area, but such activities are piecemeal and progress is not sufficient as described in Annex VII, Chapter 3.

2) Settlement

One of the settlement problems in CAR is that poorer migrants tend to build their dwellings on unsafe and environmentally critical areas, government reservations and even lands of absentee owners. (cited from RPFP, CAR)

- (3) Hilly Area
 - 1) Deforestation and Insufficient Land Use

The hilly areas are also deforested. These areas seem to be underdeveloped and underused, even though they have high potential of livestock industry. One of the reasons is considered to be the ineffective use of hilly areas occupied by large land possessors.

2) Lack of Infrastructure

The hilly areas have not sufficient infrastructures, such as road networks, water supply systems, electricity supply systems, and so on.

- (4) Plain
 - 1) Flood and Drought

Alluvial plains along the Cagayan River and its tributaries are developed to be paddy fields and corn fields. However, due to frequent occurrence of flood and drought, farming in the plain is damageable and unstable.

2) Agriculture

Problems in agriculture are discussed in Chapter 3. Many problems come from the marketing and financing system. These include high post-harvest losses and high production costs due to insufficiency for warehouses, drying facilities, farm to market roads and milling facilities.

One of the important problems is recent rice or paddy importation trend as seen in Table 2.3.1 and Figure 2.3.1.

3) Irrigation

According to NIA, R-2 office, the most serious problem in irrigation development is insufficient financial sources. Frequent flooding is one of the constraints to extend irrigation systems on the alluvial plain along the rivers, because irrigation facilities may be easily damaged by flood. In particular, flood control measures are essentially necessary for irrigation development on lower flood plains that are covered by corn fields on the lower Cagayan River, which has a potential for irrigation. In some of the projects, acquisition of right of way (ROW) is a cause of delay in progress in implementation.

According to NIA, Irrigation System Offices, irrigation water has not reached to a part of the service areas after construction of the irrigation facilities in some of the National Irrigation Systems (NIS). In some irrigation facilities, flow capacity is often insufficient, because of sediment, low canal embankment, and so on.

As seen in Figure 2.3.2, both rate of irrigated land and paddy yield per ha in the Philippines are not so high.

3.1 Present Agricultural Farming Practice

(1) Land Tenure and Agrarian Reform

The regional accomplishment of LAD by DAR as of 1998 is summarized below.

		(Unit: 1	,000 ha)
Region	Scope	Accomplish- ment (1998)	%
Ι	140.3	111.3	79.3
II	300.1	260.4	86.8
CAR	77.9	65.7	84.3
III	394.9	306.9	77.7
IV	386.0	226.2	58.6
V	453.8	175.2	38.6
VI	559.7	234.4	41.9
VII	166.8	83.7	50.2
VIII	385.5	244.2	63.3
IX	187.9	189.4	100.8
Х	179.9	162.9	90.6
XI	287.5	222.1	77.3
XII	569.9	345.3	60.6
Caraga	200.3	165.0	82.4
Total	4,290.5	2,792.7	65.1

Source: MTPDP 1999-2004.

The progress of CARP in 1998, the country is counted to be at about 65% on average to 4,290,500 ha of the total scope, which is the target of the Agrarian Reform plan through CARP to supply for landless farmers.

From 1972 to June 30, 2000, total accomplishment of land distribution in Region 2 is 88% (excluding Batanes) to working scope or the target of about 319,200 ha as below. The total accomplishment of land distribution in the concerned four provinces in CAR is about 88% of the working scope of about 40,100 ha, and the balance remained at about 4,850 ha.

			(U	nit: ha)
Province	Working scope	Total accomplishment	%	Workable balance
Cagayan	118,807	111,490	93.8	2,254
Isabela	149,680	120,415	80.5	4,409
N. Vizcaya	28,776	27,914	97.0	445
Quirino	21,934	21,328	97.2	586
Total*	319,197	281,147	88.1	7,694

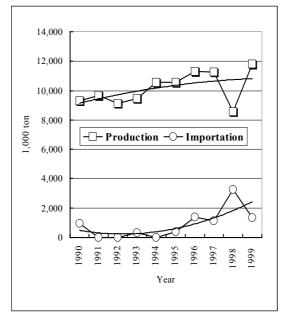
*Excluding Batanes. Source: CARP Status Brief, 1st September, CY 2000, DAR, Region 2.

The progress of land distribution in provinces concerned in CAR is as summarized below.

			(Unit: ha)	
Province	Working scope	Total	%	Workable
		accomplishment		balance
Kalinga	11,538	10,519	91.2	1,019
Apayao	6,849	5,710	83.4	1,138
Ifugao	11,071	10,356	93.6	714
Mt. Province	10,643	8,661	81.4	1,982
Total	40,101	35,246	87.9	4,853

Source: DAR-CARP Stuationer as of April 30, 2000, DAR, CAR.

(2) Agricultural Production


In this section, the Cagayan River Basin is represented by the Master Plan Area (M/P Area) consisting of 8 provinces, namely Cagayan, Isabela, Quirino, Nueva Vizcaya of Region 2 and Kalinga, Apayao, Ifugao and Mountain Province of CAR. Major crops in M/P area are rice and corn.

Rice

In M/P Area, average production of paddy from 1990 to1999 is 1.40 million metric tons (MT), which is about 0.91 MT in rice or 14% share of the national production as seen in Table 3.1.1 and summarized as below.

				(Unit: 1,000 ton)				
Year	Production	Import.	Import. to	Export.	Total			
			total (%)		consumption			
1990	9,319	955	9.3	0	10,274			
1991	9,673	0	0.0	15	9,658			
1992	9,127	0	0.0	46	9,083			
1993	9,434	323	3.3	0	9,757			
1994	10,538	0	0.0	0	10,538			
1995	10,541	396	3.6	0	10,936			
1996	11,284	1,374	10.9	0	12,657			
1997	11,269	1,124	9.1	0	12,393			
1998	8,555	3,273	27.7	0	11,827			
1999	11,787	1,360	10.3	0	13,147			

Data source: Statistical Yearbook 1999. Volume of the imported rice was converted to paddy with conversion rate of 0.65.

Corn

In the M/P Area, average production of corn from 1990 to1999 is 0.63 MT or shares 14% of the national production as shown in Table 3.1.2 and below. Region 2 and Mindanao are major corn supply areas. Two cropping in a year is commonly performed in Region 2.

				(Unit:	1,000 ton)
Year	White	Yellow	Total	Import. to	Total
	corn	Corn	production	total (%)	consumption
1990	2,966	1,888	4,854	6.6	5,198
1991	2,906	1,749	4,655	0.0	4,655
1992	2,700	1,919	4,619	0.0	4,620
1993	2,627	2,171	4,798	0.0	4,799
1994	2,090	2,429	4,519	0.0	4,520
1995	1,862	2,266	4,129	4.8	4,337
1996	1,883	2,268	4,151	0.8	4,184
1997	1,879	2,453	4,332	6.5	4,635
1998	1,620	2,203	3,823	10.8	4,285
1999	1,824	2,761	4,585	3.1	4,734

Data source: based on Table 3.1.2.

Self-sufficiency

The self-sufficiency level of cereals in the Philippines during the recent ten years is as shown in the table below. The cereals include rice, corn, wheat, barley, rye and oats. The self-sufficiency level is calculated as the rate of domestic production to the summed up volume of domestic production and the imported cereals.

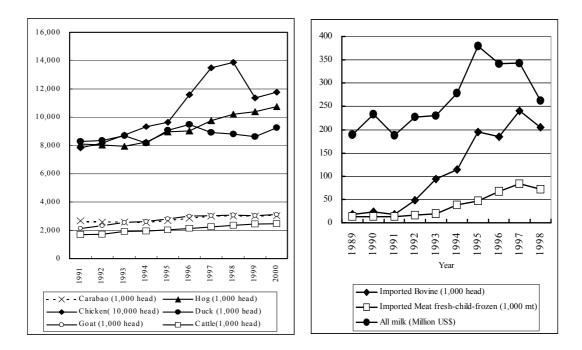
							(Unit:	1,000 ton)	1
	Dor	nestic Pro	duction			In	nport		
Year	Paddy	Corn	Total product ion	Self-suffi ciency level (%)	Paddy *	Corn	Others **	Total import ation	Total consumpti on
1989	9,459	4,522	13,981	87.3	338	154	1,542	2,035	16,016
1990	9,319	4,854	14,173	85.0	955	344	1,203	2,502	16,675
1991	9,673	4,655	14,328	88.8	0	0	1,806	1,807	16,135
1992	9,129	4,619	13,748	88.5	0	1	1,779	1,779	15,527
1993	9,434	4,798	14,232	88.8	323	1	1,478	1,802	16,034
1994	10,538	4,519	15,057	87.5	0	1	2,158	2,159	17,216
1995	10,541	4,129	14,670	84.4	396	208	2,114	2,717	17,387
1996	11,284	4,151	15,435	82.3	1,374	33	1,911	3,318	18,752
1997	11,269	4,332	15,601	80.3	1,124	303	2,409	3,836	19,437
1998	8,555	3,823	12,378	70.6	3,273	462	1,413	5,147	17,525

* The quantity is calculated from imported rice with conversion rate of 0.65.

** Others include wheat, barley, rye and oats.

Data source: BAS

Livestock Products


Demand for livestock products has been expanded along with the qualitative change of diet in the Philippines. Number of animals in the country during the recent ten years is summarized in table below.

					(Unit: 1,	000 head)
Year	Cattle	Carabao	Hog	Chicken	Duck	Goat
1991	1,677	2,647	8,079	78,240	8,268	2,141
1992	1,731	2,577	8,022	81,525	8,348	2,306
1993	1,915	2,576	7,954	87,158	8,707	2,562
1994	1,936	2,560	8,227	93,201	8,187	2,633
1995	2,021	2,708	8,941	96,216	9,072	2,828
1996	2,128	2,841	9,026	115,782	9,470	2,982
1997	2,266	2,988	9,752	134,963	8,923	3,025
1998	2,377	3,013	10,210	138,521	8,824	3,085
1998	2,426	3,006	10,397	113,718	8,614	3,051
2000	2,479	3,024	10,761	117,658	9,246	3,126
Growth rate (%/year)	4.3	1.0	3.1	5.2	2.5	3.6

Data source: BAS

The change in number of animals in the country is as illustrated below. The number of cattle in the whole country has been increased with a rate of 4.3 %/year, hog with 1.0 %, Carabao with 3.1 %, respectively. The number of Carabao was slightly decreased during the first half of '90s might be due to progressing of farming mechanization, and later it has been increased may be due to expansion of demand of livestock products.

The importation trends of livestock products during the recent ten years in the Philippines is as summarized in table and illustration below.

Year	Bovine (1,000 head)	Meat fresh-child-froze n (1,000 mt)	All milk (Million US\$)
1989	18	14	190
1990	24	13	233
1991	18	13	187
1992	49	17	227
1993	94	19	230
1994	114	38	279
1995	195	47	379
1996	185	67	342
1997	240	84	343
1998	205	71	262

Data source: FAO Trade Yearbook.

As seen in these figures, the importation of livestock products has been rapidly increased from the beginning of '90s, and has been slightly declining in these years.

(3) Cropping Pattern

As seen in Figure 3.1.1, present cropping pattern is basically "paddy – paddy" in irrigated paddy field, "paddy – no crop/corn/other upland crop/paddy" in rainfed paddy field and "corn – corn" in corn fields. According to data of Bureau of Agricultural Statistics (BAS), the cropping intensity in the M/P Area is estimated at 184% against the physical area of paddy and corn fields. In the irrigated paddy fields, the cropping intensity is as high as 195%, while in rainfed paddy fields, it is 127% only. Many diversified crops are grown in the rainfed rice fields and corn fields as the secondary crops.

(4) Irrigation intensity in Region 2

Irrigated cropping intensity (ICI) is calculated as a rate of irrigated area divided by irrigation service area based on NIA, Region 2 (R-2) data. Being not so high or 132% in average in R-2, this ICI is comparatively higher in the Isabela province (151%) and lower in the Quirino and Cagayan provinces (91 and 105%). In the Cagayan province, ICI in the wet season is lower than that in the dry season in general.

(5) Marketing and Processing of Agricultural Products

Region 2 has a large capacity to supply paddy/rice and yellow corn to other areas in the country.

1) NFA's Channel

The National Food Authority (NFA) is a government corporation, mandated to promote the integrated growth and development of the food industry. It

has the primary responsibility, of ensuring the nation's food security and assuring stable supply and price of grains, nationwide. According to Office of NFA Region 2, the target volume to be traded through NFA is approximately 6% of the rice produce in the area.

The volume of paddy traded through NFA channel in 1999 is as seen below.

Province/municipality	Traded by NFA (ton)	Total production (ton)	Share of NFA (%)
Cagayan	11,850	457,340	2.6
Allacapan*	11,950	_	
Kalinga-Apayao	7,230	106,250	6.8
Isabela**	41,860	1,019,290	4.1
Nueva Vizcaya	4,800	172,510	2.8
Qurino	3,200	59,670	5.4
Ifugao	540	45,220	1.2
Total	81,430	-	-

Data source: NFA Office of Region 2, Santiago, Isabela Province.

Allacapan is an area defined in NFA, composed of some municipalities of Apayao and Cagayan provinces.

** The figures of Isabela include the traded volume of NPGC.

The highest share of NFA was 6.8 % of total volume of paddy production in Kalinga-Apayao followed by 5.4 % of that in Quirino province. These figures showing that the major part of paddy produced in the Cagayan River Basin is mostly traded through the private channel.

2) Marketing Flow of Rice and Corn by Private Traders

Paddy/Rice

The market channels of paddy/rice from Region 2 via milling areas to the demand area of National Capital Region (NCR) are composed of a variety of traders and millers. The farmers sell paddy to traders in Barangay, municipal and provincial marketing places. They usually cannot wait for better price to sell but sell immediately because of lack of warehouses. The paddy mainly flows to large millers in Isabela, Nueva Ecija, Bulacan and Pangasinan provinces. Then the milled rice is sent to Metro Manila wholesalers. .

Yellow Corn

The major part of the corn is channeled through the traders at Barangay, municipal and provincial levels. Provincial traders transport corn grains from the supply area to the major demand areas, by order from the integrators, feed-millers, and medium and large hog raisers and poultry growers in the major demand areas of Central Luzon, Southern Tagalog and NCR.

(6) Cooperative

According to data in 2000 from the Cooperative Development Authority (CDA) Tuguegarao Extension Office data in 2000, total number of cooperatives in Region 2 is 2,646, of which about 70% are multipurpose agricultural cooperatives and the remaining are non-agricultural cooperatives. As a whole, 58% of total cooperatives are active, 35% are inactive and 7% are cancelled.

Province	MPA	MPN	Credit	Produc	Consu	Servic	Marketi	Total
				er	mer	es	ng	
Cagayan	620	165	33	9	3	6	3	839
Isabela	925	242	71	6	6	10	3	1,263
Nueva Vizcaya	187	84	43	5	1	5	3	328
Quirino	115	43	7	1	0	4	0	170
Total	1,847	534	154	21	10	25	9	2,600

Source: CDA Tuguegarao Extension Office, August 2000.

Province	Α	Active		Inactive		Cancelled	
	Primary	Secondary	Primary	Secondary	Primary	Secondary	
Cagayan	411	6	342	2	86	0	847
Isabela	670	21	518	9	75	1	1,294
Nueva Vizcaya	281	3	22	2	25	0	333
Quirino	138	2	25	0	7	0	172
Total	1,500	32	907	13	193	1	2,646

MPA: multipurpose Agricultural, MPN: multipurpose non-agricultural

Source: CDA Tuguegarao Extension Office.

(7) Agricultural Credit

Formal and informal financial sources serve as important sources of credit for small-scale farmers in the area. The formal sources of credit in the area are Rural Banks, Commercial and Private Development Banks. Land Bank of the Philippines extends credit services for the financial needs of farmers' cooperative or organizations for their working capital and asset acquisition needs at reasonable interest rates.

The traders are the main informal source or private financial source of credit to farmers and playing important role to supplement the shortage of formal credit.

- (8) Agricultural Support Services
 - 1) Agricultural Supporting System

Department of Agriculture (DA) is the leading agency to extend agricultural support services such as (i) technology and other agricultural services, (ii) regulatory services. The agencies undertaking research and technology generation in agricultural crops are the Bureau of Agricultural Research

(BAR), Bureau of Plant Industry (BPI), and in collaboration with State Colleges and Universities. Bureau of Animal Industry (BAI), Philippine Carabao Center (PCC), National Dairy Authority (NDA), South East Asian Fisheries Development Center (SEAFDEC) and Bureau of Fisheries and Aquatic Resources (BFAR) tackle livestock and fisheries researches.

ATI, BAR, BAI, PCC, NDA, NMC, NSF, BPI, RFUs and LDC form the Research Extension and Training Committee (RETC). The RETC is tasked with reviewing and formulating a research, extension and training program suitable and relevant to the emerging and changing business and economic environment facing the agriculture sector of the country.

2) Agricultural Institutions at Regional Level

The line agency of DA is Regional Field Unit located in Tuguegarao, Cagayan Province for Region 2, and Regional Field Unit CAR is located in Baguio, Benguet Province in CAR respectively. The regional level office of DA is responsible in the over-all planning, monitoring, and implementing of agricultural programs in the region. It should undertake coordination, monitoring and implementation (through stations) and seed production activities. RFU should coordinate, monitor, and provide technical assistance on small-scale irrigation, credit, post-harvest and marketing. It should ensure proper conduct and timely completion of farmers' master-list in collaboration with BAS and LGUs. It should deploy Subject Matter Specialist (SMS) and provide resource persons in training for Ats.

3) Agricultural Institutions at Provincial/Municipal Level

The Municipal Agriculturist shall be placed under the technical supervision of the Office of the Provincial Agriculturist but remain administratively under the Office of the Mayor. This is to improve program coordination and operationalization in achieving target area and mobilizing resources from DA and LGUs. The LGUs act as the lead-implementing unit of programs at the provincial level. The responsibilities of the Municipal Agriculturist include coordination and monitoring of techno-demo or integrated pest management (IPM) implementors, assisting of production technicians and SMSs in the selection of qualified farmers' organization/participants, and provide resource persons to farmers' training.

4) Agricultural Research System and Institutions

Philippine Council spearheads agricultural research system or R&D direction for Agriculture, Forestry and Natural Resources Research and Development

It provides stewardship functions of organizing, managing, (PCAARD). coordinating, monitoring activities of the and national R&D network-institutions and an R&D consortium in each region. The regional R&D consortium in Region 2 is the Regional Integrated Agricultural Research Center (RIARC) with Research Outreach Stations (ROS) located in all provinces. Its mandate is strengthening the partner ship with the private sector, non-government organizations (NGOs), State colleges and Universities (SCUs), DA, DENR and LGUs. The Cagayan Valley Integrated Agricultural Center in Ilagan with three satellites are mandated to research on crops development, soil and water management and crops, pest and diseases. The R&D institutions in Region 2 are as listed below. The ROS for Fisheries in San Mateo, Isabela is also conducting studies on fresh water fish production and provides fish seeds to the region.

Institutions	Location	Main responsibilities
Cagayan Valley Lowland and Marine	Iguig, Cagayan	
Research Outreach Station with three	-Abulug, Cagayan	-Studies on lowland crops development
satellites	-Bugey, Cagayan	-Studies marine fishes, mollusks, other fishery flora and fauna,
	-Claveria, Cagayan	-Research brackish-water and fresh water
		fishes
Cagayan Valley Upland Research	Quirino	-Studies on cattle and small ruminants
Outreach Station		production, pasture development, and
		crops production in upland situation
Cagayan Valley Hillyland Research	Bagbag, Nueva	-Studies on crop production in hillyland
Outreach Station	Vizcaya	and on livestock and HVCC production

5) Training Services

The Agricultural Training Institute (ATI) with its Regional Center in Cabagan, Isabela, it's Farmers Training Center in San Mateo, Isabela, and it's Regional Fishermen Training Center in Aparri, Cagayan are the training arms of DA in Region 2.

6) Nurseries and Seed

Plant as well as fish nurseries are produced and available at the RIARC-ROS and some are found in the different provinces as well municipalities. For rice foundation, registered and certified seeds, there are some farmers producing in the region, but a few on corn seeds. The various private companies in the country are supplying most of the seed required for rice and corn production.

7) Tools and Equipment

Farm tools, machinery and equipment is being supplied in the region through the private companies.

8) Fertilizer and Pesticide

The Fertilizer and Pesticide Authority has a regional office in the region which cater to the needs for farmers/fishermen, especially on regulatory services. Supply of these products is in the market through private enterprises.

9) Regulatory Services

The region has laboratories for research and testing purposes. There are two soil testing laboratories, two for seed testing (BPI & Philrice -San Mateo), one for vaccine production, and one for animal disease diagnosis. One is also in Aparri for fisheries laboratory- quarantine services.

There are two main regional livestock, crops, and fishery quarantine points. One is located in Santa Fe, Nueva Vizcaya--to regulate entry on these commodities from the South, and the other one is located in Santa Praxedes, Cagayan--to guard the northern entry of these goods to the region, especially during epidemic of some diseases of these commodities. Some quarantine checkpoints are also established by the provinces in strategic places in coordination with PNP, LGUs, DENR and other agencies concern.

3.2 Problems in Farming

(1) Frequent Flood Damage

Along the Cagayan River and its tributaries, the relatively lower plains are covered by corn fields or upland crop fields and higher plains are covered by paddy fields. The lower plain experiences flood and inundation frequently or more than once in 5 years but the higher plain not so frequently. Farmers often repeat seeding (sometimes 3 times or more) when flood damage seeds or young plants after seeding on the corn field on the lower plain, resulting in increase of production cost. Also, delay in cropping schedule usually causes pest infestation, which requires additional pesticide cost.

Inundation due to poor drainage condition damages crops and causes delay in the cropping pattern.

(2) Drought and Water Management

In Municipality of Quezon, Isabela, drought occurred nearly every 3 years recently. Harvested area of paddy field was only 1/6 of planted area in dry season of 1995.

As in above (1), delay in cropping schedule usually results in pest infestation requiring additional pesticide cost. The delay in the wet season cropping caused by long dry spell affects not only farmers but also traders, since they have to sell corn at a lower price because of a lot of Mindanao corn in the market by that time.

Often reported is uneven water distribution, which is induced by over-intake of irrigation water in upstream areas or at advantageous positions in an irrigation system. Inter-tribe social conflict is a constraint to solve the problem in certain area.

(3) Power Supply

Frequent blown-outs due to inadequate and unstable power supply are problematic to poultry raisers because of increasing chick mortality, millers operation and so on. High power rates and lack of power in flood prone areas are constraints.

(4) Post-harvest Processing and Marketing

In the country, post-harvest losses are reported to be high, namely 10-37% in rice, 30% in corn and 40% in vegetables, fruits and others (JICA Report on Aid Research, the Philippines, (in Japanese) 1993).

According to information obtained from farmers and officers of DA, in Region 2, as well as concerned reports, the problems regarding marketing and post-harvest activities in the area are;

- (i) deficit of working capital and insufficient financing system,
- (ii) poor condition of farm to market roads and insufficient bridges,
- (iii) shortage of labor for harvesting,
- (iv) shortage of trucks, hand tractors and tractors
- (v) lack of thresher, sheller, drying floors, mechanical dryers, warehouse and mills,
- (vi) low price of products (small farmers are forced to sell their produce to traders at a lower price because of their need for cash and their credit-marketing tie-up with trader-financier),

(vii) high price of inputs.

(5) Cooperative and Information System

The problems identified by CDA for the cooperatives are; poor attendance at committee meetings, poor implementation of policies, lack of cooperation or no enrichment of values, and insufficient capital.

Information on market price in milling and demand areas is not sufficient for farmers.

3.3 Poverty in Rural Area

(1) Poverty in the Philippines

For the nation together with Region 2 and CAR, subsistence incidence is mentioned in Annex I, Section 5.5. That in the Cagayan River Basin by municipality is shown in Figure 3.3.1. The subsistence incidence is mentioned as a percentage of the family unable to meet its subsistence income level.

When small farmers and agricultural labors cannot gain enough income in their villages and are forced to leave them to find better working opportunity, they may move to urban areas or forest. In Metro Manila, a lot of such small and landless farmers live in slums. Some of them go into forest and try slash-and-burn cultivation in denuded areas after commercial logging. Being different from traditional slash-and-burn cultivation with sufficient fallow period, their over-cultivation is usually deprival and induce erosion, land slide and finally sedimentation in downstream rivers. Elevated river beds and reservoirs bottom do increase risk of flood damage, as seen in the upper Magat River basin.

Poverty Incidence in the Cagayan River Basin

The poverty family incidence in Region 2 in 1997 showed the third lowest percentage among the regions in the Philippines, except Metro Manila. The CAR area of which a part is included to the Cagayan River Basin, the incidence is ranked at tenth among the regions.

	Region	Annual per capita poverty threshold	Magnitude of poor families	Incidence of poor families
		(Peso)	(family)	(%)
Philippir	nes	11,388	4,533,387	32.1
NCR Me	etro Manila	14,360	140,793	7.1
Areas ou	tside NCR	10,898	4,412,594	36.2
III	Central Luzon	12,837	241,865	16.8
IV	Southern Tagalog	12,507	498,536	25.7
Π	Cagayan Valley	9,873	185,768	31.6
VII	Central Visayas	8,726	357,715	34.2
Ι	Ilocos	11,981	292,764	37.6
XI	Southern Mindanao	10,489	379,344	37.9
IX	Western Mindanao	9,670	221,330	39.8
VIII	Eastern Visayas	8,755	305,750	40.7
VI	Western Visayas	10,558	520,200	41.6
CAR	Cordillera	12,744	109,646	42.3
Х	Northern Mindanao	10,455	385,337	46.8
XI	Central Mindanao	11,155	220,526	49.1
V	Bicol	10,497	485,099	50.1
ARMM		11,214	208,714	58.6

Source: Cagayan Valley Statistical Yearbook, Regional Statistical Coordinating Committee 02.

Items	Total	Urban	Rural
1. Poverty incidence			
Threshold (Peso)	9,880	11,654	9,402
Family (%)	32.1	28.0	33.2
Population (%)	38.0	33.6	39.1
2. Subsistence incidence			
Threshold (Peso)	6,985	7,996	6,712
Family (%)	13.5	12.4	13.8
Population (%)	17.8	16.2	18.2

The table below shows that the family income of about 18 % of population in Region 2 could not meet income for food requirements in 1997.

Source: Philippine Poverty Statistics 1997 Final, NSCB

In CAR area, more than 30 % of population could not meet their income for food threshold. About 40 %, 64 % of the population in the rural area was under the subsistence and poverty line respectively.

Items	Total	Urban	Rural
1. Poverty incidence			
Threshold (Peso)	12,836	13,521	12,554
Family (%)	42.5	13.4	55.5
Population (%)	50.1	17.2	63.7
2. Subsistence incidence			
Threshold (Peso)	8,558	8.602	8,540
Family (%)	24.9	5.6	33.4
Population (%)	30.6	7.8	39.9

Source: Philippine Poverty Statistics 1997 Final, NSCB

Results of MBN Survey

The Minimum Basic Needs Community-Based Information System (MBN-CBIS) is a pioneer program of the government, which was officially adopted in 1995. To clarify the poverty incidence in the Cagayan River Basin, among 33 indicators of MBN-CBIS, indicator number 24 was focused on, which shows the family's income is met or not met to the subsistence threshold level.

(2) Low Net Return and Rice Cartel Issue

Existence of agricultural input and product cartel is pointed out commonly by local people and in some reports and documents, while paddy/rice traders deny the existence. It is broadly believed that agricultural input trader cum product buyer cum financier control market price, setting high input price and low product buying price.

(3) Loose Connection in Rural Society Members

It is reported that village/barangay people are relatively loosely connected to one another due to more tight connecting between tenant farmer and land owner living in and out of the barangay, and because agricultural labors look for their jobs in and around their barangays sometimes in other provinces (JICA Report on Aid Research, the Philippines, (in Japanese) 1993). This is a constraint in organizing farmers.

(4) Vicious Cycle in Lower Cagayan River Area

The Study Team summarized poverty related items and problems on farmer's livelihood as a vicious cycle in the Lower Cagayan River area as shown in Figure 3.3.2. Basically the same items in (7) below are common problems here because increase of net farm income is essentially necessary to alleviate farmer's poverty.

(5) Inequity

Equitable distribution of wealth and profit is not attained in the Cagayan River Basin. This inequity discourage farmers intention to improve their farming because they cannot gain their reasonable share of increased profit. It seems that only the minimum amount from the profit is remained to the cultivating farmer but its surplus is taken by others.

(6) Disparity in the Basin

Isabela and Cagayan provinces are main paddy and corn producing and supplying area. In terms of agriculture, Isabela province is more modernized than Cagayan province. Cagayan province has a disadvantageous location with farther distance to transport produce through Dalton Pass to and from Metro Manila. The subsistence incidence by the municipality, shows high poverty in areas coverd mountains and lower Cagayan River area as shown in Figure 3.3.1.

(7) Poverty Alleviation

Poverty alleviation is discussed in Annex V, Subsection 1.2.9.

Countermeasures needed are summarized below.

- 1) small financing systems for small farmers with reasonable interest and simple and quick procedures,
- 2) transportation network reinforcement, including farm to market roads, bridges and sea routes via Port Irene.
- 3) mechanization, including truck, hand tractor, tractor, harvester, etc.

- 4) improvement of post-harvest facilities: thresher, sheller, drying floors, mechanical dryers, warehouse and mills,
- 5) promotion of farmers' organization,
- 6) generation and rehabilitation of irrigation area
- 7) flood control and drainage improvement

3.4 Existing Land Use Plan

(1) Land Use Plan

According to the draft bill of National Land Use Act mentioned in Section 4.1, the cities and municipalities prepare their respective Comprehensive Land Use Plans (CLUPs). The Provincial Development Council and the Regional Land Use Committee prepare their respective Provincial and Regional Physical Framework Plans (PPFPs and RPFPs). Based on them, the Land Use Policy Administration (LUPA) may formulate the National Physical Framework Plan (NPFP).

In available PPFPs of related provinces and RPFPs of Region 2 (R-2) and CAR, specific and concrete plan cannot be found in industrial, commercial and other sectors.

- (2) Agricultural Development Plan
 - 1) Crop Production Programs' Coverage Area

The Region 2 is recognized as one of the important granary of the country. The Cagayan, Isabela, Nueva Vizcaya and Quirino provinces of Region 2, Mountain Province, Kalinga, Apayao, Ifugao provinces of CAR have been covered within the target area of the "Agrikultrang Makamasa" Rice program of Department of Agriculture (DA). The provinces of Cagayan, Isabela, Nueva Vizcaya, and Quirino have been targeted as the strategic areas of Region 2, but no provinces in CAR have been covered in the corn program of DA.

2) Agriculture and Fisheries Modernization Act (AFMA), 1997

The AFMA is established to realize the purposes listed below. It is led by both agencies of DA and Department of Agrarian Reform (DAR).

a) Along the government thrust on food security, measures to modernize the agriculture and fisheries sectors in order to enhance their profitability are being spelled out in AFMA.

- b) Through AFMA, the agriculture and fishery sectors are being developed for global competitiveness under an environment of adequate, focused and rational delivery of necessary support services.
- c) The agriculture and fishery sector will be transformed from a resource based on technology-based industry.

The AFMA includes the following programs and projects: (a) credit assistance, (b) irrigation and water management, (c) marketing services, (d) national information network, (e) post-harvesting facilities, (f) farm-to-market roads, (g) regulatory services, (h) human resource development, (i) research and development, (j) extension services and training, (k) technical support services and (l) program management.

The AFMA projects are expected to develop the primary sector, particularly agriculture, livestock and fishery sub-sectors. It also supports the development of agro-based industries in the region and increases in the demand for services.

The national government allocated the total sum of 21.67 billion Pesos for AFMA in 2000, accounting for approximately 3.33% of the national budget. Of this total sum, Region 2 has a share of 2.06% or 447.36 million Pesos for the year 2000.

3) Regional Agriculture and Fisheries Modernization Plan (AFMP)

AFMP for year of 2000 -2004 in Region 2 and CAR was drafted in May 2000, and would have been finalized by December 2000. According to the plan, the vision, goal and objectives were proposed consonant with the national policy provided in AFMA.

a) Target of Crop Production

These plans of the both regions envision an improved quality of life of the farmers and fisherfolk by increasing their income and attain self-sufficiency in rice, corn, fish, livestock and vegetables through appropriate and sustainable agricultural technology. The specific objectives and target by 2004 set in the plan for the major crops are as shown in the table below:

Region	Region 2		CAR	
	Present	Target	Present	Target
Paddy		-		_
Area (1,000 ha)	376	599	126	155
Production (1,000 ton)	1,257	3,550	433	723
Corn				
Area (1,000 ha)	278	341	10	12
Production (1,000 ton)	596	2,098	20	32
Vegetables				
Area (1,000 ha)			38	46
Production (1,000 ton)			529	708

Source: AFMA Region 2 and CAR, 2000-2004. Notes: The area shown is total harvested area.

(Unit:ton/ha) Region 2 CAR Region Present Target Present Target Poverty incidence (%) 36.9 20 51 25 Yield of Crops: Paddy 3.6 5.0 Irrigated 3.6 6.6 Rainfed 2.6 3.6 Upland rice 1.5 2.8 1.9 3.0 Corn-white 2.1 4.0 Corn-yellow (hybrid) 2.6 6.0 Corn-yellow (OPV) 3.5 5.0 Corn-yellow 4.3 3.4 Vegetables 9.6 12.3

The target yield of crops in the plan are shown in table below:

Source: AFMA Region 2 and CAR, 2000-2004.

As seen in the above tables, the strategies set in AFMP to achieve the development target are expansion of planted/harvested area multiplied with productivity improvement by increase in unit yield of crops. Since the target yield seems to be too high, the Study Team proposes realizable values in Section 4.2.

4) Target of Livestock and Fishery Production

The national target of livestock and fisheries production for 1999 to 2004 set in Medium Term Philippine Development Plan (MTPDP) is summarized in the table below.

	Average target growth rate (%/year)		
	Low	High	
1. Livestock			
Carabao	1.3	2.3	
Cattle	4.3	4.6	
Hog	4.2	5.1	
Goat	3.2	3.4	
Dairy	0.8	1.3	
2. Poultry			
Chicken	3.8	4.6	
Duck	3.9	4.7	
Chicken eggs	3.4	3.9	
Duck eggs	3.9	4.3	
3. Fisheries			
ercial	2.3	2.7	
Municipal	-0.2	-0.2	
Aquaculture	6.9	6.9	

Data source: BAS

Low set of scenario that assumes no El Nino will occur in 2001 and 2004, according to MTPDP 1999-2004.

The livestock and fisheries production targets are not set clearly in AFMP of Region 2. But the Region is going to support animal production through health management and dispersing of upgraded breeders as well as to establish the livestock trading posts and auction markets, modern slaughter houses and abattoirs, cold storage facilities, etc. Fisheries production schemes are also programmed to support open-water and marine water culture.

(3) Agricultural Supporting Program

1) Comprehensive Agrarian Reform Program (CARP)

DAR launched to accelerate land distribution and improve land tenure for contributing towards increasing incomes and facilitating access to resources among small farmers and workers with the following principles and policies.

- i) Promote social justice and industrialization,
- ii) Just compensation for land owners,
- iii) Participation of farmers/landowners/cooperatives in planning and program management,
- v) Provision of incentives for landowners, and
- vi) Leave public lands for capital intensive farms and commercial crops.

DAR as the leading implementation agency of CARP is mandated to improve land tenure and to promote the welfare of program beneficiaries through the support services. In pursuit of CARP objectives DAR is operating two major component programs; Land Tenure Improvement (LTI) and Program Beneficiaries Development (PBD). LTI deals the land tenure rights in the legalized categories, while PBD is to extend support services for the beneficial farmers with provisions of organization strengthening, particular credit, technology and basic physical infrastructure.

LTI program comprises two sub-components; land transfer and non-land transfer.

- Land Transfer (Land acquisition and distribution, LAD)
 As of June 1998, DAR and DENR had distributed some 2.8 million
 ha and 1.9 million ha of land respectively (MTPDP 1999-2004).
- ii) Non-land Transfer Schemes

CARP includes non-land transfer schemes which does not entail the distribution of land to farmer beneficiaries but instruments for protecting the tenure status of the farmers with the tenure arrangement of Leasehold Operation, Stock Distribution Option, and Production and Profit Sharing.

2) Support Services by DAR

DAR in line with the land distribution program continued the provision of support services to the beneficiaries and extension service through information and education programs on value formation and skills development. The provision of support services for beneficiaries in the area are done in coordination with other agencies such as DA, DENR and DTI, Land Bank, etc. through the projects focused on the communities of beneficiaries of agrarian reform. They have implemented a variety of projects such as Agrarian Infrastructure Support Project (ARISP) financed by JBIC, Agrarian Support Project (ARSP), Belgian Agrarian Reform Support Project (BARSP), Rural Farmers and Agrarian Reform Support Credit Program (RASCP), Agrarian Reform Communities Development Program (ARCDP-WB) and so on.

(4) Irrigation Plan

In the NIA's Indicative Irrigation Development Program from 2000 to 2009 (Table 2.2.2), nationwide target areas are 568 thousand ha for new generation and 761 thousand ha for rehabilitation. The target is considered ambitious considering the past performance and project physical situation as mentioned in Progress Report, Nov., 2000, of the Study on Strengthening of NIA's Management System.

Existing projects/programs include the following.

- IOSP II: Second Irrigation Operation Support Project (IOSP II), assisted by World Bank (WB)

- WRDP: Water Resources Development Project, by WB
- CIDP II: Communal Irrigation Development Project II, by WB
- ARCDP: Agrarian Reform Community Development Project, by WB
- ARISP I & II: Agrarian Reform Infrastructure Support Project-I & II by OECF (now JBIC)

Locally funded projects/programs are;

- EL NINO, LA NINA,
- PIDP: Pump Irrigation Development Project
- SRIP: Small Reservoir Irrigation Project
- CARP-IC: Comprehensive Agrarian Reform Program, Irrigation Component
- SHIP: Self Help Irrigation Project
- BSPP: Balikatan Sagip Patubig Program

For CAR;

- BRTTFF: Banaue Rice Terrace Task Force
- CHARMP: Cordillera Highland Agricultural Resource Management Project

PART II REVIEW OF 1987 MASTER PLAN

CHAPTER 4 LAND USE PLAN

4.1 Basic Land Use Plan

4.1.1 Land Use Policy

(1) General

Regional Physical Framework Plans (RPFPs) of Region 2 (R-2) and CAR include a production land use plan, protection land use plan, settlement plan and infrastructure plan. Referring to these plans, discussed in this chapter are important plans on water resources development, namely basic land use plan, agricultural development plan and irrigation development plan.

(2) National Land Use Act (draft bill)

This is a draft bill prepared in October 2000, instituting a national land use policy, providing the implementing mechanisms therefore, and for other purposes. Policies and principles are stated in the draft bill as summarized below.

- (a) Protection of prime agricultural lands for food production activities and highest priority to the completion of CARP;
- (b) Food security in basic food commodities with emphasis on self-sufficiency in rice and corn production;
- (c) Sustainable development and management of water resources towards water security;
- (d) Rational population distribution and settlements development;
- (e) Equitable and sustainable economic growth and balanced and dispersed industrial and tourism development guided by the principles of agrarian reform, urban land reform, and rural development;
- (f) Sustainable management of natural resources;
- (g) Maintenance and preservation of environmental integrity and stability;
- (h) Harmony between the rights and the varied interests of every Filipino within the framework of people empowerment, decentralization, social justice and equity;
- (i) Respect to and protection of, the sustainable traditional resource rights of the Indigenous Cultural Communities/Indigenous Peoples (ICCS/IPS);
- (j) Protection of the rights of basic sectors to ensure equitable access to the country's land and other resources;

(k) An integrated approach to the utilization, allocation, development and management of water as a limited resource that will complement and support sustainable land utilization.

Top three principles include protection of prime agricultural lands, food security for rice and corn production and sustainable development and management of water resources.

(3) Relevant Legislation

As interim guidelines on agricultural land use conversion, Administrative Order (AO) No.20 was promulgated in December 1992. The urbanization pressures have threatened many irrigation systems and agricultural lands are being converted, at a very fast rate, to industrial and urban uses, according to NIA. DAR is authorized to approve such conversion. LGUs are empowered to reclassify agricultural lands. This AO No.20 mandates that irrigated lands and irrigable lands in the near future can not be converted to residential, commercial or industrial uses.

(4) Settlement Policy

For settlement development, rational and sustainable utilization of physical resources is proposed in RPFP of R-2 as summarized below.

- 1) Priority areas for new settlements or expansion of existing areas shall be lands with marginal suitability to crops located within urban/town centers or its peripheral areas.
- 2) The location of new settlements in other areas such as prime agricultural lands, protection/rehabilitation/hazardous areas, in places not accessible to road and basic services, etc. shall be discouraged. In their respective zoning plans, LGUs shall identify and delineate these areas not fit for settlement location.
- 3) Settlements located in protection and rehabilitation areas shall be restrained from further growth. Appropriate control measures shall also be provided to prevent further environmental degradation of the critical areas due to the presence of these settlements.
- 4) Lands considered as ancestral domain of indigenous communities shall be surveyed and delineated to determine its actual extent. The type of development interventions to be undertaken should consider the rights, livelihood and spiritual integrity of the indigenous communities, and at the same time the protection of the environment.

- 5) The easement area along the sides of the waterways (e.g. rivers, streams, lakes, etc) shall be strictly implemented to prevent encroachment of settlements. The 20 meter strip is proposed to be segregated from the boundaries of titled lands to enforce its protection and reduce erosion, siltation and pollution of water bodies.
- 6) Conversion of prime agricultural lands, into settlement purposes shall be rationalized. Irrigated agricultural lands shall be non-negotiable for conversion into other uses. Agricultural lands delineated and proposed as settlements area in town plans shall be reviewed to assess its more appropriate land use.

This proposal seems to recognize the important role of agricultural land. Like in the flood plain of the Cagayan River, on such banks that change their locations along with substantial shift of river channel, river training is considered necessary as a premise of the efficiency of item 5) in the above proposal.

4.1.2 Basic Land Use Plan

Referred in basic land use planning is data on Strategic Agriculture and Fisheries Development Zone (SAFDZ), which is prepared by BSWM, R-2 and CAR in pursuant to Agriculture and Fisheries Modernization Act (AFMA). AFMA is explained in Subsection 3.4 (2).

(1) Strategic Agriculture and Fisheries Development Zone (SAFDZ)

With the approval of the Agriculture and Fishery Modernization Act (AFMA) in 1997, all suitable agricultural lands within A & D land are to be identified, set aside and protected from unreasonable conversion. The Network of Protected Areas for Agriculture and Agro-industrial Development (NPAAAD) areas are portions of privately owned lands (A & D land) that are technically defined prime agricultural lands identified by BSWM. The Strategic Agriculture and Fishery Development Zone (SAFDZ) refers to areas within the NPAAAD identified for production, agro-processing and marketing activities to help develop and modernize with the support of the government, the agriculture and fishery sectors in an environmentally and socio-culturally sound manner. The SAFDZs are strategically located and accessible areas which are identified jointly by DA and LGUs to serve as areas that will showcase modern farming (crops and livestock) and fishing technologies. ("Primer on SAFDZ", BSWM)

The Cagayan River Basin is divided to SAFDZ area (32 %), future SAFDZ area or remaining NPAAAD area (8 %) and Non-SAFDZ area (60 %).

A basic land use plan is prepared by the Study Team as shown in Figure 4.1.1, which illustrates the process of conversion in land use from present one to a proposed one, in consideration of zoning of SAFDZ.

(2) Present Land Use

Present land use is shown in the left side of Figure 4.1.1 and in Tables 4.1.1 and 4.1.2. As mentioned in Section 2.1, it is derived from SAFDZ data, which were prepared by BSWM, Region 2 and CAR in 1999. The present land use is categorized in reference to SAFDZ, in which Network of Protected Areas for Agriculture and Agro-Industrial Development (NPAAAD) is taken into consideration.

(3) SAFDZ Area

In the middle of Figure 4.1.1, SAFDZ areas are presented in ellipses. Distribution from present land use to SAFDZ can be seen in Table 4.1.1. In SAFDZ categorization, land is divided into SAFDZ and non-SAFDZ areas. SAFDZ areas consist of crop, livestock, fishery and their integration. Non-SAFDZ areas are composed of remaining NPAAAD (or future expansion area for SAFDZ), agro-forestry, watershed/forestry and built-up areas. Value of built-up areas in SAFDZ is unchanged from that at present, which seems impossible considering future development. Of integrated sub-development zones consisting of crop, livestock and fishery, total area is only 0.9 %, most of which is crop/livestock combination. Agro-Forestry shares considerable portion or around 10 %.

- (4) Basic Land Use Plan
 - 1) Basic concept

In the basic land use planning, following basic approaches are taken.

The plan was prepared, in principle, based on the concept of SAFDZ together with Regional Physical Framework Plan (RPFP) 1993-2022 of Region 2 (R-2) and Cordillera Regional Physical Framework Plan 1994-2023 of CAR. For forest land, pasture land and fish pond, the same areas are applied as in SAFDZ. The built-up areas are proposed on the basis of those areas in RPFPs of R-2 and CAR. Agricultural area is to be maintained at the same scale in total, taking into consideration of basic land use policy to protect agricultural land.

2) Agricultural area

Area of "Strategic Crop Sub-Development Zone (SDZ)" in SAFDZ is 6,267 km². Of such integrated SDZs that include crop, total area is counted up to 245 km². Out of 1,943 km² of "Remaining NPAAAD", a part or 252 km² is proposed for the agricultural areas in the future plan. Details are discussed in Section 4.2.

3) Fishpond

Fishponds are 1,190 km² at present and is planned to be 1,390 km², which is equal to "Strategic Fishery SDZ" plus "Livestock/Fishery SDZ".

4) Grassland

As the proposed pasture area, "Strategic Livestock SDZ" area of 1,523 km² is followed, which needs additional 488 km² mainly converted from present wild grass and shrub areas.

The wild grass and shrub areas are projected to reduce to $1,724 \text{ km}^2$ from present $7,456 \text{ km}^2$.

5) Agro-Forestry

Proposed agro-forestry area is $1,051 \text{ km}^2$, which is derived from 854 km² and 197 km² in RPFP, R-2 and CAR, respectively. "Agro-Forestry" in SAFDZ is set at 2,776 km², of which 1051 km² is included in the plan by 2020, and the remaining 1,725 km² is to be developed after 2020.

6) Forest (not including agro-forestry)

Proposed forest area in 2020 is 13,868 km^2 following "Watershed/Forest" area in SAFDZ. To attain this, forest increase or reforestation of 2,893 km^2 will be necessary. Not including agro-forestry area, this proposed reforestation area differs from that in Annex VII, which includes agro-forestry area.

7) Built-up areas, etc.

The proposed built-up areas, etc. reach 2,212 km^2 from present one of 521 km^2 , requiring an increase of 1,691 km^2 . The proposed areas are based on the values in RPFP, R-2 and CAR. The increase in the plan will be made, in principle, by conversion from present grassland and agricultural area. It is noted that the total area of the agricultural land should be maintained or unchanged, so conversion from agricultural area to other land must be recovered by generation of agricultural area from other land use area.

4.2 Agricultural Development Plan

4.2.1 Agricultural Development Potential in the Master Plan Area

(1) Land Resources

As in Section 2.1 from topographical viewpoint, such areas that have land slope of less than 18 % is about 1.0 million ha, where basically soil and agro-climatic conditions are not critical constraint. Around 680,000 ha is estimated as possible maximum crop area excluding other competing land use areas such as built-up areas. Land suitable for irrigated paddy field is estimated to be about 528,000 ha in gross based on land slope as well as SAFDZ areas.

(2) Water Resources

In the meteo-hydrological study in Annex IV, for the Cagayan River Basin, the average annual rainfall and runoff are estimated 2,600 mm and 1,550 mm (or 42.4 billion m^3), respectively. So, runoff coefficient and average annual evapotranspiration is calculated at 0.60 and 1,050 mm, respectively.

Annual design water demand at full developed level is estimated at 13 billion m^3 , of which over 90 % is irrigation water. Of 80 % dependability, annual gross irrigation water requirement of about 7.12 billion m^3 or 2,400 mm is estimated from water balance study results in Annex IV, 5.3. The fully developed area of irrigated paddy field is regarded as about 530,000 ha in gross.

Certain part of the runoff or larger flood discharge flows directly into sea and cannot be utilized. And in drought years, annual runoff will decrease from average value of 42 billion m³ but it is considered still sufficient to meet the demand of each sector's design probability. Quantity of water resource can be said to be sufficient in long term basis as a whole. However, from seasonal and spatial point of view, water shortage may occur in drought years and in certain parts of the basin. Reservoir dams and impounding ponds will be required in such cases, to regulate river water.

4.2.2 Basic Concepts of Agricultural Development

(1) Basic Concepts

Review of Agricultural Development Concepts and Strategies

The basic agricultural development concepts and strategies set in the 1987 Master Plan were reviewed by reflecting the new national and regional agricultural development policy and strategies. And the present agricultural conditions and constraints for development challenges required in the area were fully taken into account for the review.

The basic concepts for agricultural development in the 1987 Master Plan were aiming at:

- a. Improvement of the present poor economic position of the basin through full utilization of the endowed land and water resources for increase of agricultural production, and
- b. Uplifting of rural living standard and improvement of present income disparity in the area.

The relevancy of the above basic concepts set in the 1987 Master Plan are found exactly conform to the new policy and strategies of AFMA as well as AFMP of the regions.

(2) Outline of 1987 Master Plan

Agricultural development plan was presented in 1987 Master Plan as summarized in Subsection 3.1.4 and in Figure 4.3.2. Out of 1,080,000 ha of the possible maximum agricultural area, the flat low land of 476,000 ha was planned to be developed fully in 2005, consisting of 306,000 ha of irrigated paddy field and 170,000 ha of diversified cropland. The upland or hilly land of 604,000 ha was planned to be the permanent cropland of 57,000 ha (29% of full development of 200,000 ha) and the pasture of 210,000 ha (70% of full development of 300,000 ha) by 2005, remaining 337,000 ha of the idle grassland.

(3) Agricultural Development in the Study

In the long term, present paddy field of 472,500 ha is planned to be 528,000 ha. Of the diversified crop field, corn field is planned to be 113,800 ha and other crop fields 34,600 ha. The pasture area is planned to be 153,000 ha. Agro-forestry area is planned to be 277,600 ha. In the reviewed Master Plan, the same target areas are adopted except agro-forestry area of 105,100 ha.

4.2.3 Agricultural Development Strategy

Considering the basic concepts and availability of endowed resources in the area, the following development strategies for agriculture are reviewed by paying special attention to the strategies based on the market-oriented and agribusiness-oriented policy, and alleviation of poverty in the rural areas. Table 4.2.1 presents basic concept of the development.

- (1) Increase in Agricultural Production
 - 1) Expansion of Agricultural Area

The development targets of the crop area are proposed in Figure 4.1.1 and Table 4.1.2. As mentioned in Subsection 4.1.2, total crop area of 676,400 ha is maintained in the land use plan. Proposed area for paddy field is the same as irrigable area or 528,000 ha in gross, though irrigation accomplishment rate will not reach to 100 % by 2020 if on schedule. Area of corn field proposed is 113,800 ha, which is the present corn field portion in "Strategic Crop and Crop/Livestock SDZs" of SAFDZ. Other upland crop fields will cover 34,600 ha. Proposed agro-forest area in SAFDZ is 105,100 ha, which includes area for fruit trees and others.

2) Increase of Cropping Intensity or Planted/Harvested Area

At present, cropping intensity has not yet reached a developed high level. That of rainfed paddy field is around 127 % as in Section 3.1. Proposed cropping intensity is heightened up to 250 % in irrigated paddy field, including diversified crop cultivation.

3) Improvement of Yield and Production Techniques

The proposed target yields of crops were reviewed in a realistic manner taking into account the past trends of yields of crops, as well as reflecting the results obtained from experiments and demonstration farms in the area. Also, general information on yield is considered. The target paddy yield applied in the Reviewed Master Plan is 4.5 and 5.0 ton/ha in the wet and dry seasons on average for the fully irrigated field.

4) Paddy and Corn Production Plan

Table 4.2.2 shows a trial of paddy and corn production plan in the basin. The paddy production will become 2.1 times in 2020 from 1.52 million ton to 3.17 million ton. The corn production will be 1.7 times from 0.51 to 0.85 million ton.

5) Reduction of Losses in Harvesting and Post-harvesting Stages

To reduce losses at the harvesting and post-harvesting stages, the required facilities are; farm to market road, multi-purpose dryer, mechanical dryer, thresher/sheller, rice mill, corn mill, flour mill, warehouses, etc. These facilities are necessary to be installed in the villages to make easy access by farmers together with extension services of post-harvest techniques.

(2) Promotion of Agricultural Income Generation

1) Improvement of Marketing System and Facilities

Agricultural cooperative activities by farmers for buying and selling of agricultural inputs and products will contribute farmers directly to raise income and reduce expenditures. Many farmers' cooperatives have been established but most of them are not functioning well mainly due to low awareness of the farmers themselves and shortage of capital for operation. It is necessary to strengthen the support services for farmers' cooperatives by improving the supporting systems. These have been extended by several agencies in the intricate manner.

The marketing system of the main products of the region (rice and corn) is mostly traded to Manila, the demand area, after passing through the processing at Pangasinan, Nueva Ecija and Bulacan. It is recommended to change the system to process within the production area and send to the demand area.

2) Promotion of Agri-based Processing and Preservation Industries

As concerning to the above mentioned marketing system improvement, it is essential to promote agri-based processing and preservation industries within the region. The most promising industries are milling of rice and flour/oil-pressing of corn by utilizing the region's products. And the by-products are ideally suited for promoting the livestock industries. The livestock raised in the region is necessary to be packed within the region and sent to the demand area. These activities are for value adding to the agricultural products in the Cagayan River Basin.

- (3) Increase of Production in Hilly and Forestry Area
 - 1) Promotion of Cattle Raising in Hilly Grass Land Area

Proposed livestock area or pasture is 152,000 ha from present 103,000 ha, with a net increase of 49,000 ha. Around 43,000 ha of present pasture land is categorized as Remaining NPAAAD to be converted to built-up areas and agricultural areas. There are about 93,000 ha of wild grass and shrub areas suitable for pasture for cattle raising. It is hopeful to promote cattle raising of beef stock for fattening in the feedlot utilizing byproducts; bran of rice and corn, oil cake of corn, molasses of sugar factory, etc. within the region.

2) Promotion of Agro-forestry (fruits)

The wild grass and shrub areas of more than 18 % sloping will be developed to the agro-forestry with fruit trees such as Mango, Citrus, etc. as well as to promote community forestry to preserve and increase the forestry area. Proposed agro-forestry area in 2020 is 105,100 ha or 38 % of SAFDZ area of 277,600 ha. Also, the agro-forestry is a countermeasure against slash and burn agriculture.

4.3 Irrigation Development Plan

4.3.1 Basic Development Concept

(1) Necessity of Irrigation Development

Average rice import rate to national consumption is 12 % for recent 5 years from 1995 to 1999. To make the country sufficient in rice, the "Rice Program 2000" implemented by DA planned to make the country 95 % sufficient in rice by 2000. So, the Philippines seems to accept 5 % import of rice or about 350,000 t of rice at present, which is equivalent to about 220,000 ha of harvested area or more than 110,000 ha of physical area with two croppings per year on present condition. About 500,000 ton of rice import in 2000 was reported, which means around 6 % of the required rice was imported.

In Referring to "Corporate Plan 1993-2002, NIA" and "The Study on Strengthening of NIA's Management System, Draft Final Report, August 2001, JICA", future annual rice supply and demand estimates were evaluated, in which rice deficits were projected to the future during each plan period (1993-2002 and 2001-2010, respectively), even though new projects would be taken into the estimates. In reference to these estimates, a prolonged estimate up to 2020 is tried as in Table 4.3.1 and Figure 4.3.1. In the estimate, the average generation of irrigated area is calculated at 31,000 ha/year or 1.0 % of the irrigable area in the nation. The results presented the similar trend as the former cases, namely future deficit continuation. Therefore, the rice supply-demand balance is anticipated to be serious up to 2020.

As mentioned in Section 3.4, DA identifies important rice supply areas or granary of the country in the "Agrikultrang Makamasa" Rice program. The Cagayan River Basin is one of the areas. The Region 2 is recognized as one of the important granary of the country. The Cagayan, Isabela, Nueva Vizcaya and Quirino provinces of Region 2, Mountain Province, Kalinga, Apayao, Ifugao provinces of CAR have been covered within the target area of the program.

The Cagayan River Basin has a potential for future irrigation development. As described in Section 2.2 (1), the remaining area to be irrigated is estimated to be about 257,000 ha (Irrigable area 475,000 ha– Existing irrigation area 218,000 ha).

In the country, some other regions have a large potential for irrigation development. However, some of those areas are not stable due to political confusion and social problem or "peace and order" problem. So, constant supply of grains is disturbed sometimes as has happened in 2000, when military action and social confusion interfered grain transportation.

Taking into consideration abovementioned matters as well as food security, promotion of irrigation development in the Cagayan River Basin is strongly recommended.

(2) Constraints and Challenges

A vicious cycle is pointed out by NIA engineers, namely damage by natural calamities and insufficient O&M --- low irrigated cropping intensity --- low production --- low irrigation service fee (ISF) collection rate --- insufficient finance sources --- insufficient O&M --- fragile system against calamities (high potential of damage). It is necessary to cut one or more in the chains of this cycle and change to a favorable cycle.

NIA mentions that the priorities for the short, medium and long-term irrigation development programs are geared to support food production and enhance socio-economic growth in the rural area. The thrusts in project development include accelerating the completion of on-going project, adequate packaging of future projects and introducing improved project management systems and practices. One of the stresses is put on developing a dynamic partnership in O&M between NIA and Irrigators' Association (IA).

4.3.2 Approach to Irrigation Development Plan

(1) Framework Plan

As a framework plan or the ultimate plan, all the remaining irrigable area of about 257,000 ha is the target area for new generation of irrigated area, aiming at 100 % of irrigation accomplishment. At the same time, all the existing irrigation systems should be rehabilitated and be fully operational.

(2) Long Term Plan

In formulating long term irrigation development plan, existing NIA program/plan and that in the 1987 Master Plan are taken into consideration. Many of the schemes in NIA, Region 2 Office are regarded as candidate. Selected 40 candidate schemes are of national level, namely National Irrigation System (NIS) and National Irrigation Project (NIP) together with major Communal Irrigation System (CIS) and Communal Irrigation Project (CIP), as presented in Table 4.3.3. To decide schemes for long term plan, an EIRR calculated by the expert is used. Schemes of less than 15% EIRR are excluded from economical viewpoint as described in Subsection 4.3.6 (2). As the long term plan, thirty eight (38) schemes are proposed.

(3) Reviewed Master Plan

In 1987 Master Plan, fourteen (14) irrigation projects were proposed consisting of 9 new/extension projects and 5 rehabilitation/improvement projects. Irrigation components of 2 multipurpose projects were included in the 9 projects.

For the Reviewed Master Plan, fifteen (15) candidate schemes are selected as a part of package including other sector schemes as described in Annex X, Chapter 7. In addition, thirteen (13) number of economically high graded schemes are selected. In total, twenty eight (28) schemes are the candidate schemes as seen in Table 4.3.4. Based on the criteria in Subsection 4.3.6, twenty four (24) schemes are selected for the Reviewed Master Plan up to 2020, which is composed of two parts. One part is a group of 15 irrigation development schemes to be implemented by new funding sources. Another part is 9 schemes to be implemented by NIA regular funds.

4.3.3 Main Features of Proposed Irrigation Project

Irrigation schemes proposed for long term plan are listed in Table 4.3.2 and Figure 4.3.2. Some of the schemes are explained hereunder.

- (1) National Irrigation Project
 - 1) Along Lower Cagayan River from estuary to Cabagan
 - a) Alcala-Amulung West Pump Irrigation Project (AAWPIP): Total area = 7,700 ha

NIA Cagayan Batanes Provincial Irrigation Office conducted feasibility study on 2,500 ha in north-western part of Alcala Amulung West area in 1997. On the basis of discussions with NIA, R-2, the Study Team proposes enlarged irrigation area of 7,700 ha consisting of Stage I (4,000 ha) and Stage II (3,700 ha). Stage I area includes the above 2,500 ha. Stage I area covers the higher plain and Stage II area is proposed in the lower plain. Located just upstream of the Magapit Narrows on the left or west bank, this area on the alluvial plain is one of the most seriously affected areas by flood. Generally, the lower plain near the river is covered with corn fields and higher plain with paddy fields partly irrigated by groundwater through small pumps and tube wells.

In order to develop this area fully, in particular the lower flood plain, flood control measures are essentially needed in addition to irrigation system.

b) Solana Pump Irrigation System–Rehabilitation and Extension Project (SPIS-REP) : Total area = 7,880 ha, Existing SPIS service area = 2,777 ha, Extension area = 5,103 ha

Located south of above a) area, usual land use practice is similar to similar flood conditions. Being a larger back swamp area, western part of SPIS forms a depression, where inundation occurs frequently due to poor drainage conditions, flood water from the Pangul River (Creek) and backwater effect from the Cagayan River through the Pangul River. Water distribution over the exiting irrigation canal system is insufficient.

Flood control measures are required to expand and improve irrigation service area.

c) Enrile Pump Irrigation Project (EPIP): Total area=3,100 ha

This area is located on the left bank of the Cagayan River and south of SPIS and south-west of Tuguegarao City. Most of the area is covered with rainfed rice field at present.

Suffering from flood influence, this area needs flood control measures as well as irrigation facilities.

This area is a part of former Chico River Irrigation Project – Stage II (CRIP-II) area or a part of its alternative, Chico Mallig Irrigation Project (CMIP).

- 2) Remaining area in the Basin
- a) Chico Mallig Irrigation Project (CMIP) and Related Projects

CMIP is an alternative project of Chico River Irrigation Project (CRIP) Stage II, after social problems stopped the original project implementation. CMIP covers the same irrigation area (31,200 ha) as the CRIP-II. Santa Maria (Communal) Pump Irrigation System (SMPIS, 690 ha) covers a part of the command area. EPIP, Rizal Irrigation Project (RIP, 1,500 ha) and Delfin

Albano Pump Irrigation Project (DAPIP, 2,445 ha) overlap partly on the CMIP area.

In the original planned area of CMIP, nearly 8,000 ha in total are proposed as service area of other projects now. However, CMIP area is not reduced because additional potential irrigable area from CMIP is considered over 8,000 ha.

b) Addalam River Irrigation Project (ARIP)

This is an on-going project with projected service area of 5,830 ha in Quirino and Isabela provinces.

c) Other Projects

Pump Irrigation Project (PIP) includes those of Santa Isabel (SI), Upper Ilagan Wesern Barangay (UIWB), Dammao and San Agustin (SA).

- (2) Communal and Other Irrigation Projects
 - Along Lower Cagayan River from estuary to Cabagan Lallo West Pump Irrigation Project (LWPIP, 900 ha) Nassiping Pump Irrigation Project (NPIP, 765 ha) Mamil Pump Irrigation Project (MPIP, 563 ha)
 - 2) Remaining area in the Basin

Laporang Pump Irrigation Project (LPIP, 400 ha), and etc.

(3) Rehabilitation of Irrigation System

Solana Pump Irrigation System (2.777 ha): refer to above SPIS-REP Pinacanauan River Irrigation System (880 ha)

(4) Irrigation Component in Multi-purpose Project

Tumauini Reservoir Project (TRP): with multipurpose dam for irrigation and hydropower

(5) Shallow Tube Well (STW) and Deepwell Projects

A shallow tube well covers 3 ha irrigation area usually, while a deepwell covers about 10 to 40 ha.

4.3.4 Water Management

The optimum water management is a challenge to distribute water as widely as possible within limited given conditions. For the purpose, technology on not only hardware but also software will be necessary, including IA reinforcement.

To understand hydraulic characteristics as well as problematic points or bottlenecks, profiles of irrigation canal network, is essentially necessary. The profiles or longitudinal sections should include elevations of canal bottom and right and left bank tops with acceptable accuracy. Weak points found in the hydraulic profiles should be repaired or improved.

4.3.5 Cost Estimate

Of the proposed irrigation schemes, project cost is estimated based on the method employed in the 1987 Master Plan (1987 MP). The project cost comprises i) direct construction cost, ii) compensation cost, iii) cost for O & M facilities, iv) engineering cost, v) administration and supporting program cost and vi) physical contingency. Engineering cost is assumed 8 % of the sum of i) to iii) above. Administration and supporting program cost is assumed 7 % of the same sum as above. Physical contingency is assumed to be 15 % of the sum of above item i) to v). The project cost is updated from that prepared in 1987 MP applying an obtained deflator of 3.00 between 1985 and 2000 (ref. to Annex X, Chapter 6). The project cost is estimated for the proposed cropping pattern A, namely rice-rice-beans. Together with annual operation and maintenance cost, the estimated project cost is shown in Table 4.3.3.

4.3.6 Prioritization for Candidate Schemes

(1) Criteria for Prioritization

More effective scheme for poverty alleviation and equitable development should have higher priority. In general, less developed area has disadvantages in economic aspect, so higher benefit is difficult to be gained. However, such area has potential high benefit from lower without-project level to full developed level. Anyway, low developed area should have higher priority for equitable development in accordance with AFMA. Subsistence incidence below subsistence threshold level by the municipality is higher along the lower Cagayan River. So, irrigation projects along the lower Cagayan River should be given higher priority. Such areas that have poor traffic condition should be improved with higher priority.

From practical point of view, on-going and pipeline projects should receive higher priority, since early benefits can be expected by early implementation of such matured project.

Projects with economic internal rate of return (EIRR) of 15 % or higher have higher priority. EIRR is used as one of main indicators.

(2) Prioritization

EIRR is calculated in economic evaluation in Annex X, Chapter 6. Out of 40 candidate schemes in Table 4.3.2 for the long term plan, EIRR of 2 schemes is less than 15% and 38 schemes are remained in the long term plan as introduced in Table 4.3.4 and in Figure 4.3.2. Those schemes are compared according to the criteria presented in above (1). For the Reviewed Master Plan, 28 candidate irrigation schemes are selected as shown in Table 4.3.4 and Figure 4.3.3, from which 24 schemes are proposed as Revised Master Plan in Table 4.3.5, in which on-going two projects are shown though not included in Revised Master Plan.

The first prioritized scheme is Alcala Amulung West Pump Irrigation Project, since it is located on the west bank of the Cagayan River in Cagayan Province and well prepared for implementation.

4.4 Spoil Bank Plan

4.4.1 Basic Concept

(1) Excavated Materials

Considerable amount of excavated materials may be produced in flood control works, such as cut off channel (COC), channel widening, riverbed cutting, dredging, etc. The excavated materials in the basin should be used effectively as much as possible. They can be used as concrete aggregate, for stone masonry, embankment of flood dyke and irrigation canal, backfill to close channel, and so on. The materials are delivered for foundation of house and building and elevating low land for land reclamation and improvement, and are disposed as waste to some area or spoil bank according to the material quality and local conditions.

(2) Spoil Bank and Its Effective Use

The spoil bank area should be used effectively. In selection of the spoil bank, paddy field is excluded in principle not to change required water level, except for swampy paddy field of poor drainage condition. Old river course will be basically to remain as it is, since it is usable as natural fishing area and flood retarding area. One of the uses is for relocation area of resettlement plan. Original and proposed land uses of the spoil bank area are as shown below.

Hilly area	\rightarrow	Built-up area, upland crop field
Corn field	\rightarrow	Corn or other upland crop field (better condition)
Swampy paddy fi	ield \rightarrow	Normal paddy field
Swamp	\rightarrow	Paddy field

4.4.2 Basic Design

(1) Required Spoil Bank

Basic design and its cost estimate are carried out for reaches along the lower Cagayan River from Alcala to Enrile. In Annex VI, Chapter 4, a lot of volume of excavation is proposed for three cut off channels (COCs) as one of river channel improvement works for flood control. Excavated material is proposed to be used for closing dike and flood dike embankment. Spoil bank will be required only for Tuguegarao COC. In the construction plan and schedule in Annex IX, Chapter 2, estimated earth volume from soil balance study for the spoil bank is about 10 million m³ or roughly equivalent to 500 ha with 2 m high.

(2) Proposed Candidate Spoil Bank

Some of the probable and suitable spoil bank areas are proposed. An example is an area on the Pared River right and left banks and beside the national highway. Another is Solana depression used as paddy field in back swamp. From preliminary study, proposed candidate spoil bank area is estimated 1,670 ha from Alcala to Enrile

Within the probable and suitable spoil bank areas, swampy paddy field of Solana depression in back swamp is recommendable for Tuguegarao COC, because transportation distance is shorter and drainage improvement, which is desired by the people, is expected in the wet paddy fields. The area can be normal drier paddy fields.

4.4.3 Cost Estimate

Total cost for the above spoil banking is considered in Annex IX, Chapter 4.

It is considered that unit cost of excavation include hauling cost to spoil bank in the cost estimate of flood control works. In case of Tuguegarao COC and Solana area, compaction cost is not necessary because of drainage improvement in swampy paddy field. Required cost is road construction and rehabilitation to connect existing road to the spoil bank, together with land acquisition cost for new road. The estimated cost is about 200 million pesos.

4.5 Resettlement Plan

4.5.1 Basic Concept

Obtained information on the settlement planning so far is presented in following Subsection 9.5.2. Resettlement is recommended or may be ordered as one of the non-structural flood countermeasures for those people who live in hazardous land in various ways. Resettlement is compelled to the resident people living in the proposed right of way of flood dike, river cut-off-channel portion, and so on.

Usually the people wish to resettle to areas near to their original resident places, to continue the same works as before. Essentially necessary is that the people can be sure to have their jobs and to sustain their lives.

Proposed resettlement area is the hilly area near the flood plains, to avoid flood. In the plain, natural levee may be the resettlement area with heightening of the land, if necessary. One of ideas on the proposed area for the resettlement is the use of spoil bank area of excavated materials.

4.5.2 Resettlement Plan

(1) Residents' Intention on Resettlement

According to the Questionnaire Survey on Resettlement conducted by the Study Team, half of residents in the flood prone area show that they agree to move to areas less vulnerable to inundation. Moreover, some 20 % of residents agree to move if enough compensation, livelihood assistance and housing and so on are given. Those who disagree to move, on the other hand, have the following reasons: They cannot leave present houses, jobs and other assets. For even those disagreeing, it is considered that they would agree to move if the causes are removed. Thus, these high agreement rates suggest that residents in the flood prone area are suffering severely from flooding and consequent damages, and they would not hesitate to move to safer areas. Taking into account the residents' intention, resettlement is an effective and practical measure for reducing flood damages if necessary conditions for better understanding of the residents are taken into consideration.

(2) Formulation of Resettlement Plan

Regarding the formulating of resettlement plan, DPWH has a "Policy Framework for Land Acquisition, Resettlement and Rehabilitation (Nov., 1999)" for a road development project. However, such a policy framework or guideline has not been formulated for river improvement projects. Environmental Impact Assessment Project Office of DPWH, which is in charge of resettlement procedures, suggests that the policy framework can be used for resettlement case of river improvement projects. Therefore, it is the rationale to refer to them in order to formulate a resettlement plan for this project.

The essential components of a resettlement plan are considered as follows:

- Selection of necessary acquisition area
- Formulation of the compensation plan
- Selection of relocation area and formulation of the development plan of relocation

Basically, relevant LGUs are responsible for formulating a resettlement plan, and the study team is currently requesting LGUs to formulate the resettlement plan, through DPWH, Region 2.

(3) Conditions of Relocation

The following items are to be studied and considered as conditions of the relocation site and housing before making a consensus with re-settlers:

- Floor area of houses;
- Surface area of lots;
- Social infrastructure and utilities to be supplied.

Twenty-five (25) m^2 is given as standard floor area by NHA. However, NHA, Region 2, suggests that the standard floor area is to be 30 m^2 for a house.

For the surface area, NHA applied some $100m^2$ as surface area of one residential lot for recent 3 resettlement cases implemented in 1997 through 1999, in Region 2.

Regarding the social infrastructures and utilities, the following has to be equipped or developed:

- Access road
- Drainage system
- Sanitary facilities
- Water supply system
- Power supply system
- Community facilities
- Schools (Depending on the number of relocated persons, capacity of existing nearby schools)

The study team is studying conditions of these items on which suggestions and recommendations are given to DPWH and relevant LGUs.

(4) Necessary Considerations for Resettlement

Resettlement cases caused by public works have made big issues in the Philippines so far. There are many resettlement cases that have resulted in greater failures. There are many factors to disturb or adversely affect resettlement procedures. Coping with informal settlers, i.e. squatters, is one example including professional squatters and squatter syndicate.

Regarding basic policy for appropriate resettlement measures, the World Bank's Operational Directive 4.30 on involuntary resettlement should be considered to meet in this resettlement case. In addition to the Operational Directive as well as conditions of relocation described above, the study team is considering the following for better understanding of affected people and for facilitating resettlement procedures.

a) Treatment of Informal Settlers

Setting a cut-off date (refer to the date of commencement of the census of affected persons with the project area boundaries. Persons not covered in the census are not eligible for claims for compensation.) and keeping it strictly during compensation procedures are essential.

b) Public consultation and/or Public Involvement

In order to agree for resettlement, affected persons are to be informed and consulted or involved about the resettlement plan, such as the necessity for resettlement, compensation rates, relocation sites and so on.

c) Relocation

Relocation sites should be set near to the former residential area of re-settlers. In addition, re-settlers should be relocated on the basis of a unit for one sitio or even one barangay because they make a community.

d) Awareness building of Re-settlers

There were such cases where compensation money given to re-settlers has been spent for other purposes such as gambles than resettlement. It is important to remind the people, the purpose of the compensation money or to build the re-settlers' awareness during consultation of the resettlement procedures.

e) Setting of Compensation Rate

Compensation rate must not be changed per person once certain compensation rate, i.e. amount, is fixed set. Some re-settlers would try to raise the compensation rate in order to get more money, but by giving into such pressure to get prompt agreement for resettlement and facilitate the procedure, the procedure itself would become chaotic and take a long time for settlement.

f) Formulation of the Resettlement Action Plan

It is essential to formulate a resettlement action plan including the following items on which correct procedure should be taken:

- Description of impacts and Socio-economic characteristics of Project affected persons
- Compensation rates and entitlement
- Implementation Schedule
- Monitoring and evaluation plan

4.5.3 Basic Design

Each municipality concerned must prepare resettlement plan according to the development plan performed by LGU. As a reference for that, a reach along the lower Cagayan River from Alcala to Enrile is studied as an example or trial of the cases in the Cagayan River Basin.

Following three relocation or resettlement areas are considered preliminarily assuming that 1,000 households (HH) or about 5,000 persons are included in the resettlement plan. Candidate resettlement areas (CRAs) -A, B and C are assumed. RA-A locates on the right bank of a tributary and along the National Highway. RA-B locates on natural levee in the left bank of the Cagayan River. RA-C locates on the hillside free from flood of the river.

Referring to above Subsection 4.5.2, standard floor area and residential lot area applied here are 25 m² and 100 m2, respectively. The whole resettlement area is assumed to be twice that of the residential area. Those who wish to have larger floor than the standard can have it by owing the additionally required cost. The resettlement area must be equipped with necessary infrastructures. Total resettlement area is 20 ha in this case. Typical resettlement area for about 250 households is illustrated in Figure 4.5.1.

4.5.4 Cost Estimate

Total resettlement cost is estimated at 1,185 million Pesos for the Reviewed Master Plan up to 2020.

4.6 Supporting Measures

4.6.1 Basic Concept

(1) Agricultural Supporting Program

In general, supporting programs are necessary for the purpose of improvement of inequitable income distribution to mitigate poverty in the rural area. Mainly performed by DA, the programs include, but not limited to, intensification and activation of irrigators' association (IA), finance and marketing support and so on. In case of CIP, such supports are implemented as usual activities.

In case of NIP also, such supporting programs should be accompanied with hard work. Thus, effective and efficient irrigation farming can be attained more easily.

- (2) Strengthening of Agricultural Support Services for Small Scale Farmers
 - 1) Promotion of Agrarian Reform

Promotion of agrarian reform is essential to improve the small-scale farmers not only to vest the right of land ownership but also to apply legal matters such as lease tenant contract, etc.

2) Financial Support Services

Required to promote easy access to the farming loan with reasonable interest and prompt procedure.

3) Promotion of Farmers' Organization

Much efforts are required to promote the farmers' cooperative activities, first necessity is to train and educate the leading farmers and secondly to extend timely support to the farmers.

4) Community-based Agricultural Infrastructure Improvement

The farmers must necessarily to be motivated to participate positively in the community activities not only as the recipient but also as the creator of the community's benefit.

(3) Rural Development Center

It is quite important to reduce production cost of main crops, including cost for post-harvest, marketing, etc. For the purpose, the Study Team proposes to install a kind of base or integrated multi-sectoral center as a core space covering certain scale of area. It consists of agricultural processing facility, storage facility, office and meeting room of farmers' cooperative or irrigators' association,

equipment/machinery/vehicle for farming and transportation with parking area, repairing space and fuel station, power and water supply system, drainage, sewage and recycling systems, information center on market and flood, training and education center, and so on. Also, it may include evacuation facility, resettlement space, shopping zone, recreation facility, green zone or trees, meteo-hydrological observation system and so on, if acceptable and reasonable for the people and LGUs.

The base may be established on spoil bank. Elevation of the base must be high enough to avoid floodwater intrusion and inundation. The base system may be composed of main base and several sub bases depending on local conditions.

In the plains, rice mill or corn mill is a core facility. In the hilly areas, corn and livestock processing facilities have important roles. In the mountainous areas, establishment of experimental center on agro-forestry and spray irrigation with test fields is recommended. One of the purposes is to replace destructive slash and burn cultivation with sustainable and stable production method.

(4) Effect of Rice Milling

It is reported that not small amounts of paddy produced in the Cagayan River Basin are sent to the milling area of Pangasinan, Nueva Ecija and Bulacan. The Study Team proposes to mill rice in the Basin as much as possible. Effect of rice milling in the Basin includes transportation cost saving, use of by-products such as bran, husk, etc., employment generation, and so on. Particularly in northern part of Cagayan Province, milled rice may be delivered to Manila by less costly by sea route.

(5) Improvement of Transportation System

As mentioned in Subsection 2.3 (1), transportation system from the Cagayan River Basin to and from Metro Manila or crop demand area is insufficient. Activation of the sea route via Irene Port, Santa Ana or Aparri is considered necessary for development of the Lower Cagayan River area.

4.6.2 Basic Design

- (1) Crop Production in the Plain
 - 1) Rice mill requirement and capacity

According to Bureau of Agricultural Statistics (BAS), recent paddy production is estimated around 1.2 million ton (0.78 million ton in rice) in the Cagayan River basin. In use of 1,600 hr/yr (=200 day/yr and 8 hr/day) in

operation rate, total milling requirement is estimated at 490 t/hr on present condition. According to the 1987 Master Plan, about 23 % of paddy (0.195 / 0.84 million t at that time) was milled outside of the basin. Assuming the same rate, recent outside milled paddy is estimated about 0.28 million ton, equivalent to 0.18 million ton in rice and 113 t/hr requirement.

In future, as paddy production is projected to increase, so rice mill capacity must follow and increase in and outside of the basin.

2) Rice mill for irrigation project in the Lower Cagayan area

For a rice mill with capacity of 5 t/hr, assuming operation rate as 1,600 hr/yr (200 day/yr and 8 hr/day) and efficiency as 0.7, the annual capacity is calculated ($5.0 \times 1,600 \times 0.7$) at 5,600 t/yr. Projected yield under irrigation being 4.5 and 5.0 t/ha in the wet and dry seasons, annual production will be 9.5 t/ha in paddy or about 5.7 t/ha in rice. Paddy product from approximately 1,000 ha can be milled by a 5t/hr class mill after irrigated. Required space for the rice mill plant is 1,000 m²/plant or less.

3) Rice mill benefit

If quality of rice milled in the basin can be the same level as that in the present milling area (Nueva Ecija, Pangasinan and Blacan), milling in the basin (and transporting to Manila) is more advantageous in transportation cost. Supposing that a truck can deliver 15 t of milled rice from Cagayan Province to Nueva Ecija Province, and that the truck send 15 t of paddy or equivalent to 10 t of rice plus 5 t of husk. Transportation cost is estimated 13,500 P (300 km x 15 t x 3.0 P/t/km). The cost per ton of rice is 900 P for milled rice in Cagayan and 1,350 P for milled rice in Nueva Ecija.

In the case of rice milling in Cagayan province, transportation cost to Manila may be more advantageous by sea route via Irene Port, according to preliminary cost comparisons.

4) Warehouse

Warehouse stores for agricultural inputs, such as fertilizer, pesticide, insecticide, herbicide, etc. as well as produce including by-products, and equipments with their spare parts, etc. Required space and capacity depend upon volume of goods/commodities and number of equipments.

5) Equipment, Machinery and Vehicle

Rice thresher, corn sheller, mechanical dryer, etc. are for processing. Hand tractor, tractor, transplanter, combine-harvester, etc. are for paddling, land preparation, transplanting and harvesting. Car and truck are for transportation, inspection and monitoring of irrigation system, and so on. Boats with and without engine should be prepared against flood.

6) Power and Water Supply System

Infrastructure will be required as a matter of course. Electric power is desirable to be supplied from NPC network. Anyway power generator is needed against blackout. Propane gas or other fuel may be used. Water may be taken from groundwater or irrigation system.

7) Recycling System and Solar Energy

Environmentally rational recycling system will be prepared, including re-use of rain water, waste water, etc. Solar energy will be used to make hot water on the roof of buildings and to supply power for automatic meteo-hydrological observation station.

8) Building and Housing

Built-up areas will consist of cooperative office, office for staff of related agencies including DPWH, DA and NIA, meeting hall to be used as evacuation facility in disaster time, shops, and so on. Resettlement residence may be combined if agreeable.

(2) Livestock in the hilly area

Livestock industry should be closely combined with corn cultivation, formulating systems. Corn fields supply feed and livestock area can return waste as organic fertilizer. This system is supported by another type of rural development base.

(3) Agro-Forestry and Diversified Crop in the Mountainous Area

For agro-forestry and diversified crop cultivation, is recommended at upland development experimental center with test field and spray irrigation system including sprinkler and drip irrigation system. The proposed location should be decided after analysis on SAFDZ on the provincial and more detailed SAFDZ map. Proposed agro-forestry area in 2020 is 105,100 ha.

4.6.3 Cost Estimate

1)

(1) Regular Supporting Measures

Cost for commonly required supporting measures is included in the respective irrigation project cost as administration and supporting program cost (ref. to 4.3.5), which is estimated at 8 % of the summed cost for direct construction, compensation and O & M facilities.

(2) Cost for Rural Development Center

Rice Mill		
5 t/hr Rice Mill Plant (CIF, Manila)	1 unit	42.0 MP
Inland transportation from Manila to the Basin	1 lot	0.6 MP
Installation of the plant at site	1 lot	7.4 MP
Total		50.0 MP

Not included in the total are civil and building construction work, lightning equipment and the relevant cables, spare parts for the machines, duties and levies in the Philippines.

2) Other processing facilities

Assuming 20 % of the rice mill, cost of other processing facilities is estimated at 10.0 MP.

- 3) Infrastructure Unit cost = 600 P/m^2 , A = $60,000 \text{ m}^2$, C = 36.0 MP
- 4) Land acquisition Unit cost = 40 P/m², A = 60,000 m², C = 2.4 MP
- 5) Building Unit cost = $15,000 \text{ P/m}^2$, A= $6,000 \text{ m}^2$, C = 90.0 MP
- 6) Total cost

In this case, the rural development center can be constructed on a part of the spoil bank area, if possible. Cost for land preparation excluding land acquisition is accounted in the cost of infrastructure. Cost for access road is also included in the cost of infrastructure.

TOTAL $188.4 \Rightarrow 189$ million Pesos

- (3) Cost for Experimental Center
 - 1) Land preparation

	A = 10 ha,	60,000 m ² x 2.0 m x 200 P/m ³	=	24 MP
		40,000 $\text{m}^2 \ge 50 \text{ P/m}^2$	=	2 MP
2)	Infrastructure	60,000 m ² x 350 P/m ²	=	21 MP
3)	Building	1,200 m ² x 15,000 P/m ²	=	18 MP
4)	Spray irrigation syst	5 ha x 5.0 MP/ha	=	25 MP
5)	Total with others			

Together with other costs of 30 million Pesos, the total cost is estimated at 120 million Pesos.

PART III EASIBILITY STUDY OF PRIORITY PROJECTS

CHAPTER 5 LAND USE IN PRIORITY PROJECTS FOR FEASIBILITY STUDY

5.1 Pre-Feasibility Study of Alcala Amulung West Pump Irrigation Project

5.1.1 Proposed Project

(1) The Project

In accordance with the terms of reference, pre-feasibility study (pre-F/S) on irrigation project was conducted. Since it is concluded from the Revised Master Plan Study described in Chapter 4 that the Alcala Amulung West Pump Irrigation Project (AAWPIP) is the most optimum irrigation development plan, this project is selected for the study in this chapter.

National Irrigation Administration (NIA) completed a feasibility study (F/S) for a part of the project or 2,120 ha in 1997 including soil and topographical surveys, and prepared topographic map with scale of 1:4,000. Later NIA conducted geological investigation at the proposed site of intake pump station.

From above conditions, the Study Team considers that this study may be regarded in future as a feasibility study on condition that required physical surveys including topographic survey and detailed review of the NIA F/S and this pre-F/S be conducted. In particular, on foundation of siphon in swampy paddy fields, detailed investigation, analysis and study will be required. Change of the main canal alignment may be necessary from the proposed one to a southern route.

(2) Irrigation Service Area

The project area is located in Northern Luzon, Cagayan Province of Region 2 at around 25 km north from Tuguegarao as shown in Figure 5.1.1. Altitude of the area is mostly between 10 and 20 m above sea level. Demarcation of the irrigation service area is basically determined by the following aspects into consideration; 1) topographic condition, 2) soil conditions and existing land use. Based on the assessment, the irrigation service area is determined to be 7,060 ha net.

On the basis of the results of the field investigation and flood analysis, the higher plain which are currently cultivated with paddy is mostly inundated less frequently or probably less than 1/5. On the other hand, lower plain presently used as cornfield is affected by flood more frequently or 1/5 years or more (Figure 5.1.2). The paddy field area is named Area A and the corn field Area B, except

that a part of paddy field in a back-swamp which is included in Area B. Area A can be implemented early in the near future. Area B needs flood control measures before implementation.

(3) Present and Proposed Cropping Pattern and Land Use

The basic concept for irrigated agriculture development is to increase rice production as well as promoting crop diversification to secure food production and increase cash income of the beneficiaries. Proposed cropping pattern is designed taking into consideration the climate, irrigation water supply, agronomic characteristics, farmers' intention as well as national policy and other relevant issues. (Figure 5.1.3)

Classification	Period	Area (ha)	Cropping Intensity
Paddy			
- Wet season	April to August	7,060	100
- Dry season	December to April	7,060	100
Upland Crops	August to November	3,530	50
Total		17,650	250

Proposed Cropping Pattern

Presently the project area is cultivated with paddy and corn mixed. After the implementation of the project, land use pattern in the area will change as shown below.

Classification	Present	Proposed
Paddy	4,730	7,060
Corn	2,820	0
Irrigation Canal	0	790
O&M Road		
Non-Irrigable Area	1,200	1,200
(Village and Highland)		
Grass/Shrub	300	0
River	700	700
Others	450	450
Total	10,200	10,200

Present and Proposed Land Use

(4) Anticipated Crop Yield and Production

Proper farming practice is the most essential factor for realizing full exploitation of the agricultural potentiality in the area. Proper amount of fertilizer and chemicals will be applied through improved farming practices with project condition. Unit yield of paddy in the future conditions is estimated on the basis of the past trends of unit yield, the results of unit yield on well managed irrigation area in and around the project area. For the achievement of the anticipated crop yield and production, optimum application of farm inputs will be required together with effective water management. Total production of the farm crops is estimated by multiplying the anticipated unit yield with the future cultivation area for both future "with project" and "without project" conditions. The future area of paddy and corn fields are assumed to be the same as those at present. The anticipated unit yield, production and increment of crops in "with and without project" conditions is tabulated as follows:

	Without	With	Increment
Item	Project	Project	
1. Total Area (ha)			
Paddy field	4,730	7,060	2,33
Diversified cropland	2,820	0	-2,82
Grass and brush	300	0	-30
Total	7,850	7,060	-79
2. Harvested Area (ha)			
Paddy-Wet season	4,500	7,060	2,56
-Dry	470	7,060	6,59
season			
(Total)	4,970	14,120	9,15
Corn	4,850	1,150	-3,70
Tobacco	100	120	2
Vegetables	240	980	74
Beans	200	800	60
Peanuts	180	400	22
Sweet potatoes	30	0	-3
Total	10,470	17,650	7,18
3. Unit Yield (ton/ha)			
Paddy-Wet season	2.50	4.50	2.0
-Dry	3.10	5.00	1.9
season			
Corn	2.50	3.75	1.2
Tobacco	1.00	2.00	1.0
Vegetables	6.00	13.00	7.0
Beans	1.00	1.50	0.5
Peanuts	0.70	1.00	0.3
Sweet potatoes	5.00	-	
4. Production (ton)			
Paddy-Wet season	11,250	31,770	20,52
-Dry	1,457	35,300	33,84
season			
(Total)	12,707	67,070	54,36
Corn	11,875	4,313	-7,56
Tobacco	100	400	30
Vegetables	1,440	12,740	11,30
Beans	200	1,200	1,00
Peanuts	126	800	67
Sweet potatoes	150	0	-15

Incremental Production - With and Without Project

5.1.2 Irrigation Plan

(1) Water Sources

The water source for the project area is the discharge of the Cagayan River. The maximum discharge of 25 years return period is 18,700m³/sec while the minimum of 5 years return period is 304 m³/sec. Although the seasonal fluctuation of the river surface water level is very large from EL. 17.33 m in 25-year return period to EL. 1.38 m in 5-year period, the water can be consecutively used for irrigation purposes by pumps. In the project area, some communal and private irrigation systems (approx. 200ha) are operating at present by use of groundwater. Since the shallow tube well and deep well cannot supply enough water during drought, they can be neglected for formulating of the irrigation development plan.

(2) Irrigation Plan

Pump Station Site

Tamban site is selected for proposed intake pump station after comparative study with Solana site.

Due to the high elevation of the project area comparing with the water level of the river, pump irrigation system is proposed as an intake method. The site of main pump station should be selected basically where the water channel of the river is stable as well as foundation of the station is rigid. Based on this condition, i) Tamban site and ii) Solana site is the candidate of proposed pump site. Of the two alternatives, Solana site is distant from the project area located approximately 24 km from the project area so that the construction of main canal connecting to the field will be more costly than the Tamban site which is closer to the area. Additionally, in case of Solana site, it is required to resettle the inhabitant because the main canal course will disturb the resident area. From these points of view, Tamban site is selected for proposed main pump station.

Pump Type

In order to select the optimum pump intake method, the following three (3) alternative types are examined from technical and economical viewpoint:

- Vertical shaft pump
- Horizontal shaft pump
- Submersible pump

Judging from easier operation and maintenance as well as lower initial investment and operation cost, it is proposed to select the submersible pump plan.

Irrigation Water Requirement

Irrigation Water Requirement is calculated in accordance with the proposed cropping pattern by the following manner;

- Crop evapotranspiration (ETcrop) is estimated on the basis of FAO Penman-Monteith method together with crop coefficient.
- Net irrigation requirement (NIR) is calculated by adding percolation water and water required for a nursery period and land preparation to ETcrop and reducing effective rainfall.
- Diversion water requirement or water duty is calculated by adding operation and conveyance loss to NIR.
- The calculation is made in monthly base as shown in Table 5.1.2 and 5.1.3, in use of following.
- Percolation: 1.5 and 2.0 mm/day for higher and lower plain, respectively
- Land soaking and flooding: 150 mm and 15 mm
- Effective rainfall: 5-year probability of non-exceedance
- Irrigation efficiency: 0.54 (application: 0.8, conveyance: 0.8, operation: 0.85)

On this basis, peak irrigation water requirement for determining the design capacity of irrigation facilities is calculated to be 1.7 lit/sec/ha in existing paddy field (higher plain) in Table 5.1.2 and 1.8 lit/sec/ha in the field previously used as corn field (lower plain) in Table 5.1.3. Proposed irrigation diagram is shown in Figure 5.1.4.

5.1.3 Drainage Plan

<u>General</u>

Present flooding condition of the project area is so serious that it cause not only inundation of a wide area especially on a present corn field but also low productivity and crop damage of paddy during flood time.

The drainage plan in the irrigation development area is proposed by means of improving the existing Pangul river through relocation, flood dike construction and drainage network construction. Additionally crossing drain should be provided to securely drain runoff water from the outside of the project area.

Drainage Requirement

In accordance with NIA criteria, the drainage requirement for the paddy filed is estimated to be 8.6 lit/sec/ha for the excess water in 10-year return period, which

is generally applied for drainage plan in Northern Cagayan. Accordingly this value is applied for this pre-feasibility study.

Additionally the excess water drained from surrounding mountainous side across the irrigation canals should be considered in the drainage plan. The unit runoff is estimated by the flood analysis. In accordance with the analysis, this value is estimated at 19.4 lit/sec/ha and thus needs to be considered in the drainage plan. Proposed drainage diagram is presented in Figure 5.1.5.

Inundation

An example of inundation in the Drainage Area 2 (D2) during the Cagayan River flood time of 25-year probability is presented in Figure 5.1.6. Old river courses function as flood retarding basin. Results of inland inundation and the Pangul River flooding are summarized in Table 5.1.4.

5.1.4 River Relocation and Flood Dike Construction Plan

The Pangul River flowing south-east of the project area has wide catchment area of some 350km², which inundate the field particularly lower part of present cornfield. This will be the constraints for future irrigation development. To alleviate the damages by flooding in the area to materialize the target, it is proposed to relocate existing Pangul River channel to the outside of the irrigation area. In addition, flood protection dike is to be constructed surrounding the proposed irrigation area. An inundation analysis in the lower Pungul River area at the time of the Cagayan River flood with 25-year probability is presented in Figure 5.1.7.

5.1.5 Farm Road Plan

The farm road and farm to market road in the project area is rehabilitated and newly constructed for the purpose of O&M of the irrigation and drainage facilities, transportation and marketing of farm products and inputs.

5.1.6 Water Management and Operation & Maintenance Plan

The irrigation service area is located in alluvial plain just upstream of the narrows from Magapit through Nassiping to Tupang. The service area of 7,060 ha are served by intake pump station, booster pump station, main canal 28 km, lateral / sub-lateral canal 61 km, main drain 8 km, lateral drain 28 km and other related structures.

The purpose of operation of these facilities is to attain the maximum efficiency of irrigation water to meet with the crop water requirements, in other words, to distribute irrigation water by how much, when and where, it is required.

(1) Water Management

In general, a delivery and application program is prepared based on the various data and information, because it should be well-fitted in to the local and current conditions. In order to realize effective water use, such data and information as listed below should firstly be prepared and/or collected before the operation.

- Detailed topographic maps
- Detail soil maps
- Cropping patterns and cropped areas
- Physical conditions of soils such as water holding capacity, basic intake rate, etc.
- Meteorological data such as rainfall, temperature, related humidity, sunshine, wind speed and evaporation
- Canal seepage loss
- H-Q Curve for each measuring device

In water management, another important issue is to monitor, analyze and evaluate the actual activities, and to reflect the results on the water delivery and application program in the next year. Hence staffing and organization should be ensured for effective execution of monitoring activities.

Establishment and strengthening of Irrigators' Association (IA) is important for effective collection of irrigation service fee (ISF) and operation and maintenance of irrigation system.

(2) Operation and Maintenance Plan

Operation of the project facilities in irrigation project means the execution of water management program mentioned above. It includes activation of pumps and gates so that the desired discharge can be supplied at the appropriate time, which is considered as the "hardware" of the water management action.

In this project, a continuous water supply method is proposed, though further study should be made at the next stage. In the continuous water supply method, supply amount will be regulated by opening and closing the gates in the light of water delivery and application program. To simplify the gate operations, a measuring device is indispensable, and it should be provided. In parallel with proper operation, suitable and continuous maintenance of the project facilities are essential to secure proper stable function of the facility as well as to ensure the realization of economic life of the facility. The maintenance work as well as its system is important.

5.1.7 Preliminary Design

(1) Intake and Booster Pump Station

The required number and capacity of pumps are determined on the basis of the irrigation area and design irrigation water requirement, also taking lifting capacity, the cost and weight of a pump into consideration. Intake and booster pump stations are illustrated in Figures 5.1.8 and 5.1.9. The proposed pump description is tabulated as follows:

	Intake P	ump	Booster Pump		
	Stage-1	Stage-2	Stage-1	Stage-2	
- Required Number	4 – D900	4 – D800	2 – D800	2 – D900	
- Design Capacity (m ³ /min)	7.0	5.3	2.7	3.5	
- Total head (m)	20	20	5	5	
- Type	Submergible	e pump	Submergibl	e pump	

Main Features of Proposed Pump

Total electric power input capacity is estimated about 4.0 MW. Annual average pumping quantity is estimated at 140 and 73 million m3 for the intake and booster pump stations, respectively. The required annual energy is estimated at around 12.3 MWH in total (Table 5.1.5).

(2) Irrigation Canals

Layout of irrigation network

The irrigation network will consist of main system (main, lateral, sub-lateral canals) and on-farm system (main and supplementary farm ditch), and canal related structures, and are provided completely separated from the drainage system for effective O&M of the facilities. The irrigation canals are of open-channel type of canals so as to connect each of the irrigation blocks. The lateral canals and sub-lateral canals are branched off from the main canal and farm ditches diverge from lateral canals and sub-lateral canals as seen in Figure 5.1.4. The area of each irrigation block is from 70 ha to 700 ha and averaging 200 ha. (Figure 5.1.1)

Irrigation Canals

All the main canal, lateral canals and sub-lateral canals are lined with concrete with trapezoidal flow section in terms of easy O&M and smaller hydraulic head

loss as well as for effective use of water with a minimum loss due to leakage, while farm ditch is of earthen type. The cross sectional scale of the irrigation canals is determined by use of the Manning Formula (Figure 5.1.10). The roughness coefficient is assumed to be 0.015 for concrete surface and 0.030 for earth surface. Table 5.1.6 presents list of irrigation canal with related structures.

Hydraulic profile design is important and must be practical. Design energy head loss at each structure on the irrigation canal is set at least 5 - 10 cm in the main canal system and 2 - 5 cm in the on-farm canal system.

Canal-related structures

Necessary and indispensable facilities like headgate, turnout, drop, siphon (Figure 5.1.11), culvert and etc. are installed on the canals and washing basins are installed at the convenient points for the beneficiaries along the canals.

(3) Drainage Canals

Drainage Network

The drainage system consists of drains to evacuate the excess water from the irrigated land and collector drain to flow out the rainwater from outside the project area. The drains are classified into farm drain, which is provided to drain the excess water from the irrigation block, lateral drain to collect excess water from the farm drains and main drain and collector drain to collect drain water from lateral drain to drain into natural stream directly as in Figure 5.1.5.

Drainage Canals

All of the drainage canals are of earthen type with trapezoidal flow section. The cross sectional scale of the drainage canals is determined by use of the Manning Formula. The roughness coefficient is assumed to be 0.030.

Primary features of canals and drains and related structures are summarized as follows:

Canal Name		Canal Length (m)	Structures (nos)			
			Culvert	Siphon	Cross Drain	Footpath
Irrigation	Main Canal	27,500	20	2	39	16
	Lateral/sub-LC	61,750	22	10	25	57
Drainage	Main	8,300	10			
	Lateral	27,200	40			
TOTAL		124,750	92	12	64	73

Proposed Canals, Drains and Related Structures

(4) Land Development

Topographical conditions of the project area are basically flat. Land development works, namely rough leveling, is required only where the average land slope is more than 1 % while the area sloping less than 1 % can be gradually leveled under farming practices. The area required for land development is approximately 150 ha, which is 5 % of existing cornfield, estimated by site investigation and using 1/10,000 topographic maps.

(5) Farm Road

The proposed farm roads are divided into three types in terms of their design, inspection roads (two types) and footpath. The inspection road has function of connecting the main facilities and for O&M of the main irrigation system and access to the public road network. The footpath is mainly used for transportation of farm products and inputs, and are aligned so as to enclose a unit farming block. The following table shows the outline of the proposed road network:

Classification	Width (m)	Total Length (km)
Inspection Road		
- main	6	27.5
- lateral/sub-lateral/FD	4	202.5
Footpath	2.5	494.2

Proposed Farm Road

5.1.8 Post-Harvest Facilities

To reduce losses at the harvesting and post-harvesting stages, rice mill, and multi-purpose dryers are required in the villages to make easy access by farmers together with extension services of post-harvesting techniques. The facilities are designed as shown below:

Rice Mill

For the incremental production of paddy of 54,000 ton, required rice mill capacity is calculated at 7 units of 5 ton/hour as presented in Figure 5.1.12.

As described in 5.1.1, the incremental production of paddy is 54,000 ton. The capacity is determined based on the following conditions:

- Rice quantity to be milled : 33,000 ton
- Operation hour : 8 hours /day
- Operation day : 200 days / year
- Coefficient of work efficiency : 0.7

Based on these conditions, required rice mill capacity is calculated at about 6-7 times of 5 ton/hour scale rice mill.

Multi-purpose Dry Yard

The dry yard is required for treatment of paddy and other crops for storage and marketing. Under the project it is proposed to provide to five villages within the project area as demonstration. The proposed design conditions is as follows:

- Volume of paddy to be treated : 56,000 ton, which is incremental production under the project
- Work Volume : $8 \tan (10 \text{ m}^3)/\text{day}$
- Drying period : 2 days x 30 cycles
- Average drying layer (at one time) : 0.135 m

On this basis, the total required floor space is estimated at $17,000 \text{ m}^2$.

5.1.9 Implementation Schedule

The implementation schedule of the project is prepared based on the assumption that the project mobilization, which includes financing, legalization and establishment of the project organization, will be completed by year 2002. The project is to be divided into 2 stages as shown below. Details are in Annex IX, Chapter 2 and 3.

Stage	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
Review of												
F/S& pre-												
Stage-I												
(Area-A)			D/D									
Stage-II												
Stage-II (Area-A)												

Proposed Implementation Schedule - Irrigation Component

5.1.10 Work Quantities

The work quantities under the project is tabulated in Table 5.1.7.

5.2 Soil Bank Plan

Soil Bank Plan for the flood control feasibility study is described in Section 4.4.

5.3 Resettlement Site Development Project

In accordance with information from related municipalities, there are 6 resettlement sites to be developed, namely Lasam, Alcala East, Alcala West,

Amulung East, Amulung West and Iguig. In other municipalities, resettlement can be conducted near the original resident area without particular plans.

Resettlement area may be placed on spoil bank areas. However, there is no such case in the F/S area, because surplus of excavated material is proposed only at the Tuguegarao COC site.

Estimated resettlement area and the informed candidate resettlement sites are in Table 5.3.1 and as below.

Lasam	:	872 HH, 17.4 ha
Alcala	:	359 HH, 7.2 ha, northern hill of poblacion and western hill of
		Tamban
Amulung	5:	918 HH, 18.4 ha, eastern hill of Anquiray and corn field between
		Annabuculan and Unag
Iguig	:	784 HH, 15.7 ha, southern hill

In case of Lasam, no suggestion is obtained. The site may be along the proposed flood dike.

Typical resettlement site development layout is shown in Figure 9.5.1.

There are 9 households to be resettled due to the project implementation as shown in Table 5.3.2 As number of the household is small and there is enough space near the site, resettlement can be conducted near the original resident area without particular plan.

5.4 Supporting Measures

Supporting measures for the AAWPIP is basically the same as those in Section 4.6.

The Feasibility Study of the Flood Control Project for the Lower Cagayan River in the Republic of the Philippines Final Report Supporting Report Annex VIII: Land Use

Tables

Region	Potential irrigable area	Irrigation de	evelopment mber 1999	Remaining area to be irriated
Region	(ha)	Area (ha)	Rate (%)	(ha)
CAR	99,650	72,754	73	26,896
1	277,180	173,395	63	103,785
2	472,640	196,899	42	275,741
3	482,230	251,193	52	231,037
4	263,590	128,055	49	135,535
5	239,660	116,288	49	123,372
6	197,250	75,141	38	122,109
7	50,740	26,168	52	24,572
8	84,380	46,485	55	37,895
9	76,500	35,136	46	41,364
10	108,140	39,408	36	68,732
11	249,990	82,972	33	167,018
12	205,789	54,841	27	150,948
ARMM	156,300	14,124	9	142,176
CARAGA	162,300	37,509	23	124,791
Total	3,126,339	1,350,368	43	1,775,971

Table 2.2.1 Status of Irrigation Development by Region

Source:

NIA Corporate Planning Office

		Whole cou	ntry			Region	2			CAR		
Year	Potential irrigable area	Irrigation dev area	eloped	Remaining area to be developed	Potential irrigable area Irrigation developed area Remaining area to be developed		Potential irrigable area Irrigation developed area			Remaining area to be developed		
	(ha)	(ha)	(%)	(ha)	(ha)	(ha)	(%)	(ha)	(ha)	(ha)	(%)	(ha)
1999	3,126,340	1,350,368	43.2	1,775,972	472,640	196,899	41.7	275,741	99,650	72,754	73.0	26,896
2000	3,126,340	1,375,800	44.0	1,750,540	472,640	199,250	42.2	273,390	99,650	72,990	73.2	26,660
2001	3,126,340	1,445,960	46.3	1,680,380	472,640	215,080	45.5	257,560	99,650	73,620	73.9	26,030
2002	3,126,340	1,507,400	48.2	1,618,940	472,640	219,020	46.3	253,620	99,650	73,880	74.1	25,770
2003	3,126,340	1,584,250	50.7	1,542,090	472,640	224,840	47.6	247,800	99,650	75,800	76.1	23,850
2004	3,126,340	1,669,810	53.4	1,456,530	472,640	228,950	48.4	243,690	99,650	76,060	76.3	23,590
2005	3,126,340	1,753,940	56.1	1,372,400	472,640	231,230	48.9	241,410	99,650	79,380	79.7	20,270
2006	3,126,340	1,814,820	58.0	1,311,520	472,640	233,430	49.4	239,210	99,650	79,500	79.8	20,150
2007	3,126,340	1,850,000	59.2	1,276,340	472,640	234,660	49.6	237,980	99,650	79,530	79.8	20,120
2008	3,126,340	1,883,540	60.2	1,242,800	472,640	238,030	50.4	234,610	99,650	79,560	79.8	20,090
2009	3,126,340	1,918,220	61.4	1,208,120	472,640	241,020	51.0	231,620	99,650	79,560	79.8	20,090
Increase* (1999-2009)	-	567,852	18.2	-	-	44,121	9.3	-	-	6,806	6.8	-
Av. Increase* per year	-	56,785	1.8	-	-	4,412	0.9	-	-	681	0.7	-

Table 2.2.2 Indicative Ten-Year Irrigation Development Program by NIA

Source: NIA, CO, with addition (*)

						(Unit: 1,000 t)
	Production	on	Imported	Exported	Assumed	Import
Year	Paddy	equiv. Rice	rice	rice	consumpt'n	rate (%)
	(1)	(2)	(3)	(4)	(5)	(6)
		=(1)*0.65			=(2)+(3)-(4)	=(3)/(5)
1990	9,319	6,057	593	0	6,650	8.9
1991	9,672	6,287	0	10	6,277	0.0
1992	9,129	5,934	1	30	5,905	0.0
1993	9,434	6,132	202	0	6,334	3.2
1994	10,538	6,850	0	0	6,850	0.0
1995	10,541	6,852	263	0	7,115	3.7
1996	11,284	7,335	862	0	8,197	10.5
1997	11,269	7,325	722	0	8,047	9.0
1998	8,555	5,561	2,171	0	7,732	28.1
1999	11,787	7,662	884	0	8,546	10.3
av.1990-99	10,153	6,599	570	4	7,165	7.4
av.1995-99	10,687	6,947	980	0	7,927	12.3

Table 2.3.1 Recent Rice Production and Import in the Philippines

Source: BAS 2000, Statistical Year Book 1999

Table 3.1.1 Paddy Production

Estimated Production, Area Harvested and Yield per Hectare, by Farmtyı in the Philippines and Cagayan River Basiı (Calendar Year 1990-1999)

1000		1000	1002	1001	1005	1007	1005	1000	1000		<u>0</u> (Basin
1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	Average	%	area/Philippines
9,319,276	9,673,262	9,128,940	9,434,208	10,538,054	10,540,649	11,283,568	11,268,963	8,554,824	11,786,625	10,152,837	100	100
6,604,826	6,831,737	6,611,732	6,729,559	7,511,096	7,598,555	8,233,633	8,476,448	6,681,158	8,917,882	7,419,663	73.1	100
2,714,450	2,841,525	2,517,208	2,704,649	3,026,958	2,942,094	3,049,935	2,792,515	1,873,666	2,868,743	2,733,174	26.9	100
3,318,720	3,424,960	3,198,070	3,282,350	3,651,530	3,758,691	3,951,136	3,842,270	3,170,042	3,999,839	3,559,761	100	100
2,009,930	2,060,430	1,980,420	2,017,180	2,219,380	2,334,373	2,484,509	2,496,887	2,181,534	2,664,629	2,244,927	63.1	100
1,308,790	1,364,530	1,217,650	1,265,170	1,432,150	1,424,318	1,466,627	1,345,383	988,508	1,335,210	1,314,834	36.9	100
2.8	2.8	2.9	2.9	2.9	2.8	2.9	2.9	2.7	2.9	2.9		100
3.3	3.3	3.3	3.3	3.4	3.3	3.3	3.4	3.1	3.3	3.3		100
2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	1.9	2.1	2.1		100
13.9	12.0	13.3	10.9	13.2	14.3	14.2	15.3	14.5	15.9	13.8		
1,298,742	1,156,841	1,217,114	1,025,554	1,394,201	1,504,610	1,606,758	1,718,953	1,240,356	1,876,521	1,403,965	100	
1,202,548	1,074,432	1,153,381	982,357	1,250,073	1,404,284	1,467,705	1,601,700	1,208,358	1,717,333	1,306,217	93.0	18
96,194	82,409	63,733	43,197	144,128	100,326	139,053	117,253	31,998	159,188	97,748	7.0	4
11.8	10.7	11.5	10.2	11.7	12.2	11.8	12.6	12.9	13.4	11.9		
))		,						
59,580	46,000	38,790	36,280	68,850	60,779	69,459	58,902	23,623	78,669	54,093	12.7	4
3.3	3.2	3.3	3.0	3.3	3.3	3.4	3.6	3.0	3.5	3.3		114
												106
1.6	1.8	1.6	1.2	2.1	1.7	2.0	2.0	1.4	2.0	1.8		86
	6,604,826 2,714,450 3,318,720 2,009,930 1,308,790 2.8 3.3 2.1 13.9 1,298,742 1,202,548 96,194 11.8 392,000 332,420 59,580 3.3 3.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									

Data source: BAS, 2000.

* Cagayan River Basin area includes provinces of Cagayan, Isabela, Qurino, Nueva Vizcaya of Region II and Kalinga, Apayao, Ifugao and Mountain Province of CAR.

Production MT in paddy form.

Table 3.1.2 Corn Production

Estimated Production, Area Harvested and Yield per Hectare, by Croptype, in the Philippines and Cagayan River Basi (Calendar Years 1990-1999)

													M/P area
ITEM	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	Average	%	/Philippines
PHILIPPINES PRODUCTION (MT) White Yellow	4,853,891 2,965,557 1,888,334	4,655,026 2,905,691 1,749,335	4,618,854 2,699,589 1,919,265	4,797,977 2,627,049 2,170,928	4,519,246 2,089,905 2,429,341	4,128,510 1,862,423 2,266,087	4,151,332 1,883,087 2,268,245	4,332,417 1,879,209 2,453,208	3,823,184 1,620,465 2,202,719	4,584,593 1,823,834 2,760,759	4,446,503 2,235,681 2,210,822	100 50 50	100 100 100
AREA HARVESTED (Ha) White Yellow	3,819,560 2,738,540 1,081,020	3,589,460 2,583,370 1,006,090	3,331,410 2,350,890 980,520	3,149,340 2,098,370 1,050,970	3,005,820 1,865,870 1,139,950	2,692,332 1,670,318 1,022,014	2,735,723 1,695,615 1,040,108	2,725,875 1,698,964 1,026,911	2,354,208 1,451,249 902,959	2,642,208 1,607,755 1,034,453	3,004,594 1,976,094 1,028,500	100 66 34	100 100 100
YIELD/HECTARE (MT) White Yellow	1.3 1.1 1.7	1.3 1.1 1.7	1.4 1.1 2.0	1.5 1.3 2.1	1.5 1.1 2.1	1.5 1.1 2.2	1.5 1.1 2.2	1.6 1.1 2.4	1.6 1.1 2.4	1.7 1.1 2.7	1.5 1.1 2.1		100 100 100
THE BASIN*(%) PRODUCTION (MT) White Yellow	11.7 568,391 111,618 456,773	10.3 479,260 125,752 353,508	14.6 672,396 161,114 511,282	9.7 465,438 94,698 370,740	11.8 533,182 55,780 477,402	15.4 634,239 35,719 598,520	11.9 494,175 34,559 459,616	16.3 704,790 46,363 658,427	15.8 604,706 34,674 570,032	23.8 1,089,025 86,168 1,002,857	14.0 624,560 78,645 545,916	100 13 87	14 4 25
(% in the country AREA HARVESTED (Ha) White Yellow) 9.4 359,430 122,630 236,800	8.8 316,200 116,370 199,830	10.3 342,480 121,310 221,170	8.4 265,680 78,810 186,870	8.6 259,090 47,140 211,950	9.9 265,520 28,922 236,598	8.9 242,440 28,171 214,269	10.2 278,909 35,614 243,295	10.8 253,269 29,076 224,193	13.3 351,687 47,767 303,920	9.8 293,471 65,581 227,890	100 22 78	10 3 10
YIELD/HECTARE (MT) White Yellow	1.6 0.9 1.9	1.5 1.1 1.8	2.0 1.3 2.3	1.8 1.2 2.0	2.1 1.2 2.3	2.4 1.2 2.5	2.0 1.2 2.1	2.5 1.3 2.7	2.4 1.2 2.5	3.1 1.8 3.3	2.1 1.2 2.4		140 109 114
CAR PRODUCTION (MT) White Yellow	17,551 3,976 13,575	13,465 2,717 10,748	24,308 4,492 19,816	22,117 3,305 18,812	26,804 4,492 22,312	29,369 5,278 24,091	27,947 4,525 23,422	34,969 7,268 27,701	33,498 10,810 22,688	59,162 16,217 42,945	28,919 6,308 22,611		
AREA HARVESTED (Ha) White Yellow	12,040 2,910 9,130	11,680 2,080 9,600	14,100 2,700 11,400	13,040 2,300 10,740	14,630 3,130 11,500	15,511 3,427 12,084	15,529 3,026 12,503	17,656 4,213 13,443	15,749 5,789 9,960	20,320 7,315 13,005	15,026 3,689 11,337		
YIELD/HECTARE (MT) White Yellow	1.5 1.4 1.5	1.2 1.3 1.1	1.7 1.7 1.7	1.7 1.4 1.8	1.8 1.4 1.9	1.9 1.5 2.0	1.8 1.5 1.9	2.0 1.7 2.1	2.1 1.9 2.3	2.9 2.2 3.3	1.9 1.7 2.0		
REGION II PRODUCTION (MT) White Yellow	550,840 107,642 443,198	465,795 123,035 342,760	648,088 156,622 491,466	443,321 91,393 351,928	506,378 51,288 455,090	604,870 30,441 574,429	466,228 30,034 436,194	669,821 39,095 630,726	571,208 23,864 547,344	1,029,863 69,951 959,912	595,641 72,337 523,305		
AREA HARVESTED (Ha) White Yellow	347,390 119,720 227,670	304,520 114,290 190,230	328,380 118,610 209,770	252,640 76,510 176,130	244,460 44,010 200,450	250,009 25,495 224,514	226,911 25,145 201,766	261,253 31,401 229,852	237,520 23,287 214,233	331,367 40,452 290,915	278,445 61,892 216,553		
YIELD/HECTARE (MT) White Yellow	1.6 0.9 1.9	1.5 1.1 1.8	2.0 1.3 2.3	1.8 1.2 2.0	2.1 1.2 2.3	2.4 1.2 2.6	2.1 1.2 2.2	2.6 1.2 2.7	2.4 1.0 2.6	3.1 1.7 3.3	2.1 1.2 2.4		

	SAFDZ No.	1	2	3	8	Х	9	10	11	
SAFDZ	Proposed : 2020	Crop	Livestock	Fishery	Remaining	Grasses	Agro-	Watershed	Built-up	Total
No.	Present Land Use	Стор	LIVESLOCK	r isher y	NPAAAD	/Shrubs	Forestry	/Forestry	areas	
1	Crop fields	608,021	7,827	0	-	0	14,474	11,023	35,094	676,439
2	Livestock areas	11,901	51,909	0	-	0	2,065	0	37,583	103,458
3	Fishery areas	94	6	11,803	-	0	0	0	0	11,903
8	Remaining NPAAAD	-	-	-	-	-	-	-	-	0
X	Grasses/Shurubs	28,547	92,582	0	-	172,446	42,117	317,305	92,648	745,645
9	Fruit trees, etc. incl. Agro-Forestry	27,872	257	0	-	0	8,938	34	3,758	40,859
10	Forest	4	139	1,628	-	0	37,506	1,058,402	30	1,097,709
11	Built-up areas	0	0	0	-	0	0	0	52,087	52,087
	Total	676,439	152,720	13,431	0	172,446	105,100	1,386,764	221,200	2,728,100

Table 4.1.1 Present Land Use to Proposed Land Use Plan in 2020 by SAFDZ Zoning

Note: SAFDZ No. 4 to 7, being combination of crop, livestock and fishery, are involved to No.1 or 2, because of their small areas. Source : Present Land Use/SAFDZ; "SAFDZ data, R-2 and CAR", 1999, BSWM, R-2 & CAR Proposed Land Use in 2020; prepared by the JICA Study Tean

			(Unit: 1,000 ha)
Land Use	Present	Proposed	Increase/	Remarks
		(2020)	decrease (-)	
Agricultural area				
Rice field	472.5	528.0	55.5	in gross
Corn field	137.3	120.8	-16.5	
Other diversfied cropland	66.6	41.2	-25.4	
Fruit tree, etc.	40.9	27.3	-13.6	
Sub-total	717.3	717.3	0.0	
Grassland				
Pasture	103.5	152.3	48.8	
Wild grass	471.4	83.1	-388.3	
Shrub	274.2	48.4	-225.8	
Sub-total	849.1	283.8	-565.3	
Agro-Forest		105.1	105.1	
Forest	1,097.5	1,386.8	289.3	
Others				
Slash and Burn Cultivation	0.2	0.0	-0.2	Kaingin
Fishpond (controlled)	11.9	13.9	2.0	
Built-up areas	52.1	221.2	169.1	
Sub-total	64.2	235.1	170.9	
Total	2,728.1	2,728.1	0.0	

Table 4.1.2Proposed Land Use Plan

		Alluvial Plain				Mountanous area village,			
			hi	gher	Undulated/hilly area	etc.mostly river side	Remarks		
	lower	middle	non-irrigated	irrigated		etc.mostry river side			
Present condition Vegetation/ agricultural land use	corn- corn	corn- tabaco peanut veget.	paddy- fallow upl.crp	paddy- paddy	brush grass pasture sugarcane	upl.crp. forest vegetable brush fruits grass paddy* ¹	*1: terrace type field		
Flood hazard	several times/year period: 2-7 days	inundatio	on once/several year 2-5 m in 1973		_	soil erosion	*2: river cross-section changed from deep narrow one		
related problem	channel course chan	ge	siltation*2			slope slide	to shallow wide one (APC)		
Land use plan		with floo by irrigatio	od control* ³	by rehabilitation		by spray/drip irrigation	*3: inundation less than 3-day = not so serious (DA-02, APC)		
	paddy-paddy, padd		paddy-paddy-bean/	-	improved		-		
example	corn- water me	on/vegetable	paddy-pad		pasture	vegetable/fruits	*4: Alcala-Amulung West PIP		
agr-intensity	middle	high	*4 high	*5 high	low	very high	*5: IAAPIS, SPIS		
irrigation water source	river	river	river (larger scale) reservoir groundwater (smal		stream/pond groudwater	stream spring			
intake	pump up from the C weir from tributary	Cagayan River lower i	each			natural			
distribution	gravity				gravity/pump	gravity/pump			

Table 4.2.1 Present Land Use and Example of Agricultural Development Plan

	Present	Proposed (2020)	
	(1)	(2)	(2)/(1)
Paddy			
Physical area (1,000 ha): Ap			
gross	473	528	1.12
net	331	396	1.20
irrigated	218	298	1.37
rainfed	113	98	0.87
Cropping Intensity (%): Cl			
irrigated	170	250	1.47
rainfed	110	130	1.18
Harvested area (1,000 ha): Ah			
irrigated	371	745	2.01
rainfed	124	127	1.02
Total	495	872	1.76
Yield (t/ha)			
irrigated	3.5	4.75	1.36
rainfed	1.8	2.2	1.22
Production (1,000 t): P			
irrigated	1,297	3,539	2.73
rainfed	224	280	1.25
Total	1,521	3,819	2.51
Corn			
Ap (1,000 ha)			
gross	137	114	0.83
net	123	103	0.83
CI (%)	195	220	1.13
Ah (1,000 ha)	240	226	0.94
Yeild (t/ha)	2.1	3.75	1.79
P (1,000 t)	505	846	1.68

Table 4.2.2 Paddy and Corn Production Plan

Source: Present = Estimate based on data from BAS, 2000 Proposed = by the Study Team

Table 4.5.1 I Trojecteu Lauuy Frouuction and Nice Supply under MA Corporate Fian 1775-2002	Table 4.3.1	Projected Paddy Production and Rice Supply under NIA Corporate Plan 1993-2002
--	--------------------	---

for the whole country (The Philippines

Surplus(+)/Deficit(-)	(1,000 MT)	(434.96)	(448.52)	(453.48)	(459.62)	(477.93)	(376.77)	(387.35)	(403.36)	(406.98)	(412.03)
Total Demand	(1,000 MT)	6,377.96	6,545.82	6,717.29	6,893.81	7,074.83	7,260.46	7,450.83	7,646.79	7,846.98	8,053.05
Per Capita Demand	(kg)	98.55	98.99	99.42	99.86	100.30	100.74	101.18	101.63	102.07	102.52
Population	(Million)	64.72	66.13	67.56	69.03	70.54	72.07	73.64	75.24	76.88	78.55
Demand											
	(1,000 1411)	2,715.00	0,077.50	0,205.01	0,151.17	0,000.00	0,000.09	7,005.10	,,215.15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,011.02
Rice for Consumptior	(1,000 MT)	5,943.00	6,097.30	6,263.81	6,434.19	6,596.90	6,883.69	7,063.48	7,243.43	7,440.00	7,641.02
Miling Recovery Rate	(1,000 MIT)	0.66	0.66	0.66	0.66	0.66	0.67	0.67	0.67	0.67	0.67
Palay for Consumptior	(1,000 MT)	9,004.54	9,238.34	9,490.63	9,748.78	9,995.31	10,274.16	10.542.51	10,811.08	11,104.48	11,404.50
Seeds, feeds, wasted (9.5 %)	(1,000 MT)	945.23	969.77	996.25	1,023.35	1,049.23	1,078.50	1,106.67	1,134.87	1,165.66	1,197.16
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10,200.11	10,100.00	10,772.13	11,011.01	11,352.00	11,019.10	11,910.90	12,270.11	12,001.00
Total		9,949.77	10,208.11	10,486.88	10,772.13	11,044.54	11,352.66	11,649.18	11,945.95	12,270.14	12,601.66
Rainfed		3,110.10	3,106.08	3,077.41	3,044.54	3,022.02	2,973.66	2,913.35	2,854.36	2,794.44	2,731.66
Irrigated	(1,000 M11)	6,839.67	7,102.03	7,409.47	7,727.59	8,022.52	8,379.00	8,735.83	9,091.59	9,475.70	9,870.00
Palay Producton	(1,000 MT)										
Total		3,410.01	3,425.36	3,444.88	3,462.86	3,483.22	3,504.91	3,522.85	3,540.81	3,560.46	3,596.45
Rainfed		1,433.23	1,405.47	1,373.85	1,341.21	1,313.92	1,276.25	1,239.72	1,204.37	1,169.22	1,133.47
Irrigated		1,976.78	2,017.62	2,063.92	2,111.36	2,150.81	2,205.00	2,257.32	2,307.51	2,357.14	2,407.32
Annual Rice Area	(1,000 ha)										
		2.92	2.98	3.04	3.11	3.17	3.24	3.31	3.37	3.45	3.50
Rainfed		2.17	2.21	2.24	2.27	2.30	2.33	2.35	2.37	2.39	2.41
Irrigated		3.46	3.52	3.59	3.66	3.73	3.80	3.87	3.94	4.02	4.10
Yield	(MT/ha)										
1 cui		1775	1771	1775	1770	1777	1770	1777	2000	2001	2002
Year		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
			1								

Source: "Corporate Plan, 1993-2002", Jun. 1993, NIA, p.62 Table 6.2

		1					1								(Unit: ha)
			1987 Ma	ster Plan					Status i					Difference	
		Service	and the second se	F : .:	Proposed p		Existing serv			going project	ID i I	Programmed		in	
NIS and Proposed NIP in 1987 MP		Existing	On-going	Existing	New	Rehabili-		converted	Rehabili-	Extension	Restored	listed	Rehabili-	NIS area	Remarks
and NIS/NIP by NIA in 1999		NIS (1)	NIS (2)	other sys. (3)	develop't (4)	tation (5)	NIS (6)	to CIS (7)	tation (8)	(new) (9)	(10)	NIP (11)	tation (12)	(11) = (6) - (1)	
Existing NIS Service Area and Its Change		131,480	(2)	(3)	(4)	(3)	139.893	(.)	(0)	(9)	(10)	(11)	(12)	= (0) - (1) 8,413	(1)+(2)=150,797
Estisting (10) bet field and his change		101,100					10,,0,0							0,110	(6)-(1)-(2)=-10,904
. Existing System (partly with Rehbili./Exten.)		(131,480)				(12,212)									
Dummon River Irrigation System	DRIS	2,070				2,070	1,802		317					-268	
Zinundungan River Irrigation System	ZRIS	1,760					2,045		977	'				285	
Baggao Irrigation System	BIS	1,812				1,812	2,067			62	453		1	255	
Solana-Tuguegarao Irrigation System		3,143				3,143	2,777	'	500						SPIS: Solana PIS
Pinacanauan River Irrigation System	PRIS	1,200				1,200	880		305	i				-320	
Tumauini Irrigation System	TIS	3,987				3,987	3,615		1,130)	91	6,600			Multipurpose Project: FS/IP prepared
Chico River Irrigation System	CRIP	20,108					1,856							-701	LCRIS: Lower Chico RIS
							9,842								UCRIS: Upper Chico RIS-Quezon
							7,709								Phase I: 17,551ha fm NIA CAR
Magat River Integrated Irrigation System	MRIIS	97,400					88,370)						-9,030	
. On-going Project at the time of 1987MP			(19,317)												
San Pablo-Cabagan Irrigation Project	SPCIS		2,890				1,273		386	35	370			1,273	
Mallig River Irrigation Project	MRIS		2,890				2.427		1.650			+		2.427	
<u> </u>	MIKIS		14.000				2,427		1,050	·	670			, , , , , , , , , , , , , , , , , , , ,	IAAPIS: Iguig Alcala Amulung PIS
Cagayan Integrated Agricultural Development Project	CIADP		14,000				2,300		1,870		290			13,220	MPIS: Magapit PIS
rioject	CIADP						10,914	•	1,870		290				MP15. Magapit P15
Proposed New Project 1987MP				(11,540)	(53,790	0			+			1	1		
Zinundungan Irrigation Extension Project				150	1,60	0						1			partly implemented or not?
Alcala-Amulung West Irrigation Project					6,75	0					1	2,500	1		AAWPIP, FS
Chico Mallig Irrigation Project				2,100	29,10	0									FS of Rizal IP conducted in Kalinga
Tuguegarao Irrigation Project			1		1,40	0		202	-			1	1		TPIS
Lulutan Irrigation Project					2,95	0						4,000			SIPIP: Sta.Isabela PIP
Ilagan Irrigation Project				60	3,14	0			1			1,000			LPIP:
Gappal Irrigation Project					4,40	0		400				400			GCIP(S), mostly shifted to SAPIP
Matuno River Irrigation Project				9,230	3,45	0		650				12,600			
								323							
							2,010							2,010	Nueva Vizcaya Bagabag Irr,Sys.?
Dabubu River IrrigationProject					1,00	0						1,000			DIP: Dabubu IP
Newly Proposed Project (after 1987 MP) in 1999															<u> </u>
Addalam River Irrigation Project	ARIP				+				+		+	5,830	1		incl.hilly grassland, EL<100m
Dibuluan River Irrigation Project	DRIP										1	3,000			incl.hilly grassland, EL<200m
Santa Isabel Pump Irrigation Project	SIPIP				+			+			+	4,000	1		Brussinia, EE 200m
San Agustin Pump Irrigation Project	SAPIP				1						1	22,700	1	1	group of river bank lowland
Rizal Irrgation Project	RIP											1,500			0 · · · F · · · · · · · · · · · · · · ·
Delfine Albano Pump Irrigation Project	DAPIP							-	1		+	2,445	1		part of Mallig Multipurpose Pjt
Upper Ilagan Western Brgy. Pump Irr. Pjt	UIWBPII))			+				+	· · · · · · · · · · · · · · · · · · ·	+	3.000	1		detached from MRIIS
Dammao Pump Irrigation Project	DPIP					-		-	-			1.000	1		detached from MRIIS
					1						+	1 .,000	1		

Table 4.3.2 Comparison of Irrigation NIS/NIP in 1987 Master Plan and in 1999

Source: (1) - (6); "Final Report for The Master Plan Study on The Cagayan River Basin Water Resources Development", Aug.1987, JICA (7) - (12); Tables prepared by NIA, R-02

Table 4.3.3 List of Candidate Scheme for Proposed Irrigation Development in Long Term Plan

								FC=Flood Co Without	ntrol Additio
		T	ocation		miantian Ana			FC	to FC
			ocation		rrigation Are			-	to FC
Candidate Scheme for Long Term Plan	*	-		Total	New/	Rehabili./		Financial	
		Province	Municipality		extension	improve't	Cost	Benefit	Benefi
				(ha)	(ha)	(ha)	(mil.P)	(mil.P/yr)	(mil.P/y
ffected by Flood (Need Flood Control)									
1. Alcala Amulung West Irrigation Project	AAWPIP	Cagayan	Alcala, Amulung	7,700	7.700		1,527	_	
Stage I	AAWIII	Cagayan	Alcala, Allulung	(4,000)	7,700		980	219	
2. Solana Pump Irrigation System-Reh. & Ext. Project	SPIS-REP (*) Cagayan	Solana	7,880	5,100	2,780	1,071		
Stage I	SF15-KEF () Cagayan	Solalia	(3,000)	5,100	2,780	504	288	
3. Mamil Pump Irrigation Project	MPIP	Cagayan	Enrile	563	563		115	18	
4. Santa Isabel Pump Irrigation Project	SIPIP	Isabela	Gamu	1,000	1,000		206	34	
5. Damao Pump Irrigation Project	DPIP	Isabela	Gamu	1,000	1,000		208	34	
					400		93	13	
6. Lapogan Pump Irrigation Project	LPIP	Isabela	Tumauini	400			782		
7. Lulutan Pump Irrigation Project	LAPIP	Isabela	Gamu	3,800	3,800			140	
8. Gamu Pump Irrigation Project	GPIP	Isabela	Gamu	400	400		80	12	
9. Enrile Pump Irrigation Project	EPIP	Cagayan	Enrile	3,100	3,100		588	168	
10. Zinundungan Irrigation Extension Project		*) Cagayan	Lasam	3,495	2,045	1,450	920	179	
11. Lallo West Pump Irrigation Project	LWPIP	Cagayan	Lallo	900	900		196	48	
12. Nassiping Pump Irrigation Project	NPIP	Cagayan	Gattaran	765	765		149	46	
Rehabilitation of CIADP (Magapit & Iguig-Alcala-Amulu							376	215	
Magapit Pump Irrigation System	MPIS	^k Cagayan	Lallo	10,914		10,914			
 Iquig-Alcala-Amulung Pump Irrigation System 	IAAPIS	K Cagayan	Iguig, Amulung	2,306		2,306			
15. Dummun River Irrigation System	DRIS	^k Cagayan	Gattaran	1,802		1,802	1,015	80	
16. Pinacanuan River Irrgation System	PRIS	^k Cagayan	Penablanca	880		880	91	45	
17. San Pablo-Cabagan Irrigation System	SPCIS	Isabela	San Pablo	1,273		1,273	108	52	
18. Santa Maria Communal Pump Irrigation System	SMPIS	[∗] Isabela	Sta. Maria	690		690	58	28	
19. Delfin Albano Pump Irrigation Project	DAPIP	Isabela	Delfine Albano	2,445	2.445		502	145	
20. Tumauini Multipurpose (Reservoir) Project	TRP (*) Isabela	Tumauini	6,600	2,985	3,615	2,349	524	
21. Upper Chico River Irrigation System	UCRIS	Kal./Isa.	Tabuk/Quezon	17,551		17,551	1,326	646	
22. Mallig River Irrigation System	MRIS	* Isabela	Mallig. Quezon	2,427		2,427	166	100	
23. Nueva Vizcaya Bagabag Irrigation System	NVBIS	N. Viz.	Bagabag	2,160		2,160	125	81	
24. Ilagan Pump IrrigationProject	IPIP	Isabela	Ilagan	5,000	5.000	,	1,184	276	
25. Napaccu Pump Irrigation Project	NAPIP	Isabela	Reina Mercedes	1,000	1,000		216	47	
26. Tagaran Pump Irrigation Project	TPIP	Isabela	Cauayan	500	500		106	25	
27. Reina Mercedes Pump Irrigation Project	RMPIP	Isabela	Reina Mercedes	900	900		195	42	
28. Sto. Nino Pump Irrigation Project	SNPIP	Cagayan	Sto Nino	1.200	1.200		240	65	
Total	0.0.1	Cuguyun	510 11110	88,651	40,803	47,848	14,293	3,567	5
lo Need of Flood Control									
1. Upper Ilagan Western Brgy. Pump Irrigation Project	UIWBPIP	Isabela	Ilagan	3,000	3,000		648	162	
2. San Agustin Pump Irrigation Project	SAPIP	Isabela	San Agustin	22,700	22,700		5,376	1,271	
3. Dibuluan River Irrigation Project	DRIP	Isabela	San Agustin	3,000	3,000		738	221	
 Dabubu Irrigation Project 	DIP	Isabela	San Agustin	1,000	1,000		312	75	
5. Rizal Irrigation Project	RIP	Kalinga	Rizal	1,500	1,500		465	116	
6. Baggao Irrigation System	BIS	^k Cagayan	Baggao	2,067		2,067	1,306	65	
7. Lower Chico River Irrigation System	LCRIS	Cagayan	Tuao	1,856		1,856	134	71	
8. Bantug Pump Irrigation System	BPIS	[*] Isabela	Angadanan	150		150	13	6	
9. San Mariano Pump Irrigation Project	SMPIP	Isabela	San Mariano	400	400		88	26	
10. East Tabacal Pump Irrigation Project	ETPIP	Isabela	Cauayan	1,800	1,800		407	101	
11. Debibi Groundwater IP	DGIP	Quirino	Cabarruguis	4,000	4,000		640	159	
12. Villaverde IP	VIP	N.Viz.	Villaverde	3,000	3,000		451	112	
Total				44,473	40,400	4,073	10,578	2,385	
					0				
New / Extension Project (including combined one)	28 schemes			81,203	81,203	51.021	20,529	4,779	3
Rehabilitation / Improvement Project	12 schemes			51,921		51,921	4,341	1,173	1
AND TOTAL	40 schemes			133,124	81,203	51,921	24,870	5,952	5
	40 senemes			100,124	01,200	51,721	24,070	5,752	

Note: *1: Blank = New / Extension Project * = Rehabilitation / Improvement Project (*) = Combination of New/Ext. and Reh/Imp. *2: On-going projects are not presented.

Table 4.3.4 List of Candidate Scheme for Proposed Irrigation Development in Long Term Plan and Reviewed Master Plan

																	FC=Flood Cc	ontrol
					EIRR (%)				ate for Review	ved M/P	EIRR (%)		Pipeline	New/ext.	Reh/imp			
			ocation	Without	Additional	Both (1)	Long	ref. to Subsec	.10.8.3 (3)		Without		project in CO	project	project	Reviewed	Reviewed 1	M/P
Candidate Scheme for Long Term Plar	*1			FC	to FC	and (2)	Term	(Package	-	Without	FC	(3) < 15 %	and matuted	EIRR	EIRR	Master	New	NIA
		Province	Municipality	(1)	(2)	< 15 %	Plan	irrigation co	mponent]	FC	(3)	1	project in R-2	>=16.5%: O	>=25%: O	Plan	fund	regula
								IL	IS	in Rev.MP				<16.5%: X	<25%: X			fund
Affected by Flood (Need Flood Control)																		
1. Alcala Amulung West Irrigation Projec	AAWPIP	Cagayan	Alcala, Amulung	15.5*2	22.8		0	0	-				0	>	>	0	0	-
2. Solana Pump Irrigation System-Reh. & Ext. Projec	SPIS-REP (*		Solana	26.7*2	25.0		0	0	-		-			>	>	Ö	0	-
3. Mamil Pump Irrigation Projec	MPIP	Cagayan	Enrile	11.1	19.9		Ö	-	0	v	11.1	x				-	-	-
4. Santa Isabel Pump Irrigation Projec	SIPIF	Isabela	Gamu	11.7	19.9		0	-	0	y v	11.7	x						-
5. Damao Pump Irrigation Project	DPIP	Isabela	Gamu	10.6	19.2		0	-	-	v	10.6	x				-	_	-
6. Lapogan Pump Irrigation Project	LPIF	Isabela	Tumauini	9.6	19.0		0	-	-	y v	9.6	X				-	-	-
7. Lulutan Pump Irrigation Projec	LAPIP	Isabela	Gamu	12.3	19.0		0	-		y v	12.3	X			·			-
8. Gamu Pump Irrigation Project	GPIP	Isabela	Gamu	10.9	18.5		0	-	-	v	10.9	X		1		-	-	-
9. Enrile Pump Irrigation Projec	EPIP	Cagayan	Enrile	17.8	23.1		0	0	-	, <u>,</u>	10.9			>	>	0	0	-
10. Zinundungan Irrigation Extension Project	ZIEP (*		Lasam	16.3	18.8		0	-	0		-			>	>	Ö	0	-
11. Lallo West Pump Irrigation Project	LWPIF	Cagayan	Lallo	16.5	19.5		0	-	0					>	>	Ö	0	-
12. Nassiping Pump Irrigation Project	NPIP	Cagayan	Gattaran	18.5	21.8		- Ö	-	0				0	>	>	0	0	-
Rehabilitation of CIADP (Magapit & Iguig-Alcala-Amul		Cagayan	Gattaran	26.7	31.0		0		0				0	>	>	0	0	+
13. Magapit Pump Irrigation System	MPIS *	Cagayan	Lallo	20.7	51.0		0	-	0									-
14. Iquig-Alcala-Amulung Pump Irrigation System	IAAPIS *	Cagayan	Iguig, Amuluns				0	0	-									
15. Dummun River Irrigation Systen	DRIS *	Cagayan	Gattaran	8.6	10.3	v	-	<u> </u>	-						· · · · · · · · · · · · · · · · · · ·	-		-
16. Pinacanuan River Irrgation System	PRIS *	Cagayan	Penablanca	28.2	31.9		0	-	0		28.2			-	0	0	0	+
17. San Pablo-Cabagan Irrigation System	SPCIS *	Isabela	San Pablo	28.2	27.0		0	-	0	y v	23.1			-	0	0	0	-
18. Santa Maria Communal Pump Irrigation System	SMPIS *	Isabela	Sta. Maria	23.1	27.3		0	-	0	y v	23.1				0	0	-	0
19. Delfin Albano Pump Irrigation Projec	DAPIP	Isabela	Delfine Albano	18.5	27.5		0	-	0	······	18.5		0	>	>	0	0	
20. Tumauini Multipurpose (Reservoir) Project	TRP (*		Tumauini	18.5	21.8		0		0	y v	18.5		0	>	>	0	0	
20. Tumauni Multiplipose (Reservon) Project 21. Upper Chico River Irrigation System	UCRIS *	Kal./Isa.	Tabuk/Quezon	27.8	31.4		0	-		y v	27.8		0		0			
21. Opper Chico River Irrigation System	MRIS *	Isabela	Mallig. Quezon	31.5	31.4		0			ļ	31.5				0	- 0	- 0	
22. Maing River Irrigation System 23. Nueva Vizcaya Bagabag Irrigation System	NVBIS *	N. Viz.	Bagabag	31.5	35.5		0	-	-	у	31.5			-	0	0	0	-
24. Ilagan Pump IrrigationProjec	IPIP	Isabela	Ilagan	16.5	17.2		0	-	-	y v	16.5			- 0		0		0
24. hagan Pump Ingaton Project	NAPIP	Isabela	Reina Mercedes	15.2	17.2		0	-		//	15.2							
26. Tagaran Pump Irrigation Project	TPIP	Isabela	Cauayan	15.2	18.2		0	-	-	y y	15.2			X	-	-	-	-
20. Reina Mercedes Pump Irrigation Project	RMPIP	Isabela	Reina Mercedes	15.2	17.7		0	-	-	у	15.0			X	-	-	-	-
28. Sto. Nino Pump Irrigation Project	SNPIP	Cagayan	Sto Nino	15.0	17.5		0			у	15.0			0	-	0	0	-
Z8. Sto. Nino Pump Irrigation Project	SINPIP	Cagayan	Sto Nino	10.8	17.0		27	- 4	- 11	у	10.8			0	-	16	14	-
								·····				-						-
II. No Need of Flood Control																		
1. Upper Ilagan Western Brgy. Pump Irrigation Projec	UIWBPIF	Isabela	Ilagan	16.8	-		0	-	-	-				0	-	0	-	0
2. San Agustin Pump Irrigation Project	SAPIP	Isabela	San Agustin	16.1	-		0	-	-	-				X		-	-	-
3. Dibuluan River Irrigation Project	DRIP	Isabela	San Agustin	19.8	-		0	-	-	-	10.1	L	0	>	>	0	-	0
 Dabubu Irrigation Project 	DIP	Isabela	San Agustin	18.6	-		0	-	-	-				0	-	0	0	
5. Rizal Irrigation Project	RIP	Kalinga	Rizal	19.1	-		0	-	-	-	16.6	1	0	>	>	0	-	0
6. Baggao Irrigation System	BIS *	Cagayan	Baggao	7.0		X										-	-	4
7. Lower Chico River Irrigation System	LCRIS *	Cagayan	Tuao	29.0	-	ļ	0	-	-	-				-	0	0	-	0
8. Bantug Pump Irrigation System	BPIS *	Isabela	Angadanan	22.8	-		0	-	-	-				-	X	-	-	
San Mariano Pump Irrigation Projec	SMPIP	Isabela	San Mariano	17.8	-		0	-	-	-			0	>	>	0	-	0
10. East Tabacal Pump Irrigation Project	ETPIP	Isabela	Cauayan	16.1	-		0	-	-	-				X	-	-	-	
11. Debibi Groundwater IP	DGIP	Quirino	Cabarruguis	17.0	-		0	-	-	-	10.1		0	>	>	0	-	0
12. Villaverde IP	VIP	N.Viz.	Villaverde	17.0	-		0	-	-	-	16.1		0	>	>	0	-	0
Total							11	0	0							8	1	
GRAND TOTAL	40 schemes			-			38	4	11							24	15	
GRAID IVIAL	40 schemes						38	4	11							24	15	
Note:					(1	ı		1	1	1	1	4		1		1
*1: Blank = New / Extension Project			2: Stage 1															
* = Rehabilitation / Improvement Project		***	: O = selected															
(*) = Combination of New/Ext. and Reh./Imp			X = postponed															

		1		T		FC=Flood Co Without	Additional	T	c.	election of Dr	e-FS Project	(if yes, 1 point)	
		Lo	cation	Irrigation		FC	to FC	Related	Prepared		Equitable d		,	
Proposed Scheme for Reviewed Master Plan	*1	1.0	cation	Area		Financial	1 1010	FC:	NIA	FS	Except	without	Total	Pre-FS
r toposed scheme for Reviewed Waster F lan	1	Province	Municipality	Alca	Cost	Benefit	Benefit	proposed	10-year	DE	Isabela	highway	point	110-10
		TIOVINCE	wanterparty	(ha)	(mil.P)	(mil.P/yr)	(mil.P/yr)	in Rev.MP	program	DL	province:	ingiiway	point	
To be implemented by New Funding Source				(114)	(1111.1)	(IIII.17y1)		III Kev.ivii	program		province.			
Affected by Flood (Need Flood Control)														
1. Alcala Amulung West Irrigation Projec	AAWPIP	Cagayan	Alcala, Amulung	7,700	1,527	-	556	1	1	1	1	1	5	0
Stage I		cuguyun		(4,000)	980	219								
2. Solana Pump Irrigation System-Reh. & Ext. Project	SPIS-REP (*)	Cagayan	Solana	7,880	1,071	-	475	1	0	0	1	0	2	
Stage I				(3,000)	504	288	-							
3. Enrile Pump Irrigation Project	EPIP	Cagayan	Enrile	3,100	588	168	241	1	0	0	1	0	2	
4. Zinundungan Irrigation Extension Project		Cagayan	Lasam	3,495	920	179		1	0	0	1		3	
5. Lallo West Pump Irrigation Project	LWPIP	Cagayan	Lallo	900	196	48		1	0	0			2	
6. Nassiping Pump Irrigation Project	NPIP	Cagayan	Gattaran	765	149	46	55	1	1	1	1	0	4	
7. Rehabilitation of CIADP (Magapit & Iguig-Alcala-Amulu	ng PISs *	= MPIS +	IAAPIS		376	215	324	1	1	1	1	0	4	
Magapit Pump Irrigation System	MPIS -	Cagayan	Lallo	10,914										
Iquig-Alcala-Amulung Pump Irrigation Systen	IAAPIS -	Cagayan	Iguig, Amulung	2,306										
8. Pinacanuan River Irrgation System	PRIS *	Cagayan	Penablanca	880	91	45		0	0	0	1	0	1	
9. San Pablo-Cabagan Irrigation System	SPCIS *	Isabela	San Pablo	1,273	108	52		0	0	0	0		0	
10. Delfin Albano Pump Irrigation Project	DAPIP	Isabela	Delfine Albano	2,445	502	145		0	0	1	0		2	
11. Tumauini Multipurpose (Reservoir) Project		Isabela	Tumauini	6,600	2,349	524		0	1	1	0		2	
 Mallig River Irrigation System 	MRIS *	Isabela	Mallig. Quezon	2,427	166	100		0	0	0	0		0	
 Nueva Vizcaya Bagabag Irrigation System 	NVBIS *	N. Viz.	Bagabag	2,160	125	81	105	0	0	0	1	0	1	
Sto. Nino Pump Irrigation Project	SNPIP	Cagayan	Sto Nino	1,200	240	65	69	0	0	0	1	1	2	
Total				54,045	8,409	2,174	3,193							
I. No Need of Flood Control														
1. Dabubu Irrigation Project	DIP	Isabela	San Agustin	1,000	312	75		0	1	0	0	1	2	
Total				1,000	312	75	-							
New / Extension Project (including combined one)	10 schemes			30,768										
Rehabilitation / Improvement Project	5 schemes			24,277										
TOTAL			******				ļ							
TOTAL	15 schemes			55,045										
							-					1		
		T				1	1	r				, ,		
To be implemented by NIA Regular Fund Affected by Flood (Need Flood Control)														
1. Ilagan Pump IrrigationProject	IPIP	Isabela	Ilagan	5,000	1,184	276	292	0	0	0	0	1	1	
2. Santa Maria Communal Pump Irrigation System	SMPIS *	Isabela	Sta. Maria	690	58	270		0		~	, v	1	1	
Total	SIVIFIS	Isabela	Sta. Maria	5,690	1.241	305	33	0	0	0	0	1	1	
I. No Need of Flood Control				5,090	1,241	303	527							
1. Dibuluan River Irrigation Project	DRIP	Isabela	San Agustin	3,000	738	221	-	0	1	0	0	1	2	
2. Rizal Irrigation Project	RIP	Kalinga	Rizal	1,500	465	116	<u> </u>	0	-	1	1		4	
2. Kizai Irrigation Project 3. San Mariano Pump Irrigation Project	SMPIP	Isabela	San Mariano	400	405	26		0		1	0		2	
4. Lower Chico River Irrigation System	LCRIS *	Cagayan	Tuao	1,856	134	20		0		0		· · · · · · · · · · · · · · · · · · ·	2	
5. Upper Ilagan Western Brgy. Pump Irrigation Project	UIWBPIP	Isabela	Ilagan	3.000	648	162		0		0	0			
6. Debibi Groundwater IP	DGIP	Quirino	Cabarruguis	4,000	640	159		0		0	1	1	3	
	VIP	N.Viz.	Villaverde	3.000	451	139	-	0		0	1	1	3	
	¥ 11	14. 9 12.	+ mayerut	16,756	3.164	867	0	0		0	¹	1	3	
7. Villaverde IP					5.104	007	0					1		
				10,750			1					1		
7. Villaverde IP Total	7 schemes													
7. Villaverde IP Total New / Extension Project (including combined one)	7 schemes			19,900										
7. Villaverde IP Total	7 schemes 2 schemes													
7. Villaverde IP Total New / Extension Project (including combined one) Rehabilitation / Improvement Project	2 schemes			19,900 2,546										
7. Villaverde IP Total New / Extension Project (including combined one)				19,900										

Table 4.3.5 List of Proposed Irrigation Development Scheme in Reviewed Master Plan and Selection of Pre-Feasibility Study Project

Grand Total					Note:
New / Extension Project (including combined one)	17 schemes	50,6	8		*1: Blank = New / Extension Project
Rehabilitation / Improvement Project	7 schemes	26,8	3		* = Rehabilitation / Improvement Project
					(*) = Combination of New/Ext. and Reh./Imp.
TOTAL	24 schemes	77,4	1		

Table 5.1.1 Reference Crop Evapotranspiration

rojec	et : Alcala Amulung West Yea	ar : average	5							L	ongitude: atitude : ltitude :	Ν	121 40' 17 50' L 10 - 20 1			
	Data and elements		Unit	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
	Tuguegarao						_					_				
1.	Temperature	Tmax	С	29.6	30.3	33.8	35.9	36.8	35.7	34.9	34.2	33.6	32.2	30.1	28.8	33.0
	-	Tmin	С	22.8	22.7	20.9	22.6	23.7	23.8	23.6	23.6	23.3	22.5	21.6	20.3	22.6
2.	Relative humidity	RH	%	81	82	73	69	69	72	74	76	77	79	82	82	76
3.	Sunshine hour	n	hour	4.0	4.6	7.1	7.8	7.4	7.3	6.6	5.7	5.6	4.8	3.8	3.1	5.7
4.	Wind velocity	U2	km/day	59	52	104	117	104	106	100	82	82	108	99	102	93
	Reference Crop	ЕТо	mm/day	3.3	3.5	4.5	4.8	4.4	4.1	3.9	3.8	4.0	3.9	3.4	3.0	3.9
	Evapotranspiration		mm/month	102	99	140	144	137	124	122	119	121	121	102	94	1426

Source : FAO Irrigation and Drainage Paper No.56, "Crop vapotranspiration", 1998

Table 5.1.2 Calculation of Water Duty for Higher Plain in AAWPIP

AAWPIP: Alcala Amulung West Pump Irrigation Projec

Month			Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Cropping Pattern			Dry Seas	on				et Season	Paddy		Legume	es, Corn, 50%		
Probable Rainfall (1/5)	R(80)	mm	5	1	4	8	60	85	86	119	108	161	83	13
Reference Evapotranspiration	ETo	mm	102	99	140	144	137	124	122	119	121	121	102	94
Dry Season Paddy Crop Coefficien Crop Evapotranspiration Percolation Area Factor Land Soaking Flooding Effective Rainfal Net Irrigation Requirement	Kc ETcrop P fa LS Fl Re	mm mm mm mm	1.09 111.2 46.5 1 75.0 15.0 3.5 244	1.17 115.8 42.0 1 0.7 157	1.11 155.4 46.5 7/8 2.8 174	0.98 141.1 45.0 1/8 5.6 23								1.05 98.7 46.5 1/2 75.0 0.0 9.1 139
Wet Season Paddy Crop Coefficient Crop Evapotranspiration Percolation Area Factor Land Soaking Flooding Effective Rainfal! Net Irrigation Requirement	Kc ETcrop P fa LS Fl Re	mm mm mm mm				1.05 1/8 18.75 5.6 18	1.06 145.2 46.5 7/8 112.5 7.5 42.0 246	1.13 140.1 45.0 1 18.75 7.5 59.5 152	1.16 141.5 46.5 1 60.2 128	1.04 123.8 46.5 1/2 83.3 43				
Wet Season Legumes, etc Crop Coefficien Crop Evapotranspiration Area Factor Effective Rainfall Net Irrigation Requiremen	Kc ETcrop fa Re	mm mm								0.40 47.6 1/16 67.8 0	0.51 61.7 7/16 64.4 0	1.02 123.4 1/2 106.0 9	0.89 90.8 7/16 54.4 16	0.85 79.9 1/16 10.0 4
Net Irrigation Requirement in tota Irrigation Efficiency	Е	mm	244 0.54	157 0.54	174 0.54	41 0.54	246 0.54	152 0.54	128 0.54	43 0.54	0 0.54	9 0.54	16 0.54	143 0.54
Gross Irrigation Requirement		mm	452	291	322	76	456	281	237	80	0	17	30	265
Water Duty		lit/s/ha	1.69	1.20	1.20	0.29	1.70	1.09	0.88	0.30	0.00	0.06	0.11	0.99

Table 5.1.3 Calculation of Water Duty for Lower Plain in AAWPIP

AAWPIP: Alcala Amulung West Pump Irrigation Projec

Month			Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Cropping Pattern			Dry Seasc	n				let Seasor	n Paddy		Legum	es, Corn, 50%		
Probable Rainfall (1/5)	R(80)	mm	5	1	4	8	60	85	86	119	108	161	83	13
Reference Evapotranspiration	ЕТо	mm	102	99	140	144	137	124	122	119	121	121	102	94
Dry Season Paddy Crop Coefficien Crop Evapotranspiration Percolation Area Factor Land Soaking Flooding Effective Rainfall	Kc ETcrop P fa LS Fl Re	mm mm mm mm	1.09 111.2 62.0 1 75.0 15.0 3.5	1.17 115.8 56.0 1	1.11 155.4 62.0 7/8 2.8	0.98 141.1 60.0 1/8 5.6								$ \begin{array}{c} 1.05 \\ 98.7 \\ 62.0 \\ 1/2 \\ 75.0 \\ 0.0 \\ 9.1 \\ \end{array} $
Net Irrigation Requirement	Re	mm	260	171	188	24								146
Wet Season Paddy Crop Coefficien Crop Evapotranspiration Percolation Area Factor Land Soaking Flooding Effective Rainfall Net Irrigation Requiremen	Kc ETcrop P fa LS Fl Re	mm mm mm mm				1.05 1/8 18.75 5.6 18	1.06 145.2 62.0 7/8 112.5 7.5 42.0 259	1.13 140.1 60.0 1 18.75 7.5 59.5 167	1	1.04 123.8 62.0 1/2 83.3 51				
Wet Season Legumes, etc Crop Coefficien Crop Evapotranspiration Area Factor Effective Rainfall Net Irrigation Requiremen	Kc ETcrop fa Re	mm mm								0.40 47.6 1/16 67.8 0	0.51 61.7 7/16 64.4 0	1.02 123.4 1/2 106.0 9	0.89 90.8 7/16 54.4 16	0.85 79.9 1/16 10.0 4
Net Irrigation Requirement in tota Irrigation Efficiency	Е	mm	260 0.54	171 0.54	188 0.54	42 0.54	259 0.54	167 0.54	143 0.54	51 0.54	0 0.54	9 0.54	16 0.54	151 0.54
Gross Irrigation Requirement		mm	481	317	348	78	480	309	265	94	0	17	30	280
Water Duty		lit/s/ha	1.80	1.31	1.30	0.30	1.79	1.19	0.99	0.35	0.00	0.06	0.11	1.04

Drainage Area (DA)	Catchment area	Max. drainage discharge	Highest outside water level	Longest Inundation duration	Highest inside water level	Max. inundation area	Max. inundation volume	Design capacity of sluice	Remarks
	CA (ha)	Qin-max (m3/s)	WLo-max (masl)	Ti-max (hour)	WLi-max (masl)	Amax (ha)	Vmax (million m3)	Oout-cap (m3/s)	
DA 1	1,520	23.3	17.89	107	12.43	114	1.16	20.5	
DA 2	12,500	191.2	18.10	130	11.12	749	13.06	131.8	Figure 5.1.4
DA 3	770	11.8	18.59	126	12.45	199	0.82	15.0	
DA 4	2,260	34.6	20.04	217	9.66	514	4.17	60.0	
DA LP*	35,000	535.4	20.04	223	14.19	2,036	61.67	200.0	Figure 5.1.5

Table 5.1.4 Summary of Inundation Analysis for AAWPIP

Note: This calculation is made to the Cagayan River flood of 25-year probability * Lower Pangul River area after proposed river training and outside of the Project are Qin and WLo are derived from hydrological study

International divisional	AAWPIP: Alcala Amulung P														
for present padly field mm 435 274 293 61 387 191 94 6 0 0 0 154 188 for present com field mm 463 300 319 955 141 219 124 20 0.0 0.0 0.00 0.07 0.00 0.00 0.00 0.07 0.00 <t< th=""><th></th><th>Unit</th><th>Jan.</th><th>Feb.</th><th>Mar.</th><th>Apr.</th><th>May</th><th>Jun.</th><th>Jul.</th><th>Aug.</th><th>Sep.</th><th>Oct.</th><th>Nov.</th><th>Dec.</th><th>Annual</th></t<>		Unit	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
International divisional	1. Gross Irrigation Requiremen														
for present con fiels mm 463 300 319 65 411 219 124 20 0 0 0 067 2.0 2. Average Irigation Water (million m3 inde Pump Statior Stage 1 4090 ha 17.79 11.21 11.98 2.94 15.83 7.81 3.84 0.25 0.00 0.00 0.00 6.00 4.90	for present paddy field														1,895
hivsha 1.73 1.24 1.19 0.25 1.53 0.84 0.46 0.07 0.00 0.00 0.00 0.00 0.00 2. Average Irigation Water (million m2 Istage 2 4.090 ha 17.75 11.21 11.98 2.249 15.83 7.81 3.84 0.25 0.00 0.00 0.00 6.30 76.32 Stage 1 2.7060 ha 31.54 20.12 21.45 4.42 28.04 14.31 7.52 0.84 0.00 0.00 0.00 11.26 13.93 Boostere Pump Statior Stage 1 1.700 ha 7.4 4.66 4.98 1.04 7.54 4.03 0.00 0.00 0.00 0.00 3.26 3.23 Stage 1 & 1.700 ha 7.4 4.66 4.98 1.04 7.54 4.03 0.09 0.00 0.00 0.00 3.26 3.23 Stage 1 & 1.700 ha 7.4 4.66 4.98 1.02 2.31 1.64 7.54 4.03 0.00 0.00 0.00 3.26 3.27 3.40 Stage 1 & 2. 3.66 1.23		lit/s/ha	1.62	1.13	1.09	0.24	1.44	0.74	0.35	0.02	0.00	0.00	0.00	0.57	
hivsha 1.73 1.24 1.19 0.25 1.53 0.84 0.46 0.07 0.00 0.00 0.00 0.00 0.00 2. Average Irigation Water (million m2 Istage 2 4.090 ha 17.75 11.21 11.98 2.249 15.83 7.81 3.84 0.25 0.00 0.00 0.00 6.30 76.32 Stage 1 2.7060 ha 31.54 20.12 21.45 4.42 28.04 14.31 7.52 0.84 0.00 0.00 0.00 11.26 13.93 Boostere Pump Statior Stage 1 1.700 ha 7.4 4.66 4.98 1.04 7.54 4.03 0.00 0.00 0.00 0.00 3.26 3.23 Stage 1 & 1.700 ha 7.4 4.66 4.98 1.04 7.54 4.03 0.09 0.00 0.00 0.00 3.26 3.23 Stage 1 & 1.700 ha 7.4 4.66 4.98 1.02 2.31 1.64 7.54 4.03 0.00 0.00 0.00 3.26 3.27 3.40 Stage 1 & 2. 3.66 1.23	for present corn field	mm	463	300	319	65	411	219	124	20	0	0	0	167	2,088
Intake Pump Statior 542 14.000 ha 17.79 11.21 11.98 2.49 15.83 7.81 3.84 0.25 0.000 0.000 0.000 4.96 62.0 Stage 1 2.970 ha 13.75 8.91 9.47 1.93 12.21 6.50 3.68 0.59 0.00 0.00 0.00 4.96 62.0 Stage 1 2.700 ha 31.54 20.12 2.145 4.42 2.804 14.31 7.52 0.84 0.00 0.00 0.00 11.26 13.93 Booster Pump Statior 5tage 1 1.700 ha 7.4 4.66 4.98 1.04 6.58 3.25 1.6 0.1 0 0 0 3.27 400 Stage 2 1.960 ha 9.07 5.88 6.25 1.27 8.06 4.29 2.43 0.39 0.00 0.00 0.00 5.89 7.3 Stage 1 & 2 3.660 ha 16.47 10.54 11.23 2.31 14.64 7.54 4.03 0.49 0.00 0.00 5.89 7.3 St	for present com nex														2,000
Intake Pump Statior Stage 1 4,000 ha 17.79 11.21 11.98 2.49 15.83 7.81 3.84 0.25 0.000 0.000 0.000 4.96 62.0 Stage 2 2.970 ha 13.75 8.91 9.47 1.93 12.21 6.50 3.68 0.59 0.00 0.00 0.00 4.96 62.0 Stage 1 & 2 7.060 ha 31.54 20.12 21.45 4.42 28.04 14.31 7.52 0.84 0.00 0.00 0.00 11.26 13.92 Booster Pump Statior Stage 1 1.700 ha 7.4 4.66 4.98 1.04 6.58 3.25 1.6 0.1 0 0 0.00 3.27 400 Stage 1 & 2 3.660 ha 16.47 10.54 11.23 2.31 14.64 7.54 4.03 0.49 0.00 0.00 0.00 5.89 7.3 Stage 1 & 2 3.660 ha 16.47 10.54 11.23 2.31 14.64 7.54 4.03 0.49 0.00 0.00 5.89 7.3	2 Average Irrigation Water (million m	2													
Singe 2 2.970 ha 13.75 8.91 9.47 1.93 12.21 6.50 3.68 0.59 0.00 0.00 0.00 4.96 62.2 Booster Pump Statior Stage 1 1,700 ha 7.4 4.66 4.98 1.04 6.58 3.25 1.6 0.1 0 0 0.00 3.27 400 Stage 1 1,700 ha 7.4 4.66 4.98 1.04 6.58 3.25 1.6 0.1 0 0 0.00 3.27 400 Stage 1 & 2 3.660 ha 9.07 5.88 6.25 1.27 8.06 4.29 2.43 0.39 0 0 0 0.58 3.27 400 Stage 1 & 2 3.660 ha 16.47 10.54 11.23 2.31 14.64 7.54 403 0.09 0.00 0.00 0.00 5.88 10.37 3.31 2.44 0.33 0.39 0 0 0 3.88 0.35 10.4 11.35 2.31 11.05 11.05 0.00 0.00 0.00 0.00 0.00															
Stage 1 & 2 7,060 ha 31.54 20.12 21.45 4.42 28.04 14.31 7.52 0.84 0.00 0.00 11.26 139.3 Booster Pump Statior Stage 1 1,700 ha 7.4 4.66 4.98 1.04 6.58 3.25 1.6 0.1 0 0 0 2.62 32.7 400 Stage 1 2.1060 ha 16.47 10.54 11.23 2.31 14.64 7.54 4.03 0.49 0.00 0.00 0.00 5.89 73.3 3. Pump Operation Power (MWH Intake Pump Statior Stage 1 1,389 875 935 194 1,237 611 299 20 0 0 0 878 10.8 Stage 1 2,464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10.8 Stage 1 2,22 206 219 45 286 147 79 9 0 0 0 11.4 14.8 Booster Pump Statior Stage 1 & 2 5,91 3,77 4.02	Stage 1														77.50
Booster Pump Statior Stage 1 1,700 ha 7.4 4.66 4.98 1.04 6.58 3.25 1.6 0.1 0 0 0 2.62 32.2 Stage 2 1.960 ha 9.07 5.88 6.25 1.27 8.06 4.29 2.43 0.39 0 0 0 3.27 400 Stage 1 & 2 3.660 ha 16.47 10.54 11.23 2.31 14.64 7.54 4.03 0.49 0.00 0.00 0.00 5.89 7.3 3. Pump Operation Power (MWH Intake Pump Statior 1.389 875 935 194 1.237 611 299 20 0 0 0 878 10.89 Stage 1 & 2 2.464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10.89 Booster Pump Statior 322 206 219 45 286 147 79 9 0 0 0 115 1,44 4. Estimated Pump Operation Cost (million Peso 5.91 3.77															62.00
Stage 1 1,700 ha 7.4 4.66 4.98 1.04 6.58 3.25 1.6 0.1 0 0 0 2.62 3.21 Stage 1 2 3,660 ha 16.47 10.54 11.23 2.31 14.64 7.54 4.03 0.49 0.00 0.00 0.00 5.89 73. 3. Pump Operation Power (MWH Intake Pump Statior 1,389 875 935 194 1,237 611 299 20 0 0 0 9.07 5.89 6.02 Stage 1 2.464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10,89 Stage 1 2.464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10,89 Stage 1 2.464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 115 1,49 19 97 20 129 63 31 2 0 0	Stage 1 & 2	7,060 ha	31.54	20.12	21.45	4.42	28.04	14.31	7.52	0.84	0.00	0.00	0.00	11.26	139.50
Stage 1 1,700 ha 7.4 4.66 4.98 1.04 6.58 3.25 1.6 0.1 0 0 0 2.62 3.21 Stage 1 2 3,660 ha 16.47 10.54 11.23 2.31 14.64 7.54 4.03 0.49 0.00 0.00 0.00 5.89 73. 3. Pump Operation Power (MWH Intake Pump Statior 1,389 875 935 194 1,237 611 299 20 0 0 0 9.07 5.89 6.02 Stage 1 2.464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10,89 Stage 1 2.464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10,89 Stage 1 2.464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 115 1,49 19 97 20 129 63 31 2 0 0	Booster Pump Statior														
Stage 2 1.960 ha 9.07 5.88 6.25 1.27 8.06 4.29 2.43 0.39 0 0 0 3.27 40.0 Stage 1 & 2 3.660 ha 16.47 10.54 11.23 2.31 14.64 7.54 4.03 0.49 0.00 0.00 0.00 5.89 73. 3. Pump Operation Power (MWH Intake Pump Statior Stage 1 & 2 1.389 875 935 194 1.237 611 299 20 0 0 0 491 6.00 Stage 1 & 2 2,464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10.89 Booster Pump Statior 322 206 219 45 286 147 79 9 0 0 0 113 14.5 Jasse 1 & 2 333 2.10 2.24 0.47 2.97 1.47 0.72 0.05 0.00 0.00 1.18 14.3 Booster Pump Statior 3.33 2.10 2.24 0.47 2.97 1.47		1,700 ha	7.4	4.66	4.98	1.04	6.58	3.25	1.6	0.1	0	0	0	2.62	32.23
3. Pump Operation Power (MWH Intake Pump Statior Stage 1 1,389 875 935 194 1,237 611 299 20 0 0 0 491 6,00 Stage 1 & 2 2,464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10,89 Booster Pump Statior 145 91 97 20 129 63 31 2 0 0 0 51 66 Stage 1 & 2 322 206 219 45 286 147 79 9 0 0 0 115 1,44 4. Estimated Pump Operation Cost (million Peso 3.33 2.10 2.24 0.47 2.97 1.47 0.72 0.05 0.00 0.00 1.18 14.4 Stage 1 & 2 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 2.11 26. Booster Pump Statior 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 <td>Stage 2</td> <td>1,960 ha</td> <td></td> <td>5.88</td> <td></td> <td></td> <td>8.06</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40.91</td>	Stage 2	1,960 ha		5.88			8.06								40.91
Intake Pump Statior 1,389 875 935 194 1,237 611 299 20 0 0 491 6.03 Stage 1 & 2 2,464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10,89 Booster Pump Statior 322 206 219 45 286 147 79 9 0 0 0 51 66 Stage 1 & 2 322 206 219 45 286 147 79 9 0 0 0 115 1,44 4. Estimated Pump Operation Cost (million Peso 3.33 2.10 2.24 0.47 2.97 1.47 0.72 0.05 0.00 0.00 1.18 14.5 Stage 1 & 2 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 2.11 26.66 Booster Pump Statior 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 <	Stage 1 & 2	3,660 ha	16.47	10.54	11.23	2.31	14.64	7.54	4.03	0.49	0.00	0.00	0.00	5.89	73.14
Intake Pump Statior 1,389 875 935 194 1,237 611 299 20 0 0 491 6.03 Stage 1 & 2 2,464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10,89 Booster Pump Statior 322 206 219 45 286 147 79 9 0 0 0 51 66 Stage 1 & 2 322 206 219 45 286 147 79 9 0 0 0 115 1,44 4. Estimated Pump Operation Cost (million Peso 3.33 2.10 2.24 0.47 2.97 1.47 0.72 0.05 0.00 0.00 1.18 14.5 Stage 1 & 2 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 2.11 26.66 Booster Pump Statior 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 <	3 Pump Operation Power (MWH														
Stage 1 1,389 875 935 194 1,237 611 299 20 0 0 0 491 6,03 Stage 1 & 2 2,464 1,572 1,676 346 2,191 1,116 587 66 0 0 0 878 10,89 Booster Pump Statior 322 206 219 45 286 147 79 9 0 0 0 51 66 0 0 0 115 145 91 97 20 129 63 31 2 0 0 0 115 1,47 1,47 79 9 0 0 0 115 1,47 1,47 115 115 1,47 1,47 115 115 1,47 115 115 115 115 115 115 116 115 116 115 116 115 116 115 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 11															
Booster Pump Statior 145 91 97 20 129 63 31 2 0 0 0 51 66 Stage 1 & 2 322 206 219 45 286 147 79 9 0 0 0 115 1,44 4. Estimated Pump Operation Cost (million Peso			1,389	875	935	194	1,237	611	299	20	0	0	0	491	6,051
Stage 1 145 91 97 20 129 63 31 2 0 0 0 51 66 Stage 1 & 2 322 206 219 45 286 147 79 9 0 0 0 115 1,42 4. Estimated Pump Operation Cost (million Peso 3.33 2.10 2.24 0.47 2.97 1.47 0.72 0.05 0.00 0.00 1.18 14.4.5 Stage 1 & 2 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 2.11 26.5 Booster Pump Statior 3.55 0.22 0.23 0.05 0.31 0.15 0.07 0.01 0.00 0.00 0.00 2.11 26.5 Booster Pump Statior 3.53 0.11 0.69 0.35 0.19 0.02 0.00 0.00 0.00 0.28 3.4 Stage 1 & 2 0.77 0.49 0.53 0.11 0.69 0.35 0.19 0.02 0.00 0.00 0.00	Stage 1 & 2		2,464	1,572	1,676	346	2,191	1,116	587	66	0	0	0	878	10,896
Stage 1 & 2 322 206 219 45 286 147 79 9 0 0 0 115 1,44 4. Estimated Pump Operation Cost (million Peso Intake Pump Statior 3.33 2.10 2.24 0.47 2.97 1.47 0.72 0.05 0.00 0.00 1.18 14.3 Stage 1 & 2 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 2.11 26.6 Booster Pump Statior 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 2.11 26.6 Booster Pump Statior 5.91 0.77 0.49 0.53 0.11 0.69 0.35 0.19 0.00 0.00 0.00 0.00 0.00 0.02 3.4 Stage 1 & 2 0.77 0.49 0.53 0.11 0.69 0.35 0.19 0.02 0.00 0.00 0.00 0.02 3.4 Stage 1 total 3.68 2.32 2.48 0.51 </td <td></td>															
4. Estimated Pump Operation Cost (million Peso Intake Pump Statior Stage 1 3.33 2.10 2.24 0.47 2.97 1.47 0.72 0.05 0.00 0.00 1.18 14. Stage 1 & 2 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 2.11 26. Booster Pump Statior 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.01 2.11 26. Booster Pump Statior 0.35 0.22 0.23 0.05 0.31 0.15 0.07 0.01 0.00 0.00 0.00 1.12 1.5 Stage 1 & 2 0.77 0.49 0.53 0.11 0.69 0.35 0.19 0.02 0.00 0.00 0.00 0.28 3.4 Stage 1 total 3.68 2.32 2.48 0.51 3.28 1.62 0.79 0.05 0.00 0.00 0.00 1.30 16.00										2					629
Intake Pump Statior 3.33 2.10 2.24 0.47 2.97 1.47 0.72 0.05 0.00 0.00 1.18 14.3 Stage 1 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 2.11 26.3 Booster Pump Statior 0.35 0.22 0.23 0.05 0.31 0.15 0.07 0.01 0.00 0.00 0.00 2.12 26.3 Stage 1 0.35 0.22 0.23 0.05 0.31 0.15 0.07 0.01 0.00 0.00 0.00 0.28 3.4 Stage 1 & 2 0.77 0.49 0.53 0.11 0.69 0.35 0.19 0.02 0.00 0.00 0.00 0.28 3.4 Stage 1 total 3.68 2.32 2.48 0.51 3.28 1.62 0.79 0.05 0.00 0.00 0.00 1.30 16.0	Stage 1 & 2		322	206	219	45	286	147	79	9	0	0	0	115	1,428
Stage 1 3.33 2.10 2.24 0.47 2.97 1.47 0.72 0.05 0.00 0.00 1.18 14.4 Stage 1 & 2 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 2.11 26.5 Booster Pump Statior 0.35 0.22 0.23 0.05 0.31 0.15 0.07 0.01 0.00 0.00 0.00 0.12 1.4 Stage 1 & 2 0.77 0.49 0.53 0.11 0.69 0.35 0.19 0.02 0.00 0.00 0.00 0.28 3.6 Stage 1 total 3.68 2.32 2.48 0.51 3.28 1.62 0.79 0.05 0.00 0.00 0.00 1.30 16.0	4. Estimated Pump Operation Cost (mil	llion Peso													
Stage 1 3.33 2.10 2.24 0.47 2.97 1.47 0.72 0.05 0.00 0.00 1.18 14.4 Stage 1 & 2 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 2.11 26.5 Booster Pump Statior 0.35 0.22 0.23 0.05 0.31 0.15 0.07 0.01 0.00 0.00 0.00 0.12 1.4 Stage 1 & 2 0.77 0.49 0.53 0.11 0.69 0.35 0.19 0.02 0.00 0.00 0.00 0.28 3.4 Stage 1 total 3.68 2.32 2.48 0.51 3.28 1.62 0.79 0.05 0.00 0.00 0.00 1.30 16.0	Intake Pump Station														
Stage 1 & 2 Booster Pump Statior 5.91 3.77 4.02 0.83 5.26 2.68 1.41 0.16 0.00 0.00 0.00 2.11 26. Booster Pump Statior 0.35 0.22 0.23 0.05 0.31 0.15 0.07 0.01 0.00 0.00 0.00 0.12 1.1 Stage 1 & 2 0.77 0.49 0.53 0.11 0.69 0.35 0.19 0.02 0.00 0.00 0.00 0.28 3.6 Stage 1 total 3.68 2.32 2.48 0.51 3.28 1.62 0.79 0.05 0.00 0.00 0.00 1.30 16.0			3.33	2.10	2.24	0.47	2.97	1.47	0.72	0.05	0.00	0.00	0.00	1.18	14.52
Stage 1 0.35 0.22 0.23 0.05 0.31 0.15 0.07 0.01 0.00 0.00 0.00 0.12 1.1 Stage 1 & 2 0.77 0.49 0.53 0.11 0.69 0.35 0.19 0.02 0.00 0.00 0.00 0.28 3.4 Stage 1 total 3.68 2.32 2.48 0.51 3.28 1.62 0.79 0.05 0.00 0.00 1.30 16.0															26.15
Stage 1 & 2 0.77 0.49 0.53 0.11 0.69 0.35 0.19 0.02 0.00 0.00 0.28 3.4 Stage 1 total 3.68 2.32 2.48 0.51 3.28 1.62 0.79 0.05 0.00 0.00 1.30 16.0	Booster Pump Statior														
Stage I total 3.68 2.32 2.48 0.51 3.28 1.62 0.79 0.05 0.00 0.00 1.30 16.0															1.51
	Stage 1 & 2		0.77	0.49	0.53	0.11	0.69	0.35	0.19	0.02	0.00	0.00	0.00	0.28	3.43
	Stage 1 total		3.68	2.32	2.48	0.51	3.28	1.62	0.79	0.05	0.00	0.00	0.00	1.30	16.03
Stage 1& 2 total 6.69 4.27 4.55 0.94 5.94 3.03 1.60 0.18 0.00 0.00 0.00 2.38 29.5	Stage 1& 2 total		6.69	4.27	4.55	0.94	5.94	3.03	1.60	0.18	0.00	0.00	0.00	2.38	29.58

Table 5.1.5 Estimate of Monthly Pumping Quantity and Operation Cost for AAWPIP

AAWPIP: Alcala Amulung Pump Irrigation Proje

		Irrigation	Design		Length (m)		Botom		Related			
Canal Name	Point/		Discharge	Total	Stage I	Stage II	width	Culvert	Siphor		Cross-	Footpath
Main Canal	section	(ha)	(m3/s)				b (m)			<i>L</i> (m)	drain	
Main Canal	P/S HG1	7,063	12.29	4,500	4,500	-	5.00	5	0		16	0
	HG2	6,520	11.34	4,500	4,500	-	5.00	2			6	0
	HG3	4,278	7.47	6,000	6,000	-	4.00	4	1	50	7	0
	HG4	3,836	6.72	1,500	1,500	-	4.00	3	0	50	2	0
	B-P/S	3,656	6.41	0	1,000	-	-	0	Ő		0	0
	HG5	3,656	6.41	0	0	-	-	0	0		0	0
	HG6	2,837	5.02	2,500	2,500	-	3.00	2	1	500	2	0
	HG7	2,657	4.71	2,500	2,500	-	3.00	1	0		2	5
	HG8	1,676	2.95	2,500	2,500	-	2.50	0	0		2	5
	HG9/10	1,362	2.41	3,500	3,500	-	2.50	3	0		2	6
Total of MC				27,500	27,500	-		20	2	50 500	39	16
				27,300	27,500			20				10
LC1	HG1 EP	404	0.71	5,900	5,900	-	1.20	2	2	20 200	2	12
	LI	101	0.71	5,700	5,700		1.20	2	-	200	-	12
LC2	HG2											
	HG2-1	1,877	3.25	2,300	2,300	-	2.00	0	1	150	0	5
	HG2-2	1,649	2.86	2,100	2,100	-	2.00	0	0		0	4
	HG2-3	670	1.14	1,000	1,000	-	2.00	1	0		1	2
1 1	EP	507	0.86	2,500	2,500	-	1.20	1	0	1.50	0	5
sub-total SLC2-1	HG2-1			7,900				2	1	150	1	16
SLC2-1	EP	228	0.39	750	750	-	1.00	1	0		0	1
SLC2-2	HG2-2			2 000	2 000			-	~		-	~
	EP	683	1.22	3,800	3,800	-	1.50	0	0		5	8
SLC2-3	HG2-3											
5102-5	HG2-5 EP	162	0.28	1,400	1,400	-	1.00	1	0		0	3
		102	0.20	1,100	1,100	=	1.00	1	0		0	5
LC3	HG3											
	EP	190	0.32	1,000	1,000	-	1.00	0	0		0	2
LC4	HG4											
	EP	67	0.11	1,000	1,000	-	1.00	0	0		2	2
	1105											
LC5	HG5	010	1.20	1 000	1 000		2.00	~	~		~	-
	HG5-1	819	1.39	1,800	1,800	-	2.00	0	0	20	3	3
sub-total	EP	462	0.79	3,900 5,700	3,900	-	1.50	5 5	2 2	50 20	3	0
SLC5-1	HG5-1			5,700				3	2	20 50	0	3
SLC5-1	EP	356	0.61	5,500	5,500	-	1.20	6	3	20X3	2	0
	LI	550	0.01	5,500	5,500		1.20	0	5	2045	2	0
LC6	HG6											
	EP	181	0.31	2,800	2,800	-	1.00	3	0		3	6
LC7	HG7	001	1.77	2 100		2 100	2 00	0	0		2	
	HG7-1	981	1.77	2,100	-	2,100	2.00	0	0		2	4
	HG7-2	572	1.03	2,400	-	2,400	1.50	0	0		0	5 3
	HG7-3	363	0.65	1,700	-	1,700	1.20	0			0	3 2
sub-total	EP	106	0.19	1,000 7,200	-	1,000	1.00	0	0		0	14
SLC7-1	HG7-1			7,200				0	U		2	14
SECT 1	EP	309	0.56	3,000	-	3,000	1.00	0	0		1	6
				-,		-,						
SLC7-2	HG7-2											
	EP	209	0.38	1,000	-	1,000	1.00	0	0		0	2
SLC7-3	HG7-3											
	EP	257	0.46	3,000	-	3,000	1.00	0	0		0	6
	1100											
LC8	HG8		0.01	000	000		1.00	-	~		-	
	EP	154	0.26	900	900	-	1.00	0	0		0	1
LC9	HG9											
LC 7	HG9-1	463	0.83	900		900	1.50	0	0		0	2
	EP	217	0.83	2,300	-	2,300	1.00	0	0		0	4
sub-total		21/	0.57	3,200	-	2,500	1.00	0	0		0	6
SLC9-1	HG9-1			5,200				5	Ū		0	Ū
	EP	71	0.13	1,000	-	1,000	1.00	1	0		0	2
LC10	HG10		~ - ~						-		-	-
	HG10-1	441	0.78	1,600	1,600	-	1.50	1	1	150	0	3
aula total	EP	146	0.26	1,900	-	1,900	1.00	0		100	0	4
sub-total SLC10-1	HG10-1			3,500				1	1	150	0	7
SLC 10-1	HG10-1 EP	199	0.36	3,200	-	3,200	1.00	0	1	20	1	6
		179	0.50	5,200	-	5,200	1.00	0	1	20	1	0
Fotal of LC/SI	C			61,750	38,250	23,500		22	10		25	102
rotar of LC/SI				01,/30	38,230	23,300		22	10		25	103
TOTAL of M	ain System			89,250	65,750	23,500		42	12		64	119

Table 5.1.6 List of Main and Lateral/Sublateral Canal with Related Structure

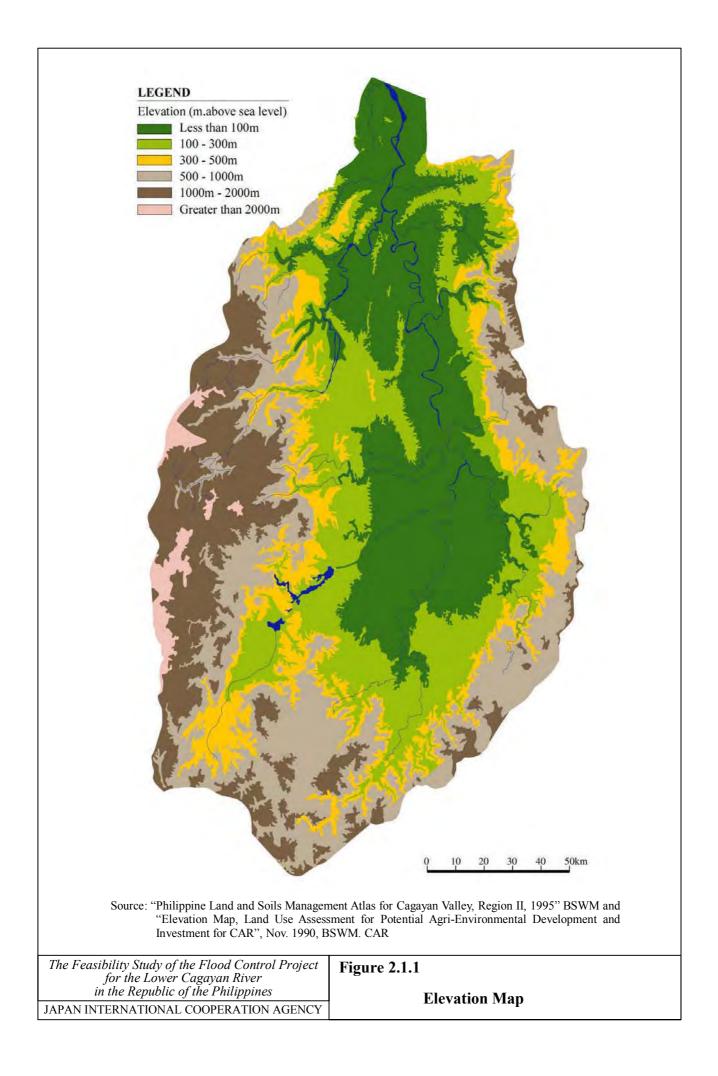
Work item	Unit	Phase I	Quantity Phase II	Total	Remarks
General Item					
(1) Mobilization/demobilizatior	L.S.				
(2) Temporary works	L.S.				
(3) Preparatory work:	L.S.				
AAWPIP Pump Statior					
2.1 Civil works					
(1) Excavation (rock)	m3	20000	-	20,000	
(2) Backfill	m3	14000	-	14,000	
2.2 Electro-Mechanical work: (1) Transmission line with towe	L.S.	1	_	1	5km, 2 towers
(1) Fransmission me with towe (2) Sub-station	L.S.	1	-	1	JKIII, 2 tower:
(3) Pump & Motor with appurtenan	L.S.	1	-	1	
(4) Screen (5) Desilition facilities	L.S.	1	-	1	
(5) Desiliting facilities2.3 Building and concrete work	L.S.	1	-	1	
(1) Pump house	L.S.	1	-	1	
(2) Pump sump: concrete "A	m3	1200	-	1,200	
Booster Pump Station					
3.1 Civil works (1) Excavation (rock)	m3	300	_	300	
(1) Excavation (rock) (2) Backfill	m3	50	-	50	
3.2 Electro-Mechanical work					
(1) Transmission line (2) Sub station	km	15	-	15	
(2) Sub-station(3) Pump & Motor with appurtenan	L.S. L.S.	1	-	1	
(4) Screen	L.S. L.S.	1	-	1	
2.3 Building and concrete work					
(1) Pump house	L.S.	1	-	1	
(2) Pump sump: concrete "A Main Irrigation Systen	m3	120	-	120	
4.1 Main Canal (MC) <i>I: 27.50km, II: 0.00km</i>					
(1) Excavation (indurated)	m3	825,000	-	825,000	
(2) Embankment	m3	824,000	-	824,000	side borrow
 (3) Concrete lining (Class "B" (4) Concrete payament 	m3	28,300	-	28,300	
(4) Concrete pavement(5) Gravel pavement	m3 m3	24,800	-	24,800	
4.2 Related structure for MC		21,000		21,000	
(1) Head gate	no.	10	-	10	
(2) Turnout (2) Cambon	no.	40 2	-	40 2	
(3) Syphon(4) Culvert	L.S. L.S.	20	-	20	
(5) Bridge	m2	2,000	-	2,000	
(6) Cross drain	no.	39	-	39	
(7) Others 4.2 Lateral 6 Such Lateral Canada (LC/SLC) $L = 20.45 km$. He	L.S.	1	-	1	10% of total
 4.3 Lateral & Sub Lateral Canals (LC/SLC)<i>I: 29.45km, II:</i> . (1) Excavation (common) 	m3	120,400	144,400	264,800	
(1) Excavation (common) (2) Embankment	m3	614,200	624,700	1,238,900	I/2: 6km
(3) Concrete lining (Class "B"	m3	11,900	10,700	22,600	
(4) Concrete pavement	m3	-	-	-	
(5) Gravel pavement4.4 Related structure for LC	m3	18,300	18,800	37,100	
(1) Head gate	no.			9	
(2) Turnout	no.	40	60	100	
(3) Syphon	L.S.	6	4	10	
(4) Culvert(5) Cross drain	L.S. no.	19	3	22 25	
(5) Cross drain (6) Others	no. L.S.			23	10% of total
	2.0.				
On-farm System	-		•		
(1) Farm Ditch & Drain with related structur	ha	4,090	2,970	7,060	
(2)(3) Land levelling	ha	-	150	150	
Main Drainage System	inu		100	100	
6.1 Main & Lateral Drains MD-I: 7.60km, II: 0.70km, LD-)			
(1) Excavation (common)	m3			492,000	
(2) Masonry(3) Gabion	m3 m3			100	
6.2 Related structure	1115			100	
(1) Culvert	no.			50	
(2)					
Pangul River Training					
7.1 Cut-off channe (1) Excavation (common)	m3	-	750,000	750,000	
(1) Excavation (continion) (2) Gabion	m3		200	200	
(3) Bridge	m2	-	400	400	
7.2 Flood dike	2		270.000	270.000	1/5 (1
 Embankment Sluice 	m3	-	378,000 2	378,000 2	I/5: 6km
Supprting Measure:	no.	-	2	2	
(1) Rice Mill	no.	4	3	7	
(2) Drying yarc	m2	97,000	73,000	170,000	

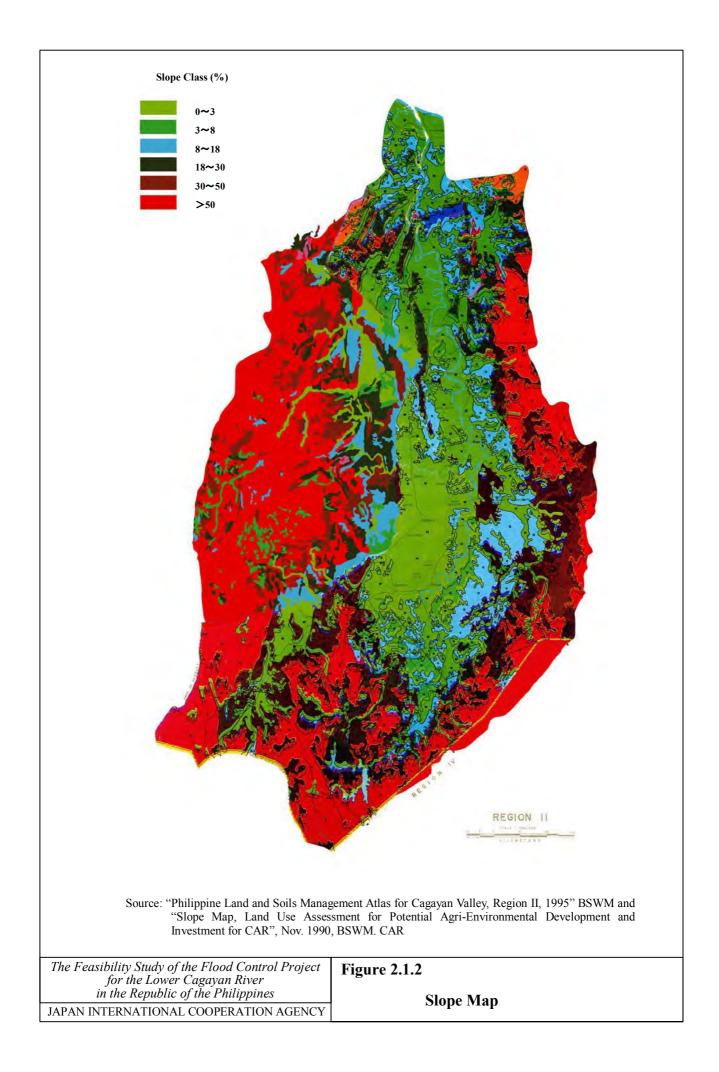
Table 5.1.7 Summary of Quantities for Alcala Amulung West Pump Irrigation Project

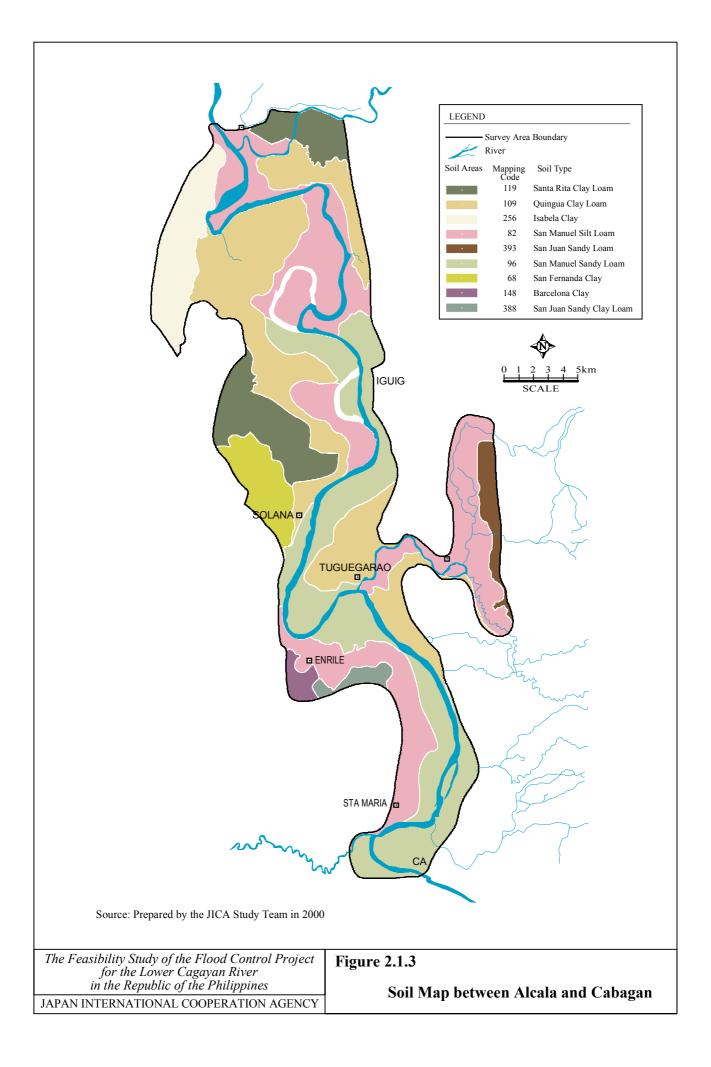
	Household	Resettlement Plan						
Municipality	to be relocated	Area (ha)	Location	Bank*	Topography	Phase	Time	
Lasam	872	17.4	Minanga Sur Callao Norte	Left Left	along dike along dike	2	2007-2010	
			Callao Sur	Left	along dike			
			Aggunetan	Left	along dike			
			Calapangan Norte	Left	along dike			
Alcala	359	7.2	Poblacion	Right	hill	2	2007-2010	
			Tamban	Left	hill			
Amulung	918	18.4	Anquiray	Right	hill	3	2010-2014	
-			Annabuculan/Unag	Left	corn field			
Iguig	784	15.7	Mallabac or adjacent area	Right	hill	3	2010-2014	

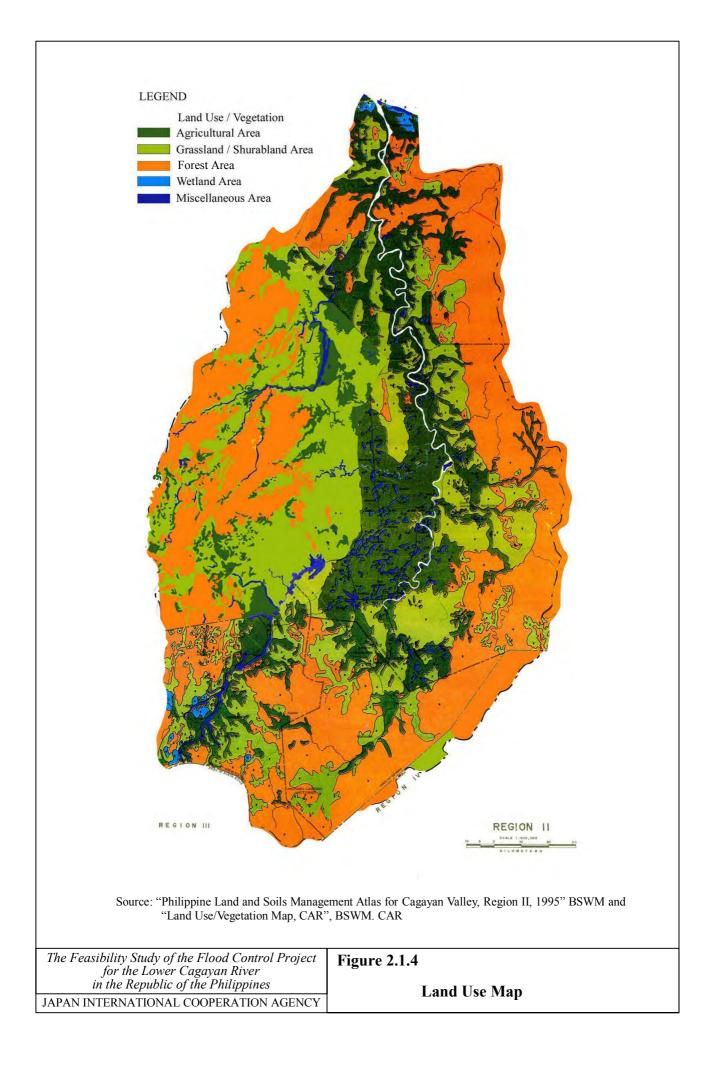
Table 5.3.1 Resettlement Area for Flood Control Project

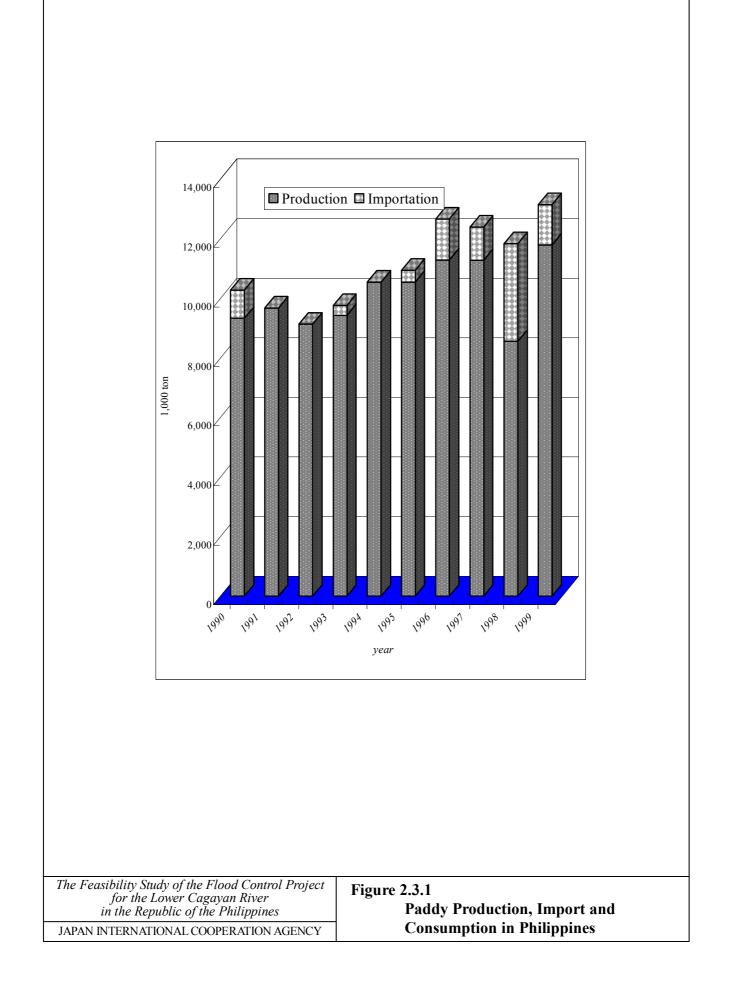
Note: * = left or right bank of the Cagayan Rive

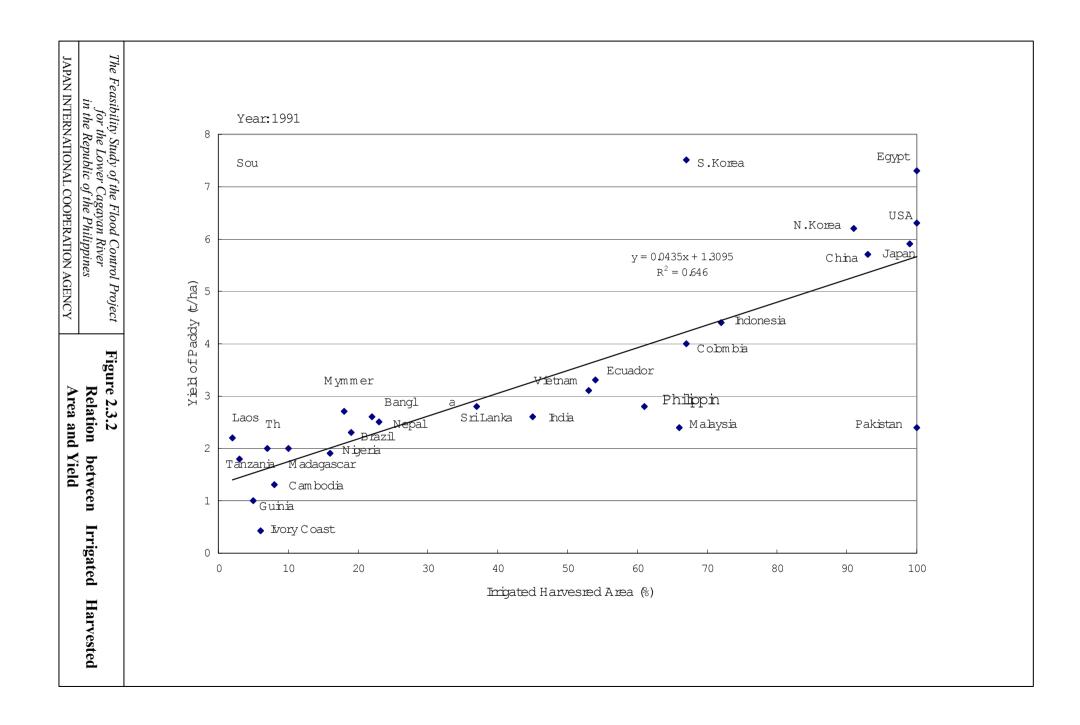

	Location	Household	Proposed Resettlement site*			Proposed	Estimated
Phase		to be	Distance	Municipality	Barangay	Time	Compensation
		relocated	(kn	n)			(1,000 Peso)
Phase 1	Main Canal	2	< 0.5	Alcala	Tamban	2003-2004	120
	Main Canal	1	< 0.5	Alcala	Afusing Daga*2	2003-2004	60
	Main Canal	1	< 0.5	Amulung	Bayabat	2003-2005	60
	Main Canal	3	< 0.5	Amulung	Casingsingan Norte	2003-2005	180
	Sub-Lateral Canal 2-2	1	< 0.5	Amulung	Masical	2003-2005	60
sub-total		8					480
Phase 2	Lateral Canal 9	1	< 0.5	Amulung	Unag	2010-2011	60
Total		9					540

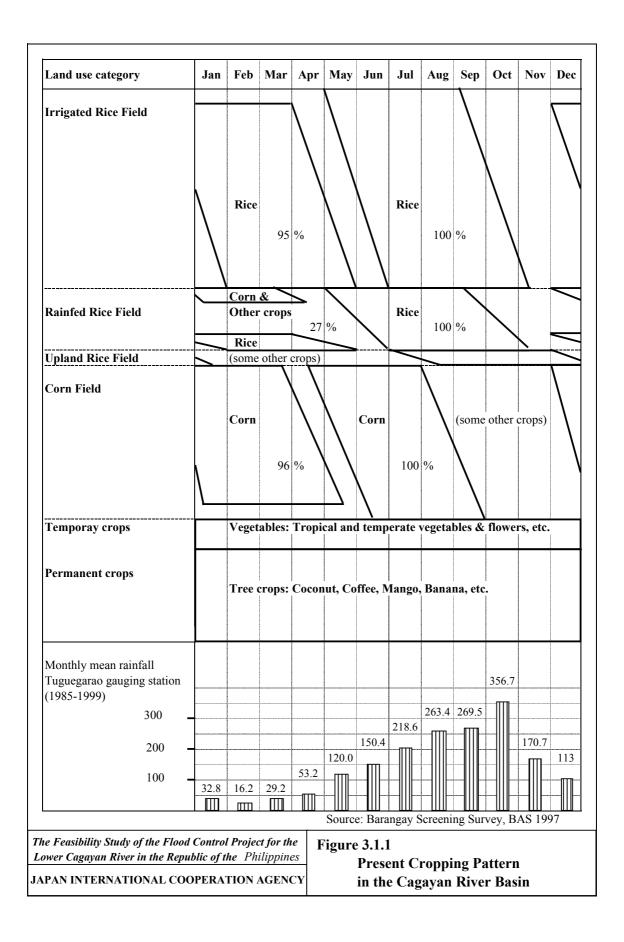

Table 5.3.2 Resettlement Plan for Alcala Amulung West Pump Irrigation Project

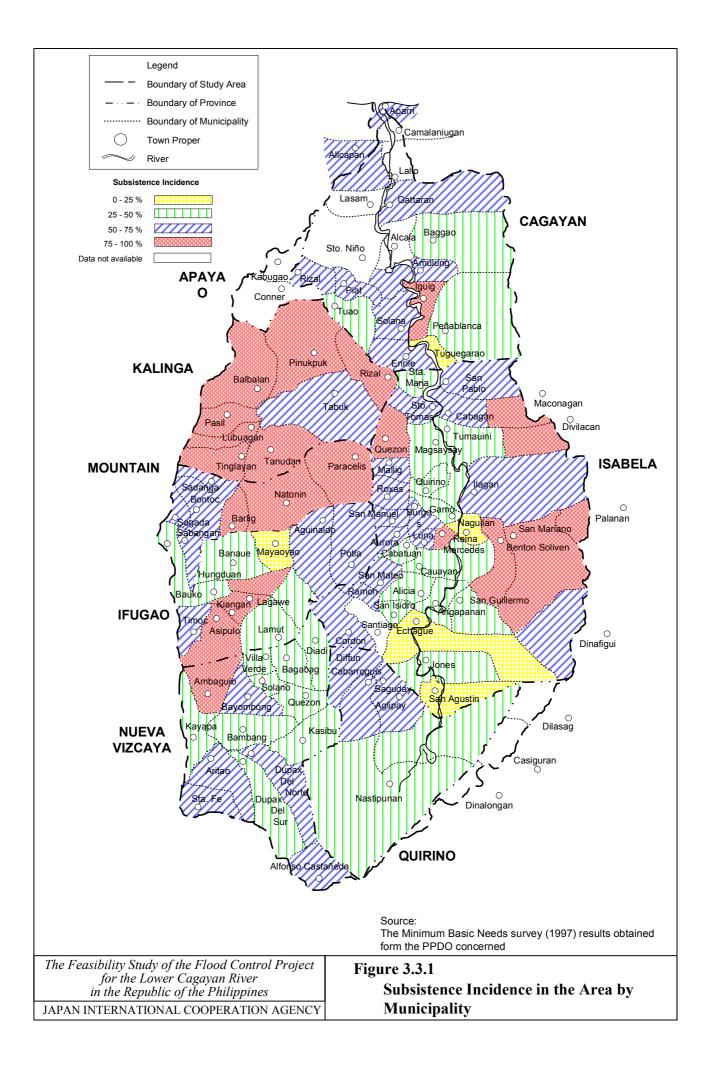

*1: Distance = distance from original location Municipality and Barangay are the same as before resettlement
*2: or Malalatan

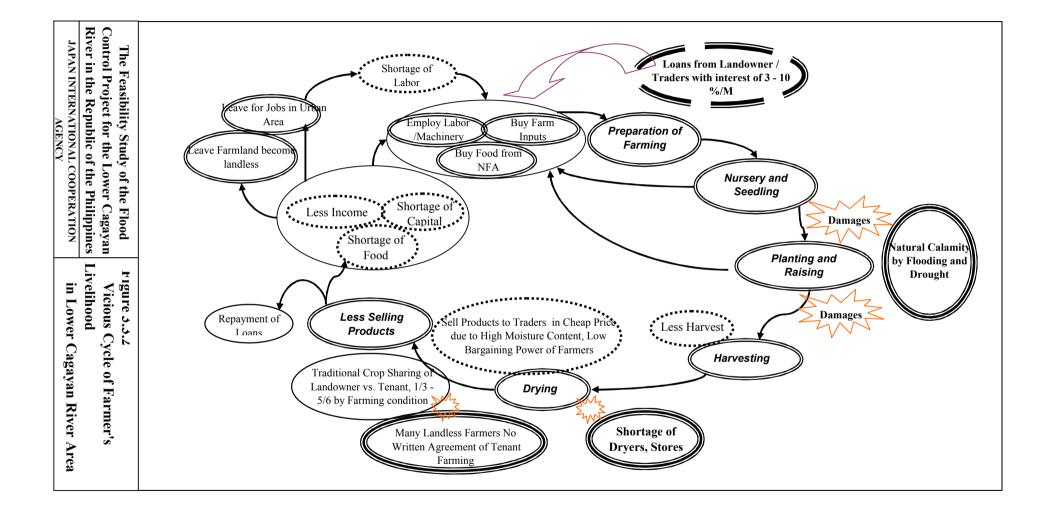

The Feasibility Study of the Flood Control Project for the Lower Cagayan River in the Republic of the Philippines Final Report Supporting Report Annex VIII: Land Use

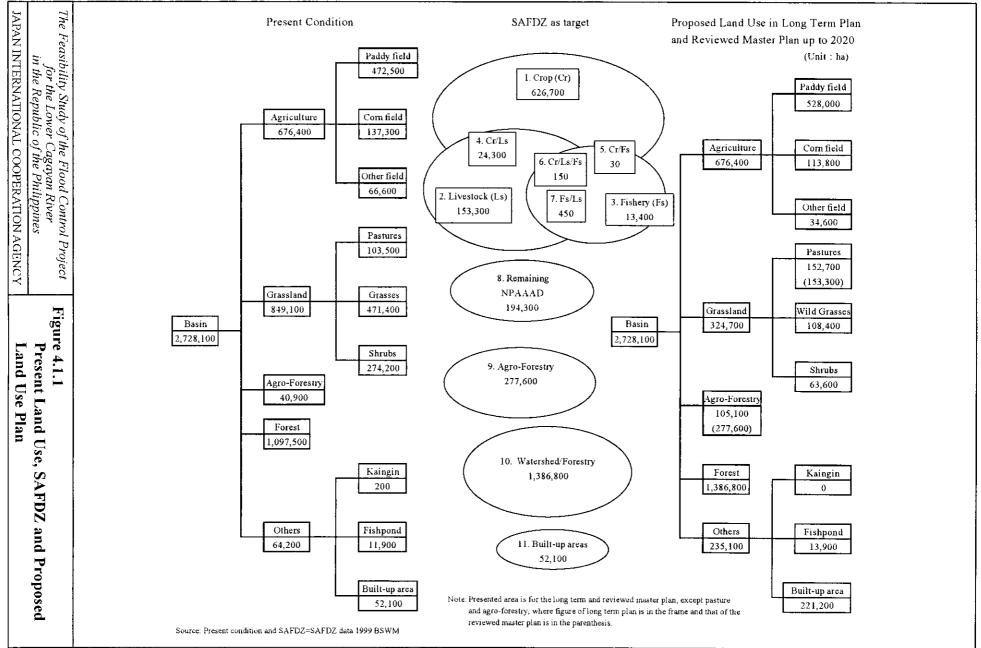

Figures

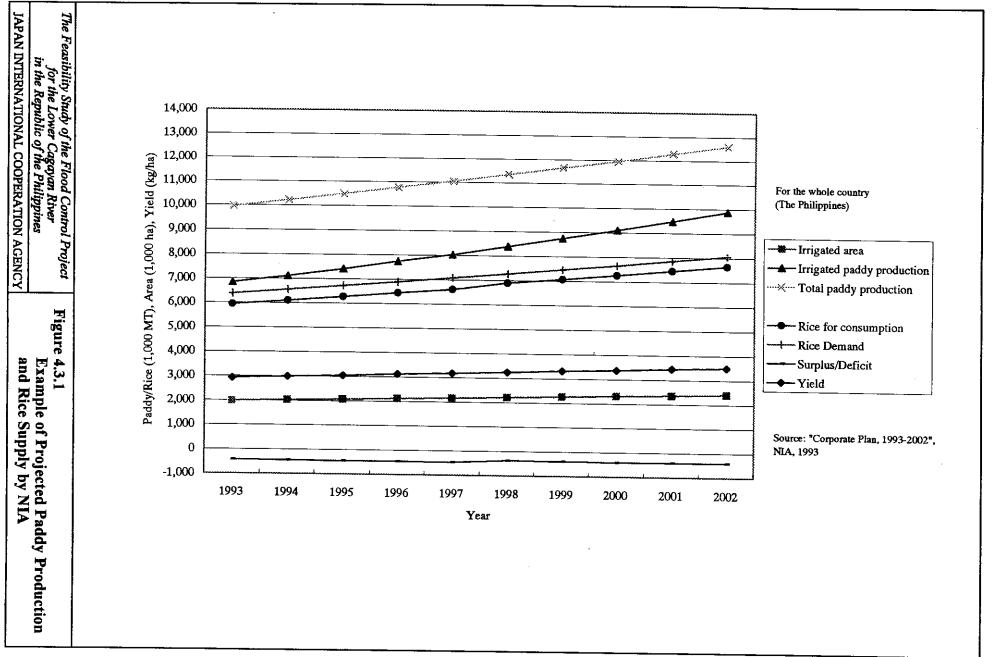


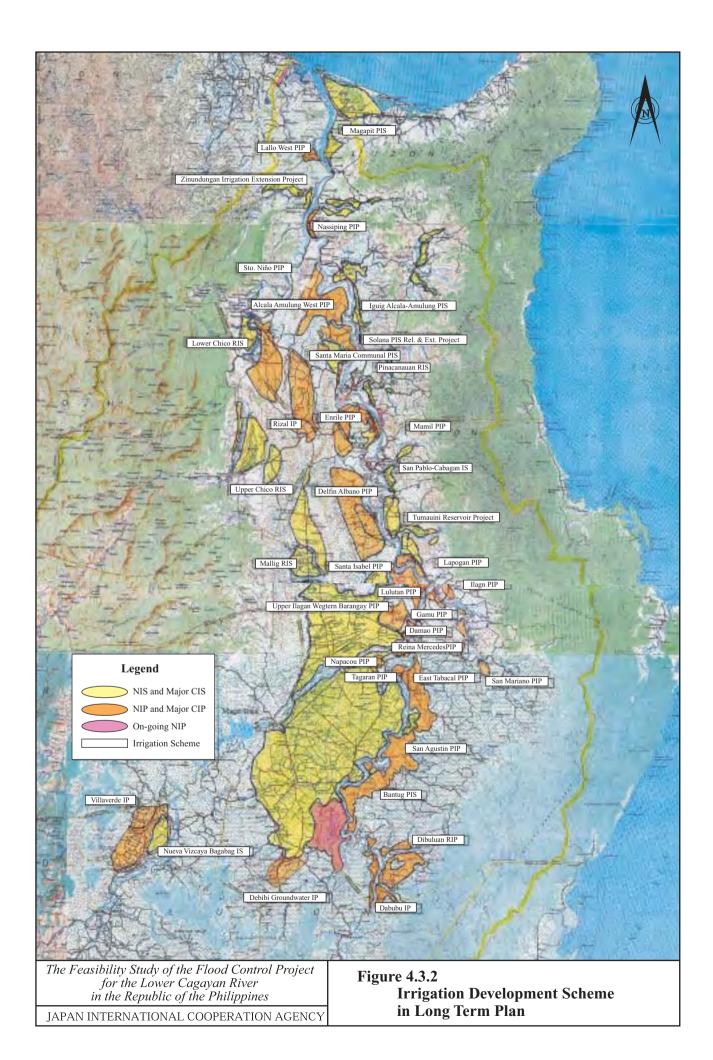


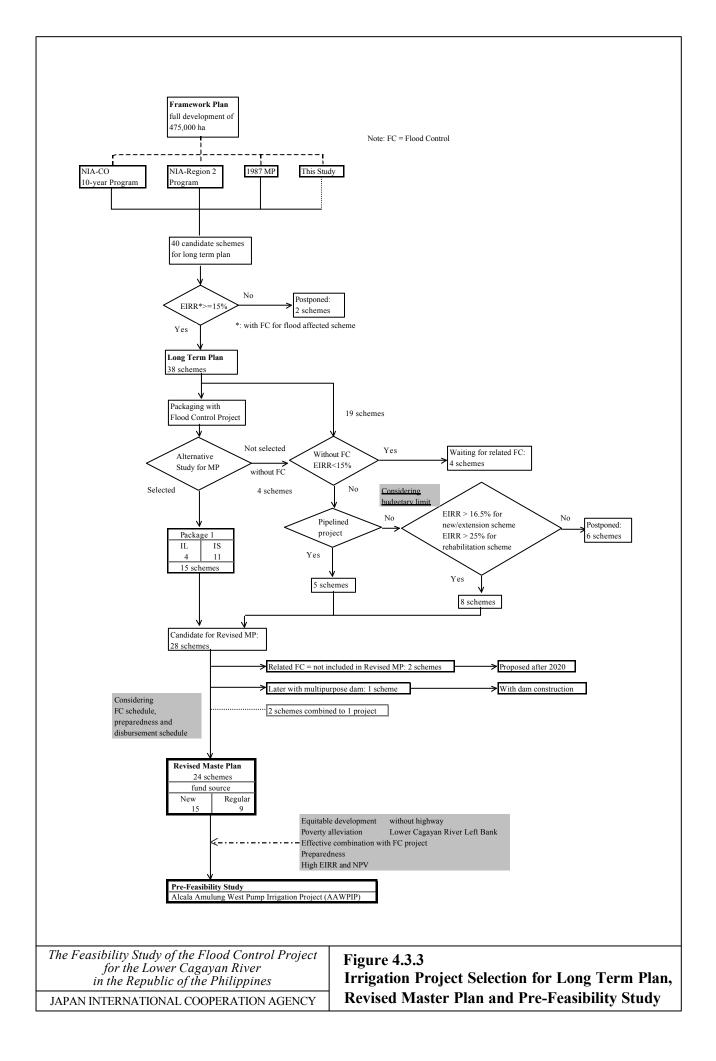


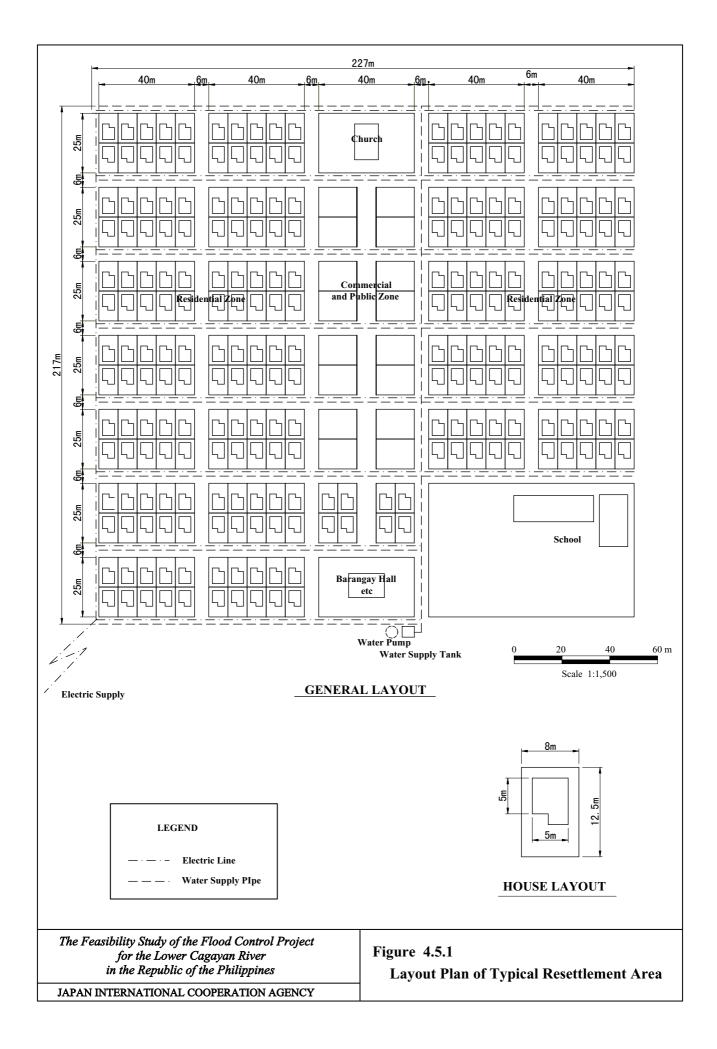


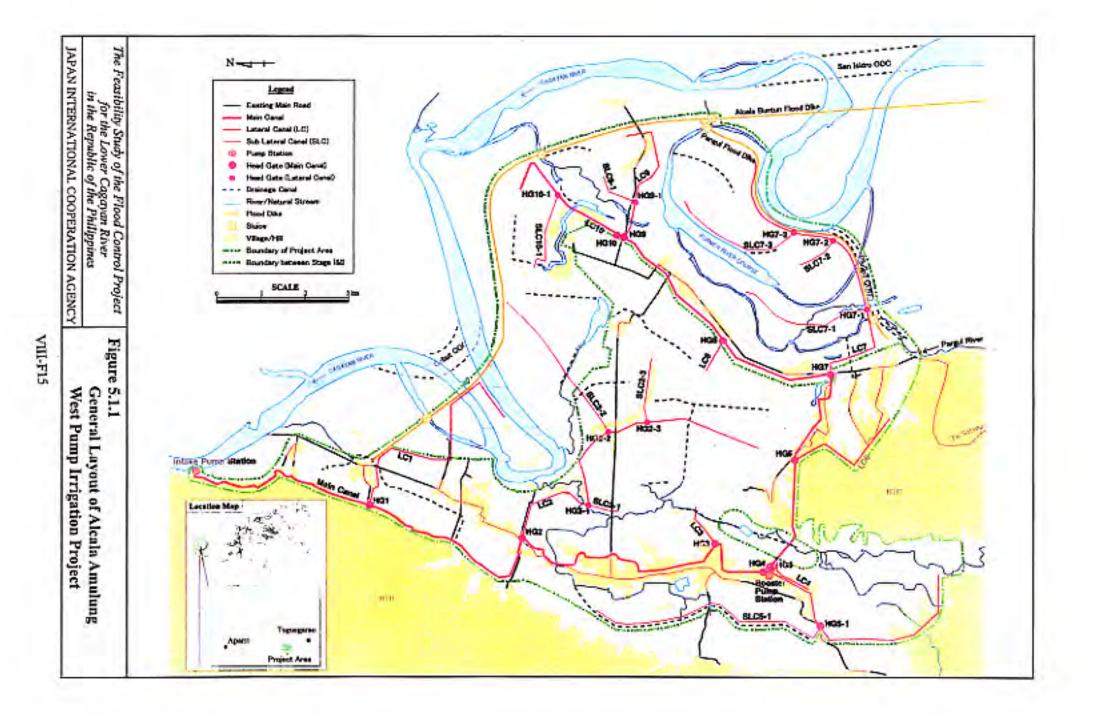


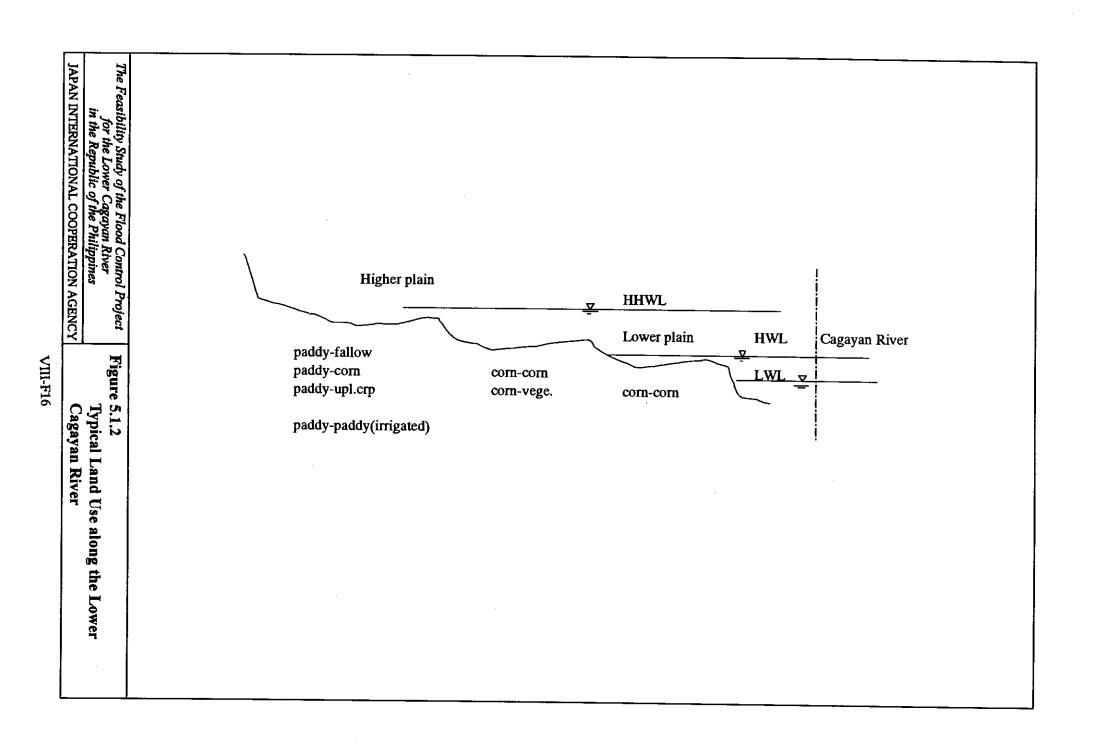


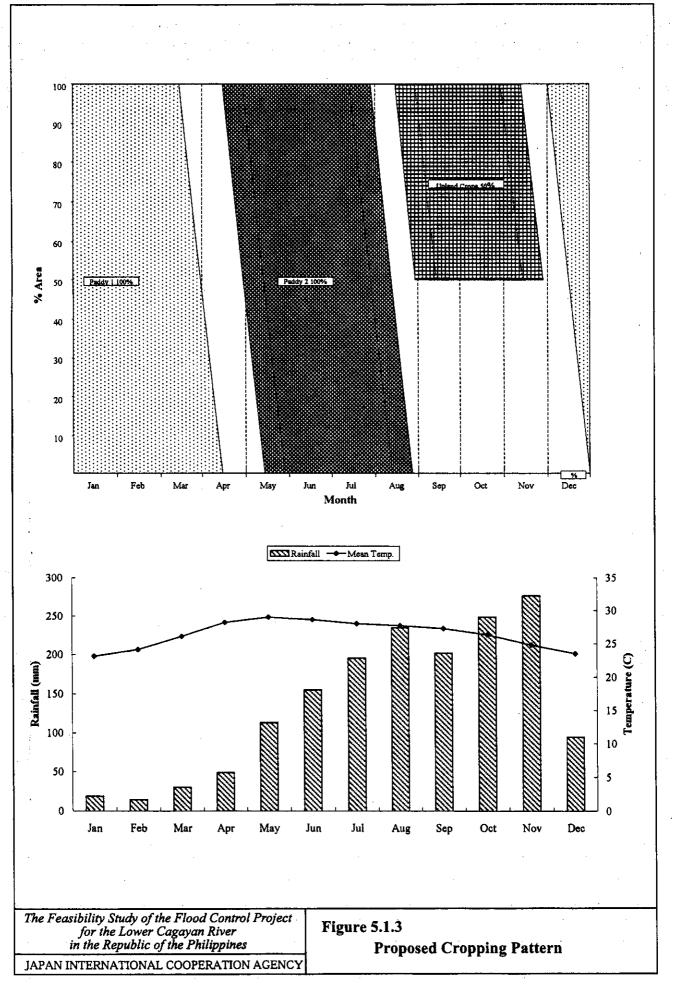


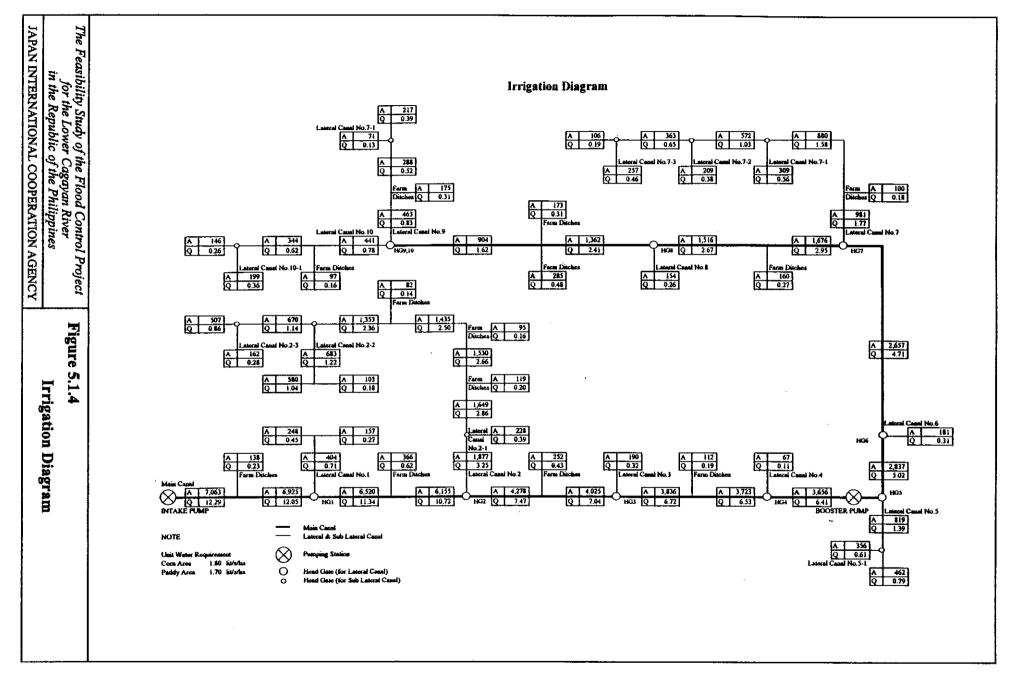


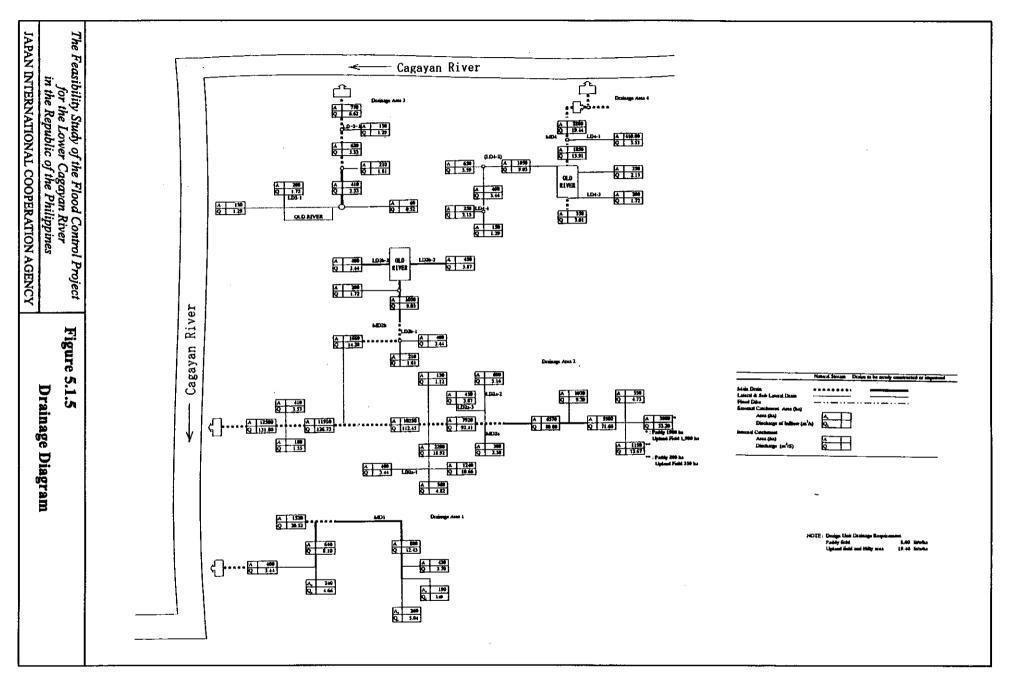

VIII-F10

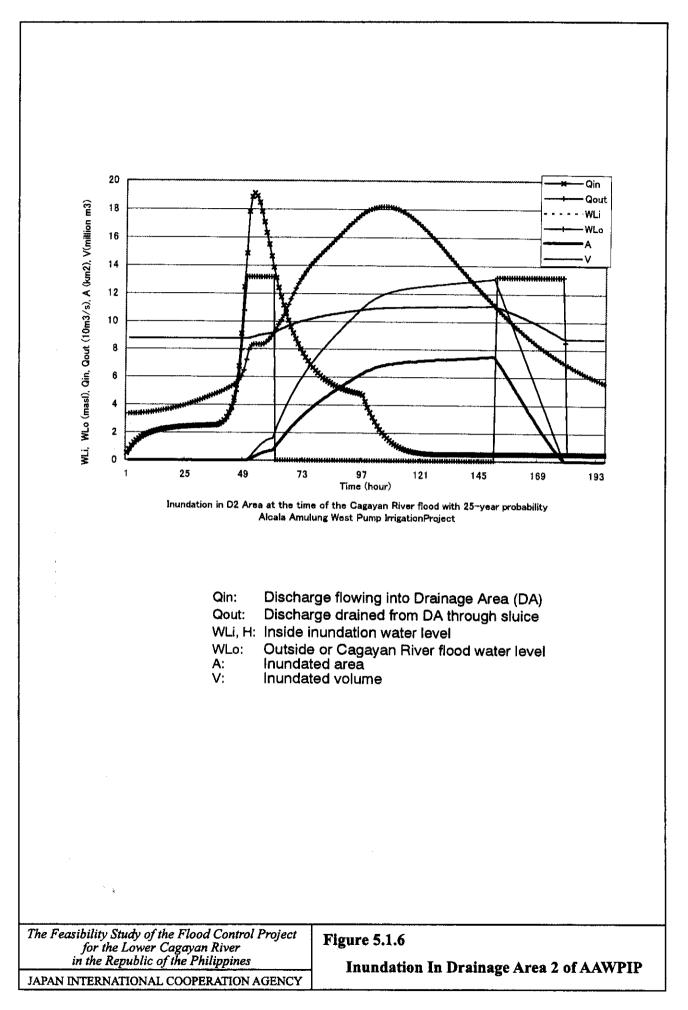


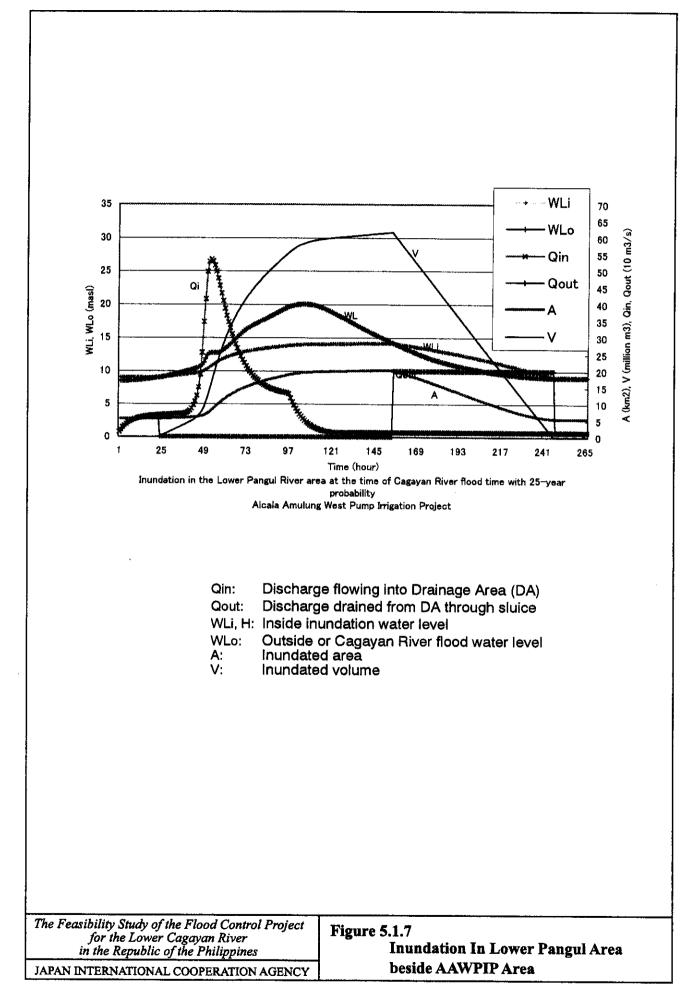

VIII-F11

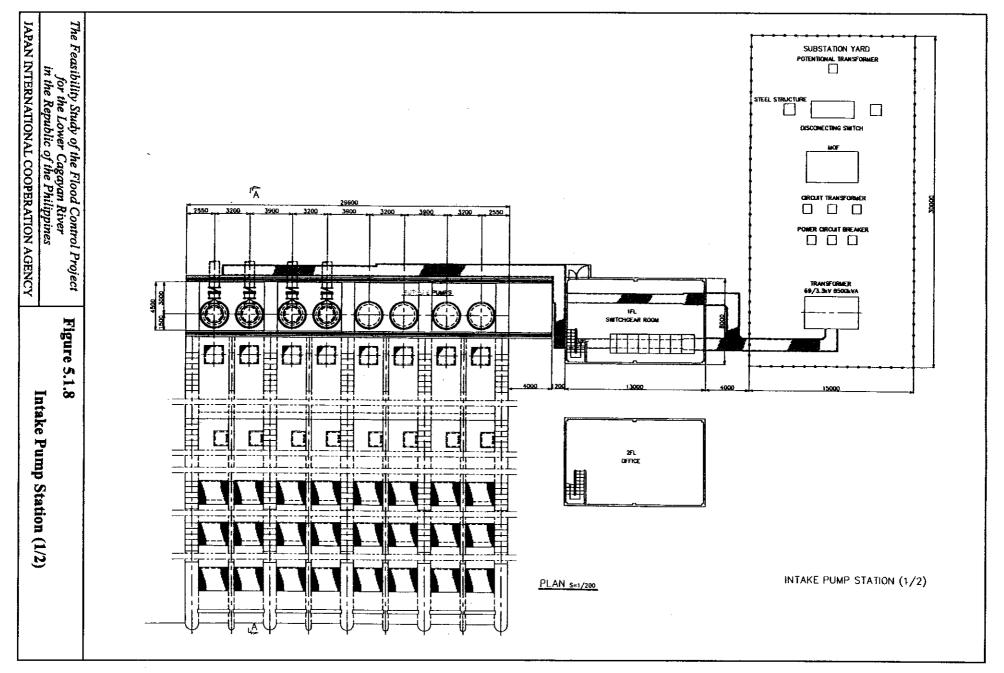




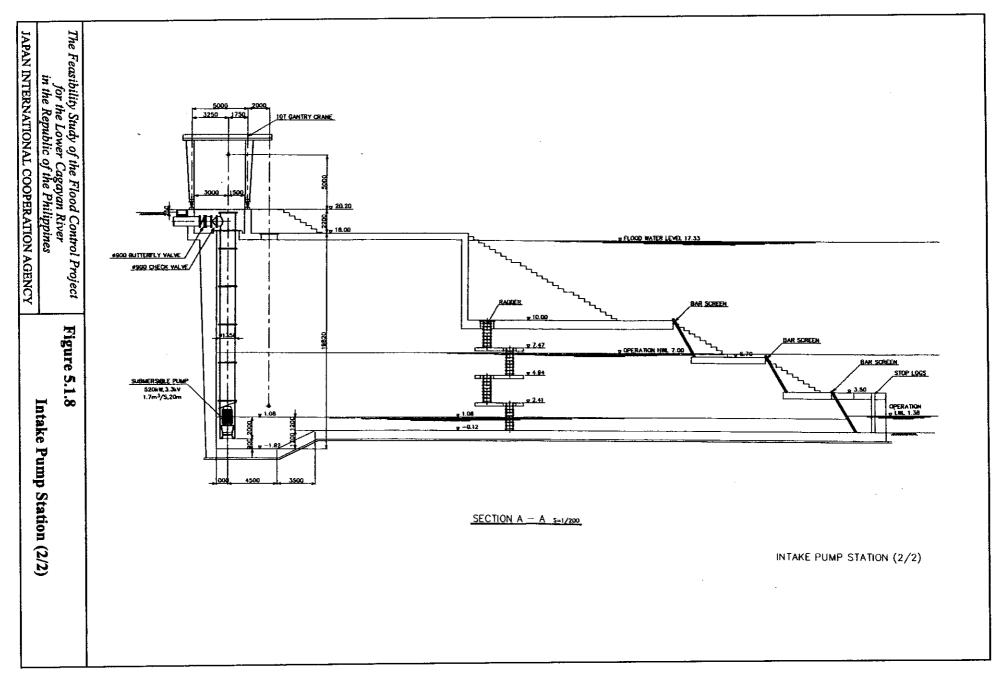


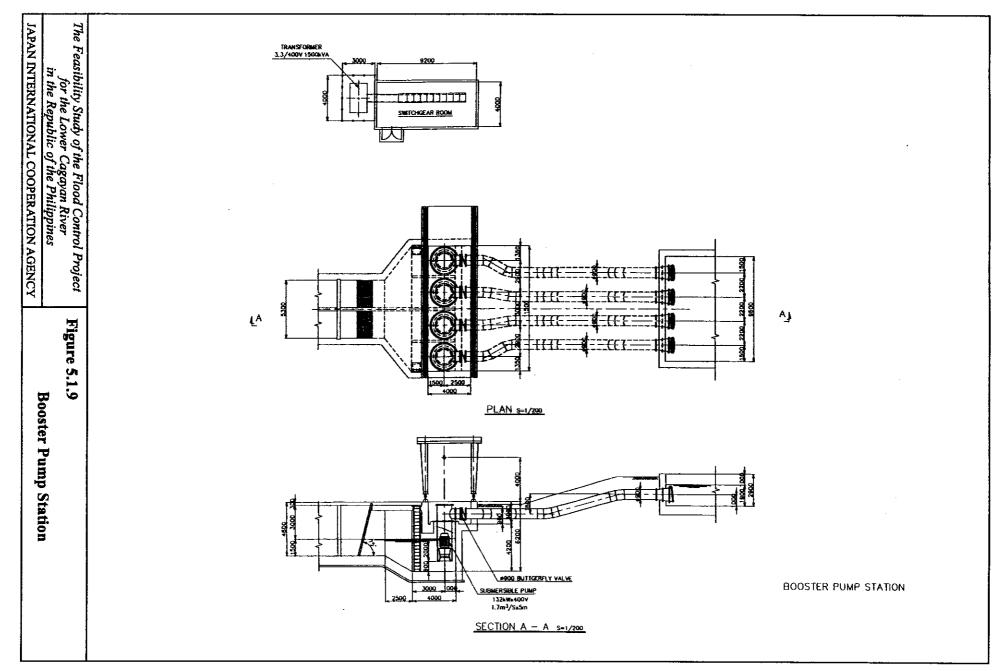


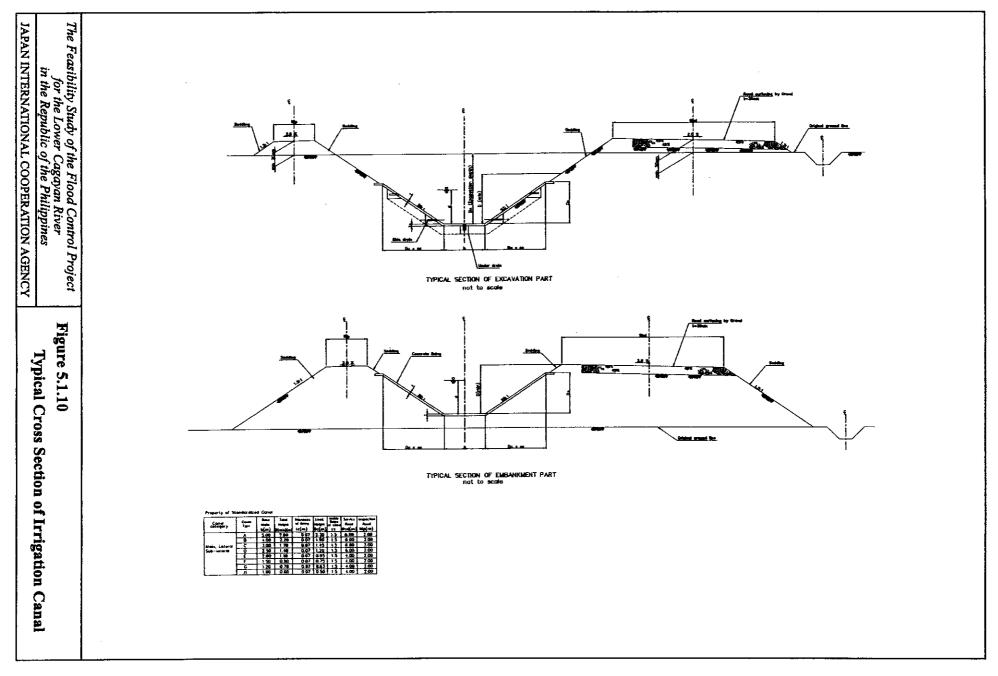




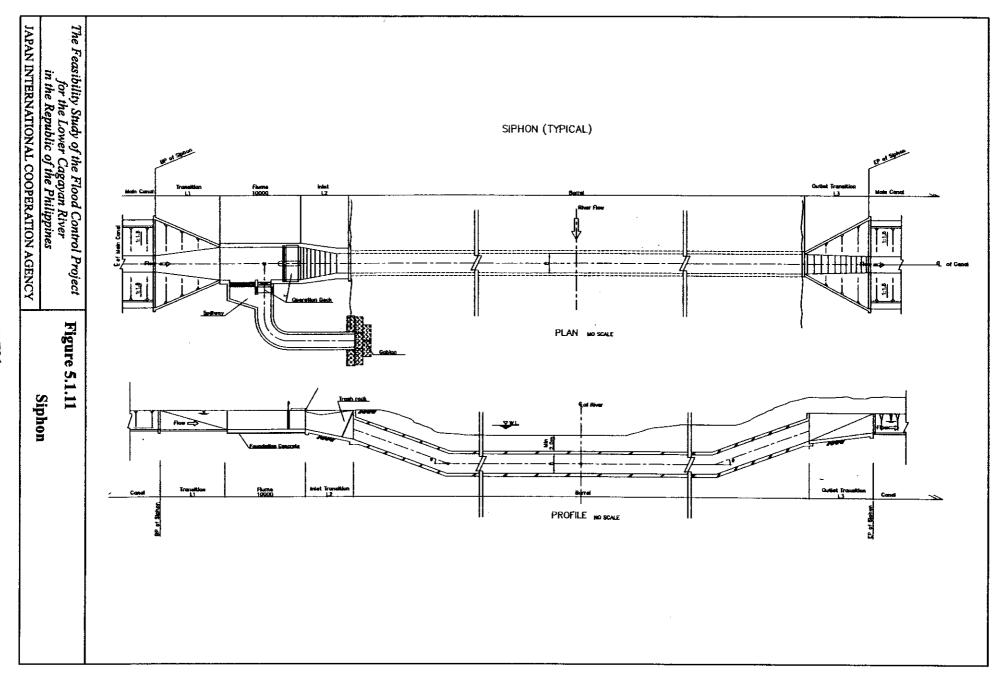
10 E

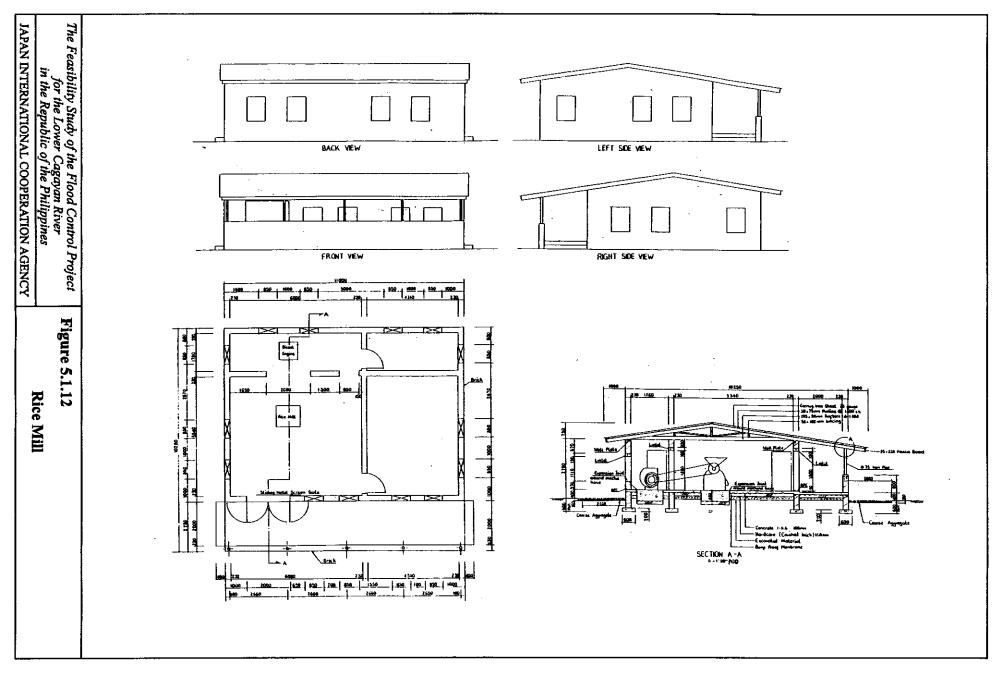

1.0





.


.



1

-

