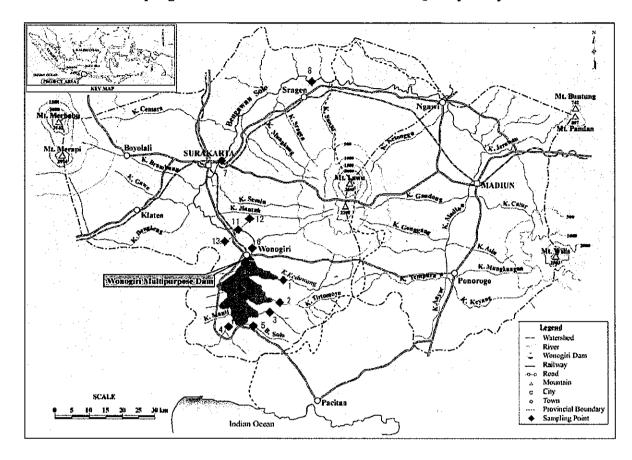
No.2 Water Quality and Turbidity

THE STUDY ON COUNTERMEASURES FOR SEDIMENTATION IN THE WONOGIRI MULTIPURPOSE DAM RESERVOIR IN THE REPUBLIC OF INDONESIA

FINAL REPORT


VOLUME-VI DATA BOOK

No.2: Water Quality and Turbidity

Table of Contents

		<u>Page</u>
СНАРТІ	R 1 WATER AND BED MATERIAL QUALITY ANALYSIS	2-1
1.1	Sampling Location for Water and Bed Material Quality Analysis	2-1
1.2	The Result of Water Quality Analysis	2-2
	1) Wet Season	2-2
	2) Dry Season	2-3
1.3	The Result of Bed Material Quality Analysis	2-4
	1) Wet Season	2-4
	2) Dry Season	2-5
CHAPTI	ER 2 PERIODIC WATER QUALITY MONITORING	2-6
2.1	Sampling Location for Periodic Water Quality Monitoring	2-6
2.2	Monitoring Date and Result of TSS (Total Suspended Solids)	2-7
2.3	Result of TSS Monitoring in the Wonogiri Reservoir / in the Upper Solo River	2-8
2.4	Monitoring Result of Temperature, DO and Turbidity	2-9

Sampling Location for Water and Bed Material Quality Analysis

Item	No.	Location								
Rivers	No.1	Keduang River : Outlet point to Wonogiri reservoir								
	No.2	Tirtomoyo River: Outlet point to Wonogiri reservoir								
	No.3	Temon River : Outlet point to Wonogiri reservoir								
	No.4	Alang River : Outlet point to Wonogiri reservoir								
	No.5	Bengawan Solo : Outlet point to Wonogiri reservoir								
	No.6	Bengawan Solo : Downstream point of Wonogiri Dam site								
	No.7	Bengawan Solo : Downstream point of Kota Surakarta (Jurug Bridge)								
	No.8	Bengawan Solo : Upstream point of confluence point with Madiun River								
		(Tangen Bridge)								
Reservoir	No.9	Central point of Wonogiri reservoir								
	No.10	Vicinity (some 100 m) of the intake point of Wonogiri reservoir								
	No.11	Vicinity (some 100 m) of the intake point of Colo weir								
Irrigation	No.12	East channel (some 10 km downstream point from the intake) of Colo								
Canal		irrigation canal								
	No.13	West channel (some 5 km downstream point from the intake) of Colo								
		irrigation canal								

The Result of Water Quality Analysis - Wet Season - (Analysed by BPKL)

2	Danmatara	Trait	Standard							Location						
Ž,) IIIIO	Class II	No.1	No.2	No.3	No.4	No.5	No.6	No.7	No.8	0.0N	No.10	No.11	No.12	No.13
1	Temperature	သ	€∓	28	28	30	31	31	29	30	31	30	29	29	30	30
2	Turbidity	UIN		312	136	90	138	26	861	101	123	120	342	209	262	288
٣	Electric conductivity	mp/so/um	!	166	127	364	356	232	152	370	306	160	155	128	129	139
₹	Total Solids	mg/L	1,050	994	523	300	355	185	296	342	330	266	451	288	347	370
S	Total Suspended Solids	mg/L	20	357	145	93	123	32	196	86	128	160	349	203	261	278
9	Hd	•	6-9	7.1	7.0	7.2	7.2	7.0	7.0	7.0	7.0	7.1	7.1	7.1	7.1	7.1
7	Hardness	mg/L	1	95	64	191	171	102	99	117	115	9/	74	4	29	99
∞	Iron (Fe)	T/gm	(6.0)	1.05	15'0	0.50	0.13	0.57	89'0	0.44	0.72	0.83	0.45	1.03	0.46	1.03
٥	Manganese (Mn)	mg/L	(0.1)	1.08	0.46	0.64	0.12	0.63	1.20	0.64	0.93	99'0	0.41	1.10	0.61	0.49
2	Copper (Cu)	mg/L	0.02	80.0	0.01	0.01	pu	0.01	0.01	pu	pu	0.02	0.01	pu	pu	pu
11	Zinc (Zn)	ng/L	0.05	0.136	0,049	0.029	0.008	0.033	0.012	0.187	0.062	0.028	0.160	0.043	0.012	0.038
12	Chromium (VI) (Cr6+)	mg/L	0.05	0.339	0.270	0.309	0.246	0.536	0.458	0,294	0.397	0.398	0.784	0.658	0.464	0.664
13	Cadmium (Cd)	mg/L	0.01	pu	맫	Pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu
14	Total Mercury (T-Hg)	mg/L	0.002	pu	Pil	pu	pu	pu	pu	pu	pu	pu	pu	pu	pu	nd
15	Lead (Pb)	mg/L	0.03	pu	됟	800'0	뒽	800'0	900'0	pu	0.016	pu	0.003	910'0	0.015	0.014
92	Arsenic (As)	mg/L	F	0.017	0.001	P	0.001	90.00	9000	nd	9000	0,011	900'0	0.007	0.003	0.009
17	Cyanide (CN)	T/But	(0.02)	0.071	0.009	0.002	0.001	0.007	0.027	0.002	0.007	0.019	0:030	0.034	0,033	0.022
18	Ammonia (NH ₃)	mg/L	(0.5)	2.63	0.45	0.22	0.20	0.21	1.55	0.65	1.42	1.10	1.15	1.26	1.22	0.84
19	Nitrate (NO ₃)	mg/L	10	1.438	0.674	0.631	0.787	0.235	pu	nđ	pu	pu	pu	pu	pu	pu
20	Nitrite (NO ₂)	mg/L	0.06	0.115	0.109	0.114	860.0	0.110	0.123	0.174	0.452	0.117	0.116	0.144	0.225	0.220
71	Total Phosphorus (T-P)	mg/L	0.2	0.150	0.010	290.0	0.041	0.090	0.116	0.290	0.313	890.0	0.259	0.198	0.223	0.174
22	Dissolved Oxygen (DO)	mg/L	4	6.4	6.8	6.4	6.4	8.9	6.4	5.1	4.4	6.4	6.4	6.8	9.9	6.2
23	Biochemical Oxygen Demand (BOD)	mg/L	3	13.5	1.4	4.5	3.7	1.4	3.6	14.8	14.3	8.2	4.5	4.0	4.5	7.9
24	Chemical Oxygen Demand (COD)	mg/L	25	85	17	48	20	61	52	24	43	53	43	28	19	29
25	Detergent	mg/L	200	0.130	0.095	0.024	0.056	0.228	0.011	0.092	ng	0,111	0.121	pu	nđ	pu
56	Phenol	mg/L	!	0.014	0.011	0.010	0.014	0.013	0.012	0.013	0.011	0,011	0.011	0.011	0.011	0.014
27	Oil and fat	mg/L	1,000	7.7	18	13	80	7	\$	2		6	2	13	zero	1
78	Coliform group	JPT/100ml	2,000	2.4 x 10 ⁵	2.4 x 10 ³	4.6 x 10 ⁵	1.1×10^{6}	2.3 x 10 ⁴	2×10^4	9.3 x 10 ⁴	zero	4×10^{3}	2,4 x 10 ⁵	7.5 x 10 ⁴	9 x 10 ³	2.4×10^{5}
શ		JPT/100ml	1,000	9 x 10 ⁴	2.4 x 10 ³	1.5 x 10 ³	4.6 x 10 ³	2.3 x 10 ⁴	zero	1.5 x 10 ⁴	zero	zero	7×10^3	7.5 x 10 ⁴	4×10^{3}	2.4×10^{5}
30		qđđ	(11)	0	0	0	0	0	0	0	0	0	0	0	0	0
31	Dieldrin	qdd	(17)	0.034	0	0	0	0	0	0.057	0	0	0	0.015	0.022	0.015
32	рот	qdd	2	0	0	0	0	0	0	0	0	0	0	0	0	0
33	Lindane	qdd	(26)	0.015	0	0.001	0	0	0	0	0	0	0	0	0	0.001
34	34 Endrin	ppp	4	0	0	0	0	0	0	0	0	0	0	0	0	0
Zoge	Note) "nd" means not detected.															

Note) "nd" means not detected.

Standard value: Class II of Government Regulation No. 82/2001 (Class I in case a vakue of class II is not provided)

The Result of Water Quality Analysis - Dry Season - (Analysed by BPKL)

			Standard							Location						
Š.	Parameters	Cnit	Class II	No.1	No.2	No.3	No.4	No.5	No.6	No.7	No.8	No.9	No.10	No.11	No.12	No.13
-	Temperature	သ	∓3	31.0	31.5	29.5	34.5	32.0	31.0	29.0	30.5	31.0	30.5	31.0	31.0	31.0
7	Turbidity	NIU	-	9	9	12	7	8	1	6	7	4	1	8	8	22
т	Electric conductivity	umhos/cm	-	248	238	404	402	260	180	492	475	179	178	181	178	180
4	Total Solids	mg/L	1,050	175	169	279	273	182	124	342	326	126	122	134	129	132
5	Total Suspended Solids	mg/L	50	6	12	12	8	10	5	18	11	80	5	15	12	13
9	Hd	•	6-9	7.3	7.1	7.3	7.2	7.3	7.1	7.1	7.1	7.1	7.2	7.1	7.2	7.1
7	Hardness	mg/L	•	94	93	179	153	100	75	137	145	70	72	72	75	75
∞	Iron (Fe)	mg/L	(0.3)	1.50	96.0	1.89	0.75	0.82	0.64	1.28	1.14	0.28	0.42	1.82	3,66	2.07
9	Manganese (Mn)	mg/L	(0.1)	10'0	0.07	0.15	0.02	0.22	0.02	0.37	0.32	pu	0.20	0.11	pu	0.30
2	Copper (Cu)	mg/L	0.02	10'0	ptu	pu	60.0	0.02	0.02	0.01	0.03	0.03	0.04	0.04	0.01	0.02
Ξ	Zinc (Zn)	mg/L	0.05	0.164	0.002	0.405	0.098	0.033	690'0	0.088	0.201	0.091	820.0	0.024	0.072	0.094
12	Chromium (VI) (Cr6+)	mg/L	0.05	890.0	690.0	0.071	0.072	0.074	690.0	0.077	0.075	690'0	690.0	0.070	0.069	0.072
13	Cadmium (Cd)	mg/L	10:0	рu	pu	pu	pu	pu	pu	pu	pu	pu	pu	pa	pu	pu
14	14 Total Mercury (T-Hg)	mg/L	0.002	pu	pu	pu	pu	pu	pu	pu	pu	nd	рu	pu	pu	pu .
15	Lead (Pb)	mg/L	0.03	pu	pu	pu	рu	pu	pu	pu	pu	ри	pu	pu	pu	pu
16	Arsenic (As)	mg/L	1	0.051	0.049	0.086	0.053	0.066	0.063	0.071	0.065	0.053	0.050	0.048	0.045	0.053
17	Cyanide (CN)	mg/L	(0.02)	0.008	0.001	0.000	0.000	0.001	0.005	0.000	0.001	0.002	0.004	0.006	0.001	0.002
18	Ammonia (NH3)	mg/L	(0.5)	0.51	0.19	0.20	0.28	0.22	0.44	0.31	0.37	0.40	0.33	0.18	0.15	0.18
61	Nitrate (NO ₃)	mg/L	10	0.781	pu	0.077	pu	nd	pu	0.109	pu	pu	pu	pu	pu	pa
20	Nitrite (NO ₂)	mg/L	90.0	pu	pu	pu	pu	pu	рu	0.073	pu	pu	pu	pu	pu	pu
21	Total Phosphorus (T-P)	mg/L	0.2	pu	0.016	0.040	pu	рu	pu	0.334	0.448	pu	pu	0.017	pu	pu
22	Dissolved Oxygen (DO)	mg/L	4	7.6	6.3	5.8	5.9	7.8	7.8	5.1	3.7	9'9	6.8	6.8	7.4	7.8
23	Biochemical Oxygen Demand (BOD)	T/gm	3	2.5	4.2	5.9	2.9	3.8	1.5	10.9	11.3	2.2	2.1	7.7	2.5	1.0
22	Chemical Oxygen Demand (COD)	mg/L	25	21	31	31	21	21	13	62	103	31	16	26	16	21
25	Detergent	mg/L	200	0.063	0.055	0.070	0.071	0.108	800.0	0.245	0.113	0.015	pu	0.02	890'0	0.068
56	Phenol	mg/L	ì	nd	pu	pu	0.019	pu	pu	pu	pu	0.018	pu	pu	pu	pu
27	Oil and fat	mg/L	1,000	27	21	13	=	27	18	3	18	2	2	nihil	2	2
28	Coliform group	JPT/100ml	5,000	4.3×10^3	4.6 x 10 ⁴	4.6 x 10 ⁴	1.1 × 10 ⁵	2.3×10^{3}	9.0×10^2	2.4 × 10 ⁴	1.5 x 10 ⁴	9.0×10^{2}	9.0×10^{2}	9.3 x 10 ³	2.0×10^{3}	1.1×10^5
29	Coliform feces	JPT/100ml	1,000	4.3×10^{3}	2.1×10^3	4.3×10^{3}	1.5 x 10 ⁴	2.3×10^{3}	nihil	9.3 x 10 ³	2.3×10^{3}	4.0×10^2	nihil	2.1 x 10 ⁴	1.5 x 10 ⁴	4.6 x 10 ⁴
30	Aldrin	qdd	(17)	0	0	0	0	0	0	0	0	0	0	0	0	0
31	Dieldrin	ppp	(17)	0	0	0	0	0	0	0	0	0	0	0	0	0
32	DDT	qdd	7	0	0	0	0	0	0	0	0	0	0	0	0	0.002
33	Lindane	ppp	(26)	0.027	0	0	0.017	0.046	0	0	0	0	800.0	0.046	0	0
34	Endrin	ddd	4	0	0	0	0	0	0	0	0	0	0	0	0	0

Note) *nd* means not detected.

Standard value: Class II of Government Regulation No.82/2001 (Class I in ease a vakue of class II is not provided)

Titnimetry

83.230 ± 8.000 40.000 ± 1.000

99.270 ± 8.025 22.500 ± 0.865

115.310 ± 8.025 65.500 ± 0.865

 179.430 ± 8.125 36.000 ± 1.000

 $219.540 \pm 8,000$ 5.500 ± 0.865

 75.220 ± 8.000 32.000 ± 0.865

g/gH g∕gµ 8/34

Chemical Oxygen Demand (COD)

The Result of Bed Material Quality Analysis - Wet Season - (Analysed by BATAN)

Ĺ			ļ-							
Ž	Darameters	Thit				Location		•		Test Methode
,			No.1	No.2	No.3	No.4	No.5	No.6	No.7	
<u> </u>	Temperature	ပ္စ	30.0	30.0	30.0	30.0	30.0	29.0	30'0	Temometry
7	Smell (Odor)	t	Organic smell	Organic smell	Odoriess	Odorless	Odoriess	Organic smell	Organic smell	Organoleptic
ť	Ignition loss	%	4.525 ± 0.075	5.990 ± 0.100	6.755±0.075	5.155±0.075	4.370 ± 0.050	10.645 ± 0.075	8.085 ± 0.025	Gravimetry
4	Hq 1	ı	0.9	6.0	6.0	6.0	0.9	6.0	6.0.	pH meter
ď	i Iron (Fe)	g/gri	81,600 ± 1900.000	25,600±150.000	31,500 ± 40.000	24,400 ± 170.000	36,900 ± 100.000	55,200 ± 500.000	42,300 ± 100.000	F-AAS
9	Manganese (Mn)	3/3nl	1538.800 ± 20.050	1137.920 \pm 10.000	983,680 ± 13,000	2595.420 ± 70.050	1035.290 ± 50.050	1910.450 ± 30.500	975.950 ± 50.000	F-AAS
~	Copper (Cu)	g/gri	31.400 ± 0.560	43.060 ± 0.360	31.540 ± 0.760	27.520 ± 0.260	31,400±1.000	40.710±0.510	34.500 ± 0.300	F-AAS
∞	: Zinc (Zn)	B/Bri	6.010 ± 0.032	5.660 ± 0.036	4.140 ± 0.031	3.210 ± 0.062	3.800 ± 0.033	3.690 ± 0.017	11.010 ± 0.130	F-AAS
0	Chromium (VI) (Cr6+)	S/Srl	20.770 ± 2.400	14.930 ± 0.310	21.630 ± 1.600	16.790 ± 2.100	23.840 ± 0.390	16.420 ± 2.400	15.810 ± 0.800	F-AAS
Ē	10 Cadmium (Cd)	5/Srl	1.170 ± 0.040	0.830 ± 0.046	0.680±0.032	1.030 ± 0.021	14.120 ± 0.220	0.820 ± 0.014	0.580 ± 0.018	F-AAS
11	1 Total Mercury (T-Hg)	S/SH	0.106 ± 0.065	0.044 ± 0.003	0.132 ± 0.020	0.056 ± 0.025	0.106 ± 0.002	0.102 ± 0.033	0.068 ± 0.002	SS-AAS
12	2 Lead (Pb)	g/gri	32.420 ± 1.430	32.400 ± 1.430	23,150 ± 0,910	33.210 ± 2.143	21.570 ± 2.400	26.870 ± 3.430	26.460 ± 0.670	F-AAS
13	3 Arsenic (As)	इ/इत	0.038	0.005	0.043	0.038	0.025	0.038	0.005	Spectropho-tometry
14	4 Cyanide (CN)	g/gu	67.000±1.000	35.000 ± 0.500	26.500 ± 0.500	18.500 ± 0.500	16.500 ± 0.500	27.900 ± 0.100	22.200 ± 0.400	ISE
-	15 Phosphate(PO4)	इ/इत	579.217 ± 6.630	342.161 ± 16.012	391.727 ± 0.115	229.313 ± 5.382	283.961 ± 10.882	449.384 ± 3.713	398.557 ± 9.038	Spectropho-tometry
16	6 Organic matter	g/gn	179,430 ± 8.125	155.390 ± 8.075	139.360 ± 8.000	203.510 ± 0.000	123.310 ± 8.025	107.290 ± 8.150	75.220 ± 0.000	Titrimetry
17	7 Chemical Oxygen Demand (COD)	g/gri	37.000±0.865	17.500 ± 0.500	15.500 ± 0.865	10.000 ± 0.500	47.000 ± 0.500	22.500 ± 0.865	40.500 ± 1.000	Spectropho-tometry
Ĺ										
2	Darameters	Tinit			•	Location				Test Methode
1		i com	No.8	No.9	No.10	No.11	No.12	No.13		
	Temperature	ပူ	29.0	30.0	29.0	29.0	30.0	30.0		Temometry
7	Smell (Odor)	+	Organic smell	Organic smell	Organic smell	Drainage ditch smell Drainage ditch smell	Drainage ditch smell	Organic smell		Organoleptic
3	Ignition loss	%	11.395 ± 0.075	22.230 ± 0.070	12.380 ± 0.050	14.685 ± 0.075	9.910 ± 0.050	9.875 ± 0.075		Gravimetry
4	Hd	ł	7.0	7.0	6.0	6.0	6.0	6.0		pH meter
'n	Iron (Fe)	ड/इत	$33,100 \pm 0.001$	$34,800 \pm 30.000$	50,900 ± 100.000	31,400 ± 800,000	32,500 ± 160,000	42,900 ± 100.000		F-AAS
9	Manganese (Mn)	8/8rl	1249.700 ± 40.000	739.920 ± 0.830	1720.750 ± 60.500	1304,520 ± 17,000	$1896,750 \pm 50.050$	1837.670 ± 10.000		F-AAS
7	Copper (Cu)	g/gri	43.430 ± 0.300	43.480 ± 0.500	36.080 ± 0.400	33.600 ± 0.200	36.980 ± 0.400	35.010 ± 0.400		F-AAS
œ	Zinc (Zn)	8/8rl	5.520 ± 0.012	4.580 ± 0.018	5.430±0.016	4.010 ± 0.060	3.820 ± 0.018	4.440 ± 0.027		F-AAS
6	Chromium (VI) (Cr6+)	1g/g	16.570 ± 1.200	15.020 ± 1.520	15.470 ± 1.800	10.610 ± 1.700	12.240 ± 0.050	18.680 ± 0.200		F-AAS
10	0 Cadmium (Cd)	g/gn	0.790 ± 0.044	0.790 ± 0.054	0.830 ± 0.054	0.710 ± 0.018	0.690 ± 0.018	0.800 ± 0.050		F-AAS
11	1 Total Mercury (T-Hg)	8/3nl	0.028 ± 0.008	0.033 ± 0.002	0.052 ± 0.015	0.068 ± 0.004	0.025 ± 0.007	0.050 ± 0.005		SS-AAS
12	2 Lead (Pb)	g/gri	30.370 ± 0.130	23.720 ± 0.052	25.280 ± 0.410	31.430 ± 1.300	22.560 ± 0.370	24.500 ± 0.310		F-AAS
13	3 Arsenic (As)	в/ви	0.018	0.025	0.043	0.043	0.018	0.038		Spectropho-tometry
4	4 Cyanide (CN)	g/gu	14.300 ± 0.300	26.800 ± 0.200	10.800 ± 0.200	19.500 ± 0.500	12,650 ± 0,050	9.000 ± 0.150		ISE
ä	15 Phosphate(PO4)	8/8n	327,988 ± 7.475	331.941 ± 6.337	410.358 ± 0.546	292.417 ± 1.198	314.054 ± 7.208	435.008 ± 0.521		Spectropho-tometry
L								****	_	1

Note) F-AAS: Flame Atomic Absorption Spectrophotometry

ISE: Ion Selective Electrode

15 Phosphate(PO4) Organic matter

16

 143.100 ± 7.560

 207.000 ± 2.650

40.8 15.700 ± 4.040

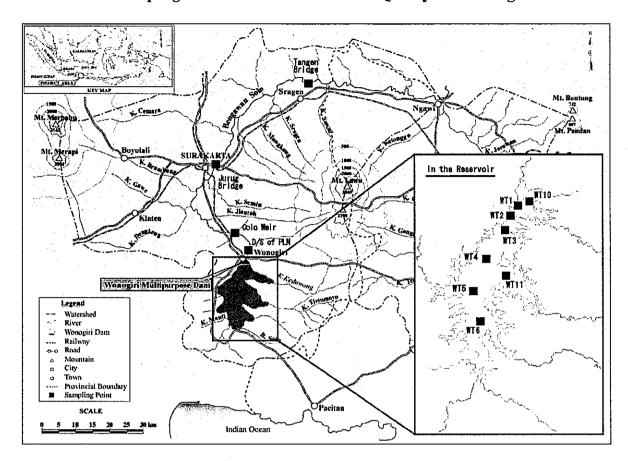
 158.000 ± 14.800

 $230,000 \pm 10,000$

g/gri

The Result of Bed Material Quality Analysis - Dry Season - (Analysed by BATAN)

L	-					-				
Ż	Parameters	Unit				Location				Test Methode
		;	No.1	No.2	No.3	No.4	No.5	No.6	No.7	
ī	Temperature	ာ့	28.0	27.0	27.0	28.0	28.0	28.0	28.0	Termometry
2	Smell (Odor)	i	Soil smell	Soil smell	Soil smell	Organic smell	Soil smell	Soil smell	Drainage ditch smell	Organoleptic
æ	Ignition loss	%	10,900 ± 0,000	7.410 ± 0.100	11.680 ± 0.100	12.525 ± 0.095	9.880 ± 0.000	12.130 ± 0.000	11.050 ± 0.000	Gravimetry
4		1	7.0	6.5	7.0	6.0	6.0	6.0	7.0	pH meter
'n	Iron (Fe)	%	2756.970 ± 5.650	3553.780 ± 9.150	2709.160 ± 5.440	2048.000 ± 32.410	1964.070 ± 11.220	2656.000 ± 10.050	4023.670 ± 23.030	F-AAS
9	Manganese (Mn)	8/8त	2041.830 ± 19.210	2041.830 ± 10.110	1603.590 ± 15.120	3140.000 ± 21.210	838.320 ± 9.230	2700.000 ± 31.500	1666.670 ± 7.120	F-AAS
~	Copper (Cu)	8/8H	25.700 ± 0.460	29.480 ± 0.310	28.090 ± 0.760	24.40 ± 0.260	18,360 ± 1,000	29.800 ± 0.320	32.740 ± 0.400	F-AAS
∞	Zinc (Zn)	8/811	91,630 ± 0,030	169,820 ± 2,350	90.640 ± 1.310	55.000 ± 0.230	67.370 ± 1.330	85.500 ± 0.170	995.860 ± 3.230	F-AAS
6	Chromium (VI) (Cr6+)	g/gri	16.930 ± 0.200	32.870 ± 0.310	34.860 ± 0.600	28.000 ± 1.000	13.970 ± 1.390	$16,000 \pm 0.210$	31.560 ± 0.520	F-AAS
유	Cadmium (Cd)	8/811	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	F-AAS
≓	Total Mercury (T-Hg)	S/SH	0.076 ± 0.001	0.068 ± 0.005	0.050 ± 0.015	0.076 ± 0.017	0.082 ± 0.001	0.048 ± 0.004	0.159 ± 0.001	SS-AAS
12	Lead (Pb)	8/8H	42.830 ± 1.130	38.840 ± 1.410	28.880 ± 0.910	48.000 ± 0.140	32.930 ± 0.400	31.000 ± 0.430	37.480 ± 0.120	F-AAS
13	Arsenic (As)	8/811	1.550	1.550	1.950	1.450	1.550	1.150	0.950	Spectropho-tometry
4	Cyanide (CN)	g/gu	1.550 ± 0.075	1.025 ± 0.038	0.075 ± 0.000	1.200 ± 0.050	3.175 ± 0.100	1,600 ± 0,025	12.525 ± 0.150	ISE
15	Phosphate(PO4)	8/8ri	521.250 ± 23.750	465,000 ± 13.750	448.000 ± 5.250	323.750 ± 13.750	254.875 ± 17.125	397.500 ± 16.000	571.750 ± 7.000	Spectropho-tometry
19	Organic matter	S/Sri	111.4	60.2	53.8	53.8	9'99	60.2	60.2	Titrimetry
17	Chemical Oxygen Demand (COD)	g/gn	65.300 ± 2.500	14.300 ± 2.100	160.000 ± 8.500	14.300 ± 2.100	85.700 ± 2.140	92.500 ± 2.370	180.700 ± 11.700	Spectropho-tometry
		17.54				Location			7	Trust & Leeflands
2	. rarameters		No.8	6°0N	No.10	No.11	No.12	No.13		Test Ivientous
1	Temperature	ပ္စ	28.0	27.5	27.0	28.0	28.0	28.0		Termometry
7	Smell (Odor)	ı	Drainage ditch smell	Soil smell	Soil smell	Soil smell	Soil smell	Soil smell		Organoleptic
3	Ignition loss	%	15.520 ± 0.000	14.300 ± 0.000	13.600 ± 0.200	13.070 ± 0.000	14.070 ± 0.100	13,125 ± 0,095		Gravimetry
4	Hd	1	6.0	7.0	6.0	6.0	7.0	6.0	-	pH meter
3	Iron (Fe)	%	2154.460 ± 23.210	2439.600 ± 23.240	2253.970 ± 16.000	2486.060 ± 12.210	2824.460 ± 12.100	2549.800 ± 12.230		F-AAS
9	Manganese (Mn)	g/gri	2198,020 ± 60,500	940.590 ± 11.000	2043.650 ± 52.050	1982.070 ± 10.120	3106,510 ± 45,120	2888.450 ± 43.000		F-AAS
7		g/gri	35.250 ± 0.200	29.500 ± 0.110	28.370 ± 0.140	24,700 ± 0.120	25.640 ± 0.130	25.000 ± 0.230		F-AAS
∞	Zinc (Zn)	g/gri	268.320 ± 3.210	69.310 ± 0.100	73.410 ± 0.180	71.710 ± 0.270	74.950 ± 0.430	75.700 ± 1.210		F-AAS
6	Chromium (VI) (Cr6+)	g/gri	22.770 ± 0.780	9,900 ± 0.120	13.890 ± 0.050	11.950 ± 0.210	13.810 ± 0.180	23,900 ± 0.120		F-AAS
10	Cadmium (Cd)	B/B⊓	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020		F-AAS
11	Total Mercury (T-Hg)	g/gri	0.155 ± 0.016	0.126 ± 0.031	0,067 ± 0,004	0.048 ± 0.007	0.112 ± 0.032	0.063 ± 0.011		SS-AAS
12	Lead (Pb)	g/gri	53.470 ± 0.410	48.510 ± 0.120	25.790 ± 0.310	22.910 ± 0.310	24.650 ± 0.670	32,870 ± 0,430		F-AAS
13	Arsenic (As)	g/gri	1.300	1.650	1.400	1.200	1.450	1.250		Spectropho-tometry
14	Cyanide (CN)	g/gu	8.800 ± 0.400	4.925 ± 0.050	1.650 ± 0.000	1.688 ± 0.013	1.475 ± 0.000	1.233 ± 0.003		ISE
15		B/Bri	561.250 ± 7.250	215.500 ± 5.563	296.750 ± 4.500	277.500 ± 11.250	311.250 ± 0.100	405.000 ± 1.500		Spectropho-tometry
<u> </u>		4	717	, ,	717	007	0 63	41.0		Titrimatri

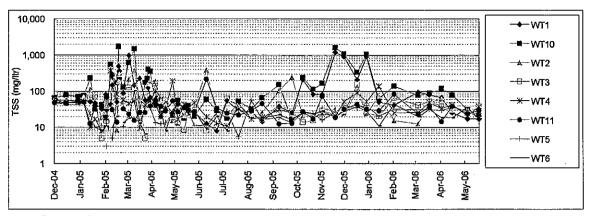

Note) F-AAS: Flame Atomic Absorption Spectrophotometry

Chemical Oxygen Demand (COD)

16 Organic matter

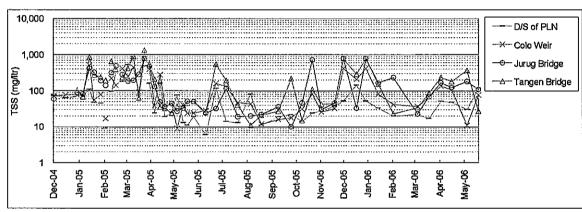
SS-AAS: Solid Sampling Atomic Absorption Spectrophotometry

Sampling Location for Periodic Water Quality Monitoring

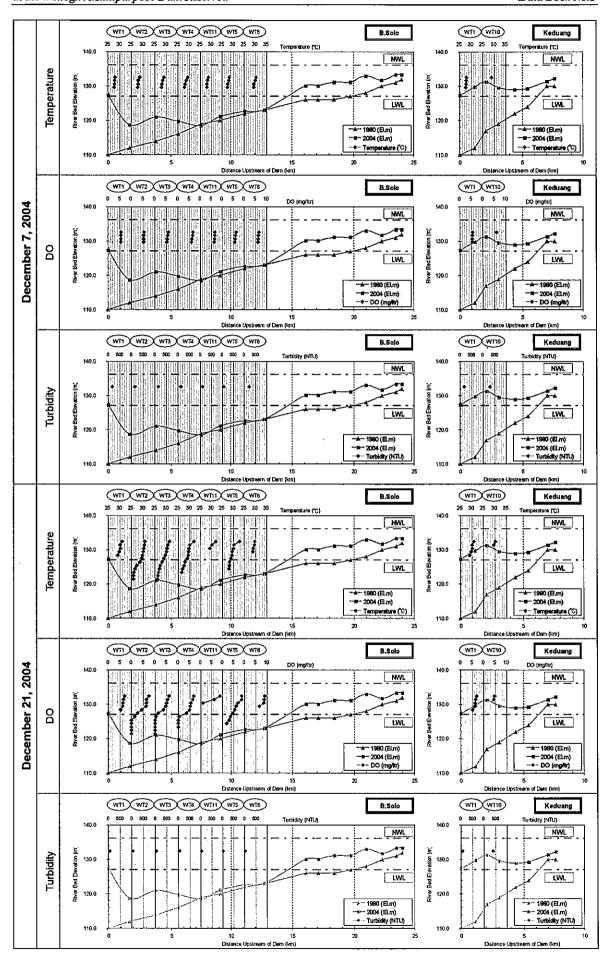

Monitoring Date and Result of TSS (Total Suspended Solids)

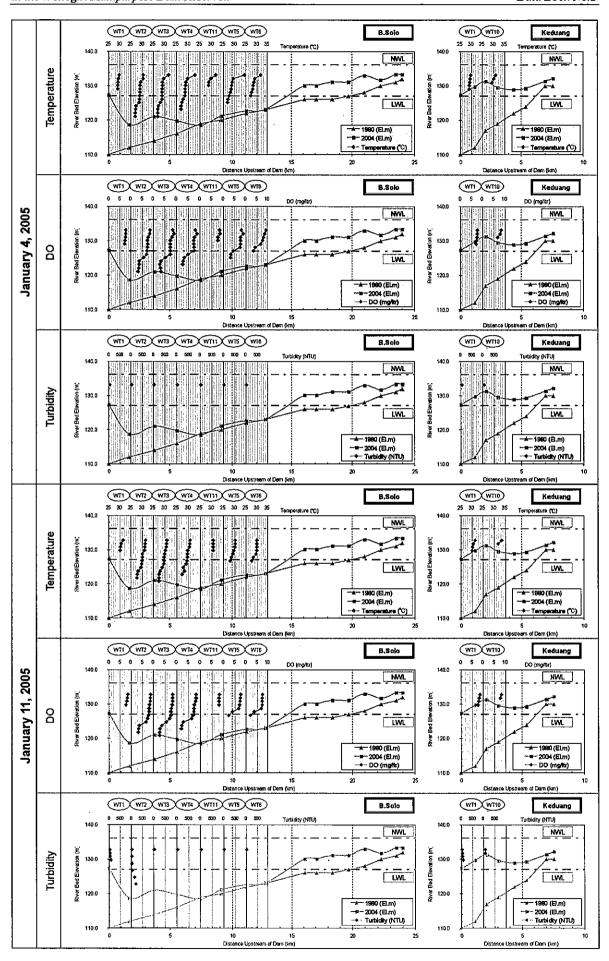
			<u> </u>				Average	e TSS (i	ng/ltr) a	t Respe	ctive Lo	cations			
No.	Regular / Flood*	Date	Reservoir WL (El.m)	WT1	WT10	WT2	WT3	WT4	WT11	WT5	WT6	D/S of PLN	Colo W.	Jurug B.	Tangen B.
1	R	December 7, 2004	132.60	59	65	56	55	51	48	44	62	75	70	59	83
2	R	December 21, 2004	132.40	54	79	51	50	48	46	47	42	63	76		
3	R	January 4, 2005	133,09	56	71	52	52	50	55	48	43	70	76	88	105
4	R	January 11, 2005	132.76	59	75	69	54	52	50	49	48	72	75	81	67
5	R	January 19, 2005	132.56	52	229	109	67	10	13	23	10	109	514	420	832
6	R	January 25, 2005	133.20	47	32	68	68	17	40	10	10	47	55	319	271
7	R	February 2, 2005	133.44	32	42	18	5	8	38	11	8	45	78	189	238
8	F	February 7, 2005	133,31	81	19	39									
9	R	February 8, 2005	133.27	31	10	9	15	18	68	3	29	9	17	139	191
10	F	February 13, 2005	133.37	44	545	418		376							
11	R	February 15, 2005	133.42	148	280	37	65	245	31	5	10	93	221	315	651
12	R	February 21, 2005	133.69	51	170	9	93	83	14	63	20	332	142	490	381
13	F	February 23, 2005	133.88	489	1,730	183									
14	F	February 24, 2005	134.00	361	243	295									
15	R	March 1, 2005	134.18	89	131	51	126	58	33	11	14	183	413	279	236
16	R	March 8, 2005	134.68	972	620	214	125	46	24	24	18	530	251	184	417
17	Ŕ	March 15, 2005	135.32	146	1,487	371	124	54	16	17	101	889	444	194	896
18	R	March 22, 2005	135.38	227	26	65	54	10	26	15	13	72	92	283	64
19	R	March 29, 2005	135.69	56	174	27	5	41	26	29	7	488	763	777	1,321
20	F	April 1, 2005	136.18`	53	221	42									
21	F	April 2, 2005	136.44	125	401	162									
22	R	April 5, 2005	136.90	68	357	187	45	54	39	36	38	160	398	469	558
23	R	April 12, 2005	136.82	45	41	188	163	101	58	14	71	24	39	130	208
24	R	April 19, 2005	136.87	20	56	53	55	20	38	13	27	161	278	49	35
25	R	April 25, 2005	136.83	45	37	42	56	34	29	14	8	19	41	36	32
26	Ŕ	May 4, 2005	136.66	25	22	16	19	193	54	26	30	25	45	44	24
27	Ŕ	May 11, 2005	136.46	44	56	13	14	17	27	32	46	76	9	27	37
28	R	May 19, 2005	136.22	37	18	22	9	44	35	32	37	13	40	33	38
29	R	May 24, 2005	136,05	35	40	21	25	36	30	28	23	11	24	51	45
30	R	June 1, 2005	135.76	27	21	36	30	48	27	12	30	19	24	50	51
31	R	June 16, 2005	135.09	13	59	384	8	20	215	11	9	6	28	24	26
32	R	June 29, 2005	135.18	8	29	22	10	13	34	26	20	117	160	32	543
33	R	July 12, 2005	135.03	55	18	24	62	11	25	28	8	14	130	115	192
34	R	July 26, 2005	134.60	29	53	30	40	32	22	6	46	13	47	19	40
35	R	August 11, 2005	133.81	27	33	21	21	17	29	56	18	81	43	20	11
36	R	August 24, 2005	133,12	15	66	26	17	19	46	17	19	11	12	22	21
37	R	September 14, 2005	131.96	38	153	103	43	31	13	19	23	19	16	36	27
38	R	September 30, 2005	131.02	26	16	244	28	26	13	14	17	22	18	10	217
39	R	October 14, 2005	130.36	212	239	21	14	25	28	28	27	14	31	46	15
40	R	October 27, 2005	130.15	82	113	20	16	19	17	25	24	24	81	719	109
41	R	November 8, 2005	129.90	81	167	33	30	24	73	16	28	28	26	30	42
42	R	November 25, 2005	129.56	1,205	1,617	32	23	21	19	27	20	37	32	46	44
43	R	December 6, 2005	129.81	896	1,072	24	26	52	32	41	29	52	419	790	778
44	R	December 23, 2005	133.00	210	334	102	153	92	44	35	37	144	210	33	290
45	R	January 4, 2006	134.47	896	1,072	24	26	52	32	41	29	52	419	790	778
46	R	January 20, 2006	135.12	51	64	75	21	138	29	21	11	33	81	165	154
47	R	February 8, 2006	135.63	42	139	16	66	25	84	32	44	20	41	233	23
48	R	March 10, 2006	135.97	95	79	13	41	27	24	31	20	22	37	233	34
49	R			80	88	49	52	49	37	32	32	17	66	68	85
50	R	March 24, 2006	136.12 136.61	68	121	62	39	34	15	30	19	51	135	167	235
-		April 8, 2006		-				-							
51	Ŕ	April 21, 2006	137.10	26	80	31	43	43	39	36	19	48	107	123	181
52	R	May 10, 2006	136.89	17	31	32	24	21	24	30	36	30	11	181	367
53	R	May 24, 2006	136.73	17	23	31	39	38	30	18	18	116	77	109	27

Note *: "R" means regular periodically monitoring, and "F" means ad-hoc monitoring just after flood occurrence.

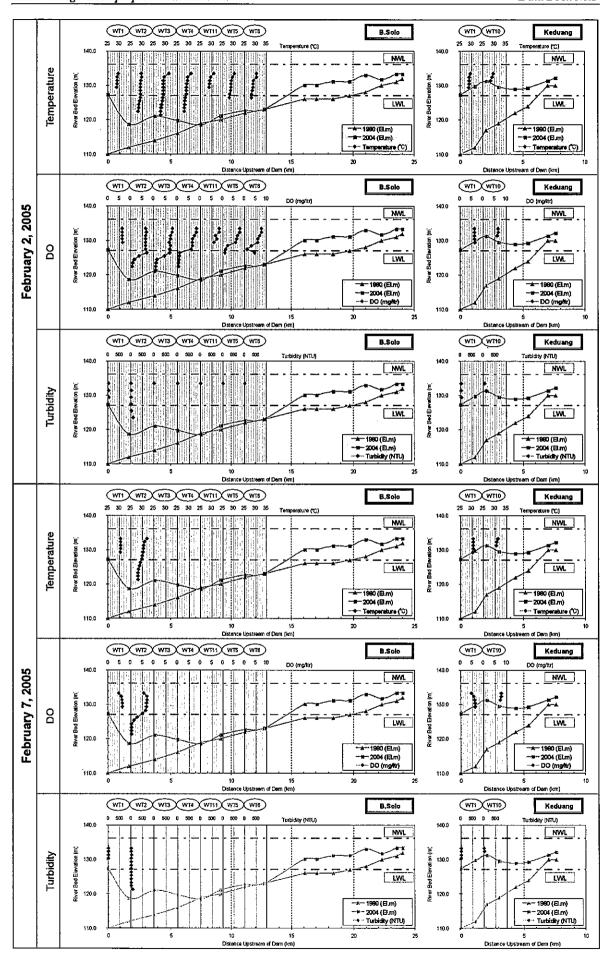

Source: JICA Study Team

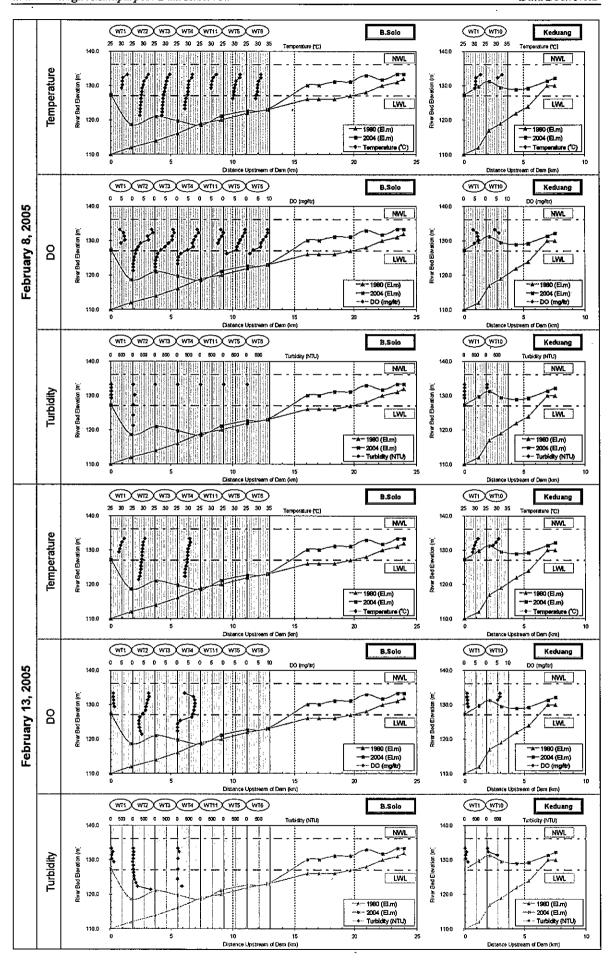
Result of TSS Monitoring in the Wonogiri Reservoir

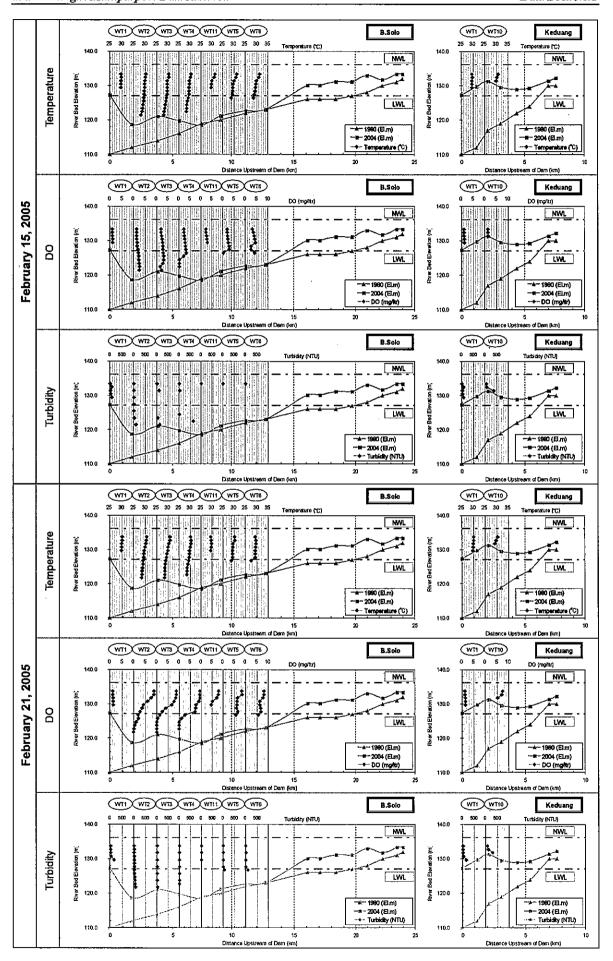


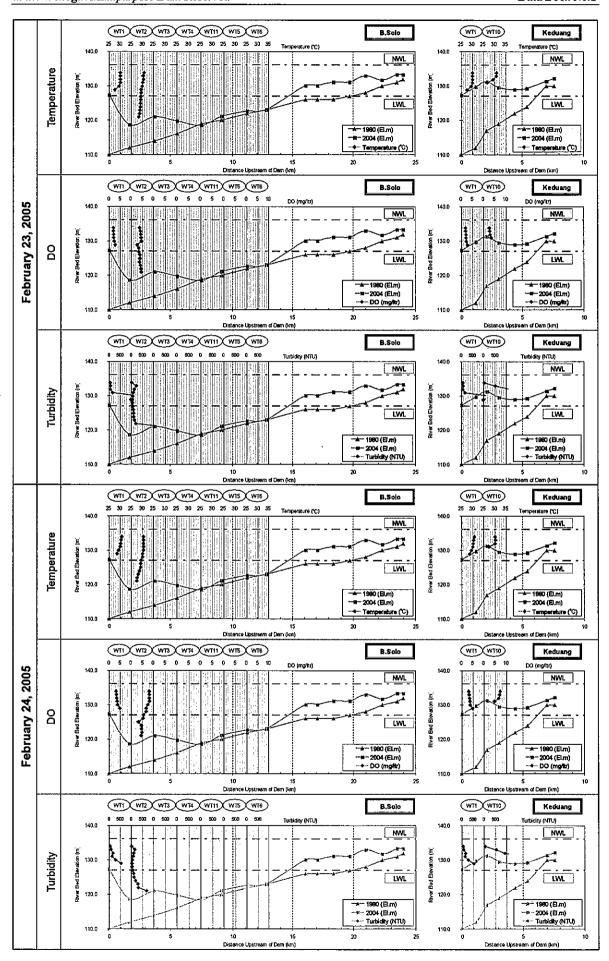

Source: JICA Study Team

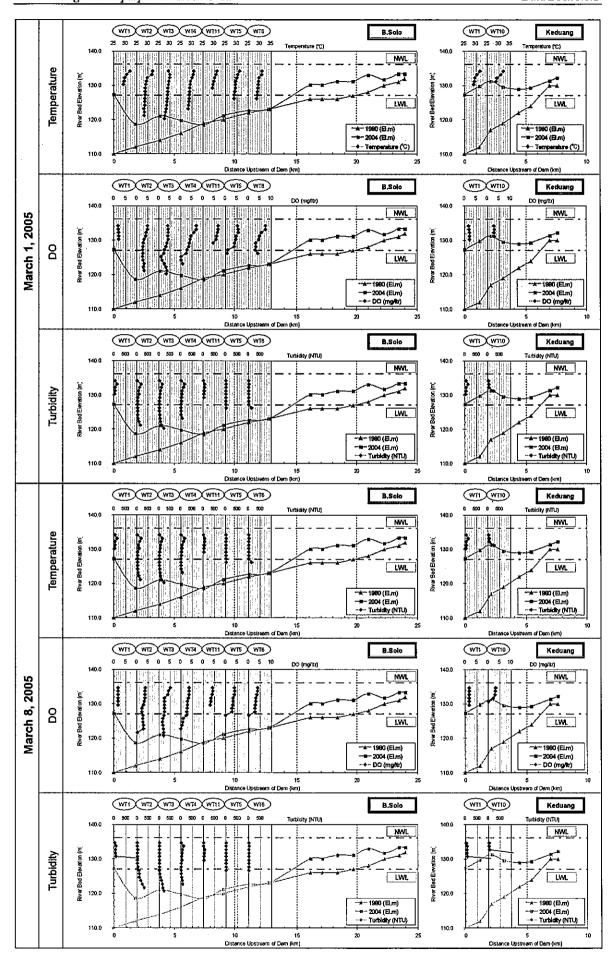

Result of TSS Monitoring in the Upper Solo River

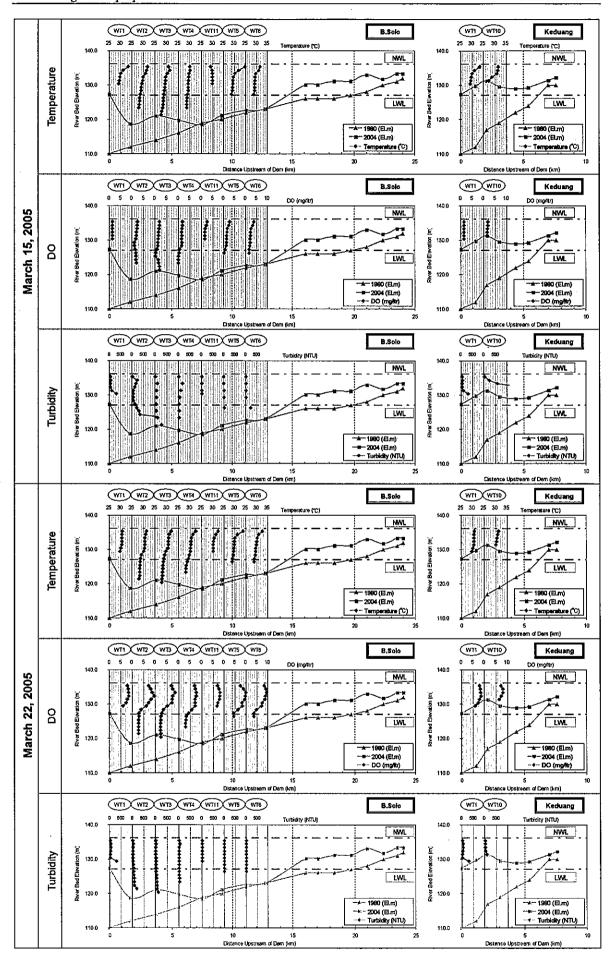


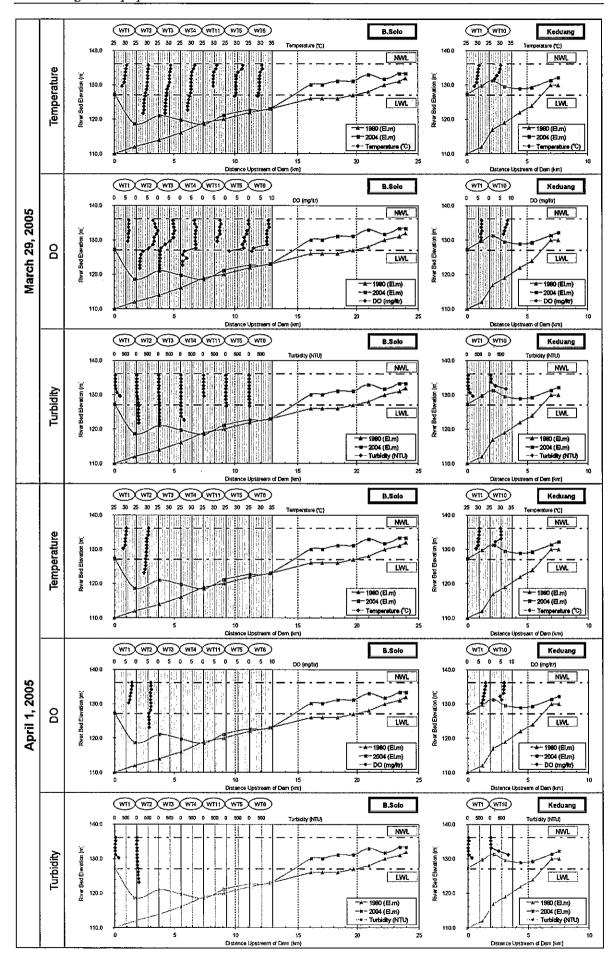

Source; JICA Study Team

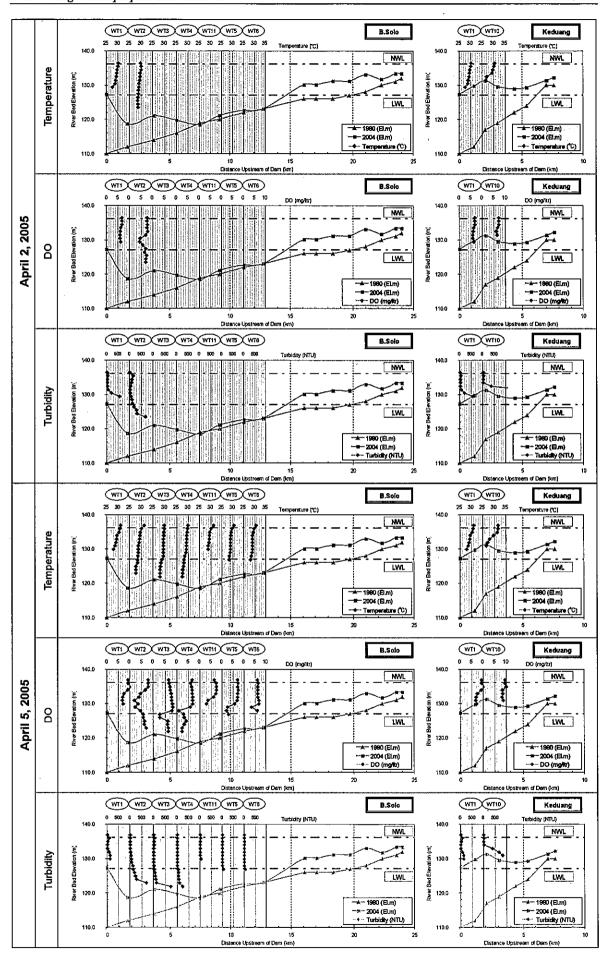


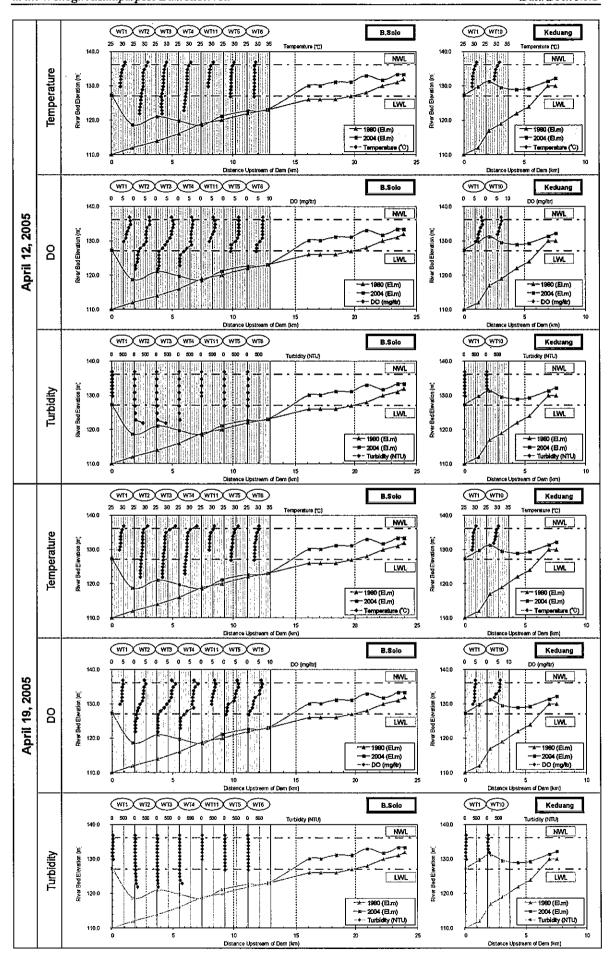


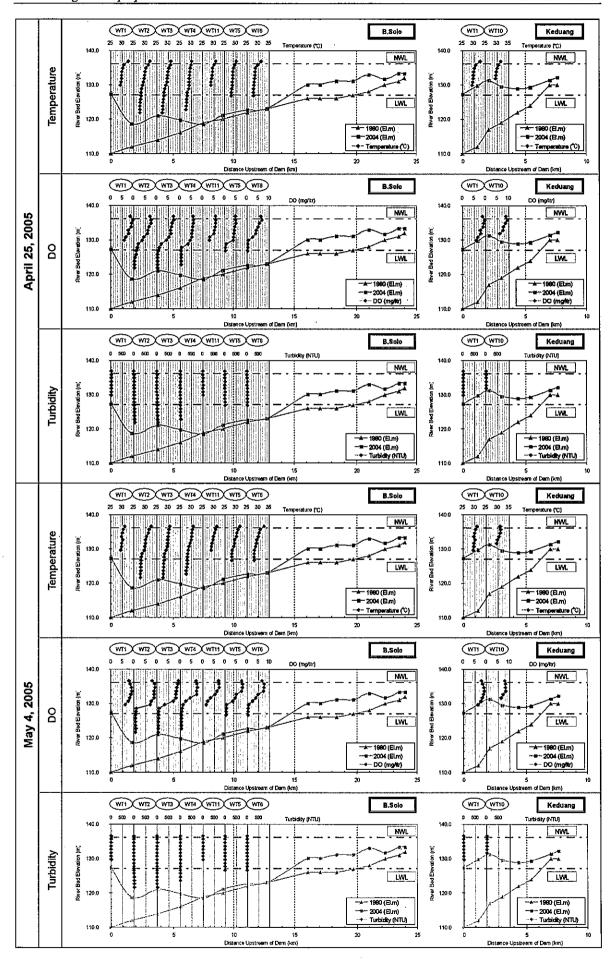


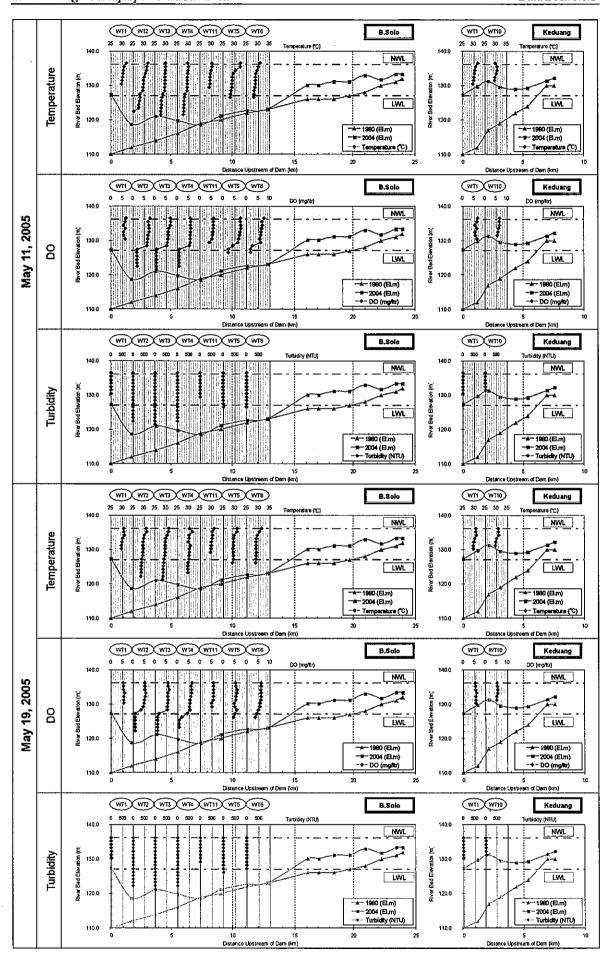


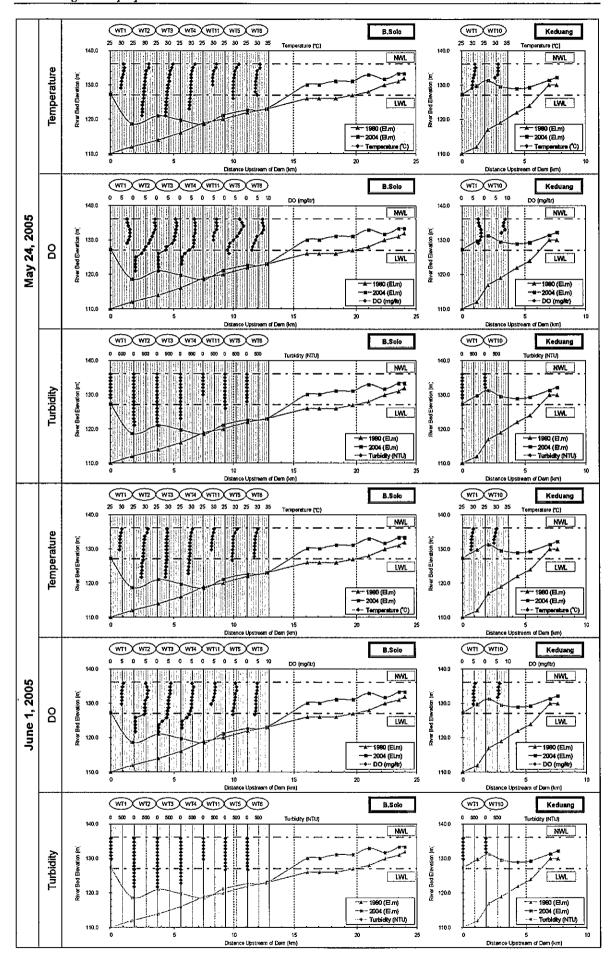


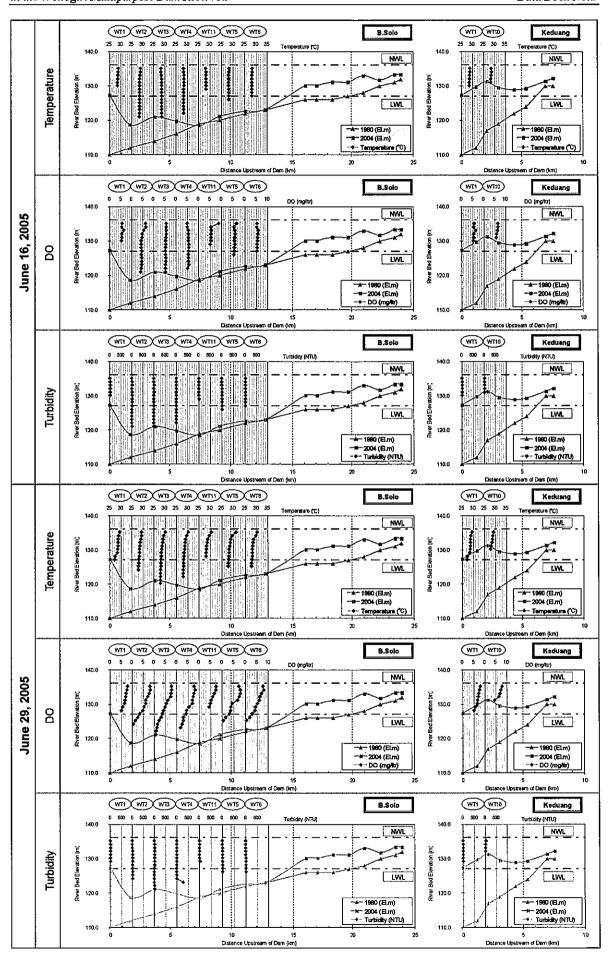


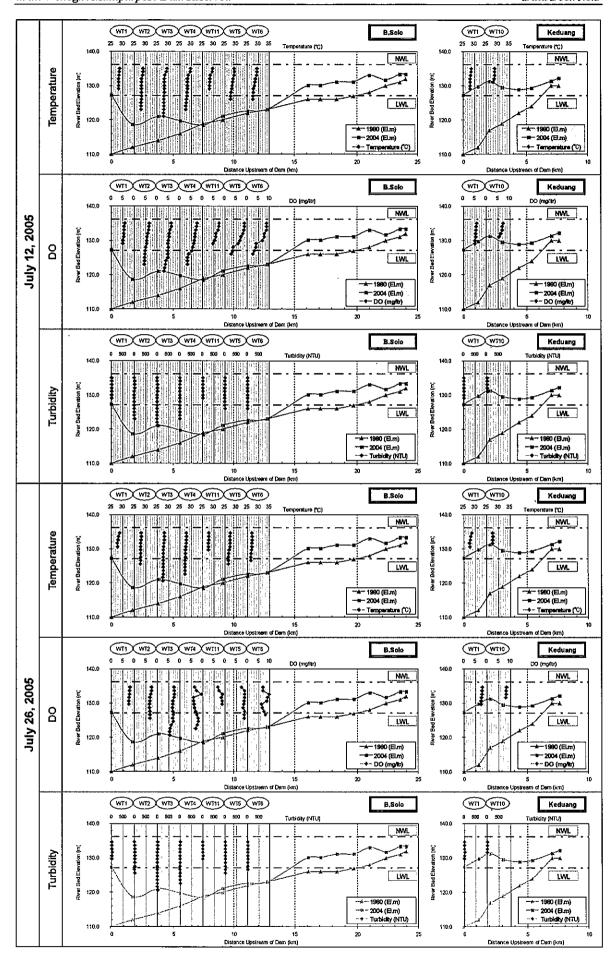


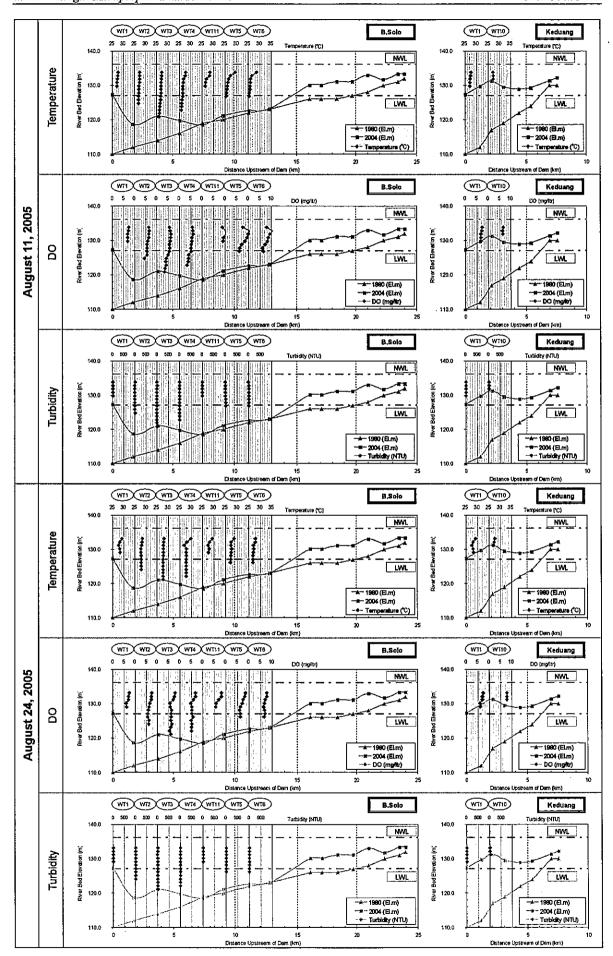


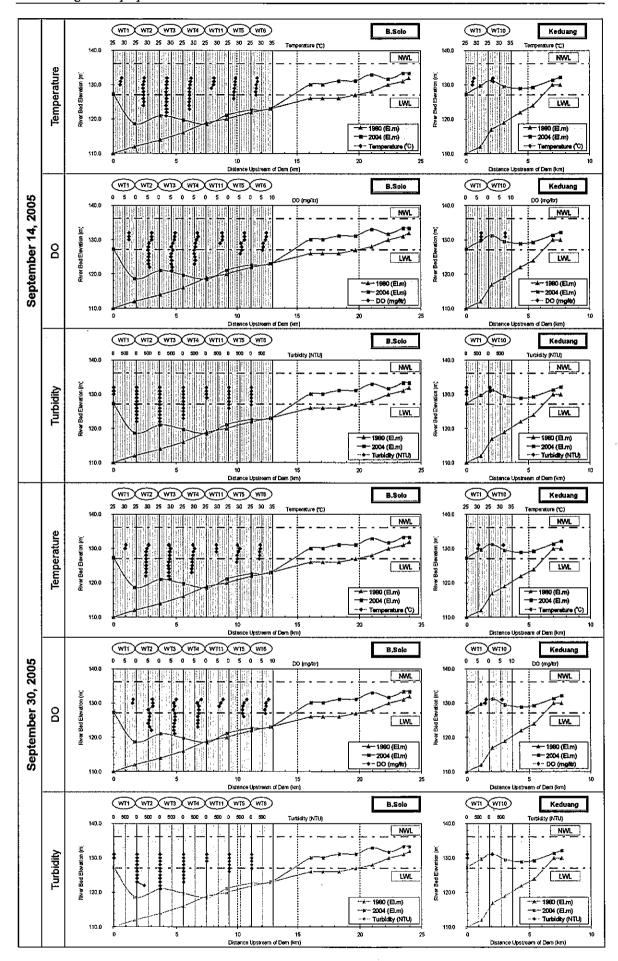


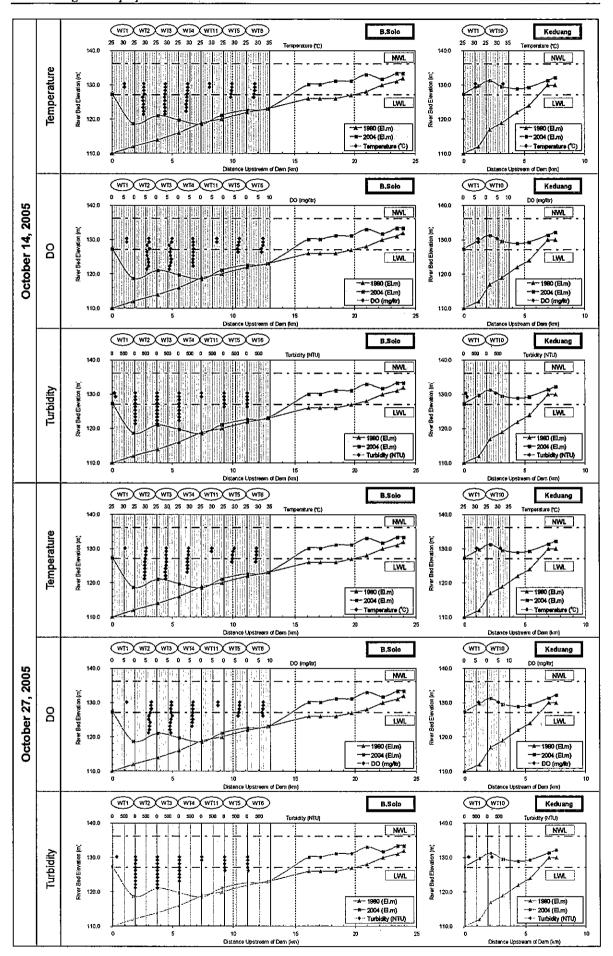


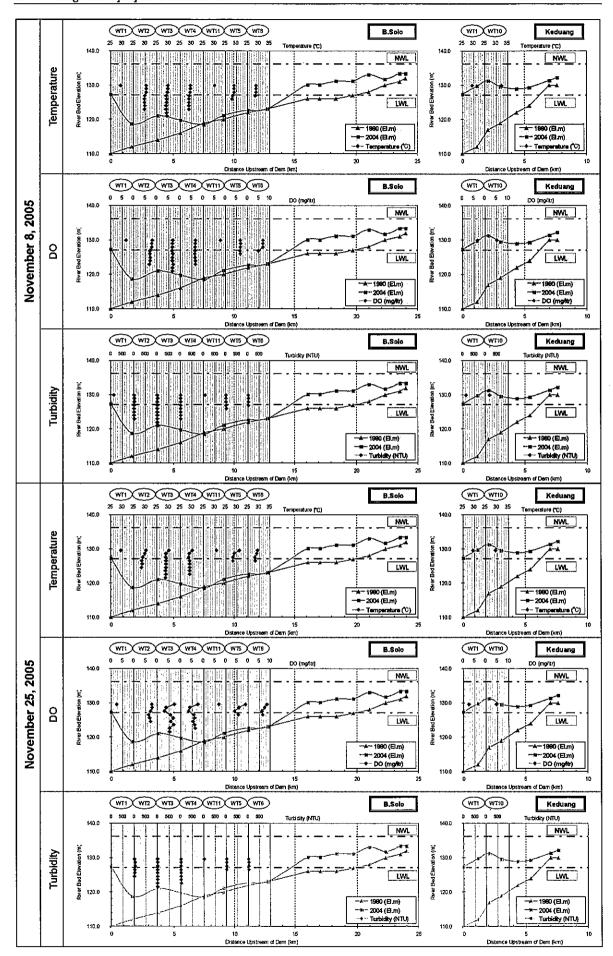




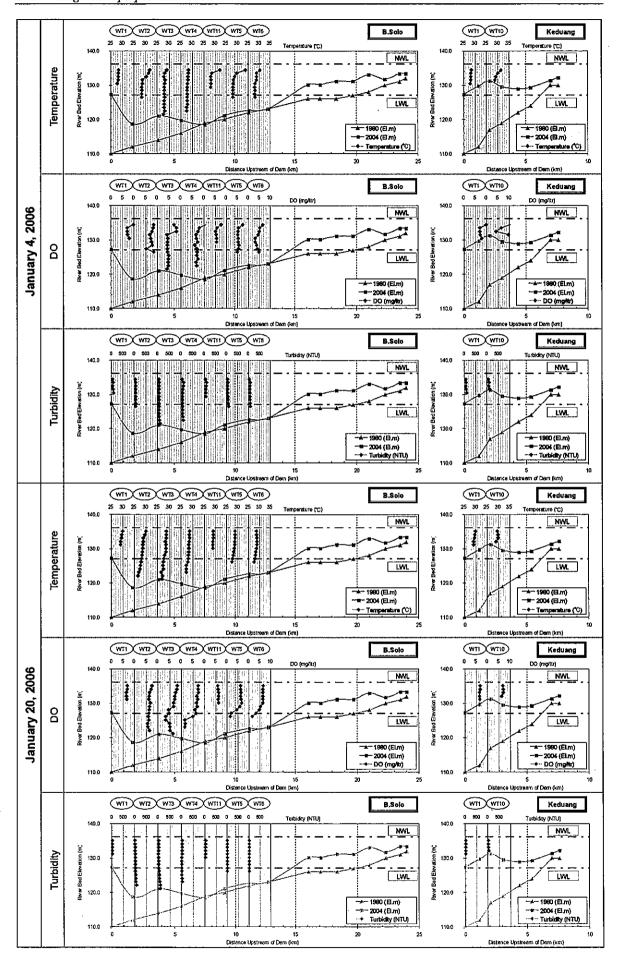


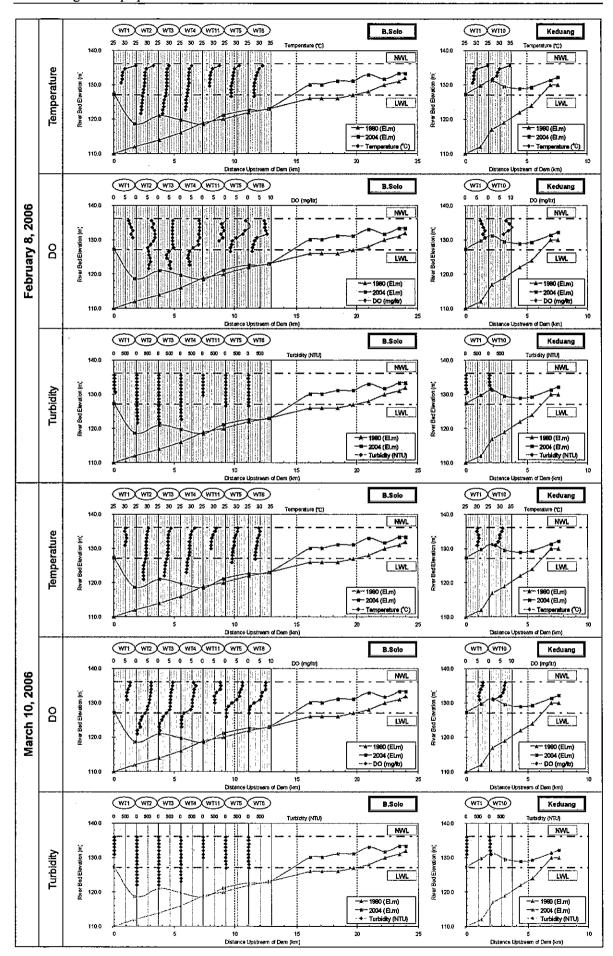


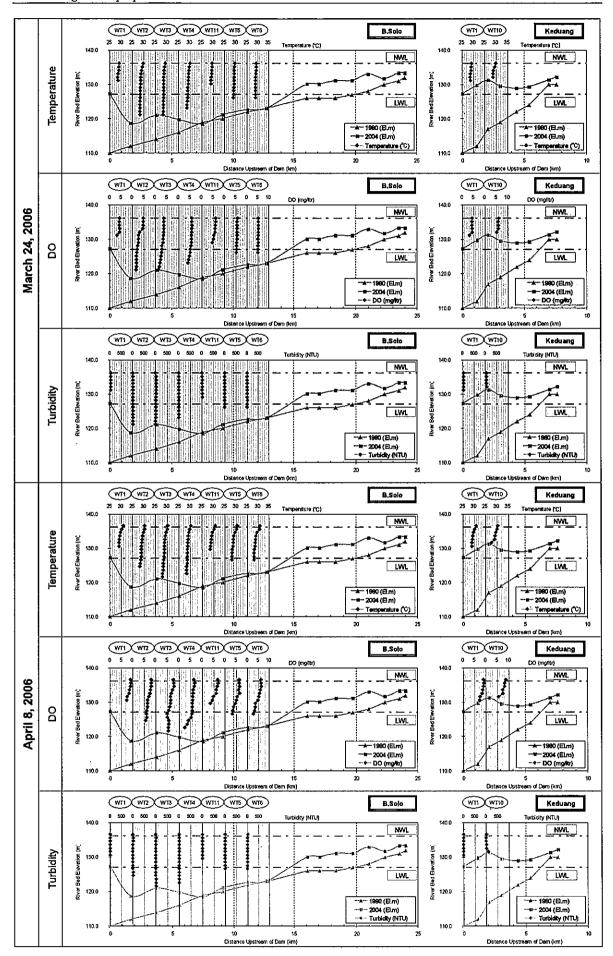


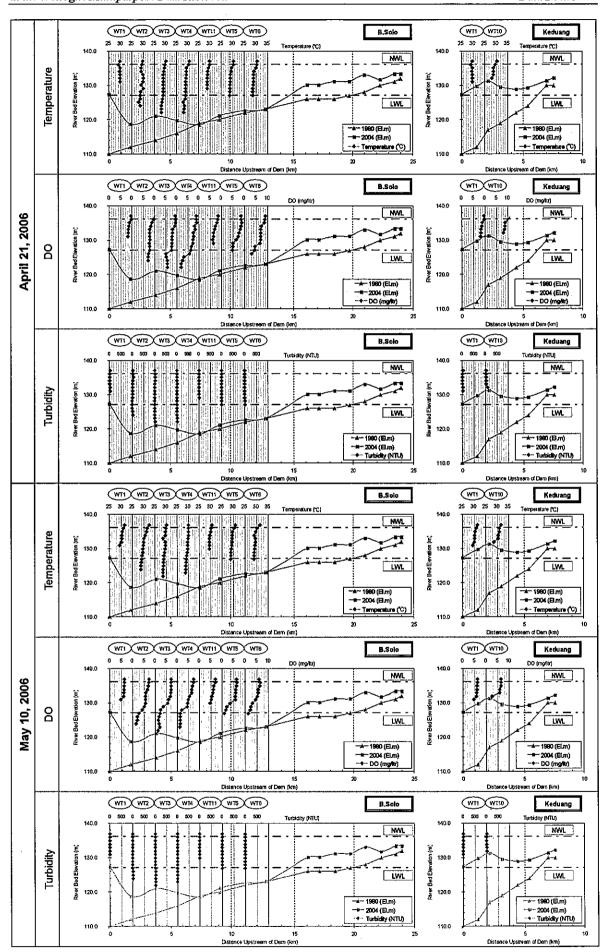


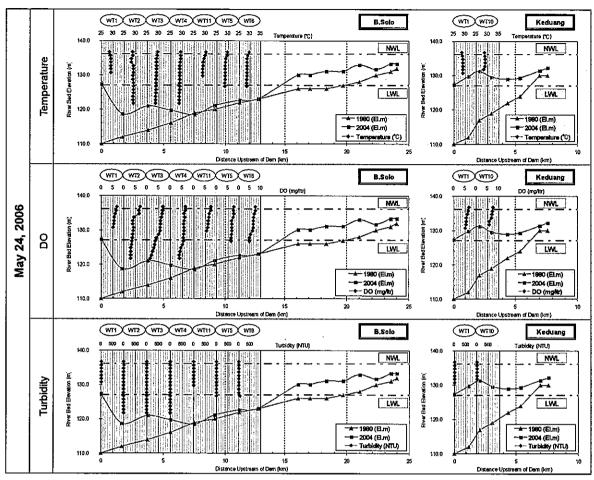












Source: JICA Study Team