# Annex No.2 Geological Condition

#### THE STUDY ON COUNTERMEASURES FOR SEDIMENTATION IN THE WONOGIRI MULTIPURPOSE DAM RESERVOIR IN THE REPUBLIC OF INDONESIA

## FINAL REPORT

## SUPPORTING REPORT I

## **Annex No.2: Geological Condition**

#### **Table of Contents**

#### Page

| CHAPTE | ER 1  | REVIEW OF EXISTING GEOLOGICAL INVESTIGATION                         | -1 |
|--------|-------|---------------------------------------------------------------------|----|
| 1.1    | Data  | a Collection                                                        | -1 |
|        |       |                                                                     |    |
| CHAPTE | ER 2  | REGIONAL GEOLOGY                                                    | -3 |
| 2.1    | Торо  | ography2                                                            | -3 |
| 2.2    | Reg   | ional Geology2                                                      | -3 |
|        |       |                                                                     | ~  |
| CHAPTE | 2R 3  | SITE CONDITION                                                      | -5 |
| 3.1    | Торо  | ography2                                                            | -5 |
| 3.2    | Site  | Geology2                                                            | -5 |
|        | 3.2.1 | Geologic Component                                                  | -5 |
|        | 3.2.2 | 2 Stratigraphy2                                                     | -7 |
|        | 3.2.3 | 3 Fault2                                                            | -9 |
|        |       |                                                                     | 10 |
|        |       | ntition                                                             | 10 |
| 4.1    | Qua   |                                                                     | 10 |
| 4.2    | Resi  | alts of Geological Investigation                                    | 12 |
|        | 4.2.1 | Wonogiri Reservoir2-1                                               | 12 |
|        | 4.2.2 | 2 Downstream of the Wonogiri Dam2-2                                 | 17 |
| CHAPTE | ER 5  | SITE CONDITION OF THE WONOGIRI WATERSHED2-2                         | 18 |
| 5.1    | Ked   | uang River2-1                                                       | 18 |
|        | 5.1.1 | Upstream Area (Right Bank, About EL.600m ~)2-2                      | 18 |
|        | 5.1.2 | 2 Middle Area (Right Bank, EL 600m – Mainstream of Keduang River)2- | 18 |
|        | 5.1.3 | 3 Downstream Area2-1                                                | 19 |
|        | 5.1.4 | 4 Mountainous Area (Left Bank)2-1                                   | 19 |

| 5.2    | Tirtomo  | yo River                                                  | 2-20 |
|--------|----------|-----------------------------------------------------------|------|
|        | 5.2.1    | Mountain Area                                             | 2-20 |
|        | 5.2.2    | Plain Area                                                | 2-20 |
| 5.3    | Temon F  | River                                                     | 2-21 |
|        | 5.3.1    | Upstream Area                                             | 2-21 |
|        | 5.3.2    | Downstream Area                                           | 2-21 |
| 5.4    | Bengaw   | ang Solo River                                            | 2-21 |
|        | 5.4.1    | Mountain Area                                             | 2-21 |
|        | 5.4.2    | Plain Area                                                | 2-22 |
| 5.5    | Alang R  | iver                                                      | 2-22 |
|        | 5.5.1    | Karst Tableland                                           | 2-22 |
|        | 5.5.2    | Plain Area                                                | 2-22 |
|        |          |                                                           |      |
| CHAPTE | ER 6 CO  | UNTERMEASURE STRUCTURES                                   | 2-23 |
| 6.1    | Propose  | d Spillway                                                | 2-23 |
|        | 6.1.1    | Geological Investigations for Weir Site                   | 2-23 |
|        | 6.1.2    | Engineering Geology                                       | 2-24 |
| 6.2    | Spillway | /                                                         | 2-25 |
|        | 6.2.1    | Geological Investigations for Proposed Spillway Alignment | 2-25 |
|        | 6.2.2    | Engineering Geology                                       | 2-26 |
| 6.3    | Closure  | Dike                                                      | 2-26 |
|        | 6.3.1    | Geological Investigations for Closure Dike                | 2-26 |
|        | 6.3.2    | Engineering Geology                                       | 2-27 |
| 6.4    | Overflow | w Weir                                                    | 2-28 |
|        | 6.4.1    | Geological Investigations for Overflow Weir               | 2-28 |
|        | 6.4.2    | Engineering Geology                                       | 2-28 |
| 6.5    | Construe | ction Material for Concrete Aggregates                    | 2-29 |

## List of Tables

| Table 1.1.1 | Summary of Existing Geological Investigation Related to Countermeasures for the Wonogiri Multipurpose Dam | 2-1  |  |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|
| Table 1.1.2 | Summary of the Existing Data of Keduang Riverbed Deposit Materials<br>and Wonogiri Reservoir Sediments    | 2-1  |  |  |  |  |  |  |
| Table 1.1.3 | Summary of Laboratory Tests for Sediment in the Wonogiri Multipurpose<br>Dam Reservoir Area               | 2-2  |  |  |  |  |  |  |
| Table 3.2.1 | Stratigraphy of the Study Area                                                                            | 2-8  |  |  |  |  |  |  |
| Table 4.1.1 | Quantities of Geological Investigation2-                                                                  |      |  |  |  |  |  |  |
| Table 4.1.2 | Quantities of Drilling Works2-                                                                            |      |  |  |  |  |  |  |
| Table 4.2.1 | Results of Drilling Works of Wonogiri Reservoir                                                           | 2-12 |  |  |  |  |  |  |
| Table 4.2.2 | Summary of Relationships between Geological Condition and SPT N Value                                     | 2-12 |  |  |  |  |  |  |

| 23   |
|------|
| 24   |
| 25   |
| :-25 |
| 27   |
| :-29 |
|      |

#### List of Figures

| Figure 2.2.1 | Geological Map of the Study Area (References: R.W. Van Bemmelem, 1949)                                                                                                                                                                                             | 2-3  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 2.2.2 | Schematic Profile of the Study Area (References: R.W. Van Bemmelem, 1949)                                                                                                                                                                                          | 2-4  |
| Figure 3.1.1 | Inclination Map of Wonogiri Catchment Area (Source: JICA Study Team)                                                                                                                                                                                               | 2-5  |
| Figure 3.1.2 | Watershed of Wonogiri Dam Catchment Area (Source: JICA Study Team)                                                                                                                                                                                                 | 2-5  |
| Figure 3.2.1 | Geological Map of the Study Area (Source: JICA Study Team)                                                                                                                                                                                                         | 2-9  |
| Figure 4.2.1 | Grain Size Distribution                                                                                                                                                                                                                                            | 2-13 |
| Figure 4.2.2 | Geological Section of Keduang River                                                                                                                                                                                                                                | 2-14 |
| Figure 4.2.3 | Geological Section of Bengawan Solo River                                                                                                                                                                                                                          | 2-14 |
| Figure 4.2.4 | Geological Section of Tirtomoyo River                                                                                                                                                                                                                              | 2-15 |
| Figure 4.2.5 | Geological Section of Temon River                                                                                                                                                                                                                                  | 2-15 |
| Figure 4.2.6 | Component of Surface Sediment Materials in Wonogiri Multipurpose Dam<br>Reservoir and 5 Main Distributaries (The Sediment Materials were<br>Sampled in the Section of the Boring Core Between 0.2 m-0.6 m in Depth<br>and Test Pitting Samples of 0.5 m in Depth.) | 2-16 |
| Figure 4.2.7 | Particle Size Distribution of the River Sediment Materials at 10 Points<br>Along the Solo River Downstream of the Wonogiri Multipurpose Dam                                                                                                                        | 2-17 |
| Figure 4.2.8 | 60% Diameter of the River Sediment Materials at 10 Points Along the Solo River Downstream of the Wonogiri Multipurpose Dam                                                                                                                                         | 2-17 |
| Figure 5.1.1 | Major Gully of Keduang River Basin                                                                                                                                                                                                                                 | 2-19 |
| Figure 5.2.1 | Erosive Soil Distribution Area of Tirtomoyo River and Solo River Basin                                                                                                                                                                                             | 2-20 |
| Figure 6.1.1 | Location Map of Drilling Point for Proposed Spillway                                                                                                                                                                                                               | 2-23 |
| Figure 6.1.2 | Geological Profile of Proposed Spillway                                                                                                                                                                                                                            | 2-24 |
| Figure 6.2.1 | Geological Profile of Proposed Spillway Alignment                                                                                                                                                                                                                  | 2-26 |
| Figure 6.3.1 | Location Map of Closure Dike (Original Topographic Feature is Based on 10,000 Scale Map by PBS (1982))                                                                                                                                                             | 2-26 |
| Figure 6.3.2 | Geological Profile of Closure Dike                                                                                                                                                                                                                                 | 2-28 |
| Figure 6.4.1 | Location Map of Drilling Points for Overflow Weir                                                                                                                                                                                                                  | 2-28 |
| Figure 6.4.2 | Geological Profile of Overflow Weir (Drill hole B-8)                                                                                                                                                                                                               | 2-29 |
| Figure 6.4.3 | Geological Profile of Overflow Weir (Drill hole B-9)                                                                                                                                                                                                               | 2-29 |

## CHAPTER 1 REVIEW OF EXISTING GEOLOGICAL INVESTIGATION

#### 1.1 Data Collection

Geological investigations concerning to countermeasure works for sedimentation in the Wonogiri reservoir are summarized in Table 1.1.1. Two check dam sites of Keduang River were studied for countermeasure in 2002.

| Year | Project Investigation items |                         | Output                             | Study Area |
|------|-----------------------------|-------------------------|------------------------------------|------------|
|      | Feasibility Report          | Core drilling: 23       | Geology of dam site                | Dam site   |
|      | on the Wonogiri             | holes, total length:    | Left abutment: tuff, lapilli tuff, | and the    |
|      | Multipurpose Dam            | 880m                    | and andesite                       | reservoir  |
| 1975 | Project                     | Seismic reflection      | Right abutment: tuff, tuff breccia | etc.       |
|      |                             | Prospecting 3 lines,    |                                    |            |
|      |                             | total length 2300 m     |                                    |            |
|      |                             | Laboratory tests        |                                    |            |
|      | Map of Engineering          | Ground mapping          | Geological map of Wonogiri         | Reservoir  |
| 1078 | Geology Wonogiri            |                         | Multipurpose dam inundation        | area       |
| 1770 | Multipurpose Dam            |                         | area in scale of 1:1:10,000        |            |
|      | Inundation Area             |                         |                                    |            |
|      | The Basic Design            | Core Drilling: 8 holes, | Geology of proposed check dam      | Proposed   |
|      | Study on Urgent             | total length: 65 m      | The proposed check dam sites are   | check dam  |
|      | Countermeasure for          | Laboratory Test         | underlain by Quaternary tuff       | site of    |
|      | Sedimentation in            |                         | breccia (unconfined compression    | Keduang    |
|      | Wonogiri                    |                         | strength: 12.5-89.8 MPa). Small    | River      |
|      | Multipurpose Dam            |                         | terraces covered by very dense     |            |
| 2002 | Reservoir                   |                         | sandy gravels are scattered along  |            |
| 2002 |                             |                         | the river.                         |            |
|      |                             |                         | Thin Laterite soils cover the both |            |
|      |                             |                         | abutments of the proposed dam.     |            |
|      |                             | Core drilling: 4 holes  | Sediment materials of the          | Dam Intake |
|      |                             | total length: 54.2 m    | Wonogiri reservoir are mainly      | site       |
|      |                             | Laboratory test         | composed of very soft silt and     |            |
|      |                             |                         | clay (N values were almost zero).  |            |

| Table 1.1.1 Summary of Existing Geological Investigation Related to Countermeasures for |
|-----------------------------------------------------------------------------------------|
| the Wonogiri Multipurpose Dam                                                           |

Source: JICA Study Team

Sediments in Wonogiri reservoir are composed mainly of very soft silt-clay and remarkably contrast with riverbed materials of the Keduang River in grain size and compaction as shown in Table 1.1.2 and Table1.1.3. In addition, river deposits are not more than 2-3 meters in thickness and bedrocks of riverbed are exposed at many places along the Keduang River. This leads to the conclusion that sediments in Wonogiri reservoir are derived mainly from suspended load, and the suspended load would have been flushed out to the downstream if there had not been the dam.

#### Table 1.1.2 Summary of the Existing Data of Keduang Riverbed Deposit Materials and Wonogiri Reservoir Sediments

| Location            | Particle size      | Properties                            |  |  |
|---------------------|--------------------|---------------------------------------|--|--|
| Riverbed of Keduang | Gravel 80-90%      | Dense to extremely dense              |  |  |
| River               | Sand 10-20%        | Non plastic                           |  |  |
|                     | Mud -              | _                                     |  |  |
| Wonogiri reservoir  | Gravel: –          | Very soft, N value: almost zero       |  |  |
|                     | Sand: 5% and under | PL, LL, PI are approximately 30%, 70% |  |  |
|                     | Mud: (65)-95%      | and 40 respectively.                  |  |  |
|                     |                    | Soil classification: CH               |  |  |

| Area   |  |
|--------|--|
| ervoir |  |
| ı Rese |  |
| e Dam  |  |
| rrpose |  |
| ultipı |  |
| giri M |  |
| Nonog  |  |
| the V  |  |
| ent in |  |
| edim   |  |
| tor S  |  |
| Tests  |  |
| atory  |  |
| Labor  |  |
| y of I |  |
| mmaı   |  |
| .3 Su  |  |
| de 1.1 |  |
| Tab    |  |

| 10  | Boring<br>BH-4<br>Intake site<br>Probable<br>old surface<br>soil before<br>constructio<br>n | May 2002 | Intake                              | 11.0-11.4        | 2.5786            | 62.240               |            | 2        | 93       | 5        | 71.75               | 30.26                | 41.49            | 0.23                    | (CH)           |                                                                              |
|-----|---------------------------------------------------------------------------------------------|----------|-------------------------------------|------------------|-------------------|----------------------|------------|----------|----------|----------|---------------------|----------------------|------------------|-------------------------|----------------|------------------------------------------------------------------------------|
| 6   | Boring<br>BH-2<br>Intake site                                                               | May 2002 | Intake                              | 9.45-10.5        | 2.5897            | 70.780               |            | 4        | 92       | 4        | 71.30               | 32.26                | 39.04            | 0.01                    | (CH)           | oject<br>dic of Indonesi                                                     |
| 8   | Boring<br>BH-2<br>Intake site                                                               | May 2002 | Intake                              | 4.45-5.0         | 2.5774            | 77.950               |            | 35       | 60       | 5        | 66.20               | 28.27                | 37.93            | -0.31                   | (CH)           | (2002)<br>urpose Dam Pr                                                      |
| 7   | Boring<br>BH-1<br>Intake site<br>Probable<br>old surface<br>soil before<br>constructio<br>n | May 2002 | Intake                              | 1.2-1.5          | 2.5478            | 43.750               |            | 2        | 95       | 3        | 77.20               | 32.68                | 44.52            | 0.75                    | (CH)           | Dam Reservoir<br>(onogiri Multip<br>se Dam Reservo                           |
| 9   | Upstream<br>end of the<br>reservoir                                                         |          | 6-8                                 | ı                |                   |                      | 0          | 5        | 56       | 39       |                     |                      |                  |                         | Ц              | Multipurpose I<br>g Services on W<br>jri Multipurpos                         |
| 5   | River bed<br>in vicinity<br>of Wonogiri<br>Multipurpo<br>se dam                             | 1975?    | 0.5~2                               | 1.0              | $2.74 \sim 3.30$  |                      | 80~97      | 3~15     | 0~5      |          |                     |                      |                  |                         | (GW)           | on in Wonogiri<br>ing Engineering<br>ation in Wonog                          |
| 4   | 5 km<br>upstream of<br>No.2 site                                                            | Sep.2001 | 24                                  | 0.5              | 2.611             | 22.7                 | 82         | 18       | <0.2     |          |                     |                      |                  |                         | (GW)           | for Sedimentati<br>ion for Consult<br>es for Sediment<br>giri Multipurpc     |
| 3   | Proposed<br>check dam<br>No.2                                                               | Sep.2001 | 19                                  | 0.5              | 2.649             | 10.8                 | 78         | 22       | <0.2     |          |                     |                      |                  |                         | (GW)           | ountermeasure<br>cerial Investigat<br>Countermeasur<br>uction of Wono        |
| 2   | Proposed<br>check dam<br>No.1                                                               | Sep.2001 | 12                                  | 0.5              | 2.735             | 13.1                 | 92         | 8        | <0.2     |          |                     |                      |                  |                         | (GW)           | ly on Urgent Co<br>I and Rock Mat<br>udy on Urgent<br>ents after constr      |
| 1   | Keduang<br>Bridge                                                                           | Sep.2001 | 8                                   | 0.5              | 2.507             | 52.2                 | 2          | 61       | 75       | 4        | 64.6                | 28.4                 | 36.2             | 0.3                     | (HH)           | isic Design Stud<br>ing Report, Soi<br>Detail Design St<br>are new sedime    |
| No. | Location                                                                                    | Year     | ce from Wonogiri<br>urpose Dam (km) | ng point GL(- m) | c gravity (g/cm3) | al water content (%) | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | Liquid Limit<br>(%) | Plastic Limit<br>(%) | Plastic Index Ip | Consistency<br>Index Ic | Classification | nces:<br>No.1-4: The Ba<br>No.5: Engineer<br>No.7-10: The E<br>No.8 and No.9 |
|     |                                                                                             |          | Distanc<br>Multipu                  | Samplii          | Specifie          | Natura               | f          | Partic   | e :      | SIZE     |                     | Consi<br>stenc       | y                |                         | Soil           | Referen                                                                      |

Г

#### Nippon Koei Co.,Ltd. Yachiyo Engineering Co.,Ltd.

## CHAPTER 2 REGIONAL GEOLOGY

#### 2.1 Topography

The Bengawan Solo River rises on southwest slope of G. Rahtawu in Tertiary Volcanic mountains area, and flows westward along the mountains series. The Solo River runs northward receiving Alang River, Temon River, Tirutomoyo River and Keduang River immediately upstream of the Multipurpose Wonogiri Dam. After the confluence, the Solo River clockwise flows around Mt. Lawu throw alluvial basin of Surakarta City and Sragen City, and runs eastward to Nagawai City. After the confluence with the Maddiun River the Solo River flows northward to Cepu City and changes the direction to the east northeast and flows into the Jawa Sea about 30 kilometers to the northwest of Surabaya City.

#### 2.2 Regional Geology

The geomorphic and geotectonic zones of Java Island form belts of the east to west direction as follows from south to north.

- The Southern Mountains
- The Solo zone
- The Kendeng zone
- The Randublatung zone
- The Rambang zone

The Wonogiri Dam is located in the southwestern foothill of Mt. Lawu near the boundary between Solo Zone and Southern Mountains. (See Figure 2.2.1)

#### The Southern Mountains

This zone is divided into a southern part, the karst plateau of Late Miocene limestone, and a northern mountainous part of Early Miocene tuff breccia or volcanic breccia.



Figure 2.2.1 Geological Map of the Study Area

#### The Solo Zone

In the Solo zone, the Tertiary formations are covered by a number of Quaternary volcanic products.

The Southern Mountains, forming the southern flank of the anticline, were elevated and tilted southward in Quaternary. At first a consequent, southward drainage pattern developed on the surface of the Southern Mountains. A dry valley running southward shows an old river course at the time. Thereafter, in the Upper Pleistocene, a further warping of this tiled surface has taken place and a basin of Baturetno was formed. Due to this later warping the drainage took a reversed course (towards the North) and became

part of the catchment basins of Solo River. During the uplift the crest of the anticline, step faults sliding northwards are supposed to have been developed (See Figure 2.2.2).



(References: R.W. Van Bemmelem, 1949)

Figure 2.2.2 Schematic Profile of the Study Area

## CHAPTER 3 SITE CONDITION

#### 3.1 Topography

The catchment area of Wonogiri Dam is topographically divided into the following three mountain regions extending east and west, and one plain area surrounding Wonogiri

reservoir (Figure 3.1.1 and Figure 3.1.2).

Southern area forms karst tableland with many small mountains of about 400 m in elevation. Almost of rainfall on the tableland infiltrate into underground, and there is no obvious runoff. There are some springs along the foot of the tableland.

Middle area is characterized by EL.500 m-EL.1200 m ranging mountains and steep valleys extending east-west with dendritic drainage feature.

Northern area, G. Semilir (EL. 2,023 m) on the south slope of Mt Lawu is the highest of the catchment area, forms a volcanic corn with deep V-shape valleys running radially.

Relatively wide plains spread around the confluence of Bengawan Solo River and Alang River, and downstream region of along Tirutomoyo River.

#### 3.2 Site Geology

- 3.2.1 Geologic Component
  - (1) Semilier Formation/ Nglanggran Formation\*\*

**Distribution**: Forming east-west mountain area of 500-1200 m in elevation between left bank of Keduang R. and Bengawan Solo River



Source: JICA Study Team Figure 3.1.1 Inclination Map of Wonogiri Catchment Area



Source: JICA Study Team Table 3.1.2 Watershed of Wonogiri Dam Catchment Area



<sup>\*</sup> According to Map of Engineering Geology Wonogiri Multipurpose Dam Inundation Area (1978), Semilier Formation and Nglanggran Formation are mainly composed of volcanic breccia and lapilli tuff respectively. However, the boundary of the both formations is unclear in the study area.

**Lithology**: Early Miocene volcanic breccia, tuff breccia and lapilli tuff composed of hard andesitic fragments and relatively soft sandy matrix.

Structure: massive, partially sediment facies.

**Weathering/Soil runoff**: Weathered rocks and its residual soils exposed in the cultivated area spread in the dam catchment area are assumed to be a major source of reservoir sediment materials due to their easily erosive character.

(2) Ojo Formation

**Distribution**: Forming gently inclined plane upstream of Wonogiri reservoir area, widely developed upstream to middle-stream area of Alang River.

**Lithology**: Late Miocene calcareous mudstone and sandstone with thin bedded of approximately 50 cm in thickness.



**Structure**: gently dipping southward, and grading downward into tuffaceous stone.

**Weathering/Soil runoff**: Moderately hard to moderately soft. Little potential of tractional load.

(3) Wonosari Formation

**Distribution**: Forming many small **mountains of 300 m-400 m in elevation from** to the southern of the Wonogiri reservoir, called "Gunung Sewu" meaning one thousand mountains.

Lithology: Kalstaric limestone of late Miocene age

**Structure**: gently dipping southward, partially massive.

**Weathering/Soil runoff**: Mainly subsurface runoff, probably little tractional load.

(4) Nitopuro Formation

**Distribution**: The upstream area of the Keduang River and on right bank of the downstream area of the Keduang River.

**Lithology**: Volcanic breccia, partially lahar facies including andestic and/or basaltic fragments, and tuffaceous sand-silt, tuff breccia of late Pleistocene age.

Structure: Gently inclined southward in general

Weathering/Soil runoff: Moderately soft to soft. Completely weathered rocks and residual soils exposed in the cultivated area of the middle stream of the Keduang River are assumed to be a major source of sediment materials in the reservoir, although upstream natural forests area and downstream area widely distributed by paddy fields





probably have little potential for erosion.

(5) Lacustrine Deposit

**Distribution**: Upstream area of Wonogiri reservoir except for Keduang River, forming terraces or plain fields below 200 m in elevation

**Soil Condition**: Black to dark grey relatively soft sediment, sometimes including limestone pebbles. Deposited in a basin surrounding Wonogiri Reservoir.

**Consistency/Soil runoff**: Relatively soft to soft and erosible, a major source of sediment materials from Alang River, Tirutomoyo River, and partly Solo River.

(6) Terrace Deposit

**Distribution:** Small terraces of approximate 5 meters in height are scattered along the river.

**Soil condition:** extremely dense sand and gravels, and top thin layers of moderately soft sandy silt.

**Consistency/Soil runoff**: Terrace deposits of Kuduang River are very dense and the riverbed and banks seem to be stable recently. There would not be a considerable source of the sediment materials of the reservoir. Whereas, some terraces of lower stream area of Solo River and Tirutomoyo River covered by loose sand-silt of 2-3 m in thickness. These loose materials are suffered by riverbank erosion.



(7) Recent River Deposit

**Distribution:** Bedrock is exposed at many places along the river. Thickness of river deposits is inferred to be less than 2-3 meters in general.

Soil condition: Mainly distributed along the Tirutomoyo River.

**Consistency/Soil runoff**: Recent river deposits are relatively stiff and are composed mainly of sandy gravels. River deposits differ from sediment in the dam reservoir in containing little fine component in general.

3.2.2 Stratigraphy

Stratigraphy of the study area is show in Table 3.2.1, and geological map is shown in Figure 3.2.1.

| Geological<br>Age (Ma)  | Formation                                         | Rock                                                        | Unit                               | Description                                                                                                                                                                                                                       | Thick<br>-ness<br>(m) | Physical Properties                                                                                                                               |                                         |                                                                                                                                               |
|-------------------------|---------------------------------------------------|-------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Holocene<br>(0.00-0.01) |                                                   | Recent<br>river<br>deposit                                  |                                    | Recent<br>river<br>deposit<br>Upper: light brownish grey sandy clay<br>to silty sand of 50 cm in thickness<br>Lower: light brownish grey, sandy<br>gravels 5-10 cm, consisted of cobbles<br>(max 10 cm in diameter) to fine sand. |                       | 0-2                                                                                                                                               | Upper: Loose<br>Lower: relatively dense |                                                                                                                                               |
| Holocene-               |                                                   | Terrace<br>deposi                                           | e<br>t                             | Brown gravel to sandy loam,                                                                                                                                                                                                       | 5                     | very dense, permeable, well drainage                                                                                                              |                                         |                                                                                                                                               |
| Pleistocene             |                                                   | Lacustrine<br>deposit                                       |                                    | Black to dark brown clay, including limestone pebbles                                                                                                                                                                             | 10-20                 | Loose to weakly cemented,<br>permeable, well drainage<br>to poor drainage.                                                                        |                                         |                                                                                                                                               |
| Pleistocene             | Notopuro F.<br>(Duyfjess,1                        | Volc<br>anic                                                | (1)                                | Grey, brownish grey, purple, volcanic<br>breccia, bedrocks of Keduang R.,<br>sometimes exposed.                                                                                                                                   | -?                    | Easily weathering,<br>remained hard fragments<br>of andesite.<br>Loose to strongly<br>cemented, poorly jointed,<br>and impermeable in<br>general. |                                         |                                                                                                                                               |
| (0.01-2.0)              | 933)                                              | brec<br>cia II                                              | (2)                                | Grey, brown, volcanic breccia, lahar sediments                                                                                                                                                                                    |                       | Easily weathering, soften and erosible.                                                                                                           |                                         |                                                                                                                                               |
|                         |                                                   |                                                             | (3)                                | White to grey, tuffaceous sand,<br>tuffaceous silt, thin bedded,<br>intercalated thin silty conglomerate<br>layers                                                                                                                |                       | Easily weathering, slaking.<br>Impermeable in general.                                                                                            |                                         |                                                                                                                                               |
|                         | Wonosari F.<br>(Bothe,<br>1929)                   |                                                             | Wonosari F.<br>(Bothe, Li<br>1929) |                                                                                                                                                                                                                                   | tone                  | White to grey, limestone, thin bedded clayly limestone.                                                                                           | >650                                    | Hard in general including<br>intercalated thin weak<br>layers.<br>Karstic limestone in some<br>places, strongly jointed in<br>the shear area. |
| Miocene<br>(5.3-23.5)   | Ojo F.<br>(Bothe,<br>1929)                        | Tuffaceous<br>sand/Marly<br>limestone                       |                                    | Tuffaceous<br>sand/Marly<br>limestone Light grey to brownish grey, thin<br>bedded, tuffaceous sandstone,<br>including relatively hard clay stone<br>layers of 20-50 cm in thickness.                                              |                       | Moderately to strongly cemented, porous and good drainage at some places.                                                                         |                                         |                                                                                                                                               |
|                         | Nglanggran<br>F.<br>(Bothe,<br>1929)              | Lapilli                                                     | tuff                               | Grey, lapilli tuff, tuff breccia tuff, good<br>layering.<br>Component: pumice and andestic<br>rocks.                                                                                                                              | >1500                 | Relatively hard, poorly jointed, impervious in general. well graded.                                                                              |                                         |                                                                                                                                               |
|                         | Semilir F/<br>Old<br>Andesite<br>(Bothe,<br>1929) | Semilir F/<br>Dld Volcanic<br>Andesite breccia (I)<br>1929) |                                    | Grey, volcanic breccia with intercalate lapilli tuff layers, good layering.                                                                                                                                                       | >650                  | Moderately to well graded,<br>relatively hard, and<br>impermeable in general<br>except thin bedded layers<br>or strongly jointed zone.            |                                         |                                                                                                                                               |

Table 3.2.1 Stratigraphy of the Study Area

Laporan Pemetaan Geologi Teknik Genangan Waduk Wonogiri (1978) Report: Mapping of Technical Geology, Inundated Area of Wonogiri Dam. References:



Figure 3.2.1 Geological Map of the Study Area

#### 3.2.3 Fault

North-slip normal fault system is supposed as previously mentioned, although no obvious fractures were observed along Keduang River and Tirtomoyo River, because these areas are covered by young volcanic deposits or thick soils.

Some minor faults extending N-S or WNW-ESE occur near the boundary between volcanic breccia I and limestone to the south of the Wonogiri Reservoir.

## CHAPTER 4 GEOLOGICAL INVESTIGATION

#### 4.1 Quantities

Geological Investigations composed of core drilling with testing, test pits and sampling of river bed materials and laboratory tests were carried out for the purpose of obtaining geological data about the sub-surface conditions to formulate the master plan for Wonogiri Multipurpose Dam.

| Fiscal<br>Year | Investigation Site                                                      | Items                      | Quantities                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|----------------|-------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                |                                                                         | Core drilling              | 12 holes total length: 179 m                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                |                                                                         | Standard penetration test  | 84 nos.                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                | Wonogiri Multipurpose<br>Dam Reservoir                                  | Laboratory tests           | Particle size analysis: 84 nos.<br>Specific gravity: 84 nos.<br>Bulk density: 36 nos.<br>Natural water content: 84 nos.<br>Atterberg limit: 84 nos.                                                                                                                                                                                                                      |  |  |  |
| 2004           | Five tributaries in the Wonogiri dam catchment area                     | Laboratory tests           | Particle size analysis: 31 nos.<br>Specific gravity: 31 nos.<br>Natural water content: 15 nos.                                                                                                                                                                                                                                                                           |  |  |  |
|                | Downstream of the Wonogiri dam                                          | Laboratory tests           | Particle size analysis: 30 nos.<br>Specific gravity: 30 nos.                                                                                                                                                                                                                                                                                                             |  |  |  |
|                |                                                                         | Core drilling              | 5 holes, total length 150 m                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                | Proposed spillway site for                                              | Standard penetration tests | 61 nos.                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                | the Wonogiri Dam                                                        | Permeability test          | 30 nos.                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                | the wonoght Dam                                                         | Laboratory tests           | Bulk density: 5 nos.<br>Water absorption: 5 nos.<br>Unconfined compression: 5 nos.                                                                                                                                                                                                                                                                                       |  |  |  |
| 2005           | Five tributaries in the Wonogiri dam catchment area                     | Ground mapping             | 1 set                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                |                                                                         | Core drilling              | 11 holes total length: 223 m                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                |                                                                         | Standard penetration test  | 66 nos.                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 2006           | Proposed spillway site,<br>closure dike site, and<br>overflow weir site | Laboratory test            | For foundation<br>Particle size analysis:<br>Specific gravity:<br>Natural water content:<br>Bulk density:<br>Unconfined compression test:<br>Consolidation test:<br>For material source<br>Particle size analysis: 4 nos.<br>Atterverg limits: 4 nos.<br>Specific gravity: 4 nos.<br>Natural water content: 4 nos.<br>Balk density: 4 nos.<br>Tri-axial (UU, CU): 4 nos. |  |  |  |

Table 4.1.1 Quantities of Geological Investigation

|                  |               | Coor        | dinates       |                  |               | Site Test (nos.) |                          |                |  |
|------------------|---------------|-------------|---------------|------------------|---------------|------------------|--------------------------|----------------|--|
| Boring           | Location      | N           | Е             | Elevation<br>(m) | Length<br>(m) | SPT              | Constant<br>Head<br>Test | Lugeon<br>test |  |
|                  |               |             | 20            | 04               |               |                  |                          |                |  |
| BH-1             |               | 488,285     | 9,118,215     | 134.6            | 12            | 4                | -                        | -              |  |
| BH-2             |               | 488,472     | 9,119,615     | 133.0            | 16            | 5                | -                        | -              |  |
| BH-3             |               | 488,566     | 9,123,113     | 127.4            | 9             | 5                | -                        | -              |  |
| BH-4             |               | 488,901     | 9,126,102     | 123.4            | 12            | 7                | -                        | -              |  |
| BH-5             |               | 491.672     | 9.126.235     | 130.0            | 12            | 7                | -                        | -              |  |
| BH-6             | Wonogiri      | 494.063     | 9.123.155     | 134.0            | 13            | 8                | -                        | -              |  |
| BH-7             | Reservoir     | 489 276     | 9 128 498     | 126.0            | 13            | 8                | _                        | -              |  |
| BH-8             |               | 490.624     | 9 130 630     | 118.5            | 14            | 8                | _                        | _              |  |
| BH-9             |               | 491 253     | 9 132 558     | 118.9            | 13            | 8                | _                        | _              |  |
| BH_10            |               | 191,255     | 9,132,550     | 130.1            | 23            | 5                |                          |                |  |
| DII-10<br>DII 11 |               | 492,300     | 0 133 217     | 130.1            | 25            | 16               | -                        | -              |  |
| DП-11<br>DH 12   |               | 492,723     | 9,135,217     | 131.4            | 17            | 10               | -                        | -              |  |
| BH-12<br>DC 1    |               | 495,158     | 9,131,612     | 134.5            | 1/            | 3                | -                        | -              |  |
| BS-1<br>DS-2     |               | 492,486     | 9,133,951     | 143.500          | 30            | 14               | 4                        | 2              |  |
| DS-2<br>RS_3     | Proposed      | 492,512     | 9,155,948     | 143,500          | 30            | 12               | 4                        | 1              |  |
| BS-3<br>BS-4     | Spillway site | 492,555     | 9 133 913     | 141,700          | 30            | 13               | 5                        | 1              |  |
| BS-5             |               | 492,503     | 9.133.977     | 143.200          | 30            | 10               | 4                        | 2              |  |
| Total            |               | - ,         |               |                  | 150           | 61               | 22                       | 8              |  |
|                  | •             |             | 20            | 06               |               |                  | •                        |                |  |
| B-1              |               | 491,928.143 | 9,134,009.536 | 124.300          | 25            | 5                |                          |                |  |
| B-2              | Proposed      | 492,017.635 | 9,134,001.529 | 129.000          | 25            | 10               |                          |                |  |
| B-3              | Spillway site | 492,194.728 | 9,133,966.929 | 132.300          | 20            | 5                |                          |                |  |
| B-4              |               | 492,367.073 | 9,133,988.380 | 139.800          | 20            | 9                |                          |                |  |
| B-5              | Proposed      | 492,386.610 | 9,133,667.087 | 130.100          | 20            | 2                |                          |                |  |
| B-0<br>B 7       | Closure Dike  | 492,438.792 | 9,133,00/.08/ | 129.000          | 20            | 2                |                          |                |  |
| B-/              | Proposed      | 429,230.929 | 9 133 596 320 | 134 400          | 15            |                  |                          |                |  |
| B-0              | Overflow weir | 429.843.141 | 9.132.290.466 | 134.800          | 15            | 7                |                          |                |  |
| B-10             | Proposed      | 492,323.257 | 9,133,482.781 | 129.900          | 20            | 10               |                          |                |  |
| B-11             | Closure Dike  | 492,344.988 | 9,133,533.435 | 130.563          | 20            | 14               |                          |                |  |
| Total            |               |             | -             |                  | 220           | 73               |                          |                |  |

### Table 4.1.2 Quantities of Drilling Works

#### 4.2 **Results of Geological Investigation**

- 4.2.1 Wonogiri Reservoir
  - (1) Geology

Results of drilling works carried out in Reservoir Area are summarized in Table 1.4.3. Relationship between soil type and SPT N values is summarized in Table 1.4.4.

|                |                  |               | Geological condition (m)                       |                                               |                                          |                         |  |  |
|----------------|------------------|---------------|------------------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------|--|--|
| Drilling<br>No | Name of<br>River | Length<br>(m) | Sediments<br>after the<br>dam was<br>completed | Original river<br>deposit,<br>Terrace deposit | Base rock<br>(rock type)                 | Remarks                 |  |  |
| BH-1           | Solo             | 15            | 0.0-2.5                                        |                                               | 2.5-15.0 (tuffaceous sand)               | 2.5-4.0<br>Organic soil |  |  |
| BH-2           | Solo             | 16            | 0.0-2.0                                        | 2.0-8.0                                       | 8.0-16.0 (tuffaceous sand)               | 2.0-5.0<br>Organic soil |  |  |
| BH-3           | Temon            | 9             | 0.0-7.6                                        | 7.6-9.0                                       |                                          |                         |  |  |
| BH-4           | Solo             | 12            | 0.0-3.6                                        | 3.6-9.2                                       | 9.2-12.0 (tuff)                          |                         |  |  |
| BH-5           | Tirutom<br>oyo   | 12            | 0.0-1.5                                        |                                               | 1.5-12.0 (tuffaceous sand)               | 1.5-3.0<br>Organic soil |  |  |
| BH-6           | Tirutom<br>oyo   | 13            | 0.0-3.5                                        |                                               | 3.5-13.0 (tuff)                          |                         |  |  |
| BH-7           | Solo             | 13            | 0.0-0.8                                        | 0.8-1.5                                       | 1.5-12.0 (tuff)                          |                         |  |  |
| BH-8           | Solo             | 14            | 0.0-2.0                                        |                                               | 2.0-14.0 (lapilli tuff, tuffaceous sand) |                         |  |  |
| BH-9           | Solo             | 13            | 0.0-1.7                                        |                                               | 1.7-13.0 (lapilli tuff)                  |                         |  |  |
| BH-10          | Solo             | 23            | 0.0-3.2                                        |                                               | 3.2-23.0 (lapilli tuff)                  |                         |  |  |
| BH-11          | Keduang          | 25            | 0.0-17.5                                       | 17.5-25.0                                     |                                          |                         |  |  |
| BH-12          | Keduang          | 17            | 0.0-8.0                                        |                                               | 8.0-17.0 (tuff breccia)                  |                         |  |  |

Table 4.2.1 Results of Drilling Works of Wonogiri Reservoir

Source: JICA Study Team

#### Table 4.2.2 Summary of Relationships between Geological Condition and SPT N Value

| Geology                                    | Soil type                | N-value         |
|--------------------------------------------|--------------------------|-----------------|
| Sediment deposited after the completion of | silt and clay/sandy soil | 0-1             |
| the dam                                    |                          |                 |
| Riverbed deposits (original)               | sand and gravel          | 3-more than 5   |
| Terrace deposits (original)                | sand and gravel          | more than 20-50 |
| Residual soil (original surface)           | brown clay               | 1-10            |
| Weathered rock                             |                          | 10-more than 50 |

#### (2) Grain Size

Grain size distribution of each drilling hole is shown in Table 1.4.5 and Figure 1.4.1.

|        |          | 0 "         | Grain size (μr |       |      |       |       | μm)    |         |          |           |
|--------|----------|-------------|----------------|-------|------|-------|-------|--------|---------|----------|-----------|
| Boring | Depth of | Sampling    | C              | lay   |      | Silt  |       |        | Sand    |          | Gravel    |
| No.    | Sediment | Depth       | 0.24-1.3       | 1.3-5 | 5-16 | 16-31 | 31-75 | 75-250 | 250-850 | 850-2000 | 2000-9500 |
|        | (m)      | (m)         | (%)            | (%)   | (%)  | (%)   | (%)   | (%)    | (%)     | (%)      | (%)       |
| BH-1   | 2.5      | 0.20-0.40   | 64.0           | 2.5   | 8.5  | 11.0  | 8.8   | 3.8    | 1.0     | 0.5      | 0.0       |
|        |          | 0.60-0.80   | 66.0           | 6.0   | 10.0 | 6.0   | 7.7   | 3.1    | 0.6     | 0.4      | 0.1       |
|        |          | 1.55-1.75   | 62.5           | 6.5   | 11.0 | 6.5   | 5.6   | 2.8    | 2.8     | 1.4      | 0.9       |
| BH-2   | 2        | 0.30-0.50   | 65.6           | 4.4   | 11.0 | 9.0   | 7.1   | 2.0    | 0.9     | 0.0      | 0.0       |
|        |          | 0.60-0.80   | 60.7           | 8.3   | 16.0 | 8.0   | 4.7   | 1.2    | 1.0     | 0.0      | 0.0       |
|        |          | 1.50-1.70   | 46.5           | 5.5   | 10.0 | 6.0   | 9.6   | 17.3   | 4.1     | 0.8      | 0.2       |
| BH-3   | 7.6      | 0.30-0.50   | 61.5           | 5.5   | 9.5  | 7.5   | 9.1   | 6.3    | 0.4     | 0.2      | 0.0       |
|        |          | 0.70-0.90   | 49.5           | 4.5   | 8.0  | 7.0   | 9.2   | 17.4   | 3.5     | 0.8      | 0.1       |
|        |          | 1.50-1.70   | 73.7           | 4.3   | 8.0  | 5.0   | 5.7   | 2.1    | 0.4     | 0.8      | 0.1       |
|        |          | 2.00-2.50   | 73.6           | 5.4   | 9.0  | 4.5   | 4.4   | 2.2    | 0.4     | 0.3      | 0.2       |
|        |          | 5.00-5.50   | 66.4           | 4.1   | 7.5  | 7.5   | 6.4   | 7.8    | 0.3     | 0.1      | 0.0       |
| BH-4   | 3.6      | 0.20-0.40   | 42.4           | 2.6   | 4.0  | 3.0   | 8.8   | 22.8   | 11.9    | 3.8      | 0.7       |
|        |          | 0.65-0.90   | 46.8           | 4.2   | 6.0  | 5.5   | 8.8   | 15.3   | 10.3    | 3.0      | 0.0       |
|        |          | 1.50-1.70   | 74.8           | 5.2   | 3.0  | 5.0   | 5.3   | 3.3    | 1.0     | 1.9      | 0.5       |
|        |          | 2.00-2.50   | 61.5           | 6.5   | 7.0  | 3.5   | 6.0   | 10.6   | 3.9     | 0.9      | 0.2       |
| BH-5   | 1.5      | 0.25-0.45   | 61.3           | 3.7   | 6.0  | 4.0   | 5.3   | 12.0   | 6.3     | 1.3      | 0.2       |
|        |          | 0.75-1.00   | 68.2           | 3.8   | 5.0  | 3.5   | 4.5   | 9.6    | 4.4     | 0.6      | 0.3       |
|        |          | 1.20-1.50   | 37.0           | 2.5   | 4.5  | 4.0   | 6.4   | 30.6   | 14.2    | 0.6      | 0.1       |
| BH-6   | 3.5      | 0.30-0.50   | 14.2           | 1.8   | 5.0  | 7.0   | 11.1  | 16.1   | 34.3    | 9.8      | 0.7       |
|        |          | 0.60-0.80   | 29.7           | 5.8   | 7.5  | 6.0   | 9.8   | 18.7   | 15.8    | 5.7      | 1.0       |
|        |          | 1.50-1.70   | 37.6           | 3.9   | 4.5  | 4.0   | 5.5   | 8.1    | 25.1    | 10.5     | 0.8       |
|        |          | 2.00-2.50   | 24.5           | 2.5   | 4.0  | 2.0   | 6.3   | 27.0   | 25.7    | 6.0      | 2.0       |
| BH-7   | 0.8      | 0.15-0.35   | 79.8           | 3.2   | 3.5  | 1.5   | 3.8   | 4.4    | 2.1     | 1.4      | 0.3       |
|        |          | 0.55-0.75   | 70.0           | 6.0   | 6.0  | 4.0   | 3.2   | 4.7    | 3.0     | 1.8      | 1.3       |
| BH-8   | 2        | 0.30-0.50   | 84.2           | 3.3   | 3.5  | 2.0   | 4.8   | 1.6    | 0.5     | 0.2      | 0.0       |
|        |          | 0.60-0.80   | 43.9           | 7.1   | 7.0  | 9.0   | 12.7  | 15.1   | 4.7     | 0.4      | 0.1       |
|        |          | 1.50-1.70   | 81.4           | 5.6   | 5.0  | 5.0   | 1.2   | 1.2    | 0.5     | 0.2      | 0.0       |
| BH-9   | 1.7      | 0.30-0.50   | 77.2           | 4.8   | 7.0  | 7.0   | 3.0   | 0.6    | 0.3     | 0.1      | 0.0       |
|        |          | 0.70-0.95   | 79.6           | 5.9   | 7.5  | 4.0   | 2.1   | 0.4    | 0.3     | 0.1      | 0.0       |
|        |          | 1.50-1.70   | 86.9           | 3.1   | 4.0  | 2.0   | 2.7   | 0.9    | 0.3     | 0.1      | 0.0       |
| BH-10  | 3.2      | 0.40-0.60   | 28.9           | 6.1   | 9.0  | 9.0   | 14.2  | 27.7   | 5.1     | 0.0      | 0.0       |
|        |          | 0.60-0.80   | 50.4           | 11.6  | 16.0 | 12.0  | 9.0   | 0.8    | 0.2     | 0.0      | 0.0       |
|        |          | 1.45-1.70   | 43.7           | 9.8   | 16.5 | 14.0  | 11.9  | 3.5    | 0.5     | 0.0      | 0.0       |
|        |          | 2.00-2.50   | 34.1           | 12.9  | 19.0 | 16.0  | 12.2  | 4.3    | 1.5     | 0.0      | 0.0       |
| BH-11  | 17.5     | 0.30-0.50   | 52.3           | 10.7  | 12.0 | 13.5  | 10.8  | 0.5    | 0.1     | 0.1      | 0.0       |
|        |          | 0.60-0.80   | 44.1           | 11.4  | 22.5 | 12.0  | 7.5   | 2.5    | 0.0     | 0.0      | 0.0       |
|        |          | 1.50-1.70   | 51.1           | 13.9  | 20.0 | 7.0   | 5.8   | 2.0    | 0.2     | 0.0      | 0.0       |
|        |          | 2.00-2.50   | 19.2           | 5.8   | 9.0  | 8.0   | 14.0  | 34.3   | 9.3     | 0.4      | 0.0       |
|        |          | 5.00-5.50   | 20.0           | 7.5   | 11.5 | 8.0   | 14.9  | 27.0   | 10.6    | 0.5      | 0.0       |
|        |          | 8.00-8.50   | 32.5           | 11.5  | 24.0 | 14.0  | 11.1  | 5.6    | 1.2     | 0.0      | 0.0       |
|        |          | 11.00-11.50 | 38.2           | 8.4   | 15.5 | 16.0  | 17.6  | 4.0    | 0.3     | 0.2      | 0.0       |
|        |          | 14.00-14.50 | 46.3           | 14.2  | 22.5 | 10.0  | 5.7   | 0.8    | 0.4     | 0.0      | 0.0       |
|        |          | 17.00-17.50 | 44.9           | 23.1  | 20.0 | 7.0   | 3.9   | 0.7    | 0.2     | 0.2      | 0.0       |
| BH-12  | 8        | 0.30-0.50   | 47.1           | 6.4   | 8.5  | 7.0   | 12.7  | 15.7   | 2.4     | 0.2      | 0.0       |
|        |          | 0.70-0.90   | 61.4           | 5.6   | 14.0 | 8.5   | 7.3   | 2.4    | 0.6     | 0.2      | 0.0       |
|        |          | 1.70-2.00   | 61.4           | 4.6   | 16.0 | 12.0  | 4.9   | 0.7    | 0.3     | 0.2      | 0.0       |
|        |          | 2.50-3.00   | 51.5           | 7.5   | 17.0 | 14.5  | 7.7   | 1.2    | 0.4     | 0.2      | 0.0       |
|        |          | 5.50-6.00   | 54.9           | 4.1   | 8.0  | 7.0   | 7.6   | 9.5    | 7.2     | 1.7      | 0.0       |

Table4.2.3 Grain Size Distribution of Sediments in Wonogiri Reservoir

Source: JICA Study Team



Figure 4.2.1 Grain Size Distribution

The character of sediment material component of main tributaries in Wonogiri Multipurpose dam catchment area was described as below.

- Sediment materials in the reservoir derived from the Keduang River are composed mainly of silt and clay, and drastically changes in grain size from riverbed materials. According to site survey, sand and gravels upstream of the reservoir are very dense (SPT N value: more than 50) and stable. Therefore most sediment in the reservoir of the Keduang River is inferred to have been transported as suspended load (See Figure 4.2.2 and Figure 4.2.6).
- Sediment of the reservoir from the Alang River, Solo River, Temon River and Tirutomoyo River gradually become finer downstream ward and form sandy to clayey foreset bed in the vicinity of the upstream end of the reservoir. Transportation analysis of the sediment from these rivers needs to consider tractional load in addition to suspended load (See Figure 4.2.3 to Figure 4.2.6).



Figure 4.2.2 Geological Section of Keduang River



Figure 4.2.3 Geological Section of Bengawan Solo River



Source: JICA Study Team

Figure 4.2.4 Geological Section of Tirtomoyo River



Source: JICA Study Team

Figure 4.2.5 Geological Section of Temon River



Note: The Sediment Materials were Sampled in the Section of the Boring Core Between 0.2 m-0.6 m in Depth and Test Pitting Samples of 0.5 m in Depth.

Source: JICA Study Team

#### Figure 4.2.6 Component of Surface Sediment Materials in Wonogiri Multipurpose Dam Reservoir and 5 Main Distributaries

(3) Specific Gravity of Soil

No significant differences of the specific gravity were detected among the samples in the Wonogiri reservoir

Maximum: 2.728, minimum: 2.538, Average: 2.670

(4) Bulk Density

Bulk density tests were executed by using undisturbed samples selected in three sections of 0.2-0.4 m, 0.6-0.8 m and 1.5-1.7 m in depth for each boring core.

Half of boring core samples was almost constant in depth. No correlation between bulk density and sampling depth was detected.

| Items       | Max (g/cm <sup>3</sup> ) | Min (g/cm <sup>3</sup> ) | Ave (g/cm <sup>3</sup> ) | Standard Distribution |
|-------------|--------------------------|--------------------------|--------------------------|-----------------------|
| Wet density | 1.889                    | 1.485                    | 1.639                    | 0.09                  |
| Dry density | 1.438                    | 0.792                    | 1.063                    | 0.15                  |
| Saturated   | 1.910                    | 1.488                    | 1.664                    | 0.10                  |

#### (5) Consistency

Almost of the samples were classified into CH.

4.2.2 Downstream of the Wonogiri Dam

River deposits were sampled at the center and the both banks of the river at 10 locations along the Solo River downstream of the Wonogiri Dam up to the confluence of the Solo River and the Madune River.

(1) Grain Size

Maximum grain size ranges from 88.90 mm to 4.75 mm, and 60% diameter of grain size ranges from 9.50 mm to 0.18 mm (average 1.73 mm). No correlation between grain size of the samples and distance from the dam site was detected.



Source: JICA Study Team

Figure 4.2.7 Particle Size Distribution of the River Sediment Materials at 10 Points Along the Solo River Downstream of the Wonogiri Multipurpose Dam



Figure 4.2.8 60% Diameter of the River Sediment Materials at 10 Points Along the Solo River downstream of the Wonogiri Multipurpose Dam

(2) Specific Gravity of Soil

No significant differences of the specific gravity were detected among the samples along the Solo River downstream of the dam.

Maximum: 2.731, minimum: 2.671, Average: 2.700

## CHAPTER 5 SITE CONDITION OF THE WONOGIRI WATERSHED

#### 5.1 Keduang River

5.1.1 Upstream Area (Right Bank, About EL. 600 m ~)

**Slope gradient:** More than 20 degrees in general, more than 30 degrees in valley

**Geology:** Grey, brownish grey, purple, volcanic breccia. Bedrocks of Keduang R. are sometimes exposed in some portions.

**Soil Condition:** Litosol, or Mediteran. Less than 3 m in thickness in general.

**Riverbed deposits**: Sand and gravels including boulders of more than one meter in diameter. Debris flow deposits were observed.

#### **Condition:**

<u>EL. 900 m ~</u>

Most mountainous lands are covered by natural forests. There are few gulley erosion sites. Soil degradation is not serious.

#### <u>About EL.600 m - EL.900 m</u>

Most hilly areas are covered by Kubun or Tegule. Paddy fields are distributed along the tributaries of the Keduang River.

#### Source of Sediment Discharge:

Sheet erosion and rill erosion in cassava fields etc. are supposed. There are no large active landslides, although some suspicious landcreep slopes are observed. Recently small irrigation canals are constructed by local people and water infiltration from canals or paddy fields might cause landslide.

5.1.2 Middle Area (Right Bank, EL.600 m - Mainstream of Keduang River)

**Slope gradient:** Less than 10 degrees in general, about 20-30 degrees along small stream ridges

**Geology:** Lahar deposit (soft) and volcanic breccia (relatively soft) are exposed along the river

Soil type: Latosol and mediteran of 5-8 m in thickness

**Condition:** Spring points are distributed about EL. 600 m and EL.150 m beside the crossing road on the flank of Mt. Lawu. Gentle hills and wide valleys covered with paddy fields.

#### Source of Sediment Discharge:

Sheet erosion of thick latosol covering gentle hills

Gully erosions at spring points. Additionally discharged water from narrow channels or drains causes gully erosions as shown in the following figure in many cases.



Source: JICA Study Team

Figure 5.1.1 Major Gully of Keduang River Basin

#### 5.1.3 Downstream Area

**Slope gradient:** Less than 10 degrees

**Geology:** White to grey, tuffaceous sand, tuffaceous silt, thin bedded, intercalated thin silty conglomerate layers.

Small terraces are distributed along the Keduang River. Terrace deposits are very dense.

Soil Type: Mediteran

**Condition:** Paddy fields are expanded.

#### Source of Sediment Discharge:

Low potential of sheet erosion and gully erosion due to low gradient

Erosion by wave is detected at some potions.

5.1.4 Mountainous Area (Left Bank)

Slope gradient: 5-more than 20 degrees, about 50-60 degrees at the escarpment

Geology: Volcanic breccia, relatively hard.

Soil type: Mediteran and litosol

#### **Condition:**

Paddy fields are expanded at the plain (slope gradient of less than about 5 degrees)

Cassava fields and forests (Kubun) are distributed hilly area

Bedrocks are exposed near the mountain ridge

#### Source of Sediment Discharge:

Sheet erosion of the fields is the major source.

#### 5.2 Tirtomoyo River

5.2.1 Mountain Area

Slope gradient: Mainly more than 15 degrees

Geology: Volcanic breccia (relatively hard)

Soil type: Litosol and mediteran

**Condition:** Residual soil is 1-2 m in thickness in general. Bedrocks are exposed at some mountain ridges. Most upstream area is a peneplain covered by forests.

Relative thick residual soil covers the hilly area of Desa Girirejo, Desa Hargorejo, and Desa Genengharjo at the midstream of Tirtomoyo River (See Figure 5.2.1).

#### Source of Sediment Discharge:

Sheet erosion is main source, although the most upstream area covered by forests has low potential of erosion.

Relatively large landslides were detected in Desa Girirejo, Desa Hargorejo, and Desa Genengharjo. Landslide high potential zone is probably restricted in the area subjected to hydrothermal alteration due to volcanic intrusions.



Figure 5.2.1 Erosive Soil Distribution Area of Tirtomoyo River and Solo River Basin

#### 5.2.2 Plain Area

**Slope gradient:** Mainly less than 3 degrees

Geology: Lacustrine deposits and terrace deposits on the both bank of the river.

Soil type: Grumosol

Condition: Terrace deposits of 2-3 m in thickness are loose and erosive.

Source of sediment discharge: Bank erosion is the major source.

#### 5.3 Temon River

5.3.1 Upstream Area

Slope gradient: Mainly more than 8 degrees

Geology: Volcanic breccia

Soil type: Mediteran

#### **Condition:**

Cassava fields and forests (Kubun) are distributed hilly area

Bedrocks are exposed near the mountain ridge

#### Source of Sediment Discharge:

Sheet erosion of the fields is the major source.

5.3.2 Downstream Area

**Slope gradient:** Mainly less than 8 degrees

Geology: Marly limestone

Soil type: Grumosol

#### **Condition:**

Hard bedrocks are exposed along the river. Residual soil is less than one meter in general.

#### Source of Sediment Discharge:

Low potential

#### 5.4 Bengawang Solo River

5.4.1 Mountain Area

Slope gradient: Mainly more than 15 degrees

Geology: Volcanic breccia (relatively hard), tuff breccia

Soil type: Mediteran and litosol

**Condition:** Residual soil is 1-2 m in thickness in general. Bedrocks are exposed at some mountain ridges. Most upstream area is a peneplain covered by forests.

Relative thick residual soil covers the hilly area of Desa Pidekso at the midstream of Bengawang Solo River (See Figure 5.2.1). The solo river basin is mainly underlain by volcanic breccia or tuff breccia, which includes many quartz particles. Residual soil of this area is sort of coarse compared with another river basin.

#### Source of Sediment Discharge:

Sheet erosion is main source, although the most upstream area covered by forests has low potential of erosion.

Large size gullies were detected in Desa Pidekso.

#### 5.4.2 Plain Area

**Slope gradient:** Mainly less than 3 degrees

Geology: Lacustrine deposits and terrace deposits on the both bank of the river.

Soil type: Grumosol

Condition: Terrace deposits of 2-3 m in thickness are relatively loose to relatively stiff.

**Source of sediment discharge:** Bank erosion is the major source, although the potential would not high.

#### 5.5 Alang River

5.5.1 Karst Tableland

Slope gradient: 3-15 degrees

Geology: Limestone.

Soil type: Mediteran and litosol

**Condition:** Residual soil of 1-2 m in thickness in general is very loose and erosive. However most rainwater seeps into the ground or is caught in small ponds on the tableland.

**Source of sediment discharge:** Low potential, because the Alang River rises from some springs in limestone area to the south of Wonogiri Reservoir, and flowing water is clean in general.

5.5.2 Plain Area

**Slope gradient:** Mainly less than 3 degrees

Geology: Lacustrine deposits and terrace deposits

Soil type: Grumosol

**Condition:** Loose and erosive lacustrine deposits and terrace deposits are distributed on the plain below EL. 200 m surrounding the Wonogiri Reservoir.

**Source of sediment discharge:** Bank erosion is the major source. Cultivation sometimes causes sediment discharge of this area.



Erosive soil of Alang River Basin

## CHAPTER 6 COUNTERMEASURE STRUCTURES

#### 6.1 **Proposed Spillway**

6.1.1 Geological Investigations for Weir Site

A new spillway to discharge sediment in the Wonogiri dam reservoir is planned on the gentle hill of the right abutment of the Wonogiri Multipurpose Dam. Location Map of the drill holes is shown in Figure 6.1.1.



Source: JICA Study Team

Figure 6.1.1 Location Map of Drilling Point for Proposed Spillway

Results of drilling works carried out at proposed spillway and the laboratory tests using drilling core samples are summarized in Table 6.1.1 and Table 6.1.2 respectively.

|          |        | Ground       | Geological condition (m) |                     |            |           |          |  |  |
|----------|--------|--------------|--------------------------|---------------------|------------|-----------|----------|--|--|
| Drilling | Length | water        | Organic                  | Lapilli tuff        | Sandy tuff | Tuff H    | Breccia  |  |  |
| No       | (m)    | Level<br>(m) | soil                     | D class (CL class)  | D class    | D class   | CL class |  |  |
| BS-1     | 30     | 11.5         | 0.0-0.7                  | 0.7-9.8 (6.0-9.8)   | 9.8-15.2   | 15.2-19.0 | 19.0-    |  |  |
| BS-2     | 30     | 12.1         | 0.0-0.2                  | 0.2-9.5             | 9.5-15.0   | 15.0-19.0 | 19.0-    |  |  |
| BS-3     | 30     | 11.3         | 0.0-0.8                  | 0.8-10.0            | 10.0-14.8  | 14.8-18.0 | 18.0-    |  |  |
| BS-4     | 30     | 11.2         | 0.0-0.2                  | 0.2-11.0            | 11.0-14.5  | 14.5-19.0 | 19.0-    |  |  |
| BS-5     | 30     | 11.2         | 0.0-0.8                  | 0.8-10.8 (6.6-10.8) | 10.8-14.5  | 14.5-17.0 | 17.0-    |  |  |

Table 6.1.1 Results of Drilling Survey in Proposed Spillway

| Hole<br>No. | Depth (m)     | Density<br>(g/cm <sup>3</sup> ) | Unconfined<br>Compressive<br>Strength | Axial<br>strain |       | Specific grav            | Absorption<br>(%) |       |
|-------------|---------------|---------------------------------|---------------------------------------|-----------------|-------|--------------------------|-------------------|-------|
|             |               |                                 | (kgf/cm <sup>2</sup> )                | (70)            | Dry   | Saturated<br>Surface-Dry | Apparent          |       |
| BS-1        | 7.20 - 7.50   | 1.587                           | 31.92                                 | 2.51            | 1.838 | 2.117                    | 2.548             | 15.14 |
| BS-1        | 28.70 - 29.00 | 2.008                           | 31.19                                 | 4.07            | 1.847 | 2.123                    | 2.552             | 14.95 |
| BS-2        | 18.20 - 18.50 | 1.973                           | 171.13                                | 1.19            | 2.018 | 2.244                    | 2.605             | 11.16 |
| BS-4        | 27.60 - 27.80 | 1.666                           | 18.93                                 | 2.74            | 1.717 | 2.010                    | 2.430             | 17.10 |
| BS-4        | 28.15 - 28.35 | 1.975                           | 68.21                                 | 2.30            | 1.891 | 2.138                    | 2.511             | 13.07 |
| BS-5        | 10.50 - 10.70 | 1.694                           | 38.67                                 | 2.20            | 1.810 | 2.085                    | 2.498             | 15.23 |
| Average     |               | 1.817                           | 60.008                                | 2.50            | 1.854 | 2.120                    | 2.524             | 14.44 |
| Max         |               | 2.008                           | 171.130                               | 4.07            | 2.018 | 2.244                    | 2.605             | 17.10 |
| Min         |               | 1.587                           | 18.930                                | 1.19            | 1.717 | 2.010                    | 2.430             | 11.16 |

 Table 6.1.2
 Summary of Laboratory Test for Rock Core Sample (CL class)

Source: JICA Study Team

#### 6.1.2 Engineering Geology

(1) Geology

This area consists of lapilli tuff, sandy tuff and tuff breccia in descendant order and completely weathered from the surface to 17 - 19 m deep (D class), except for a moderately hard lapilli tuff block (CL class) at the depth of 6-10 m of the leftward and downstream side of the proposed site.

The base rock of the proposed spill way is moderately hard tuff breccia (CL class) (See Figure 6.1.2).



Figure 6.1.2 Geological Profile of Proposed Spillway

#### (2) Geotechnical Assessment

The physical and mechanical properties of the bedrock are estimated as shown in Table 6.1.3 based on field tests and laboratory tests.

Moderately hard tuff breccia (CL class) has bearing capacity adequate for the foundation of the proposed spillway.

| Facies                     | Depth<br>(m) | SPT N<br>Value | Unconfined<br>Compressive<br>Strength<br>(kgf/cm2) | Bulk<br>density<br>(g/cm3) | Estimated<br>Strength<br>C=<br>Φ= | Estimated<br>Permeability<br>Coefficient<br>(cm/s) |
|----------------------------|--------------|----------------|----------------------------------------------------|----------------------------|-----------------------------------|----------------------------------------------------|
| Lappili tuff               | 0-6          | 12-50<br>(23)  |                                                    |                            |                                   | 5 E-4                                              |
|                            | 6-10         | 31-74<br>(40)  |                                                    |                            |                                   | 5 E-4                                              |
| Sandy tuff                 | 10-15        | 11-35<br>(24)  |                                                    |                            |                                   | 5 E-4                                              |
| Tuff Breccia<br>(D class)  | 15-19        | 32-72<br>(51)  |                                                    |                            |                                   | 1E-4                                               |
| Tuff breccia<br>(CL class) | 19-          |                | 19-171<br>(60)                                     | 1.6-2.0<br>(1.8)           | 3 kg/cm2<br>35 degrees            | 1E-4                                               |

Table 6.1.3 Basic Properties of Bedrock

Note: Parenthetic numbers show average of the test results. Source: JICA Study Team

#### 6.2 Spillway

#### 6.2.1 Geological Investigations for Proposed Spillway Alignment

Results of drilling works carried out at proposed spillway alignment are summarized in Table 6.2.1.

| Drilling<br>No | Length<br>(m) | Ground<br>water<br>Level (m) | Depth (m) / Geology                                                                                                    | Depth (m) / Rock condition                                                                                             |
|----------------|---------------|------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| D 1            | 25            | 7.2                          | 0.0-2.5 Talus deposits/Embankment                                                                                      | 0.0-2.5 Soil<br>2.5-7.0 D class                                                                                        |
| B-1            | 25            | 1.2                          | 2.5-25.0 Tuff breccia<br>(18.6-19.0 Sandy tuff)                                                                        | 7.0-25.0 CL class                                                                                                      |
| В-2            | 25            | 5.3                          | 0.0-3.8 Terrace<br>deposit/Embankment<br>3.8-12.0 Tuff breccia<br>12.0-13.0 Tuff<br>13.0-25.0 Tuff breccia             | 0.0-3.8 Soil<br>3.8-14.5 D class (3.8-12.0 DL class,<br>12-14.5 DH class)<br>14.5-25.0 CL class                        |
| В-3            | 20            | 6.0                          | 0.0-1.5 Talus<br>deposit/Embankment<br>1.5-12.7 Volcanic breccia<br>12.7-20.0 Tuff breccia                             | 0.0-1.5 Soil<br>1.5-7.6 D class (1.5-6.0 DL class,<br>6.0-7.6 DH class)<br>7.6-15.0 CL class<br>15.0-20.0 D class (DH) |
| B-4            | 20            | 12.0                         | 0.0-0.2 Residual Soil<br>0.2-8.35 Volcanic Breccia<br>8.35-9.5 Tuff breccia<br>9.5-10.5 Tuff<br>10.5-20.0 Tuff breccia | 0.0-0.2 Soil<br>0.2-14.3 D class (DL class 0.2-8.35,<br>8.35-14.3 DH class)<br>14.3-20.0 CL class                      |
| Total          | 90            |                              |                                                                                                                        |                                                                                                                        |

Table 6.2.1 Results of Drilling Survey Along the Proposed Spillway Alignment

#### 6.2.2 Engineering Geology

This area is underlain by lapilli tuff, volcanic breccia, sandy tuff and tuff breccia in descendant order and a relative soft sandy tuff layer is intercalated by tuff breccia as shown in Figure 6.2.1. The depth of ground water surface is 6 m-12 m. Very stiff layers (SPT N Value>50), which is suitable for the foundation of spillway channel, will be encountered at the depth of 2.5 m-8 m.



Source: JICA Study Team

Figure 6.2.1 Geological Profile of Proposed Spillway Alignment

#### 6.3 Closure Dike

6.3.1 Geological Investigations for Closure Dike

Location Map of drilling points is shown in Figure 1.6.4. The original Keduang River is supposed to have flowed westward around the drilling point B-11(about 370 m S17W from bench mark D2L1).

Results of drilling works are summarized in Table 1.6.5.



Note: Original Topographic Feature is Based on 10,000 Scale Map by PBS (1982), Source: JICA Study Team Figure 6.3.1 Location Map of Closure Dike

| Drilling<br>No | Length<br>(m) | Ground<br>water<br>Level (m) | Depth (m) / Geology                                                                                                                                                                | Depth(m) / Soil or Rock Condition<br>(SPT N value)                                                  |
|----------------|---------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| B-5            | 20            | 1.5                          | 0.0-1.55 clay<br>1.55-1.60 sandy clay<br>1.60-15.0 tuff breccia<br>15.0-17.0 sandy tuff<br>17.0-20.0 tuff breccia                                                                  | 0.0-1.60 very soft (N <1)<br>1.6- 4.50 very stiff<br>4.5-6.0 hard (N>50)<br>6.0-20.0 rock           |
| В-6            | 20            | 0.0                          | 0.0-0.5 clay<br>0.5-1.0 sand<br>1.0-1.6 clay<br>1.6-3.2 sandy clay<br>3.2-7.0 clay<br>7.0-20.0 tuff breccia (10.7-10.9 tuff)                                                       | 0.0-7.0 very soft ( N <1)<br>7.0-8.5 very stiff (N=36)<br>8.5-9.5 hard (N>50)<br>9.5-20.0 rock      |
| B-7            | 20            | 0.0                          | 0.0-2.6 clay<br>2.6-5.0 tuff breccia<br>5.0-12.2 tuff<br>12.2-20.0 tuff breccia                                                                                                    | 0.0-2.6 very soft (N <1)<br>2.6-5.0 stiff (N =13)<br>5.0-11.2 hard (N>50)<br>11.2-20.0 rock         |
| B-10           | 20            | 0.0                          | 0.0-1.85 clay<br>1.85-2.0 sand<br>2.0-4.2 clay<br>4.2-5.0 clayey sand<br>5.0-7.0 clay<br>7.0-7.4 clayey sand<br>7.4-9.9 clay<br>9.9-20.0 tuff breccia                              | 0.0-9.9 very soft (N<1)<br>9.9-10.0 soft<br>10.0-13.0 very stiff (N=24-50)<br>13.0-20.0 hard (N>50) |
| B-11           | 23            | 0.0                          | 0.0-10.0 clayey sand (0.3-0.5, 0.8-1.8,<br>2.0-2.3, 2.32-2.45, 2.46-3.2, 4.0-4.5,<br>4.7-5.0, 5.5-6.8 and 9.5-9.7 clay layer)<br>10.0-21.0 clay<br>21.0-23.0 volcanic conglomerate | 0-21 very soft (N<1)<br>21-23 hard (N>50)                                                           |
| Total          | 103           |                              |                                                                                                                                                                                    |                                                                                                     |

Note: Groundwater data were obtained immediately after drilling work. Source: JICA Study Team

#### 6.3.2 Engineering Geology

(1) Geology

At the closure dike site, very soft dam reservoir sediments (SPT N value <1) cover near-horizontal strata of tuff breccia and volcanic breccia, which formed meandering and narrow valleys of Keduang River before Wonogiri Multipurpose Dam construction (See Figure 6.3.1).

Dam reservoir sediments reaching 21 m in thickness at the middle of the river, are consists mainly of clay. Relatively thin sand strata are sometimes intercalated in some portions of the sediment, which are expected to have been river traces.

(2) Geotechnical Assessment

Tuff breccia underlying soft reservoir sediments is suitable for the foundation of closure dike except for surface weak zone.

Dam reservoir sediments are consists mainly of very soft clay (classified into MH by the Unified Soil Classification System of ASTM D-2487), and often includes detritus of crops, bamboo and plastic sheet especially in surface zone or along the recent course of Keduang River according to drilling core and test pit observation. Therefore, reservoir sediments are not suitable for embankment sources.

Excavation of completely weathered tuff breccia on the reservoir shore instead of dam

reservoir sediments would contribute both to embank material acquisition and to the reservoir rehabilitation.



Source: JICA Study Team

Figure 6.3.2 Geological Profile of Closure Dike

#### 6.4 **Overflow Weir**

6.4.1 Geological Investigations for Overflow Weir

Location Map of drilling points is shown in Figure 6.4.1. Results of drilling works are summarized in Table 6.4.1.

6.4.2 Engineering Geology

This area is underlain by near-horizontal strata of volcanic breccia, tuff breccia, tuff, and sandy tuff in descendant order.

After removal of surface residual soil including plant detritus etc, embankment dike and small structures of 2-3 m in height can be founded on the base rock (See Figure 6.4.2 and Figure 6.4.3)



Source: JICA Study Team Figure 6.4.1 Location Map of Drilling Points for Overflow Weir

| Drilling<br>No | Length<br>(m) | Ground<br>water<br>Level (m) | Depth (m) / Geology                                                                                                                                    | Depth(m) / Soil or Rock Condition<br>(SPT N value)                                                             |
|----------------|---------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| B-8            | 15            | 3.0                          | 0.0-0.5 residual soil<br>0.5-4.5 tuff breccia<br>4.5-5.0 tuff<br>6.5-6.7 sandy tuff<br>6.7-8.9 tuff<br>8.9-13.55 sandy tuff<br>13.55-15.0 tuff breccia | 0.0-0.5 very soft-soft<br>0.5- 4.5 firm (N=8)<br>4.5-11.0 hard (N>50)<br>11.0-20.0 rock                        |
| В-9            | 15            | 2.6                          | 0.0-1.0 residual soil<br>1.0-7.5 volcanic breccia<br>7.5-9.0 tuff<br>9.0-15.0 sandy clay                                                               | 0.0-1.0 very soft-soft<br>1.0-6.5 firm-stiff (N=9~20)<br>6.5-11.0 stiff-very stiff (N=13~50)<br>11.0-15.0 rock |
| Total          | 30            |                              |                                                                                                                                                        |                                                                                                                |

Source: JICA Study Team



Source: JICA Study Team

Figure 6.4.2 Geological Profile of Overflow Weir (Drill hole B-8)



Source: JICA Study Team

Figure 6.4.3 Geological Profile of Overflow Weir (Drill hole B-9)

#### 6.5 Construction Material for Concrete Aggregates

The quarry site exploited for the construction of the Wonogiri Mulutipurpose dam is located behind Wonogiri town approximately 2 km to the west from the dam site. The site, underlain by andesite and well-cemented volcanic breccia, is suitable for concrete source in both quantitative and qualitative aspects.



Quarry Site of the Wonogiri Dam