CHAPTER 6 HYDROLOGY AND SEDIMENTOLOGY

CONTENTS

CHAPTER	R 6 HYI	DROLOGY AND SEDIMENTOLOGY	6-1
6.1	Outline.		6-1
6.2	Meteoro	ological and Hydrological Stations	6-1
6.3	Discharg	ge	6-8
6.4	Flood		6-13
	6.4.1	Probable Flood	6-13
	6.4.2	Probable Maximum Flood (PMF)	6-15
6.5	Evapora	tion	6-29
6.6	Sedimer	ntation	6-29
	6.6.1	Sediment Measurement	6-29
	6.6.2	Estimation of Reservoir Sedimentation	6-33
	6.6.3	Measures against Sedimentation of Reservoir	6-48
	6.6.4	Sediment Discharge	6-51

LIST OF TABLES

Table 6.2-1	List of Meteorological Stations in the Seti River and Surrounding Basin 6-7
Table 6.2-2	List of Gauging Stations in the Seti River and Surrounding Basin
Table 6.3-1	Generated Average Monthly River Discharge at the Dam Site
Table 6.3-2	Comparison of Average Monthly River Discharge
Table 6.3-3	Comparison of Specific Discharge
Table 6.4.1-1	Maximum Peak Discharge at No.430 Gauging Station
Table 6.4.1-2	Probable Flood
Table 6.4.2-1	Computation of the Rain and Snow Drift for Computing
	the Precipitation Trajectories
Table 6.4.2-2 (1/3)	Computation of PMP6-21
Table 6.4.2-2 (2/3)	Computation of PMP6-22
Table 6.4.2-2 (3/3)	Computation of PMP6-23
Table 6.4.2-3	Average PMP of the Basin
Table 6.4.2-4	PMP Distribution and Effective Rainfall
Table 6.4.2-5	Synthesis of Unit Hydrographs
Table 6.5-1	Average Monthly Pan Evaporation at No. 815 Meteorological Station 6-29
Table 6.6.2-1	Specific Sediment Yield (1/2)
Table 6.6.2-1	Specific Sediment Yield (2/2)
Table 6.6.2-2	Suspended Sediment Yield at No.430 Gauging Station
Table 6.6.2-3	Specific Sediment Yield at No.430.5 Gauging Station
Table 6.6.2-4	Reservoir Water Level
Table 6.6.2-5	Decrease in Effective Storage Capacity of Reservoir
Table 6.6.4-1	Summary of the Sediment Volume in Reservoir
Table 6.6.4-2	Rating Curve of the Seti River at the RX-54 Section
Table 6.6.4-3	Rating Curve of the Seti River at the RX-53 Section
Table 6.6.4-4	Summary of Sediment Volume in Reservoir
Table 6.6.4-5	Summary of Sediment Volume in Reservoir
Table 6.6.4-6	Summary of Sediment Volume in Reservoir
Table 6.6.4-7	Summary of Sediment Volume in Reservoir

LIST OF FIGURES

Fig. 6.2-1	Location Map of the Meteorological Stations and Gauging Stations in
	the Seti River and Surrounding Basin
Fig. 6.2-2	Isohyetal Map of the Seti River and Surrounding Basin
Fig. 6.3-1	Trend of Generated Average Annual River Discharge at the Dam Site 6-10
Fig. 6.3-2	Double Mass Curve of the Sum of Precipitations at No. 815 Station and
	River Discharge at No. 430 Station (1972-1984)
Fig. 6.3-3	Double Mass Curve of the Sum of Precipitations at No. 817 Station and
	River Discharge at No. 438 Station (1978-1996)
Fig. 6.3-4	Rating Curve of No. 430.5 Gauging Station
Fig. 6.4.2-1	Ground Profile6-16
Fig. 6.4.2-2	Ground Profile, Air Streamlines and Precipitation Trajectories
	for PMP Estimation
Fig. 6.4.2-3	Unit Hydrograph at the Dam Site
Fig. 6.4.2-4	Synthesis of Unit Hydrographs
Fig. 6.4.2-5	Relation between PMF and Drainage Area for the Himalayan Basins in
	Nepal and India
Fig. 6.6.1-1	Gradation Analysis Result of Bed Load6-30
Fig. 6.6.1-2	Gradation Analysis Result of Bed Load6-30
Fig. 6.6.1-3	Gradation Analysis Result of Bed Load6-31
Fig. 6.6.1-4	Gradation Analysis Result of Bed Load6-31
Fig. 6.6.1-5	Gradation Analysis Result of Bed Load6-32
Fig. 6.6.1-6	Gradation Analysis Result of Suspended Load
Fig. 6.6.2-1	Trap Efficiency as Related to Capacity-Inflow ratio
Fig. 6.6.2-2	Rating Curve of Suspended Load Concentration
Fig. 6.6.2-3	Gradation Curve of Sediment used for Simulation Analysis
Fig. 6.6.2-4	Riverbed Profile of Reservoir without Sediment Flushing Gates 6-39
Fig. 6.6.2-5	Rating Curve of Suspended Load Concentration
Fig. 6.6.2-6	Gradation Curve of Sediment used for Simulation Analysis
Fig. 6.6.2-7	Riverbed Profile of Reservoir Simulated by NEA with HEC-6
Fig. 6.6.2-8	Riverbed Profile of Reservoir with Same Conditions as HEC-6 6-43
Fig. 6.6.2-9	Decrease in Effective Storage Capacity of Reservoir
Fig. 6.6.3-1	Relation between Turnover Rate of Reservoir and Life of Reservoir
Fig. 6.6.4-1	Reservoir Operation Curve
Fig. 6.6.4-2	Riverbed Profile of Reservoir with Sediment Flushing Gates
	(FSL = EL. 375.00)

Fig. 6.6.4-3	Riverbed Profile of Reservoir with Sediment Flushing Gates	
	(FSL = EL. 395.00)	5
Fig. 6.6.4-4	Riverbed Profile of Reservoir with Sediment Flushing Gates	
	(FSL = EL. 425.00)	7
Fig. 6.6.4-5	Riverbed Profile of Reservoir with Sediment Flushing Gates	
	(FSL = EL. 435.00)	3
Fig. 6.6.4-6	Cumulative Sediment Volume in Reservoir)
Fig. 6.6.4-7	Velocity of Each Section after 72 Years)
Fig. 6.6.4-8	Rating Curve of Seti River at the RX-54 Section	l
Fig. 6.6.4-9	Riverbed Profile of Reservoir with Sediment Flushing Gates	
	(FSL = EL. 415.00)	3
Fig. 6.6.4-10	Riverbed Profile of Reservoir with Sediment Flushing Gates	
	(FSL = EL. 415.00, Flushing Gates Sill = EL. 330.00))
Fig. 6.6.4-11	Cumulative Sediment Volume in Reservoir)
Fig. 6.6.4-12	Reservoir Operation Curve without Flushing	3
Fig. 6.6.4-13	Riverbed Profile of Reservoir with Sediment Flushing Gates	
	(FSL = EL. 415.00, Flushing every 2 years)	1
Fig. 6.6.4-14	Riverbed Profile of Reservoir with Sediment Flushing Gates	
	(FSL = EL. 415.00, Flushing every 3 years)	2
Fig. 6.6.4-15	Cumulative Sediment Volume in Reservoir	3
Fig. 6.6.4-16	Revised Reservoir Operation Curve	3
Fig. 6.6.4-17	Riverbed Profile of Reservoir when Sediment Flushing Operation Ends	
	on July 15	1
Fig. 6.6.4-18	Riverbed Profile of Reservoir when Sediment Flushing Operation Ends	
	on July 5	5
Fig. 6.6.4-19	Cumulative Sediment Volume in Reservoir	5
Fig. 6.6.4-20	Riverbed Profile of Reservoir with 100-year Probable Flood	
	in 36th year	7
Fig. 6.6.4-21	Riverbed Profile of Reservoir with 100-year Probable Flood	
	in 72nd year6-78	3
Fig. 6.6.4-22	Gradation Curve of Sediment used for Simulation Analysis	5
Fig. 6.6.4-23	Riverbed Profile of Reservoir with Sediment Flushing Gates	
	(FSL = EL. 415.00, Gradation Curve of Fig.6.6.4-22))
Fig. 6.6.4-24	Cumulative Sediment Volume in Reservoir)

CHAPTER 6 HYDROLOGY AND SEDIMENTOLOGY

6.1 Outline

The Project site is located in the upper part of the Seti River, a tributary of the Trishuli River flowing in the central part of Nepal. The Seti River originates at the Annapurna (at an elevation of 7,555 m above sea level) of the Himalayas and joins the Madi River 2 km downstream from the Dam site after flowing roughly from north to south. The length of the Seti River from the origin to the Dam site is about 120 km, and the catchment area at the Dam site is 1,502 km².

The Seti River basin belongs to a high mountain and a humid subtropical climatic zone. The NEA's report states that the average annual precipitation in the project basin is 2,973 mm, of which about 80% falls between June and September due to the influence of the southwest monsoon. Records of the Kharini Tar meteorological station, located in the vicinity of the Project site, cite a peak temperature exceeding 36°C from April through June as against a lowest value of approximately 5°C from January through February on average.

6.2 Meteorological and Hydrological Stations

Meteorological stations and gauging stations are arranged in the Seti River and surrounding basin, as shown in **Fig. 6.2-1**. The Department of Hydrology and Meteorology (DHM), a subordinate organization of the Ministry of Environment, Science and Technology, carries out meteorological observations and river discharge measurements and provides NEA with those data. A few meteorological stations are also equipped with a thermometer, a hygrometer, an anemometer and an evaporation pan, while the other stations are provided with only a rain gauge. Among the meteorological stations in the table, evaporation is measured at Nos. 804, 809, 811, 814 and 815, and air temperature and wind velocity are measured at No. 804, respectively. The observation period at the main meteorological stations in the Seti River and surrounding basin is shown in **Table 6.2-1**, and an isohyetal map is given in **Fig. 6.2-2**, respectively. The isohyetal map shows that the Seti and Madi River basins have almost identical precipitation patterns, and that the precipitation peaks near the No. 814 meteorological station.

The measurement period at the main gauging stations in the basin is shown in **Table 6.2-2**. Almost all gauging stations are provided with a cableway for discharge measurement, an automatic water surface recorder and a staff gauge.

A new gauging station named No. 430.5 was set up at Patan at Damauli, 500 m downstream from the proposed Dam site, where river discharge measurement have been conducted since 2000.

GEND	
	~~~
	1000
TATION	3682
UNDRY	(1)
IG STATION	390
GEN	$\sim$
	$\sim$
	ε.
0 5000 10000 SCALE	15000 20000 25000r
SUNLL	Figure B 2.3
al Electricity Autho Prepartion and Studies Depart In Association Soil, Rock & Concrete Labora	rity ment with ktory
Study of Storage Projects-Pha Storage Proje	ct
ological Static	



Fig. 6.2-2 Isohyetal Map of the Seti River and Surrounding Basin

		Elevation	Observat	tion Year
Station No.	Station Name	(m)	from	to
613	Karki Neta	1,720	1977	present
706	Damkauli	154	1971	present
726	Garakot	500	1980	present
802	Khudi Bazar	823	1957	present
803	Pokhara Hospital	866	1956	1975
804	Pokhara Airport	827	1968	present
805	Shyangja	868	1973	present
806	Larke Samdo	3,650	1978	present
807	Kuncha	855	1956	present
808	Bandipur	965	1956	present
810	Chapkot	460	1957	present
811	Male Patan	856	1966	present
813	Bhadaure Deurali	1,600	1985	present
814	Lumle	1,740	1969	present
815	Kharini Tar	500	1971	present
816	Chame	2,680	1974	present
817	Damauli	358	1974	present
818	Lamachaur	1,070	1972	present
820	Manag Bhot	3,420	1975	present
821	Ghandruk	1,960	1976	present
822	Khuldi	2,440	1973	1986
823	Gharedhunga	1,120	1976	present
824	Siklesh	1,820	1977	present

 Table 6.2-1
 List of Meteorological Stations in the Seti River and Surrounding Basin

 Table 6.2-2
 List of Gauging Stations in the Seti River and Surrounding Basin

		D' M	Drainage Area	Observat	tion Year
Station No.	Station Name	River Name	(km ² )	from	to
406.5	Nayapool	Modi	647	1988	1994
428	Lahachowk	Mardi	160	1974	1990
430	Phoolbari	Seti	582	1964	1984
430.5	Damauli at Patan	Seti	1,505	2000	present
438	Shisaghat	Madi	858	1978	present
439.3	Khudi Bazar	Khudi	147	1983	1993
439.7	Bimal Nagar	Marsyangdi	NA	1987	1993
439.8	Gopling Ghat	Marsyangdi	3,850	1973	1986

#### 6.3 Discharge

Since the measurement period at No. 430.5 gauging station is relatively short to calculate the probable floods and annual energy production, NEA converted the river discharge data of gauging stations near the project site from 1964 to 1999 into those of the Dam site, with the ratio of the catchment area giving weight to the annual precipitation, as shown in the formula below. The river discharge at the Dam site is converted from those at the No. 430 gauging station between the period between 1964 and 1984 and at No. 438, located in the Madi River basin, adjacent to the Seti River, between 1985 and 1999, because the No. 430 gauging station, located about 50 km upstream from the project site, was closed in 1984.

 $Qseti = Qgauge \times Pseti / Pgauge \times Aseti / Agauge \times 0.9$ 

where,

Qseti : river discharge at the Dam site  $(m^3/s)$ 

- Qgauge : river discharge at the gauging station  $(m^3/s)$
- Pseti : average annual precipitation in the project basin (mm) (= 2,973 mm)

Pgauge : average annual precipitation in the basin of the gauging station (mm)  $P_{No. 430} = 3,189 \text{ mm}$  $P_{No. 438} = 3,126 \text{ mm}$ 

Aseti : catchment area of the Dam site  $(km^2)$  (= 1,502km²)

Agauge : catchment area of the gauging station (km²)  $A_{No. 430} = 582 \text{ km}^2$  $A_{No. 438} = 858 \text{ km}^2$ 

NEA explains that they added a coefficient of 0.9, comparing the conversion results with the river discharge data at the No. 430.5 gauging station. The generated average monthly river discharge at the Dam site from 1964 to 1999, as calculated by the NEA's conversion formula, is shown in **Table 6.3-1**, and the trend of the generated average annual river discharge is shown in **Fig. 6.3-1**. The average annual river discharge in the estimation period is  $107.2 \text{ m}^3/\text{s}$ .

Table 6.3-1	<b>Generated Average</b>	<b>Monthly River</b>	Discharge at the	e Dam Site
-------------	--------------------------	----------------------	------------------	------------

(T.T. • .	3, \
(L)n1f	$m^{2}/s$
(Onic.	m / 5)

Month	1	2	3	4 :	5	6	7	8	9	10	11	12	Avg
Year											:		8
1964	31.8	30.4	30.1	31.9	68.9	78.0	134.3	460.5	313.1	112.4	82.0	53.8	118.92
1965	34.0	29.5	29.7	32.7	36.3	151.0	293.5	368.5	190.3	62.6	46.9	31.3	108.86
1966	24.6	22.2	21.0	19.4	22.2	63.5	228.4	259.6	159.8	66.0	38.6	25.5	79.23
1967	20.6	20.7	20.1	22.8	24.5	57.8	231.3	213.2	185.8	77.2	43.5	33.8	79.28
1968	24.9	20.5 :	24.7	25.3	34.9	141.9	336.1	287.0	222.7	326.6	42.1	23.7	125.86
1969	18.3	14.6	15.2	15.0	16.6	34.4	128.0	315.0	264.0	79.5	40.3	26.1	80.58
1970	20.2	17.3	16.3	24.6	35.3	91.2	380.8	412.0	202.1	106.1	56.8	33.4	116.34
1971	23.7	18.7	18.8	29.1	39.6	187.7	291.2	300.6	212.8	145.7	67.7	40.0	114.62
1972	25.7	20.3	19.4	20.5	52.9	106.6	325.6	362.5	251.6	108.6	51.4	33.4	114.87
1973	25.1	17.6	18.0	25.8	39.2	176.3	244.0	389.0	265.3	259.4	74.4	39.1	131.10
1974	36.8	33.7	32.6	40.8	39.0	91.7	343.3	411.6	254.4	131.7	43.8	34.1	124.45
1975	33.0	32.1	30.2	22.8	24.0	84.9	427.0	328.4	305.5	139.2	54.1	30.4	125.97
1976	22.3	23.1	19.8	24.9	40.9	190.2	380.3	342.3	216.0	88.4	43.6	33.8	118.80
1977	22.7	20.4	20.7	30.2	46.8	92.4	288.5	409.0	248.3	111.8	74.8	43.3	117.40
1978	32.3	29.6	27.2	29.4	68.7	162.1	381.0	349.6	215.6	106.0	64.3	47.7	126.12
1979	37.7	33.7	29.8	37.7	51.9	84.7	315.0	447.0	239.4	107.2	57.5	34.6	123.00
1980	25.2	22.9	25.3	26.6	37.1	107.9	425.1	446.5	313.7	82.5	43.8	26.2	131.90
1981	18.2	14.9	15.6	28.7	40.1	95.9	400.6	376.5	242.7	97.0	50.2	36.9	118.09
1982	33.3	30.8	36.1	40.1	48.9	96.9	257.7	271.3	155.5	85.9	54.5	45.3	96.37
1983	39.8	36.6	35.3	34.5	46.7	72.8	210.4	270.5	276.7	143.2	54.7	35.6	104.74
1984	28.0	21.2	21.7	24.0	62.8	151.9	445.1	287.3	243.5	96.1	58.6	41.3	123.46
1985	36.9	33.5	33.0	39.1	61.1	114.9	333.4	197.5	202.9	126.2	56.5	36.0	105.90
1986	24.7	19.8	21.4	28.5	27.9	117.6	260.7	259.8	280.2	147.9	59.2	30.7	106.53
1987	23.5	20.4	21.4	23.6	31.2	72.2	280.0	279.5	183.6	87.3	54.2	39.2	93.01
1988	30.2	26.8	27.0	28.8	40.7	111.7	264.4	320.5	238.9	102.6	52.9	38.6	106.93
1989	33.9	27.8	27.8	30.5	59.4	146.6	251.7	310.7	240.2	113.9	53.8	36.4	111.06
1990	28.1	24.8	26.0	35.9	55.2	152.9	271.9	237.3	194.1	102.8	44.5	27.3	100.06
1991	20.0	17.6	16.8	20.3	33.4	114.9	281.0	320.4	250.2	117.2	56.3	39.0	107.25
1992	31.1	27.9	26.5	25.2	35.7	82.0	188.9	289.8	197.4	124.8	50.3	30.5	92.52
1993	23.2	20.6	14.5	14.7	30.0	97.8	218.4	321.3	215.4	122.4	56.8	33.3	97.37
1994	29.3	27.5	29.8	30.1	37.0	106.8	184.2	233.9	142.8	37.7	17.7	12.9	74.14
1995	10.5	9.9	11.3	11.9	28.3	255.9	314.9	193.9	175.9	129.9	85.9	52.7	106.75
1996	30.1	21.6	30.9	31.0	37.6	69.2	227.0	319.8	252.2	107.6	45.8	31.5	100.37
1997	27.2	24.0	28.4	32.6	38.4	74.9	229.6	258.9	141.6	61.8	35.0	33.1	82.12
1998	24.2	21.5	24.9	29.1	48.7	149.3	288.1	452.6	207.3	64.2	35.6	26.0	114.29
1999	21.3	18.5	17.0	18.8	34.8	93.1	264.8	238.7	174.2	67.4	23.1	15.3	82.24
Avg.	27.0	23.7	24.0	27.4	41.0	113.3	286.8	320.6	224.3	112.4	52.0	34.2	107.24

The average monthly river discharges at the Dam site, converted from the data at the No. 438 gauging station for the years of 2000, 2001 and 2003, are compared with those at the No. 430.5 gauging station, as shown in **Table 6.3-2**. In the table, the river discharge of the column "Gen." is formulated as follows:

Qseti = QNo.  $438 \times Pseti / PNo. 438 \times Aseti / ANo. 438$ = QNo.  $438 \times 2,973 / 3,126 \times 1,502 / 858$ 



Fig. 6.3-1 Trend of Generated Average Annual River Discharge at the Dam Site

Year		2000			2001			2003		
	А	В	Ratio	А	В	Ratio	А	В	Ratio	
Month	Gen.	No. 430.5	B/A	Gen.	No. 430.5	B/A	Gen.	No. 430.5	B/A	
1	26.53	22.39	0.84	29.27	19.74	0.67	67.88	28.20	0.42	
2	22.49	18.76	0.83	26.09	16.83	0.65	64.79	24.13	0.37	
3	22.06	18.08	0.82	22.71	14.34	0.63	65.72	21.52	0.33	
4	30.10	20.74	0.69	28.21	13.31	0.47	71.48	25.87	0.36	
5	55.25	65.37	1.18	55.04	33.79	0.61	75.66	31.38	0.41	
6	233.89	291.45	1.25	178.85	135.67	0.76	154.86	199.15	1.29	
7	381.46	379.31	0.99	334.35	250.83	0.75	437.60	728.28	1.66	
8	377.01	385.22	1.02	508.41	711.66	1.40	374.50	419.83	1.12	
9	262.36	246.10	0.94	229.28	242.51	1.06	281.72	338.69	1.20	
10	100.97	77.68	0.77	159.31	97.33	0.61	131.18	105.53	0.80	
11	53.38	41.34	0.77	106.87	49.81	0.47	75.70	47.75	0.63	
12	36.50	25.56	0.70	86.18	29.17	0.34	57.44	28.13	0.49	
Avg.	133.50	132.67	0.90	147.05	134.58	0.70	154.88	166.54	0.76	

 Table 6.3-2
 Comparison of Average Monthly River Discharge

As shown in the table, the ratio varies widely, and the appropriateness of the conversion method shall be verified. The specific discharge at the gauging stations used for conversion is calculated as shown in **Table 6.3-3** for verification of the discharge data.

No. of station	No. 430	No. 438	No. 430.5
Catchment Area (km ² )	582	858	1,502
Year	Specif	ic Discharge (m	$3/s/km^2$ )
1964	0.0944		
1965	0.0864		
1966	0.0629		
1967	0.0629		
1968	0.0999		
1969	0.0639		
1970	0.0923		
1971	0.0910		
1972	0.0911		
1973	0.1040		
1974	0.0988		
1975	0.1000		
1976	0.0943		
1977	0.0932		
1978	0.0921	0.1071	
1979	0.0828	0.1115	
1980	0.0991	0.1093	
1981	0.0951	0.0940	
1982	0.0918	0.0763	
1983	0.0771	0.0917	
1984	0.0866	0.1084	
1985		0.0833	
1986		0.0838	
1987		0.0732	
1988		0.0841	
1989		0.0874	
1990		0.0787	
1991		0.0844	
1992		0.0728	
1993		0.0766	
1994		0.0583	
1995		0.0840	
1996		0.0783	
1997		0.0646	
1998		0.0836	
1999		0.0647	
2000		0.0980	0.0883
2001		0.1070	0.0896
2002			0.0809
2003		0.1134	0.1109

 Table 6.3-3
 Comparison of Specific Discharge

As shown in the table, since the specific discharge at each gauging station varies according to the period, the precision of river discharge data and measurement conditions shall be confirmed.

A double mass curve is drawn with average annual river discharge at a gauging station and annual precipitation at a meteorological station near the gauging station, as shown in **Figs. 6.3-2** and **6.3-3**.



As shown in the figures, the curves form a rough straight line, showing that the river discharge data are reliable.

Fig. 6.3-2 Double Mass Curve of the Sum of Precipitations at No. 815 Station and River Discharge at No. 430 Station (1972-1984)



Fig. 6.3-3 Double Mass Curve of the Sum of Precipitations at No. 817 Station and River Discharge at No. 438 Station (1978-1996)

The river discharge at the No. 438 gauging station for the years 2000, 2001 and 2003 is made from a rating curve showing the relation between the river water level and river discharge based on river

discharge measurement results and daily staff gauge readings obtained from DHM, because no river discharge tables for the years in question were ready. DHM explains that they draw the rating curves using the n'th power curve formula, based on discharge data measured from the beginning of September to the end of next August and that they renewed them every September. The daily river discharge is calculated following the same process as DHM's explanation. In Japan, a parabola is generally used as a rating curve, and a rating curve drawn from an n'th power formula tends to reveal a larger discharge than a parabola formula at a higher water level, as shown in **Fig. 6.3-4**.



Fig. 6.3-4 Rating Curve of No. 430.5 Gauging Station

DHM explains their plans to station a staff member at certain gauging stations during the rainy season in the fiscal year 2005/06 to measure flood discharge so that they could revise the rating curves, because the flood discharge extrapolated from a lower water level may reveal a larger value than is actually the case. However, gauging stations in the Seti River basin are not included in the plan. The Study Team suggests that flood discharge should be measured at gauging stations Nos. 430.5 and 438 to correct the rating curves when carrying out the Study.

#### 6.4 Flood

#### 6.4.1 Probable Flood

The peak discharge has been measured at No. 430 gauging station from 1964 to 1984 and **Table 6.4.1-1** shows the maximum peak discharge of each year. The maximum peak discharge at the Dam site is converted from values of the gauging station by the ratio of each catchment area.

Vear	Date	Peak Di	scharge	Vear	Date	Peak Di	scharge
Ical	Date	No.430	Dam Site	Ical	Date	No.430	Dam Site
1964	Aug. 15	355.0	916.2	1975	July 01	552.0	1,424.6
1965	Aug. 14	245.0	632.3	1976	July 14	679.0	1,752.3
1966	July 12	268.0	691.6	1977	Aug. 03	577.0	1,489.1
1967	July 09	268.0	691.6	1978	July 28	290.0	748.4
1968	Oct. 05	645.0	1,664.6	1979	July 28	215.0	554.9
1969	Aug. 11	266.0	686.5	1980	July 16	260.0	671.0
1970	Aug. 07	711.0	1,834.9	1981	July 27	275.0	709.7
1971	Aug. 06	288.0	743.3	1982	July 31	245.0	632.3
1972	Aug. 11	552.0	1,424.6	1983		154.0	397.4
1973	Oct. 13	679.0	1,752.3	1984	July 28	202.0	521.3
1974	July 29	900.0	2,322.7				

 Table 6.4.1-1
 Maximum Peak Discharge at No.430 Gauging Station

Based on the maximum peak discharge record, frequency analysis is carried out using the Gumbel, Log-normal and Log-Pearson distributions, and the probable flood discharge is converted with the ratio of the catchment area of the gauging station to that of the Dam. The results are summarized in **Table 6.4.1-2**.

			(Unit: m ³ /s)
Return Period	Gumbel	Log-Normal	Log-Pearson
2	994.6	934.5	569.8
5	1,565.0	1,434.9	889.8
10	1,942.8	1,795.4	1,140.8
20	2,305.1	2,160.6	1,412.2
50	2,774.1	2,661.3	1,811.8
100	3,125.6	3,057.7	2,150.7
200	3,475.5	3,472.4	2,525.7
500	3,937.5	4,050.8	3,083.8
1,000	4,286.6	4,513.0	3,558.9
2,000	4,635.6	4,779.0	4,546.1
5,000	5,097.0	5,675.6	5,265.4
10,000	5,445.7	6,217.3	5,529.6

Table 6.4.1-2Probable Flood

The skewness and kurtosis of the maximum daily discharges are 0.79 and -0.66, while those of the logarithmic values are 0.31 and -1.26, respectively. Among three types of distribution, the probable flood discharge by Gumbel distribution is used as the basis because it works out larger flood discharge for return periods of 100 years or less used for project design.

The rating curves utilizing the Seti River for the feasibility design and environmental impact assessment are attached in **Appendix-6**.

#### 6.4.2 Probable Maximum Flood (PMF)

#### (1) General

As this project is anticipated to play a very important role for the economic and social development of Nepal, it will be appropriate to adopt the Probable Maximum Flood (PMF) in the design of the Dam. PMF is defined as the flood that may occur under the theoretical combination of the most severe meteorological and hydrological conditions.

PMF is calculated by following procedure:

- Calculation of Probable Maximum Precipitation (PMP)
- Preparation of Unit Hydrograph
- Distribution of PMP
- Synthesis of Unit Hydrographs
- Determination of Base flow
- (2) Calculation of Probable Maximum Precipitation (PMP)

PMP is generally classified in terms of non-orographic and orographic precipitations. The form of precipitation in the Seti River basin is considered to have typical orographic characteristics, because it is observed that precipitation caused by the monsoon from the south is concentrated at the southern slope of the Himalaya Mountains, while precipitation in the plateau, as well as north of the Himalaya Mountains, is extremely small. The following represent the process of estimating  $PMP^1$  in this study:

1) Preparation of the ground profile

The principal ground profiles at the southern slope of the Himalaya Mountains in the Seti River basin are prepared by dividing 1/125,000 maps into meshes, as shown in **Fig. 6.4.2-1**. The elevation therein is converted into atmospheric pressure (hPa) to enhance the convenience of the succeeding calculation.

¹ Manual for Estimation of Probable Maximum Precipitation :WMO* No. 332, *WMO : World Meteorological Organization

		Seti Riv	er Basin	-	()	Unit: EL.m)
_		4,770	4,910			
	2,980	3,760	3,630			
	1,810	1,930	2,540			
	1,350	1,160	1,380			
	1,530	970	860	900		
		1,000	720	820		_
		960	660	640	790	
			680	760	670	Dam site

Fig. 6.4.2-1 Ground Profile

#### 2) Setting of air streamlines

Air streamlines are figured at intervals of 50 hPa and the nodal surface, which is unaffected by the topographic conditions, is set at 300 hPa. Precipitation between streamlines is given by the following formula:

$$R = \frac{\overline{V}_1 \cdot \Delta p_1 \left(\overline{q}_1 - \overline{q}_2\right)}{Y} \cdot \frac{1}{g\rho}$$

Where:

R	:	Precipitation (cm / sec)
$\overline{V}_{I}$	:	Mean inflow wind speed (cm / sec)
$\Delta p_1$	:	Inflow pressure difference (hPa)
$\overline{\mathbf{q}}_1 \cdot \overline{\mathbf{q}}_2$	:	Mean specific humidity (=density of water vapor / density of humid air,
		dry air and water vapor) at inflow and outflow (g / kg)
Y	:	Horizontal distance (cm)
g	:	Acceleration of gravity (cm / sec ² )
ρ	:	Density of water $(g / cm^3)$

When mixing the ratio, w (=density of water vapor / density of dry air), in place of the mean specific humidity and dimensions indicated in the respective data are applied, the above formula will be modified as follows:

$$R = \frac{0.8813 \times \overline{V}_1 \cdot \Delta p_1 \left(\overline{w}_1 - \overline{w}_2\right)}{Y}$$

where

R	:	Daily precipitation (mm/day)
$\overline{V}_{I}$	:	Mean inflow wind speed (m/s)
$\Delta p_1$	:	Inflow pressure difference (hPa)
$\overline{\mathbf{w}}_1 \cdot \overline{\mathbf{w}}$	/ ₂ :	Mean mixing ratio at inflow and outflow (g/kg)
Y	:	Horizontal Distance (km)

3) Selection of meteorological data (boundary condition)

Atmospheric temperature, relative humidity and wind velocity recorded at the Pokhara Airport meteorological station (EL.827 m, atmospheric temperature and relative humidity from 1987 to 2004, wind velocity form 1987 to 1998) located near the typical topographical profile are applied. As the data availability at present is indicated in daily values, PMP is also to be estimated at daily basis. The representative values of respective meteorological data are assumed as follows:

#### **Temperature** (γ):

The maximum value of 33.6°C is adopted referring to the monthly average value of the daily maximum temperature. Decrement of temperature by altitude is estimated at minus 0.6°C / 100 m.

#### **Relative humidity (RH):**

The lower value of humidity between the two records observed each day is selected as the daily representative humidity and the maximum value (98.3 %) of these representative humidities is adopted. Variation of humidity by altitude is assumed to be linear up to 50% at 300 hPa, referring to measurement in Japan.

#### Wind velocity (V):

The maximum value of 1.9 m/s is adopted referring to the daily mean velocities during the monsoon season (June – September). Variation of wind velocity by altitude is assumed to be linear up to 50 m/s at 300 hPa, referring to measurement records in Japan.

4) Setting of the Freezing Level

Based on the decrement of temperature by altitude, as previously stated, the freezing level is set at 450 hPa. Above or below this level, it snows or rains.

5) Preparation of Precipitation Trajectories

Precipitation trajectories are to be prepared at every 10 km as shown in **Fig. 6.4.2-2**. Computation of the precipitation trajectory is shown in **Table 6.4.2-1**.

6) Calculation of Precipitation

Precipitation between each trajectory is to be calculated based on the formula as previously stated and the results are shown in **Table 6.4.2-2**.

Based on the above, the daily average value of PMP in the drainage area at the Dam site is estimated to be 683 mm/day as shown in **Table 6.4-2-3**.

(3) Preparation of the Unit Hydrograph

As unit hydrographs of the Seti River basin are unavailable at present, basin lag and peak flow, etc. of the unit hydrograph are estimated by the Snyder method in this study. The shape of the unit hydrograph is expressed in a function of  $t^{2.4}$  at the ascending portion and the exponential function at the descending portion, and is graded in every 6 hours and with a rainfall density of 1 cm, as shown in **Fig. 6.4.2-3**.

(4) Distribution of PMP

Since the unit hydrograph is graded every 6 hours, the PMP values must also be distributed as previously estimated every 6 hours. The following formula, showing the relationship between time and precipitation for the world's greatest observed point of rainfall, are applied for this purpose:

R = 422 · D^{0.475} where R: Rainfall (mm) D: Duration (hr)

The results of the calculation are shown in **Table 6.4.2-4**, in which "Arrange" means the arrangement set to cause maximum discharge and the effective precipitation is the value arranged minus an hourly retention loss of 2 mm / hr.

(5) Synthesis of the Unit Hydrographs

The flood hydrograph synthesized with the effective precipitation and unit hydrographs is as shown in **Table 6.4.2-5** and **Fig. 6.4.2-4**. As a result of the synthesis, a peak discharge of  $7,251 \text{ m}^3/\text{s}$  is calculated.

(6) Determination of Base flow and PMF

Moreover, a base flow of 126 m³/s is determined based on the discharge of 95 % probability during the rainy season (July – September). Therefore, PMF discharge at the Dam site is estimated to be 7,251+126 = 7,377 m³ / sec.

(7) Comparison with other Projects

The relation between an effective catchment area, catchment area in connection with the PMF, and PMF discharge per effective catchment area of the dam projects on rivers originating from the Himalaya Mountains in Nepal and India² is as shown in **Fig. 6.4.2-5**. The figure explains that the PMF discharge per effective catchment area of the Dam site lies near the regression line and its value is judged to be reasonable.

² Kali Gandaki 'A' Hydroelectric Project Detailed Design, Final Project Formulation Report II, Volume 1, Main Report, Chapter 2 Hydrology, 2.2.2 Probable Maximum Flood (PMF), Kali Gandaki 'A' Associates, May, 1994



Fig. 6.4.2-2 Ground Profile, Air Streamlines and Precipitation Trajectories for PMP Estimation

Р	V	Vav	Vav∆P	DRR	Σ DRIFT(DRR)	DRS	Σ DRIFT(DRS)
(hPa)	(m/s)	(m/s)		(km)	(km)	(km)	(km)
300	50.0						
350	46.1	48.1	2,403	1.1	7.1	5.3	33.7
400	42.2	44.2	2,208	1.0	6.0	4.9	28.4
450	38.3	40.3	2,014	0.9	4.9	4.4	23.5
500	34.4	36.4	1,819	0.8	4.0	4.0	19.1
550	30.6	32.5	1,625	0.8	3.2	3.6	15.1
600	26.7	28.6	1,430	0.7	2.4	3.2	11.5
650	22.8	24.7	1,236	0.6	1.7	2.7	8.3
700	18.9	20.8	1,041	0.5	1.2	2.3	5.6
750	15.0	16.9	847	0.4	0.7	1.9	3.3
800	11.1	13.0	652	0.3	0.3	1.4	1.4

 Table 6.4.2-1
 Computation of the Rain and Snow Drift for Computing the Precipitation Trajectories

Legend

 $DRR = Vav \Delta P/2,160$  :Horizontal rain drift (2,160hPa/hr = falling velocity of rain)

 $DRS = Vav \Delta P/453$  :Horizontal snow drift (453hPa/hr = falling velocity of snow)

Table 6.4.2-2 (1/3)Computation of PMP

10~20km

Р	r	R.H	V	Vav	Vav∆P	Ws	WI	Pc	γc	$P_{LT}$	W _{LT}	P _{UT}	W _{UT}	WIav	$W_{LT}av$	W _{UT} av	$\Delta W_{LT}$ av	Vav∆p∙∆W _{LT} av	$\Delta W_{UT}av$	$Vav \triangle p \cdot \triangle W_{UT}av$
(hPa)	(°C)	(%)	(m/s)	(m/s)		(g/kg)	(g/kg)	(hPa)	(°C)	(hPa)	(g/kg)	(hPa)	(g/kg)	(g/kg)	(g/kg)	(g/kg)	=WIav-W _{LT} av		$=\!\!WIav\!\!\cdot\!W_{UT}\!av$	
350.0	-9.6	53.9	46.1			5.2	2.8	300.0	-19.2	350.0	2.8	350.0	2.8							
400.0	-3.6	57.8	42.2	44.2	2,208.3	7.4	4.3	360.0	-12.0	400.0	4.3	398.0	4.3	3.6	3.6	3.6	0.0	0.0	0.0	0.0
450.0	1.2	61.7	38.3	40.3	2,013.8	9.5	5.9	410.0	-6.2	448.0	5.9	447.0	5.9	5.1	5.1	5.1	0.0	0.0	0.0	0.0
500.0	6.0	65.6	34.4	36.4	1,819.3	12.0	7.9	457.0	-1.8	497.0	7.9	495.0	7.9	6.9	6.9	6.9	0.0	0.0	0.0	0.0
550.0	9.6	69.6	30.6	32.5	1,624.8	14.0	9.7	507.0	3.2	546.0	9.7	544.0	9.7	8.8	8.8	8.8	0.0	0.0	0.0	0.0
600.0	13.2	73.5	26.7	28.6	1,430.3	16.2	11.9	555.0	7.8	595.0	11.9	594.0	11.9	10.8	10.8	10.8	0.0	0.0	0.0	0.0
650.0	18.0	77.4	22.8	24.7	1,235.8	20.5	15.9	613.0	13.3	643.0	15.9	643.0	15.9	13.9	13.9	13.9	0.0	0.0	0.0	0.0
700.0	20.4	81.3	18.9	20.8	1,041.3	22.5	18.3	670.0	16.5	692.0	18.3	691.0	18.3	17.1	17.1	17.1	0.0	0.0	0.0	0.0
750.0	24.0	85.2	15.0	16.9	846.8	26.2	22.3	723.0	20.7	741.0	22.3	741.0	22.3	20.3	20.3	20.3	0.0	0.0	0.0	0.0
800.0	26.4	89.1	11.1	13.0	652.3	28.6	25.5	780.0	24.2	791.0	25.5	791.0	25.5	23.9	23.9	23.9	0.0	0.0	0.0	0.0
850.0	30.0	93.0	7.2	9.2	457.8	33.4	31.1	835.0	28.5	840.0	31.1	839.0	31.1	28.3	28.3	28.3	0.0	0.0	0.0	0.0
900.0	32.4	96.9	3.3	5.3	263.3	36.3	35.2	892.0	31.8	889.0	35.2	889.0	35.2	33.2	33.2	33.2	0.0	0.0	0.0	0.0
930.0	34.2	99.3	1.0	2.2	64.6	38.4	38.1	930.0	34.2	920.8	38.0	920.8	38.0	36.7	36.6	36.6	0.1	3.2	0.1	3.2
Legend	P : Atn	nospheri	ic pressu	re		Ws : Sa	turation	mixing	ratio											
	$\gamma$ : Atr	: Atmospheric temperature WI : Mixing ratio at inflow =R.H×Ws															TOTAL =	3.2		3.2
	R.H : Relative humidity $Pc, \gamma c$ : Condensation pressure, temperature												24hr	Volume(	(mm(km	()) = 0.88	$313 \times TOTAL =$	2.8	=A	2.8 =B
	V : Wind velocity LT : Lower precipitation trajectory													τ	Jnit Hor	izontal .	Area (km)=	10.0	=C	20.0 =D
	av : ave	rage				UT : Upp	er precip	oitation t	rajectory	у			24	hr Aver	age Rain	nfall Ov	er Last Leg =		(B-A)/(D-C) =	0.0 mn

#### 20~30km

Р	r	R.H	V	Vav	Vav∆P	Ws	WI	Pc	γc	PLT	W _{LT}	P _{UT}	W _{UT}	WIav	$W_{LT}av$	W _{UT} av	$\Delta W_{LT}$ av	Vav∆p∙∆W _{LT} av	$\Delta W_{UT}$ av	Vav∆p•∆W _{UT} av
(hPa)	(°C)	(%)	(m/s)	(m/s)		(g/kg)	(g/kg)	(hPa)	(°C)	(hPa)	(g/kg)	(hPa)	(g/kg)	(g/kg)	(g/kg)	(g/kg)	=WIav-W _{LT} av	54 - 2023 -	=WIav-W _{UT} av	29 C.28 %
350.0	-9.6	53.9	46.1			5.2	2.8	300.0	-19.2	350.0	2.8	349.0	2.8							
400.0	-3.6	57.8	42.2	44.2	2,208.3	7.4	4.3	360.0	-12.0	398.0	4.3	397.0	4.3	3.6	3.6	3.6	0.0	0.0	0.0	0.0
450.0	1.2	61.7	38.3	40.3	2,013.8	9.5	5.9	410.0	-6.2	447.0	5.9	442.0	5.9	5.1	5.1	5.1	0.0	0.0	0.0	0.0
500.0	6.0	65.6	34.4	36.4	1,819.3	12.0	7.9	457.0	-1.8	495.0	7.9	489.0	7.9	6.9	6.9	6.9	0.0	0.0	0.0	0.0
550.0	9.6	69.6	30.6	32.5	1,624.8	14.0	9.7	507.0	3.2	544.0	9.7	535.0	9.7	8.8	8.8	8.8	0.0	0.0	0.0	0.0
600.0	13.2	73.5	26.7	28.6	1,430.3	16.2	11.9	555.0	7.8	594.0	11.9	580.0	11.9	10.8	10.8	10.8	0.0	0.0	0.0	0.0
650.0	18.0	77.4	22.8	24.7	1,235.8	20.5	15.9	613.0	13.3	643.0	15.9	626.0	15.9	13.9	13.9	13.9	0.0	0.0	0.0	0.0
700.0	20.4	81.3	18.9	20.8	1,041.3	22.5	18.3	670.0	16.5	691.0	18.3	672.0	18.3	17.1	17.1	17.1	0.0	0.0	0.0	0.0
750.0	24.0	85.2	15.0	16.9	846.8	26.2	22.3	723.0	20.7	741.0	22.3	717.0	22.3	20.3	20.3	20.3	0.0	0.0	0.0	0.0
800.0	26.4	89.1	11.1	13.0	652.3	28.6	25.5	780.0	24.2	791.0	25.5	764.0	25.0	23.9	23.9	23.7	0.0	0.0	0.3	163.1
850.0	30.0	93.0	7.2	9.2	457.8	33.4	31.1	835.0	28.5	839.0	31.1	810.0	30.3	28.3	28.3	27.7	0.0	0.0	0.7	297.5
900.0	32.4	96.9	3.3	5.3	263.3	36.3	35.2	892.0	31.8	889.0	35.2	858.0	34.5	33.2	33.2	32.4	0.0	0.0	0.8	197.4
930.0	34.2	99.3	1.0	2.2	64.6	38.4	38.1	930.0	34.2	920.8	38.0	888.0	37.8	36.7	36.6	36.2	0.1	3.2	0.5	32.3
Legend	P : Atn	nospheri	ic pressu	re		Ws : Sa	aturation	mixing	ratio	1111 - KP57279								05 D5		1997 - 194 1999 - 194
	$\gamma$ : At	nospher	ic tempe	rature		WI : M	ixing rat	io at infl	ow =R.I	H×Ws							TOTAL =	3.2		690.3
	R.H : R	elative h	umidity			Pc, y c	: Conder	nsation p	ressure,	tempera	ature		24hr	Volume	(mm(km	)) = 0.88	$313 \times TOTAL =$	2.8	=A	608.4 =B
	V :Wi	nd veloc	city			LT : LOV	ver preci	pitation	trajector	ry				1	Unit Hor	izontal A	Area (km)=	20.0	=C	30.0 =D
	av : ave	rage				UT : Upp	er precij	oitation t	rajector	у			24	4hr Aver	age Rain	nfall Ove	er Last Leg =		(B-A)/(D-C) =	60.6 mm

6 - 21

 Table 6.4.2-2 (2/3)
 Computation of PMP

Р	r	R.H	V	Vav	Vav∆P	Ws	WI	Pc	γc	$P_{LT}$	W _{LT}	P _{UT}	W _{UT}	WIav	$W_{LT}av$	$W_{\text{UT}} a v$	$\Delta W_{LT}$ av	Vav∆p•∆W _{LT} av	$\Delta W_{UT}av$	$Vav \Delta p \cdot \Delta W_{UT}av$
(hPa)	(°C)	(%)	(m/s)	(m/s)		(g/kg)	(g/kg)	(hPa)	(°C)	(hPa)	(g/kg)	(hPa)	(g/kg)	(g/kg)	(g/kg)	(g/kg)	=WIav-W _{LT} av		$=\!\!WIav\!\!\cdot\!\!W_{UT}\!av$	
350.0	-9.6	53.9	46.1			5.2	2.8	300.0	-19.2	349.0	2.8	347.0	2.8							
400.0	-3.6	57.8	42.2	44.2	2,208.3	7.4	4.3	360.0	-12.0	397.0	4.3	391.0	4.3	3.6	3.6	3.6	0.0	0.0	0.0	0.0
450.0	1.2	61.7	38.3	40.3	2,013.8	9.5	5.9	410.0	-6.2	442.0	5.9	435.0	5.9	5.1	5.1	5.1	0.0	0.0	0.0	0.0
500.0	6.0	65.6	34.4	36.4	1,819.3	12.0	7.9	457.0	-1.8	489.0	7.9	478.0	7.9	6.9	6.9	6.9	0.0	0.0	0.0	0.0
550.0	9.6	69.6	30.6	32.5	1,624.8	14.0	9.7	507.0	3.2	535.0	9.7	523.0	9.7	8.8	8.8	8.8	0.0	0.0	0.0	0.0
600.0	13.2	73.5	26.7	28.6	1,430.3	16.2	11.9	555.0	7.8	580.0	11.9	568.0	11.9	10.8	10.8	10.8	0.0	0.0	0.0	0.0
650.0	18.0	77.4	22.8	24.7	1,235.8	20.5	15.9	613.0	13.3	626.0	15.9	611.0	15.9	13.9	13.9	13.9	0.0	0.0	0.0	0.0
700.0	20.4	81.3	18.9	20.8	1,041.3	22.5	18.3	670.0	16.5	672.0	18.3	655.0	18.3	17.1	17.1	17.1	0.0	0.0	0.0	0.0
750.0	24.0	85.2	15.0	16.9	846.8	26.2	22.3	723.0	20.7	717.0	22.3	700.0	21.7	20.3	20.3	20.0	0.0	0.0	0.3	254.0
800.0	26.4	89.1	11.1	13.0	652.3	28.6	25.5	780.0	24.2	764.0	25.0	744.0	24.8	23.9	23.7	23.3	0.3	163.1	0.6	424.0
850.0	30.0	93.0	7.2	9.2	457.8	33.4	31.1	835.0	28.5	810.0	30.3	791.0	29.0	28.3	27.7	26.9	0.7	297.5	1.4	640.9
900.0	32.4	96.9	3.3	5.3	263.3	36.3	35.2	892.0	31.8	858.0	34.5	835.0	33.8	33.2	32.4	31.4	0.8	197.4	1.8	460.7
930.0	34.2	99.3	1.0	2.2	64.6	38.4	38.1	930.0	34.2	888.0	37.8	866.6	37.3	36.7	36.2	35.6	0.5	32.3	1.1	71.0
Legend	P : Atn	ıospheri	ic pressu	re		Ws : Sa	turation	mixing	ratio											
	γ : Atı	nospher	ic tempe	temperature WI : Mixing ratio at inflow =R.H×Ws													TOTAL =	690.3		1,850.6
	R.H : Relative humidity $Pc, \gamma c$ : Condensation pressure, temperature												24hr	Volume	(mm(km	)) = 0.88	$313 \times TOTAL =$	608.4	=A	1,630.9 =B
	V : Wind velocity LT : Lower precipitation trajectory													٦	Jnit Hor	izontal A	Area (km)=	30.0	=C	40.0 =D
	av : ave	rage				_{UT} : Upp	er precij	pitation t	rajector	у		2	24	hr Aver	age Raiı	nfall Ove	er Last Leg =		(B-A)/(D-C) =	102.3 mm

#### 40~50km

30~40km

Р	r	R.H	V	Vav	Vav∆P	Ws	WI	Pc	rc	$P_{LT}$	W _{LT}	P _{UT}	W _{UT}	WIav	$W_{LT}av$	$W_{\text{UT}}av$	$\Delta W_{LT}$ av	Vav∆p∙∆W _{LT} av	$\Delta W_{UT}av$	$Vav \Delta p \cdot \Delta W_{UT}av$
(hPa)	(°C)	(%)	(m/s)	(m/s)		(g/kg)	(g/kg)	(hPa)	(°C)	(hPa)	(g/kg)	(hPa)	(g/kg)	(g/kg)	(g/kg)	(g/kg)	=WIav-W _{LT} av	1 AL AL	=WIav-W _{UT} av	10 C.2812.
350.0	-9.6	53.9	46.1			5.2	2.8	300.0	-19.2	347.0	2.8	344.0	2.8							
400.0	-3.6	57.8	42.2	44.2	2,208.3	7.4	4.3	360.0	-12.0	391.0	4.3	387.0	4.3	3.6	3.6	3.6	0.0	0.0	0.0	0.0
450.0	1.2	61.7	38.3	40.3	2,013.8	9.5	5.9	410.0	-6.2	435.0	5.9	424.0	5.9	5.1	5.1	5.1	0.0	0.0	0.0	0.0
500.0	6.0	65.6	34.4	36.4	1,819.3	12.0	7.9	457.0	-1.8	478.0	7.9	459.0	7.9	6.9	6.9	6.9	0.0	0.0	0.0	0.0
550.0	9.6	69.6	30.6	32.5	1,624.8	14.0	9.7	507.0	3.2	523.0	9.7	495.0	9.3	8.8	8.8	8.6	0.0	0.0	0.2	324.9
600.0	13.2	73.5	26.7	28.6	1,430.3	16.2	11.9	555.0	7.8	568.0	11.9	532.0	11.0	10.8	10.8	10.2	0.0	0.0	0.7	929.7
650.0	18.0	77.4	22.8	24.7	1,235.8	20.5	15.9	613.0	13.3	611.0	15.9	568.0	14.3	13.9	13.9	12.7	0.0	0.0	1.3	1,544.7
700.0	20.4	81.3	18.9	20.8	1,041.3	22.5	18.3	670.0	16.5	655.0	18.3	603.0	15.7	17.1	17.1	15.0	0.0	0.0	2.1	2,186.6
750.0	24.0	85.2	15.0	16.9	846.8	26.2	22.3	723.0	20.7	700.0	21.7	639.0	19.3	20.3	20.0	17.5	0.3	254.0	2.8	2,370.9
800.0	26.4	89.1	11.1	13.0	652.3	28.6	25.5	780.0	24.2	744.0	24.8	679.0	23.0	23.9	23.3	21.2	0.6	424.0	2.8	1,793.7
850.0	30.0	93.0	7.2	9.2	457.8	33.4	31.1	835.0	28.5	791.0	29.0	719.0	27.8	28.3	26.9	25.4	1.4	640.9	2.9	1,327.5
900.0	32.4	96.9	3.3	5.3	263.3	36.3	35.2	892.0	31.8	835.0	33.8	759.0	31.9	33.2	31.4	29.9	1.8	460.7	3.3	868.7
930.0	34.2	99.3	1.0	2.2	64.6	38.4	38.1	930.0	34.2	866.6	37.3	785.2	32.3	36.7	35.6	32.1	1.1	71.0	4.6	293.9
Legend	P : Atn	nospheri	c pressu	re		Ws :Sa	turation	mixing	ratio											
	$\gamma$ : Atmospheric temperature WI: Mixing ratio at inflow =R.H×Ws																TOTAL =	1,850.6		11,640.6
	R.H : Relative humidity $Pc, \gamma c$ : Condensation pressure, temperature												24hr 7	Volume	(mm(km	)) = 0.88	$313 \times TOTAL =$	1,630.9	=A	10,258.9 =
	V : Wind velocity LT : Lower precipitation trajectory													1	Unit Hor	rizontal A	Area (km)=	40.0	=C	50.0 =
	av : ave	rage				UT: Upp	er precip	oitation t	rajectory	y			24	hr Aver	age Rain	nfall Ove	er Last Leg =		(B-A)/(D-C) =	862.8 n

 Table 6.4.2-2 (3/3)
 Computation of PMP

50~60km

Р	r	R.H	V	Vav	Vav∆P	Ws	WI	Pc	γc	P _{LT}	W _{LT}	$P_{UT}$	W _{UT}	WIav	$W_{LT}av$	$W_{\text{UT}} a v$	$\Delta W_{LT}$ av	Vav∆p•∆W _{LT} av	$\Delta W_{UT}av$	Vav∆p•∆W _{UT} av
(hPa)	(°C)	(%)	(m/s)	(m/s)		(g/kg)	(g/kg)	(hPa)	(°C)	(hPa)	(g/kg)	(hPa)	(g/kg)	(g/kg)	(g/kg)	(g/kg)	=WIav-W _{LT} av		$=\!\!WIav\!\!\cdot\!W_{UT}\!av$	
350.0	-9.6	53.9	46.1		a antiparte a	5.2	2.8	300.0	-19.2	344.0	2.8	339.0	2.8							
400.0	-3.6	57.8	42.2	44.2	2,208.3	7.4	4.3	360.0	-12.0	387.0	4.3	373.0	4.3	3.6	3.6	3.6	0.0	0.0	0.0	0.0
450.0	1.2	61.7	38.3	40.3	2,013.8	9.5	5.9	410.0	-6.2	424.0	5.9	403.0	5.5	5.1	5.1	4.9	0.0	0.0	0.2	402.7
500.0	6.0	65.6	34.4	36.4	1,819.3	12.0	7.9	457.0	-1.8	459.0	7.9	425.0	7.0	6.9	6.9	6.3	0.0	0.0	0.7	1,182.5
550.0	9.6	69.6	30.6	32.5	1,624.8	14.0	9.7	507.0	3.2	495.0	9.3	445.0	7.7	8.8	8.6	7.4	0.2	324.9	1.5	2,355.9
600.0	13.2	73.5	26.7	28.6	1,430.3	16.2	11.9	555.0	7.8	532.0	11.0	471.0	9.0	10.8	10.2	8.4	0.7	929.7	2.5	3,504.1
650.0	18.0	77.4	22.8	24.7	1,235.8	20.5	15.9	613.0	13.3	568.0	14.3	496.0	11.5	13.9	12.7	10.3	1.3	1,544.7	3.7	4,510.5
700.0	20.4	81.3	18.9	20.8	1,041.3	22.5	18.3	670.0	16.5	603.0	15.7	520.0	12.6	17.1	15.0	12.1	2.1	2,186.6	5.1	5,258.3
750.0	24.0	85.2	15.0	16.9	846.8	26.2	22.3	723.0	20.7	639.0	19.3	544.0	15.7	20.3	17.5	14.2	2.8	2,370.9	6.2	5,207.5
800.0	26.4	89.1	11.1	13.0	652.3	28.6	25.5	780.0	24.2	679.0	23.0	575.0	20.0	23.9	21.2	17.9	2.8	1,793.7	6.1	3,946.1
850.0	30.0	93.0	7.2	9.2	457.8	33.4	31.1	835.0	28.5	719.0	27.8	606.0	24.0	28.3	25.4	22.0	2.9	1,327.5	6.3	2,883.8
900.0	32.4	96.9	3.3	5.3	263.3	36.3	35.2	892.0	31.8	759.0	31.9	638.0	27.6	33.2	29.9	25.8	3.3	868.7	7.4	1,934.9
930.0	34.2	99.3	1.0	2.2	64.6	38.4	38.1	930.0	34.2	785.2	32.3	657.7	30.5	36.7	32.1	29.1	4.6	293.9	7.6	490.9
Legend	P : Atn	iospheri	c pressu	re		Ws :Sa	turation	mixing	ratio											
	$\gamma$ : Atr	nospher	ic tempe	rature		WI : M	ixing rat	io at infl	ow =R.I	H×Ws							TOTAL =	11,640.6		31,677.3
	R.H : Relative humidity $Pc, \gamma c$ : Condensation pressure, temperature												24hr 1	Volume(	mm(km	)) = 0.88	$313 \times TOTAL =$	10,258.9	=A	27,917.2 =B
	V : Wind velocity LT : Lower precipitation trajectory													τ	Jnit Hor	izontal A	Area (km)=	50.0	=C	60.0 =D
	av : ave	rage				_{uт} : Upp	er precip	oitation t	rajectory	y			24	hr Aver	age Raiı	nfall Ove	er Last Leg =		(B-A)/(D-C) =	1,765.8 mm

60~70km

Р	r	R.H	V	Vav	Vav∆P	Ws	WI	Pc	γc	$P_{LT}$	W _{LT}	$P_{UT}$	W _{UT}	WIav	W _{LT} av	W _{UT} av	$\Delta W_{LT}$ av	Vav∆p•∆W _{LT} av	$\Delta W_{UT}av$	$Vav \Delta p \cdot \Delta W_{UT}av$
(hPa)	(°C)	(%)	(m/s)	(m/s)		(g/kg)	(g/kg)	(hPa)	(°C)	(hPa)	(g/kg)	(hPa)	(g/kg)	(g/kg)	(g/kg)	(g/kg)	=WIav-W _{LT} av	N 255	=WIav-W _{UT} av	33 CG251
350.0	-9.6	53.9	46.1			5.2	2.8	300.0	-19.2	339.0	2.8	328.0	2.8							
400.0	-3.6	57.8	42.2	44.2	2,208.3	7.4	4.3	360.0	-12.0	373.0	4.3	353.0	4.3	3.6	3.6	3.6	0.0	0.0	0.0	0.0
450.0	1.2	61.7	38.3	40.3	2,013.8	9.5	5.9	410.0	-6.2	403.0	5.8	372.0	4.7	5.1	5.1	4.5	0.0	100.7	0.6	1,208.3
500.0	6.0	65.6	34.4	36.4	1,819.3	12.0	7.9	457.0	-1.8	425.0	7.0	391.0	6.0	6.9	6.4	5.4	0.5	909.6	1.6	2,819.8
550.0	9.6	69.6	30.6	32.5	1,624.8	14.0	9.7	507.0	3.2	445.0	7.7	407.0	6.5	8.8	7.4	6.3	1.5	2,355.9	2.6	4,143.1
600.0	13.2	73.5	26.7	28.6	1,430.3	16.2	11.9	555.0	7.8	471.0	9.0	420.0	7.3	10.8	8.4	6.9	2.5	3,504.1	3.9	5,578.0
650.0	18.0	77.4	22.8	24.7	1,235.8	20.5	15.9	613.0	13.3	496.0	11.5	433.0	9.2	13.9	10.3	8.3	3.7	4,510.5	5.7	6,982.0
700.0	20.4	81.3	18.9	20.8	1,041.3	22.5	18.3	670.0	16.5	520.0	12.6	444.0	9.7	17.1	12.1	9.5	5.1	5,258.3	7.7	7,965.6
750.0	24.0	85.2	15.0	16.9	846.8	26.2	22.3	723.0	20.7	544.0	15.7	459.0	12.2	20.3	14.2	11.0	6.2	5,207.5	9.4	7,917.1
800.0	26.4	89.1	11.1	13.0	652.3	28.6	25.5	780.0	24.2	575.0	20.0	485.0	17.0	23.9	17.9	14.6	6.1	3,946.1	9.3	6,065.9
850.0	30.0	93.0	7.2	9.2	457.8	33.4	31.1	835.0	28.5	606.0	24.0	511.0	20.7	28.3	22.0	18.9	6.3	2,883.8	9.5	4,325.7
900.0	32.4	96.9	3.3	5.3	263.3	36.3	35.2	892.0	31.8	638.0	27.6	538.0	24.0	33.2	25.8	22.4	7.4	1,934.9	10.8	2,843.1
930.0	34.2	99.3	1.0	2.2	64.6	38.4	38.1	930.0	34.2	657.7	30.5	554.8	26.6	36.7	29.1	25.3	7.6	490.9	11.4	733.1
Legend	P : Atn	ıospheri	c pressu	re		Ws :Sa	turation	mixing	ratio	00 845775							1.47×111121011001/	with the power of		10 1011-1020-0020
	$\gamma$ : Atr	nospher	ic tempe	rature		WI : M	ixing rati	io at infl	ow =R.I	H×Ws							TOTAL =	31,102.3		50,581.7
	R.H : Relative humidity $Pc, \gamma c$ : Condensation pressure, temperature												24hr	Volume	(mm(km	)) = 0.88	$313 \times TOTAL =$	27,410.5	=A	44,577.6 =B
	V : Wi	✓ : Wind velocity LT : Lower precipitation trajectory												1	Unit Hor	izontal A	Area (km)=	60.0	=C	70.0 =D
	av : ave	rage				UT: Upp	er precip	oitation t	rajector	y			24	4hr Avei	age Rai	nfall Ove	er Last Leg =		(B-A)/(D-C) =	1,716.7 mn

6 - 23

Section	PMP	Area	PMP × Area	Time	Max. Rain	Rate	PMP	6 hour increment s	Arrange	Retention Loss	Effective Rainfall
(km)	(mm/day)	(km ² )		(hour)	(mm)		(mm)	(mm)	(mm)	(mm)	(mm)
10-20	0.0	222.2	0	6	988	0.518	354	354	47	12	35
20-30	60.6	204.3	12,371	12	1,374	0.719	491	137	51	12	39
30-40	102.3	257.0	26,281	18	1,666	0.872	596	105	58	12	46
40-50	862.8	242.5	209,210	24	1,909	1.000	683	87	69	12	57
50-60	1,765.8	199.6	352,531	30	2,123	1.112	759	76	87	12	75
60-70	1,716.7	162.9	279,687	36	2,315	1.212	828	69	137	12	125
Total		1,289	880,080	42	2,491	1.304	891	63	354	12	342
		А	В	48	2,654	1.390	949	58	105	12	93
Average	683	mm =B/A		54	2,807	1.470	1,004	55	76	12	64
				60	2,951	1.545	1,055	51	63	12	51
				66	3,087	1.617	1,104	49	55	12	43
				72	3,218	1.685	1,151	47	49	12	37

#### Table 6.4.2-3 Average PMP of the Basin

#### Table 6.4.2-4 PMP Distribution and Effective Rainfall







$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	44 Discharge 0 (m ³ /s) 0 0 0 14 93 311 767
(hr)       (cm)       (cm)       (cm)       Unit (m ³ /s)       0       4       22       59       118       95       74       57       45       35       27       21       16       13       10       8       6       5       4       3       2       2       1       1         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>0 (m³/s) 0 0 14 93 311 767</td>	0 (m ³ /s) 0 0 14 93 311 767
0       0       0       0         6       4.7       1.2       3.5       0       0         12       5.1       1.2       3.9       0       14       0         18       5.8       1.2       4.6       0       16       77       0         24       6.0       1.6       77       0       207       0	0 0 14 93 311 767
6       4.7       1.2       3.5       0       0         12       5.1       1.2       3.9       0       14       0         18       5.8       1.2       4.6       0       16       77       0         14       0       16       77       0       0       16       77       0	0 14 93 311 767
12       5.1       1.2       3.9       0       14       0         18       5.8       1.2       4.6       0       16       77       0         24       5.0       1.2       5.7       0       16       77       0	14 93 311 767
	93 311 767
	311 767
	767
30 8.7 1.2 7.5 0 23 101 230 413 0	357223233
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,220
42 35.4 1.2 34.2 0 50 165 336 543 371 259 0	1,724
48 10.5 1.2 9.3 0 137 275 443 673 437 289 200 0	2,452
	3,6/4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5,418
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 202
72 4.9 1.2 5.7 0 17 112 5.0 109 3,09 3,29 323 428 237 101 105 74 0	6,001
84 84 81 254 602 608 688 1 949 563 263 154 97 62 46 0	5 366
	4.672
96 437 409 377 365 419 1.197 338 158 91 60 39 28 0	3.916
102 352 318 291 288 326 923 263 120 74 46 31 21 0	3,052
108 274 245 230 224 251 718 200 98 57 37 23 18 0	2,374
114 211 194 179 173 195 547 163 75 46 28 20 14 0	1,842
120 167 151 138 134 149 445 125 60 34 23 16 11 0	1,451
126 130 116 107 102 121 342 100 45 29 18 12 7 0	1,129
132 100 90 82 83 93 274 75 38 23 14 8 7 0	886
138 78 69 66 64 74 205 63 30 17 9 8 4 0	687
144 59 56 51 51 56 171 50 23 11 9 4 4	0 545
150 48 43 41 38 47 137 38 15 11 5 4	0 426
156 156	0 324
	0 241
168 22 22 20 19 19 68 13 8	0 190
1/4 $19$ $1/$ $13$ $13$ $19$ $34$ $13$ $190$	0 129
	0 94
	0 28
	0 17
	0 8
	0 4
	0 0

## Table 6.4.2-5Synthesis of Unit Hydrographs



Fig. 6.4.2-4 Synthesis of Unit Hydrographs

6 - 27

Final Report

Upgrading Feasibility Study on the Upper Seti Storage Hydroelectric Project in Nepal



Fig. 6.4.2-5 Relation between PMF and Drainage Area for the Himalayan Basins in Nepal and India