第 12 章 工事計画および工事費

目 次

工事計	画および工事費	12-1
一般		12-1
12.1.1	計画地点へのアクセス	12-1
12.1.2	工事用電力	12-1
12.1.3	コンクリート用骨材	12-2
工事計	画および工事工程	12-3
12.2.1	基本条件	12-3
12.2.2	工事計画および工事工程	12-10
工事費.		12-26
12.3.1	基本条件	12-26
12.3.2	工事費の構成	12-26
12.3.3	土木工事費	12-27
12.3.4	プロジェクトの工事費	12-29
12.3.5	年度別所要資金	12-34
	一般 12.1.1 12.1.2 12.1.3 工事計 12.2.1 12.2.2 工事費. 12.3.1 12.3.2 12.3.3 12.3.4	一般12.1.1 計画地点へのアクセス12.1.2 工事用電力12.1.3 コンクリート用骨材工事計画および工事工程12.2.1 基本条件12.2.2 工事計画および工事工程工事費12.3.1 基本条件12.3.2 工事費の構成

LIST OF TABLES

Table 12.1.3-1	Excavation and Concrete volume for Main Structures	12-2
Table 12.2.1-1	Number of Monthly Working Days	12-7
Table 12.2.1-2	Specification of the Concrete Production Plant	12-10
Table 12.2.2-1	Excavating Machines for Diversion Tunnel Work	12-15
Table 12.2.2-2	Machines for Dam Excavation	12-16
Table 12.2.2-3	Monthly Planned Excavation Volume and Required Construction Period	12-17
Table 12.2.2-4	Machines for Grouting Tunnel Excavation	12-17
Table 12.2.2-5	Machines for Grouting Work	12-17
Table 12.2.2-6	Examples of Small Ratio of Height to Length of RCC Gravity Dams	12-18
Table 12.2.2-7	Machines for concreting work	12-19
Table 12.3.3-1	Labor Cost in Nepal (Tanabu District)	12-28
Table 12.3.3-2	District Construction Material Rate in Tanahu District	12-29
Table 12.3.4-1	Project Construction Cost	12-30
Table 12.3.5-1	Disbursement Schedule of Project Construction Cost	12-34

LIST OF FIGURES

Fig. 12.2.1-1	Land Utilization Plan.	12-5
Fig. 12.2.1-2	Location of Concrete Production Plant	12-8
Fig. 12.2.1-3	General Plan of Concrete Production Plant	12-9
Fig. 12.2.2-1	Expected Schedule for Upper Seti Storage Hydroelectric Project	12-11
Fig. 12.2.2-2	Construction Schedule	12-13
Fig. 12.2.2-3	Tower Crane Location and Workable Zone	12-19
Fig. 12.2.2-4	Longitudinal Joints of Dam Concrete	12-20
Fig. 12.2.2-5	Transverse Joints in Upstream-Downstream Section	12-21

第 12 章 工事計画および工事費

12.1 一般

12.1.1 計画地点へのアクセス

(1) 空港

Tribhuvan 空港は、首都であるカトマンズにあるネパールで唯一の国際空港である。国内の主要都市には、国内定期便専用の空港があり、サイトに最も近い空港はポカラ空港である。サイト近くの町である Damauli からポカラまでの距離は約55 km、車で約1.5 時間を要する。

(2) 道路

アッパーセティ水力発電計画地点は、ネパール中西部 Tanahun 郡のセティ川にあり、首都カトマンズから 140 km に位置している。カトマンズから国道 (Prithivi Highway) を使用しサイト近くの Damauli まで車で約4時間を要する。

ポカラ側からサイトへアクセスするには、ダマウリ市街に入る直前の Nadi 川を渡る橋梁より約 600 m 手前の右側の側道を利用する。この既設道路は、延長約 3 km で、ほとんどが未舗装であるが、車の通行が可能である。ダム地点は、この道路の終端から約 2 km に位置している。

海外からネパールに輸入される発電機器、建設機械・資材は、インドのコルカタで陸揚げされ、インド国内を経由してネパール国内に輸送される。本計画での輸送ルートは、**11.4** に示したように、Middle Marsyangdiプロジェクトと同じBirganj ~ Hetauda ~ Narayangadh ~ Mugling経由でアッパーセティサイトとなる。道路の重量制限は、Marsyangdi水力発電所の建設時の調査から 24.8 トンである。

12.1.2 工事用電力

サイト近くの Damauli に NEA 所有の変電所(33 kV)があり、この変電所から Jhaputar(Seti 川と Madi 川の合流点)に設置される仮変圧器まで 33 kV の配電線(3 km)を準備工事として建設する計画とした。工事用電力はこの仮変圧器から各請負業者が受電する。

12.1.3 コンクリート用骨材

計画地点は既に露頭に岩盤が現れており、堆積土砂は比較的少ないと考えられるため、岩掘削が主体になる。そこで、コンクリート用骨材は仮排水路トンネル、ダム、水路発電所工事で発生する掘削ズリをストックヤードに確保し、骨材プラントにて加工し、転用することとする。また、細骨材についても骨材プラントで精製することとする。なお、細骨材については、ダム地点の下流でセティ川に合流する Madi 川の数km上流地点で川砂の採取も行われているので、不足する場合はここからの購入も可能である。

各主要構造物において発生する岩石掘削ズリおよび必要なコンクリート量は**Table12.1.3-1** の通りである。

Table 12.1.3-1 Excavation and Concrete volume for Main Structures

(Unit: m³)

Structure	Rock excavation	Concrete
Diversion Tunnel	80,400	22,900
Coffer Dam	1,200	5,400
Dam	1,260,000	890,000
Intake	68,400	6,600
Headrace Tunnel	65,600	15,800
Surge Tank	16,200	3,700
Penstock	8,300	3,500
Powerhouse	72,400	20,400
Tailrace Tunnel	34,500	9,500
Tailrace Surge Tank	24,900	5,100
Tailrace	9,200	2,900
Service Tunnels	70,700	4,400
Cable Shaft	10,500	3,000
Switchyard	37,600	800
Total	1,759,900	994,000

次式により骨材必要量Vを算出する。

 $V = 994,000 \times 2.046 / 2.6 \times 1.125 = 844,565 = 880,000 \text{ m}^3$

ここに、

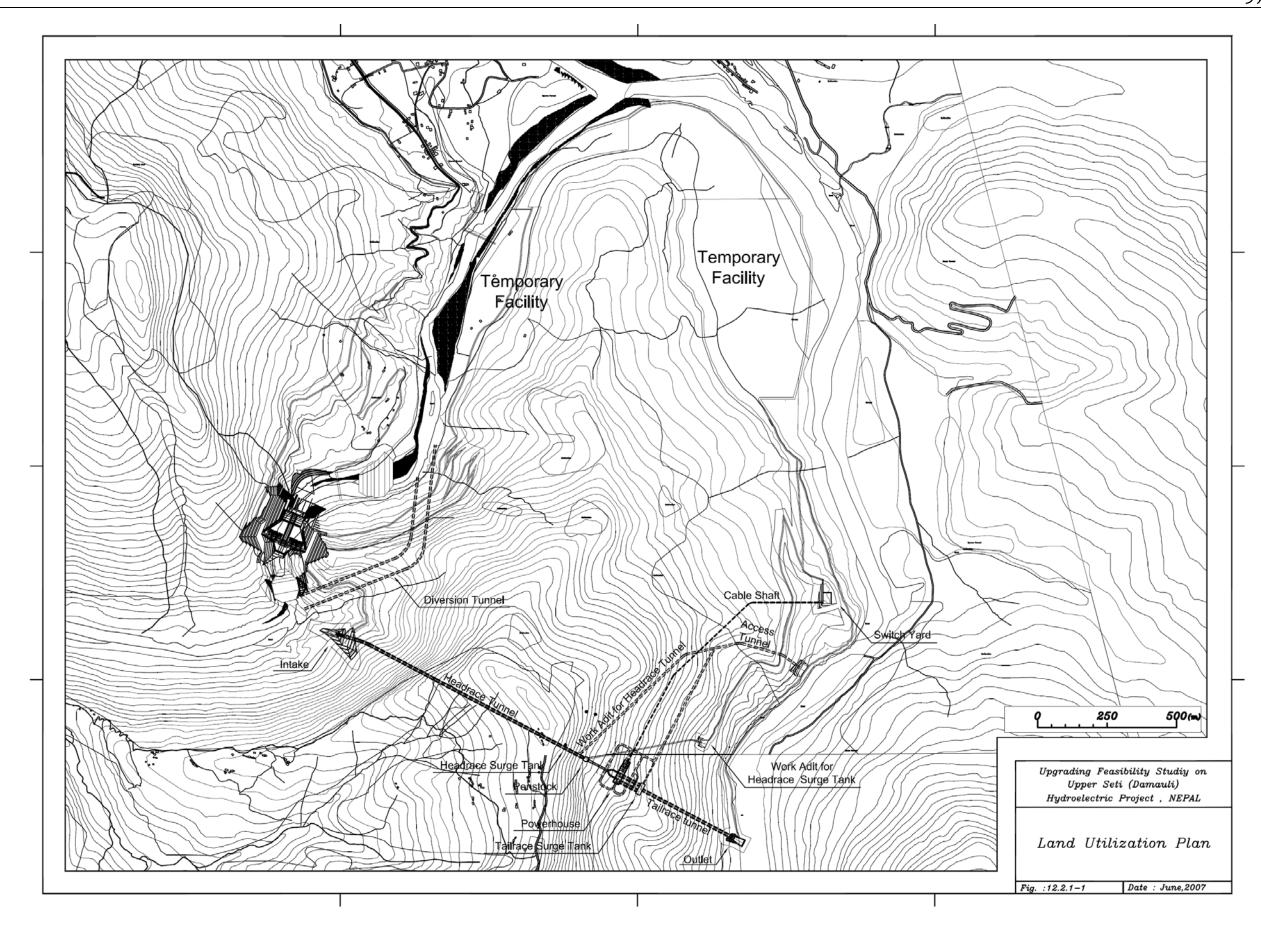
コンクリート 1 m^3 当りの骨材使用量 = 2.046 t/m^3

骨材の真比重 = 2.6

骨材の生産時のロス 12.5%

ダム掘削の際、高位部からの突き落とし等の施工作業による現場ロスを考慮して骨材への流 用可能量を掘削量の70%程度とすれば、骨材への流用可能量は

 $1,260,000 \times 0.7 = 882,000 \text{ m}^3$


となることから、ダム掘削において発生する掘削ズリは概ね、骨材に転用が可能である。なお、

骨材に不足が生じた場合は水路、発電所の掘削で発生する良好な掘削ズリを適宜、補充するものとする。

12.2 工事計画および工事工程

12.2.1 基本条件

この計画で建設される主要構造物は、高さ 140 mの重力式ダム、1 条の内径 7.8 mの導水路、水圧管路、放水路および地下発電所である。これらの構造物を建設するための掘削量は合計約 $1,760,000~\text{m}^3$ 、コンクリート量はダム本体が約 $890,000~\text{m}^3$ 、その他の構造物が $104,000~\text{m}^3$ である。施工にあたっての土地利用計画を**Fig. 12.2.1-1**に示す。

プロジェクトの工事計画および工程に影響を及ぼす事項は以下の通りである。

(1) 施工稼働日数

ダム施工計画に用いる施工可能日数は、暦日数から以下の不稼働日数を除いた日数とする。

- ネパール国は毎週土曜日が休日の週休1日制であり、実態を踏まえて休祭日および 土曜日は不稼働日とする。
- 日降雨量 20 mm 以上となる日の 1/2 を不稼働日とする。
- 月に1日、月間定期整備日を設けた。

施工可能日数は、毎週土曜日を4週4休と4週6休について、「ダム工事積算の解説 平成17年度版P-6」に示される不稼働日一覧表(Table 4.3.1に示す)を基に算定した。

施工可能日数および施工期間の算定のために、以下のダム地点近傍の気象観測所のデータを収集し、気温と雨量による不稼働日数を検討した。

- 気温:0815 Kharinitar 観測所資料(標高 500 m)の過去10年間(1995年~2004年)分
- 雨量: 0817 Damauli 観測所資料の過去 10 年間(1995 年 ~ 2004 年)分

その結果、本地点の主要工種であるダム土工、リムトンネル工、ボーリンググラウト工 (明り、トンネル) いずれも通年施工が可能であり、上記の不稼働日数を考慮すると月別 施工可能日数はTable 12.2.1-1のようになった。

month Work issue	1	2	3	4	5	6	7	8	9	10	11	12	Sum	Ave
Dam Excavation Tunnel Excavation	22	22	25	22	21	22	20	20	21	25	23	21	264	22
Concrete Works	22	22	25	22	21	23	21	21	21	25	23	21	267	22
Drilling for Grout														
Open	23	23	26	23	22	23	21	21	22	26	24	22	276	23
Galley and Tunnel	23	23	26	24	24	26	25	24	23	26	24	22	290	24

Table 12.2.1-1 Number of Monthly Working Days

また、トンネル工事・地下工事に関しても通年施工が可能である。

なお、本計画における月別施工可能日数は、工程の変動による融通性を考慮して平均日数を 用いるものとする。

(2) 建設資材

セメントはネパール国内に工場があり入手は可能であるが短期間に大量のセメントが必要となるため国内および国外の双方から調達する。鉄筋、鋼材等の建設資材は国外調達となる。

(3) コンクリート製造プラント

Fig. 12.2.1-2に示す通り、ダム直下流右岸の1号仮設備用地にコンクリート製造プラントを設ける。

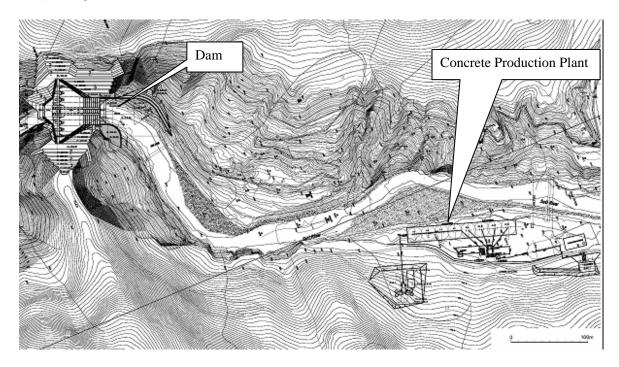


Fig. 12.2.1-2 Location of Concrete Production Plant

コンクリート製造能力は本地点と同規模程度のコンクリート重力式ダムの施工実績等を勘案し定めた。コンクリート用骨材は下流の2号仮設備用地にストックしたダムと発電所等の掘削ズリを適宜、1号仮設備用地に搬入し、骨材プラントで破砕し製造する。ここにはセメントサイロ、バッチャープラント、冷却装置等も隣接して設けられる。

コンクリート製造プラントの平面図は**Fig. 12.2.1-3**に示す通りである。また、プラントの構成設備は**Table 12.2.1-2**に示す通りとした。

Fig. 12.2.1-3 General Plan of Concrete Production Plant

Table 12.2.1-2 Specification of the Concrete Production Plant

Work	Machine	Specification	Number
Aggregates	Shaking Fandar	1,800 mm × 4,800 mm, 600 t/h	1
Production	Shaking Feeder	DHS-6, 30 kW, 12.1t	1
	Jaw Crasher	1,220 mm × 1,520 mm, 410 t/h	1
	Jaw Clasher	ASJ-60-48D, 150 kW, 78.0 t	1
	Cone crasher	300 mm × 1,520 mm, 193 t/h	1
	Cone crasher	1260 Course Type, 110 kW, 38 t	1
	Cone Crasher	90 mm × 1,300 mm, 87 t/h	2
	Colle Crasher	3 1/2 51 Fine Type, 260 kW, 50 t	2
	Rod Mill	2,700 mm × 4,500 mm, 87 t/h	1
	Rod Willi	KRM-915 CD, 480 kW, 75.0 t	1
		$B = 0.9 \text{ m} \times L = 320 \text{ m}, B = 0.8 \text{ m} \times L = 230 \text{ m}$	
	Belt Conveyer	$B = 0.6 \text{ m} \times L = 210 \text{ m}, B = 0.5 \text{ m} \times L = 410 \text{ m}$	1
		$B = 1.5 \text{ m} \times L = 482 \text{m}, B = 0.9 \text{ m} \times L = 320 \text{ m}$	
Cement Stock	Cement Silo	500 t class, Steel, 38 t	2
	Fri-ash Silo	200 t class, Steel, 10.0 t	2
Mixing	Batcher Plant	$2.25 \text{ m}^3 \times 2 \times 2 \text{ set} = 295 \text{ m}^3/\text{h}, 314.0 \text{ t}$	2
Cooling	Water mixing cooler	100 JRT	2
	Wind Cooler	120 JRT	2
	English Mag1:	250 JRT	1
	Freezing Machine	300 JRT for pipe cooling	1

12.2.2 工事計画および工事工程

NEAとの協議に基づき、本プロジェクトの完成までの実施工程を**Fig. 12.2.2-1**のように想定した。

12.2.1に示した基本条件および工事数量を基に施工計画および工事工程を立案した。工事期間は準備工事を含め 6 年と見積もった。本プロジェクトのクリティカルパスはダムの建設工事である。プロジェクトの工事工程を**Fig. 12.2.2-2**に示した。

_				20	ΩE	_		200	6	_		2007		_	2	000		_	20	000			201	٥			201	1			201	2			201	2			20	1.4	_		201	_	Rem	
					05			200								800			20				201								201						<u> </u>	a	20		<u> </u>		201			Harks
No.	Item	Period	Q1	Q2	Q3	Q4	Q1 (J2 (23 Q	4 Q	1 Q:	2 Q:	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4 (ען וג	Q2 (Q3 (J4 (Q1 C	22 C	33 C	24 G	ען וג	J2 (33 C	J4 (21 C	J2 (J3 (J4	Q1 (Q2	Q3	Q4	Q1	Q2 (33 C	44	
									D	F/R	—	J₽	/R																																	
- 1	Upgrading Feasibility Study	29 months						_		_	Y	_																																		
2	Revision of EIA and Approval Procedure	5 months										1_		ıl																																
																		1												\neg																_
3	Selection of Consultant for D/D	5 months										-																																		
_			t					-		\pm	-	-			+	+		+-				_			-		_		<u> </u>	_		_	_	_			_				_			_	-	
4	Investigation Works by NEA	9 months										_																																		
- 1	(exploratory adits and in-situ testing)	0 1110111110																																												
5	(exploratory adits and in-situ testing) Detailed Design	15 months	1				-	-	_	_		_		_				┺				-					-			-	-	-	-		_	-	-								-	
	Detailed Design	13 1110111113		-			-	-+		+	-	-		_				_	+	-		-+	-	-+	-+		-		-+	\rightarrow	-	-	-+	_	-	_			_		-			-+	-	—
	Finance Arrangement	9 months	-	-	-		-	-+	-	+	-	-	_					+	+	-		-	-+	-+	-	-	-		-+	-	\rightarrow	\rightarrow	-	-	-	-	-		_	-	-	-	-	-	-	
	(with Project Cost in Upgrading F/S)	9 1110111115					-		_	-		_	_	_				1	_	-		_				-				-	-+			_	_	_	_							-		
	(With Project Cost in Opgrading P/S)		-	-				\rightarrow	_	-	_	_	_	-	+-	_	+	-	_			-	-	-		_	\rightarrow	-		-	\rightarrow	-	-	-	_		-		_		_			-	-	
/	Tendering (2-stage tendering fro Civil Works)	6 months	1					_		_	_	_		_	\bot	4		F						_			_	_	_		\rightarrow	_	_	_								Compl	etion		—	
								_		_	_	_		_	_				1																						1	7				
	Construction Works	72 months													1			222	7						_								T	Ť							_	'				
	(including preparatory works)																																													

Fig. 12.2.2-1 Expected Schedule for Upper Seti Storage Hydroelectric Project

Remarks

2009 J F M A M J J A S O N D .

Quantity

44,180

1 Preparatory Works
1.1 Access Road
(1) Improvement of Existing Road
(2) Access to Dam Site (2 km) (3) Bridge No. 2 1.2 Temporary Power Supply 1.3 Camp and Office for NEA &Engineer

2.0 Temporary Works
Access to Work Fronts
2.1 Diversion Tunnel
(1) Tunnel Excavation

2 Civil Works

Unit

Fig. 12.2.2-2 Construction Schedule

このプロジェクトで建設される構造物は次の通りである。

仮排水路トンネル 内径 6.6 m (標準馬蹄形)、2条(約700 m、約900 m)

ダム コンクリート重力式

高さ:140 m、堤頂長:170 m、堤体積:890,000 m³

取水口 傾斜型表面取水式 立坑ゲート1門

導水路トンネル コンクリート巻立式 内径:7.8 m、延長:927 m

調圧水槽 地下式制水口型 内径:17 m 高さ:53 m 水圧管路 トンネル式 内径:7.8~3.1 m 延長:195 m

発電所 地下式 幅 22 m×高さ 42 m×長さ 90 m

搬入路トンネル上部半円下部矩形(径 7 m) × 940 mケーブルトンネル上部半円下部矩形(径 3 m) ×1015 m

放水路水槽 地下式 高さ 8.5m×幅 6.5 m×長さ 30 m

放水路トンネル コンクリート巻立式 内径 8.2 m、延長:365 m

放水口 幅 25 m×高さ 20 m

開閉所明り式

(1) 準備工事

準備工事には、既設道路の改良(2 km)、既設道路からダムへの取付道路(2 km)、セティを渡る No.2 橋梁、工事用電力供給設備、NEA とエンジニアのキャンプの建設工事である。これらは主要土木工事の請負負託前に別契約で工事に着手し完成しておく必要がある。

(2) ダム

1) 河流処理

河流処理工事は仮排水路トンネル下流側坑口までのアクセス道路が整備された後、着手する。延長が比較的長いので、2本のトンネルを同時に掘削する。なお、上流側はアクセス不能のため、坑口は下流側とした。

掘削方法は補助ベンチ付全断面工法によるものとした。使用予定機械は**Table 12.2.2-1** に示す通りである。なお、坑口に仮置きした掘削ズリは適宜、1号あるいは2号仮設備用地に搬出し、仮置きする。

Process	Machine	Num.
Drilling	3 Boom wheel Jumbo	2
Picking	Giant breaker	2
Loading	Wheel loader (with side dump of mounting 2.3 m ³)	2
Shotcrete	Wet type wheel shotcreting machine	1

Table 12.2.2-1 Excavating Machines for Diversion Tunnel Work

支保は地質条件に応じ、鋼製支保工(@1.2 m)、吹付コンクリート、ロックボルトによるものとした。掘削終了後、インバート部のコンクリート覆工を先行した後、スライドセントルによるコンクリート巻立とした。これらのコンクリートは1号仮設備用地に設置したプラントより供給されるものとする。

仮排水路トンネル完成後、2 号トンネルを経てダム上流側との重機の行き来が可能となるので、乾季の間に重機をダム上流側に搬入し、取水口やダムで発生する掘削ずりを河川に投入し、一次締切により転流する。上流仮締切設置予定区域をドライにした後、仮締切の工事を実施する。仮締切はコンクリート重力式とする。併せて、1 号仮排水路の吐出口の上流区域にもダム等の掘削ずりを河川に投入し、下流仮締切を設ける。

2) ダム掘削

ダム掘削工事はダム左右岸天端への進入路が完成した後、着手する。開始直後は仮排水路トンネルが工事中のため、ダム天端(EL.420 m)より上の区間について掘削を行う。地質調査によれば、左右岸とも地表堆積物は薄いため、当初は小ベンチでアバット頂部より切り下がる。転流前は直接、ズリを河川に落とせないのでダム天端に落石防護柵を設け、ここにズリを落とし、ダム地点より約2km下流右岸の仮設備用地の骨材ストックヤードに搬出する。その後、河流処理工事の進捗に鑑みながら、上下作業とならないよう安全を考慮しつつ、適宜、EL.420 m より下の区間の掘削を進める。

河流処理完了後、掘削ズリを河川に落としながらベンチカットにより本格的に左右岸同時に掘り下がる。適宜、掘削作業を停止し、掘削ズリを河床部より上記の仮設備用地に搬出する。左右岸の掘削が終了の後、河床部をダム基盤となる EL.280 m まで掘り下げる。

掘削機械の使用計画はTable 12.2.2-2に示す通りである。

Process	Machine	Specification	Num.
Drilling	Crawler drill with oil pressure 150kg class	8.4 t Bit diameter 65mm	6
	Leg-hammer	40 kg class	18
Bulling	Bulldozer with lipper 32t class	31.7 t	6
Loading	Backhoe mounting volume 1.6m ³	33.8 t	7
Carrying	10t Dump track	9.7 t	10

Table 12.2.2-2 Machines for Dam Excavation

なお、ダムコンクリートの着岸部はピックハンマーで整形することとした。

現在、左右岸および河床部の掘削(穿孔)にそれぞれ、13、12、15パーティーを投入する予定で、この場合の堤体掘削の月別計画作業量と所要工期は**Table 12.2.2-3**に示すようになる。

Table 12.2.2-3 Monthly Planned Excavation Volume and Required Construction Period

		Site		
<u>Item</u>	Left abutment	Right abutment	Riverbed	Total
Monthly planned excavation volume	57,159	30,912	35,241	_
Required months	11.3	11.3	5.8	18

3) 基礎処理

ダム掘削中に掘削盤がグラウトトンネルの坑口標高(EL.420 m、EL.345 m、EL.283 m)に達した時点で、ダム掘削と並行してグラウトトンネルの掘削を行う。ダム基礎掘削が終了した後、グラウトトンネル内で所定の箇所でボーリングを行い、グラウト注入を行う。

グラウトトンネル掘削およびグラウト注入に際しての使用予定機械は**Table 12.2.2-4、5**に示す通りである。

Table 12.2.2-4 Machines for Grouting Tunnel Excavation

Process	Machine	Num.
Drilling	Wheel type 2 boom jumbo	2
Picking	Giant breaker Oil pressure type 600~800kg class	2
Loading	Wheel loader with side dump type mounting 2.3 m ³	2
Shotcreting	Wet type wheel shotcreting machine	2

Table 12.2.2-5 Machines for Grouting Work

Process	Machine	Num.
Drilling	Rotary drilling machine	6
	Percussion drilling machine Crawler type 150kg class ϕ 65	1
Injection	Grout mixer (Vertical type, 2 tanks)	4
	Grout Pump	4
	Injection pressure control device	4

4) ダムコンクリートの打設

ダムコンクリートの量は約 890,000 m^3 である。ダムは狭隘な渓谷に位置するが、既設のコンクリート重力式ダムでのレイヤー工法が採用された事例のうち、堤頂長(L)とダム高(H)の比の小さいものを**Table 12.2.2-6**に示した。

Table 12.2.2-6 Examples of Small Ratio of Height to Length of RCC Gravity Dams

No.	Country	Name	Height (H)	Length (L)	L/H	Remarks
			(m)	(m)		
1	Alegeria	Koudiat Acerdoune	116	335	2.89	
2	Chile	Ralco	155	360	2.32	
3	China	Jiangya	131	327	2.50	
4	China	Mianhuantan	111	310	2.79	
5	Colombia	Miel I	188	345	1.84	
6	Japan	Chiya	98	259	2.64	
7	Japan	Kazunogawa	105	264	2.51	
8	Japan	Kubusugawa	95	253	2.66	
9	Japan	Sakaigawa	115	298	2.59	
10	Japan	Tomisato	111	250	2.25	
11	Mexico	Trigomil	100	250	2.50	
		Upper Seti (conventional)	140	170	1.21	for comparison

Source: Yaerbook 2005, Water Power & Dam Construction

Note: Study Team picked up smaller ratio of L/H of RCC gravity dams in the world listed. in the source.

アッパーセティダムのようなL/Hの小さなダムサイトでのレイヤー工法の採用は効率的な機械施工が困難と判断し、コンベンショナルな方法でコンクリートの打設を採用した。

コンクリートはダムより約 1 km下流右岸の1号仮設備用地に設置したコンクリート製造プラントより 4.5 m³アジテータカーでダムサイトまで運搬し、ここで前方ダンプ式トランスファーカーに積み込み、バケット受け台車上のバケットに投入された後、タワークレーンにて打設場所に運搬する。タワークレーンの設置位置と稼動範囲はFig. 12.2.2-3に示す通りである。なお、地形条件に鑑み、コンクリート施工範囲全体をカバーできると期待した両側走行式ケーブルクレーンは困難と判断した。

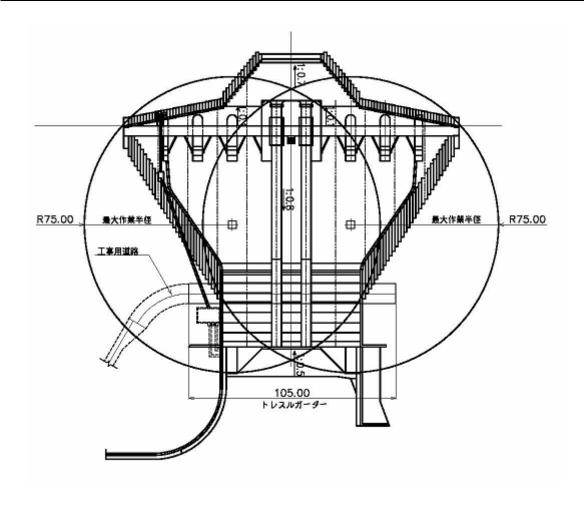


Fig. 12.2.2-3 Tower Crane Location and Workable Zone

ダムおよび水路発電所で $100 \, \text{万m}^3$ 程度のコンクリートを打設する必要があるが、ダムコンクリートの施工期間を $24 \, \text{ヶ月とするとコンクリート運搬に必要な工事用機械使用計画はTable }12.2.2-7$ に示すようになった。

Table 12.2.2-7 Machines for concreting work

Machine	Specification	Num.	Remarks
Agitator Track	4.5m ³	10	Plant to Dam
Transfer Car	4.5m ³ (Dump Forward type)	2	For dumping to bucket
Steel Stage	(for 2 set of rails) W: 8.0m × L: 90m	1	Set at EL.330m
Bucket stand Car	4.5m ³	2	
Tower Crane	with oil pressure fixed type (Pear height is 75m.) Hanging Load × Movable radius 13.5t × 75m	2	

また、ダムの施工継目は以下の通りとした。

a) 横継目

横継目間隔は標準部 $15 \,\mathrm{m}$ 、左右岸 $12 \,\mathrm{m}$ とし、**Fig. 12.2.2-4**に示す通り、 $10 \,\mathrm{箇所}$ の横継目を設けた。

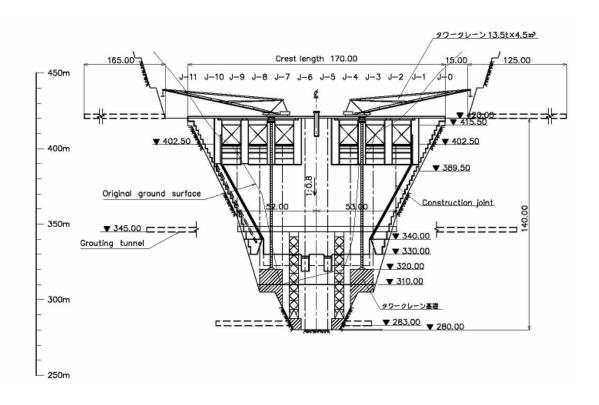


Fig. 12.2.2-4 Longitudinal Joints of Dam Concrete

b) 縦継目

過去の事例から、本地点では堤頂より $50 \, \mathrm{m}$ まで縦継目を設けないこととし、 Fig. 12.2.2-5に示す通り、基盤部よりEL. $370 \, \mathrm{m}$ まで縦継目を設けた。

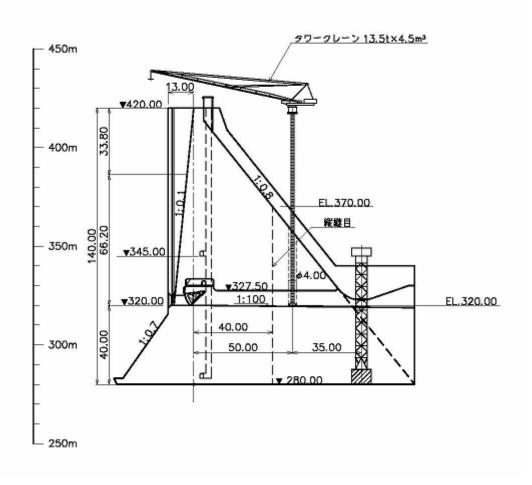


Fig. 12.2.2-5 Transverse Joints in Upstream-Downstream Section

c) 打設リフト高

 $1.5 \, \mathrm{m} \, e$ 基本とし、着岸部 $4 \, \mathrm{J} \, \mathrm{J} \, \mathrm{J} \, \mathrm{J} \, \mathrm{EL}.280 \sim 283 \, \mathrm{m}$) および長期放置 $\mathrm{J} \, \mathrm{J} \, \mathrm{J} \, \mathrm{J} \, \mathrm{J} \, \mathrm{EL}$ 1 $\mathrm{J} \, \mathrm{J} \, \mathrm{J} \, \mathrm{J} \, \mathrm{E} \, \mathrm{J} \, \mathrm{J} \, \mathrm{E} \, \mathrm{J} \, \mathrm{E} \, \mathrm{$

d) 打設間隔

ハーフリフト3日、フルリフトは養生および型枠移動を考慮して5日とした。また、隣接ブロック間のリフトの高低差は横継目間で12m (標準8リフト)以下とした。

なお、打設されたコンクリートはバイバック (4t級) で締固める。型枠部は手動バイブレータによるものとした。コンクリート打設面処理 (グリーンカット) は超高圧ジェット (200 kg/cm²) を使用し、人力で行い、コンクリートの冷却はダムサイトに設置するクーリングプラントより送られる冷却水を使用する。冷却水は循環方式である。

5) 排砂ゲート

2 門の排砂ゲートについては、コンクリートの打設リフトが据付高、EL.320 m に到達した段階で排砂管の据付を行い、リフトの進行に合わせて下流側の摺動式ラジアルゲートも順次、据付ける。据付け後、ラジアルゲートは開の状態とし、排砂管はダムの工事中、雨季に洪水が発生し、上流仮締切を越流した場合に水を吐出すのに供される。堤体上流面のリフトの進行に並行して上流側のスライドゲート関係の金物も順次、据付ける。

6) 洪水吐ゲート、ストップログゲート

コンクリートの打設リフトが EL.402 m を超えた後、リフトの進行に合わせて関係する金物の埋設を実施し、コンクリート打設終了後、洪水吐橋梁よりトラッククレーンによる吊り込みによりゲート据付を行う。

(3) 取水口

ダム右岸天端進入路が完成した後、引き続きダム天端標高 (EL.420 m) 沿いに取水口進入路を整備する。その後、取水口の EL.420 m より高い部分について明り掘削を行う。掘削方法はダム掘削に準じ、掘削ズリはダム下流右岸の仮設備用地の骨材ストックヤードに搬出する。仮排水路トンネルが完成した後、#2 トンネルより河床部に取水口まで進入路を整備し、引き続き、EL.420 m より低い部分について明り掘削を行う。

掘削終了後、取水口トンネル(導水路トンネル)の掘削を開始する。導水路掘削が終了した後、ゲート室立坑掘削を開始する。立坑掘削はレイズボーラーによりパイロット孔を掘った後、ベンチ掘削あるいはブレーカー掘削により1~2m程度、掘り起こし、ズリをパイロット孔から取水口に落としつつ、盤下げを行う。立坑の周囲は地質状況にもよるが、リング状の鋼製支保工、吹付コンクリート、ロックボルト等で坑壁を支持する。立坑掘削終了後、スライドフォームにより立坑のコンクリート巻立を実施する。

導水路のコンクリート巻立およびグラウト等の工事を終了した後、取水口本体コンクリートの打設を行い、並行してゲート、スクリーン等の金物を据付する。

(4) 導水路トンネル

導水路トンネルは、延長約927 m、仕上げ内径7.8 mの円形トンネルである。 トンネル 工事のために、発電所アクセストンネル坑口から330 m 地点で分岐した延長640 mの作業 横坑の建設が計画されている。作業抗断面は鉄管の搬入を考慮して、内径7.0 m とした。

トンネルは、3 ブームホイール式ドリルジャンボ、2.3 m³ サイドダンプ装置付きズリ積機、20 tonダンプトラックを用いて、全断面掘削工法で掘削する。支保工は、コンクリート吹付け、ロックボルト、鋼製支保工で行なう。トンネル掘削の月進速度は、作業横坑に対し、105 m/月、導水路トンネルに対し約 80 m/月と設定した。

コンクリート巻立て工は、長さ 10.5 m の円筒形走行式型枠を用いて実施する。 巻立て 工の月進速度は、コンクリート型枠1セットを用いて実施するため、約85 m/月と設定した。

導水路トンネル掘削工事は、発電所アクセストンネルインバート工事が完了後に開始され、約1年の期間を要する。コンクリート巻立て工は、トンネル掘削完了後に上流側から

開始する。鉄管水路に敷設する鉄管材は、導水路トンネル作業横坑を利用して立坑上端まで運搬する計画となっている。従い、作業横坑より下流側のコンクリート巻立て工事は鉄管水路工事完了後に開始される。

(5) 導水路調圧水槽

調圧水槽はアーチ部と水槽胴体部の2ステップで行う。アーチ部はEL.420 mに坑口を設けた延長440mの作業抗掘削完了後、分割発破方式により切り広げられる。水槽胴体部についてはパイロット坑および下方拡幅工法で掘削する。パイロット坑は導水路トンネルから上方へライズクライマーを用いて掘削される。掘削はストッパードリル2セットで実施し、長さ2mのガイドレールは各2発破後に延長していく。パイロット坑の月進速度は、約70 m/月と設定した。パイロット坑掘削後、拡幅掘削はドリル・発破工法によって、アーチ部より下方へ掘削する。掘削後のロック材は、パイロット坑を通じて導水路トンネルへ落下させ、導水路トンネル作業坑を通じてダンプトラックで坑外へ搬出する。拡幅掘削の月進速度は、約25 m/月とし、約2ヶ月間を要する。ライニング工事は鉄管水路立坑掘削完了後に開始し、約4ヶ月間を要する。

(6) 鉄管水路トンネル

鉄管水路トンネルは次の3つの部分から成る。

立坑部	延長 90 m、内径 5.9 m
下部水平部	延長 25 m、内径 5.9 m
下部分岐管部	延長 40×2、内径 4.0 m

下部水平トンネル、および下部分岐管トンネルは、導水路トンネルと同じ工法で掘削する。トンネル掘削の月進速度は、約105 m/月と設定した。

鉄管水路トンネルの掘削は、アクセストンネルから鉄管水路トンネルまでの作業横坑掘削完了後に開始される。立坑はパイロット坑および下方拡幅工法で掘削する。パイロット坑は下部水平トンネルから上方へライズクライマーを用いて掘削する。掘削はストッパードリル2セットで実施し、また長さ2mのガイドレールは各2発破後に延長していく。パイロット坑の月進速度は、約70m/月と設定した。パイロット坑掘削後、拡幅掘削はドリル・発破工法によって、上端から下方へ掘削する。掘削後のロック材は、パイロット坑を通じて下部水平トンネルへ落下させ、アクセストンネルを通じてダンプトラックで坑外へ搬出する。拡幅掘削の月進速度は、約60m/月と設定した。

鉄管周りの裏込めコンクリート打設は、ウインチで制御するコンクリートバケットを使用し、パイプ据付作業と平行して実施する。コンクリート注入作業は、長さ6mのパイプユニットを3個組立・溶接後に実施していく。

立坑掘削は下方水平トンネル掘削完了後から開始可能となる。鉄管路の据付並びに裏込めコンクリート工に必要な建設期間は、約8ヶ月と想定される。

(7) アクセストンネルおよび発電所作業横坑

アクセストンネルは、地下発電所の組み立て室へ繋がる延長約940m、内径7.0mの道路

トンネルである。一方、アクセストンネルと発電所アーチ部、発電所底部、下方鉄管路水平トンネル部、放水路水槽をそれぞれ結ぶ4つの作業横坑を設置する。

アクセストンネル並びに作業横坑は、導水路トンネルと同じ工法で掘削する。アクセストンネルのインバート部コンクリートは、トンネル掘削後に打設する。なお、この打設期間中、各作業横坑の掘削作業は中断となる。

アクセストンネル掘削工は、建設機材のサイトへの搬入並びにアクセストンネル入口部への仮設アクセス道路建設完了後に開始する。トンネル掘削の月進 105 m と想定し、アクセストンネル並びに発電所頂部への作業横坑の建設期間は約 10.5 ヶ月となる。

(8) 発電所

発電所は、幅 22 m、高さ 42 m、長さ 90 m の弾頭型である。空洞掘削は、分割発破方式によるアーチ部掘削と胴体掘削の 2 ステップで実施する。

アーチ部掘削は、アクセストンネルから分岐するアーチ部への作業横坑からアプローチし、導水路トンネルと同じ建設機械を用いて中央横坑先行およびサイド拡幅工法で実施する。PSアンカーの設置並びにグローリホールは、掘削工と平行して実施する。アーチ部掘削完了後、発電所基盤はベンチカット工法で底部標高まで盤下げを行なう。掘削作業では、周辺岩盤への損傷を最小限にし、平滑な側壁表面を得るために、分割発破方式を採用する。掘削ズリは 2.3 m³ホイールローダで 20 tonダンプトラックへ積込み、各作業横坑およびアクセストンネルを通じて坑外へ搬出する。工事期間中の湧水は、排水溝へ集水し釜場から水中ポンプを用いて坑外へ排水される。胴体部掘削の建設期間は、約 12 ヶ月とされる。

コンクリート工は、発電所底部からフロアー毎に実施する。コンクリートは、 4.5 m^3 アジテータトラックで空洞まで運搬し、 $100 \text{ m}^3/\text{h}$ コンクリートポンプ車で打設する。コンクリートエの建設期間は、約17 r月と想定される。

土木工事、機電設備工事と平行して、建築並びに設備工事を実施する。これらの工事は、約 16 ヶ月以内で完成する。

(9) ケーブルトンネル

ケーブルトンネルは 155 m の斜坑と 860 m の水平坑からなる。トンネル断面は内径 3 m の D 型トンネルである。斜坑は鉄管水路と同様にパイロット孔による掘削を行い、水平坑は作業横坑と同様全断面工法による。水平坑の掘削は開閉所ヤードより行う。一方、斜坑部はアクセストンネルより水平坑に向かってパイロット孔を設ける。掘削に必要な期間は水平坑、斜坑合わせて 9 ヶ月と想定される。掘削完了後にコンクリート巻き立て工を開始する。ライニングコンクリートは長さ 6 m のスティールフォームを使用し打設される。コンクリート巻き立て工に必要な期間は水平坑、斜坑合わせて 12 ヶ月と想定される。

(10) 放水路水槽およびドラフトゲート室

放水路水槽は、発電所空洞から下流側約70 m に位置する、幅15 m、高さ32.5 m、長さ40 m の空洞であり、2 本のドラフトトンネルで発電所と繋がる。

アクセストンネルから分岐した作業横坑によりアーチ部にアプローチし、発電所と同じ 工法で掘削する。掘削ズリはグローリーホールを用いて、放水トンネルへ落下させ放水口 より搬出される。

放水路サージタンク上流にドラフトゲート室が設けられる。ドラフトゲート室へは、アクセストンネルからアプローチし、全断面工法により掘削する。

コンクリートは、アクセストンネルを通じて 4.5 m^3 アジテータトラックで運搬し、 $100 \text{ m}^3/\text{h}$ コンクリートポンプ車で打設する。

放水路水槽の必要な建設期間は掘削工4ヶ月、コンクリート工5ヶ月と想定される。

(11) 放水路トンネルおよびドラフトトンネル

放水路は、延長 $2 \times 65 \text{ m}$ のドラフトトンネルと 365 m の放水路トンネルから成る。放水路トンネルは、仕上げ内径 8.2 m の円形圧力トンネルである。

トンネルは、導水路と同じ施工法で掘削する。放水路トンネルとドラフトトンネルの掘削月進速度は、約80 m/月と設定した。トンネル掘削後、コンクリート巻立てを導水路トンネルと同じ施工法で実施する。コンクリート巻立ての月進速度は、約85 m/月と設定した。掘削工事、およびコンクリート工事にかかる期間はそれぞれ8ヶ月と6.5ヶ月と想定される。

放水口の普通土明かり掘削は、21 tonリッパ付ブルドーザ、 1.4 m^3 ホイールローダ、 0.6 m^3 バックホーおよび 10 tonダンプトラックを用いて実施する。岩掘削は、ベンチ高 3 m未満の 小ベンチカット方式で実施する。明かりコンクリート打設は、 1.0 m^3 バケットを備える 25 tonトラッククレーン、 100 m^3 /h コンクリートポンプ車および 4.5 m^3 アジテータトラックを用いて実施する。

(12) 水車および発電機

1号機のドラフトチューブ据付けは、49ヶ月目に開始される。水車および発電機の据付けは、OHT クレーンを利用して 54ヶ月目から開始し、1号機の営業運転は、無水・有水試験後終了後 71ヶ月目となり、1ヶ月遅れで 2号機の営業運転となる。

(13) 220 kV 送電線

220 kV 送電線 2 回線、延長約 39 km の送電線の建設は、3 年目に開始され 5 年目後半に終了する。

12.3 工事費

工事費は計画地点の気象、地質、地域条件および工事規模を考慮し、下記の条件のもとに積 算した。

12.3.1 基本条件

プロジェクトの工事費はプロジェクト建設に必要な資金の算出および経済評価のために算出した。

- (1) 工事費の単価を構成する労務費、機械費、材料費の積算時点は 2006 年 12 月末である。 通貨の換算レートは次の通りである。
 - 積算時点 : 2006 年 12 月末
 - 換算レート : US\$ 1= NRs 70.71 = JPY 120.11 (日経、2006 年 12 月 29 日)
- (2) 管理費および技術経費は直接費の7%と見積もった。
- (3) 予備費は外貨・内貨について準備工事・土木工事の費用の10%を、水力機器・電気機器・送電線については5%を見積もった。
- (4) すべての費用は内貨、外貨に分けて算出し、USドルで示した。
- (5) 工事単価と工事費にはそれぞれの国で必要な税金を含み、輸入材料および機械に対する ネパールにおける税金、輸入関税等は含まれていない。
- (6) 工事費には物価上昇による費用および建設工事中の利子は含まれていない。

ここに見積もったプロジェクトの費用は将来プロジェクトの実施機関がプロジェクトを実施する場合に必要な資金と同じではない。プロジェクトの実施機関が支払うべき費用は、ここで見積もったプロジェクトの費用の他に、物価上昇による費用および建設中の利子を考慮しなければならない。その他ネパール国内で必要な税金および請負業者が外国から建設機械、資材を輸入する場合に必要な関税等が必要となる。

12.3.2 工事費の構成

工事費は以下の積算項目で構成されている。

準備工事費: 既設道路の改修、宿舎設備、事務所、取付道路、工事用電力設備

土木工事費: 河流処理 仮排水路トンネルおよび上・下流締切

ダム ダム本体、洪水吐

水路 取水口、導水路トンネル、調圧水槽、水圧管路、放水路

トンネル、放水口

発電所 発電所主機室、変圧器室、開閉所、付属トンネル

- 水力機器: ゲート、水圧鉄管等

- 電気機械設備: 水車、発電機、変圧器

- 送電線: 220 kV 2 回線、延長約 40 km の送電線

- 技術費: 詳細設計費、施工管理費

- 管理費: 工事に係わる計画、調整、管理運営費など

- 関税: 関税は計上していない

土地取得費、補償費: 発電所建設に必要な土地の取得費および補償費

- 数量に対する予備費: 準備工事および土木工事費に対し10%を、水力器機、電気

機器および送電線と補償費については5%を計上した

物価上昇に対する予備費: 考慮していない建設中の利子: 考慮していない

直接工事費は、土木工事費、水力機器、電気機器および送電線の建設費で構成され、プロジェクトの工事費は、直接工事費の合計、技術費、管理費、土地の取得費、補償費および予備費で構成される。

12.3.3 土木工事費

基本的に土木工事費の算出は日本の公共工事で標準として使われている歩掛および近隣諸国の同種工事における使用単価等を参考にした。単価を構成する労務費、機械費、材料費は以下に基づいた。

労務費はネパール国で公示されている労務単価に基づいた。労務費は**Table 12.3.3-1**に示す通りである。

Table 12.3.3-1 Labor Cost in Nepal (Tanabu District)

			FC	LC	LC	
Code	Particular	Unit	(US\$)	(US\$)	Per day	Remark
			, í	(034)	(Nrs)	
L1010	Foreman, foreign	m.d.	200.00			
L0010	Foreman A (Skilled)	m.d.		8.952	633.00	Tanahu
L0011	Foreman B (Semi-skilled)	m.d.		7.114	503.00	Tanahu
L0020	Operator A (Skilled)	m.d.		8.952	633.00	Tanahu
L0021	Operator B (Semi-skilled)	m.d.		7.114	503.00	Tanahu
L0030	Assistant operator	m.d.		4.893	346.00	Tanahu
L0040	Driver A (Heavey Truck)	m.d.		7.114	503.00	Tanahu
L0041	Driver B (Light Viecle)	m.d.		4.893	346.00	Tanahu
L0050	Mechanic A (Skilled)	m.d.		8.952	633.00	Tanahu
L0051	Mechanic B (Semi-skilled)	m.d.		7.114	503.00	Tanahu
L0060	Electrician A (Skilled)	m.d.		7.114	503.00	Tanahu
L0061	Electrician B (Semi-skilled)	m.d.		4.893	346.00	Tanahu
L0070	Welder A	m.d.		7.114	503.00	Tanahu
L0090	Carpenter A (Skilled)	m.d.		8.952	633.00	Tanahu
L0091	Carpenter B (Semi-skilled)	m.d.		7.114	503.00	Tanahu
L0100	Form worker	m.d.		4.893	346.00	Tanahu
L0120	Boring worker	m.d.		4.893	346.00	Tanahu
L0121	Grout worker	m.d.		4.893	346.00	Tanahu
L0130	Concrete worker	m.d.		4.893	346.00	Tanahu
L0140	Driller A	m.d.		7.114	503.00	Tanahu
L0150	Tunnel worker A	m.d.		7.114	503.00	Tanahu
L0151	Tunnel worker B	m.d.		4.893	346.00	Tanahu
L0200	Blasting worker	m.d.		7.114	503.00	Tanahu
L0210	Steel worker	m.d.		7.114	503.00	Tanahu
L0220	Rebar worker	m.d.		7.114	503.00	Tanahu
L0230	Grout worker A (Skilled)	m.d.		7.114	503.00	Tanahu
L0231	Grout worker B (Semi-skilled)	m.d.		4.893	346.00	Tanahu
L0290	Skilled labor	m.d.		4.893	346.00	Tanahu
L0300	Common labor	m.d.		3.536	250.00	Tanahu

ネパール国内で調達可能な資材の単価については、現地調査の際にヒアリング等を行った結果に基づいた。主要資材の単価は**Table 12.3.3-2**に示す通りである。

S.No Rate Description Unit Remarks (NRPs) (US\$) 2 Cement (50 Kg) Hetauda 340.00 4.81 bag 4.81 Udayapur 340.00 bag Indian, 43 Grade 350.00 4.95 bag Indian, 53 Grade 355.00 5.02 bag White cement (50 Kg) 910.00 12.87 bag 12 Wood Sa Iwood Cu. Ft 1,136.00 16.07 Sissau wood Cu. Ft 600.00 8.49 Fi rewood 300.00 100 kg 4.24 15 steel Reinforcement Bar dia 6-8mm 43.00 0.61 kg dia 10-22mm 42.00 0.59 kg dia 25-32mm kg 43.00 0.61 dia4.75- 7mm 45.00 0.64 kg GI sheet 26 gauge, heavy Bundle 5,000.00 70.71 26 gauge, medium Bundle 4,550.00 64.35 26 gauge, commercial Bundle 3,900.00 55.15 28 gauge, commercial Bundle 3,600.00 50.91

m

kg

kg

kg

2,350.00

33.23

4.16

20.80

2.75

Table 12.3.3-2 District Construction Material Rate in Tanahu District

Note:

17

- 1 Value added tax is not included in the above specified items.
- 2 The rates specified above are for the headquarter of Tanahun district, damauli and adjacent at For other places, transportation cost is to be added.
- 3 Rates for the items other than specified items will be as per the rate of any HMG/N authorised
- 4 For the excavation of road by using dozzar, the rate will be as per Heavy Equipment Division o

12.3.4 プロジェクトの工事費

Steel pipe (q150mm)

Dynamite 25/32 mm

Special Dynamite

ANFO

上記**12.3.1** および **12.3.2**で設定した条件で積算した建設工事費(Construction Cost) は準備工事、土木工事費、水力機器、電気機械設備および送電線の工事費の合計で構成される。

プロジェクトの工事費は建設工事費の合計、技術および管理費、土地取得費、補償費および 数量に対する予備費で構成される。

プロジェクトの工事費は次の通りである。

工事費:

工事費の内訳を項目ごとに、内貨、外貨別にTable 12.3.4-1に示した。

Table 12.3.4-1 Project Construction Cost

No.	T4 -	TT. 19		Un	it Price(US	S\$)		Amount (US\$)	
1.0.	Item	Unit	Quantity	Total	Foreign	Local	Total	Foreign	Local
1 F	Preparatory Works								
1.1 A	Access Road	LS	1				640,000	0	640,000
1.2 T	Геmporary Power Supply	LS	1				400,000		400,000
1, 7	Camp and Office for NEA &	1.0					1 200 000		1 200 000
	Engineer	LS	1				1,200,000	0	1,200,000
-	Γotal						2,240,000	0	2,240,000
	Civil Works						_,_ 10,000	3	_,_ 10,000
	Diversion Tunnel & Care of River								
	Tunnel Excavation	m3	80,400	42.6	31.7	10.9	3,425,040	2,548,680	876,360
	Funnel Supporting Work								· ·
	Shotcrete 5cm	m^2	30,700	14.0	8.0	6.0	429,800	245,600	184,200
	Shotcrete 10cm	m ²	9,000	27.4	17.0	10.4	246,600	153,000	93,600
	Rock Bolt	m	14,100	22.3	8.3	14.0	314,430	117,030	197,400
	Steel Support	ton	50	1323.6	24.1	1299.5	66,180	1,205	64,975
	Concrete Lining	m3	22,900	82.8	56.9	25.9	1,896,120	1,303,010	593,110
	Reinforce Bar	t	950	888.6	25.6	863.0	844,170	24,320	819,850
H	Formwork	m ²	1,910	12.5	0.1	12.4	23,875	191	23,684
	Others	LS	0				2,898,486	1,757,214	1,141,272
	Care of River	LS	1				4,464,000	2,678,000	1,786,000
	Sub-total						14,608,701	8,828,250	5,780,451
2.2	Dam & Spillway						,, ,-	, -,	,,
	Open Excavation (Rock)	m3	1,260,000	7.4	6.1	1.3	9,324,000	7,686,000	1,638,000
	Downstream Channel	m3	63,900	7.4	6.1	1.3	472,860	389,790	83,070
Ι	Dam Cocrete	m3	888,900	112.2	66.7	45.5	99,734,580	59,289,630	40,444,950
	Reinforce Bar	ton	2,900	888.6	25.6	863.0	2,576,940	74,240	2,502,700
	Grouting Tunnel	m	680	4954.0	3566.9	1387.1	3,368,720	2,425,492	943,228
	Curtain Grout	m	45,200	111.0	106.8	4.2	5,017,200	4,827,360	189,840
	Consolidation Grout	m	4,000	108.6	105.3	3.3	434,400	421,200	13,200
-	Protection Concrete	m3	19,800	74.0	48.1	25.9	1,465,200	952,380	512,820
	Form	m2	10,900	11.4	7.2	4.2	124,260	78,480	45,780
$\vdash \vdash \vdash$	Others		0				3,675,545	2,284,337	1,391,208
22 -	Sub-total						126,193,705	78,428,909	47,764,796
	Intake Open Excavation (Common)	m-2	20.200	2.0	1 7	1.0	04.070	40.010	25 170
	Open Excavation (Common) Open Excavation (Rock)	m3 m3	29,300 68,370	2.9 7.5	1.7 4.8	2.7	84,970 512,775	49,810 328,176	35,160 184,599
	Tunnel Excavation	m3	5,730	42.6	31.7	10.9	244,098	181,641	62,457
	Funnel Supporting Work	шэ	3,730	42.0	31./	10.9	244,070	101,041	02,437
	Shotcrete 10cm	m2	1,770	27.2	16.9	10.3	48,144	29,913	18,231
	Rock Bolt	m	3,680	22.3	8.3	14.0	82,064	30,544	51,520
	Steel Support	ton	35	1323.6	24.1	1299.5	46,326	844	45,483
S	Shaft Excavation	m3	3,970	29.7	21.7	8.0	117,909	86,149	31,760
	Shaft Supporting Work								
	Shotcrete 5cm	m2	1,020	14.0	8.0	6.0	14,280	8,160	6,120
	Shotcrete 10cm	m2	690	27.2	16.9	10.3	18,768	11,661	7,107
	Rock Bolt	m	640	22.3	8.3	14.0	14,272	5,312	8,960
	Steel Support	ton	12	1323.6	24.1	1299.5	15,883	289	15,594
S	Shotcrete for Slope Protection	m2	5,500	27.2	16.9	10.3	149,600	92,950	56,650
S	Structure Concrete	m3	3,080	74.1	47.9	26.2	228,228	147,532	80,696
	Shaft Lining Concrete	m3	1,100	82.8	56.9	25.9	91,080	62,590	28,490
	Funnel Lining Concrete	m3	2,370	82.8	56.9	25.9	196,236	134,853	61,383
	Wall Concrete	m3	2,400	74.0	48.1	25.9	177,600	115,440	62,160
	Reinforce Bar	t	650	888.6	25.6	863.0	577,590	16,640	560,950
Г	Tunnel Formwork	m ²	2,690	18.2	12.5	5.7	48,958	33,625	15,333
S	Shaft Formwork	m^2	2,630	11.5	7.3	4.2	30,245	19,199	11,046
S	Structure Formwork	m2	2,230	11.5	7.3	4.2	25,645	16,279	9,366
	Others	LS	1				413,516	192,002	221,514
	Sub-total						3,138,187	1,563,609	1,574,578

N	Ta.	TT. 24	O 1'1	Un	it Price(US	S\$)		Amount (US\$)	
No.	Item	Unit	Quantity	Total	Foreign	Local	Total	Foreign	Local
2.4	Headrace Tunnel	m ³	CE COO	42.6	21.7	10.0	2 704 560	2.070.520	715.040
	Excavation, tunnel Tunnel supporting work	m'	65,600	42.6	31.7	10.9	2,794,560	2,079,520	715,040
	Shotcrete 5cm	m ²	13,900	14.0	8.0	6.0	194,600	111,200	83,400
	Shotcrete 10cm	m ²	7,700	27.4	17.0	10.4	210,980	130,900	80,080
	Rock Bolt	m	23,400	23.7	9.4	14.3	554,580	219,960	334,620
	Steel Support	ton	9	1341.3	23.8	1317.5	12,072	214	11,858
	Concrete, lining	m ³	15,800 480	82.8	56.9 25.6	25.9 863.0	1,308,240	899,020	409,220
	Re-bar Formwork	ton m ²	8,700	888.6 12.5	0.1	12.4	426,528 108,750	12,288 870	414,240 107.880
	Work adit	m m	640	4413.1	3046.7	1366.4	2,824,384	1,949,888	874,496
	Others	7%	2.0				590,429	378,270	212,158
2.5	Sub-total						9,025,122	5,782,130	3,242,992
2.5	Headrace Surge Tank Excavation, shaft	m ³	16,200	29.7	21.7	8.0	481,140	351,540	129,600
	Tunnel supporting work	m	10,200	29.1	21./	8.0	401,140	331,340	129,000
	Shotcrete 10cm	m ²	3,400	27.4	17.0	10.4	93,160	57,800	35,360
	Rock Bolt, 25mm dia., 5m length	m	4,020	20.5	8.7	11.8	82,410	34,974	47,436
	Concrete, Structure	m ³	3,700	74.1	47.9	26.2	274,170	177,230	96,940
	Re-bar	ton 2	185	888.6	25.6	863.0	164,391	4,736	159,655
	Formwork Work Adit	m ²	3,100 425	11.5 2506.8	7.3 1600.6	906.2	35,650 1,065,390	22,630 680,255	13,020 385,135
	Others	7%	423	2300.8	1000.0	700.2	153,742	93,042	60,700
	Sub-total Sub-total						2,350,053	1,422,207	927,846
2.6	Penstock	3					1.00.10	121 05-	
	Excavation, tunnel	m ³	3,500	46.6	34.8	11.8	163,100	121,800	41,300
	Excavation, inclined shaft Tunnel supporting work	m ³	4,800	118.3	93.7	24.6	567,840	449,760	118,080
	Shotcrete 10cm	m ²	3,800	27.4	17.0	10.4	104,120	64,600	39,520
	Rockbolt	m	3,200	23.7	9.4	14.3	75,840	30,080	45,760
	Concrete, backfill	m ³	3,500	74.1	47.9	26.2	259,350	167,650	91,700
	Others	7%					81,918	58,372	23,545
2.7	Sub-total Powerhouse						1,252,168	892,262	359,905
	Excavation, Cavern	m ³	72,400	32.6	23.6	9.0	2,360,240	1,708,640	651,600
	Cavern supporting work								•
	Shotcrete 32cm	m ²	3,300	111.3	84.6	26.7	367,290	279,180	88,110
	Shotcrete 24cm	m ²	3,400	78.2	59.5	18.7	265,880	202,300	63,580
	Shotcrete 16cm	m ²	2,900	55.6	42.3	13.3	161,240	122,670	38,570
	PS Anchor, 100t, 20m PS Anchor, 60t, 15m	m m	35,800 1,800	146.5 93.4	139.1 88.1	7.4 5.3	5,244,700 168,120	4,979,780 158,580	264,920 9,540
	PS Anchor, 60t, 10m	m	1,400	97.9	92.4	5.5	137,060	129,360	7,700
	Rockbolt, 25mm dia., 5m length	m	10,500	20.5	8.7	11.8	215,250	91,350	123,900
	Concrete, structure	m ³	20,400	74.1	47.9	26.2	1,511,640	977,160	534,480
	Re-bar	ton m ²	1,370 18,000	888.6 11.5	25.6 7.3	863.0	1,217,382 207,000	35,072 131,400	1,182,310 75,600
	Formwork Building and utility works	LS	18,000	11.3	1.3	4.2	2,756,474	2,049,602	706,872
	Others	7%					1,022,859	760,556.6	262,302.7
	Sub-total						15,635,135	11,625,651	4,009,485
2.8	Access Tunnel	m ³	0.000	2.9	1 7	1.2	29.710	16 920	11 000
	Excavation, common Excavation, Rock	m ³	9,900 5,800	7.5	1.7 4.8	2.7	28,710 43,500	16,830 27,840	11,880 15,660
	Excavation, Rock Excavation, Tunnel	m ³	74,800	50.3	37.6	12.7	3,762,440	2,812,480	949,960
	Slope protection work	111	77,000	50.5	37.0	14.1	5,702,770	2,012,700	777,700
	Shorcrete 10cm	m ²	900	27.4	17.0	10.4	24,660	15,300	9,360
	Concrete, wall	m ³	700	74.1	47.9	26.2	51,870	33,530	18,340
	Re-bar	ton	35	888.6	25.6	863.0	31,101	896	30,205
	Formwork	m ²	900	11.5	7.3	4.2	10,350	6,570	3,780
	Tunnel supporting work Shotcrete, 10cm	m ²	28 700	27.4	17.0	10.4	786,380	487,900	298,480
	Rockbolt, 25mm dia., 3m length	m m	28,700 35,300	23.7	17.0 9.4	10.4	836,610	331,820	504,790
	Steel Support	ton	20	1341.6	24.1	1317.5	26,832	482	26,350
	Concrete, lining	m ³	5,300	82.8	56.9	25.9	438,840	301,570	137,270
	Re-bar	ton	160	888.6	25.6	863.0	142,176	4,096	138,080
	Formwork	m ²	1,050	11.5	7.3	4.2	12,075	7,665	4,410
	Others Sub-total	7%					433,688 6,629,232	283,289 4,330,268	150,400 2,298,965
	อนม-เบเลเ		1				0,049,434	→, ,>,>∪,∠08	4,470,903

N		77.74	0	Un	nit Price(US	S\$)		Amount (US\$)	
No.	Item	Unit	Quantity	Total	Foreign	Local	Total	Foreign	Local
2.9	Cable Shaft								
	Excavation, Tunnel	m^3	10,900	69.6	17.1	52.5	758,640	186,390	572,250
	Excavation, inclined shaft	m^3	1,900	156.5	138.9	17.6	297,350	263,910	33,440
	Tunnel supporting work								
	Shorcrete 10cm	m^2	10,300	14.1	8.0	6.1	145,230	82,400	62,830
	Rockbolt, 25mm dia., 2m length	m	8,500	23.7	9.4	14.3	201,450	79,900	121,550
	Steel Support	ton	10	1323.6	24.1	1299.5	13,236	241	12,995
	Concrete lining	m^3	3,600	82.8	56.9	25.9	298,080	204,840	93,240
	Re-bar	ton	100	888.6	25.6	863.0	88,860	2,560	86,300
	Formwork	m ²	8,500	11.5	7.3	4.2	97,750	62,050	35,700
	Others	7%					133,042	61,760	71,281
	Sub-total						2,033,638	944,051	1,089,586
2.10	Switchyard	2							
	Excavation, common	m ³	36,600	2.9	1.7	1.2	106,140	62,220	43,920
	Excavation, rock	m ³	37,600	7.5	4.8	2.7	282,000	180,480	101,520
	Slope protection work								
	Shorcrete 10cm	m ²	1,400	27.4	17.0	10.4	38,360	23,800	14,560
	Concrete, wall	m^3	800	74.1	47.9	26.2	59,280	38,320	20,960
	Re-bar	ton	40	888.6	25.6	863.0	35,544	1,024	34,520
	Formwork	m ²	1,100	11.5	7.3	4.2	12,650	8,030	4,620
	Others	7%					37,378	21,971	15,407
	Sub-total						571,352	335,845	235,507
2.11	Tailrace Surge Chamber	2					-		
	Excavation, shaft	m ³	24,900	29.7	21.7	8.0	739,530	540,330	199,200
	Tunnel supporting work								
	Shotcrete 10cm	m ²	4,100	27.4	17.0	10.4	112,340	69,700	42,640
	Rock Bolt, 25mm dia., 5m length	m	4,900	20.5	8.7	11.8	100,450	42,630	57,820
	PS Anchor, 60t, 10m	m	9,900	97.9	92.4	5.5	969,210	914,760	54,450
	Concrete, Structure	m ³	5,100	82.8	56.9	25.9	422,280	290,190	132,090
	Re-bar	ton	260	888.6	25.6	863.0	231,036	6,656	224,380
	Formwork	m ²	4,500	11.5	7.3	4.2	51,750	32,850	18,900
	Work Adit	m 70/	180	2134.9	1424.9	710.0	384,282	256,482	127,800
	Others	7%					210,761	150,752	60,010
2.12	Sub-total Tailrace Tunnel						3,221,639	2,304,350	917,290
2.12	Excavation, tunnel	m ³	40,000	42.5	31.7	10.8	1,700,000	1,268,000	432,000
	Tunnel supporting work	111	40,000	72.3	31.7	10.0	1,700,000	1,200,000	432,000
	Shotcrete 5cm	m ²	1,700	14.1	8.0	6.1	23,970	13,600	10,370
		m ²		27.4	17.0	10.4	287,700	178,500	10,370
	Shotcrete 10cm Rock Bolt	m	10,500 16,200	22.3			361,260	-	226,800
	Steel Support	ton	20	1341.6	8.3 24.1	14.0 1317.5	26,832	134,460 482	26,350
\vdash	Concrete, lining	m ³	11,000	82.8	56.9	25.9	910,800	625,900	284,900
	Re-bar	ton	400	888.6	25.6	863.0	355,440	10,240	345,200
	Formwork	m ²	12,500	11.5	7.3	4.2	143,750	91,250	52,500
	Others	7%	12,500	11.3	1.3	7.2	266,683	162,570	104,112
	Sub-total	, ,,,					4,076,435	2,485,002	1,591,432
2.13	Outlet	1					1,070,433	2,100,002	1,071,734
	Excavation, common	m^3	5,900	2.9	1.7	1.2	17,110	10,030	7,080
	Excavation, rock	m ³	9,200	7.5	4.8	2.7	69,000	44,160	24,840
	Concrete, Structure	m ³	2,900	74.1	47.9	26.2	214,890	138,910	75,980
	Re-bar	ton	2,900	888.6	25.6	863.0	186,606	5,376	181,230
		m ²		11.5	7.3	4.2	24,150	15,330	8,820
	Formwork Others	15%	2,100	11.3	1.3	4.2	76,763	32,071	44,693
	Sub-total	13/0					588,519	245,877	342,643
2.14	Miscellaneous Works	1	1%				1,893,239	1,191,884	701,355
	Slope Protection at Reservoir	1	1,70						
2.15	Critical Area						2,100,000	0	2,100,000
	Total						193,317,125	120,380,296	72,936,829

	Ţ.	TT 1.	0	Ur	it Price(US	S\$)		Amount (US\$)	
No.	Item	Unit	Quantity	Total	Foreign	Local	Total	Foreign	Local
3	Hydromechanical Equipment								
3.1	Spillway Gate	t	444	6150	5500	650	2,730,600	2,442,000	288,600
3.2	Sediment Flushing Facilities								
	High-pressure Slide Gate	t	200	6700	6000	700	1,340,000	1,200,000	140,000
	High-pressure Radial Gate	t	241	6700	6000	700	1,614,700	1,446,000	168,700
	Flushing Tube	t	396	5500	4500	1000	2,178,000	1,782,000	396,000
3.3	Intake Gate	t	141	6260	5600	660	882,660	789,600	93,060
3.4	Intake Screen	t	78	5500	4500	1000	429,000	351,000	78,000
3.5	Maintenance Flow Outlet Valve	t	23	8050	7200	850	185,150	165,600	19,550
3.6	Steel Penstock	t	930	5500	4500	1000	5,115,000	4,185,000	930,000
3.7	Draft Gate	t	224	8050	7200	850	1,803,200	1,612,800	190,400
3.8	Tailrace Gate	t	56	6350	5700	650	352,425	316,350	36,075
	Total						16,630,735	14,290,350	2,340,385
4	Elecromechanical Equipment								
4.1	Overhed Traveling Crane	LS	1				1,520,000	1,450,000	70,000
4.2	Turbine & Generator	LS	1				36,210,000	34,490,000	1,720,000
4.3	Main Transformer (incl. Switchyard)	LS	1				6,450,000	6,140,000	310,000
4.4	River Maintenance Generation Facility	LS	1				3,000,000	2,700,000	300,000
	Total						47,180,000	44,780,000	2,400,000
5	Tansmission line								
		LS	1				9,000,000	7,650,000	1,350,000
	Construction Cost								
	Total of Direct Cost (1 to 5)						268,367,860	187,100,646	81,267,214
6	Environmental Cost								
6.1	Cost for Physical Environment	LS	1				2,386,000	0	2,386,000
6.2	Cost for Biological Environment	LS	1				7,430,000	900,000	6,530,000
6.3	Cost for Resettlement Plan	LS	1				15,943,000	0	15,943,000
6.4	Social Action Program	LS	1				3,339,000	0	3,339,000
	Total						29,098,000	900,000	28,198,000
7	Adiministration and Engineering Fee								
							18,785,750	13,097,045	5,688,705
8	Contingency								
							24,651,149	15,419,047	9,232,102
	Total of Indirect Cost (6 to 8)								
							72,534,899	29,416,092	43,118,807
9	Project Construction Cost (1 to 9)						340,902,759	216,516,738	124,386,022

12.3.5 年度別所要資金

プロジェクトの年度別所要資金をTable 12.3.5-1に示した。

Table 12.3.5-1 Disbursement Schedule of Project Construction Cost

No.	Item	1st Year	2nd Year	3rd Year	4th Year	5th Year	6th Year	Total
1	Preparatory Works	2,240	0	0	0	0	0	2,240
	Foreign	0	0	0	0	0	0	0
	Local	2,240	0	0	0	0	0	2,240
2	Civil Works	12,167	28,488	24,770	65,045	60,667	2,180	193,317
	Foreign	7,540	19,483	16,287	39,351	37,025	694	120,380
	Local	4,627	9,005	8,483	25,694	23,642	1,486	72,937
3	Hydromechanical Equipment	0	0	3,160	3,326	6,676	3,469	16,631
	Foreign	0	0	2,715	2,858	5,716	3,001	14,290
	Local	0	0	445	468	960	468	2,341
4	Elecromechanical Equipment	0	0	8,836	9,436	24,190	4,718	47,180
	Foreign	0	0	8,416	8,956	22,930	4,478	44,780
	Local	0	0	420	480	1,260	240	2,400
5	Tansmission line	0	0	1,800	1,800	4,500	900	9,000
	Foreign	0	0	1,530	1,530	3,825	765	7,650
	Local	0	0	270	270	675	135	1,350
6	Environmental Cost	25,425	0	0	0	1,298	2,375	29,098
	Foreign	0	0	0	0	0	900	900
	Local	25,425	0	0	0	1,298	1,475	28,198
7	Adiministration and Engineering Fee	1,009	1,994	2,699	5,573	6,723	789	18,787
	Foreign	528	1,364	2,026	3,689	4,865	626	13,098
	Local	481	630	673	1,884	1,858	163	5,689
8	Contingency	2,712	2,849	3,167	7,232	7,900	790	24,650
	Foreign	754	1,948	2,262	4,602	5,326	527	18,800
	Local	1,958	901	905	2,630	2,574	263	10,947
9	Total	43,553	33,331	44,432	92,412	111,954	15,221	340,903
	Foreign	8,822	22,795	33,236	60,986	79,687	10,991	216,517
	Local	34,731	10,536	11,196	31,426	32,267	4,230	124,386

第1年度および第2年度の所要資金の中には請負業者に支払う前渡金が含まれている。前渡金の額は、請負金額の10%と想定した。第6年度の所要資金は、請負業者への保留金の解除(5%)も含む。

第 13 章 経済·財務評価

目 次

第 13 章	経済·則	才務評価	13-1
13.1	経済評	価	13-1
13.	.1.1	評価手法	13-1
13.	.1.2	本計画の経済費用	13-2
13.	.1.3	本計画の経済便益	13-5
13.	.1.4	経済評価	13-8
13.	.1.5	感度分析	13-10
13.2	財務評	価	13-10
13.	.2.1	評価手法	13-10
13.	.2.2	本計画の財務費用および便益	13-10
13.	.2.3	財務評価	13-13
13.	.2.4	感度分析	13-13
13.3	キャッ	シュフロー分析	13-17
13.	.3.1	前提条件	13-17
13.	.3.2	キャッシュフロー分析の評価	13-17

LIST OF TABLES

Table 13.1.2-1	Initial Investment Cost (at Economic Price)	13-4
Table 13.1.2-2	Annual Investment Amount for Major Items	13-3
Table 13.1.2-3	O&M Costs at Economic Price	13-3
Table 13.1.3-1	Alternative Thermal Power Plant for Studying Economic Justification	13-7
Table 13.1.3-2	Characteristics of Alternative Thermal Plant	13-5
Table 13.1.3-3	Construction Cost of Alternative Thermal Plant	13-6
Table 13.1.3-4	O&M Cost for Alternative Thermal Plant	13-6
Table 13.1.4-1	Economic Evaluation	13-9
Table 13.1.4-2	Result of Economic Evaluation	13-8
Table 13.1.5-1	Cases of Sensitivity Analysis	13-10
Table 13.2.2-1	Financial Investment	13-11
Table 13.2.2-2	Financial O&M Cost	13-11
Table 13.2.2-3	Assumption for Electricity Tariff	13-12
Table 13.2.2-4	Annual Sales Income	13-12
Table 13.2.3-1	Financial Evaluation	13-15
Table 13.2.4-1	Financial Evaluation on Investment (Distribution End)	13-16
Table 13.3.2-1	Financial Analysis (1): Summary	13-19
Table 13.3.2-2	Financial Analysis (2): Disbursement and Loan Amount	13-20
Table 13.3.2-3	Financial Analysis (3): Income Statement	13-21
Table 13.3.2-4	Results of Cash Flow Analysis	13-18

第13章 経済·財務評価

13.1 経済評価

13.1.1 評価手法

(1) 経済評価手法

経済評価はある計画を実施することに伴う経済的インパクトを国家経済の観点から計測することを目的としている。本計画では通常使用されているキャッシュ割引フロー法により経済価格によって表された費用と便益の比較を行なう。

本手法による基本的なアプローチは以下の通りである。まずキャッシュアウトフロー(費用) およびインフロー(便益) をプロジェクト期間全体にわたり年別に展開する。次に各年度に支出される費用・便益は、割引率を使用してプロジェクト初年度における現在価値に換算する。その上で、プロジェクト期間における現在価値で表された費用および便益それぞれの合計額を比較する。

評価指標は純現在価値(NPV)、便益費用比率(B/C)、および経済的内部収益率(EIRR)とする。EIRR は費用および便益の二つのキャッシュフローの現在価値合計額が同額になるように設定された割引率であり、プロジェクトから期待される収益率を表わす。EIRR は以下の式により表される。

$$\sum_{t=0}^{n} C_{t} / (1+r)^{t} - \sum_{t=0}^{n} B_{t} / (1+r)^{t} = 0$$

ここで、

 C_t = 費用

 B_t = 便益

t = 年

n = プロジェクト期間(年)

r = 割引率 (= EIRR)

(2) 前提条件

NEA と協議の上、ネパールにおける他の電力案件における数値を参考にし、本計画の評価にあたって、以下の前提条件を設定した。

- 資本の機会費用

資本の機会費用とは投資を行なう際の基準となる利子率である。ここではネパールの他プロジェクトの例を参考にして 10%とする。

- 割引率

現在価値を求めるための割引率は10%とする。これは世界銀行でも採用されている割引率である。なお、感度分析としては8%および12%を使用する。

- 変換係数

標準変換係数は、世界銀行で採用されている 0.9 を使用する。これは、市場価格で積算された建設費等から経済価格を算出するための係数で、内貨分に適用する。

- 耐用年数

各設備の耐用年数はコンサルタントの経験から標準的な値として以下とする。

- a. 土木工事 50年
- b. 水力機器 30年
- c. 送電線 30年

- 計算期間

計算期間については 56 年とする。これは土木設備の耐用年数である 50 年に建設期間の 6 年を加えたものである。また、運転開始は 12 月末とした。

- 評価地点

評価地点についてはアッパーセティ計画の送電線が接続される変電所入り口とする。 代替火力発電設備も系統に接続される場所に設置するものと仮定する。

- 積算時点

2006年12月時点の価格を使用して積算する。

- エスカレーション
- 価格上昇は考慮せず、コンスタント・プライスを使用する。

- 税金の取り扱い

VATを含む税金および関税については移転項目として除外する。

13.1.2 本計画の経済費用

本計画の経済費用は第 12 章で市場価格により積算されているプロジェクト費用から計算される。建設費に加え運転維持費が費用ストリームに計上される。経済価格の算出方法は以下の通りである。

外貨分

- 税金(輸入税、付加価値税)および補助金等の移転項目の除外。

内貨分

- 税金(付加価値税)および補助金等の移転項目の除外。
- 市場価格に標準変換係数を適用

(1) 初期投資額(経済価格)

各設備ごとの初期投資額をTable 13.1.2-1 に示す。主な項目ごとの年別投資額は Table 13.1.2-2の通りである。この中には技術管理費および予備費を含む。

Table 13.1.2-2 Annual Investment Amount for Major Items

(単位:1000US\$)

				\	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	土木設備	水力・電気機器	送電線	環境対策	合計額
1年目	16,053	0	0	24,027	40,079
2年目	32,277	0	0	0	32,277
3年目	27,988	13,339	1,986	0	43,313
4年目	73,096	14,187	1,986	0	89,269
5年目	68,214	34,321	4,864	1,227	108,727
6年目	2,377	9,090	993	2,339	14,799
合 計	220,006	70,937	9,929	27,592	328,464

(2) 運転維持費(経済価格)

運転維持費は各工事の建設費に一定の率をかけて年間所要金額を算出する (Table 13.1.2-3参照)。この率はコンサルタントの類似プロジェクトにおける経験によるものである。

Table 13.1.2-3 O&M Costs at Economic Price

(単位:1000US\$)

項目	建設費	経費率	金額
土木工事	220,006	0.5%	1,100.0
電気・水力機器	70,937	1.5%	1064.1
送電線工事	9,929	1.5%	148.9
合 計			2,313.0

なお、評価対象期間内に耐用年数の到来する機器・送電線については、初期投資額を参考にして、その設備更新費を別途見込む。

Table 13.1.2-1 Initial Investment Cost (at Economic Price)

(unit: US\$1000) Year 0 2 3 4 5 Total 1 1. Preparatory Works FC 0 0 0 0 0 0 LC 2,016 0 2,016 0 0 0 0 16,287 Civil Works FC 7,540 19,483 39,351 37,025 694 120,380 LC 4,164 8,105 7,635 23,125 21,278 1,337 65,643 FC Eng. and Administration 528 1,364 1,140 2,755 2,592 49 8,427 LC 433 1,619 1,489 94 4,736 567 534 Contingency FC 754 1,948 1,629 3,935 3,703 69 12,038 2,128 LC 618 810 2,312 134 6,766 763 Total FC 8,822 22,795 19,056 46,041 43,319 812 140,845 7,231 LC 9.482 8.933 27.056 24.895 1,565 79.161 16,053 32,277 27,988 73,096 68,214 2,377 220,006 Total 2. Hydromechanical Equipment FC 0 2,715 2,858 5,716 3,001 14,290 LC 0 0 401 421 864 421 2,107 FC 0 200 400 210 Eng. and Administration 0 190 1.000 LC 0 0 60 29 147 28 29 Contingency FC 0 0 136 143 286 150 715 LC 0 0 20 43 21 105 3,041 3,201 Total FC 0 0 6,402 3,361 16,005 0 0 LC 449 472 968 472 2,360 0 0 3,673 Total 3,489 7,370 3,833 18,365 22930 4478 44,780 3. Electromechanical Equipment FC 0 0 8416 8956 LC 0 0 378 432 1134 216 2,160 Eng. and Administration FC 0 0 589 627 1,605 313 3,135 0 LC 0 26 30 79 15 151 1,147 FC 0 0 448 224 Contingency 421 2.239 0 LC 0 19 57 11 108 FC 0 0 10,031 50,154 Total 9,426 25,682 5,015 LC 0 0 423 484 1,270 242 2,419 Total 0 0 9,849 10,515 26,952 5,257 52,573 FC 7,650 4. Transmission Line 0 0 1530 1530 3825 765 LC 0 0 607.5 121.5 243 243 1.215 Eng. and Administration FC 0 0 107 107 268 54 536 LC 0 0 85 17 17 43 Contingency FC 0 0 77 77 191 38 383 0 0 LC 12 12 30 61 Total 0 0 1,714 1,714 857 FC 4,284 8,568 LC 0 0 272 272 680 136 1,361 Total 0 0 1,986 1,986 4,964 993 9,929 5. Environmental Cost FC 0 0 0 0 900 900 LC 22,883 0 0 0 1,168 1,328 25,378 FC 0 0 0 Eng. and Administration 0 LC 0 0 0 0 0 0 0 0 0 0 Contingency FC 0 0 45 45 0 0 0 58 1,269 LC 1,144 66 Total FC 0 0 0 0 945 945 LC 24,027 0 0 0 1,227 1,394 26,647 1,227 0 0 0 2,339 27,592 Total 24,027 10,990 6. Total Construction Cost FC 8,822 22,795 33,236 60,986 79,686 216,515 LC 9,482 10,077 28,284 29,040 3,808 111,948 31,258 89,269 40,079 108,727 14,799 Total 32,277 43,313 328,464

Conversion factor for LC:

0.9

13.1.3 本計画の経済便益

本計画の経済便益として、次に示す二つの便益を想定した。

- 代替火力発電設備費用
- 二次電力量の長期限界費用

代替火力発電設備費用については、with project と without project の観点から計測される経済的便益である。アッパーセティ水力計画が実現されない場合、その代わりとして建設されるであろう本計画と同等のサービスを提供し得る代替火力発電設備の経済費用を、本計画実施により支出を免れる費用として本計画の経済的便益と考えることができる。これに加えて、雨期において発生する二次電力量についても経済的便益として考慮した。

(1) 代替火力発電設備

本計画の代替火力計画はガスタービン発電設備とする。その理由は以下の通りである。 アッパーセティ計画はピーク対応の発電計画である。従って、水力発電設備と同様に負荷 変動に容易に追従できるという発電特性を有する火力発電設備であり、各国で豊富な建設 実績を有している点を考慮して、ガスタービン発電所を選定した。

代替火力発電設備の諸元は以下の通りとする。なお、設備出力については、アッパーセティ計画の有効出力を基準に Table 13.1.3-1 記載の水力・火力それぞれの損失率を考慮して算出した。また、建設費単価は世界銀行の報告書を参考にした。

なお、アッパーセティ計画の有効出力が設備出力に比べて小さいことから代替火力の設備出力もアッパーセティ計画より小さく設定されているが、これは便益を過剰に見積もらないという保守性の原則に沿ったものである。

項目	ガスタービン
設備出力	118 MW
建設単価	US\$ 520/kW
建設費	61,360 千ドル
耐用年数	15年

Table 13.1.3-2 Characteristics of Alternative Thermal Plant

a) 代替火力発電設備建設費

代替火力設備は 18 ヵ月間で建設するものとし、その初期投資費用は**Table 13.1.3-3** の通りである。

Table 13.1.3-3 Construction Cost of Alternative Thermal Plant

項目	割合	支出額
1年目	40%	US\$24,544,000
2年目	60%	US\$36,816,000
合計	100%	US\$61,360,000

b) 代替火力発電設備等の O&M 費

代替火力設備の年間O&M費は世銀報告書記載の単価を使用し、固定費と変動費とに分けて見積もった(Table 13.1.3-4参照)。

Table 13.1.3-4 O&M Cost for Alternative Thermal Plant

(単位:1000 US\$)

項目	単価	数量	O&M 費
固定費	61,360	3%	1,841
変動費	0.01/kWh	203.54MWh	2,035
合計額			3,876

c) 代替火力の燃料費

代替火力設備の年間燃料費は以下の通りである。なお、発電所で使用するディーゼル油の単価は N.Rp.49.69/liter (=US\$0.66/liter)を使用した。ネパールでは石油製品はすべて輸入に頼っていることから、2006 年 7 月時点における Nepal Oil Corporationの Indian Oil Company からのディーゼル・オイルの輸入単価を経済価格として使用する。

項目 単価 燃料費 ディーゼルオイル US\$0.66/liter US\$37,228,000

 Table 13.1.3-1
 Alternative Thermal Power Plant for Studying Economic Justification

Item	Unit	Gas T	urbine	Upper Se	Upper Seti Hydro	
Installed Capacity	MW	118.0		127	127.0	
Dependable Capacity	MW	11	8.0	85	.8	
Losses	%	33.	0%	7.9)%	
Effective Dependable Capacity	MW	79	0.0	79	.0	
Annual Energy Production	MWh	210	,431	(total)	484,400	
				Firm	216,900	
				Secondary	267,500	
Losses		<u>kW</u>	<u>kWh</u>	<u>kW</u>	<u>kWh</u>	
Station service use	%	1.5%	1.5%	3.0%	0.3%	
Forced outage	%	20.0%	-	1.0%	0.3%	
Scheduled outage	%	15.0%	-	3.6%	2.0%	
Transmission loss	%	0.0%	0.0%	0.5%	1.9%	
Annual Available Energy (Firm)	MWh	207	,274	207,274		
Service Life	year	1	5	50 (civil)		
				30 (equipment)	
Thermal efficiency	kcal	2,529	/kWh	-		
Calorific value	kcal	9,126	/liter			
Unit fuel price	US\$	0.66	/liter	-		
Unit construction cost	US\$/kW	52	20	-		
Constrcution cost	1000US\$	61,	360	-		
Variable O&M cost	US\$	0.01 /kWh		-		
Fixed O&M cost	US\$	1,841 year				
O&M cost per year	1000US\$	3,945		-		
Variable OM cost per year	1000US\$	2,104				
Fixed OM cost per year	1000US\$	1,8	341			
Fuel cost per year	1000US\$	38,	488	-		

(2) 二次電力量

二次電力量については長期限界費用を使用して経済便益を計測する。長期限界費用単価については1998年にNorconsultにより実施された調査で算出された雨期における電力コストの値を使用する。

二次電力量 単価 年間便益 267,500kWh US\$0.015/kWh US\$4,013,000

13.1.4 経済評価

計画開始年の経済費用の総現在価値は 273,154 千ドルである (割引率 10%、以下同じ)。経済便益の総現在価値は 337,641 千ドルである。従って純現在価値 (B-C) は 64,487 千ドル、B/C は 1.24 と計算される。経済的内部収益率 (EIRR) は 12.3%となった。(Table 13.1.4-1 参照)

純現在価値(NPV: B-C)、便益費用比率(B/C)および経済的内部収益率(EIRR)の各指標をまとめると $Table\ 13.1.4-2$ に示す通りである。

	便益	評価基準	割引率	
	US\$155,470,000	> 0	8%	
NPV	US\$64,487,000	> 0	10%	
	US\$6,250,000	> 0	12%	
	1.53	> 1	8%	
B/C	1.24	> 1	10%	
	1.02	> 1	12%	
EIRR	12.3%	> 資本の機会費用		

Table 13.1.4-2 Result of Economic Evaluation

この結果、EIRR は資本の機会費用である 10%を上回っており、本計画は経済的にフィージブルであると評価できる。

Table 13.1.4-1 Economic Evaluation

64,487 EIRR 12.3% Cost Items Benefit Items

Upper Seti (Damauli) Project

Installed capacity
Dependable capacity 127 MW 85.8 MW 216,900 MWh Energy generation (Firm)
(Secondary) 267,500 MWh

Construction cost 328,464 1000US\$ 100%

328,464 Discount Rate: 10%

B/C

Alternative thermal (Gas Turbine)

118.0 MW 61,360 1000US\$ 0.66 US\$/liter Installed capacity: 100% 61,360 Investment cost: Fuel price: 0.66 US\$/lit Energy generation (firm): 210,431 MWh Secondary energy of Upper Seti 100% 0.660

267,500 MWh 0.015 US\$/kWh Annual energy 100% 267,500

Unit cost

(unidad: US\$1000)

			COST BENEFIT (unidad: US					1. 05\$1000)						
No).	Year	UPPER SETI	PROJECT	(C)		NDARY EN	ERGY	AL		VE PLAN		(B)	(B) - (C)
			Consturction	O&M	TOTAL	Energy	Unit	Subtotal	Construction	O&M	Fuel	Subtotal	TOTAL	
<u></u>			Cost	Cost	COST	Generation	Cost		Cost	Cost	Cost		BENEFIT	
1		2000	40.070	0	40.070	0	0.015	0		0			0	40.070
1 2		2009 2010	40,079 32,277	0	40,079 32,277	0	0.015 0.015	0		0				
3		2010	43,313	0	43,313	0	0.015	0		0				-43,313
4		2012	89,269	0	89,269	0	0.015	0		0				
5		2013	108,727	0	108,727	ő	0.015	0		0			24,544	-84,183
6		2014	14,799	0	14,799	0	0.015	0	36,816	0	0	36,816	36,816	
7	1	2015		2,313	2,313	267,500	0.015	4,013		3,945	38,488	42,433	46,446	44,133
8	2	2016		2,313	2,313	267,500	0.015	4,013		3,945				44,133
9	3	2017		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
10	4 5	2018 2019		2,313	2,313	267,500	0.015	4,013		3,945 3,945			46,446	44,133
11 12	6	2019		2,313 2,313	2,313 2,313	267,500 267,500	0.015 0.015	4,013 4,013		3,945			46,446 46,446	44,133 44,133
13	7	2020		2,313	2,313	267,500	0.015	4,013		3,945				44,133
14	8	2022		2,313	2,313	267,500	0.015	4,013		3,945				44,133
15	9	2023		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
16	10	2024		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
17	11	2025		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
18	12	2026		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
19	13	2027		2,313	2,313	267,500	0.015	4,013	24.544	3,945			46,446	44,133
20 21	14 15	2028 2029		2,313 2,313	2,313 2,313	267,500 267,500	0.015 0.015	4,013 4,013	24,544 36,816	3,945 3,945			70,990 83,262	68,677 80,949
22	16	2029		2,313	2,313	267,500	0.015	4,013	30,810	3,945			46,446	44,133
23	17	2031		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
24	18	2032		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
25	19	2033		2,313	2,313	267,500	0.015	4,013		3,945	38,488		46,446	44,133
26	20	2034		2,313	2,313	267,500	0.015	4,013		3,945	38,488	42,433	46,446	44,133
27	21	2035		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
28	22	2036		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
29	23	2037		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
30 31	24 25	2038 2039		2,313 2,313	2,313 2,313	267,500 267,500	0.015 0.015	4,013 4,013		3,945 3,945			46,446 46,446	44,133 44,133
32	26	2040		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
33	27	2041	15,324	2,313	17,637	267,500	0.015	4,013		3,945				28,808
34	28	2042	16,173	2,313	18,486	267,500	0.015	4,013		3,945				27,959
35	29	2043	39,286	2,313	41,599	267,500	0.015	4,013	24,544	3,945	38,488	66,977	70,990	29,391
36	30	2044	10,083	2,313	12,396	267,500	0.015	4,013	36,816	3,945				70,865
37	31	2045		2,313	2,313	267,500	0.015	4,013		3,945				
38	32	2046		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
39 40	33 34	2047 2048		2,313 2,313	2,313 2,313	267,500 267,500	0.015 0.015	4,013 4,013		3,945 3,945			46,446 46,446	44,133 44,133
41	35	2048		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
42	36	2050		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
43	37	2051		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
44	38	2052		2,313	2,313	267,500	0.015	4,013		3,945	38,488	42,433	46,446	44,133
45	39	2053		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
46	40	2054		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
47	41	2055		2,313	2,313	267,500	0.015	4,013		3,945			46,446	44,133
48 49	42 43	2056 2057		2,313 2,313	2,313	267,500	0.015 0.015	4,013 4,013		3,945 3,945			46,446 46,446	44,133 44,133
50	44	2057		2,313	2,313 2,313	267,500 267,500	0.015	4,013	24,544	3,945 3,945	38,488		46,446 70,990	68,677
51	45	2059		2,313	2,313	267,500	0.015	4,013	36,816	3,945				80,949
52	46	2060		2,313	2,313	267,500	0.015	4,013		3,945				
53	47	2061		2,313	2,313		0.015	4,013		3,945				
54	48	2062		2,313	2,313	267,500	0.015	4,013		3,945	38,488	42,433	46,446	44,133
55	49	2063		2,313	2,313	267,500	0.015	4,013		3,945				
56	50	2064	-26,955	2,313	-24,642	267,500	0.015	4,013	-40,907	3,945	38,488	1,526	5,539	30,181
т,	ОТА	т	202 275	115 650	100 025			200 625	204 522	107.250	1 024 400	226 192	2 526 909	2 020 702
	OTA ent V		382,375	115,650	498,025			200,625	204,533	197,250	1,924,400	2,326,183	2,526,808	2,028,783
i = 1				PV (Cost):	273,154						PV	(Benefit):		64,487
													NPV	64,487
													EIRR B/C	12.3%
													B/C	1.24

13.1.5 感度分析

経済分析の各指標に関して、前提条件が変化した場合の感度分析を行なう。なお、割引率は10%を使用した。分析に当たっては**Table 13.1.5-1**に示したケースを想定した。

ケース1 すべての代替便益が10%減少した場合

ケース2 建設費が10%増加した場合

ケース3 代替火力の便益が10%減少し、建設費が10%増加した場合

項目	NPV	B/C	EIRR
ケース1	US\$34,488,000	1.13	11.2 %
ケース2	US\$37,172,000	1.12	11.2 %
ケース 3	US\$7,172,000	1.02	10.2 %

Table 13.1.5-1 Cases of Sensitivity Analysis

条件が悪くなる場合においても評価基準をクリアーしており、経済的にフィージブルである ことが確認された。

13.2 財務評価

13.2.1 評価手法

財務評価は、ある計画が企業会計の立場から見て成立するかどうかを検討するものである。 分析手法としてはキャッシュ割引フロー法を採用する。本手法による基本的なアプローチは以 下の通りである。ここでは市場価格(=財務費用)による建設・O&M 費を費用、売電収入を 便益とし、キャッシュ・アウトフロー(費用)およびインフロー(便益)をプロジェクト期間 全体にわたり年別に展開する。次に各年度に支出される費用および便益を割引率を使用してプロジェクト初年度における現在価値に換算する。その上で、プロジェクト期間における現在価値で表された費用と便益それぞれの合計額を比較する。評価指標として資金調達形態にかかわらずプロジェクト本来の収益性を評価するための総資本財務的内部収益率(FIRR on investment)を算出する。

13.2.2 本計画の財務費用および便益

(1) 財務費用

本計画の財務費用は市場価格による初期投資額、機器更新費用および O&M 費である。 このうち初期投資額および機器更新費用については**第 12 章**記載の工事費にネパールで課 税される税金を加えたものを財務費用として採用する。運転維持費についてはコンサルタ ントの経験から初期投資額(税抜き)に一定の比率を乗じて算出する。

1) 初期投資額

主な項目ごとの年度別の投資額をTable 13.2.2-1に示す。

Table 13.2.2-1 Financial Investment

(単位:1000US\$)

	土木設備	機器・送電線	環境対策	合計
1年目	17,314	0	26,696	44,010
2年目	33,746	0	0	33,762
3年目	29,339	15,717	0	45,058
4年目	76,981	16,590	0	93,562
5年目	71,812	40,290	1,363	113,453
6年目	2,566	10,350	2,494	15,410
合 計	231,757	82,949	30,553	345,256

2) 運転維持費

本プロジェクトの運転維持管理費を**Table 13.2.2-2**に示す。

Table 13.2.2-2 Financial O&M Cost

(単位:1000US\$)

項目	建設費	経費率	金額
土木工事	228,802	0.5%	1,144.0
電気・水力機器	71,468	1.5%	1,072.0
送電線工事	10,080	1.5%	151.2
合 計			2,367.2

(2) 財務便益

本計画の財務便益は電力販売収入である。以下に電力料金単価および販売電力量に関する条件をまとめた。

- 電力料金単価

2005/06 年度の平均電力料金である N.Rp.6.69/kWh を当時の平均為替レートである N.Rp.71.99/US\$で換算し、US\$0.09299/kWh を得た。一方、売電料金より配電コストを控除するため、2014 年時点の配電損失が 17%であると仮定したうえで、NEA のコスト実績より平均配電コストを 29.1%と推定し、変電所までの平均電力料金を US\$0.06593 とした。ここでは運転開始が予定されている 2014 年までの物価上昇を 毎年 5%と想定し、2014 年単価として US\$0.09730/kWh を算出した。なお、NEA は

毎年 5%を超えない範囲で単価を改定する権利を有しており、現在その適用式を協議中である。また、ピーク時間単価については料金表に基づく上乗せ分 15%を考慮し、US\$0.11190/kWh を得た。詳細を Table 13.2.2-3 に示す。

Table 13.2.2-3 Assumption for Electricity Tariff

1. Electricity tariff

1. Electricity turns	
Sales income for FY2005/06	13,155.81 Million NRps.
Power generation for FY2005/06	1,965.27 GWh
Average rate	6.694 NRs./kWh
Average exchange rate	71.99 US\$/NRs.
Average rate in US\$	0.09299 US\$/kWh
Cost rate up to transmission	0.709
Base tariff up to transmission in 2006	0.06593 US\$/kWh
Base tariff up to transmission in 2014	0.09730 US\$/kWh
Peak time tariff (115% * base tariff) in 2014	0.11190 US\$/kWh

2. Energy loss

O			
	Energy	Energy loss	
Total energy available (GWh)	2,661,788.00		
up to transmission (GWh)	2,528,699.00	133,089.00	5.0%
up to distribution (GWh)	1,935,467.00	593,232.00	23.5%
Total energy loss			28.5%
up to distribution (GWh)	2,209,284.04	_	17.0%

3. Cost rate up to transmission

Total energy up to distrubution with 17% loss rate	2,209,284 GWh
Total cost up to distrubution	14,728,517 NRps.
Cost per unit up to distribution with 17% loss	6.67 NRps.
Cost per unit up to transmission	4.73 NRps.
Cost rate up to transmission	70.9%

- 販売電力量

一次電力量はピーク時間、二次電力量はアベレージ時間に販売するものとした。よって、毎年の売電収入はTable 13.2.2-4の通りとした。

Table 13.2.2-4 Annual Sales Income

項目	電力量	単 価	年間収入額(千ドル)
一次電力量	207,274 GWh	US\$111.90/MWh	23,194.0
二次電力量	255,628 GWh	US\$97.30/MWh	24,872.6
合 計			48,066.6

13.2.3 財務評価

総資本に対する財務的内部収益率(FIRR on Investment)を財務収入に基づき計算した (Table 13.2.3-1 参照)。財務評価の結果を以下に示す。

 項目
 計算結果
 評価基準

 FIRR
 10.3%
 > 借入金利

この結果、本計画実施にあたり、政府から NEA に転貸される資金(金利8%)を利用しても財務的にプロジェクトが成立することが判明した.

13.2.4 感度分析

(1) 感度分析1:前提条件の変化

財務分析の各指標に関して、前提条件が変化した場合の感度分析を行なう。なお、割引率は10%を使用した。

- 1) 発生電力量が10%減少した場合。
- 2) 建設費が10%増加した場合。
- 3) 発生電力量が10%減少し、建設費が10%増加した場合。
- 4) 発生電力量が10%増加した場合。
- 5) 発生電力量が10%増加し、建設費が10%増加した場合。

ケース	1	2	3	4	5
FIRR	9.3%	9.5%	8.6%	11.2%	10.3%

この結果、前提条件の変化に伴い、FIRR は $8 \sim 11\%$ の範囲にあり、特段感度の高い項目はない。

(2) 感度分析 2: 平均料金レベル

FIRR が以下のようになる平均料金レベルを試算した。

FIRR	12%	10%	8%
送電端料金	USc123.98	USc100.73	USc79.79

なお、FIRR = 8%の場合の料金は 2014 年までに 3 回 5%の値上げが実施された場合に相当する。

- (3) 感度分析 3:配電端評価
 - 一方、配電部分も含めた場合の内部収益率を検討した。検討条件は以下の通りとした。
 - 1) 配電コスト: ADB カリガンダキ A 水力発電計画評価報告書で使用されている初期投 資額の2%と仮定した。
 - 2) 配電端の電力料金: 1996 年 (NRp.4.219/56.25=US\$0.075/kWh) から 2006 年 (NRp.6.694/74.40= US\$0.090/kWh) の11 年間の平均上昇率 1.84%を使用し、2014 年 ベースの料金単価を US\$0.10413 (0.090 x 1.0184^8) とした。
 - 3) 売電可能電力量:2014年の総損失率を17%と仮定して計算した。

その結果、以下の値を得た。(Table 13.2.4-1 参照。)

FIRR on investment: 7.3%

Table 13.2.3-1 Financial Evaluation

100% 100%

100%

207,274 255,628

345,256

127 MW 462,902 MWh 207,274 MWh 255,628 MWh

Upper Seti (Damauli) Project Installed capacity Salable energy Firm energy Secondary energy Construction cost 345,256 1000US\$

Electricity tariff Peak time Average time 111.90 US\$/MWh 97.30 US\$/MWh

FIRR 10.3%

			TIDDE	R SETI PRO	IECT 1			DEMERIT	r	(Un	it: US\$1000)
No	,	YEAR	UPPE	K SETIPKO	(C)	Salable	Energy	BENEFIT Salable	Energy	(B)	(B) - (C)
140	<i>J</i> .	ILAK	Construction	O&M	TOTAL	Energy (1)	Unit Cost	Energy (2)	Unit Cost	TOTAL	(B) - (C)
			Cost	Cost	COST	MWh		MWh		BENEFIT	
1		2009	44,011	0	44,011						-44,011
2		2010	33,762	0	33,762						-33,762
3		2011	45,058	0	45,058						-45,058
4		2012	93,562	0	93,562						-93,562
5 6		2013 2014	113,454 15,410	0	113,454 15,410						-113,454 -15,410
7	1	2014	15,410	2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
8		2016		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
9	2	2017		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
10	4	2018		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
11	5	2019		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
12	6	2020		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
13 14	7 8	2021 2022		2,367 2,367	2,367 2,367	207,274 207,274	111.90 111.90	255,628 255,628	97.30 97.30	48,066 48,066	45,698 45,698
15	9	2022		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
16	10	2024		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
17	11	2025		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
18	12	2026		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
19	13	2027		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
20	14	2028		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
21 22	15 16	2029 2030		2,367 2,367	2,367 2,367	207,274 207,274	111.90 111.90	255,628 255,628	97.30 97.30	48,066 48,066	45,698 45,698
23	17	2030		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
24	18	2032		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
25	19	2033		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
26	20	2034		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
27	21	2035		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
28	22	2036		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
29 30	23 24	2037 2038		2,367 2,367	2,367 2,367	207,274 207,274	111.90 111.90	255,628 255,628	97.30 97.30	48,066 48,066	45,698 45,698
31	25	2039		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
32	26	2040		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
33	27	2041	15,326	2,367	17,693	207,274	111.90	255,628	97.30	48,066	30,372
34	28	2042	16,175	2,367	18,542	207,274	111.90	255,628	97.30	48,066	29,524
35	29	2043	39,290	2,367	41,657	207,274	111.90	255,628	97.30	48,066	6,409
36 37	30 31	2044 2045	10,084	2,367	12,451 2,367	207,274 207,274	111.90 111.90	255,628 255,628	97.30 97.30	48,066 48,066	35,614 45,698
38	32	2043		2,367 2,367	2,367	207,274	111.90	255,628	97.30 97.30	48,066	45,698
39	33	2040		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
40	34	2048		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
41	35	2049		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
42	36	2050		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
43	37	2051		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
44 45	38 39	2052 2053		2,367 2,367	2,367 2,367	207,274 207,274	111.90 111.90	255,628 255,628	97.30 97.30	48,066 48,066	45,698 45,698
45	40	2053		2,367	2,367	207,274	111.90	255,628	97.30 97.30	48,066	45,698 45,698
47	41	2055		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
48	42	2056		2,367	2,367	207,274	111.90		97.30		
49	43	2057		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
50	44	2058		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
51	45	2059		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
52 53	46 47	2060 2061		2,367	2,367 2,367	207,274 207,274	111.90 111.90	255,628 255,628	97.30 97.30	48,066 48,066	45,698 45,698
54	47	2061		2,367 2,367	2,367	207,274	111.90	255,628	97.30 97.30	48,066	45,698 45,698
55	49	2063		2,367	2,367	207,274	111.90	255,628	97.30	48,066	45,698
56	50	2064	-26,958	2,367	-24,591	207,274	111.90	255,628	97.30	48,066	72,656
TOTA	۸L		399,172	118,362	517,534	10,363,703	5,595	12,781,418	4,865	2,403,278	9,846,169
			,2		,	.,,	-,->0	,. ,.,	.,	FIRR	10.3%
										TINK	10.5 /0

 Table 13.2.4-1
 Financial Evaluation on Investment (Distribution End)

Upper Seti (Damauli) Project

127 MW Installed capacity Salable energy 393,004 MWh

Firm energy 175,976 MWh 84.9% 207,274 255,628 345,256 Secondary energy 217,028 MWh 84.9% Construction cost 345,256 1000US\$ 100%

Electricity tariff

104.13 US\$/MWh Firm energy 104.13 US\$/MWh Secondary energy

FIRR 7.3%

	(Unit: USS UPPER SETI PROJECT BENEFIT											
N	No. YEAR			UPPER SE	FI PROJECT	(C)	Salable	Energy	BENEFIT Salable	Energy	(B)	(B) - (C)
1	No. YEAR Construction O&M Distribution TOTAL Cost Cost COST		Energy (1)	Unit Cost	Energy (2)	Unit Cost	TOTAL	(B) - (C)				
							MWh		MWh		BENEFIT	
		• • • •										
1 2		2009 2010	44,011	0		44,011 33,762						-44,011 -33,762
3		2010	33,762 45,058	0		45,058						-33,762 -45,058
4		2012	93,562	0		93,562						-93,562
5		2013	113,454	0		113,454						-113,454
6		2014	15,410	0		15,410						-15,410
7	1	2015		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
8	2	2016		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
9		2017		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
10 11	4 5	2018 2019		2,367 2,367	6,905 6,905	9,272 9,272	175,976 175,976	104.13 104.13	217,028 217,028	104.13 104.13	40,924 40,924	31,651 31,651
12	6	2020		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
13	7	2021		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
14	8	2022		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
15	9	2023		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
16	10	2024		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
17	11	2025		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
18	12	2026		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
19 20	13 14	2027 2028		2,367 2,367	6,905 6,905	9,272 9,272	175,976 175,976	104.13 104.13	217,028 217,028	104.13 104.13	40,924 40,924	31,651 31,651
21	15	2029		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
22	16	2030		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
23	17	2031		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
24	18	2032		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
25	19	2033		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
26	20	2034		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
27	21	2035		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
28 29	22 23	2036 2037		2,367 2,367	6,905 6,905	9,272 9,272	175,976 175,976	104.13 104.13	217,028 217,028	104.13 104.13	40,924 40,924	31,651 31,651
30	24	2037		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
31	25	2039		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
32	26	2040		2,367	6,905	9,272	175,976	104.13	217,028	104.13		31,651
33	27	2041	15,326	2,367	6,905	24,598	175,976	104.13	217,028	104.13	40,924	16,325
34	28	2042	16,175	2,367	6,905	25,447	175,976	104.13	217,028	104.13	40,924	15,477
35	29	2043	39,290	2,367	6,905	48,562	175,976	104.13	217,028	104.13	40,924	-7,638
36	30	2044	10,084	2,367	6,905	19,356	175,976	104.13	217,028	104.13	40,924	21,567
37 38	31 32	2045 2046		2,367 2,367	6,905 6,905	9,272 9,272	175,976 175,976	104.13 104.13	217,028 217,028	104.13 104.13	40,924 40,924	31,651 31,651
39	33	2046		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
40	34	2048		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
41	35	2049		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
42	36	2050		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
43	37	2051		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
44	38	2052		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
45 46	39 40	2053 2054		2,367	6,905	9,272 9,272	175,976	104.13	217,028	104.13	40,924 40,924	31,651
46 47	40	2054		2,367 2,367		9,272 9,272				104.13 104.13		31,651 31,651
48	42	2056		2,367	6,905	9,272	175,976	104.13		104.13	40,924	31,651
49	43	2057		2,367	6,905	9,272	175,976	104.13		104.13	40,924	31,651
50	44	2058		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
51	45	2059		2,367	6,905	9,272	175,976	104.13		104.13	40,924	31,651
52	46	2060		2,367	6,905	9,272	175,976	104.13		104.13	40,924	31,651
53	47	2061		2,367	6,905	9,272	175,976	104.13	217,028	104.13	40,924	31,651
54 55	48 49	2062 2063		2,367 2,367	6,905 6,905	9,272 9,272	175,976 175,976	104.13 104.13		104.13 104.13	40,924 40,924	31,651 31,651
56	50	2063	-26,958	2,367	6,905	-17.686	175,976	104.13	217,028	104.13	40,924	58,609
- 50	50	2001	20,750	2,507	0,703	17,000	173,270	101.13	217,020	101.13	10,727	50,007
TOT	AL		399,172	118,362	345,256	862,790	8,798,784	5,207	10,851,423	5,207	2,046,176	7,935,994
											FIRR	7.3%
I												

13.3 キャッシュフロー分析

ここでは融資条件を考慮してキャッシュフロー分析を行なう。

13.3.1 前提条件

アッパーセティ水力発電計画を実施するにあたり、NEA が開発主体となり、ネパール政府による転貸資金を利用して開発することと仮定し、以下の条件を設定して検討を行った。

1) 価格レベル : 建設費の見積は2006年価格とする。

2) 建設期間 : 6年(2014年運転開始)3) エスカレ率 : 外貨分2%、内貨分5%

4) 諸税 : 法人税 20%、輸入税 1%、現地税 1%、VAT13%

5) 電力料金 : ピーク料金 US\$111.90/MWh、アベレージ料金 US\$97.30/MWh

6) ロイヤルティー : Energy 1~15 年 2%、16 年目以降 10%

Capacity 1~15 年 NRp.100/kW、16 年目以降 NRp.1000/kW

7) 評価期間 : 運転開始後25年間

8) 減価償却 : 定額法。予備費を含む。

9) 売電量 : 475.11 GWh (排砂分は除く)

10) O&M 経費 : US\$2,365,000/年

11) 金利 : 8%

12) 返済期間 : 運転開始後 25 年

13) 自己資金額 : 15%

13.3.2 キャッシュフロー分析の評価

上記前提条件に基づいて計算を行なった。**Table 13.3.2-1~3** に(1)サマリー、(2)建中利子、(3) 資金調達および返済計画書を示す。

なお、キャッシュフローの評価に当たり、以下に示す債務返済比率、融資返済期間債務比率 の2つの指標を使用した。

(1) 債務返済比率(DSCR)

債務返済比率は各年度の元利返済前キャッシュフローが当該年度に計画されている支払い元利金の何倍に相当するかを示し、各年度の元利金支払いを計画通り行い得るかどうかを測るための指標である。

DSCR=(年間元利金返済前キャッシュフロー)/(当該年度の返済元利金)

判断基準: DSCR>1.0 (ただし、世界銀行等の国際金融機関では返済期間の平均値で 1.5 以上 が望ましいとされている。)

(2) 融資返済期間債務比率 (LLCR)

LLRC は借入期間にわたる元利金返済前のキャッシュフローの現在価値合計額が借入金元本の何倍に相当するかを示し、プロジェクト収入による借入元本の返済が可能かどうかを測るための指標である。ここで、現在価値を求めるための割引率には借入金利を使用する。加えて、感度分析として割引率 10% および 12% のケースも計算した。

LLCR=ΣPV (元利金返済前キャッシュフロー) / (借入元本)

判断基準: LLCR>1.0

評価指標計算結果は以下の通りである。

Table 13.3.2-4 Results of Cash Flow Analysis

割引率	8%	10%	12 %
DSCR (平均値)	3.94	_	_
LLCR	2.00	1.63	1.36

DSCR、LLCR ともに基準値を上回っており、採算の点からも問題のないことが確認された。

Tariff Escalation

Table 13.3.2-1 Financial Analysis (1): Summary

Construction	n Cost 2,719	US\$/kW		Iı	nflation (in terms of	US dollar)		
					Foreign		2.0%	
					Domestic		5.0%	
Finance Pro	portion	Nepal	Others					
		100%	0%	F	inancial Condition			
Debt/Equity	7	Debt	Equity		Interest rate for	IDC	8.00%	
		85%	15%		Interest after ope	eration	8.00%	
					Repayment perio	od	25 y	ears
Installed Ca	pacity	127.00	MW		Grace period		6 y	ears
Energy Gen	eration	484.40	GWh		Gov't own finan	ce	100%	
Salable Ener	ergy	462.90	GWh					
	Firm	207.27	GWh	R	oyalty for Construct	ion Period	0%	
	Secondary	255.63	GWh					
				R	oyalty from Operation	on onwards		
Construction	n Cost				Capacity charge	1-15 years	100 N	NRs.
Before price	ce escalation	345.26	M.US\$		Capacity charge	16 years -	1000 N	NRs.
After price	escalation	373.89	M.US\$		Energy charge	1-15 years	2%	
Financial Bu	udget	433.32	M.US\$		Energy charge	16 years -	10%	
Fi	inancial Items	Nepal	Others					
O	wn Finance	56.08	0.00					
Lo	oan amount	317.81	0.00					
ID	OC	59.43	0.00	Г	ebt Service Coverag	ge Ratio		
Ro	oyalty	0.00	0.00		Average for Fina	ance (I)	3.94	
To	otal	433.32	0.00		Average for Fina	ance (II)	-	
-	nestic Ratio for Salabl			L	oan Life Coverage F	Ratio		
	xport	0%			For Finance (I)		2.00	
De	omestic	100%			For Finance (II)		-	
Initial Electr	ricity Tariff							
A	verage tariff	0.11190	US\$/kWh					
		0.09730	US\$/kWh					

5%

Upper Seti (Damauli) Project Price Escalation per annum Equity Proportions Finance Condition (I) 100% Total Construction Cost (M.US\$) 8.00% Capacity: 127.00 MW NEA Private F/C Portion 2.0% Interest Finance Items NEA Private Total 0% L/C Portion 100% 56.1 0.0 **Energy Generation** 484.40 GWh 5.0% Repayment Period 25 years Own finance 56.1 462.90 GWh Grace Period 317.8 0.0 317.8 Salable energy Debt Equity Principal Loan 6 years 2,719 US\$/kW 15% IDC 59.4 0.0 Project cost NEA Own Finance 100% 59.4 Total 433.3 0.0 F/C 216.52 M.US\$ Royalty for construction Electricity tariff \$/kWh Finance Condition (II) 0% 433.3 L/C 128.74 M.US\$ 0% Peak 0.11190 Interest 0% Equity/Royalty fee 0.0 345.26 M.US\$ 0.09730 Repayment Period Total Average 0 years Grace Period 0 years

Year	Disburse	ment	Price I	ndex	Disburse	ement	Total	Debt/Equi	ty Share	Equity P	ortion	Debt F	Portion	Loan Cu	mulative	IDe	C	Royalty
	before esc	alation			after esca	alation	Disburse	85%	15%			Finance I	Finance II	Finance I	Finance II	Finance I	Finance II	Fee
	for F/C	for L/C	for F/C	for L/C	for F/C	for L/C		Debt	Equity	NEA	Private	100%	0%			8.00%	0%	
	M.US\$	M.US\$	2.0%	5.0%	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$
-6	8.8	35.2	1.0000	1.0000	8.8	35.2	44.0	8.8	35.2	35.2	0.0	8.8	0.0	8.8	0.0	0.4	0.0	0.0
-5	22.8	11.0	1.0200	1.0500	23.3	11.5	34.8	23.3	11.5	11.5	0.0	23.3	0.0	32.1	0.0	1.6	0.0	0.0
-4	33.2	11.8	1.0404	1.1025	34.6	13.0	47.6	38.2	9.4	9.4	0.0	38.2	0.0	70.3	0.0	4.1	0.0	0.0
-3	61.0	32.6	1.0612	1.1576	64.7	37.7	102.4	102.4	0.0	0.0	0.0	102.4	0.0	172.7	0.0	9.7	0.0	0.0
-2	79.7	33.8	1.0824	1.2155	86.3	41.0	127.3	127.3	0.0	0.0	0.0	127.3	0.0	300.0	0.0	18.9	0.0	0.0
-1	11.0	4.4	1.1041	1.2763	12.1	5.6	17.8	17.8	0.0	0.0	0.0	17.8	0.0	317.8	0.0	24.7	0.0	0.0
	216.5	128.7			229.8	144.1	373.9	317.8	56.1	56.1	0.0	317.8	0.0	317.8	0.0	59.4	0.0	0.0

 Table 13.3.2-3
 Financial Analysis (3): Income Statement

Upper Seti (Damauli) Project		Financial condition (I)	Firm Energy (GWh)	207.27	OM cost	2.37						Initial F.A. (M.US\$)	433.32
Capacity	127.00 MW	Interest rate 8.00	6 Sec. Energy (GWh)	255.63			Royalty fr	om operation		Taxes		Life time (years)	50
Energy Generation	484.40 GWh	Repayment (Years)	5 Peak Price (\$/kWh)	0.1119	Principal repayment	M.US\$	Energy	1-15 years	2% on revenue	Coporate tax	20%	Initial dep. (M.US\$)	8.67
Salable Energy	462.90 GWh	Financial condition (II)	Average Price (\$/kWh)	0.0973	for Nepal	317.81	Energy	16 - years	10% on revenue	Interest tax	6%	F/C escalation	2.0%
		Interest rate 0	6 Firm Escalation	5%	for Private	0.00	Capacity	1-15 years	100 NRp./kW	Bonus & welfare fund	2%	L/C escalation	5.0%
Constuction cost	345.26 M.US\$	Repayment (Years)	0 Sec. Escalation	5%	Total	317.81	Capacity	16 - years	1000 NRp./kW			Equiv. Escalation	3.1%

Year					Sales	OM	Royalty	Royalty	Year start	Depreci-	Year end	Net	Principal	Cum. of	Interest	Profit	Corporate	Profit	Tax on	Bonus &	Net	Current	Debt
	Salable e	energy	Selling	price	Revenue	Cost	on	on	Fixed	ation	Fixed	Operation	Repay-	Principal	Payment	before	tax	after tax	interest	Welfare	Income	Asset in	Service
		Average	Peak	Average			Revenue	Capacity	Asset		Asset	Income	ment	Repayment		tax				Fund	after tax	cash	Ratio
	GWh	GWh	\$/kWh	\$/kWh	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$	M.US\$
1	207.3	255.6	0.1119	0.0973	48.07	2.37	0.96	0.18	433.32	8.67	424.66	35.89	12.71	12.71	24.41	11.48	2.30	9.19	1.46	0.15	7.57	44.56	1.20
2	207.3	255.6	0.1175	0.1022	50.47	2.49	1.01	0.18	437.90	8.94	428.96	37.86	12.71	25.42	23.39	14.47	2.89	11.57	1.40	0.20	9.97	46.79	1.30
3	207.3	255.6	0.1234	0.1073	52.99	2.61	1.06	0.18	442.34	9.22	433.12	39.93	12.71	38.14	22.37	17.55	3.51	14.04	1.34	0.25	12.45	49.14	1.40
4	207.3	255.6	0.1295	0.1126	55.64	2.74	1.11	0.18	446.63	9.50	437.13	42.10	12.71	50.85	21.36	20.75	4.15	16.60	1.28	0.31	15.01	51.61	1.51
5	207.3	255.6	0.1360	0.1183	58.42	2.88	1.17	0.18	450.76	9.80	440.96	44.40	12.71	63.56	20.34	24.06	4.81	19.25	1.22	0.36	17.67	54.20	1.64
6	207.3	255.6	0.1428	0.1242	61.35	3.02	1.23	0.18	454.71	10.10	444.61	46.81	12.71	76.27	19.32	27.49	5.50	21.99	1.16	0.42	20.41	56.92	1.78
7	207.3	255.6	0.1500	0.1304	64.41	3.17	1.29	0.18	458.48	10.42	448.06	49.35	12.71	88.99	18.31	31.05	6.21	24.84	1.10	0.47	23.26	59.77	1.93
8	207.3	255.6	0.1574	0.1369	67.63	3.33	1.35	0.18	462.03	10.74	451.28	52.02	12.71	101.70	17.29	34.73	6.95	27.79	1.04	0.54	26.22	62.77	2.09
9	207.3	255.6	0.1653	0.1438	71.01	3.50	1.42	0.18	465.36	11.08	454.28	54.84	12.71	114.41	16.27	38.56	7.71	30.85	0.98	0.60	29.28	65.92	2.27
10	207.3	255.6	0.1736	0.1509	74.57	3.67	1.49	0.18	468.45	11.43	457.02	57.80	12.71	127.12	15.25	42.54	8.51	34.03	0.92	0.66	32.45	69.22	2.48
11	207.3	255.6	0.1823	0.1585	78.29	3.86	1.57	0.18	471.27	11.78	459.49	60.91	12.71	139.83	14.24	46.67	9.33	37.34	0.85	0.73	35.75	72.69	2.70
12	207.3 207.3	255.6	0.1914 0.2009	0.1664	82.21	4.05	1.64 1.73	0.18	473.82	12.15	461.67 463.54	64.19	12.71	152.55	13.22	50.96	10.19	40.77	0.79	0.80	39.18 42.74	76.33 80.16	2.94 3.22
13 14	207.3	255.6 255.6	0.2009	0.1747 0.1835	86.32 90.63	4.25 4.46	1.73	0.18 0.18	476.07 478.00	12.53 12.92	465.08	67.63 71.26	12.71 12.71	165.26 177.97	12.20 11.19	55.43 60.07	11.09 12.01	44.34 48.06	0.73	0.87 0.95	46.44	84.18	3.52
15	207.3	255.6	0.2110	0.1935	95.17	4.40	1.90	0.18	479.58	13.32	466.26	75.07	12.71	190.68	10.17	64.90	12.01	51.92	0.61	1.03	50.29	88.40	3.86
16	207.3	255.6	0.2326	0.2023	99.92	4.92	2.00	0.18	480.80	13.74	467.07	79.09	12.71	203.39	9.15	69.93	13.99	55.95	0.55	1.11	54.29	92.82	4.25
17	207.3	255.6	0.2443	0.2124	104.92	5.17	10.49	1.81	481.63	14.17	467.47	73.28	12.71	216.11	8.14	65.15	13.03	52.12	0.49	1.03	50.60	87.45	4.19
18	207.3	255.6	0.2565	0.2230	110.17	5.43	11.02	1.81	482.04	14.61	467.44	77.31	12.71	228.82	7.12	70.19	14.04	56.15	0.43	1.11	54.61	91.91	4.63
19	207.3	255.6	0.2693	0.2342	115.68	5.70	11.57	1.81	482.01	15.06	466.95	81.54	12.71	241.53	6.10	75.43	15.09	60.35	0.37	1.20	58.78	96.60	5.13
20	207.3	255.6	0.2828	0.2459	121.46	5.98	12.15	1.81	481.51	15.53	465.98	85.99	12.71	254.24	5.08	80.90	16.18	64.72	0.31	1.29	63.13	101.52	5.70
21	207.3	255.6	0.2969	0.2582	127.53	6.28	12.75	1.81	480.51	16.02	464.50	90,67	12.71	266.96	4.07	86.60	17.32	69.28	0.24	1.38	67.66	106.69	6.36
22	207.3	255.6	0.3117	0.2711	133.91	6.60	13.39	1.81	478.98	16.52	462.47	95.59	12.71	279.67	3.05	92.54	18.51	74.03	0.18	1.48	72.37	112.11	7.11
23	207.3	255.6	0.3273	0.2846	140.60	6.92	14.06	1.81	476.89	17.03	459.86	100.78	12.71	292.38	2.03	98.74	19.75	78.99	0.12	1.58	77.29	117.81	7.99
24	207.3	255.6	0.3437	0.2989	147.63	7.27	14.76	1.81	474.20	17.56	456.64	106.23	12.71	305.09	1.02	105.21	21.04	84.17	0.06	1.68	82.42	123.79	9.02
25	207.3	255.6	0.3609	0.3138	155.02	7.63	15.50	1.81	470.88	18.11	452.77	111.96	12.71	317.80	0.00	111.96	22.39	89.57	0.00	1.79	87.77	130.07	10.23

第14章 今後の調査

目 次

第 14 章	今後の調査	14-1
14.1	水文	14-1
14.2	地質調査	14-1
14.3	環境調査	14-3
14.4	設計に関する事項	14-4

LIST OF TABLES

Table 14.2-1 Recommended Additional Geological Investigation Works for D/D 14-5

LIST OF FIGURES

Fig. 14.2-1	Proposed Additional Geological Investigation Works (Dam site, Plan)	14-7
Fig. 14.2-2	Proposed Additional Geological Investigation Works (Dam site, Profile)	14-9
Fig. 14.2-3	Proposed Additional Geological Investigation Works (Option-IIIb)	14-11

第14章 今後の調査

本プロジェクトの詳細設計の実施に必要な調査について、以下のように提案する。

14.1 水文

本プロジェクトの詳細設計段階においては、フィージビリティ調査で検討された水文に関する事項についてより詳しく把握する必要がある。実施すべき追加調査は以下のとおりである。

(1) 河川流量

1) 流量測定の継続

No.430.5 測水所他の、セティ川流域内の測水所において流量測定を継続し、流量資料を充実させることが必要である。

2) ピーク流量の測定

確率洪水量の精度を高めるために、日平均水位だけでなく洪水時の短時間の水位変化を記録し、計画地点におけるピーク流量および洪水波形を明らかにすることが必要である。

(2) 堆砂

1) 流砂量の測定

流砂量の測定を継続し、流砂量の資料を充実させることが必要である。

2) 水理模型実験の実施

シミュレーションの精度に限界があるため、本調査ではダム直上流や排砂ゲート呑口 周辺の局所的な堆砂形状を求めていない。

詳細設計段階では、局所的な形状を把握するため、水理模型実験を実施することを提 案する。

14.2 地質調査

本プロジェクトの詳細設計段階においては、フィージビリティ調査で提案された主要構造物 地点の地質および地質工学的性状をより詳しく把握する必要がある。実施すべき追加調査は以 下のとおりである。

(1) ダム地点

1) ダム基礎岩盤の岩盤性状の把握

F/S 段階ではダム基礎岩盤の性状を、地表踏査結果、調査ボーリング結果より評価しているが、詳細設計を行うためには調査横坑を掘削し、坑壁地質観察とそれに基づく岩

盤評価を実施し、ダム基礎岩盤の性状を明らかにすることが必要である。

2) ダム基礎岩盤の力学特性の把握

F/S 段階ではダム基礎岩盤の力学特性を、地表露頭およびボーリングコアの岩盤評価から推定しているが、ダムの安定計算等の詳細設計を行うためには原位置試験を実施して力学特性(せん断強度、変形特性)を明らかにすることが必要である。原位置試験は、ダム左右岸で掘削される調査横坑でのブロックせん断試験を提案する。

3) ダム左右岸山側における地下水位、透水性の把握

F/S 段階の調査結果では、地下水位は左右岸ともに緩やかに山側に向かって上昇していることが確認されているが、地山深部での地下水位および岩盤の透水性が明らかになっていない。詳細設計段階において、基礎処理グラウト計画を検討するためダム左右岸で掘削された調査横坑内で調査ボーリング(透水試験、地下水位測定を含む)を実施し、地山深部の地下水位、透水性を把握することが必要である。

(2) 地下発電所地点(Option-III b)

1) 地下発電所地点での岩盤性状の把握

F/S 段階では、地下発電所地点の岩盤性状は地表踏査結果から推定されているが、詳細設計を行うためには調査横坑ならびに調査ボーリングを実施して岩盤性状を確認することが必要である。

2) 地下発電所地点の岩盤物性の把握

F/S 段階では、地下発電所地点の岩盤の力学特性を地表露頭の岩盤評価から推定しているが、詳細設計段階では空洞の支保工の設計等のため、原位置試験を実施して基礎岩盤の力学特性(せん断強度、変形特性)を明らかにする必要がある。原位置試験は、発電所地点で掘削される調査横坑での平板載荷試験、ブロックせん断試験を提案する。

3) 地下発電所地点の地圧

地下発電所の詳細設計(空洞の安定解析)を行うため、調査横坑から削孔される調査 ボーリングを利用して初期地圧測定を実施することを提案する。

(3) 貯水池上流部

貯水池上流部の Bhimad Bajar から Jaruwapan 付近にかけての段丘崖に対しては、現地の 状況に応じて、浸食に対する何らかの対応策が必要である。この対応策の詳細な範囲と方 法を検討するため、D/D 段階において $1/1,000 \sim 1/5,000$ の地形図を用いた詳細な地質図の作 成を提案する。

(4) 材料調査

F/S 段階の調査では、コンクリート骨材として Mdi 川、セティ川の河床砂礫を対象として調査され、質的にも量的にも骨材として利用できるものと判断される。しかしながら、アルカリ骨材反応に関しては、ドロマイトのような炭酸塩岩石のアルカリ炭酸塩反応を評価できるモルタルバー法、ロックシリンダー試験 (ASTMC586-05) などの試験を実施して、再評価することが必要である。

また、詳細設計段階では、ダム地点の調査横坑から採取された試料を用いて骨材試験を 実施し、ダム掘削ズリのコンクリート骨材としての利用の可能性を検討することが必要で ある。骨材試験として実施すべき項目は、比重、吸水率、安定性、すり減り減量、アルカ リ骨材反応試験である。アルカリ骨材反応試験に関しては、ダム地点に分布する岩石がド ロマイトよりなることから、上述したようにアルカリ炭酸塩反応を評価できる試験を実施 することが必要である。

提案する追加地質調査の一覧を Table 14.2-1 に、調査位置を Fig.14.2-1、Fig.14.2-2、Fig.14.2-3 に示す。

14.3 環境調査

詳細調査時にさらに実施すべき調査と提言は次の通りである。

- 1) 地下構造物建設による水源への影響を確認するためのプロジェクト施設地域の地下 水位測定
- 2) 水質の変化をモニタリングするための水質試験の継続
- 3) コミュニティーフォレストの位置、利用状況の情報更新
- 4) 森林補償に関する森林局との協議
- 5) 種苗プログラムの策定
- 6) 野生生物の個体数、行動範囲等を確認するための詳細調査の実施および、必要なレス キュープログラムの策定
- 7) Kaligandaki A Projct 孵化状の拡張に関する詳細検討
- 8) セティ川のその他の在来魚種の検討
- 9) 本調査で提案した住民移転計画と社会アクション計画は情報を更新して、詳細な計画とする必要がある。
- 10) 補完環境調査で地籍図が入手できなかった Jumene VDC については、地籍図を入手して影響を受ける土地区画や土地所有者に関する情報を調査して、住民移転計画と社会アクション計画に取り込む必要がある。
- 11) 貯水池アリアでリスクゾーン II である Wantang 川、Phedi 川および Tittuwa とダム下流 のプロジェクト付帯施設の建設予定地については、構造物のインベントリー調査を行い、住民移転計画と社会アクション計画に反映させる。

12) 本調査で提案した環境軽減策や改善策は、工事の契約書と入札書類に含め、コントラクター自らの義務を遵守してこれらの対策を講じるように求めるべきである。

14.4 設計に関する事項

(1) 取水口

取水口は、貯水池水位が低水位まで低下しても確実に取水するため、既実施のプロジェクトと同様に、呑口の構造検討・確認のために水理模型実験を実施し、設計に反映させることを提案する。

(2) 地下発電所位置

第11章の**11.1**で述べたように、本報告書の地下発電所の位置は、NEAのボーリング調査中の情報に基づいて選定した。詳細設計時にNEAのボーリング調査を基に位置検討を行なう必要がある。

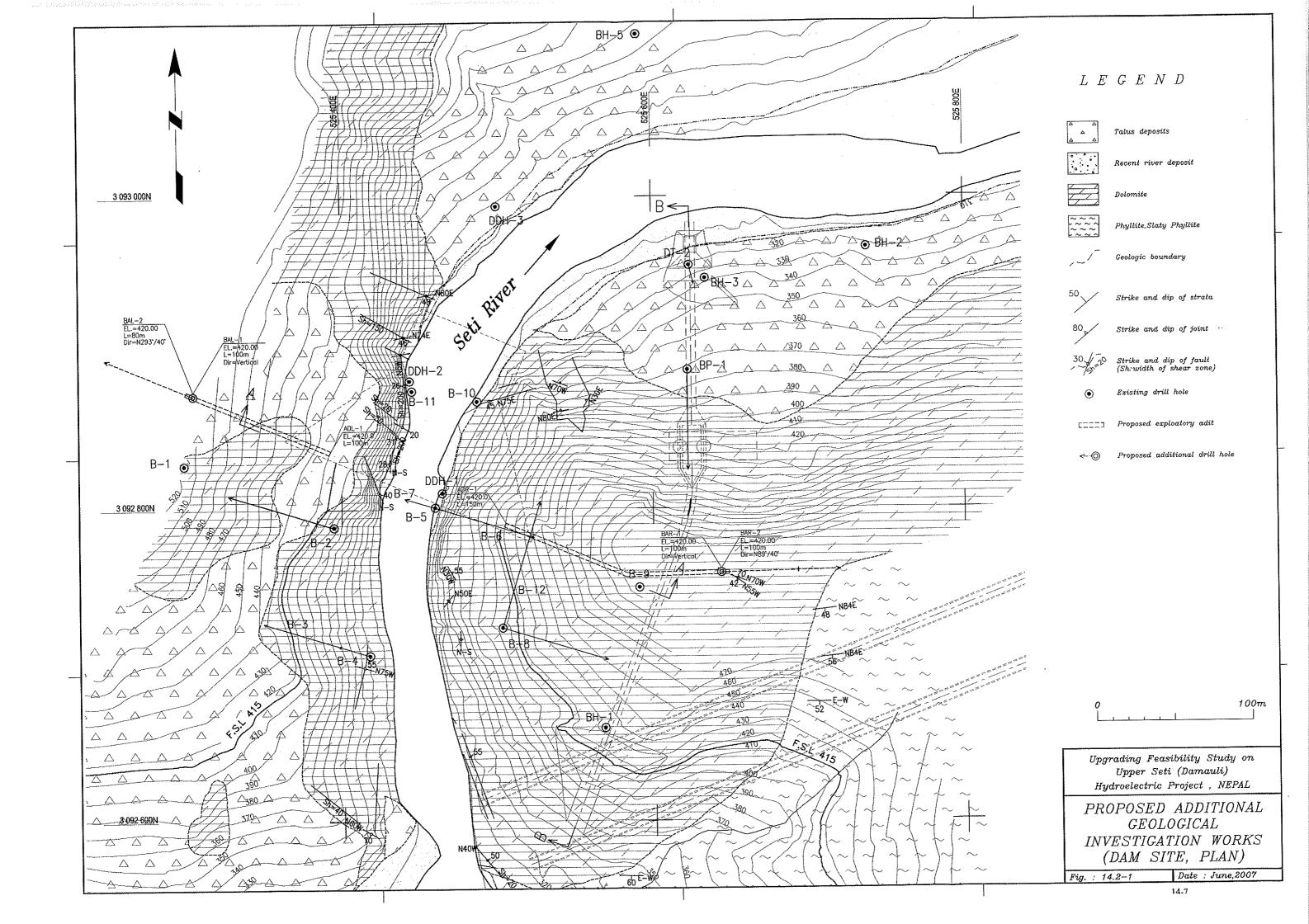
Table 14.2-1 Recommended Additional Geological Investigation Works for D/D

1. Dam site

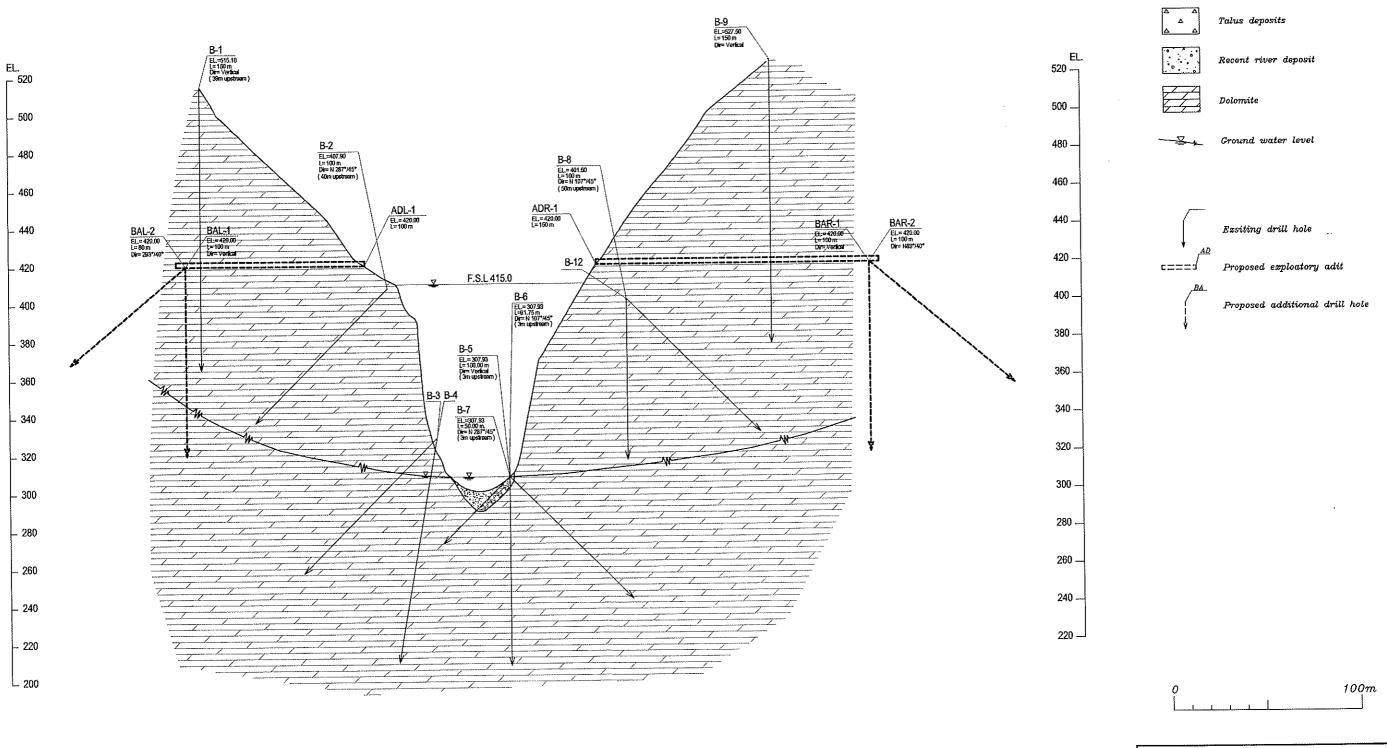
Kind of Works	Name Elevation Length Inc		Inclination	Location	Remarks			
Exploration Adit	ADR-1	420m	150m	_	Right Bank of Dam	Including the ovservation and the evaluation		
Exploration Adit	ADL-1	420m	100m		Left Bank of Dam	of the rock mass of the Adit wall		
	BAR-1	420m	100m	Vertical	In the Adit of ADR-1			
Investigation Duilling	BAR-2	420m	100m	40(*-1)	In the Adit of ADR-1	Including Permeability tests and Measuring of		
Investigation Drilling	BAL-1	420m	100m	Vertical	In the Adit of ADL-1	the Groundwater level		
	BAL-2	420m	80m	40*-1	In the Adit of ADL-1			
In-Situ Rock Test		Block Shea	r Test		In the Adit of ADR-1	1 set*-2		
III-SHU KOCK TEST		Block Shea	r Test		In the Adit of ADL-1	1 set*-2		

2. Powerhouse of Option-IIIb

Kind of Works	Name	Length	Inclination	Location	Remarks		
Exploration Adit	AP-1	420m	250m	_	Right Rank of Dam	Including the ovservation and the evaluation of the rock mass of the Adit wall	
Investigation Drilling	BAP-1	420m	150m	Vertical	In the Adit of AP-1	Including Permeability tests and Measuring of	
investigation Drining	BAP-2	420m	150m	Vertical	In the Adit of AP-1	the Groundwater level	
		Plate Bearin	ng Test		In the Adit of AP-1	2 tests	
In-Situ Rock Test		Block Shea	ır Test		In the Adit of AP-1	1 set*-2	
	M	easurement of I	n-Situ Stress	S	In Drill hole of BAP-1	The test such as Hydraulic Fracturing Tests	


< Note > *-1: The angle from the horizontal Plain, *-2: 1set consists of 4 blocks

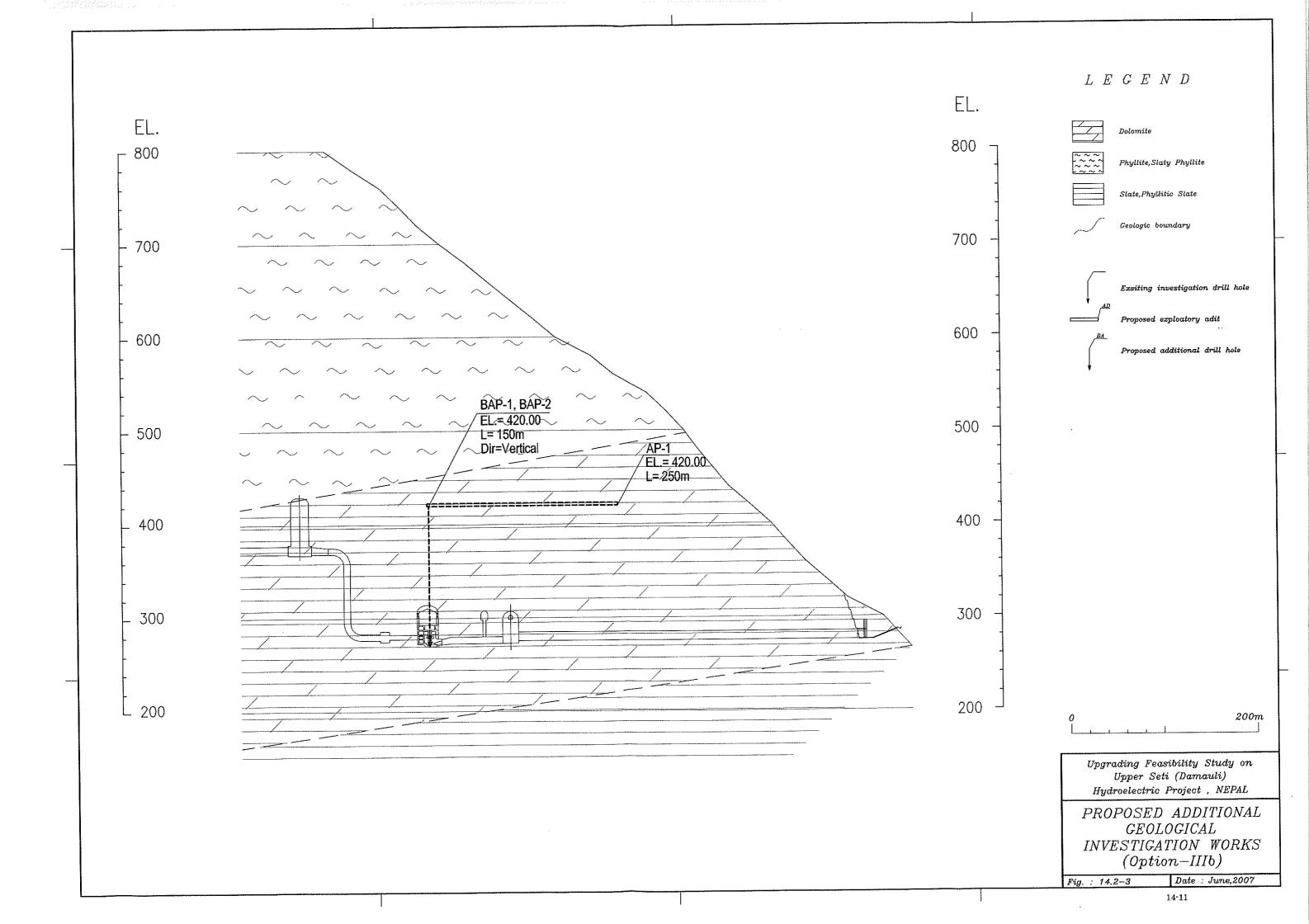
3. Upstream Area of the Reservoir


The detailed geological mapping using the topographic map scale of 1/1,000 to 1/5,000 is recommended to examine the detail extent of the mitigation or countermesure against the erosion of some terrace cliffs from Bhimad Bazzar to Jaruwapan of the upstream area of the reservoir.

4. Construction Material

The test of the concrete aggregate for the material collected from the exprolatory adit. The test includes soundness, abration, density, absorption and Alkali Aggregate Reaction test of Carbonate rocks. The Alkali Aggregate Reaction test should be carried out by the method such as Mortar -bar test or Rock-cylinder method of ASTM C586-05.

L E G E N D



Upgrading Feasibility Study on Upper Seti (Damauli) Hydroelectric Project , NEPAL

PROPOSED ADDITIONAL
GEOLOGICAL
INVESTIGATION WORKS
(DAM SITE, PROFILE)

Fig. 14.2-2

Date : June,2007

