6. CONSTRUCTION METHOD AND COST ESTIMATE

6.1 Construction Method

1) General

(1) Description of the Project

The construction works of UMRT Line No. 2 consist of the following works:

- (i) Bored Tunnels;
- (ii) Cut & Cover Tunnels;
- (iii) Elevated Viaducts;
- (iv) Underground Stations;
- (v) Elevated Stations; and
- (vi) Depot.

(2) Earthworks

Due to the planned tunnels and underground stations, huge amount of excavated soil will be produced. Some of those surplus soils may be used as the embankment filling material for the depot and approaches for the elevated viaduct portion but most of the soil has to be disposed. It seems that such surplus soils and debris can be normally disposed in the area within 20 to 40km around Hanoi City. Disposal of surplus soil shall be carried out in order not to affect the environment around such areas. The surplus soil may also be used for other projects, such as Ring Road 4 and other road projects that need huge amount soil for embankment.

Borrow soil are also available around Hanoi City within the distance of 20 to 30km.

According to the soil investigation, the groundwater depth was found to be relatively deep (GL-1.2m to GL-9.3m). However, the investigation was conducted in February (dry season) so, the water level may rise in the rainy season. For deep excavations, attention shall be paid for the groundwater.

Furthermore, deep excavation for the construction of underground stations and cut & cover tunnels, diaphragm wall needs to be adopted as earth retaining wall for excavation. The embedment length shall be carefully determined not only by the structural stability but as well as by the groundwater effect, since the soil investigation results shows that the permeable sand and gravel layer exist in the lower portion below GL-10m or GL-15m.

The proposed location of depot is in a swampy area so that attention shall be paid in case of embankment fill. Top soil shall be removed and replaced with well graded granular materials.

(3) Concrete

Ready mixed concrete are available in Hanoi City and commonly used for many projects. Pre-cast concrete products such as kerb stones, concrete pipes, etc. are also available.

Temporary batching plant may be established for fabrication of segment rings for bored tunnel, PC sleepers for railway tracks, box girder segments for viaducts, etc. whenever required.

(4) Steel Fabricators

Steel fabrication shops in and around Hanoi City can be sourced for the fabrication of structural steels.

(5) Traffic Management

Since the bored tunnel is applied for a long stretch of the Project, the disturbance to the traffic will be minimized. Also where the cut & cover method with temporary deck cover or top down construction techniques are adopted, the effects on the road traffic will be minimized. However, at the intersections of major roads and on busy roads, traffic management will be essential for the construction works.

2) Shield Tunnel

According to the "Standard Specification of Tunnel (Shield Tunnel)" issued by the Japan Society of Civil Engineering, the shield tunnel (or bored tunnel) is classified into seven types. The applicability to the soil conditions are summarized in the Table below.

Shield Type			Ma	Manual Shield Semi Manual Shield			Mechanical Shield		Blind Shield		Earth Pressure Type Shield						Slurry Shield		eld					
Soil Classification						Wechanical Shield		Dina Oniela		aiu	Earth Pressure Shield		sure	Mud Pressure Shield										
Classification	Soil	N Value	Water Content	Supp	orting N	lethod	Suppo	orting N	lethod	Suppo	orting N	lethod	Supporting Method		lethod	Supporting Method		lethod	Supporting Method		Supporting Method			
Classification	301	IN-Value	(%)	w/o	with	type	w/o	with	type	w/o	with	type	w/o	with	type	w/o	with	type	w/o	with	type	w/o	with	type
	Organic Soil	0	≥300		х		х	х		х	х		х	Δ	А	х	Δ	А	x	Δ	А	x	Δ	А
Alluvium Clav	Silt/Clay	0-2	100-300	x	Δ	А	x	x		x	х		0	-		x	Δ	А	Δ	0	А	Δ	0	Α
Alluvium Glay	Sandy Silt/Clay	0-5	≥80	x	Δ	А	x	x		x	х		0	-		Δ	0	А	Δ	0	А	\triangle	0	Α
	Sandy Silt/Clay	0-10	≥50	Δ	0	А	x	Δ	А	\triangle	0	А	\triangle	-		0	-		Δ	0	А	\triangle	-	
	Loam/Clay	10-20	≥50	0	-		0	-		Δ	-		х	х		0	-		0	-		0	-	
Diluvium Clay	Sandy Loam/Clay	15-25	≥50	0	-		0	-		0	-		x	x		0	-		0	-		0	-	
	Sandy Loam/Clay	≥20	≥20	Δ	-		0	-		0	-		x	x		0	-		0	-		0	-	
Soft Rock	Mud Stone	≥50	≤20	x	-		0	-		0	-		x	x		-	-		-	-		-	-	
	Sand with Silty Clay	10-15		Δ	0	А	Δ	0	А	Δ	0	А	х	х		0	-		0	-		0	-	
Sandy Soil	Loose Sand	10-30	≤20		Δ	Α·Β	x	x		x	Δ	Α·Β	x	х		Δ	Δ	А	0	-		Δ	0	А
	Dense Sand	≥30		Δ	0	A·B	\triangle	0	A·B	\triangle	0	Α·Β	x	х		\triangle	Δ	А	0	-		0	-	
	Loose Sand	10-40		х	Δ	A·B	x	Δ	A·B	x	Δ	A·B	х	х		Δ	Δ	А	0	-		Δ	0	А
Sand/Grave	Dense Sand	≥40		Δ	0	А·В	Δ	0	Α·Β	Δ	0	Α·Β	x	х		Δ	Δ	А	0	-		0	-	
	Sand with Gravel			x	Δ	А·В	Δ	0	A·B	x	х		x	х		Δ	Δ	А	0	-		Δ	Δ	Α
	Gravel			x	\triangle	A·B	x	\triangle	A·B	x	x		x	x		\triangle	\triangle	А	\triangle	-		\triangle	\triangle	А

Table 6.1.1	Applicability of Shield Tunnel
-------------	--------------------------------

Note 1) Plenum system will be principally used for Manual, Semi Mechanical and Blind type shields.

O Applicable

A Detail study is required for application

x : Not applicable

B: Groundwater Lowering Method - : No supporting method required

Source: "Standard Specification of Tunnel (Shield Tunnel)" Japan Society of Civil Engineering

Source: HAIDEP Study Team

w/o: without supporting method with: with supporting method

A: Chemical Injection Method

From the soil conditions, earth pressure type or slurry shield will be recommended. Both are also called as closed type shield machine, having a partition wall in the front. The cutter chamber between the excavation surface and the partition wall will be filled with soil or slurry with sufficient pressure to stabilize the excavation surface during excavation.

The earth pressure shield is to fill the chamber between excavation surface and the

partition wall with excavated soil pressurized with propulsion thrust of the boring machine to stabilize the excavation surface. The excavated soil will be carried by screw conveyor or other means for disposal.

The mud pressure type is similar to the above but to plasticize and fluidize the excavated soil by providing additives in the soil.

The slurry type is to fill the chamber with mud slurry by circulation to stabilize the excavation surface as well as to convey the excavated soil from the tunnel as fluid. The boring machine is equipped with functions for excavation, mixing excavated soil, circulation of slurry, pressurizing control, slurry treatment to segregate the slurry, etc. The systematic flow of slurry type tunnel boring machine is illustrated in Figure 6.1.1.

The excavation by boring machine will normally progress around seven to ten meter per day depending on the conditions.

Figure 6.1.1 Systematic Flow of Slurry Type Shield Tunnel

Source: HAIDEP Study Team

3) Cut and Cover Method

Conventional cut & cover method is adopted for underground stations and some stretches of the tunnel. Cut & covert method is to construct earth retaining structures for the excavation laterally supported with temporary walling and struts. In order to allow the road traffic above, temporary deck covers will be provided on the top and the excavation and structure work can be carried out underground minimizing the disturbance to the traffic. The work sequence of cut & cover method is illustrated in Figure 6.1.2.

For shallow excavation, temporary sheet pile may be adopted while for deep excavation diaphragm wall shall be constructed to retain the earth. Attention to be paid for the groundwater and the embedment length of the diaphragm wall shall be determined considering the effect on the groundwater. Some pumps shall be provided to keep the excavated pit dry during the construction.

During the excavation, underground utilities such as drainage line, water mains, electric and telecommunication cables, gas pipes, etc. may require relocation and shall be protected to secure continued service for the residents living nearby.

4) Viaduct

The elevated viaduct is designed as segmental pre-stressed concrete box girder. PC box girder segments will be fabricated in a yard near the site. The first segment will take six days including curing period while the remaining segments will be produced by the pace of a segment per day. Fabrication procedure is shown in Figure 6.1.3.

Span-by-span erection with temporary erection girder will be adopted, which is shown in Figure 6.1.4.

Figure 6.1.4 Span-by-Span Erection with Temporary Erection Girder.

6.2 Construction Schedule

Construction schedules for UMRT Line 2 Option 1 & 2 are shown in figures 6.2.1 and 6.2.2, respectively. Construction schedules for 1a & 2a which are from station 3 to 16 are also shown in figures 6.2.3 and 6.2.4, respectively.

Figure 6.2.1 Construction Program for UMRT Line 2 (Option 1)

B-6-6

Figure 6.2.3 Construction Program for UMRT Line No. 2 (Option 1a)

6.3 Construction Cost Estimate

1) Overview

Capital costs were estimated for all costs expressed in (June 2006) US Dollars. The cost estimate utilizes parametric unit costs and special condition costs for the majority of the cost estimate. The parametric unit costs were based on a conceptual scope appropriately developed for each specific work item. Parametric unit costs is an estimate developed for all elements included in a "cross section" of a work item for a unit of measurement.

Costing begins with a cross section or sketch of a typical facility. For a typical section, the quantities of construction units required to construct one route meter or square meter are computed and unit costs are applied to determine the base cost for constructing a typical route meter.

The "basic cost method" in construction cost estimation was adopted where assumptions from Unit Price Analysis were based on the results of preliminary investigation and field reconnaissance survey. The scope of works were identified and broken down into component works items. Then most practical and cost-effective construction method was determined and studied, including the sequencing of activities. Following these activities, the size and composition of crews, type and number of equipment, and construction materials requirements were established. Finally, deviations from the work program of each activity involved were determined, taking into consideration the foreseen constraints, obstruction and other impediments to be encountered in project implementation.

(1) Rail Infrastructure

The construction of permanent works includes tunnels, viaducts, stations, depot and structures were derived from conventional cost analysis procedures. Unit prices of individual items were determined from various sources, and then checked for accuracy and applicability to Hanoi conditions. After the unit prices of each work items were determined, the costs for each item were arrived at simply by multiplying the quantities of the work items involved. Cost estimation for track work and the depot followed the same procedures.

(2) Rail System and Rolling Stock

While each individual component of rail system works i.e. rolling stock, signaling communications, power supply, trackwork, were also carefully studied; these components could not be further disaggregated into sub-components. Thus, costing for planning purposes were utilized in terms of costs per route-kilometer, per station, or per unit. These were then compared to local and international urban transit projects.

(3) Civil Works Components

Direct Costs: These cost, which are identifiable from a particular accounting standpoint as having been incurred in the performance of a specific item of work. It basically involves the following:

- (i) Equipment Cost: these were derived from reliable sources in the local and international construction industry.
- (ii) Labor Cost: includes wages and all fringe benefits were based on Vietnam labor law requirements
- (iii) Materials Cost: The current market price of construction materials within Hanoi were

gathered and compared with prices obtained from other sources. Quotations from various suppliers are also taken most especially major construction materials. Supplies of existing plants within the vicinity of the Project site were also taken into consideration. Inquiries were also conducted in some on-going projects in Hanoi.

Indirect Cost: These are the mark-ups on the estimated direct costs that are not directly involved in the execution of the work items. It is taken as a percentage of the estimated direct costs to cover, among other things, expenses that are incurred in the completion of the works which include but not necessary limited to the following:

- (i) Mobilization;
- (ii) Taxes;
- (iii) Profits or Mark-ups; and
- (iv) Overhead.

Foreign, Local and Tax Components: Tax components of the various material, equipment and labor were arrived at based on the pertinent requirements by the relevant Vietnam construction cost guidelines on construction projects.

(4) Summary of Assumptions

- (i) Taxes comprise 11-18% of direct cost and are chargeable to the local currency.
- (ii) No price escalation factor is applied to the base cost for local and foreign currencies to anticipate inflationary pressures during construction.
- (iii) A physical contingency factor of 10% for local and foreign currency is applied as a buffer for quantity adjustment during construction.
- (iv) Costs of General Items Preliminaries comprise 6% of total Direct Cost.
- (v) Right of Way (ROW) acquisition is estimated based on average land values for urban, suburban, agricultural land uses
- (vi) Engineering services (Construction Management & Supervision) comprise 7.5% of total Direct Cost
- (vii) Office Cost is estimated at 1% of the total Direct Cost
- (viii) Base year in cost estimation is mid 2006 and exchange rate is US\$=VND16000=115yen.
- (ix) Includes general items & office (7%)
- (x) Includes VAT (10%) on material & equipment
- (xi) Includes tax on contractors profit (5.5%)
- (xii) Taxes/Import duties on foreign equipment and materials (10%)
- (xiii) Number of rolling stock vehicles for initial system based on 2020 ridership forecasts
- (xiv) Design year for infrastructure based on 2050 ridership
- (xv) Phased construction/operations between 2013 and 2020 (earliest start date of operations)
- (xvi) Design life: Infrastructure: 100 years; Rolling stock: 30 years; Rail systems 15 years;

(5) Summary of Exclusions

- (i) New Transport interchanges/ Highway structures/road works (except reinstatement)
- (ii) Priority Feeder bus system vehicle and O&M costs

- (iii) Utilities/traffic management costs
- (iv) Project Contingency (10%)
- (v) Consultants & PM fees
- (vi) Land acquisition costs
- (vii) Resettlement costs
- (viii) Interest during construction
- (ix) Currency fluctuation
- (x) Finance Arrangement fees
- (xi) Finance charges/interest
- (xii) Government levy/fees
- (xiii) Local government taxes
- (xiv) MOT/PMU costs
- (xv) Franchise fees
- (xvi) Operations & maintenance training costs
- (xvii) Property development revenue/costs

2) Methodology

(1) Vietnamese Guidelines

The guidelines for the cost estimation for the public works in Vietnam are explained in the collected various documents listed in Table 6.3.1.

No.	Title	Date
Circular 04/2005/TT-BXD	Guiding the formulation and management of expenses of investment projects on construction of works	2005/04/01
Decree No. 26/CP	Temporarily Regulating The Salary in Enterprises	1993/05/23
Circular 03/2005/TT-BXD	Guiding the Adjustment of Cost Estimates of Capital Construction Works	2005/03/04
Circular 16/2005/TT-BXD	Guiding the Adjustment of Work Construction Cost Estimates	2005/10/13
Decree No. 16/2005/ND-CP	On Management of Investment Projects on the Construction Works	2005/02/07
Decision No. 24/2005/QD-BXD	Decision on Promulgation of Estimate Norms for Construction Projects – Part of Construction	2005/07/29
Decision No. 24/1999/QD-UB	Decision on Promulgation of Unit Price in Capital Construction in Hanoi City	1999/05/15
Decree No. 118/2005	Readjusting the Minimum Wage Level	2005/09/15
Decree No. 158/2003/ND-CP	Detailing the Implementation of the Value Added Tax Law and the Law Amending and Supplementing a Number of Articles of the Value Added Tax Law	2003/12/10
Decree No. 03/2006/ND-CP	Providing for Provisions on Minimum Wages of Vietnamese Employees Working for Foreign Invested Enterprises, Foreign Agencies and Organizations and Foreign Individuals based in Vietnam	2006/01/06
Decree No. 233-HDBT	Regulations on Labor for Enterprises with Foreign Owned Capital	1990/06/22
Decree No. 204/ND-CP	Regarding Salary System for Public Servants, Officials and Military Force	2004/12/14
Decree No. 155/2004/ND-CP	Amending and Supplementing a Number of Articles of the Government's Decree No. 41/2002/ND-CP of April 11, 2002 on Policies towards Laborers Redundant due to the Restructuring Enterprises	2004/08/10
Decree No. 41/2002/ND-CP	On Policies towards Laborers Redundant due to the Restructuring of State Enterprises	2002/4/11

 Table 6.3.1
 Guidelines for Cost Estimation in Vietnam

Source: Various publications

The calculation methodology for the construction cost specified in the Circular No. 04/2005/TT-BXD (1 April 2005) of Ministry of Construction is summarized in the Figure 6.3.1 and Table 6.3.2.

Figure 6.3.1 Cost Estimation Process in Vietnam

Source: Circular No. 04/2005/TT-BXD (April 1st, 2005)

No.	Expense Item	Method of C	Calculation	Result						
1	Direct Expenses									
	1 Material expenses	$\Sigma Q j x D_{jv1} + CL_{v1}$		VL						
	2 Labor expenses	$\Sigma Q_j \times D_{jnc} + (1 + 1)$	NC							
	3 Construction machine expenses	$\Sigma Q_i \times D_{im} + (1 + K)$	М							
	4 Other direct expenses	1.5% x (VL + NC +	TT							
	Total direct expenses	VL + NC + MM + TT		Т						
2	General Expenses	РхТ		С						
	Cost estimates for construction	T + C	1	Z						
3	Pre-determined taxable income	(I + C) x prescrib	ed rate	IL						
	value of pre-tax cost estimates for	(T + C + TI)		G						
4	Value added tax	$C = T^{XD}$		GTGT						
Т	Value of after-tax aget actimates	G = C + CTCT		G						
	Functional for building of make-shift	0 / 0101		UXDCPT						
	houses in construction sites for									
	accommodation and construction									
	management	G x prescribed rat	$e \times (1 + T^{XD}_{CTCT})$	G _{XDLT}						
G _X G T ^{XL} G	<pre>construction unit price of construction job No. j K_{nc} : Labor adjustment co-efficient (if any) K_{mtc} : Construction machine expense adjustment co-efficient (if any) P : Norm for general expenses (%) provided for in Table 2 TL : Pre-determined taxable income provided for in Table 2 G : Pre-tax value of cost estimates for construction of principal works,</pre>									
	Norms of General Expenses and pre-determined Taxable Income									
	No. Type of work	General expenses P	Pre-determined taxable income							
	1 Civil works	6.0%	5.5%							
	2 Industrial works	5.5%	6.0%							
	3 Traffic works	5.3%	6.0%							
	4 Irrigation works 5.5% 5.5%									
	o lecnnical infrastructure works	4. 5%	D. D%	l						

 Table 6.3.2
 Calculation Method for Construction Cost

Source: Circular 04/2005/TT-BXD issued on Apr. 1, 2005 (Ministry of Construction)

(2) Adopted Methodology

The guidelines of cost estimation in Vietnam is respected in principle, while some adjustment were made considering that the projects proposed in the Prefeasibility study will be international tender projects. For example, regarding the minimum wage of labor, Decree 118/2005 issued on 15th September 2005 indicates that minimum wage is 350,000 VND per month, while Decree No. 03/2006/ND-CP issued on January 6th 2006 specifies 870,000 VND per month for Vietnamese employees working for foreign agencies and organizations and foreign individuals based in Vietnam. The adjustment rate specified in the Circular No. 16/2005/TT-BXD issued on 13 October 2005 does not seem to cover the recent sharp increase of the fuel cost for the construction equipment.

Therefore, the basic costs i.e. labor costs, material costs and equipment costs are estimated based on the latest market survey. The composition of the basic costs is shown in the following figure.

Note: (L) Local portion, (F) Foreign portion, (L/F) Mix of local and foreign portion

The costs are composed of foreign and local currency portion. The foreign currency portion is generally the Cost, Insurance and Freight (CIF) price of the imported goods and materials. The local currency portion consists of import tax, value added tax, domestic handling and transportation costs, local process costs, overhead and local sales and market costs, profits of local firms, etc. Imported equipment and materials used except for the domestic handling and transportation, local process, overhead, etc. shall be deemed to be foreign portion.

The proportion of the foreign and local currency will be estimated based on the following principle as shown in Table 6.3.3.

Table 6.3.3Foreign and Local Currency Portion

Foreign Currency Portion	Local Currency Portion
 Wages of foreign personnel Overheads and profits of foreign firms CIF price of imported equipment, materials and supplies 	 Wages of local personnel Overheads and profits of foreign firms Import tax, value added tax Local components of equipment, materials and supplies

Source: HAIDEP Study Team

Both foreign and local components will be expressed in US\$ converted by the current exchange rate. Adopted exchange rate for the cost estimation is US1.00 = 16,000 VND = ± 115 as of June 2006.

Indirect costs, i.e. general expenses, contractor's profits (described as pre-determined taxable income in the guidelines), and temporary engineer's office (described as expenses for building of make-shift houses in construction sites for accommodation and construction management) are calculated by the percentage specified in the Circular 04/2005/TT-BXD of 1 April 2005.

The cost for UMRT Project is also compared with similar overseas projects in Asian countries to verify the adequacy of the estimated amount.

3) Basic Cost

(1) Labor Cost

The labor cost is estimated based on the minimum wage of 870,000 VND/month specified in Decree No. 03/2006/ND-CP issued on 6 January 2006. The daily wages of classified labors considering the workable days, allowances, social charges, etc. are calculated as shown in Table 6.3.4.

Table 6.3.4 Labor Cost

Labor	JOST										
Nationa Work D Annual Annual Annual Minimuu Leave (Bonus Basic D Basic M	National Holiday = 8 days/week Work Days/Week = 5.5 days/week = (7 Weekdays – Sunday – 0.5x Saturday) Annual Paid Work Days = 279 days = 365 days/7 days x Weekly Work Days – National Holiday Annual Rainy Days = 50 days/ year = Daily Precipitation of 10mm and mote (assumed) Annual Workable Days = 242 days = [(365/7)week x Weekly work days / 365] x [(365-Holidays) / 365] x [1-(Annual Rainy Days/365]) x 365 days Minimum Daily Wage = 43,140 VND/day = 870,000 VND/month x 12 month / Annual Workable days 2.70 US\$/day Leave (Paid Holidays) 1.00 month/year Bonus 1.00 month/year Basic Daily Wage = Min. Daily Wage x Labor Cost Index Basic Monthly Salary = (Basic Daily Wage x Annual Paid Work Days)/12 Months										
Day v	Day work Night work Total										
75.00)%	25.00%	100.	00%							
1.00	19/2	1.50	2.50	50%							
75.00	J76	37.50%	112.3	30%							
Allowan Leave (Bonus Social (Annual Daily La	Allowances (overtime) = [Day Work (%) x 1.00 + Night Work (%) x 1.50 - 100%] x Basic monthly salary Leave (Paid Holidays) = 1.00 x Basic Monthly Salary Bonus = 1.00 x Basic Monthly Salary Social Charge 10.0% x (Basic Monthly Salary x 12 + Leave + Bonus) Annual Cost Paid by Employer = Daily Labor Cost for Estimate =										
Item No.	Description	Labor Cost Index	Basic Daily Wage	Basic Monthly Salary	Allowance (overtime) 12.50%	Leave (Paid Holidays)	Bonus	Social Charge 10.00%	Annual Cost Paid by Empoyer	Daily Labor Cost for Estimate	
			US\$/day	US\$/month	US\$/month	US\$/year	US\$/year	US\$/year	US\$/year	US\$/day	
L002	Foreman	1.80	4.86	113.00	14.13	113.00	113.00	175.16	1,926.72	7.96	
L003	Operator	1.30	3.51	81.61	10.20	81.61	81.61	126.49	1,391.43	5.75	
L004	Driver	1.20	3.24	75.33	9.42	75.33	75.33	116.77	1,284.43	5.31	
L005	Carpenter	1.40	3.78	87.89	10.99	87.89	87.89	136.23	1,498.57	6.19	
L006	Re-Bar Worker	1.30	3.51	81.61	10.20	81.61	81.61	126.49	1,391.43	5.75	
L007	Masonry	1.50	4.05	94.16	11.77	94.16	94.16	145.95	1,605.43	6.63	
L008	Blaster	1.70	4.59	106.72	13.34	106.72	106.72	165.42	1,819.58	7.52	
L009	Welder	1.60	4.32	100.44	12.56	100.44	100.44	155.69	1,712.57	7.08	
L010	Painter	1.40	3.78	87.89	10.99	87.89	87.89	136.23	1,498.57	6.19	
L011	Mechanic	1.40	3.78	87.89	10.99	87.89	87.89	136.23	1,498.57	6.19	
L012	Electrician	1.30	3.51	81.61	10.20	81.61	81.61	126.49	1,391.43	5.75	
L019	Skilled Labor	1.30	3.51	81.61	10.20	81.61	81.61	126.49	1,391.43	5.75	
L020	Labor	1.00	2.70	62.78	7.85	62.78	62.78	97.31	1,070.43	4.42	
L021	Diver	1.90	5.13	119.27	14.91	119.27	119.27	184.87	2,033.57	8.40	
L022	Captain	2.50	6.75	156.94	19.62	156.94	156.94	243.26	2,675.86	11.06	
L023	Office Crew	2.00	5.40	125.55	15.69	125.55	125.55	194.60	2,140.58	8.85	
L024	Crew	1.50	4.05	94.16	11.77	94.16	94.16	145.95	1,605.43	6.63	
L030	Foreign Expert										

Minimum Wage DECREE No. 03/2006/ND-CP Hanoi, 06 January 2006 Providing for Provisions on Minimum Wages of Vietnamese Employees Working for Foreign Invested Enterprises, Foreign Agencies and Organizations and Foreign Individuals based in Vietnam

Effective from 01 February 2006 Minimum Wage

No.	Area	VND/month
1	Districts of Hanoi and Ho Chi Minh City;	870,000
2	Suburb districts of Hanoi, Ho Chi Minh City; districts of Hai Phong City, Ha Long City of Quang Ninh Province, Bien Hoa City of Dong Nai Province, vung Tau City of Ba Ria – Vung Tau Province, Thu Dau Mot Town and Districts of Thuan An, Di An, Ben Cat and Tan Uyen of Binh Duong Province	790,000
3	Other areas	710,000

The minimum wages provided for in Article 1 under this Decree are used as a basic for establishing a salary scale, payroll ledgers and allowances; for determining salary levels to be started under the labor contracts; and for the implementation of other regime.

The lowest salary paid to workers who have undergone industrial training (including on-the-job training provided by enterprises) should be at least 7% higher than minimum wages provided for in Article 1 under this Decree.

Enterprises are encouraged to apply a rate of minimum wage that is higher than those of minimum wages provided for in Article 1 of this Decree.

REGULATIONS ON LABOR FOR ENTERPRISES WITH FOREIGN OWNED CAPITAL (Issued with Decree No. 233.HDBT of the Council of Ministers dated 22 June 1990.)

CHAPTER VIII Social Insurance

Article 46

Article 46 Every month, each enterprise shall pay a contribution to social insurance in a sum equivalent to ten (10) per cent of the amount of total wages and salary paid to its employees. This sum shall be applied as follows: Two per cent to the labor office for the purpose of unemployment benefits. Eight per cent to the social insurance fund established at the enterprise and administered jointly by the representative of the director and the labor representative on order to meet expenses which may arise as a result of: sickness, labor accidents, occupational diseases (including leave taken and medical expenses); pregnancy, maternity and childcare; and burial and funeral expenses (for those who die during the term of employment).

(2) Material Cost

For the material costs many information were gathered and compared with the price in Japan to comprehend the tendency of the prices. The comparison of the costs for major materials is summarized in the following table.

Inter Unit (NB) (UN) Coling (%) Remarks Gestion 10 100 -260 70 40 600 -600 Gestion 10 100 -260 70 40 600 -600 Gestion 100 100 100 -000 55.04 600 66.0 Reference 000 1 7550.00 -7660.00 65.04 65.00 65	Items				Market Rate	-		Comparison w		vith Japanese Rate	
Determine Image			Unit	((115\$)	(I Yen)	Cost	(%)	Remarks
Dots Of M B B TAO B <th< td=""><td></td><td></td><td></td><td>(</td><td>me)</td><td></td><td>(00φ)</td><td>(0. 1011)</td><td>(¥)</td><td>(70)</td><td>Remarko</td></th<>				(me)		(00φ)	(0. 1011)	(¥)	(70)	Remarko
Sector Boo 1000 - 1000 - 1000 - 1000 - 1000 - 10000 10000 10000	Diesel Oil		ltr	7,900			0.49	57	66	86.0	
Data Samp With Sign '. 1.881 0.07 d. 1.88 0.07 d. 1.88 0.08 Reservation dig Strong Strong 0.000 -0.000 0.000	Gasoline		ltr	11,000			0.69	79	91	86.9	
Name Name <th< td=""><td>Electricity</td><td></td><td>kWh</td><td>528</td><td>~</td><td>1,661</td><td>0.07</td><td>8</td><td>16</td><td>50.6</td><td></td></th<>	Electricity		kWh	528	~	1,661	0.07	8	16	50.6	
Internation International (1) Internation (1) I	Water Supply		m°	3,500			0.22	25	216	11.6	
International bas 20000 1	Telecommunication	000054	min	400		0.005.000	0.03	3	3	96.6	
Sale Anony 1 1 7130.00 - 9480.00 20.22 20.00 10.22 Strutter Steel (stage) 1 7.780.00 - 5.780.00 7.700 7.4 7.700 7.4 7.700 7.4 7.700 7.4 7.700 7.4 7.700 7.4 7.700 7.4 7.700 7.4 7.700 7.700 7.4 7.700 <td>Reinforcing Bars</td> <td>SD295A</td> <td>t</td> <td>7,330,000</td> <td>~</td> <td>8,095,000</td> <td>482.03</td> <td>55,434</td> <td>58,000</td> <td>95.6</td> <td></td>	Reinforcing Bars	SD295A	t	7,330,000	~	8,095,000	482.03	55,434	58,000	95.6	
Solution State Solutio		SD390A	t	7,480,000	~	8,095,000	486.72	55,973	62,000	90.3	
Solution Biologic Langers 1 <td>Steel Round Bars</td> <td></td> <td>t</td> <td>7,130,000</td> <td>~</td> <td>7,480,000</td> <td>456.56</td> <td>52,505</td> <td>58,000</td> <td>90.5</td> <td></td>	Steel Round Bars		t	7,130,000	~	7,480,000	456.56	52,505	58,000	90.5	
Single Lingson 0	Structural Steel (S snapes)		t	7,980,000	~	8,180,000	505.00	58,075	77,000	75.4	
Stort Program 0 20 2 ml m 1 11 ml 1 12 ml 1 10 ml 1 10 ml Portard Generic 0 43 1 ml 1 12 ml 1 10 ml 1 10 ml 1 10 ml 1 10 ml Portard Generic 0 41 1 ml 1 10 ml Portard Generic 0 11 ml 1 10 ml <td>Structural Steel (snapes)</td> <td>G 00 4</td> <td>t</td> <td>7,280,000</td> <td>~</td> <td>7,680,000</td> <td>647.50</td> <td>53,763</td> <td>68,000</td> <td>79.1</td> <td></td>	Structural Steel (snapes)	G 00 4	t	7,280,000	~	7,680,000	647.50	53,763	68,000	79.1	
ID Distance Distance <thdistance< th=""> Distance Di</thdistance<>	Steel Pipes	Ø 38.1	m	8,714	~	15,159	0.75	86	73	117.1	
Data Current 0.040 m 10.00 10.00 10.00 10.00 10.00 10.00 Come Aggregates m m ¹ 14.000 5.86 7.10 6.20 2.85 10.00 <t< td=""><td></td><td>Ø 42.2</td><td>m</td><td>10,571</td><td>~</td><td>16,857</td><td>0.88</td><td>99</td><td>96</td><td>103.0</td><td></td></t<>		Ø 42.2	m	10,571	~	16,857	0.88	99	96	103.0	
Poltang Convent. Image: Co		Ø 48.1	m	12,095	~	19,286	0.98	113	110	103.0	
Contra Aggegates m 9.000 6.83 6.75 2.50 2.33 Rady Mit Contrain M150 m1 444.570 55.50 27.22 1.50 2.53 Rady Mit Contrain M200 m1 444.570 55.500 27.23 1.52 1.50 2.24.52 M200 m1 454.60	Portland Cement		t	780,000			48.75	5,606	8,400	66.7	
Fire Agrounds mit 110.00 mit 110.00 mit 100	Coarse Aggregates		m³	94,000			5.88	676	2,900	23.3	
Ready.Accorrete M195 m 445,78 - 458,89 27,32 3,424 1.80 38,1 118,82 M250 m* 444,80 - 55,20 323,3 344 25,00 433,3 344,82 M500 m* 55,00 - 623,60 35,84 4,051 35,80 4,031 38,8-6,22 Som m* 63,000 - 67,000 544 453,1 10,800 43,3 38,8-6,22 Som m* M400 m* 70,000 - 10,800 43,3 10,800 43,3 10,800 43,3 10,800 43,3 10,800 12,300 10,300 10,300 10,300 11,300 11,3 10,300 11,3 10,31	Fine Aggregates		m°	115,000			7.19	827	2,900	28.5	
H000 m 458.08 92.000 87.10 33.31 83.00 39.7 21.82 H000 m 558.00 67.428 77.33 4.500 18.00 4.31 38.8.82 M400 m ¹ 558.000 77.428 77.33 4.500 18.00 4.31 48.8.2 Start m ¹ 558.000 77.428 77.33 4.500 18.00 4.31 40.8.2 Start m ¹ 18.000 7.1000 5.31 5.80 18.00 4.32 Start m ¹ 18.000 7.1000 5.31 5.80 18.00 4.32 Start m ¹ 19.000 m 7.000 5.31 5.82 12.2 4.42 Carlel Start m 4.300 m 4.300 1.300 1.422 1.800 4.52 1.20 Carlel Start m 4.300 m 1.300 1.422 1.800 1.300 1.300 Linder m	Ready-Mix Concrete	M150	m	415,780	~	458,580	27.32	3,142	8,700	36.1	18-8-25
ME30 m ⁻¹ 249,240 - 55,000 25,5 3,414 9,250 44,3 243,25 Image: Construct of the second sec		M200	m°	458,580	~	524,000	30.71	3,531	8,900	39.7	21-8-25
M600 mt 534.620 - 62.810 535.8 4.001 9.402 433.8 338.822 Store M60 mt 120.00 - 782.57 783.57 783.57 782.57 782.57 783.57		M250	m³	484,040	~	557,000	32.53	3,741	9,250	40.4	24-8-25
M650 m ⁺ 559.000 - 771.458 4.350 4.350 4.050 4.053 4.364 1.200 4.053 1.200 4.851 1.200 4.851 1.200 4.851 1.200 4.851 1.200 4.851 1.200 4.851 1.200 4.851 1.200 4.851 1.200 4.851 1.200 4.851 1.200 4.851 1.200 2.255 1.200 7.31 3.89 1.200 7.33 1.200 7.33 1.200 7.33 1.200 7.33 1.200 7.33 1.200 7.35 1.200 7.35 1.200 7.35 1.200 7.35 1.200 7.35 1.200 7.35 1.200 7.35 1.200 7.35 1.200 7.35 1.200		M300	m ³	514,620	~	623,810	35.58	4,091	9,900	41.3	30-8-25
Stom M400 m ⁺ 571,000 - 788,571 42.40 4.86 11.200 43.4 440-52 Crushel Sores m ⁺ 100,000 - 1120,000 153 800 152 152 Crushel Sores 0.000 m ⁺ 100,000 - 100,000 151 868 153 2004 Courste Pipes 0.000 m 763,000 - 107,000 511 868 2015 1120 1120 1131 Courste Pipes 0.000 m 756,000 - 107,000 511 863 2015 1132 1133 1130 1131 1131 1132 1133		M350	m³	539,000	~	671,429	37.83	4,350	10,800	40.3	36-8-25
Store - m" 80.000 - 50.0 57.5 30.00 192.2 Control Eppes - - - - - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00 - 100.00		M400	m ³	571,000	~	788,571	42.49	4,886	11,250	43.4	40-8-25
Graves m ⁺ 880.00 - 110.00 5.84 8.83 2.900 42.5 Sand m 90.000 - 770.00 13.70 8.80 1.100 42.5 Sand M 90.000 - 770.00 13.70 13.80 7.81 1898 3.805 12.25 Concrete Pages Ø 600 m 177.000 - 770.00 4.71 18.85 12.35 Ø 600 m 620.00 - 770.00 4.51 4.55 4.301 4.74 18.85 Uniter Ø 1000 m 1500.000 - 770.000 45.51 4.779 8.000 72.2 Lumber m ⁻¹ 1500.000 - 500.000 75.000 15.53 4.779 8.000 72.2 Lumber m ⁻¹ 1500.000 - 6.237 2.71 1.83 2.23 Part Kg 1.700 - 6.200 1.83 6.23 2.25	Stone		m³	80,000			5.00	575	3,000	19.2	
Crusted Stores m ¹ 100.00 - 125.00 7.03 8.09 1.900 7.25 Concrete Pipes 0.000 m 770.00 1.31 3.05 2.7.00 1.31 3.05 2.7.00 1.31 3.05 2.7.00 1.31 3.05 2.7.00 1.31 3.05 2.7.00 1.31 3.05 2.7.00 1.31 3.05 2.7.00 1.32 1.05 1.07 1.05 3.07 1.05 1.07 1.05 3.07 1.05 1.07 1.05 3.07 1.05	Gravels		m ³	80,000	~	110,000	5.94	683	2,900	23.5	
Sand m <thm< th=""> m m m</thm<>	Crushed Stones		m ³	100,000	~	125,000	7.03	809	1,900	42.6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sand		m ³	30,000	~	70,000	3.13	359	2,700	13.3	
Q 400 m 117.00 - 13.000 781 898 3.985 722 1 Q 800 m 427.000 - 486.00 242.2 163.4 172 163.5 074 173 Q 1500 m 427.000 - 463.00 242.2 165.4 174 163.5 075.0 175 Lumber m 193.00.00 - 172.00 165.05 179.00 56.0 165.0 175.0 165.0 175.0 165.0 165.0 165.0 165.0 165.0 165.0 165.0 165.0 165.0 165.0 165.0 165.0 165.0 165.0 175.0 165.0 1	Concrete Pipes	Ø 300	m	75,600	~	107,000	5.71	656	3,215	20.4	
Ø 600 m 220.00 - 251.00 14.72 14.83 9.784 17.3 Ø 1000 m 637.000 - 262.00 3.245 17.45 18.2 Ø 1000 m 636.000 - 7.86.00 43.31 4.761 62.153 17.2 Lumber Ø 2000 m' 1300.000 - 1500.000 17.00 37.00 27.2 - Lumber m' 1300.000 - 1500.000 19.53 47.77 60.000 7.8 Phood 120.264.012 m' 61.000 - 16.000 7.8 47.87 62.3 2.4 7.5 Phood 120.264.012 m' 61.000 - 62.20 1.9 1.6 62.5 2.7 62.5 2.7 7.6 8.4 7.6 7.6 8.4 7.6 7.6 8.4 7.6 7.6 8.4 7.6 7.6 8.4 7.6 7.6 7.6 7.6 7.		Ø 400	m	117,000	~	133,000	7.81	898	3,985	22.5	
Q 000 m 437.000 - 466.000 28.22 32.45 167.49 167.49 Q 1500 m 1216.000 - 728.000 43.31 4,761 45.35 12.1 Lumber Q 2000 m 1250.000 - 1.453.000 43.31 4,761 45.35 12.0 Lumber High Cault m ² 450.000 - 7.50.000 415.53 44.000 7.58 Phood 1220.2440.12 m ² 44.700.00 5.44 453 482.4 7.5 Phood 1220.2440.12 m ² 47.100 5.44 453 482.4 7.5 Phood 1220.2440.12 m ³ 47.00 5.44 455 42.6 7.5 Parid Mg 1.000 2.000 1.03 460 2.5 44.00 1.2 4.00 1.2 4.00 1.2 4.00 1.2 4.00 1.2 4.00 1.2 4.00 1.2 4.00 1.2 4.00 1.2 4.0		Ø 600	m	220,000	~	251,000	14.72	1,693	9,794	17.3	
Ø 1000 m 9560.00 - 726.000 4.331 4.751 62.512 Lunber Ø 3000 m 1938.000 - 2.12.000 7.88 40.355 83.016 17.5 Lunber m ⁻¹ 1930.000 - 7.80.000 47.80 10.083 67.00 57.2 Lunber m ⁻¹ 1950.000 - 7.60.00 41.55 83.01 59.2 Phyond 1220.2440/18 m ⁻¹ 64.160 10.000.00 45.41 65.16 66.16 59.2 Parked 1220.2440/18 m ⁻¹ 67.00 54.4 65.5 86.4 75.8 1.000.00 12.6 43.00 1.5 43.00 1.5 43.00 1.5 43.00 1.5 43.00 1.5 43.00 1.5 43.00 1.5 44.00 56.2 1.5 44.00 56.2 1.5 44.00 56.2 1.5 44.00 56.7 1.5 45.000 1.5 56.7 1.5 1.5 <td></td> <td>Ø 800</td> <td>m</td> <td>437,000</td> <td>~</td> <td>466,000</td> <td>28.22</td> <td>3,245</td> <td>16,749</td> <td>19.4</td> <td></td>		Ø 800	m	437,000	~	466,000	28.22	3,245	16,749	19.4	
Ø 1500 m 1218.000 - 1,483.000 84.305 42.05 42.05 Lumber M 1980.000 - 1,500.000 17.50 100.65 37.000 27.2 Lumber M 1980.000 - 1,500.000 415.03 47.07 80.000 62.7 Pavod 1220.2440.12 m 4.67.00 5.44 62.8 62.8 7.9 Pavod 1220.2440.12 m 4.67.00 5.44 62.8 62.7 7.9 Pavit Kg 1.980 - 85.227 2.73 31.3 600 52.2 Alkyd pavit Kg 1.100 0.73 1.4 1.551 62.3 7.9 Road Marking Pavit L 4.2300.000 206.82 2.7000 1.6 2.700 1.6 Add Aght Emulsion L 1 2.300.000 2.05.84 4.500 5.27 7.800 7.80 7.80 7.80 7.80 7.80 7.80 7.80		Ø 1000	m	596,000	~	726,000	43.31	4,751	26,132	18.2	
d 2 000 m 1938.000 - 2,112.000 18,555 43,651 17.5 Lumber m ² 1980.000 - 7,500.000 415.53 27.000 78.8 Lumber High Quality m ² 14,700.000 415.63 414.02 82.8 43.9 Phono 12202440.12 m ² 45.140 4.44 42.8 45.9 42.2 Parint 12202440.12 m ² 45.00 - 45.2 27.3 31.000 52.2 Akyd pairt 12002440.12 tit - 37.00 128.6 27.000 17.6 45.63 27.000 17.6 45.00 22.7 47.000 22.62 7.000 126.6 27.000 15.6 45.00 22.6 7.000 126.6 27.000 15.6 45.00 22.6 7.000 126.6 7.000 126.6 7.000 126.6 7.000 126.7 45.00 126.7 45.00 126.7 45.00 126.7 7.000		Ø 1500	m	1216,000	~	1,483,000	84.34	9,700	48,305	20.1	
Lumber m ² 1500.000 - 1500.000 87.50 10.083 37.000 27.22 Lumber m ² 5800.000 - 75.000.00 96.38 11.328 140.000 76.8 Piwood 12202.440:13 m ² 64.00 96.38 10.328 140.000 76.8 Piwood 1220.2440:13 m ² 64.00 76.8 22.2 77.0 62.2 86.20 75.2 Allyd cait 120.2440:13 m ² 64.00 77.00 62.5 23.7 74.0 75.6 Asphal 1 4.720.00 25.00 12.5 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 77.00 12.6 12.6 12.6		Ø 2000	m	1938,000	~	2,112,000	126.56	14,555	83,051	17.5	
Lumber m ¹ 5800,000 - 7,500,000 417,537 80,000 59.7 Piwoad 11220x244012 m ² 14,100 401 461 548 83.9 Piwoad 1220x244012 m ² 64,140 401 461 548 83.9 Paint 1220x244012 m ² 67.00 54.4 625 824 77.6 Paint 149 11.900 - 85.227 27.3 16.00 52.7 Read Marking Paint 149 11.700 90.00 12.8 90.00 12.8 12.8 Aktal Emusion Asphali - 1 32.900.00 206.57 23.719 45.000 52.7 Traffic Sign Board 7.700 each 215.782 13.40 25.65 45.000 52.7 12.8 7.800 Traffic Sign Board 7.700 each 314.600 19.63 2.257 4.000 12.9 7.82 7.800 22.8 7.800 2.8 7.800	Lumber		m ³	1300,000	~	1,500,000	87.50	10,063	37,000	27.2	
Lumber High Quality m ¹ 14,700,000 - 16,000,000 95.8 110.288 140,000 78.8 Phwood 1220,2440/12 m ² 87,000 - 85,227 2.73 313 600 52.2 Alkyd pairt kg 15,000 - 20,000 109 128 480 25.7 Alkyd pairt kg 11,700 0.73 84 135 62.3 Asplati GYD 1 2,2000 225.00 33.925 27.000 125.6 Asplati GYD 1 2,204.000 285.00 33.925 27.000 125.6 Asside Envalues 1 2,204.000 29.55 27.80 34.4 \ford 80.0 Taffic Sign Board \ford 700 each 348.725 29.16 7.280 34.4 \ford 80.0 Taffic Sign Poard \tord 900 each 324.400 19.04 2.29 7.88 3.782 1.980 2.827 \tord 80.00 Taffic Sign Polas 0.900	Lumber		m ³	5800,000	~	7,500,000	415.63	47,797	80,000	59.7	
Phwood 1220/2440/12 m ² 64.140 401 441 549 83.9 Paint 1220/2440/18 kg 1.980 - 85.227 2.73 313 660 52.2 Road Marking Paint kg 1.980 - 85.277 2.73 313 660 52.2 Road Marking Paint kg 1.1700 0.73 84 1.35 66.23 Adate Emulsion Agnhat 1 4.7200 370.00 426.52 2.740 1.56 Adate Emulsion Agnhat 1 4.2600 2.750 2.560 7.200 42.000 45.7 Trafic Sign Board V.700 each 2.415.782 1.180 1.560 7.280 7.24 0.800 Trafic Sign Board 0.700 each 3.04.600 1.913 2.567 4.400 1.29 1.100 Trafic Sign Board 0.700 each 3.04.600 1.913 2.566 7.200 2.40 0.60.57 Trafic Sign Board	Lumber	High Quality	m ³	14,700,000	~	16,000,000	959.38	110,328	140,000	78.8	
Piwood 1220/244018 m ² 87000 5.44 625 824 75.9 Alkyd paint kg 1.5000 - 20,000 1.08 1.28 480 25.7 Alkyd paint kg 11.700 0.73 84 135 66.23 Asphati - 370.00 42.550 27.000 125.6 Akad paint - 370.00 206.25 23.719 45.000 52.7 Akad Saphat Emulsion - 1 3.300.000 206.25 23.719 45.000 52.7 Trafic Sign Board - 700 each 215.785 13.49 1.561 44.000 32.2 70.00 Trafic Sign Poles 0.900m x 3.5m each 237.200 23.28 3.782 13.180 23.7 0.800 Trafic Sign Poles 0.900m x 3.5m each 2314.000 19.5 2.257 8.980 25.1 0.90.987 x 3.5m Trafic Sign Poles 0.900m x 3.5m each 314.000	Plwood	1220x2440x12	m ³	64,140			4.01	461	549	83.9	
Paintkg1,980-65,227273313600622Road Marking Paintkg11,7000.0001.0912840025.7Road Marking Paintkg11,7000.738413562.3Asphalt14,720,000236.5027.000125.6Asphalt Bord14,720,000206.2527.000125.6Acid Asphalt Enusion12,864,000179.00205.5545.00062.7Acid Asphalt Enusion12,864,00015.5144.0035.2 $\bigtriangledown 80.000$ Trafic Sign Board $\bigtriangledown 700$ each28.5728.0052.4 $\bigcirc 80.00$ Trafic Sign Board $\bigcirc 700$ each38.72521.802.56545.00034.4 $\bigcirc 80.00$ Trafic Sign Board $\bigcirc 700$ each35.82.00032.883.76213.9627.4 $\bigcirc 80.00$ Trafic Sign Board $\bigcirc 90.000$ each34.4 $\bigcirc 80.000$ 440.133.66 $\bigcirc 80.5 mn x 3.5m$ Trafic Sign Board $\bigcirc 90.000$ each34.4 $\bigcirc 80.000$ 440.133.76213.96022.3Trafic Sign Board $\bigcirc 90.0000$ each34.490.000440.133.76213.96022.5Trafic Sign Board $\bigcirc 90.00000$ each34.490.00013.9618.6 $\bigcirc 76.3 mn x 3.5m$ Trafic Sign Board $\bigcirc 90.00000000000000000000000000000000000$	Plwood	1220x2440x18	m ³	87,000			5.44	625	824	75.9	
Alkyd paint kg 15,000 ~ 20,000 128 1400 25.7 Asphalt I 1 773 84 135 62.3 Asphalt I 4,720,000 225.00 127.60 125.6 Akalt Emulsion Asphalt I 4,720,000 226.00 329.25 27.700 125.6 Akalt Emulsion Asphalt I 4,264.000 178.00 25.85 45.000 45.7 Traffic Sign Board ∇ 700 each 344,725 218.0 2.506 7.7280 34.4 ∇ 800 Traffic Sign Board Φ 700 each 344,8725 218.0 2.506 7.280 34.4 ∇ 800 Traffic Sign Poles Φ 900 each 326,200 32.89 7.826 13.109 2.87 3.800 2.51 Φ 60.0 Traffic Sign Poles Φ 913 5.57 each 344,400 12.8 Φ 7.300 3.54 41.000 12.8 Φ 7.300 22.50 T.76 3.64 407	Paint		ka	1,980	~	85.227	2.73	313	600	52.2	
Road Marking Paint Image of the second	Alkyd paint		ka	15,000	~	20,000	1.09	126	490	25.7	
Asphalt 1 1 1 370.00 42.550 27.000 157.6 Akpalt Emulsion Asphalt 1 3.300.00 296.25 23.719 45.000 52.7 Acid Asphalt Emulsion 1 2.3804.000 179.00 20.585 45.000 45.7 Traffic Sign Board ⊽ 700 each 215.782 13.49 1.551 4.400 35.2 ⊽ 800 Traffic Sign Board Ø 700 each 334.725 21.80 2.506 7.280 34.4 ♥ 800 Traffic Sign Board Ø 900 each 334.800 19.04 2.189 7.980 22.7 Ø 600 Traffic Sign Poles Ø 90mm x 3.5m each 314.000 19.63 2.257 8.980 22.5 Ø 60.5mm x 3.5m Traffic Sign Poles Ø 90m x 3.5m each 314.000 19.63 2.227 8.980 22.5 Ø 60.5mm x 3.5m Traffic Sign Poles Ø 90m x 3.5m each 34.000 19.65 566 12.2 0.60 <t< td=""><td>Road Marking Paint</td><td></td><td>ka</td><td>11,700</td><td></td><td></td><td>0.73</td><td>84</td><td>135</td><td>62.3</td><td></td></t<>	Road Marking Paint		ka	11,700			0.73	84	135	62.3	
Aspnalt B070 1 4.720.000 296.00 33.295 27.000 126.65 Akala Emulsion 1 3.300.000 206.25 23.719 450.00 457.7 Acid Asphalt Emulsion 1 2.864.000 179.00 20.866 450.00 457.7 Traffic Sign Board 7.700 each 348.725 21.80 2.866 7.880 27.4 Ø.600 Traffic Sign Board Ø.7000 each 324.4000 19.63 7.880 27.4 Ø.600 Traffic Sign Board Ø.900 each 334.4000 19.63 2.871 9.800 2.87 Ø.600 Traffic Sign Poles Ø.90mm x.3.5m each 314.000 19.63 2.267 8.980 25.1 Ø.60.5mm x.3.5m Interlocking Blocks 112.5x225.800 Gray m* 65.64 3.54 407 2.600 15.6 Ø.76.3mm x.3.5m Interlocking Blocks 112.5x225.800 gray m* 65.512 ~ 60.125 3.88 447 2.600 12.2 Interlocking Bl	Asphalt		t				370.00	42,550	27.000	157.6	
Alkait Emulsion 1 3.300.000 296.25 23.719 45.000 52.7 Add Asphalt Emulsion 1 2.2864.000 179.00 20.885 45.000 45.7 Traffic Sign Board 7.700 each 245.782 13.49 1.2501 44.000 35.2 ∨ 80.0 Traffic Sign Board 0.700 each 334.400 91.04 2.506 7.280 33.44 Ø 80.0 Traffic Sign Board 0.900 each 352.62.00 3.282 7.800 12.9 Ø 80.00 Ø 80.00 12.9 Ø 80.00<	Asphalt 60/70		t	4,720,000			295.00	33,925	27.000	125.6	
Acid Aspital Enulsion I. 2.884.000 17900 20.585 4.5000 4.457 Traffic Sign Board \bigtriangledown 700 each 2415782 13.40 1.551 4.400 352 \bigtriangledown 8000 Traffic Sign Board 0 900 each 348.725 21.80 2.566 7.280 3.44 \bigtriangledown 8000 Traffic Sign Board 0 900 each 354.600 19.42 2.891 3.762 13.190 2.274 0 6000 Traffic Sign Poles 0 900m x 3.5m each 334,000 19.63 2.267 6.800 12.9 7 0 600 Traffic Sign Poles 0 900m x 3.5m each 434,000 27.16 3.123 16.880 18.5 0 76.3mm x 3.5m Traffic Sign Poles 0 113.5mm x 3.5m each 334,000 27.16 3.123 16.880 18.5 0 76.3mm x 3.5m Traffic Sign Poles 0 113.5mm x 3.5m each 349.00 27.16 3.123 16.861 2.800 22.53 Interlocking Blocks 130x130x60	Alkali Emulsion Asphalt		t	3,300,000			206.25	23,719	45,000	52.7	
Traffic Sign Board ♥ 700 each 215,782 13.40 1.951 4.400 352 ♥ 800 Traffic Sign Board Ø 700 each 304,800 19.04 2.189 7.390 27.41 Ø 800 Traffic Sign Board Ø 900 each 304,600 19.04 2.189 7.390 22.4 Ø 600 Traffic Sign Board Ø 900 mm x 3.5m each 314,000 19.63 2.287 8.900 22.51 Ø 60.5mm x 3.5m Traffic Sign Poles Ø 900 mm x 3.5m each 434,500 27.16 3.123 16.800 18.5 Ø 76.5mm x 3.5m Traffic Sign Poles f 0 13.5mm x 3.5m each 434,500 27.16 3.123 16.800 15.6 Interlocking Blocks 112.5x225.400 Gray m ⁴ 80.817 5.05 581 2.600 22.51 Ø 60.5mm x 3.5m Interlocking Blocks 130x130x60 grey m ⁴ 80.817 5.05 561 64.5 2.600 27.8 Pathway Pwing Blocks grey	Acid Asphalt Emulsion		t	2 864 000			179.00	20,585	45,000	45.7	
Traffic Sign Board $ \[\not 900 \] each 348,725 \] 2180 \] 7280 \] 344 \] (\not 900 \] Traffic Sign Board Ø 000 \] each 526,200 \] 32,89 \] 3780 \] 3800 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 3780 \] 37$	Traffic Sign Board	▽ 700	each	215 782			13 49	1 551	4 400	35.2	▽ 800
Traffic Sign Board Ø 700 each 304.800 19.04 2.180 7.980 27.4 Ø 600 Traffic Sign Board Ø 900 each 526.200 32.89 3.782 13.190 28.7 Ø 600 Traffic Sign Poles Ø 90mm x 3.5m each 314.000 19.63 2.267 8.980 25.1 Ø 600.5mm x 3.5m Traffic Sign Poles Ø 113.5mm x 3.5m each 344.000 27.16 3.123 16.860 26.51 Ø 60.5mm x 3.5m Interlocking Blocks 112.5x225x60 Gray m' 56.664 3.54 407 2.600 15.6 Interlocking Blocks 112.5x225x60 green m' 90.495 5.66 650 2.600 27.2 Interlocking Blocks 130x13x0x60 red,yellow m' 80.17 9.9750 5.61 645 2.600 27.8 Pathway Paving Blocks 10.800 6.28 7.23 2.600 27.8 Galvanized Iron Pipe Ø 20 m 14.919 0.93 107 22.8	Traffic Sign Board	√ 900	each	348 725			21.80	2 506	7 280	34.4	▽ 800
Traffic Sign Board Ø 900 each 526 200 32.89 3.782 13.190 28.7 Ø 600 Traffic Sign Board m ³ 767,000 49.19 5.657 44.000 12.9 Traffic Sign Poles Ø 90mm x 3.5m each 314,000 19.63 2.257 8.900 25.1 Ø 60.5mm x 3.5m Traffic Sign Poles Ø 13.5mm x 3.5m each 434,600 27.16 3.123 16.800 18.5 Ø 76.3mm x 3.5m Interlocking Blocks 112.5x225x60 red yellow m ² 80,817 5.55 581 2.600 12.5 Interlocking Blocks 102.5x225x60 red yellow m ² 80,817 98,750 5.61 645 2.600 22.0 Interlocking Blocks 102.5x30x060 green m ² 90,495 ~ 10,600 6.28 723 2.600 22.8 Interlocking Blocks 102.5x30x060 green m ² 90,495 ~ 10,600 6.28 723 2.600 24.8 Interlocking Blocks 102.5x30x130x60 green m ² <	Traffic Sign Board	Ø 700	each	304 600			19.04	2 189	7,980	27.4	Ø 600
Traffic Sign Board D m² 787000 49.19 5.667 44.000 12.9 Traffic Sign Poles Ø 90mn X 3.5m each 314,000 19.63 2.287 8.980 16.5 Ø 76.3mm X 3.5m Interlocking Blocks 112.5x225x60 Gray m² 56.564 3.54 407 16.80 18.5 Ø 76.3mm X 3.5m Interlocking Blocks 112.5x225x60 redyellow m² 68.64 3.54 407 2.600 12.3 Interlocking Blocks 112.5x225x60 green m² 90.495 5.66 6561 2.600 22.3 Interlocking Blocks 130x30x60 green m² 90.495 5.61 645 2.600 12.2 Interlocking Blocks 130x130x60 green m² 70.000 ~ 80.000 6.28 723 2.600 27.8 Pathway Paving Blocks m² 70.000 ~ 80.000 4.69 5.9 1.29 148.320 46.3 Galvanized Iron Pipe Ø 20 m 14.919 0.	Traffic Sign Board	Ø 900	each	526,200			32.89	3,782	13,190	28.7	Ø 600
Traffic Sign Poles Ø 90mm x 3.5m each 314,000 19.63 22.57 8.880 22.1 Ø 0.5mm x 3.5m Traffic Sign Poles Ø 113.5mm x 3.5m each 434,500 27.16 3.123 16.880 18.5 Ø 76.3mm x 3.5m Interlocking Blocks 112.5x225x60 red,yellow m² 56.664 3.54 407 2.600 15.6 Interlocking Blocks 112.5x225x60 red,yellow m² 56.132 ~ 56.6 650 2.600 17.2 Interlocking Blocks 130x130x60 red,yellow m² 55.132 ~ 99.125 3.88 447 2.600 17.2 Interlocking Blocks 130x130x60 red,yellow m² 90.495 ~ 110.600 6.28 72.3 2.600 27.8 Pathway Paying Blocks green m² 70.000 ~ 80.000 4.68 539 11.200 4.8 Galvanized Iron Pipe Ø 20 m 14.919 0.93 107 229 52.8 Galvanized Iron Pipe </td <td>Traffic Sign Board</td> <td></td> <td>m²</td> <td>787.000</td> <td></td> <td></td> <td>49.19</td> <td>5.657</td> <td>44,000</td> <td>12.9</td> <td></td>	Traffic Sign Board		m ²	787.000			49.19	5.657	44,000	12.9	
Traffic Sign Poles Ø 13.5 m X 0.5 m each 434,500 27.16 2.12 16,88 13.5 Ø 76.3mm X 0.5 m Interlocking Blocks 112,5x225x60 Gray m² 50,564 3,123 16,88 12.5 Ø 76.3mm X 0.5 m Interlocking Blocks 112,5x225x60 green m² 80,817 50.5 581 2,600 22.3 Interlocking Blocks 112,5x225x60 green m² 90,495 5.66 650 2,600 17.2 Interlocking Blocks 103/030x60 red,yellow m² 50,100 6.45 2,600 24.8 Interlocking Blocks 103/030x60 red,yellow m² 70,000 80,000 4.69 539 11,200 4.8 Bentonite kg 1,800 0.10 122 22 52.8 Galvanized iron Pipe Ø 20 m 14,919 0.93 107 229 46.9 Ø 80 m 20,593 1.29 148 320 44.5 Ø 80 m	Traffic Sign Poles	Ø 90mm x 3.5m	each	314,000			19.63	2 257	8 980	25.1	Ø 60 5mm x 3 5m
Interlocking Blocks 112_5x225x60 Dirtomin Kosm S6.584 2.114 6477 2.800 156 Dirtomin Kosm Interlocking Blocks 112_5x225x60 red,yellow m² 80,817 5.05 581 2.800 22.3 Interlocking Blocks 112_5x225x60 green m² 90,495 5.66 650 2.800 22.3 Interlocking Blocks 130x130x60 Gray m² 55,132 ~ 69,125 3.88 447 2.600 22.8 Interlocking Blocks 130x130x60 green m² 90,495 ~ 110,600 6.28 7.23 2,600 2.8 Interlocking Blocks 130x130x60 green m² 70,000 ~ 80,000 4.0 539 11,200 4.8 Bentonite ka 1,600 0.10 12 22 52.8 Galvanized Iron Pipe Ø 20 m 14,919 0.93 107 229 46.9 Interlocking Blocks m 25,293 1.61 186 425 43.7 <td>Traffic Sign Poles</td> <td>Ø 113 5mm x 3 5m</td> <td>each</td> <td>434 500</td> <td></td> <td></td> <td>27.16</td> <td>3 123</td> <td>16,880</td> <td>18.5</td> <td>Ø 76 3mm x 3 5m</td>	Traffic Sign Poles	Ø 113 5mm x 3 5m	each	434 500			27.16	3 123	16,880	18.5	Ø 76 3mm x 3 5m
Interlocking Blocks 112_5x225x60 red,vellow m² 80,817 5.06 581 2.600 22.3 Interlocking Blocks 112_5x225x60 green m² 90,495 5.66 650 2.600 17.2 Interlocking Blocks 130x130x60 Gray m² 56,132 ~ 69,125 3.88 447 2.600 27.8 Interlocking Blocks 130x130x60 green m² 90,495 ~ 10,600 62.8 723 2,600 27.8 Pathway Paving Blocks m² 70,000 ~ 80,800 0.10 12 22 52.8 Galvanized Iron Pipe Ø 20 m 14,919 0.93 107 22.8 46.9 Galvanized Iron Pipe Ø 20 m 25,629 1.61 186 42.5 43.7 Ø 40 m 32,343 2.02 232 445.3 445.3 Ø 0 50 m 49,251 3.70 426 958 44.5 Ø 0 40 m 69,564	Interlocking Blocks 112 5x225x60	Grav	m ²	56 564			3.54	407	2 600	15.6	2 10:01111 X 0:0111
Interlocking Blocks	Interlocking Blocks 112 5x225x60	red vellow	m ²	80 817			5.05	581	2,600	22.3	
Interlocking Blocks	Interlocking Blocks 112 5x225x60	areen	m ²	QN 405			5.66	650	2,600	25.0	
Interlocking Blocks 130x130x60 red (k)	Interlocking Blocks 130v130v60	Grav	m ²	55 132	~	69 125	3.88	447	2,000	17.2	
Interlocking Blocks 100x100x00 Im OU/10 - OU/10 - OU/10 2,000 24,00 4,00 <td>Interlocking Blocks 130x130x00</td> <td>red vellow</td> <td>m²</td> <td>20,132 20,217</td> <td>~</td> <td>98 750</td> <td>5.60</td> <td>645</td> <td>2,000</td> <td>2/ 8</td> <td></td>	Interlocking Blocks 130x130x00	red vellow	m ²	20,132 20,217	~	98 750	5.60	645	2,000	2/ 8	
Interventing Biocolic box	Interlocking Blocks 130x130x60	dreep	m ²	00,017	~	110 600	6.28	722	2,000	27.0	
Autory Leng Code Autory Leng Code<	Pathway Paving Blocks	green	m ²	70 000	~	80.000	4 69	530	11 200	4.8	
Construct Construct <thconstruct< th=""> <thconstruct< th=""> <thc< td=""><td>Bentonite</td><td></td><td>ka</td><td>1 600</td><td></td><td></td><td>0.10</td><td>12</td><td>200</td><td>52.8</td><td></td></thc<></thconstruct<></thconstruct<>	Bentonite		ka	1 600			0.10	12	200	52.8	
Barriers	Galvanized Iron Pipe	Ø 20	m	14 010			0.10	107	220	46.9	
D D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>	Sartunized northipe	Ø 20 Ø 25	m	20 502			1 20	148	320	46.3	
Image: Note of the second se	-	020 (X 20	m	20,000			1.23	190	125	+0.3 ⊿3.7	
0 0 0 0 0 0 1 0 2.0.2 2.0.2 40.0 41.3 0 0 50 m 41.854 2.62 301 670 44.9 0 0.65 m 59.251 3.70 426 958 44.5 0 0.00 m 99.314 6.21 714 1.648 43.3 PVC Pipe 0 16 x 2.29 m each 13.182 0.82 95 179 52.9 0 0 20 x 2.29 m each 13.182 0.82 95 179 52.9 0 0 20 x 2.29 m each 13.182 0.82 95 105 216 48.3 HDPE 0 40/30 m 9.640 0.60 69 163 42.5 0 0 50/40 m 13.180 0.82 95 200 47.4 0 0 105/80 m 35.380 2.21 254 <td< td=""><td></td><td>0.32</td><td>m</td><td>20,028</td><td></td><td></td><td>2 02</td><td>222</td><td>420</td><td>47 0</td><td></td></td<>		0.32	m	20,028			2 02	222	420	47 0	
Description Theory 2.02 301 600 44.9 0 065 m 59,251 3.70 426 958 44.5 0 080 m 69,564 4.35 500 1.148 43.6 0 100 m 99,314 6.21 714 1.648 43.3 PVC Pipe Ø 16 x 2.29 m each 13,182 0.82 95 179 52.9 0 20 x 2.29 m each 14,545 0.91 105 216 48.3 HDPE Ø 40/30 m 9,640 0.60 69 163 42.5 0 65/50 m 16,850 1.05 121 294 41.2 0 65/50 m 16,850 1.05 121 294 41.2 0 105/80 m 35,380 2.21 254 626 40.6 0 195/150 m 91,720 5.73 681 3.4 210x10x60 Bricks 200x105x60 each		0+0 0/50	m	11 854			2.02	202	670	41.0	
DO III DO/201 S/O 440 930 44.3 0 0 0 m 69,564 4.35 500 1,148 43.6 PVC Pipe 0 16 x.2.9 m each 13,182 0.82 95 179 52.9 0 0.20 x.2.2 m each 14,545 0.91 105 216 48.3 0 0.25 x.2.2 m each 26,818 1.68 193 313 61.7 HDPE 0 40/30 m 9,640 0.60 69 163 42.5 HDPE 0 65/50 m 16,850 1.05 121 294 41.2 0 0.65/50 m 16,850 1.05 121 294 41.2 0 105/80 m 35,380 2.21 254 626 40.6 0 195/150 m 91,720 5.73 659 1,640 40.2 Ericks 2	<u> </u>	00 U 00 E	m	41,004 50.054			2.02	301	0/0	44.9	
Dec In Dec. UN 4.35 SUO 1, H0 43.5 PVC Pipe Ø 100 m 99,314 6.21 714 1,648 43.3 PVC Pipe Ø 16 x 2.29 m each 13,182 0.82 95 179 52.9 Ø 20 x 2.29 m each 14,545 0.91 105 216 48.3 Ø 25 x 2.29 m each 26,818 1.68 193 313 61.7 Ø 25 x 2.29 m each 26,818 1.68 193 313 61.7 HDPE Ø 40/30 m 9,640 0.60 69 163 42.5 Ø 50/40 m 13,180 0.82 95 200 47.4 Ø 105/80 m 35,380 2.21 254 626 40.6 Ø 130/100 m 40,470 2.53 291 887 32.8 Ø 130/100 m 91,720 5.73 659 1.640 40.2 Bricks 200x105x60 each 770 0.055	<u> </u>	00 W	m	09,201 60 664			3.70	420	900	44.0	
PVC Pipe Ø 16 x 2.29 m each 13,182 0.82 95 179 52.9 Ø 20 x 2.29 m each 14,545 0.91 105 216 48.3 Ø 20 x 2.29 m each 14,545 0.91 105 216 48.3 HDPE Ø 40/30 m 9,640 0.60 69 163 42.5 Ø 50/40 m 13,180 0.82 95 200 47.4 Ø 65/50 m 16,850 1.05 121 294 41.2 Ø 105/80 m 35,380 2.21 254 626 40.6 Ø 105/80 m 35,380 2.21 254 626 40.6 Ø 105/80 m 91,720 5.73 659 1,640 40.2 Bricks 200x105x60 each 770 0.05 6 180 3.4 210x10x60 Brick CN 50 200x105x60 each 770 0.05 6 180 3.4 210x10x60 Concrete Block 200x105x60 each 5,638 <td><u> </u></td> <td>Ø 100</td> <td>m</td> <td>00,004</td> <td></td> <td></td> <td>4.00</td> <td>714</td> <td>1,140</td> <td>43.0</td> <td>L</td>	<u> </u>	Ø 100	m	00,004			4.00	714	1,140	43.0	L
Process Control Control Control Control State Control Control Control Control Control Contret State Control <	PVC Pine	00100 m0000 v 21 K	Pach	12 100			0.21	05	170	+0.0	
Ø 20 A.2.6 m each 1,9,9 0,91 105 210 48.3 HDPE Ø 40/30 m 9,640 0.60 69 163 42.5 Ø 25 X.2.29 m each 9,640 0.60 69 163 42.5 Ø 40/30 m 13,180 0.82 95 200 47.4 Ø 55/50 m 16,850 1.05 121 294 41.2 Ø 105/80 m 35,380 2.21 254 626 40.6 Ø 130/100 m 40,470 2.53 291 887 32.8 Ø 130/100 m 91,720 5.73 659 1.640 40.2 Bricks 200x105x60 each 850 0.05 6 180 3.4 210x10x60 Brick S0 200x105x60 each 5.638 0.35 41 490 8.3 Concrete Block 200x105x60 each 3,480 0.22 25 - Concrete Hollow Block 200x105x60 each </td <td></td> <td>Ø 20 v 2 20 m</td> <td>each</td> <td>11,102</td> <td></td> <td></td> <td>0.02</td> <td>105</td> <td>216</td> <td>10 2</td> <td></td>		Ø 20 v 2 20 m	each	11,102			0.02	105	216	10 2	
HDPE Ø 40/30 m 9,640 0.60 69 163 42.5 Image: Model of the state of the sta	<u> </u>	Ø 25 v 2 20 m	each	14,040			1.69	100	210	40.0	
Intract Ø 50/00 Int 5,040 000 09 103 44.5 Ø 50/40 m 13,180 0.82 95 200 47.4 Ø 65/50 m 16,850 1.05 121 294 41.2 Ø 105/80 m 35,380 2.21 254 626 40.6 Ø 105/100 m 40,470 2.53 291 887 32.8 Ø 195/150 m 91,720 5.73 659 1,640 40.2 Bricks 200x105x60 each 850 0.05 6 180 3.4 210x100x60 Concrete Block 200x105x60 each 5.638 0.35 41 490 8.3 Concrete Block 200x105x60 each 3.480 0.22 25 - Concrete Hollow Block 200x105x60 each 3,630 0.19 22 100 21.6 390x190x100 Concrete Hollow Block 200x105x60 each 4,5	HDPE	Ø 40/20	m	20,010			00.1	190	162	125	
Ø 65/50 m 16,850 0.62 35 200 47.4 Ø 65/50 m 16,850 1.05 121 294 41.2 Ø 105/80 m 35,380 2.21 254 626 40.6 Ø 130/100 m 40,470 2.53 291 887 32.8 Ø 135/150 m 91,720 5.73 659 1.640 40.2 Bricks 200x105x60 each 850 0.05 6 180 3.4 210x100x60 Brick S0 200x105x60 each 770 0.05 6 760 0.7 200x200x60 Concrete Block 200x105x60 each 3,480 0.22 25 - - Concrete Hollow Block 200x105x60 each 3,480 0.22 25 - - Concrete Hollow Block 200x105x60 each 4,546 0.28 33 195 16.8 390x190x100 Concrete Hollow Block 2		Ø 40/30	m	3,04U			0.00	09	200	42.0	L
Bricks 200x105 m 35,380 2.21 254 626 40.6 Ø 105/80 m 35,380 2.21 254 626 40.6 Ø 130/100 m 40,470 2.53 291 887 32.8 Ø 195/150 m 91,720 5.73 659 1,640 40.2 Bricks 200x105x60 each 850 0.05 6 180 3.4 210x100x60 Brick 200x105x60 each 770 0.05 6 760 0.7 200x200x60 Concrete Block 200x105x60 each 5,638 0.35 41 490 8.3 Concrete Hollow Block 200x105x60 each 3,400 0.22 25 Concrete Hollow Block 200x105x60 each 4,546 0.28 33 195 16.8 390x190x100 Concrete Hollow Block 200x105x60 each 4,546 0.28 33 195 16.8 390x190x190 Glass 4.5mm m² 50,000 3.13 359 950	h	Ø 50/40		16 050			1.02	101	200	/1 0	
b b b b b column column <thcolumn< th=""> column<td><u> </u></td><td>Ø 105/00</td><td>m</td><td>10,000</td><td></td><td></td><td>2.01</td><td>121</td><td>294</td><td>41.2</td><td></td></thcolumn<>	<u> </u>	Ø 105/00	m	10,000			2.01	121	294	41.2	
bit bit 40,470 2.53 291 887 32.8 Ø 195/150 m 91,720 5.73 659 1,640 40.2 Bricks 200x105x60 each 850 0.05 6 180 3.4 210x100x60 Brick 200x105x60 each 770 0.05 6 780 0.7 200x20x60 Concrete Block 200x105x60 each 5,638 0.35 41 490 8.3 Concrete Block 200x105x60 each 3,480 0.22 25 - Concrete Block 200x105x60 each 3,480 0.22 25 - Concrete Hollow Block 200x105x60 each 3,000 0.19 22 100 21.6 390x190x100 Concrete Hollow Block 200x105x60 each 4,546 0.28 33 195 16.8 390x190x100 Glass 4.5mm m² 50,000 3.13 359 950 37.8<		0 105/80	m	35,380			2.21	254	020	40.6	
bit iso in 91,720 5,73 b59 1,840 40.2 Bricks 200x105x60 each 850 0.05 6 180 3.4 210x100x60 Brick CN 50 200x105x60 each 770 0.05 6 780 0.7 200x200x60 Concrete Block 200x105x60 each 5,638 0.35 41 490 8.3 Concrete Block 200x105x60 each 3,480 0.22 25	<u> </u>	0 130/100	m ~~	40,470			2.03	291	1 640	32.8	
Drick 200x100x00 edCl1 650 0.05 b 180 3.4 210x100x00 Brick CN 50 200x200x500 each 770 0.05 6 760 0.7 200x200x60 Concrete Block 200x105x60 each 5,638 0.35 41 490 8.3 Concrete Block 200x105x60 each 3,480 0.22 25 - Concrete Hollow Block 200x105x60 each 3,480 0.22 25 - Concrete Hollow Block 200x105x60 each 3,480 0.22 25 - Concrete Hollow Block 200x105x60 each 4,546 0.28 33 195 16.8 390x190x100 Glass 4.5mm m² 50,000 3.13 359 950 37.8	Bricks	200/100	10	91,720			0.73	659	1,040	40.2	040-400-00
Director Go 200x200x30 eduit 170 0.05 6 700 0.7 200x200x80 Concrete Block 200x105x60 each 5.638 0.35 41 490 8.3 Concrete Block 200x105x60 each 3.480 0.22 25	Brick CN 50	2002200250	each	850			0.05	0	180	3.4	210X100X60
Concrete Block 200x105x60 each 3,480 0.22 25 Concrete Block 200x105x60 each 3,480 0.22 25 Concrete Block 200x105x60 each 3,480 0.22 25 Concrete Hollow Block 200x105x60 each 3,000 0.19 22 100 21.6 390x190x100 Concrete Hollow Block 200x105x60 each 4,546 0.28 33 195 16.8 390x190x190 Glass 4.5mm m² 50,000 3.13 359 950 37.8	Constate Block	200X200X50	each	770			0.05	0	/00	0.7	200x200x60
Concrete Hollow Block 200x105x60 each 3,480 0.22 25 100 21.6 390x190x100 Concrete Hollow Block 200x105x60 each 3,000 0.19 22 100 21.6 390x190x100 Concrete Hollow Block 200x105x60 each 4,546 0.28 33 195 16.8 390x190x190 Glass 4.5mm m ² 50,000 3.13 359 950 37.8	Concrete Block	200X105X60	eacn	5,638			0.35	41	490	8.3	
Concrete Hollow Block 200x105x60 each 3,000 0.19 22 100 21.6 390x190x100 Concrete Hollow Block 200x105x60 each 4,546 0.28 33 195 16.8 390x190x190 Glass 4.5mm m² 50,000 3.13 359 950 37.8	Concrete Block	200X105X60	each	3,480			0.22	25	400	04.0	000.400 400
Currentere monitow block 200x100x00 each 4,540 0.28 33 195 16.8 390x190x190 Glass 4.5mm m ² 50,000 3.13 359 950 37.8	Concrete Hollow Block	200x105x60	each	3,000			0.19	22	100	21.6	390X190X100
Grass [4.5mm m ⁻ 50,000 3.13 359 950 37.8		∠UUX1U5X60	eacn	4,546			0.28	33	195	16.8	390X190X190
		4.5mm	-m-	50,000			3.13	359	950	31.8	1

Table 6.3.5 Comparison of Major Material Cost

(3) Equipment Cost

Most of the construction equipment is imported. The equipment operation cost, in principle, consists of depreciation cost, operator or driver cost and fuel cost. The equipment depreciation costs shall be estimated from the basic equipment costs, considering the import tax, value added tax, standard operation hours, standard working days, resumption rate, repair and maintenance rate and annual management rate. The hourly (or daily) equipment depreciation costs are calculated using the following equation.

$$DP = BP x \left(\frac{RD + MT}{DY} + MN \right) x \frac{1}{SO}$$

Where, DP:

DP: Hourly (or Daily) equipment depreciation cost

BP: Basic equipment cost = CIF price + Import tax + VAT

- RD: Redemption rate = 1 Resumption rate
- MT: Maintenance and repair rate
- MN: Annual management rate
- DY: Durable years
- SO: Standard annual operation hours (or days)

The CIF prices of the equipment are taken as the equipment cost of Japan in accordance with "Construction Equipment Depreciation Cost" issued by the Japan Construction Mechanization Association, and 10% import tax and 10% value added tax was added for the basic equipment cost. Redemption rate, durable years and standard operation hours (or days) are taken as the same as in Japan, while maintenance and repair rate, and annual management rate are reduced to 75% and 50% respectively of those used in Japan to reflect the difference in personnel expenditure.

The hourly (or daily) equipment operation costs are calculated by adding the operator/driver cost and the fuel consumption cost to the above depreciation costs.

The operation costs for major equipment are summarized in the Table 6.3.6.

4) **Productivity and Quantities**

The productivity of the works was determined referring to the Decision No. 24/2005/QD-BXD "Decision on Promulgation of Estimate Norms for Construction Projects – Part of Construction" issued by Ministry of Construction on 29 July 2005, as well as the "Cost Estimation Standard for Civil Works" and "Cost Estimation Standard for Public Architectural Works" both issued by the Ministry of Land Infrastructure and Transport of Japan for the year 2005.

The quantities are roughly estimated from the preliminary design drawings prepared in the prefeasibility study.

Table 6.3.6 Major Equipment Operation Costs

Itomo	Linit	Operation	Components (%)			
items	Unit	Cost (US\$)	Foreign	Local		
Bulldozer, 15t	hr	50.30	52.9	47.1		
Bulldozer, 21t	hr	72.50	54.6	45.4		
Backhoe, hydraulic. Crawler, 0.1m ³	day	90.70	54.5	45.5		
Backhoe, hydraulic. Crawler, 0.35m ³	Hr	23.40	55.7	44.3		
Backhoe, hydraulic. Crawler, 0.60m ³	hr	40.00	56.7	43.3		
Clamshell, crawler, Hydraulic, 0.6m ³	hr	41.80	55.6	44.4		
Clamshell, crawler, Hydraulic, 0.8m ³	hr	66.40	49.8	50.2		
Concrete Breaker, 20kg	day	1.02	65.4	34.6		
Motor Grader, 3.1m	hr	35.60	51.0	49.0		
Road Roller, macadam, 10~12t	hr	27.70	48.8	51.2		
Tire Roller, 8~20t	hr	26.50	49.2	50.8		
Vibration Roller, combined, 3~4t	hr	15.20	49.4	50.6		
Tamper and Rammer, 60~100kg	day	11.30	63.3	36.7		
Vibration Compactor, 100~110kg	day	12.30	62.6	37.4		
Crawler Crane, Hydraulic, 40~45t	hr	69.60	51.2	48.8		
Crawler Crane, Hydraulic, 50~55t	hr	83.40	51.3	48.7		
Truck Crane, Hydraulic, 15~16t	hr	37.80	52.7	47.3		
Truck Crane, Hydraulic, 20t	hr	40.50	52.8	47.2		
Truck Crane, Hydraulic, 50t	hr	96.70	53.4	46.6		
All Casing Excavator, Crawler, Φ1500max	hr	386.00	53.5	46.5		
Diaphragm Wall Excavator, Lateral Rotation type,	hr	401.00	53.5	46.5		
Dump Truck, Diesel, 10t	hr	27.70	51.0	49.0		
Concrete Mixer Truck 4.4~4.5m3	hr	28.30	53.9	46.1		
Concrete Pump Vehicle (Piping), 90~100m ³ /hr	hr	62.40	56.1	43.9		
Concrete Pump Vehicle (Boom), 90~110m ³ /hr	hr	67.60	55.6	44.4		
Grout Pump, 15~30 1tr/min	day	12.40	52.0	48.0		
Asphalt Finisher, crawler, 2.4~4.5m	hr	70.70	52.3	47.7		
Electric Welder, 500A	day	1.80	50.8	49.2		
Generator, 100kVA	day	107.00	60.4	39.6		
Air Compressor, 3.5~3.7m ³ /min	day	41.80	59.3	40.7		
Submerged Pump, Ф100mm, 3.7kW	day	5.20	45.6	54.4		
PC Bridge Cantilever Construction Operation Wagon,	day	423.00	60.1	39.9		

5) Indirect Cost

Indirect costs are taken as specified in the Circular 04/2005/TT-BXD (1 April 2005) of Ministry of Construction.

- (a) Other Direct Expenses: 1.5% of the direct cost (sum of labor, materials and equipment) which is defined as to cover water pumping, mud dredging, tests of materials, movement of labor and construction equipment to and within construction sites, labor safety and protection of the environment for laborers and protection of surrounding environment.
- (b) **General Items:** 6.0% of the total direct cost which covers expenses for production management in construction sites, expenses for management and administration staffs, expenses of for temporary construction in construction sites and other expenses.
- (c) **Pre-determined Taxable Income (Contractor's Profit):** 5.5% of the sum of total direct cost and general items which will be the profit of the contractor.

6) Other Costs

In addition to the construction cost, the project cost shall include the following expenses specified in the Circular 04/2005/TT-BXD (1 April 2005) of Ministry of Construction.

Expense	Content	Remark
Expenses for Compensation	 Expenses for compensation for houses, architectural objects and crops on land, etc. 	
	 Expenses for resettlement related to compensation and ground clearance boards 	
	3. Expenses for land use such as lent rents during the time of construction	
Droject	Expenses for apportation in technical initiastructure (in arry)	10 15% of the total
Management	2. Expenses for performing componential of projects	construction cost
Expenses	the responsibility of investors	construction cost
	3. Expenses for performing evaluation or verification of designs, total cost estimates and cost estimates for construction of works	
	4. Expenses for complication of dossiers of invitation for participation in bidding, dossiers of invitation for bids, analysis and evaluation of bids	
	 Expenses for construction supervision, construction survey and equipment installation 	
	6. Expenses for expertise and certification of quality conformity of works	
	7. Expenses for pre-acceptance test, financial settlement and conversion of investment capital	
	8. Expenses for project formulation	
	9. Expenses for selection of architectures (if any)	
	10. Expenses for construction survey and design	
	11. Loan interest paid by investor during the construction period under credit contract or loan agreement (for ODA funded projects)	
	12. Expenses for the State steering committee and the State council for test and acceptance	
	13. Expenses for international quality registry	
	14. Expenses for observation of works, deformation (if any)	
	15. Start-up working capital for production	
	16. Expenses for fuel, energy and labour for the process of load and non-load	
	17 Expanses for work insurance	
	18 Expenses for audit, verification and approval of financial settlement and	
	other expenses	
Contingency Expenses	Those set aside for arising volumes, inflation elements and unforeseeable jobs in the process of project implementation	Not greater than 15% of the sum including the total construction cost, compensation and project management
		CUSI.

Source: HAIDEP Study Team

For Project management cost, 7.5% was taken as the engineering cost for the design and the construction supervision.

For contingency, 10% was taken as physical contingency which does not include price escalation.

7) Estimated Cost

The costs for UMRT Line No. 2 are estimated for various cases and options (see table 6.3.8 to Table 6.3.11).

Phase		St. No.	Chainage	Structure		Distance (m)	RL (m) GL (m)	RL-GL (m)	Rate (US\$)	Amount (US\$)	In case of 3 FL and 4 FL Station
		0-350.0 0-077.5		Scissors Box (RL=GL-15m)		273				45,500	12,399	
		1 0+077.5		Stn-N1 Noi Bai airport	30m x 155m, 2FL, RL = GL-15m	155			-16.00	21,200,000	21,200	
8e 4		2+722.5 2 2+877.5		Twin Shield 6.1m Stn-N2	19m x 155m, 2FL, RL = GL-15m	2,645 155			-16.00	36,400 15,600,000	96,278 15,600	
Phas		2+999.5		Transition Box (RL = GL - 15m)		122				42,500	5,185	
		3+300.0		U- Shaped		301 170				23,800 6,850	1,165	
		3+556.0		Embankment		86				2,320	200	
		5+300.0		Viaduct		300				7,410	2,223	
		3 5+470.0 7+030.0		Stn-N3 Thai Phu (Depot) Viaduct	Elevated 4 track	140 1,560			+11.00	8,070,000 7,410	8,070 11,560	
		4 7+170.0		Stn-N4 Bac Hong	Elevated 2 track	140			+11.00	7,190,000	7,190	
		5 8+870.0		Stn-N5	Elevated 2 track	1,560			+11.00	7,190,000	7,190	
se 3		10+530.0		Viaduct	Elevated 2 track	1,660			+11.00	7,410	12,301	
Pha		12+230.0		Viaduct	Elovatod E hadik	1,560				7,410	11,560	
		7 12+370.0 12+730.0		Stn-N7 Hai Boi Viaduct	Elevated 2 track	140 360			+11.00	7,190,000 7,410	7,190 2,668	
		13+090.0		Red River crossing Approach Bridge		360				9,660	3,478	
		15+270.0		Red River crossing Approach Bridge		360				9,660	3,478	
		15+730.0 16+030.0		Viaduct Viaduct		460 300				7,410	3,409 2,223	
		8 16+170.0		Stn-01 Nam Thanh Long	Elevated 2 track	140	+18.20	+7.20	+11.00	7,190,000	7,190	
se 2		16+980.0 9 17+120.0		Viaduct Stn-02 Khu Trung	Elevated 2 track	810 140	+17.50	+6.50	+11.00	7,410 7,190,000	6,002 7,190	
Pha		17+348.0 17+434.0		Viaduct		228 86				7,410	1,689	
		17+604.0		U- Shaped		170				6,850	1,165	
		18+060.5 18+182.5		Single Box (RL = GL - 10m) Transition Box (RL = GL - 20m)		457				23,800 52,400	10,865 6,393	
	1	10' 18+337.5		Stn-03 Tu Liem (Depot)	34m x 155m, 2 FL, RL=GL-20m	155		-16.50 +5.50	-22.00	27,100,000	27,100	
		11 20+027.5		Stn-04 Buoi	19m x 155m, 2 FL, RL=GL-15m	1,555		-10.40 +6.90	-17.30	15,600,000	15,600	
		21+382.5 12 21+537.5		Twin Shield 6.1m Stn-05 Ba Dinh	19m x 155m, 2 FL, RL=GL-25m	1,355 155		-16.35 +8.10	-24.45	36,400 22,000.000	49,322 22.000	25.800
		22+582.5		Twin Shield 6.1m		1,045				36,400	38,038	
		13 22+737.5 23+492.5		Twin Shield 6.1m	19m x 155m, 2 FL, RL=GL-25m	155 755		-13.80 +9.20	-23.00	22,000,000 36,400	22,000 27,482	25,800
age 1		14 23+647.5 24+386 5		Stn-07 Ho Tay	19m x 155m, 2 FL, RL=GL-15m	155		-5.30 +8.70	-14.00	15,600,000	15,600	
	age 1	24+512.5		Scissors Box (RL=GL-15m)		126				68,400	8,618	
	Pact	15 24.667.5 25+442.5		Stn-08 Long Bien Twin Shield 6.1m	30m x 155m, 3 FL, RL=GL-20m	155 755		-15.70 +9.50	-25.20	28,300,000 36,400	28,300 27,482	28,300
se 1		16 25+577.5		Stn-09 Bo Ho	19m x 155m, 2 FL, RL=GL-25m	155		-13.90 +10.00	-23.90	22,000,000	22,000	25,800
Pha		26+202.5 17 26+357.5		Stn-10 Hoan Kiem	30m x 155m, 2 FL, RL=GL-20m	155		-12.40 +8.50	-20.90	26,000,000	22,750	28,300
		26+643.5 27+102.5		Scissors Box (RL=GL-15m) Twin Shield 6 1m		286 459				56,200 36,400	16,073 16,708	
		18 27+257.5		Stn-11 Tran Hung Dao	19m x 155m, 2 FL, RL=GL-20m	155		-10.70 +8.40	-19.10	18,700,000	18,700	20,500
		28+037.5 19 28+192.5		Twin Shield 6.1m Stn-12 Cau Den	19m x 155m, 2 FL, RL=GL-25m	780 155		-16.60 +7.20	-23.80	36,400 22,000,000	28,292 22,000	25,800
		29+442.5 20 29+597 5		Twin Shield 6.1m Stri-13 Bach Khoa	19m x 255m 2 El Bl ≡Gl -25m	1,250		-17 10 +6 50	-23.60	36,400 22,000,000	45,500	25.800
		30+632.5		Twin Shield 6.1m		1,035		11.10 .0.00	20.00	36,400	37,674	20,000
	e 2	21 30+787.5 32+132.5		Stn-14 Cua Boc Twin Shield 6.1m	19m x 155m, 2 FL, RL=GL-25m	155 1,345		-19.20 +6.10	-25.30	22,000,000 36,400	22,000 48,958	25,800
	ackag	22 32+287.5		Stn-15 Nga Tu So	19m x 155m, 2 FL, RL=GL-15m	155		-8.60 +6.60	-15.20	15,600,000	15,600	
	ď.	23 33+177.5		Stn-16 Thuong Dinh	30m x 155m, 2 FL, RL=GL-20m	155		-15.10 +6.90	-22.00	26,000,000	26,754	28,300
		33+299.5 33+649.5		Transition Box (RL=GL-20m) Single Box (RL = GL - 10m)		122				52,400 23,800	6,393 8,330	
		33+820.5		U- Shaped		171				6,850	1,171	
		33+906.5 34+260.0		Linuankment Viaduct		86 354				2,320 7,410	200 2,619	
		24 34+400.0 36+060.0		Stn-17 Thanh Xuan Viaduct	Elevated 2 track	140	+17.60	+6.60	+11.00	7,190,000	7,190	
ase 2		25 36+200.0		Stn-S1	Elevated 2 track	140			+11.00	7,190,000	7,190	
Phi		37+560.0 26 37+700.0		Viaduct Stn-S2	Elevated 2 track	1,360 140			+11.00	7,410 7,190,000	10,078 7,190	
		39+360.0		Viaduct	Elevated 3 track	1,660			+11.00	7,410	12,301	
		40+760.0		Viaduct	Elevaled 2 track	1,260			+11.00	7,190,000	9,337	
		28 40+900.0 41+200.0		Stn-S4 Ha Dong (Depot) Viaduct	Elevated 2 track	140 300			+11.00	8,070,000 7,410	8,070 2.223	
				Sub Total A	00.054.110.01	41,552	00.05711				1,244,514	
					29,904 US\$/111		30,05705	oqriff				
3				Workshop/Depot Viaduct	(Thai Phu Deport)	550				5,100,000	5,100	
1				Workshop/Depot	(Tu Liem Depot)	550				20,800,000	20,800	
2				Single Box (RL=GL-10m) Workshop/Depot	(Ha Dong Depot)	550				23,800 5,100,000	13,090 5,100	
-				Viaduct						7,410	4,076	
				JUD TUIM D							52,242	
		Railway Sy Rolling Sto	vstem ick			15% 252 cars			195,000,000	195,000 400 680	199,000,000	
		cimig Old		Sub Total C						.,500,000	595,680	
				Total A+B+C							1,892,436	1,925,729,215
		General Ite	ems Engineer's Office				6.0% 1.0%				20 060 810	115,543,753 20 412 730
		remporally	ginoor a Onlice								2,026,141,778	2,061,685,698

Table 6.3.8	Cost Estimation for the Total Route	(Option 1	I)
-------------	-------------------------------------	-----------	----

48,764 US \$/m 49,619 US \$/m

Table 6.3.9	Cost Estimation for the Total Rout	e (Option 2)
-------------	------------------------------------	--------------

		0	ption-2	Total Route								
Phas	re	St. No.	Chainage	Stru	sture	Distance (a)	RL (n)	GL (m)	RL-GL (m)	Rate (US\$)	Amount (US\$)	FL & 4 FL Station
1	Y		0-350.0	Seignors Box (PL+GL (5a)	A CONTRACT	973				45.500	19.398.750	1200
		1"	0+077.5	Stn-WI Noi Bai Airport	30m H 155m, 2 FL, RL=GL=15	n 155			-18.00	21,200,000	21,200,000	
4		2	2+722.5	Twin Shield Ø8.la Stn-N7	18m w 155m, 2 FL, RL=CL-15	2,645			-15.00	36,400	96,278,000	
has			2+898.5	Transition Box (RL=GL=15m)	the strange state of subsects	122				42.500	5,185,000	
~			3+309.0	Single Box (RL=GL-10m) U-Shaped		176				23,800	7,151,900	
			3+558.0	Enbanknent		88				2.320	199,520	
Ŧ		-	5+030.0	Viaduet Viaduet		1,474				7,410	2.223.000	
		3	5+470.0	Stn-N3 Thai Phu (Deput)	Elevated 4 track	140			+11.00	8,070,000	8,070,000	
		4*	7+030.0	Stn-N4 Bac Hong	Elevated 2 track	1.560			+11,00	7.190.000	7.190.000	
m		5	8+870.0	Stn-N5 Viaduct	Elevated 2 track	140			+11.00	7.190.000	7,190,000	
hase		6"	10+670-0	Stn N6	Elevated 2 track	140			+11:00	7,190,000	7,190,000	
-		7	12+370.0	Sto-N7 Hai Boi Viaduct	Elevated 2 track	140			+11.00	7,190,000	7,190,000	
			13+090.0	Red River Crossing Approach	Bridge	360				9,660	3,477,800	
			14+910.0	Red River Grossing Main Brid Red River Grossing Approach	lge Bridge	1,820				9,660	49,322,000	
1		_	15+730.0	Viaduct		460	-			7,410	3,408,600	
.1		8"	16+030.0	Sto-Ol Nam Thanh Long	Elevated 2 track	140	+18.20	+7.20	+11,00	7.190.000	7.190.000	
		9	10+980-0	Sta-02 Khu Trong	Elevated 2 track	140	+17.50	+6.50	+11.00	7,190,000	7,190,000	
has			17+348.0	Yiaduct	and the second second second	228				7.410	1,889,480	
-			17+434.0	U-Shaped		86 170				2,320	1,164,500	
t			18+060.5	Single Box (RL=GL-10m)		457				23,800	10,864,700	
		10″	18+337.5	Stn-03 Tu Liem (Depot)	34m × 155m, 2 FL, RL=GL-20	n 155	-16.50	+5.50	-22.00	27,100,000	27,100,000	
		11	19+872.5	Twin Shield Ø6.1m Stp=04 Buoi	10m v 165m 2 EL DI-CI-16	1,535	-9.10	AR 00	-16.00	36,400	55,874,000	
			21+382.5	Iwin Shield Ø8.1m	Tom A Toom, 2 TE, AE-GE-To	1,355	0.10	.0.30	10.00	36,400	49,322,000	
		12	21+537.5	Stn-05 Ba Dinh	19m × 155m, 2 FL, RL=GL-15	n. 155 1.045	-7.90	+8.10	-16.00	15,600,000	15,600,000	
		13	22+737.5	Stn-06 Bac Thao	19m × 155m, 2 FL, RL=GL-15	n 155	-6.80	+9.20	-16.00	15,600,000	15,800,000	
		14	23+532.5 23+887.5	Twin Shield \$6.6m Stp-07 Ho Tay	19m × 155m. 2 FL. RL=GL-15	795 155	-8.10	+7.90	-18.00	36,400 15,600,000	28,938,000	
	-		25+006.5	Iwin Shield Ø6.1m		1,319			10.00	36,400	48,011,600	
	kag	15	25+132.5 25+287.5	Scissors Box (RL=GL-15m) Stn-08 Long Bien	30m × 155m, 3 FL, RL=GL-20	126 n. 155	-4.50	+11.50	-16.00	45,500 28,300,000	5,733,000 28,300,000	28,300,000
-	Pa	1.0	25+812.5	Iwin Shield Ø8.1m	10 155- 9 EL DI-/1-15	525	-8.00	+10 00	-18 00	36,400	19,110,000	
386		16	26+987.5	Stn-US во но Iwin Shield Фб.1m	13m × 155m, Z FL, KL=GL-15	n 155 515	-6.00	+10.00	-16.00	36,400	18,746,000	
H.		17	26+637.5 28+923.5	Stn-10 Hoan Kiem Scissors Box (RL= GL-20m)	30m × 155m, 2 FL, RL=GL-20	n. 155 286	-13.50	+8.50	-22.00	26,000,000 58,200	26,000,000 18,073,200	28,300,000
		18	27+522.5 27+677.5	Iwin Shield ∲6.1m Stn-11 Hung Dao	19m × 155m. 2 FL. RL=GL-15	599 n 155	-8.60	+7.40	-16.00	36,400 15,600,000	21,803,600 15,600,000	
			28+512.5	Iwin Shield Ø6.1m		835				36,400	30,394,000	
		19	28+667.5	Stn-12 Cau Den Twin Shield ⊄6.1m	19m × 155m, 2 FL, RL=GL-15	n 155 1.245	-8.80	+7.20	-16.00	15,600,000 38,400	15,600,000 45,318,000	
		20	30+087.5	Stn-13 Bach Khoa	19m × 155m, 2 FL, RL=GL-15	n. 155	-9.50	+6.50	-16.00	15,600,000	15,600,000	
	67	21	31+102.5	Stn-14 Cua Boc	19m × 155m, 2 FL, RL=GL-15	n. 155	-9.90	+6.10	-16.00	15,600,000	15,800,000	
	8 8 6	99	32+602.5	Iwin Shield \$\$6.1m	10m 155m 9 EL DI-CI-15	1,345	-0.40	AR R0	-16 00	36,400	48,958,000	
	ack	66	33+492.5	Ivin Shield Ø6.1m	10m x 100m, 2 FL, KL=GL-10	735	-3.40	+0.00	-10.00	36,400	26,754,000	
ļ	۳.	23	33+647.5	Stn-16 Ihuong Dinh Transition Box (RI=CL-20m)	30m × 155m, 2 FL, RL=GL-20	n. 155 122	-15.10	+6.90	-22.00	26,000,000 52,400	26,000,000 8,392,800	28,300,000
Ť			34+119.5	Single Box (RL=GL-10m)		350				23,800	8,330,000	
			34+290.5	U-Shaped Embankment		171				6,850 2,320	1,171,350 199,520	
		94	34+730.0	Viaduct Sta-12 Thorn Yuan	Flowstod 9 track	354	+17 80	+R R0	+11 00	7,410	2,619,435	
~		24	36+530.0	Viaduct	Elevateu 2 track	1,660	+17+00	+0.00	+11.00	7,180,000	12,300,600	
age		25	38+870.0	Stn-S1 Viaduct	Elevated 2 track	140			+11.00	7,190,000	7,190,000	
2		26	38+170.0	Stn-S2	Elevated 2 track	140			+11.00	7,190,000	7,190,000	
		27	39+830.0	Viaduct Stn-S3	Elevated 2 track	1,660 140			+11.00	7,410 7,190,000	12,300,600	
			41+230.0	Viaduct		1,260				7,410	9,336,600	
Ļ		28	41+370.0	Stn-54 Ha Dong (Depot) Viaduct	Elevated 4 track	300			+11.00	8,070,000 <u>7,41</u> 0	2,070,000 2,223,000	
				Subtotal A	28.	42,020 870 US\$/m	29,080	US\$/m			1,217,330,815	1,221,930,815
2				Vorkshop/Depot	(Thai Phu Depot)					5,100,000	5,100.000	
				Viaduct	(indi ind bepol)	550				7,410	4,075,500	
1				Workshop/Depot Single Box (RL=GL-10m)	(Tu Liem Depot)	550				20,800,000 23,800	20,800,000 13,090,000	
2				Workshop/Depot	(Ha Dong Depot)	000				5,100,000	5,100,000	
		-		Viaduct Subtotal B		550				7,410	<u>4,075,500</u> 52,241,000	
		D	ailway Sy	stem		15%				190.400.000	190,400.000	191,100.000
		<u>R</u>	olling St	ock		252	cars			1,590,000	400,680,000	101,100,000
				Subtotal C							591,080,000	
				Total A+B+C							1,860,651,815	1,865,951,815
		G	eneral It emporary	ems Engineer's Office			6.0% 1.0%				19,722,909	111,957,109 19,779,089
		_									1,992,013,833	1.997.688.013

47,408 US\$/m 47,541 US\$/m

	Itomo			Phase 1		Dhaca 2	Dhaca 2	Dhasa 4	Total
_	items		Package 1	Package 2	Total	Plidse 2	Phase 3	Pliase 4	TOLAT
Total	Length (m)		11,537	3,702	15,239	10,231	10,700	5,380	41,550
No. o	f Stations		11	3	14	7	5	2	28
Civil	Works		610,831,600	183,378,800	794,210,400	131,912,005	148,385,800	170,100,010	1,244,608,215
Work	shop/Depot		33,890,000	0	33,890,000	9,175,500	9,175,500	-	52,241,000
Railw	ay System		96,700,000	27,500,000	124,200,000	21,200,000	23,600,000	25,500,000	194,500,000
Dollin	a Stock	Cars	84	24	108	60	48	36	252
General Item			133,560,000	38,160,000	171,720,000	95,400,000	76,320,000	57,240,000	400,680,000
General Item T.E. Office		6.00%	52,498,896	14,942,328	67,441,224	15,461,250	15,448,878	15,170,401	113,521,753
T.E. Office Total Construction Cost		1.00%	9,274,805	2,639,811	11,914,616	2,731,488	2,729,302	2,680,104	20,055,510
Total Construction Cost			936,755,301	266,620,939	1,203,376,240	275,880,243	275,659,480	270,690,515	2,025,606,478
US\$/m			81,196	72,021	153,217	26,965	25,763	50,314	48,751
US\$/m		Unskilled	2.04	2.76	2.15	1.27	1.22	2.16	1.81
_	Labor Cost	Others	2.64	2.44	2.61	3.02	2.91	2.80	2.77
(%)		Foreign	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ents	Matorial Cost	Foreign	48.01	36.91	46.39	50.45	50.05	50.82	48.38
uodi	Ivialenai Cosi	Local	30.58	41.85	32.23	21.93	22.83	25.58	27.70
Com	Equipment	Foreign	8.64	8.41	8.61	12.17	12.03	9.67	10.06
-	Cost	Local	8.08	7.62	8.02	11.15	10.96	8.97	9.29
	Тах		10.42	10.52	10.44	11.09	11.38	10.59	10.76
Land Compensation									
Engir	neering Cost	7.50%	70,256,648	19,996,570	90,253,218	20,691,018	20,674,461	20,301,789	151,920,486
Conti	ngency	10.00%	100,701,195	28,661,751	129,362,946	29,657,126	29,633,394	29,099,230	217,752,696
	Grand Total		1,107,713,143	315,279,261	1,422,992,404	326,228,387	325,967,335	320,091,534	2,395,279,660

Table 6.3.10 Cost Summary of Total Route (Option 1)

Source: HAIDEP Study Team

 Table 6.3.11
 Cost Estimation for the Total Route (Option 2)

	Itomo			Phase 1		Dhaca 2	Dhaca 2	Dhaco 4	Total
	nems		Package 1	Package 2	Total	Pliase 2	Phase 3	Phase 4	TOLAT
Tota	Length (m)		12,007	3,702	15,709	10,231	10,700	5,380	42,020
Nos.	of Station		11	3	14	7	5	2	28
Civil	Works		589,954,200	176,978,800	766,933,000	131,912,005	148,385,800	170,100,010	1,217,330,815
Worl	kshop/Depot		33,890,000	0	33,890,000	9,175,500	9,175,500	0	2,241,000
Railv	vay System		93,600,000	26,500,000	120,100,000	21,200,000	23,600,000	25,500,000	90,400,000
Dolli	na Stock	Cars	84	24	108	60	48	36	252
KUIII	INY SIUCK		133,560,000	38,160,000	171,720,000	95,400,000	76,320,000	57,240,000	400,680,000
General Item		6.00%	51,060,252	14,498,328	65,558,580	15,461,250	15,448,878	15,170,401	111,639,109
T.E. Office		1.00%	9,020,645	2,561,371	11,582,016	2,731,488	2,729,302	2,680,104	9,722,909
Total Construction Co		st	911,085,097	258,698,499	1,169,783,596	275,880,243	275,659,480	270,690,515	1,992,013,833
US\$/m			75,879	69,881	74,466	26,965	25,763	50,314	47,406
		Unskilled	2.22	2.94	2.32	1.27	1.22	2.16	1.88
	Labor Cost	Others	2.77	2.55	2.73	3.02	2.91	2.80	2.83
%) (Foreign	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ents	Matorial Cost	Foreign	49.21	37.15	47.46	50.45	50.05	50.82	48.97
hon	Ivialenai Cosi	Local	28.85	41.14	30.63	21.93	22.83	25.58	26.96
Com	Equipment	Foreign	8.75	8.51	8.71	12.17	12.03	9.67	10.17
Ŭ	Cost	Local	8.21	7.72	8.14	11.15	10.96	8.97	9.39
	Тах		10.33	10.46	10.35	11.09	11.38	10.59	10.73
Land	Compensation								
Engi	neering Cost	7.50%	68,331,382	19,402,387	87,733,770	20,691,018	20,674,461	20,301,789	149,401,037
Cont	ingency	10.00%	97,941,648	27,810,089	125,751,126	29,657,126	29,633,394	29,099,230	214,141,487
	Grand Tota	l	1,077,358,127	305,910,975	1,383,269,102	326,228,387	325,967,335	320,091,534	2,355,556,358

8) Railway Projects Costs in Other Countries

The construction cost of subways in Japan is summarized in the following figures for reference. (Table 6.3.12). The railway cost in other countries mainly in Asia is summarized in Table 6.3.13 for further reference.

mary of Pr	esent Status of Subway Line in Japan (Japa	n Subway	Associati	on)										
		Rolling	Stocks	Operation	Passenger	Construction	Number	Railway	Required	0peration	n Interval	Average	Commence Opera	ement of ation
istrict	Name of Subway Line	Number of cars possesed	of cars per	Distance (km)	per day (x1000)	(*1) (Million US\$)	of Station	Gauge (mm)	total stretch	Peak Hours	Off-Peak Hours	Velocity (km/hr)	Partial Open	0verall 0pen
	1. Ginza Line (Tokyo Metro)	228	6	14.3	1028	-	19	1435	31' 25"	2'00"-2'15"	3'00″	27.3	1927	1939
	Marunouchi Line (Tokyo Metro)	336	6/3	27.4	1103	15.7	28	1435	48' 15"	1'50"-2'50"	4'00"	30.1	1954	1962
	Hibiya Line (Tokyo Metro)	336	8	20.3	1099	27.8	21	1067	43' 00"	2'10"-2'30"	5'00″	28.3	1961	1964
o Motro	Touzai Line (Tokyo Metro)	470	10	30.8	1215	35.7	23		49' 30"	2'30"-3'10"	5'00"	37.3	1964	1969
o metro	5. Chiyoda Line (Tokyo Metro)	369	10/3	24	1085	60.9	20	1067	38' 10"	2'05"-3'10"	5'00″	34.4	1969	1979
	Yurakucho Line (Tokyo Metro)	400	10	28.3	752	164.3	24	1067	49' 50"	2'30"-4'20"	6'00"	34.1	1974	1994
	Hanzoumon Line (Tokyo Metro)	250	10	16.8	570	253.9	14	1067	30' 10"	2'15"-4'35"	7'30"	33.4	1978	2003
	8. Nanboku Line (Tokyo Metro)	126	6	21.3	202	242.6	19	1067	39' 15"	4'00"-5'00"	6'00″	32.6	1991	2000
10	9. Asakusa Line (Metropolitan Subway)	224	8	18.3	572	40.0	20	1435	34' 30"	2'30″	5'00"-8'30"	31.8	1960	1968
o opolitan	Mita Line (Metropolitan Subway)	222	6	26.5	468	79.1	27	1067	51'10"	2'45"-4'00"	6'00"	31.1	1968	2000
oportran	11. Shinjuku Line (Metropolitan Subway)	224	8	23.5	595	204.3	21	1372	40'00"	2'30"-7'00"	4'30"-10'00"	35.3	1978	1989
vay	 0-edo Line (Metropolitan Subway) 	424	8	40.7	219	283.5	37	1435	81'10"	4'00"-5'00"	6'00"	30.1	1991	2000
	13. Midosuji Line (Osaka)	410	10	24.5	1258	59.1	20	1435	45' 45"	2'00-2'30"	4'00"	32.1	1933	1987
	14. Tanimachi Line (Osaka)	246	6	28.1	514	85.2	26	1435	52' 55"	2'30"-3'30"	5'00"	31.9	1967	1983
	15. Yotsuhashi Line (Osaka)	132	6	11.4	314	35.7	11	1435	21'40"	2'30"-3'30"	5'00"-6'00"	31.6	1942	1972
(a	16. Chuo Line (Osaka)	108	6	15.5	263	56.5	13	1435	26' 25"	4'00"-5'00"	7'00″	35.2	1961	1986
	17. Sennichi-mae Line (Osaka)	68	4	12.6	197	62.6	14	1435	25' 00"	3'45"-4'45"	7'00″	30.2	1969	1981
	18. Sakai-suji Line (Osaka)	136	8	8.5	328	365.2	10	1435	17'00"	2'45"-3'30"	5'00″	30	1969	1993
	 Nagabori-Turumi Ryokuchi Line (Osaka) 	100	4	15	150	208.7	17	1435	30' 25"	3'00"-5'00"	7'00″	29.6	1990	1997
	20. Higashiyama Line (Nagoya)	288	6	20.6	546	38.3	22	1435	37' 30"	2'00″	4'00"	33	1957	1982
	21. Meijo Line/Meiko Line (Nagoya)	216	6	32.4	457	90.4	35	1435	48' 10"	2'30"-3'00"	10' 00"	32.8	1965	1971
oya	22. Tsurumai Line (Nagoya)	150	6	20.4	279	108.7	20	1067	35' 30"	4'00"	7'30″	34.6	1977	1993
	23. Sakuradori Line (Nagoya)	100	5	14.9	241	235.7	17	1067	27' 00"	4'00"-5'00"	7'30″	33.1	1989	1994
	24. Kami-Iida Line (Nagoya)	8	4	0.8	22	187.0	2	1067	1'30"	7' 30″	10' 00"	32	2003	2003
	25. Nanboku Line (Sapporo)	142	6-8	14.3	235	47.8	16	-	26' 30"	3' 30"-5' 30"	6' 30"-7' 00"	32.3	1971	1978
oro	26. Touzai Line (Sapporo)	182	7	20.1	216	120.9	19	-	34' 00"	3' 30"-5' 00"	6' 30"-7' 00"	35.4	1976	1999

Table 6.3.12 Summary of Present Status of Subway Line in Japan

(*1) Conversion Rate (*2) Included in Airport Line

oto kuoka

Notes

1 US\$ = 115 yen

Overseas	Railway Projects														
Country	Project Nane	Main Conponents	Total Length	Constr	uction Per	po.			0	ost (mi	llion US\$	_			Remarks
		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(km)	Start	End M	onths L	and Ci-	vil H	& E 8/	S Eng	Others	Total	Civil/kn	Total/kn	
China	Nunning - Kunming Failea	bingle Taek Fairond SOXM Including & Eastions. 283 turnels (195.53Mn), 462 kridges (72.014km), 2831 culverts (61.963Mm), track bed (101.74 Millior m3)	896	1290/10	1397/12	87						3,062.1	D.0	3.4	JEIC Actual
China	Beijing Subway Phase l (Fuxingmen - Xidan)	 Skm long extension of East-Vest Subway Line including construction of Midan Station, excluding rolling stock and consulting services 	1.8	10/8881	1992/09	57						137.9	0.0	78.6	JBIC Actual
China	Beijing Subway Phase 2 (Kidan - Sihuidong)	11 km extension of East-West Subway Line including 10 stations, depot 274,000m2, 174 cars	11	10/3631	2000/08	102						945.9	0.0	88.0	JBIC Actual
China	Beijing Subway No. 10 Line, Olympic Branch Line		4.34									181.5	0.0	41.8	
China	Beijing Subway Mo. 10 Line		33									1,904.3	0.0	57.7	
China	Beijing Subway No. 4 Line		28.14									1,884.3	0.0	67.0	
Chima	Shanghai No.l Subvay Lin (Shanghai Raivay St (injiang Flayground	18.ikm long including 13 staticns (avg. 20 - 24m swide x 230m long with 2 levels), mostly by shisid turneiling machine (inner radius 5.5m). Dcuble track 10.02km (8.29km cylindrical, 0.75km rectangular).	18.1	1890/01	1995/04	69						300.0	0.0	18.8	Budget
China	Naniing Subway No. Line		43.44	2000/12	2005/09							888.7	0.0	2.U.5	
China	Wuhan Subway No. 1 Line		10.23		20.000							279.3	0.0	27.3	
Hong Kong	KCRC Tai Law Tunnel	Railway Tunnel (Section liGm2 NATM \times 5480m Long)	5.48		2002		~	218.3				218.3	39.8	39.8	Mishimatsu Contract
lndia	Calcutta Metro Railway (Dun Dun to Tollygunge)	Out & Cover Watro Railmay 18.45km long including 17 stations (15 underground, 1 elevated, 1 on surface)	16.43	1933/09	1393/06	155						1,090.1	0.0	66.3	
lndia	Calcutta Metro Railway (Tollygunge to Garia)	Extension to south. Mostly elevated.	8.7	1993								197.2	0.0	22.7	Kolkata Metro
India	Calcutta Metro Railway (Rajarhat2 to New Dansnagar)	Shield tunnel 6.15km, elevated viačuct 10.29km and access section of turk acver tunnel and retaining mails 11.9km with 17 stations (8 undreground, 1 elevated). 2 degotes 48 rolling stocks.	23.8			09	21.0	868 1	16.0 72	35.		911.0	28.0	38.3	JETRO F/S, (without contingency)
lndia	Calcutta Extansion of Circular Railway (Princegshat to Majerhat)	Total E.Skm. 3.2km elevated, 2.6 km at-grade	60 00									25.0	0.0	4.3	Kolkata Metro
lndia	Kolkata (Dum Dum Cantorment to N.S.E. Airpot	Iotal 4km. mostly elevated	4									13.5	D.O	3.4	Kolkata Metro
India	Delhi Netro Railway Line No. 2, MCLA Section (Vishwa Vidvala - ISBT)	Out & Cover Wetro Railmay 4.5km long including 4 underground stations and 434m long depot	4.5	2001/05	2005/07	51	~~~	222.8				222.3	48.5	49.5	Kunagai Contract
India	Delhi Metro Railway Line No. 2, MCIB Section	7km long out & cover and shield tunnel including 8 underground stations	7	2001/05				0.0				0.0	0.0	0.0	Shimizu Contract
Sinzapore	LIA Contract 708	Subvay (Station: S3m vičs × 204m long × 22.5m depp. EPB/Open faced shield turnel: inner dia. 5.8m × 3098m lorg)	3.098		2000			101.7				101.7	32.8	32.8	Mishimatsu Contract
Sinzapore	WRT Contract 3D1	Subway (EPB shield tunnel: Irner dia. 5.3m x 2538m long, 2 underzround stations)	2.586		1989		_	140.0				140.0	54.1	54.1	Mishimatsu Contract
Sinzapore	WRT Contract 107B	Subway (Open faced shield/ MATM tunnel: inner dia. 5.3m × 820m long, underground stations with 3 fibors)	0.82		1987			60.9				6.03	74.2	74.2	Mishimatsu Contract

Table 6.3.13 Railway Project Cost in Other Countries (1/2)

(2/2)
Countries
Other
Cost in
Project (
Railway
Fable 6.3.13

Counter	Ducing Name	Main Constants	[ota]	Cometr	uction Perod				Cost	(millio	(\$SU 4				Donotic
111/100	11015C1 NGM6	4017 AOU	(km)	Start	End Montl	hs Land	Civil	M&E	R/S	Eng 0	hers	Total C	ivil/km]	lotal/km	VARAINS
Thailand	Bangkok	Approx. 20km leng	20	1938	2005							3,440.0	0.0	172.0	
Thailand	Bangkok Blue Line (Bang Sue – Tha Phra Section)	Elevated 13.1km long with ? elevated stations	13.1			9.3	269.7	188.0		8. Z		473.2	20.5	36.1	Estimated
Thailand	Bangkok Blus Line (Hua Lun Phong – Bang Khae Section)	14.Okn icng (Elevated 8.9kn + Underground 4.9kn) with 4 underground stations and 8 sievated stations	13.9			83.3	647.6	183.2		37.9		952.0	46.8	63.5	Estimated Mass Rapid Transit Authority (MRIA)
Thailand	Bangkok Orange Line (Bang Kapi - Bang Bunru Section)	24km long (Elevated twin-track wiaduct 2.9km + Underground twin tunnel 21.1km) with 17 stations (14 underground, 3 elevated)	24			105.4	1,101.7	348.4		31.5		1.585.0	45.8	66.0	Estimated Mass Rapid Transit Authority (MRIA)
Thailand	Bangkok Purple Line (Bang Yai – Rat Burana Srction)	400km long (Elevated tvin-track viaduct 25.Ekm + Ubhörground tvin tunnel 14.21km) with 3C stations (11 underground, 19 slevated) & Depot for 500 cars	40			87.1	1, 334.8	575.8		38.6		2.048.2	33.4	51.2	
Thailand	Bangkok Nev Airport Line Phase 1 (Phaya Thai - Prachongkrao - SEIA)	Mostly elevated. SB14 station will be undeground	28			0	386	145.35	216.8	-	43.05	781.2	14.3	27.2	JEIRO F/S
Thailand	Eastern Sesboard Development Plan Railway (Sattahip - Map Ta Fhut)	24km long track construction including signaling system & comunication system	24	1982/05	1395/04	35						80.4	0.0	2.5	JBIC Actual
Thailand	Eastern Seaboard Development Plan Railway (Elong Sip Xao - Kaeng Khoi)	82.42km long track construction including signaling system & comunication equipment	82.42	1983/04	1397/10	54						129.7	0.0	1.6	JBIC Actual
Thailand	Sriracha - Laen Chakang Railway	8.3%m long eingle track construction including marshalling ward (4 lines total 5.1km), commucation sysytem, signal, lishing system. mainterance building & drainage system	9.3	80/1881	1384/04	34						20.9	0.0	2.2	JBIC Actual
Vistnam	Ho Chi Winh City UWRT Line 1 (East Section)	Iotal Lergth of 14km (Urderground 3.8km, Elevated 2.0km, at-grads 8.2km) with 8 stations (4 underground, 1 elevated. 3 at-grade)	14			88	222	104.8	126.5		45.3	488.8	15.8	35.8	F/S Japan Failway Technical Service (w/o contingency)
United Kingdon	Dockland Light Railway Lewisham Extension	Railvay Tunnel (Slurry shield tunnel: Inner dia. 5.2m × 1080m long x 2 lines	1.08		2000		78.5					78.5	70.9	70.9	Mishinatsu Contract
Australia	New Wetro Rail, Doubling Transporth's Fail Network (Total)	lotal 81-5km. including 15 stations, shield tunnel, kridges & stuctures, at-grads, depot (Sha), 98 railars, atc.	g.18									1,078.4	0.0	13.2	
Australia	Mew Wetro Rail, Doubling Transperth's Rail Network (Package F :TEM Section)	¢6.3m Twin TBM.	0.77	2005/10								244.4	0.0	317.5	Kumagai Contract
Japan	Kawsaki Urban Rapid Transit (Shin Yurigaoka - Moto Sumiyoshi) Fhage I	15.5 km Tunnel (NATV. Shield 10m outer dia for double track. 7m outer dia for single track) with partis atrazia fatack re Shi Turipacka including 10 stations (1 at-rrade. 8 underground)	15.8		2011	192.2	2,781.7		1.62	88.7	588.7	3.710.4	178.3	257.8	Budget
Japan	Kawsaki Urban Rapid Transit (Noto Suniyeshi - Kawasaki) Phase 2	Under planning	6.2		2015							1,685.2	0.0	271.8	Budget
Japan	Serdai East-Vest Line (Yagiyama Zoo - Arai) (Linear Motor Car)	13.3km mcstly shield tunnel ((nner dia. 4.8m), partly NATM and bridge for river crossing with 13 Staticn, depot (6ha). Linear notor car.	13.9	2003	2014							2,378.3	0.0	171.1	Budget
Japan	Yokohana Subway No. 4 (Nakayama - Heyoshi) (Linear Motor Car)	[Total 13.1 kn (turnel 10.7km, above ground 2.4km) with ID stations (7 underground, 3 above ground), depot (6ha)	13.1	2001/01	2007/01	73 260.9	1,054.8	615.7			251.3	2,182.6	80.5	166.8	Budget
Japan	Osaka Subway No. 8 (ltakano - Imasato) (Linear Motor Car)	Iotal 12km (cut & cover and zhield tunnel: outer dia 5.3m) vith 11 stations													
Source:	: HAIDEP Study Tea	Ε				-			1	1	1		1		

6.4 Operations and Maintenance Cost

These O & M costs have been estimated for Phase I, Tu Liem to Thanh Xuan and Phase 1a Tu Liem to Bach Khoa in 2020 and Phase 4, the complete system, from Noi Bai International Airport to Ha Dong in 2020 and 2040.

1) Basic Assumptions

- (i) The costs are expressed at July 2006 prices (except where otherwise stated).
- (ii) Manpower numbers are based on staffing on similar transit systems in Hong Kong, Singapore and the Philippines.
- (iii) Manpower costs are an average at US\$5,700 per year, per member of staff.
- (iv) Energy consumption and costs have been estimated under three headings: stations (auxiliaries and environmental control systems); traction (train operation), and depot.
- (v) Energy consumption of rolling stock, has been based on similar rolling stock and station spacing used on transit systems elsewhere and is assumed at 2.2 kwh/car-km. It assumes the headways and service requirements indicated in the Rail Operation Plan.
- (vi) Annual energy consumption at underground stations has been assumed at 5,000 Mwh and at grade/elevated station at 2,250 Mwh.
- (vii) Annual energy consumption at Tu Liem Depot which includes the Workshop, Administration Building and Operations Control Center has been estimated at 15,000 Mwh and at the two subsidiary depots in Thai Phu and Ha Dong at 6,000 Mwh.
- (viii) The energy costs have been calculated using a tariff plus other charges of US\$ 0.055 per kwh.
- (ix) Train maintenance costs have been based on a staff requirement of 0.7 staff per car in the fleet. Annual cost of consumable materials, spares, stores and any contracted out work has been estimated at around 1% of the capital cost of the rolling stock.
- (x) The number of infrastructure maintenance staff, while varying depending on system type (whether underground, elevated, or at grade) and in complexity, has been estimated at 10 staff per route kilometer. Annual cost of consumable materials, spares and stores etc. has been estimated at around 0.5% for E & M systems and 0.1% for civil works, of capital costs.
- (xi) Capital spares, example rolling stock car bogies, traction motors etc. are assumed to be part of construction and supply contracts.
- (xii) No account has been taken of asset depreciation. Note that for rolling stock for example a life of 35 to 40 years has been assumed and replacement rolling stock would not be needed by 2040.
- (xiii) Functions such as station and train cleaning, and some aspects of maintenance eg. lifts and escalators, are often outsourced. A notional 10% of the direct staff cost has been assumed for indirect staff costs.
- (xiv) It is assumed that security of the railway is the responsibility of the local police authority.
- (xv) Insurance for the railway and domestic taxes, will need to be covered. A notional 3% of total cost has been assumed.
- (xvi) To take account of management and administration of the railway including functions such as personal, finance, marketing, legal and contractual, a 15% increase in the

number of direct staff has been included.

(xvii) There will inevitably be some costs not covered under specific headways. A notional 5% of total cost has been assumed to cover miscellaneous items.

		Staff Num	bers/Cost	
Staff	Phase 1a 2020	Phase 1 2020	Phase 4 2020	Phase 4 2040
	No	No	No	No
Train Operators	52	68	136	188
Train Staff Supervisors	4	6	12	16
Station Manager	8	8	16	16
Station Supervisor	44	56	112	112
Station Staff	132	168	308	336
OCC Staff	16	16	16	16
Train Maintenance	59	76	155	214
Infrastructure Maintenance	113	150	312	417
Mgt, Admin Support Staff at 15%	64	82	160	197
Total (US\$ millions)	492	630	1227	1512
Average Staff Rate (US\$)		5,7	/00	
Cost (million US\$)	2.8	3.6	7	8.6

Table 6.4.1 Staff Costs Assumption

Source: HAIDEP Study Team

2) O&M Cost Estimate

Based on the above assumption, the following table details the O&M cost of UMRT Line 2.

		Cost US\$	Millions	
Item	Phase 1a 2020	Phase 1 2020	Phase 4 2020	Phase 4 2040
Staff Cost (Direct)	2.8	3.6	7	8.62
Staff Cost (Indirect)	0.28	0.36	0.7	0.86
Energy	4.8	6	9	11
Spares	2.5	3	5.5	5.5
Insurance/Taxes	0.31	0.39	0.67	0.78
Miscellaneous	0.52	0.65	1.11	1.3
Total	11.21	14	23.98	28.06

Table 6.4.2 Operations and Maintenance Costs

Source: HAIDEP Study Team

Note: In US\$ million at July 2006 prices.

If O&M activities require outside assistance due to insufficient local skills and experience, there will be an associated cost for expatriate expertise. In this case an additional cost of US\$5 million should be added to the total cost.

7 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

7.1 Overview

The Urban Mass Rapid Transit Line 2 Transit (UMRT Line 2) Project is a priority project of the National Government to increase the public transport capacity of Hanoi. Its objective is to decongest traffic and improve public transport in Metro Hanoi. By linking the UMRT Line 2 with other proposed UMRT and public transport projects will complete the public transport loop of the capital's urban mass rapid transit system.

The UMRT Line 2 will increase the transport capacity of the important north-south public transport corridor and provide a faster and more convenient means of public transport. Currently, the Hanoi bus system can carry about 3 to 6% of the daily trips into Hanoi. The UMRT Line 2 will be designed to carry more than 20% of the corridor traffic by 2040. However, the UMRT Line 2 will have its own effects on the surrounding environment (air, water, soil, etc.) as well as issues on its social acceptability. Noteworthy is that majority of the effects will be positive.

For example, the UMRT Line 2 is one mode that does not contribute to the already alarming levels of air and noise pollution along the route alignment. Moreover, it can serve as a catalyst in changing the urban landscape. That is, with CBD-bound commuters patronizing the UMRT Line 2, the Ancient and French quarters of the city can still find room to avoid choking from traffic congestion and to grow 'vertically' instead of sprawling development of new satellite CBDs.

Along the UMRT Line 2's route, urban renewal into higher density property developments around the passenger stations is a possibility.

An environmental overview of the project was conducted to characterize the environmental conditions along the proposed route alignment. The results of the assessment guided the study team to come up with a conceptual design in consonance with an environment-friendly program that not only preserves the integrity of the existing environment but also enhances its assets and promotes the improvement of the environmental quality of the project's area of influence.

Both positive and negative effects on the environment were identified. For the adverse environmental effects, mitigation measures were recommended, most of which are incorporated in the conceptual designs of the UMRT Line 2.

It is to be noted that this overview is not a detailed Environmental Impact Statement (EIS) by itself, but only a characterization of the environmental landscape of the project area.

This chapter discusses the findings of this initial study. Vietnam environmental laws would ultimately require the submission of an EIS formatted to international specifications. The EIA will be a detailed discussion of the environmental overview of what is outlined in this report and the latter part of this chapter will be devoted to an implementing strategy of preparing an EIA and complying with the environmental laws of Vietnam.

7.2 Physical Environmental Setting

At the conceptual design and planning stage of project development, the environmental overview was performed which entailed technical review of secondary data, consultation meetings with Study Team, local agencies, and field ocular inspection of the project area. These activities generated sufficient data that provided the basis to establish baseline environmental information of the existing physical, ecological, social resources and values at the general location of the project area. The probable influence area of the project is also provisionally established. Key environmental and social considerations were then identified.

A reconnaissance survey of the UMRT Line 2 project's proposed alignment was conducted to characterize its immediate vicinity and to identify the potential assets and constraints that will have to be considered in pursuit of the preferred development scheme.

The existing condition of the physical and ecological resources and values within the general location of the project site is described in the succeeding tables and figures.

Figure 7.2.1 Environmental Consideration at the Tu Liem Station Section

Figure 7.2.2 Environmental Consideration at the Buoi Station Section

		they their pregentive (Place hearting) Prejent	Tary Non-Shadiled (statular
Ponted DeptingsRay Child Gests Program Biological Biolo	Station C5+ Ba Dinh	Environmental and Social	Land Braz Peokagy 0 50 100 200 201 Mercers
Traffic Management Problems	Urban Renewal	Considerations Construction disturbance	Measures Use of proper construction techniques and methods Prepare and implement a traffic management
ROW Acquisition	Decongested Traffic	Land use changes	plan Encourage commercial development in the vicinity Encourage transport infrastructure
Noise Sensitive Area	Reduced Air Pollution	Row acquisition (Involuntary Resettlement) Buried Thang Long ancient wall remains	development in the vicinity Formulation and prompt implementation of appropriate RAP Needs further studies
Potential Impact	Historical and Cultural Site	Interface with UMRT line 3B (BRT)	Factor in UMRT line 3B in station design

Figure 7.2.5 Environmental Consideration at Ho Tay Station (1) & Long Bien Station (1) Section

	ortig Deria Tantio	Ngayat Ba Pinasta Bangi		
P				e Xaala Kunya
مدينا	Stated Consulting	an gana - gana -	Provention - Str. Provention - 1.0	ng Bien Var Kurs Mark
		·+ I I Interior	10 mar 10	service and
	Cilia C			
ALC: NOT	The state of the s	IV http://www.ife	MULTER & Millionian Target Constant of Co.	The second se
A STATE		Matstayear Perindiki gan finastarah		Selicol -0.50-100 200. Meters
A STATE		Matsoywa* Pieredaetypo Gresstady (n		- Sellino - 0 50-100 200 Meters
egend		Lindsaywa ⁿ Pierentasiyya Terestudiyin	Environmental and Social Considerations	Possible Mitigating/Enhancement Measures
.egend		Matagyar Protocol Restrictor	Environmental and Social Considerations	Possible Mitigating/Enhancement Meters Use of proper construction techniques and methods
.egend	Traffic Management Problems	Undanyer Persetual) Restual) Urban Renewal	Environmental and Social Considerations Construction disturbance	Prepare and implement a traffic management plan
.egend	Traffic Management Problems	Watatiyer Persense Resisted) Urban Renewal	Environmental and Social Considerations Construction disturbance Visual intrusion	Prepare and implement a traffic management plan Design review
.egend	Traffic Management Problems ROW Acquisition	Unban Renewal Urban Renewal Decongested Traffic	Environmental and Social Considerations Construction disturbance Visual intrusion	Possible Mitigating/Enhancement Meters Use of proper construction techniques and methods Prepare and implement a traffic management plan Design review Encourage commercial development in the vicinity
egend T	Traffic Management Problems ROW Acquisition	Matagwa ² Pression Pression With Renewal With Renewal Decongested Traffic Pression Reduced Air Pollution	Environmental and Social Considerations Construction disturbance Visual intrusion Land use changes	Possible Mitigating/Enhancement Meters Use of proper construction techniques and methods Prepare and implement a traffic management plan Design review Encourage commercial development in the vicinity Encourage transport infrastructure development in the vicinity
egend • †	Traffic Management Problems ROW Acquisition Noise Sensitive Area	Waterwar Preserved Restruction Urban Renewal Decongested Traffic Decongested Air Pollution	Environmental and Social Considerations Construction disturbance Visual intrusion Land use changes Interface with UMRT line 1 and VR	Possible Mitigating/Enhancement Meters Possible Mitigating/Enhancement Meters Use of proper construction techniques and methods Prepare and implement a traffic management plan Design review Encourage commercial development in the vicinity Encourage transport infrastructure development in the vicinity Factor in UMRT line 1 in station design

Source: HAIDEP Study Team

Figure 7.2.6 Environmental Consideration at the Ho Tay Station (2) Section

	Augus Salari Sal	an CS Den Den Chains Spart Chains Frank Chains Den Den Den Den Den Den Den Den Den Den	100 200 300 Lagres
gend		Environmental and Social Considerations	Possible Mitigating/Enhancement Measures
Traffic Management Problems			Use of proper construction techniques and methods
	Orban Kenewai	Construction distribunce	Prepare and implement a traffic management plan
		Visual intrusion	Design review
ROW Acquisition	Decongested Traffic	Residential area may be effected by funnelling	Compensation plan (RAP)
Noise Sensitive Area		Interface with Long Bien Railway station	Factor in LB RS in station design
	Reduced Air Pollution	The second second second second second second second	Coordinate/consultation with Dyke Protection
	Reduced Air Pollution	Dyke protection zone	Agency (DPA)

Source: HAIDEP Study Team

Ring George Jia dad Status Boogo Mesau Boogo Mesau Boogo Mesau Personal Per	Station CS Bo Ho Patron Mas Patron Mas Patron Mas Patron Mas Sease	tionitativ (d) Anarovice of State St	Withelited light: Withelited light: Market of the standard dis status Post Culliss Mark Hung: Issue
egend		Environmental and Social Considerations	Possible Mitigating/Enhancement Measures
Traffic Management Problems	Urban Renewal	Construction disturbance	Use of proper construction techniques and methods Prepare and implement a traffic management
ROW Acquisition	Decongested Traffic	Land use changes	Encourage commercial development in the vicinity
Noise Sensitive Area			
	Reduced Air Pollution	Row acquisition (Involuntary Resettlement)	development in the vicinity Formulation and prompt implementation of appropriate RAP
	Reduced Air Pollution	Row acquisition (Involuntary Resettlement) Ancient Quader	development in the vicinity Formulation and prompt implementation of appropriate RAP
Rotential Impact	Reduced Air Pollution	Row acquisition (Involuntary Resettlement) Ancient Quarter Ho Chi Minh president commemorative house	Encourage transport intrastructure development in the vicinity Formulation and prompt implementation of appropriate RAP Needs further studies Station design review
Potential Impact	Reduced Air Pollution	Row acquisition (Involuntary Resettlement) Ancient Quarter Ho Chi Minh president commemorative house Interface with Airport express	Encourage transport intrastructure development in the vicinity Formulation and prompt implementation of appropriate RAP Needs further studies Station design review Factor in AE in station design
Potential Impact	Reduced Air Pollution	Row acquisition (Involuntary Resettlement) Ancient Quarter Ho Chi Minh president commemorative house Interface with Airport express Hoan Kiem Lake may be affected by underground railway works	development in the vicinity Formulation and prompt implementation of appropriate RAP Needs further studies Station design review Factor in AE in station design Needs further studies

Source: HAIDEP Study Team

Figure 7.2.9 Environmental Consideration at Chuong Duong (2) & Hoan Kiem Station (2) Section

Autor/Usage Entropy oppiess Chuong Duong	Star Sounds and Red Courses of Anti- Red Based of Anti- Red Only of Anti-	Voteory Aust Butching Stand Bage Stand Stands Voteory Poteory Pilines Screenworks Lavited To Screenworks	ation C10 pan,Ktern
Legend	Br jühen Nungle	estimation Sets Mess Rate Idae	Matalay of Lescort trouble and So data values 0 50 100 200 300 Meters
Traffic Management Problems	Urban Renewal	Construction disturbance	Use of proper construction techniques and methods Prepare and implement a traffic management
BOW Acquisition	1	1	Encourage commercial development in the
	Decongested Traffic	Land use changes	vicinity
	Decongested Traffic	Land use changes	Encourage transport infrastructure development in the vicinity
Noise Sensitive Area	Reduced Air Pollution	Land use changes Noise Residential area may be effected by tunnelling	Vicinity Encourage transport infrastructure development in the vicinity Noise barrier during construction Compensation plan

Figure 7.2.10 Environmental Consideration at the Tran Hung Dao (1) & Cau Den Station Section

Figure 7.2.11 Environmental Consideration at the Tran Hung Dao (2) & Cau Den Station Section

位 没有 南部	1. 化和常常的		计的编程会议
here Parts	Millitativy of Onlineorinals	A TOMAN	inder (Refilter) Viestlich
Station C1			ation C12 Tau Ben
Tran Hung D			NEW PARTY
Anstando el Alacia de Sala Seciela Educado Enciladorados Enciladorados Heni Bida Mateir	enon. 1971 — Mago Silitzan Istanak - Bahari - Henna (Verber)		理論「「「「な」をで
Beng long - et		The A CLARK	Carlo and Carlo
A CONTRACT OF A CONTRACT.		A REAL PROPERTY AND A REAL	ATTAC STREET AND A STREET AND A STREET
in a strategy from	可但並且能够到		0-50 100 200 300
bradgester Agester	到在計劃	时国行的	0 56 100 200 300 Meters
Legend	到某辦地的	Environmental and Social Considerations	0 50 100 200 300 Meters Possible Mitigating/Enhancement Measures
Legend		Environmental and Social Considerations	0 50 100 200 300 Meters Possible Mitigating/Enhancement Measures Use of proper construction techniques and methods
Legend Traffic Management Problems	Urban Renewal	Environmental and Social Considerations Construction disturbance	0 50 100 200 300 Meters Possible Mitigating/Enhancement Measures Use of proper construction techniques and methods Prepare and implement a traffic management plan
Legend Traffic Management Problems	Urban Renewal	Environmental and Social Considerations Construction disturbance	0 50 100 200 300 Meters Possible Mitigating/Enhancement Measures Use of proper construction techniques and methods Prepare and implement a traffic management plan Encourage commercial development in the vicinity
Legend Traffic Management Problems ROW Acquisition	Urban Renewal	Environmental and Social Considerations Construction disturbance Land use changes	0-50 200 300 Meters Meters Possible Mitigating/Enhancement Measures Meters Use of proper construction techniques and methods Meters Prepare and implement a traffic management plan Encourage commercial development in the vicinity Encourage transport infrastructure development in the vicinity Encourage transport infrastructure
Legend Traffic Management Problems ROW Acquisition	Urban Renewal Urban Renewal Decongested Traffic Reduced Air Pollution	Environmental and Social Considerations Construction disturbance Land use changes Residential area may be effected by tunnelling	0 50 100 200 300 Meters Meters Meters Meters Possible Mitigating/Enhancement Measures Meters Meters Use of proper construction techniques and methods Meters Meters Prepare and implement a traffic management plan Encourage commercial development in the vicinity Meters Encourage transport infrastructure development in the vicinity Compensation plan Meters
Legend Traffic Management Problems ROW Acquisition Noise Sensitive Area	Urban Renewal Urban Renewal Decongested Traffic Reduced Air Pollution	Environmental and Social Considerations Construction disturbance Land use changes Residential area may be effected by tunnelling Interface with UMRT line 3a	0 50 100 200 300 Meters Meters Meters Meters Possible Mitigating/Enhancement Measures Meters Meters Use of proper construction techniques and methods Meters Meters Prepare and implement a traffic management plan Encourage commercial development in the vicinity Meters Encourage transport infrastructure development in the vicinity Compensation plan Meters Eactor in UMRT line 3a in station design Meters Meters

Source: HAIDEP Study Team

Source: HAIDEP Study Team

Figure 7.2.14 Environmental Consideration at the Nga Tu So and Thuong Dinh Station Section

7.3 Key Findings

- (a) **Project Location:** The UMRT Line 2 proposed project is located in an area with rapid urbanization. It has a great role in facilitating the expansion of Hanoi City to the northern part of Red River, improving the transport system and reducing traffic jam in Hanoi urban districts thereby promoting economic growth in the region.
- (b) Environment at Project Area: Current status of the environment at the project site is degraded by high noise level, concentration of suspended particulate matters, those often exceed Vietnam's permissible standards, and by the pollution of most surface water bodies and ground water in some places. Although biodiversity of the region is low, there exist some precious biological species.
- (c) **Environmental Impacts:** The major negative environmental impacts of the proposed project are as follows:
 - (i) Resettlement, land acquisition, and demolition of some parts in the ancient quarter if the cut and cover method is implemented, are the most significant negative impacts.
 - (ii) A number of negative impacts on physical environment are expected in the construction phase, such as vibration, noise, air pollution, water pollution, erosion and sedimentation; negative environmental impacts associated with temporary roads, stockpiles, etc. However, most of these impacts are temporary and can be mitigated.
 - (iii) There exist some expected significant but unknown negative impacts, impacts of construction works to Hoan Kiem lake ecosystem; effect of the project on underground buried historical remains, etc. that need more detail study in the FS phase.
- (d) Next Step: A full EIA in the feasibility study phase is important and necessary.

8 IMPLEMENTATION PLAN

8.1 Outline

In the implementation of UMRT 2, the basic context is that the financial analysis clearly demonstrates the weak financial state of UMRT 2 despite the undeniable economic impact and strategic value of the project. Another key aspect is maximizing the economic impact of UMRT 2 through integrated urban development.

The organization and funding of UMRT 2, which are two interrelated implementation issues, would therefore need to be carefully and strategically approached by taking account of the involvement and the roles of key stakeholders, including the private sector, local governments, central government, and donors.

To address these issues, this chapter examines relevant organizational models of urban rail development in Asia and identifies a recommendable approach for UMRT 2. Funding sources are also preliminarily identified in conjunction with the proposed organizational setup.

8.2 **Project Implementation Issues**

1) Implementation Agencies

One of the critical issues in the project implementation is to consider what kind of institutional and organizational set up the development of the UMRT Line 2 system would require. The progress of the development of the UMRT Line 1 of the HCMC, which precedes the UMRT Line 2 of the Hanoi PC, should give good guidance in this respect.

In the project implementation, funding should play an important role. Based on the fact that ODA funding is being contemplated for the initial investment of the project, the treatment of the ODA funding would become one of the deciding factors when the organizational set-up is considered.

As illustrated in the Figure 8.2.1, the organizational set up could have two extreme cases when the treatment of the ODA funding is considered. One extreme case is the option for which all the responsibility regarding the ODA funding is assumed by the Vietnamese Government. The other option is the Hanoi PC will shoulder all the risks including the repayment of ODA loan. There could be a variety of options in between these two cases depending on the degree of risk-sharing between the Vietnamese Government and the Hanoi PC.

Figure 8.2.1 Variety of Implementation Options

Source: HAIDEP Study Team

Based on the progress of the development of the UMRT Line 1 of the HCMC, the following is the basic implementation set up which is being discussed as of June 2006, in the course of the JBIC SAPROF Study. However, the details of risk sharing as illustrated in the above figure, is still a subject for future discussion among the stakeholders.

It is also proposed in the HAIDEP Master Plan that the Hanoi Public Transport Authority (HPTA) will be created for the operation of the UMRT Line 2 system. The necessity of such institutional set up would be further looked into in succeeding sections.

Figure 8.2.2 Implementation Setup for the UMRT Line 1 of HCMC

Source: JBIC HCMC-UMRT SAPROF Study Team.

2) Competitive Costs for Both Users and the Government

One of the key aspects to the development of the UMRT Line 2 is Technical Competitiveness, i.e. to develop efficient operation and management system at competitive costs for both users and the government.

In order to attain the competitive costs for both users and the government, the following elements should be taken into consideration:

- (i) Competitive procurement in both the construction of the infrastructure and in the purchase of the rolling stock;
- (ii) Competition or appropriate benchmarking in the operation and management of the UMRT Line 2 system;
- (iii) Affordable fare setting and sustainable funding mechanism to mitigate the risk of fund shortage; and
- (iv) Alternative funding sources for both the initial investment and the operation.

Even though the Metro systems in Japan are generally developed with grants from the government of about 50 to 60% of the initial investment on the average, their revenue barely covers the cost of O&M and the interest payment. The revenue is usually not enough to cover the depreciation. This kind of cost and revenue profile is common among the urban rapid transit systems throughout the world.

It is very likely that the UMRT Line 2 will face the same kind of financial problem. Therefore it would be essential to consider the sustainable funding mechanism and alternative funding sources to support the UMRT Line 2 operation.

Figure 8.2.3Comparison of Cost and Revenue for the Metro Systems in Japan

3) Land Acquisition

The right of way for the UMRT Line 2 development should be within public land as much as possible to minimize the cost required for land acquisition. There needs to be a new set of rules in compensation and land right treatment for both the underground and the elevated portion of the UMRT Line 2 system. The land readjustment mechanism may also be required to coordinate land owners in order to create the necessary land area for the integrated urban development in the vicinity of UMRT stations.

4) Integrated Urban Development

There have been various laws enacted that relate to urban development. However, the supporting decrees and circulars have not yet been prepared. Therefore, a mechanism which controls effectively the development in the urban area in accordance with the soundness and the needs of the government has not yet been instituted.

Issues with regards to the integrated urban development are the following:

- (i) Major area of the UMRT route is located within development controlled districts such as the Ancient Quarter, Hong Kiem Lake District and the French Quarter.
- (ii) Grand design and commonly agreed detailed plan of urban functions along the UMRT route and its vicinity do not exist.
- (iii) Majority of the UMRT route is underground and the function of the UMRT stations in terms of urban development is rather limited.
- (iv) The land price of the areas along the UMRT route is very high, and maybe too high to justify the reasonable floor price in the market when the land is newly acquired for the purpose of development. Therefore the potential land available for the commercial and residential development may be limited to the following land categories in the

Source: Profit and Loss Statements of each system, 2004 or 2005

condition of joint venture arrangement with current land owners (the government agencies and SOEs):

- Industrial/ factory land to be relocated away from the urban area;
- Old housing development done by SOE housing developers for relocation;
- Government offices for relocation;
- Educational institutions for relocation.

5) Legal Constraints

The following are legal issues to be considered:

- (i) No rules for the development and the protection of the underground route/stations/private property.
- (ii) No rules for the integrated development of the underground UMRT related facilities and the urban development.
- (iii) No detailed decrees and circulars to support the Land laws, the Construction laws, and so on.

This discussed in more detail in a succeeding section.

6) Other Issues

There are other issues to be considered in the implementation as described below which have already been discussed in other sections of this report.

- (i) Phasing of the development
- (ii) Connectivity issues
- (iii) Marketing and community awareness
- (iv) Operation and effective indicators
- (v) Environmental issues

8.3 **Preliminary Evaluation of Implementation Methods**

1) Potential Implementation Models

Based on the difference in the role which the public sector play, implementation model can be classified into the following four options as illustrated in the Figure 8.2.1 :(i) Hong Kong Model; (ii) Singapore Model; (iii) Bangkok BTS Model; and, (iv) Bangkok Blue Line Model.

Source: HAIDEP Study Team

(1) Hong Kong Model

The Hong Kong Model is characterized by the creation of a government owned public corporation which constructs, owns and operates the whole mass rapid transit system in Hong Kong. The regulatory function is also within the charter of the corporation backed up by an ordinance. The corporation is very active in railway related property development to support the financial sustainability of its railway business.

The Mass Transit Railway Corporation (MTRC) was established in 1975 as a government owned statutory corporation in order to oversee the initial construction of the Hong Kong Mass Transport System, and later to run and manage the functioning transport system. In June 2000 the MTRC was succeeded by the MTR Corporation Limited (MTRCL). The MTRCL was listed on the Hong Kong Stock Exchange in October 2000; however the government maintains a majority stake in the MTRCL. Besides railway operations, the MTRCL is also actively involved in the development of key residential and commercial projects above existing stations and along new line extensions as well as many other commercial activities associated with the railway. The MTRCL is also involved in the letting of retail and poster advertisement space, ATM banking facilities, and personal telecommunication services. It also provides consultancy services to organizations worldwide. The company is also exploring business opportunities outside Hong Kong.

The regulatory functions for the railway are handled by the Hong Kong government.

(2) Singapore Model

Singapore Model is characterized by a dual structure where construction and asset ownership is clearly separated with regards to the operation of the railway system. The independent and multimodal private companies are responsible for the operation in competitive manner, while the public authority governs the former's activities including the regulatory functions. Property development is designed and promoted by the authority as well.

The Singapore government established a provisional Mass Rapid Transit Authority in July 1980 for the preparation of the first MRT line. The Mass Rapid Transit Corporation (MRTC) was established to take over the role of the provisional authority in October 1983. The first section of the North South Line started operation, consisting of five stations over six kilometers in November 1987, and in the same year the Singapore MRT (SMRT) Corporation was incorporated to take over the role of MRTC. SMRT was listed on the Singapore Stock Exchange and the majority of its share is now owned by private companies. There is another mass transit operator, SBS Transit Limited, which started operating the North East MRT line in 2003 and now operating some other LRT lines as well.

The construction and regulation matters are handled by the Land Transport Authority (LTA) which was established in September 1995 through the merger of public sector entities, namely: Registry of Vehicles, Mass Rapid Transit Corporation, Roads & Transportation Division of the Public Works Department and Land Transport Division on the Ministry of Communications.

The railway assets are constructed and owned by the LTA, which constructs and regulates all land transport including rail and road whereas the operation is managed by SMRT which was originally a public entity and is now a private corporation providing rail, bus and taxi services and SBC Transit which was originally formed by the merger of three bus companies.

(3) Bangkok BTS Model

Bangkok BTS Model is characterized by a BOT concession in which a private entity designed, built, financed and operated the whole railway system with the public sector playing limited role in policy making and regulatory functions.

Bangkok Mass Transit System Public Company Limited (BTSC) was established in 1992 as a joint venture between Bangkok Metropolitan Administration (BMA) and the Italian-Thai Development PLC for a BOT concession to design, build, finance and operate the BTS Sky Train. The policy making and regulatory functions are conducted by BMA, a local government body.

(4) Bangkok Blue Line Model

Bangkok Blue Line Model is characterized by the separation of construction and ownership of the basic railway infrastructure which was done by the public sector and the procurement of rolling stock and E&M system plus the operation of the whole railway system was by private sector on a concession basis. The policy making and regulatory functions are conducted by the same public authority which owns the infrastructure.

The Metropolitan Rapid Transit Authority was established in July 1992 under the Office of the Prime Minister as the SOE responsible for the implementation of projects on Mass Rapid Transit Systems in the Greater Bangkok Area. In year 2000 it was renamed Mass Rapid Transit Authority of Thailand (MRTA) under a new act to expand its responsibility to include other provinces.

ODA funding was sourced for the construction of the basic infrastructure of the railway which included civil work, depot, rail track, escalators and others. The operation and the procurement of the rolling stock and the electrical and mechanical system were bidded for BOT concession for 25 years. The concession was awarded to the consortium of Siemens and CH Karnchang.

The Bangkok Mass Transit Public Company limited (BMCL) was formed by CH Karnchang and other investors to procure the rolling stock and the electrical and mechanical system and to operate the Blue Line.

2) Preliminary Evaluation

The four models are assessed on the basis of the following aspects:

- (i) Government Control and Network Development;
- (ii) Competition and Cost Efficiency;
- (iii) Financial Output of the Railway Business and its Sustainability; and
- (iv) Burden on Public Sector in management of the whole system.

Each model has advantages and disadvantages as shown in the Table 8.3.1. When looked at the government control and network development perspective, both Hong Kong Model and Singapore Model seem to have a clear advantage due to the following reasons:

- Integration of the Railway Network with other mode of transportation; and
- Performance in integrated property development.

However, those models require considerable level of management expertise and financial strength in its implementation.

	Hong Kong Model	Singapore Model	Bangkok BTS Model	Bangkok Blue Line Model		
1) Government Control/ Network Development	۲	۲	\triangle	\bigtriangleup		
2) Competition/ Cost Efficiency	0			0		
 Financial Output/ Sustainability 		0	\triangle	\triangle		
4) Burden on Public Sector in Management	\triangle	\triangle	0	0		
High Performance Medium Performance Some Constraints						

 Table 8.3.1
 Preliminary Evaluation of Potential Options

Source: HAIDEP Study Team

3) Recommended Implementation Model

It is recommended that the Hanoi City creates a Mass Transit Authority which designs, builds, finances and operates the whole UMRT Line 2 System with active involvement in the railway related property development along the corridor. In other words, project implementation shall start with the Hong Kong Model with a single implementation body strongly backed up by the government which is also active on railway related property development and as the experience and know-how for railway business accumulate, the structure shall move towards the Singapore Model for which a clear separation of regulator function and service provision function (operation) is materialized by introducing competition among the private sector players in service provision. Meanwhile the public sector maintains the control over the public transport network development and effective integration of urban development. It is also recommended that the possibility of creating competition among multi-modal companies of railway, bus and taxi services be looked into as done in Singapore.

8.4 Institutional Framework for Project Implementation

1) Overall Organization Structure

Overall organization structure of the implementation of UMRT Line 2 system is illustrated in Figure 8.4.1.

Design and construction of the system and ODA funding management shall be executed by a Project Management Unit created under HPC. Operation and maintenance of the system will be covered by the Mass Transit Authority and the operator in the ultimate structure. However, there will be a transition issue to be considered as described in the following section.

Figure 8.4.1 Overall Organization Structure

Source: HAIDEP Study Team.

A major task of each player is outlined as follows:

- (i) HPC Project Management Unit
 - Manage Planning & Design
 - Award Contracts
 - Manage Construction
 - Responsible construction, budget, time and quality control
- (ii) Mass Transit Authority
 - Regulatory Compliance

- Future Planning
- Interdepartmental Coordination
- Implementation of Future Lines
- Technical Standards
- Operational Responsibility
- (iii) Operator
 - Manage Operations
 - Collect Fares
 - Collect Other Revenues (depending upon agreement)
 - Pay operating costs
 - Refurbishment and Renewals
- (iv) Maintenance Contractor (as an Option)
 - General Maintenance
 - Overhaul
 - Security
 - Cleaning

2) Transition Issue

Institutional framework for the project implementation of the UMRT Line 2 must be structured taking the following transitions into consideration:

- (i) VNRA to HPC
- (ii) Construction Management Unit/ Project Management Unit to Mass Transit Authority
- (iii) Construction to Operation and Maintenance

The appropriate market structure in the future when multiple railway lines come to operation would also have to be considered. Figure 8.4.2 illustrates a possible transition of the institutional setup from the beginning to attaining an appropriate market structure in the urban railway services in the future.

The transition may be divided into the following five phases:

- (i) Preparation Phase;
- (ii) Design and Construction Phase;
- (iii) Commissioning Phase;
- (iv) Initial Operation Phase; and
- (v) Stable Operation Phase.

The details of each phase shall be described in the following section.

Source: HAIDEP Study Team

3) **Preparation Phase**

A Metro Preparation Unit (MPU) shall be created as was done in the HCMC UMRT Line 1 project. The unit shall handle the feasibility study of the system, ODA loan preparation and necessary inter-agency coordination.

4) Design and Construction Phase

The MPU shall transform into a Metro Project Management Unit (MPMU) which shall manage the design and construction of the system; coordinate the policy making, standards/ rules setting, and institutional setup; and, conduct necessary inter-agency coordination.

MPMU shall, together with a general consultant who will provide consultancy services regarding various aspects of the implementation, will constitute the Line 2 Project Office. The expertise of the Vietnam Railway may be utilized by seconding experts to the MPMU.

Figure 8.4.3 Institutional Framework (Design and Construction Phase)

Source: HAIDEP Study Team

5) Commissioning Phase

A provisional Mass Transit Authority shall be created with an O&M training Unit who will receive the necessary O&M training and will conduct other commissioning works. ODA technical assistance may be utilized to provide O&M training to the O&M training unit.

Figure 8.4.4 Institutional Framework (Commissioning Phase)

Source: HAIDEP Study Team

6) Initial Operation Phase

The Provisional Authority shall transition to the Hanoi Mass Transit Authority (HMTA) upon the commencement of the operation of the Line 2. In the Initial Operation Phase, the O&M unit for the Line 2 will be under the management of the Authority and will build up necessary O&M expertise and the know-how of the urban railway business, so the separation of the regulatory function and the service provision would be possible in the later phase. Possibility of a corporation structure for the O&M unit shall also be looked into since independency and more freedom of the service provider may often result in efficiency and better quality of the service (a good exaple is TRANSERCO in Hanoi), and could make it easier for the future privatization.

Major legal issues would be addressed as follows:

- (i) Legislation empowering the authority to plan, design, construct, finance, operate and maintain the UMRT Line 2 system;
- (ii) The authority should have the right to purchase land or in the case of underground structures have the right of easement under existing public and non public properties;
- (iii) The authority should have the right to develop adjacent property on a commercial basis;
- (iv) The authority should have the right to form associations or joint ventures with other public and private entities if it is beneficial to the development of the public transport network.
- (v) Degree of freedom of the authority in fare setting
- (vi) Benchmarking mechanism to be adopted to monitor the performance of the UMRT Line 2 System

Figure 8.4.5 Institutional Framework (Initial Operation Phase)

Source: HAIDEP Study Team

7) Stable Operation Phase

Stable regulatory function shall be established by a clear separation of the regulatory and the service provision functions. Operation and maintenance of the Line 2 shall be separated from the HMTA and privatized. The HMTA shall then oversee as a regulator of the operations of Line 2, Line 1 and other lines of the urban railway services which are provided in a competitive manner.

Figure 8.4.6 Institutional Framework (Stable Operation Phase)

Source: HAIDEP Study Team

8) Other Institutional Arrangements

The following institutional arrangement shall also be necessary for the implementation of the UMRT Line 2:

- ODA funding arrangement with procurement of general consultant who will provide to HPC appropriate expertise and advice for the implementation and urban railway business.
- (ii) ODA technical assistance arrangement for O&M training and for other necessary expertise such as formulation of new rules and regulations of the urban railway business.
- (iii) Preparation of new rules and regulations, revision of related laws and decrees with particular importance on the following issues:
 - Subway route protection
 - Design and safety standards for the underground structures
 - Operating Procedures
 - Liaison Mechanism with emergency services, such as police, fire, and ambulance.
 - Fare Structure/ Policies
 - Integrated Ticketing System
 - Drafting of various contracts, such as operating/management contract, maintenance contract and other related contracts.
- (iv) A unit specially focused on the integrated commercial/property development with the UMRT Line 2 system may be necessary under HPC to conduct the following tasks:
 - Prepare a master plan for the integrated development.
 - Prepare implementation for each development including funding mechanism.
 - Conduct inter-agency coordination
 - Arrange joint venture for the development and conduct bidding when necessary.
 - Monitor each development in coordination with related agencies.

8.5 Implementation Schedule

1) Project Phasing

The implementation of the UMRT Line 2 system shall be divided into the following four phases:

- (i) Phase 1: Tu Liem-Thuong Dinh (14 stations/terminals: 15.2km)
- (ii) Phase 2: Nam Thanh Long-Ha Dong (21 stations/terminals: 25.4knm)
- (iii) Phase 3: Thai Phu (Depot)- Ha Dong (26 stations/terminals: 36.1km)
- (iv) Phase 4: Noi Bai-Hoan Kiem (Air Port Link: 28 stations/terminals: 41.5km)

As illustrated in the previous chapter the implementation shall start with a 15.6 km section which is completely underground covering the core CBD area of the City. In additional phases, the line will be extended to the north to Nam Tanh Long and to the south to Hadong in Phase 2, and crossing the Red River to cover the new urban development of Dong Anh District in Phase 3. Phase 4 will be the construction and the operation of the Air Port Link to the Noi Bai International Airport.

Figure 8.5.1 shows the development timeline of the UMRT Line 2 from its inception in 2006 to operational revenue within 8 to 15 years depending on the phasing of the project. In order to meet the target year of 2020 for the commencement of the whole system of the UMRT Line 2 as planned in HAIDEP Master Plan, Phase 1 which shall start its operation in the year 2013 will be relatively tight in its schedule. Efficient processing of the ODA loan and measures to shorten the design and construction period such as adoption of Design and Build approach as discussed in the later section of this chapter will be required.

Figure 8.5.1 Phasing of Implementation

Source: HAIDEP Study Team

2) Project Schedule (Phase 1)

The project schedule of the Phase 1 will be further broken down in the Figure 8.5.2. The schedule is based on the premise of the Government of Vietnam and HPC making use of ODA bilateral fund sources. This financing mode will entail a minimum 2 years lead-time, before actual tendering and construction can commence.

The design and project management of a modern mass transit rail system implementation program would most likely require the assistance from experienced foreign consultants as the required urban mass rail transit expertise is not available domestically or limited to what may have been experienced earlier in the implementation of mass transit rail systems in HCMC. Rail systems are built-to-order and adapted to meet the particular needs of every city. Thus before they can be built and operated successfully, the manufacturer or systems supplier must know what the buyer/operator wants, which means detailed technical performance specifications will have to be prepared by the project consultants.

Activity	1 2006	2 2007	3 2008	4 2009	5 2010	6 2011	7 2012	8 2013	9 2014	10 2015
1. Project Approval and Preparation										
1.1 Feasibility Study										
1.2 Preparation for ODA Approval										
2. ODA Loan Procedure										
2.1 Request for ODA	*	r								
2.2 Pledge		★								
2.3 Loan Agreement		*								
3. Selection of Consultant										
4. Design and Preparation of Tender										
5. Tender										
6. Construction Work										
7. Test Run and Training										
8. Commencement of Operation										
9. Right of Way										

Figure 8.5.1	Project Schedule (Phase 1)	

Source: HAIDEP Study Team

The project will start with the conduct of a feasibility study and preparation for ODA loan. The normal and mandatory stages on which the project will go through to use ODA funds are as follows:

- (i) Preparation of the feasibility study;
- (ii) Evaluation of the study and inclusion of the project in the lending agency's portfolio;
- (iii) Appoint a consultant to carry out the basic engineering design and
- (iv) Preparation of detailed design, bill of quantities, and firm cost estimates;
- (v) Preparation of bid documents, followed by bidding, evaluation and award;
- (vi) Actual construction of the civil works, with the manufacture and installation of the rolling stocks and the railway system;
- (vii) Testing and commissioning; and
- (viii) Commercial revenue service for operation.

Almost four years will be needed before the commencement of actual construction work. During the same period, necessary right of way for the Line 2 shall be cleared by HPC. Again, the design-build approach and the performance specification approach shall be adopted to shorten the design/construction/procurement period. It is also recommended that ODA technical assistance be used for the training and the commissioning. The construction of the system would be packaged into six packages constituting of five civil works packages and one rolling stock and railway system package as illustrated in Figure 8.5.3. Technical detail of each package is described in the previous section of this report. The design-build approach shall be adopted for the civil work components and performance specification approach shall be adopted for rolling stocks and railway system component. This transfers the risk and the detailed design responsibility of the more complex systems technologies to the contractor/manufacturer/supplier, rather than the government as the project owner. This system has the added advantage of allowing bidders to optimize their own work and products with a resulting lower cost beneficial to the owner.

However, to ensure long-term system performance, the EPC contract should require a concomitant maintenance support of over five to ten years after turnover. It should also be noted that when the design-build approach is adopted for the civil work components, the evaluation of the bids will need a very detailed preliminary engineering and an experienced program management team employed for the project implementation.

Figure 8.5.2 Construction Package for UMRT Line 2 (Phase 1)

8.6 Funding Plan

1) Project Cost

Table 8.6.1 shows the project cost that is required to develop the whole system. Total project cost inclusive of the land cost shall be US\$ 2,886 million. Of which Phase 1 will comprise about 63%, US\$ 1,806.2 million.

										(U)	S\$ million)
Voor	Phas	e 1	Phas	se 2	Phas	se 3	Phas	se 4	Tota	al Project (Cost
real	Const	Land	Const	Land	Const	Land	Const	Land	Const	Land	Total
2007	21.9								21.9	0.0	21.9
2008		174.2							0.0	174.2	174.2
2009		174.2							218.7	174.2	392.9
2010	218.7								291.6	0.0	291.6
2011	291.6								291.6	0.0	291.6
2012	291.6		49.4	30.9					341.0	30.9	371.9
2013	342.6		82.3						424.9	0.0	424.9
2014			98.8			40.8			98.8	40.8	139.6
2015			98.8		82.5				181.3	0.0	181.3
2016					99.0			26.0	99.0	26.0	125.0
2017					99.0		96.8		195.8	0.0	195.8
2018					49.5		96.8		146.3	0.0	146.3
2019							129.1		129.1	0.0	129.1
2020									0.0	0.0	0.0
Total	1,457.8	348.4	329.3	30.9	330.0	40.8	322.7	26.0	2,439.9	446.1	2,886.0

 Table 8.6.1
 Project Cost and Investment Schedule

Source: HAIDEP Study Team

As illustrated in Figure 8.6.1, in order to complete the entire length of UMRT Line 2, HPC should continuously invest in construction of over ten years period with about three hundred US\$ million each year for the first five to six years.

Figure 8.6.1 Capital Investment Requirement Over the Years

2) Overview of the Total Funding Framework

The result of financial evaluation (detailed in succeeding chapter) implied that positive private sector participation is not likely in the implementation of the project. However, the project may generate enough cash flow to cover the O&M costs and most of the depreciation of the project which indicates that it may be possible to create a sufficient standing operating body for the operation of UMRT Line 2.

A possible funding scheme is illustrated in Figure 8.6.2 where the basic infrastructure of the UMRT Line 2 is financed by public funding including ODA funds and the operation is funded by its fare box and non fare box revenues.

Source: HAIDEP Study Team

It is usual for most of urban mass transit systems that risks are high that initial demand and revenues would be insufficient ramp up and will result in fund shortage for regular operation. Therefore, the funding framework for the UMRT Line 2 shall be equipped with a system to cover such contingent cash flow shortage

HPC should look into further the following measures to mitigate such risks in the implementation of the UMRT Line 2:

- (i) Maximize the non fare box revenues up to 10 to 15% of the total revenues;
 - Rental for station kiosks, shops, and banking facilities(ATM)
 - Advertising in stations, on trains and on tickets
 - Provisions for utilities and communication networks
 - Financial services, SMART cards, etc
 - Promotion and events, in large station spaces
- (ii) Maximize opportunities for integrated commercial development

- Joint commercial development with stations/terminals
- Integrated commercial development in the vicinity of stations/terminals
- Related large commercial and residential development in the corridor of UMRT Line 2
- (iii) Seek for opportunities in capturing the development value of UMRT Line 2
 - Car/ motor bike parking charges
 - Other TDM related revenues
 - Other value capture methods such as Developer Fee, Special Assessment District and etc.
- (iv) Utilize low cost funds such as ODA grant facilities for the planning and preparation of the above mentioned measures;
 - Bilateral and multilateral technical assistance
 - Special Assistance Facilities
 - Engineering Services of the Main Loan Package

8.7 Orientation in Integrating UMRT and Urban Development

1) Concept of Transit-oriented Development

It is increasingly being recognized that urban areas must be developed in a way that their competitiveness and livability are maximized, while minimizing the negative impacts on the environment, improving traffic safety, and saving energy. Thereby, the concept of a transit-oriented development (TOD) has caught the attention of planners. This concept has been practiced widely in many countries, but more so in Japan. The concept is carried out in two levels: one at the station level and its vicinity (see Figure 8.7.1), and the other at the corridor and influence area level (see Figure 8.7.2).

Source: HAIDEP Study Team

2) Development Concept at Corridor Level

The UMRT Line 2 corridor has experienced rapid urban development and is considered as one of the most important development corridor that will sustain the growth of Hanoi City. Many development projects are either ongoing or being planned in the area whose population is expected to increase sharply. The corridor's strength includes its highcapacity which will be further strengthened. The proposed UMRT Line 2 which will offer high-quality mass transit system, and the availability of land and space for urban development. However, unless these development projects and opportunities are implemented or tapped in an integrated manner, the potential synergy from such projects may not be fully realized. On the other hand, the successful implementation of the integrated development will substantially benefit both the urban and the transport sectors and will greatly contribute to the realization of a public transport-based urban development.

The development concept for the UMRT Line 2 corridor involves the following:

- (i) Development of compact urban areas surrounded by and dotted with greeneries and open spaces.
- (ii) Integration of existing and planned key developments with UMRT Line 2.
- (iii) Development of a corridor with multiple functions including commercial, business, residential, recreational, educational, industrial, etc.
- (iv) Development of a high-quality, high-speed transport corridor offering public transport services through UMRT Line 2 and integrated feeder services, on the one hand, and private transport services on NH1 and an improved access road network, on the other.

When these different types of developments are strategically located along the UMRT Line, positive impact on UMRT operation can be expected such as better distribution of traffic in directions and hours.

3) Development Concept at Station and its Vicinity

The development concept for each of the 28 UMRT stations has been further elaborated. It should be noted that these concepts are still preliminary and need further discussions with related organizations, especially HPC/APD (see Figure 8.7.3).

Figure 8.7.3 Integrated Development of UMRT Stations and Their Vicinities

Source: HAIDEP Study Team

4) Importance of the Integrated Urban Development

The importance of the commercial/urban development integrated with the development of the UMRT Line 2 system is summarized in the following points:

- (i) There are significant opportunities to develop transport related multimodal development sites in Hanoi.
- (ii) The profit/income for developing these sites should be used to contribute towards the cost of the public transport infrastructure such as UMRT stations, transport interchanges, parking structures.
- (iii) Over 40 potential developments sites have been identified which are strategically located in the central business district, Hanoi City and its suburbs.
- (iv) Some development sites should be prioritized particularly at the terminal and interchange stations identified in the Master plan, in the central business district and these should include Tu Liem, Long Bien and Bach Khoa.
- (v) The type of development mix at each site will vary depending on market forces but may include retail, commercial, residential, recreation/leisure, government, education and social welfare facilities.
- (vi) There is a need for the Hanoi Public Transport Authority and the landowner to identify potential public/private joint venture partners who would take commercial risk for the development.
- (vii) Government may consider setting up a special unit, similar to Singapore's Urban Renewal Agency (URA) to coordinate government's strategy for the development of public land.
- (viii) The ongoing management and operation costs of the transport infrastructure facilities including station should be subsidized from the development rental, advertising, and management/parking fees generated from the commercial development.

- (ix) A specialist real estate adviser should be approached to advise on the commercial aspects of the multimodal development including how to consolidate multiple sites into a viable project.
- (x) More detailed study and the preparation of a local outline development master plan for each multimodal site should be prepared to identify the commercial viability of each site development is required.
- (xi) Control briefs for soliciting private sector proposals should be prepared which include the following:
 - site inventory
 - conceptual development plan
 - forecast of demand and facility space provision
 - infrastructure plans, which covers road traffic and parking, other transport specifications, associated community facilities, utilities, drainage and flood protection
 - potential developer package specifications
 - community liaison
 - approval requirements
 - engineering design specifications
 - other design considerations
- (xii) Before implementing a concept, it is recommended that a pilot project should be identified and developed to ascertain the commercial viability of such developments in the local context.

9 EVALUATION OF UMRT Line 2

9.1 Economic Evaluation

1) Methodology and Assumptions

UMRT Line 2 was economically evaluated in the future network proposed by the HAIDEP Master Plan. It means that the other projects of HAIDEP were assumed to be implemented as the recommended schedule in the "with" and "without" comparison. Each phase of UMRT Line 2 was scheduled to open in the following years:

Phase 1	Tu Liem - Thung Dinh	14.6km	2013
Phase 2	Nam Thanh Long - Ha Dong	24.4km	2016
Phase 3	Depot 3 - Ha Dong	36.6km	2019
Phase 4	Noi Bai Airport - Ha Dong	41.8km	2020

The economic evaluation was conducted by comparing the project cost expressed in economic terms and the economic benefit generated by the project. The economic cost was estimated based on the financial cost, by deducting all the taxes included in the financial cost and applying the shadow wage rate to unskilled labor cost.

The economic benefit was defined as savings in transportation cost which consists of two components of vehicle operating cost and travel time cost. They were estimated using the traffic assignment results on the networks of "with" and "without" the project.

In traffic assignment, the fare of UMRT Line 2 was assumed at US\$ 0.20 (VDN 3,200) for the first 4.0 kilometer and US\$ 0.05 (VDN 800) per one kilometer exceeding 4.0 kilometer.

Fare of UMRT Line 2 = 0.05 x (km-4.0) + 0.2 US\$

2) Economic Cost

Table 9.1.1 presents the financial and economic cost of UMRT Line 2 by development phases. Total economic cost corresponds to 87% of total financial cost. Half of contingency was regarded as the price contingency and is excluded from the economic cost.

					(US\$ million)				
		Financial Cost							
Phase	Construction Cost	Engineering Cost	Land Cost	Contingency (10%)	Total				
Phase 1	1203.4	90.3	348.4	164.2	1806.2				
Phase 2	275.9	20.7	30.9	32.7	360.2				
Phase 3	275.7	20.7	40.8	33.7	370.8				
Phase 4	270.7	20.3	26.0	31.7	348.7				
Total	2025.6	151.9	446.1	262.4	2886.0				
		E	conomic Cos	st					
Phase	Construction Cost	Engineering Cost	Land Cost	Contingency (5%)	Total				
Phase 1	1075.4	80.7	348.4	75.2	1579.7				
Phase 2	245.0	18.4	30.9	14.7	309.0				
Phase 3	244.0	18.3	40.8	15.2	318.2				
Phase 4	241.5	18.1	26.0	14.3	299.9				
Total	1805.9	135.4	446.1	119.4	2506.8				

 Table 9.1.1
 Financial and Economic Cost of UMRT Line 2

Following the investment schedule, the economic costs were distributed annually over the construction period as shown in Table 9.1.2.

										(05	5\$ million)
Voor	Phase	e 1	Phas	se 2	Phas	se 3	Phas	se 4	Tota	l Project	Cost
real	Const	Land	Const	Land	Const	Land	Const	Land	Const	Land	Total
2007	18.5								18.5	0.0	18.5
2008		174.2							0.0	174.2	174.2
2009	184.7	174.2							184.7	174.2	358.9
2010	246.3								246.3	0.0	246.3
2011	246.3								246.3	0.0	246.3
2012	246.3		41.7	30.9					288.0	30.9	318.9
2013	289.4		69.5						358.9	0.0	358.9
2014			83.4			40.8			83.4	40.8	124.2
2015			83.4		69.4				152.8	0.0	152.8
2016					83.2			26.0	83.2	26.0	109.2
2017					83.2		82.2		165.4	0.0	165.4
2018					41.6		82.2		123.8	0.0	123.8
2019							109.6		109.6	0.0	109.6
2020									0.0	0.0	0.0
Total	1231.3	348.4	278.1	30.9	277.4	40.8	273.9	26.0	2060.7	446.1	2506.8

Table 9.1 2 Investment Schedule of UMRT Line 2 in Economic Cost

Source: HAIDEP Study Team

Economic operating and maintenance costs were simply assumed to be 85% of the financial O&M costs. They were estimated as shown in Table 9.1.3.

(LIC¢ million)

		(000 11111011)
Cost Item	Phase 1	Phase 4	Phase 4
Year	2020	2020	2040
Staff (Direct)	3.06	6.73	7.33
Staff (Indirect)	0.31	0.67	0.73
Energy	5.10	8.42	9.35
Spares	2.55	4.68	4.68
Insurance & Taxes	0.33	0.61	0.66
Miscellaneous	0.55	1.03	1.11
Total	11.90	22.13	23.85

Table 9.1.3 O&M Cost of UMRT Line 2 in Economic Cost

Source: HAIDEP Study Team

3) Economic Benefit

Savings brought by UMRT Line 2 in vehicle operating cost and travel time cost are presented in Table 10.1.4, where the benchmark years were shifted to 2010 and 2020 in order to avoid overestimation of economic benefit. This is because, in general, the saved time tends to become extraordinarily large as traffic demand reaches near the road network capacity. Therefore, it will be safer to use the benefit estimated for the near future, instead of the long-future.

If UMRT Line 2 should exist in 2010, the annual benefit would be US\$ 259 million, equivalent to about 21% of the total investment cost. Approximately 80% of the benefit is

savings in travel time cost. Transport mode-wise, 70% of the benefit is attributed to savings of VOC and TTC of public transport.

In 2020, the total benefit will be US\$ 754 million, 2.9 times of 2010. Composition of VOC and TTC and modal composition will not change significantly.

						(US\$ million)
Year	Benefit Source	Motorcycle	Car	Bus/Train	Truck	Total
	VOC Savings	3.0	12.5	40.4	3.6	59.4
2010	TTC Savings	17.9	45.7	135.2	-	198.9
	Total Benefit	20.9	58.2	175.6	3.6	258.3
	VOC Savings	6.8	28.5	92.2	8.1	135.6
2020	TTC Savings	55.6	142.1	420.2	-	618.0
	Total Benefit	62.4	170.6	512.4	8.1	753.6

Table 9.1.4	Economic Benefit of UMRT Line 2
-------------	---------------------------------

Source: HAIDEP Study Team

4) Economic Evaluation

The stream of the economic cost and benefit of UMRT Line 2 is shown in Table 9.1.5 and illustrated in Figure 9.1.1. The benefit will rapidly increase after 2020 and reach almost 8 times of the 2020 benefit in 2040. The demand for UMRT Line 2 will almost reach the capacity and then, the benefit will gradually level off after 2040. (In the table, benefit was assumed to grow no longer.)

Based on the cash flow, the economic internal rate of return (EIRR) was estimated to be 22.5%, the net present value (NPV) was US\$ 3,846 and B/C was 3.6, all of which showed that the project UMRT Line 2 is highly feasible from the economic point of view (see Table 9.1.5).

Figure 9.1.1 Cash Flow of Cost and Benefit of UMRT Line 2

Source: HAIDEP Study Team

							(US\$ million)
Veer	Coat	O&M	Economic	Net Cash	Economic	Discounted	NCF (d=12%)
real	Cost	Cost	Benefit	Flow	IRR (%)	Cost	Benefit
2007	18.5			-18.5	-	18.5	0.0
2008	174.2			-174.2	-	155.5	0.0
2009	358.9			-358.9	-	286.1	0.0
2010	246.3			-246.3	-	175.3	0.0
2011	246.3			-246.3	-	156.5	0.0
2012	318.9			-318.9	-	180.9	0.0
2013	358.9			-358.9	-	181.8	0.0
2014	124.2	9.7	396.4	262.5	-	60.6	179.3
2015	152.8	10.0	441.2	278.4	-	65.7	178.2
2016	109.2	10.4	491.1	371.5	-	43.1	177.1
2017	165.4	10.7	546.6	370.4	-	56.7	176.0
2018	123.8	11.1	608.3	473.4	-	38.8	174.9
2019	109.6	11.5	677.1	556.0	-	31.1	173.8
2020		11.9	753.6	741.7	-	2.7	172.7
2021		12.3	838.8	826.4	11.3%	2.5	171.6
2022		12.8	933.6	920.8	13.3%	2.3	170.6
2023		13.2	1039.1	1025.9	14.9%	2.2	169.5
2024		13.7	1156.5	1142.8	16.2%	2.0	168.4
2025		14.2	1287.2	1273.1	17.2%	1.8	167.4
2026		14.7	1432.7	1418.0	18.0%	1.7	166.3
2027		15.2	1594.6	1579.4	18.7%	1.6	165.3
2028		15.7	1774.8	1759.1	19.3%	1.5	164.3
2029		16.3	1975.4	1959.1	19.8%	1.3	163.3
2030		16.8	2198.7	2181.8	20.2%	1.2	162.2
2031		17.4	2447.1	2429.7	20.5%	1.1	161.2
2032		18.1	2723.7	2705.6	20.8%	1.1	160.2
2033		18.7	3031.5	3012.8	21.1%	1.0	159.2
2034		19.4	3374.1	3354.8	21.3%	0.9	158.2
2035		20.0	3755.5	3735.4	21.5%	0.8	157.2
2036		20.8	4179.9	4159.2	21.6%	0.8	156.3
2037		21.5	4652.3	4630.8	21.8%	0.7	155.3
2038		22.2	5178.1	5155.9	21.9%	0.7	154.3
2039		23.0	5763.3	5740.3	22.0%	0.6	153.4
2040		23.9	6414.7	6390.8	22.1%	0.6	152.4
2041		24.7	6414.7	6390.0	22.2%	0.5	136.1
2042		25.6	6414.7	6389.1	22.3%	0.5	121.5
2043		26.5	6414.7	6388.2	22.3%	0.4	108.5
2044		27.4	6414.7	6387.3	22.3%	0.4	96.9
2045		28.4	6414.7	6386.3	22.4%	0.4	86.5
2046		29.4	6414.7	6385.3	22.4%	0.4	77.2
2047		30.4	6414.7	6384.2	22.4%	0.3	68.9
2048		31.5	6414.7	6383.2	22.4%	0.3	61.6
2049		32.6	6414.7	6382.1	22.5%	0.3	55.0
2050		33.8	6414.7	6380.9	22.5%	0.3	49.1
Total	2506.8	715.2	123812.5	120590.4	22.5%	1483.6	5329.7

Table 9.1.5 Cash Flow of Economic Cost and Benefit of UMRT Line 2

Indicator	Unit	Value
Economic IRR	%	22.5
NPV	US\$ million	3,846.1
B/C	-	3.59

		-
Table 9.1.6	Economic Evaluation Indicators of UMRT Line	¥ 2

Source: HAIDEP Study Team

Table 9.1.7 shows the results of sensitivity analysis by changing cost and benefit. The economic IRR of UMRT Line 2 is very stable against the change of cost and benefit. It will become lower than the threshold of 12% only when the cost becomes over 1.6 times of the base estimate and at the same time the benefit becomes less than 0.4 times of the base. These big changes will hardly occur and then, economic feasibility of the project will not be eroded by cost over-run or benefit decrease due to implementation of some competing project or other unexpected events.

				(%)		
Ropofit Down	Cost up by (%)					
by (%)	Base Case	20%	40%	60%		
Base Case	22.5	20.6	19.2	18.8		
20%	20.2	18.6	17.3	16.2		
40%	17.6	16.2	15.0	14.1		
60%	14.5	13.2	12.2	11.4		

 Table 9.1.7
 Sensitivity Analysis of Economic IRR of UMRT Line 2

9.2 Financial Evaluation

1) Methodology and Assumptions

UMRT Line 2 was financially evaluated by comparing the cost and the revenue of the project generating in the project life of 30 years. Demand and revenue were forecasted in the future network in the same way as the economic evaluation. In other words, all the other projects recommended in the HAIDEP master plan were assumed to be implemented as scheduled. If this assumption is not true and some projects are not implemented, the demand and revenue will increase and the financial evaluation result will be improved.

The evaluation was done in two ways. Firstly, a cash flow of the project was estimated at the 2006 constant price in order to calculate the financial internal rate of return (FIRR) of the project as a whole. In this step, such factors as inflation, interest payment and tax payment are not taken into account. The resulting FIRR shows the profitability essentially implied in the project regardless of distribution of the profit among stakeholders.

Secondly, another financial analysis was conducted from a standpoint of the company to invest and operate the project. For this purpose, an income statement of the company was estimated in more practical conditions, considering inflation and tax payment. The investment fund was assumed to be covered by own capital and loan. If the cash flow goes bankrupt, a subsidy by public investment was considered.

2) Fare Rate

The fare of UMRT Line 2 was set so to maximize the revenue. For the first 4.0 km, the fare is flat at US\$ 0.20 (VDN 3,200) and afterwards US\$ 0.05 (VDN 800) per one kilometer over 4.0 km.

A feasibility study on a subway line in Ho Chi Minh City was conducted in 2005 to 2006. In the study, the fare was assumed at a constant of VDN 5000 plus VDN 500 per kilometer as shown in Figure 9.2.1. As the average riding distance of passengers is less than 10 km, the fare of UMRT Line 2 in Hanoi is cheaper than that of Ho Chi Minh.

Figure 9.2.1 Fare System of UMRT Line 2

3) Capital Cost

The project cost was estimated in the preceding chapter. Following the recommended investment schedule, annual investment amounts are calculated as shown in Table 9.2.1. The total amount is USD 2,886 million (VDN 46,176 billion) at 2006 price. Total land cost

Source: HAIDEP Study Team

accounts for 15% of the total. The first phase is the most costly at about US\$ 1.800 million or 62% of the total, due to expensive underground construction of most section.

The total amount will be expanded over 13 years from 2007 to 2019. The largest amount is US\$ 425 million in 2013 for Phase 1 and 2.

(US\$ million)											
Voor	Phase	e 1	Pha	se 2	Phase 3 Phase 4		Phase 4		otal Project Cost		
rear	Const	Land	Const	Land	Const	Land	Const	Land	Const	Land	Total
2007	21.9								21.9	0.0	21.9
2008		174.2							0.0	174.2	174.2
2009	218.7	174.2							218.7	174.2	392.9
2010	291.6								291.6	0.0	291.6
2011	291.6								291.6	0.0	291.6
2012	291.6		49.4	30.9					341.0	30.9	371.9
2013	342.6		82.3						424.9	0.0	424.9
2014			98.8			40.8			98.8	40.8	139.6
2015			98.8		82.5				181.3	0.0	181.3
2016					99.0			26.0	99.0	26.0	125.0
2017					99.0		96.8		195.8	0.0	195.8
2018					49.5		96.8		146.3	0.0	146.3
2019							129.1		129.1	0.0	129.1
2020									0.0	0.0	0.0
Total	1,457.8	348.4	329.3	30.9	330.0	40.8	322.7	26.0	2,439.9	446.1	2,886.0

Table 9.2.1 Investment Schedule of UMRT Line 2 (Phase 1-4)

Source: HAIDEP Study Team

4) O&M Cost

Operating and maintenance costs were estimated based on the line length and operation plan. The costs are expressed at 2006 constant price and the depreciation cost of rolling stock and infrastructure are ignored at this step. More than 40% of annual cost is spent for energy consumption as shown in Table 9.2.2.

(1100

1 0000

(US\$ million p.a. at 2006 pric							
Cost Item	Phase 1a	Phase 1	Phase 4	Phase 4			
	2020	2020	2020	2040			
Staff (Direct)	2.80	3.60	7.92	8.62			
Staff (Indirect)	0.28	0.36	0.79	0.86			
Energy	4.80	6.00	9.90	11.00			
Spares & Maintenance	2.50	3.00	5.50	5.50			
Insurance & Taxes	0.31	0.39	0.72	0.78			
Miscellaneous	0.52	0.65	1.21	1.30			
Total	11.21	14.00	26.04	28.06			

Table 9.2.2 O&M Cost of UMRT Line 2

Source: HAIDEP Study Team

5) Revenue

When forecasting the demand, fare revenue is also calculated for the benchmark years of 2020 and 2040. The annual revenues in other years were interpolated by using a logistic curve as shown in Table 9.2.3 and Figure 9.2.2.

	(US\$ million at 2006 constant price)							
Year	Phase 1	Phase 2	Phase 3	Phase 4	Total			
2013	69.6				69.6			
2014	71.0				71.0			
2015	72.5				72.5			
2016	74.0	31.9			105.9			
2017	75.5	32.7			108.2			
2018	77.1	33.4	46.9		157.4			
2019	78.6	34.2	47.9		160.8			
2020	80.2	35.0	49.0	12.6	176.8			
2021	81.9	35.8	50.0	12.9	180.6			
2022	83.6	36.7	51.1	13.2	184.6			
2023	85.3	37.5	52.2	13.5	188.6			
2024	87.0	38.4	53.4	13.9	192.7			
2025	88.8	39.3	54.6	14.2	196.8			
2026	90.6	40.2	55.7	14.5	201.1			
2027	92.5	41.1	57.0	14.9	205.5			
2028	94.4	42.1	58.2	15.3	209.9			
2029	96.3	43.1	59.5	15.6	214.5			
2030	98.3	44.1	60.8	16.0	219.2			
2031	100.3	45.1	62.1	16.4	223.9			
2032	102.3	46.1	63.5	16.8	228.8			
2033	104.4	47.2	64.9	17.2	233.7			
2034	106.6	48.3	66.3	17.7	238.8			
2035	108.8	49.4	67.7	18.1	244.0			
2036	111.0	50.6	69.2	18.5	249.3			
2037	113.3	51.7	70.7	19.0	254.7			
2038	115.6	52.9	72.3	19.4	260.2			
2039	117.9	54.2	73.9	19.9	265.9			
2040	120.4	55.4	75.5	20.4	271.7			

Table 9.2.3 Annual revenue of UMRT Line 2 by Phase

Source: HAIDEP Study Team

(US\$ million at 2006 constant price)

6) **Project Evaluation**

(1) Project FIRR in Constant Price

Since the Phase 4 of UMRT Line 2 is scheduled to open in 2020, the cash flow of the entire project is calculated up to 2050 as shown in Table 9.2.4 and Figure 9.2.3. Financial IRR is estimated at 3.9% at 2006 constant price.

Year	Investment	Maintenance	Operation Cost	Revenue	NCF	Cumulative Cash Flow	FIRR
2007	25.9				-25.9	-25.9	
2008	118.5				-118.5	-144.3	
2009	366.9				-366.9	-511.2	
2010	274.3				-274.3	-785.4	
2011	419.7				-419.7	-1205.1	
2012	461.8				-461.8	-1667.0	
2013	85.4	25.0	14.2	69.6	-55.0	-1721.9	
2014	119.4	26.3	14.4	71.0	-89.0	-1811.0	
2015	215.9	28.1	14.6	72.5	-186.1	-1997.0	
2016	103.9	31.3	14.8	105.9	-44.0	-2041.1	
2017	223.2	32.9	15.0	108.2	-162.8	-2203.9	
2018	123.9	36.2	15.2	110.5	-64.8	-2268.7	-
2019	123.4	38.1	15.4	160.8	-16.1	-2284.8	-
2020		39.9	15.6	176.8	121.3	-2163.5	-
2021		39.9	15.8	180.6	124.9	-2038.6	-
2022		39.9	16.0	184.6	128.6	-1910.0	-
2023		39.9	16.3	188.6	132.4	-1777.7	-
2024		39.9	16.5	192.7	136.2	-1641.4	-
2025		39.9	16.7	196.8	140.2	-1501.2	-
2026		39.9	16.9	201.1	144.2	-1357.0	-7.8%
2027		39.9	17.2	205.5	148.4	-1208.6	-6.2%
2028		39.9	17.4	209.9	152.6	-1056.0	-4.9%
2029		39.9	17.7	214.5	156.9	-899.1	-3.8%
2030		39.9	17.9	219.2	161.3	-737.8	-2.8%
2031		39.9	17.9	223.9	166.1	-571.7	-2.0%
2032		39.9	17.9	228.8	170.9	-400.7	-1.3%
2033		39.9	17.9	233.7	175.9	-224.8	-0.7%
2034		39.9	17.9	238.8	181.0	-43.8	-0.1%
2035		39.9	17.9	244.0	186.2	142.3	0.4%
2036		39.9	17.9	249.3	191.5	333.8	0.8%
2037		39.9	17.9	254.7	196.9	530.7	1.2%
2038		39.9	17.9	260.2	202.4	733.1	1.6%
2039		39.9	17.9	265.9	208.1	941.1	1.9%
2040		39.9	17.9	271.7	213.8	1155.0	2.2%
2041		39.9	17.9	271.7	213.8	1368.8	2.4%
2042		39.9	17.9	271.7	213.8	1582.6	2.7%
2043		39.9	17.9	271.7	213.8	1796.4	2.9%
2044		39.9	17.9	271.7	213.8	2010.3	3.1%
2045		39.9	17.9	271.7	213.8	2224.1	3.2%
2046		39.9	17.9	271.7	213.8	2437.9	3.4%
2047		39.9	17.9	271.7	213.8	2651.8	3.5%
2048		39.9	17.9	271.7	213.8	2865.6	3.7%
2049		39.9	17.9	271.7	213.8	3079.4	3.8%
2050		39.9	17.9	271.7	213.8	3293.2	3.9%

 Table 9.2.4
 Financial Cash Flow of UMRT Line 2 (Entire Section)

Source: HAIDEP Study Team

Note: In US\$ million at 2006 constant prices.

Figure 9.2.3 Cash flow of UMRT Line 2 (Phase 1-4) at 2006 Constant Price

Regarding the increase by extension as the revenue of the extension phase, each phase is financially evaluated (Table 9.2.5). Phase 1 implies the FIRR of only 1.0%, which means that the project is not financially feasible. However, this result is considered favorable as an underground subway of which FIRR becomes hardly positive in usual case. The FIRRs of Phase 2 and 3 are higher but less than the threshold of 12%. The FIRR of Phase 4 is slightly below zero. As a conclusion, the project is judged financially unfeasible and requires non-commercial fund such as public investment.

Indicator	Unit	Phase 1	Phase 2	Phase 3	Phase 4	Entire Project
F-IFRR	%	1.0	6.9	9.7	-1.1	3.9
NPV	US\$ million	-945.9	-78.3	-30.2	-83.2	-1,069.2
B/C	-	0.29	0.62	0.81	0.27	0.39

Table 9.2.5Financial Evaluation of UMRT Line 2 by Phase

Source: HAIDEP Study Team

(2) Financial Evaluation at Current Price

The project of UMRT Line 2 was also evaluated from the standpoint of the special project company (SPC) which operates the project and represents an investor group For this purpose, the income statement and the cash flow are forecasted in current price, taking into consideration inflation, interest payment, tax payment and then depreciation of assets.

Main assumptions for the analysis are as follows.

- (i) Domestic inflation rate is assumed at 4.2%, taking the average in the past five years;
- (ii) The project is financed with the SPC's own capital equivalent to 30% of the total investment inclusive of interest payment during construction period and the other 70% with a long-term loan;
- (iii) The terms of the loan are 8.0% of annual interest rate and 25 years of repayment with grace period for construction;

- (iv) The corporate income tax is 30%;
- (v) Depreciation period is 30 years for infrastructure and 10 years for toll collection equipment;
- (vi) Financial costs are assumed as follows:
 - Arrangement fee: 0.5% of loan amount at commitment
 - Commitment fee: 0.3% annually on outstanding loan amount
 - Agent fee is regarded as included in annual operating cost.

Based on these assumptions, a nominal cash flow of the project was tabulated and the project FIRR and Equity FIRR were estimated based on the net cash flow as shown in Figure 9.2.4. The cumulative cash flow will not become positive for 25 years after opening Phase 1 which shows the project is not commercially sustainable.

Figure 9.2.4 Cash Flow of UMRT Line 2 (Phase 1–4) at Current Price

The project FIRR at current price is not improved much because the effect of inflation is cancelled by tax payment. The equity IRR is slightly lower than the project IRR as the interest rate is higher than the project FIRR.

	Project Ev	aluation	Evaluation from Investor's Standpoint				
Phase	Project FIRR	Project NPV	Equity FIRR	Equity NPV			
	%	US\$ Million	%	US\$ Million			
Entire Project	4.6	-1,197.6	3.2	-846.5			
Phase 1	2.7	-953.9	-0.4	-813.4			
Phase 2	9.0	-49.3	12.7	17.5			
Phase 3	11.1	-2.4	13.9	37.4			
Phase 4	-0.2	-113.3	-	-90.8			

Table 9.2.6 Project FIRR and Equity FIRR at Current Price

Source: HAIDEP Study Team

Table 9.2.7 shows the profit and loss of the company (ie SPC) managing the UMRT Line 2, for the entire project (Phase 1 to 4) and the Phase 1 only. In both cases, the project cannot be judged profitable. However, revenue can cover at least annual O&M cost inclusive of depreciation cost except first several years. Therefore, the project can be possibly managed by the private sector if the infrastructure is developed by the public sector.

Source: HAIDEP Study Team

Phase	Item	2015	2020	2025	2030	2035	2040
	Revenue	105.0	314.5	430.1	588.3	804.6	1100.3
	Expenditure						
	- Maintenance Cost	46.6	94.7	116.3	142.9	175.6	215.7
	- Operation Cost	19.9	46.3	58.0	72.6	90.8	113.7
Entire Project	- Depreciation	55.0	97.9	86.6	77.8	52.4	32.6
(Phase	Operating Income	-16.5	75.5	169.2	295.0	485.8	738.4
1-Phase 4)	Interest Payment	110.8	174.7	131.9	89.0	46.1	12.9
	Net Profit before Tax	-127.3	-99.2	37.3	206.1	439.7	725.5
	Corporate Tax	0.0	0.0	11.2	61.8	131.9	217.7
	Net Profit after Tax	-127.3	-99.2	26.1	144.2	307.8	507.9
	(Repayment)	60.2	60.2	60.2	60.2	60.2	0.0
	Revenue	105.0	142.7	194.0	263.8	358.6	487.5
	Expenditure						
	- Maintenance Cost	46.6	57.2	70.3	86.3	106.1	130.3
	- Operation Cost	19.9	24.9	31.2	39.0	48.8	61.1
	- Depreciation	55.0	55.0	43.7	43.7	18.3	18.3
Phase 1	Operating Income	-16.5	5.6	48.9	94.8	185.4	277.8
	Interest Payment	110.8	86.7	62.6	38.5	14.5	0.0
	Net Profit before Tax	-127.3	-81.1	-13.7	56.2	170.9	277.8
	Corporate Tax	0.0	0.0	0.0	16.9	51.3	83.3
	Net Profit after Tax	-127.3	-81.1	-13.7	39.4	119.7	194.5
	(Repayment)	60.2	60.2	60.2	60.2	60.2	0.0

Table 9.2.7	Pro-forma Profit and Loss of UMRT Line 2 SOC
-------------	--

10 CONCLUSION

1) Planning

- (i) Prior to the operation of UMRT Line 2, a priority bus transit (PBT) can precede its operation. Once UMRT Line 2 comes online, the PBT buses can be assigned either as feeder service or to other routes without wastage of investment in PBT.
- (ii) The UMRT Line 2 will be implemented in phases with the following schedules:
 - Phase 1: Tu Liem to Thuong Dinh by 2013
 - Phase 1a: Tu Liem to bach Khoa by 2013 (optional)
 - Phase 2: Nam Thang Long to Tu Liem and Thuing Dinh to Ha Dong by 2016
 - Phase 3: Nam Thang Long to Thai Phu by 2018
 - Phase 4: Thai Phu to Noi Bai
- (iii) The vertical alignment of Phase 1 will be underground, while other phases will need to be further studied, but with the following considerations:
 - Noi Bai to Thai Phu-underground below the proposed second runway
 - Thai Phu to Hai Noi-to be studied further
 - Hai Boi to Nam Thang Long (Red River Crossing)-elevated or underground
 - Tu Liem to Thanh Xuan-underground within Ring Road 2.5
 - Thanh Xuan to Ha Dong-at-grade or elevated
- (iv) After a review of several candidate horizontal alignments, two options are recommended as shown in Figure 10.1.1.
- (v) Key station development concepts are proposed for the following stations along UMRT Line 2:
 - Hai Boi Station integration with the Van Tri Lake New Town Urban Center
 - Nam Thang Long integration with CIPUTRA Housing Estate Area
 - Tu Liem Station integration with the New Government Center Development Area
 - Ba Dinh Station integration with the West Lakeside Development Area
 - Long Bien Station as a transportation hub
 - Bo Ho Station as the gateway to the Ancient Quarter
 - Hoan Kiem Station as the Hoan Kiem Lake Gateway
 - Tr. Hung Dao Station as the French Quarter Gateway
 - Bach Khoa Station integration with Bach Khoa University and a the Thong Nhat Park Gateway
 - Thuong Dinh Station integration with urban renewal and development of Thuong Dinh Area
 - Thanh Xuan Station integrarion with urban renewal development of Xuan Bac and Xuan Nam Area
- (vi) An Express Airport Service is proposed to serve Noi Bai Airport with a recommended Hanoi City Terminal at Hoan Kiem Station. A limited stop rail service is recommended.

- (vii) The proposed main depot is recommended at Tu Liem, with future satellite depots at Ha Dong and Thai Phu.
- (viii) The Administration and Operations Control Center is proposed to be located at Tu Liem Depot area.
- (ix) The fare level that will maximize revenue was proposed. The revenue maximizing fare was estimated to be as follows: US\$ 0.20 for the first 4.0 kms and US\$ 0.05 per kilometer over the first 4.0 kms.
- (x) The estimated ridership of UMRT Line 2 is as follows:
 - 2014: 575,000 passengers per day (start of Phase 1)
 - 2016: 832,000 passengers per day (start of Phase 2)
 - 2018: 1,012,000 passengers per day (start of Phase 3)
 - 2020: 1,130,000 passengers per day (start of Phase 4)

2) Engineering

- (i) It is proposed that the UMRT tunnel (Phase 1) will be twin tunnels, catering to up-line and down-line rails respectively.
- (ii) Key operations facilities are proposed along the UMRT tunnel (Phase 1) (see Figure 10.1.2).
- (iii) It is proposed that the tunnel will be constructed using MixShield Tunnel Boring Machine.
- (iv) For the UMRT Line 2 Phase 3, a crossing across the Red River is necessary. Two options are examined, i.e. bridge crossing and tunnel crossing. Ultimately the choice will consider the vertical alignment of the sections approaching the Red River. Nonetheless, considering cost implications it is preliminarily recommended to utilize a bridge crossing.
- (v) Generally it is proposed that station layout will use center platforms. Stations plans and sections are indicatively proposed in the report, considering terminal, multimodal and intermediate station designs

[]	SSI	SS		FG	ISS	<u> </u>	TSS FG	TSS	 TSS FG(2)	TSS TSS FG FG(2)	TSS TSS TSS FG FG FG(2)	FG FG FG FG(2)	TSS TSS TSS TSS TSS FG (2)	TSSTSSTSSTSSTSSFGFGFGFG(2)	TSSTSSTSSTSSTSSFGFGFGFGFG(2)
	ISS							4	ISS	ISS	ISS	ISS	ISS	ISS	SSI SSI
	D2								DI	DI	DI	DI	DI	D3 D1 D1	D3 D1 D1
									000	000	000	000	000	000	000
									ADB	ADB	ADB	ADB	ADB	ADB	ADB
				S	DS	SC SC	SD	DS	DS (2)	DS DS (2)	DS DS DS (2)	DSDS DS(2)	DS DS DS (2)	DS DS DS DS DS (2)	DS DS DS DS (2)
				S	SV	VS VS	SV	VS	 VS	VS VS	VS VS VS	VS VS VS	SV VSVS	VS VS VS	VS VS VS
					CP		CP				CP	CP	CP	CP	CP CP
		ESA			ESA		ESA		ESA	ESA ESA	ESA ESA ESA	ESA ESA ESA	ESA ESA ESA ESA	ESA ESA ESA ESA	ESA ESA ESA ESA ESA
				-TP					TP	TP	TP TP	TP TP	TP TP	TP TP TP	TP TP TP
				ES		ES			ES	ES	ES ES	ES ES	ES ES	ES ES	ES ES
	TBT														TBT
	XT			XT		XT			XT	XT XT	XT XT	XT XT	XT XT	XT XT XT	XT XT XT XT XT
						APT			APT	APT	APT APT	APT APT	APT APT	APT APT	APT APT APT APT
		INT INT	INTINT	INT INT	INT INT	INT	INT	INT INT	INT	INT INT	INT INT	INT INT INT	INT INT INT	INT INT INT INT	INT INT INT INT INT
	MM			MM	MM	MM	MM	MM	MM	MM	MM MM	MM	MM MM MM	MM MM MM	MM MM MM
	SL				ST	. SL				ST	SL	L	L	SL	L SL SL SL
	15	14	13	12	11	10	6	8	7	6 7	5 6 7	4 5 6 7	3 4 5 6 7	1 2 3 4 5 6 7	1 1 2 3 4 5 6 7

3) Transit Operations and Maintenance

- (i) It is proposed that UMRT Line 2 will be based on 6-car trains with minimum headway of two minutes
- (ii) UMRT Line 2 will have the following train requirements:
 - 18 x 6 trains (Phase 1) by 2020, with 3.25 minutes headway
 - 28 x 6 trains (Phase 2) by 2020, with 3.00 minutes headway
 - 36 x 6 trains (Phase 3) by 2020, with 2.75 minutes headway
 - 37 x 6 trains (Phase 4) by 2020, with 2.75 minutes headway
 - 51 x 6 trains (Phase 4) by 2040, with 2.00 minutes headway (max)
- (iii) The proposed rolling stock is outlined as follows:
 - Metro-type
 - Capacity of 285 pax/car (design) and 375 pax/car (crush)
 - Longitudinal seats
 - 4-sets of external bi-parting doors
 - Max speed of 100 kph
 - Max. gradient = 3%
 - Min. horizontal track curvature in depot = 140 meters
 - Driving cabins at both ends of the train
- (iv) The depots shall be developed to be able to meet the following demand:
 - Phase 1: 108 cars
 - Phase 2: 168 cars
 - Phase 3: 216 cars
 - Phase 4: 222 cars
 - Phase 4: 306 cars (max)

4) Construction and O&M Cost

- (i) Construction cost of the UMRT Line 2, including civil works, workshop/depot, railway system, and rolling stock is estimated as follows:
 - Phase 1: US\$1.4 billion
 - Phase 1a: US\$ 1.1 billion
 - Phase 2: US\$ 326 million
 - Phase 3: US\$ 326 million
 - Phase 4: US\$ 320 million
 - Grand Total of US\$ 2.4 billion
- (ii) Operation and Maintenance Cost of the UMRT Line 2 including staff, energy, spares, insurance and taxes, and other is estimated as follows:
 - Phase 1 (2020): US\$14.0 million/ yr
 - Phase 1a (2020): US\$11.2 million/ yr
 - Phase 4 (2020): US\$24.0 million/ yr
 - Phase 4 (2040): US\$28.1 million/ yr

5) Environment and Social Considerations

- (i) Major negative environmental and social impacts:
 - Resettlement, land acquisition and demolition of some parts in the Ancient Quarter if the cut and cover method is implemented, are the most significant negative impacts.
 - In the construction phase, a number of negative impacts on physical environment are expected, such as vibration, noise, air pollution, water pollution, erosion and sedimentation; and negative environmental impacts associated with temporary roads, stockpiles, etc. However, most of these impacts are temporary and can be mitigated.
 - There exist some expected significant but unknown negative impacts, eg. impacts of construction works to Hoan Kiem lake ecosystem; effect of the project on probable underground buried historical remains, etc. that need more detail study in the FS phase.
- (ii) A full EIA in the FS phase is important and necessary.

6) Implementation Plan

- (i) Based on the funding shortage of the Government of Vietnam it is contemplated that ODA funding will be utilized at least for UMRT Line 2 Phase 1. Thus treatment of ODA is a deciding factor in the organizational set-up for UMRT Line 2.
- (ii) The proposed implementation model for UMRT Line 2 is as follows:
 - The proposed implementation model shall start with a single implementation body strongly backed up by the government which is also active on the railway related property development.
 - As the experience and know-how for the railway business accumulate, the structure shall move towards a clear separation of regulatory function and service provision function (operation) by introducing competition among the private sector players in service provision. Meanwhile, the public sector will maintain control over the public transport network development and effective integration of urban development.
 - For the first stage, it is recommended that the Hanoi City create a Mass Transit Authority which will design, build, finance and operate the whole UMRT Line 2 System with active involvement in the railway related property development along the corridor.
- (iii) The proposed organizational structure of UMRT Line 2 is shown in Figure 10.13.
- (iv) Considering the current institutional capability and setup, it is necessary that the institutional framework of UMRT Line 2 evolve with the project along with the phasing of the project from preparation to stable operation phase. The proposed transition is illustrated in Figure 10.1.4.
- (v) The target opening year of Phase 1 is 2013, which means that the schedule for this Phase is very tight. Efficient processing of the ODA loan and measures to shorten the time for design and construction is required. Figure 10.1.5 outlines the implementation schedule for UMRT Line 2 Phase 1.

	Preparation Phase	Design and Construction Phase	Commissioning Phase	Initial Operation Phase	Stable Operation Phase
Policy Making	GoV/ MOT/VNRA HPC	GoV/ MOT/VNRA HPC	GoV/ MOT/VNRA HPC	GoV/ MOT/VNRA HPC	GoV/ MOT/VNRA HPC
Regulator			Provisional Mass Transit Authority	Hanoi Mass Transit Authority	Hanoi Mass Transit Authority
Executing Agency/ Operator	Metro Prep. Unit (HPC)	Metro Project Managem ent Unit	O & M Trainin g Unit	O & M Unit Line 2	Line 2 Privatiz ed Private Private
Required Tasks	 F/S ODA Loan Preparation Inter-Agency Coordination 	Design Construction ODA Fund Management Policy Making Standards, Rules Institutional Setup Inter-Agency Coordination	 Provisional Authority O&M Training Unit O&M Training Other Commissioning Works 	Commencement of Operation Building up of O&M Expertise Separation of Regulator and Operator Functions	 Establishment of Stable Regulator Function Competitive Operation among various Private Operators

	Activity	1 2006	2 2007	3 2008	4 2009	5 2010	6 2011	7 2012	8 2013	9 2014	10 2015
1. F	Project Approval and Preparation										
	1.1 Feasibility Study										
	1.2 Preparation for ODA Approval										
2. 0	DDA Loan Procedure										
	2.1 Request for ODA	*	•								
	2.2 Pledge		★								
	2.3 Loan Agreement		★								
3. 5	Selection of Consultant										
4. Design and Preparation of Tender											
5. Tender											
6. 0	Construction Work										
7. T	est Run and Training										
8. 0	Commencement of Operation									►	
9. F	Right of Way										

Figure 10.1.5 Project Schedule for Phase 1

Source: HAIDEP Study Team

(vi) Integrated rail and urban development will be important for UMRT Line 2, considering the many potential areas for development along its corridor. Thereby these potentials need to be coordinated and be made as a fundamental strategy to enhance the viability of UMRT Line 2.

7) Evaluation

- (i) The economic evaluation of UMRT Line 2 shows the robust economic viability of UMRT Line 2 with the following indicators:
 - EIRR = 22.5%
 - NPV = US\$ 3.8 billion
 - B/C = 3.6
- (ii) The financial evaluation of UMRT Line 2 shows low indicators, indicating the requirement of government support.
 - FIRR (at constant price) = 3.9%
 - FIRR (at current price) = 4.6%
- (iii) All phases of UMRT Line 2 are financially unviable with FIRR (at constant price) as follows:
 - Phase 1: 1.0%
 - Phase 2: 6.9%
 - Phase 3: 9.7%
 - Phase 4: 1.1%