Expert SOKEI (WARDA, Benin)

Complementary Technology of NERICA Cultivation

SOKEI Yoshimi, Agronomist with ARI Dec. 7, 2006 GIMPA, Accra, Ghana

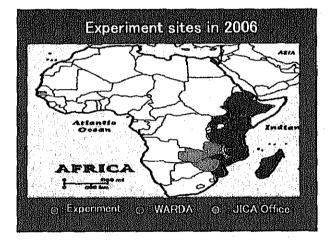
Main Objectives of ARI

To Promote and disseminate

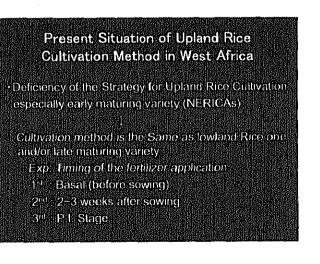
(1) NERICA

(2) other new improved rice varieties

- (3) Related technologies
- in Sub-Saharan Africa


Complementary Technology

I. Experiment on the NERICA Cultivation


- 1. To understand Characteristics of NERICAs
- 2. To develop cultivation technology of NERICAs

II. Training NARS* scientists To instruct the NARS scientists in method of the experiments through implementation of the experiment

a National Agricultural Research System as

Share of rice	NOTIFIC AND TRACTOR STOLENDS	Constraints
Some and the	Current Potentia	
44	1.0 2.0 4.0	Drought: low soil fertility (N. P. Iron deficiencies, acidity: erosion.) Weeds: blast, stem borers: termites, striga: birds: nematodes

Variety	No panic abil	les	No of g /parac	10.01264111	Stof rip gran	化化化剂 化化化	1000 gr weigh	
	Mea	SD	Mean	SD	Mean	SD	Mean	SD
NERICA 1	41	10	113 7	282	57.5	97	28.2	0.3
NERICA 2	5.4	19	99 G	14.3	0.56(5)	16-3	29.2	0.3
NERICA 3	52	13	104 8	8 5	73.5	2.9	30.4	0-1
NERICA 4	52	10	89.2	10.8	- 12.1	0.3	29.0	12
NERIGA 6	3.8	0.7	181.8	51	48.7	-10-3	28.5	0.9
NERICA 7	49	1.1	97.5	13.2	68 3	4.5	36.1	- i (9
WAB56-104	4.9	12	102.6	0.8	63.4	10.1	30.8	16

			(200					
Variety	No Dar //	cles		rainsi icles	dir to 32 gra		1000 g we	
	Mean	SD	Moan	SD	Mean	SD	Mean	SD
NERICA 1	4.8	1.2	51.7	18 0	48.0	11.9	28.9	0.
NERICA 2	62	17	52.1	8.0	54.0	13.0	29.2	0
NERICA 3	UN 56	0.6	70.7	21	70.3	11.9	30.4	01
NERICA 4	5.0	0.4	60 2	147	64.4	8.2	28.6	0/
NERICA 6	42	0.5	70.2	14 6	58 0	7.0	317	04
NERICA 7	43	10	61.2	24.0	66.8	14.0	32.5	9.0
NAB 56-104	6.1	6 11	51:9	17.0	56.0	4.4	30.9	0.9

Parts of the yield component in No-Fertilizer treatment in 2006 (WARDA)

Variety			No. of g					
Namo	St. 85 (1993)	SD	2 A		Mean	1000-002	Mean	1.1.55
NERICA1	2.9	0.1	75.2	13	/5.2	13	28.4	0
NERICA2	2.8	1.1	91,9	12.2	79.2	5.6	28-3	. 0
NERICA4	27	0.4	100 3	9.6	75.2	4.3	28 6	0
NERICAS	22	0.1	76.6	0.7	75.2	1.42	26.5	
NERICA6	2.4	0.4	163.5	32	17.5	1.1	30.0	
NERICAZ	27	0.5	1:48	40.3	76.7	97	34 9	0
W56-104-1	3.4	0.1	1116	8-1	819	27	31.8	0
Means								
						/c:	le plan	

Concept of Complementary Tech.

- Analysis of the Yield Component

/5 Hs/m2 x 8 Ps/hill x 100 Gs/panicle x 70‰ x 28g/1000 Gs - 3,920 kg/ha

n in sail x 80 Gs/panicles (10 x 28g/1000 Gs.

25 Hs/m2 x 7 Ps/hill x 100 Gs/panicle x 70% x 28g/1000 Gs = 3.430 kg/ha

25 Hs/m2 x 7 Ps/hill x 80 Gs/paincle x 75° x 28g/1000 Gs = 2.940 kg/ha

Concept of Complementary Tech.

According to the Yield Component Analysis:
 (1) To Assure the No. of the Panicles/hill
 No. of the sown seeds/ pocket

- Sowing Depth
- (2) To increase % of ripened grains • Change of the Fertilizer Application Timing

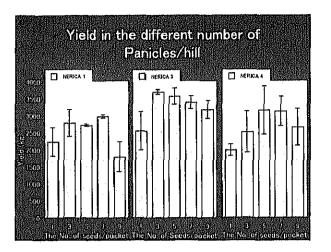
Summary of Cultivation Method

Planting method: Dibbling

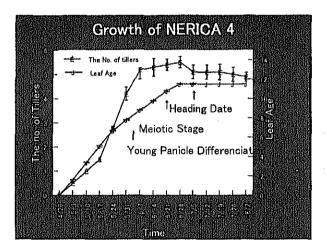
- Planting Density: 20 x 20 cm (25 hills/m²).
- Fertilizer Application: N.P.K = 60:30:30
 1⁻¹ application: 2 weeks after sowing N:P:K = 30: 30: 30
 - 2nd application: Meiotic Stage N:P:K = 30: 0: 0 (Urea)

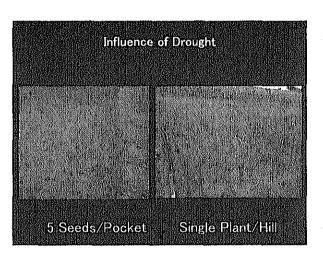
*) Sandy soil (up to 20, 25cm depth)

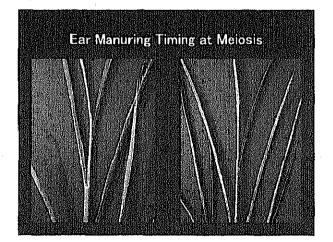
			(h) . (h)		41511/160	
Table The milis/plot) o						
depth in sa						
Sowing Depth	5 D/	NS.	8 D	AS	i t D	AS
(em)	Mean	SD	Moan	SD	Mean	SD
1	0.8	0.6	24.2	10.5	92.8	55
3	12.6	91	74.6	9.0	91.3	59
- ii 5	67	29	84 I	94	94.1	2.6
η	07	0.6	72 7	10.7	82.9	65


	He	adir	ng D	ate in	Di	lfere	ent So	wir	ng D	epth		
20000020000	St. 1998	123.619.22	110,000,000,000	leadin) ent sc		essa nuser	owing oth	of N	IERIO	CA 1, 2	2, 3,	
Depth	NE	RICA	v 1	NE	RICA	12	NE	RIC/	3	NE	RICA	46
(cm)	10	50	90	10	50	90	010	50	90	10	50	90
1	66	69	72	64	68	72	67	70	73	66	69	72
3	67	70	74	62	65	69	63	65	67	64	66	70
5	64	68	72	62	65	69	64	66	70	64	66	68
7	67	70	74	64	66	71	67	70	74	64	66	69
						- 19 - 1						

103924-053	The mean of crent sowing	% of the estab depth.	lishod hills at h	narvesting in
) (cm)	NERICAL	NERICA2	NERICA3	NERICA4
l	96.9	95.1	88.4	94.4
3	84.9	95.8	94.0	92.0
5	93.3	96.9	91.6	95.3
7	89.8	79.1	12.1	85 1


Yield ii	n different	sowing de	ipth


Head	ing [Date	in Di	fferen	t N o	o. of S	eeds/	рос	ket
Table of seed	Sec. 6 1.	新闻的现象	cading	after so	wing.	in the	differen	t nun	iber,
Seed	NE	RICA	1	NE	RICA	3	NE	RICA	4
No	10	50	90	10	50	90	10	50 ⁺	90
j,	72	75	79	69	71	74	72	74	
3	68	72	75	66	69	12	69	71	74
5	67	72	17	64	66	70	65	68	71
1	67	69	74	64	66	70	66	67	71
9	65	69	15	65	67	71	65	67	2.71


1. 他们出现在这个	计读试统计算论 网络电影电影电影 巨汉的	the established hills seeds per pocket	at harvesUng in
Seed No	NERICA 1	NERICA 3	NERICA 4
1	59.6	63.1	43.6
3	80.9	81.3	69.3
5	92.7	92.9	88.7
1	89.6	92.4	86.9
9	93.1	95.6	85.3
212 Page 12 - 29 - 1 - 20 - 20 - 20 - 20 - 20 - 20 - 20	经济保险 医骨髓间的 化化乙酸钙 化乙酸盐	而且有效的情况,但是我们就必须就是我们的是我们比如何。	FIGURE DESTRICTION OF THE STOCK

How to sow •Sow 5 to 7 grains at 3 to 5cm depth in Sandy Soil

Timing of Top Dressing

Young panicle differenciation stage (To increase No. of grains/panicle)

Meiotic Stage (To increase % of ripened grains)

Trainings Issues

(1) Fertilizer application

- •To understand how NERICAs Develop
- Timing of Fertilizer application
- (2) Collecting data and processing data

Subject in Off season of 2006 and 2007

1. Fertilizer Application Timing

- (1) Basal Application timing and method
- (2) To Understand relationship between timing of top dressing and Yield

2. Harvest Timing for NERICA