C. Final Disposal:

C3 Complement Information for Final Disposal Plan

C3 COMPLEMENT INFORMATION FOR FINAL DISPOSAL PLAN

1. New Guanabacoa Landfill Design by C/P side

Note : Source by DPPF

Figure 1.1 Location Map of Authorized area for New Guanabacoa Landfill

Figure 1.2 General Plan of New Guanabacoa Landfill , designed by C/P side

2. Estimated Volume of Covering Soil

						(Unit: 1000m ³)
		Total	Clay	Top soil and sand	Soft rock and waste construction	Note
	Rate of Volume		35%	60%	5%	
1. C 1(utting Earth Volume in expansion Calle 00 Landfill	2,050	720	1,230	100	
2. U	sing excavated soil					
	2.1 Use in site of expansion area					
	Mounding	195	80	195	10	
	Protection layer for Liner sheet	0	0	71	0	
	Dairy Covering Soil	692	0	692	0	
	Facility of landfill				50	
	Sub total	887	80	958	60	
	2.2 Use for Closure Landfill					
	Special Period Landfill	110	55	55	0	* 10km on the average
	GUANABACOA Landfill	118	59	59	0	* 17km
	Existing area of Calle 100 Landfill	400	200	200	0	* Less than 1km
	Expansion of Calle 100 Landfill	120	52	52	0	* Less than 1km
	Sub total	748	366	366	0	
	Total of 2.1 + 2.2	1,635	446	1,324	60	
1 - 2	2 Surplus Soil	415	274	-94	40	

Table 2.1 Estimated Volume of Covering Soil at Calle 100 Landfill

Note: * Moving Distance from Calle 100 landfill

3. Breakdown of Quantities Estimation

3.1 New Site 1 Landfill

New Site 1 Landfill

A. Calculate of Earth Work

	Waste volume with cover soil compaction	(A) Cover soil volume before compaction			(B) Compacted Volume (A)/0.9		(C) Portage Volume (B)x1.2	
	(m3)	m3/day	m3/year	m3/year	m3	Roundup (m3)	m3	Roundup (m3)
Y2011	718,000	429	156,585	156,600	173,983	174,000	208,780	208,800
Y2012	713,000	425	155,125	155,200	172,361	172,400	206,833	206,900
Y2013	672,000	401	146,365	146,400	162,628	162,700	195,153	195,200
Y2014	669,000	399	145,635	145,700	161,817	161,900	194,180	194,200
Y2015	665,000	397	144,905	145,000	161,006	161,100	193,207	193,300
Total	3,437,000	-	748,615	748,900	831,794	832,100	998,153	998,200

Note :

(B) and (C) are Volume of Natural ground condition

	1st Stage	2nd Stage	Total	Situation
Require volume of waste and cover soil	2,275,000	1,400,000	3,675,000	Compaction
Necessary Volume	2,388,750	1,470,000	3,858,750	Compaction
Cover Soil Volume	515,110	316,990	832,100	Natural ground

			1st Stage	2nd Stage	Total
			m3	m3	
Earth Work	Excavated Volume	1st Layer	635,660	403,160	1,038,820
	Mounding	1st dike	0	0	0
		2nd dike	76,100	68,600	144,700
		3rd dike	52,500	46,700	99,200
		4th dike	50,400	44,300	94,700
		5th dike	48,300	42,000	90,300
		sub-total	227,300	201,600	428,900
	Protective layer for I	Liner Seat	41,170	26,160	67,330
	Road bed work		13,020	2,480	15,500
	Total of filling and r	Total of filling and mounding work			511,730
Cover Soil	use excavated soil on	n site	515,110	316,990	832,100
	surplus soil		120,550	86,170	206,720
Final Cover Soil Layer				-	
		Gravel, t=30cm	39,072	24,272	63,344
		Clay, t=60cm	78,144	48,544	126,688
		Top Soil, t=30cm	39,072	24,272	63,344
		Total	156,288	97,088	253,376
Liner Sheet	m2	PE sheet + Geocomposite	140,000	89,000	229,000
Geo composite	m3	use excavated on site	41,170	26,160	67,330
-	-		·		
Leachate	Excavate volume	Anaerobic pond	7,410	5,170	12,580
Treatment		Aerobic Lagoon	7,260	4,670	11,930
Pond	m3	Maturation Pond	16 620	10 740	27 360

Treatment		Aerobic Lagoon	7,260	4,670	11,930
Pond	m3	Maturation Pond	16,620	10,740	27,360
		Total	31,290	20,580	51,870
	existing clay	Anaerobic pond	3,530	2,440	5,970
	Compaction	Aerobic Lagoon	2,570	1,790	4,360
		Maturation Pond	16,620	9,660	6,400
	m2	Total	22,720	13,890	16,730
	Sheet Anchorage ditc	Anaerobic pond	296	264	560
	m	Aerobic Lagoon	252	214	466
		Maturation Pond	342	272	614
		Total	890	750	1,640

6. Leachate collection and gas removing facility

	Main Pipe	Branch Pipe	Note
Dia.	600mm	200mm	
Stage1	500	5,000	at interval of 30 m
Stage2	390	3,900	
total	890	8,900	

7. Gas removing facility, vertical type PVC Diameter 300mm

	i i e blumeter soonn			
	9 unit/each ha			
	Area for 1st layer Area	Gas Vent	Height for 1 unit	Sum Height
	ha	unit	m	m
Stage1	12.0	108	14	1,512
Stage2	7.8	70	14	980
total	19.8	178	-	2,492

8. Road						unit: m
	Approach	Ro	ad	Onsite	Maintenance	
	Type A		Туре В	Road	Road	note
Stage1	1,7	700	900	700	1,200	
Stage2		0	850	560	1,000	
total	1,1	700	1,750	1,260	2,200	
Height of Road bed	1	1.0	0.5	0.0	0.0	
width of road (m)	8	8.0	8.0	7.0	5.0	
Road Shoulder (m)	().5	0.5	0.5	0.3	
Pavement	Asphalt Con.		Asphalt Con.	Gravel	Gravel	
	10cm layer		5cm layer	50 cm	30 cm	
Thickness of Road Earth Bed	5.	50	2.63	-	-	(m3/m)
Thickness of Road Gravel Bed		30	30	30	30	cm
V= m3/m		2.4	2.4	2.1	1.5	(m3/m)
Thickness of Asphalt pavement		10	5	-	-	t cm
V m3/m	0.	80	0.40	-	-	(m3/m)
Drainage of Surface exclusion	Slope 2%					
Side Ditch	Brick and Mortar					

9.Anchorage ditch of liner sheet

			unit: m
	1st layer top	2nd layer top	total
Stage1	1,490	1,560	3,050
Stage2	1,220	1,290	2,510

10. Rain Storm drainage system

		Type1	Type2	Type3	Note
W x H		0.5mx0.5m	0.5mx1.0m	2.0mx1.0m	
		with Riprap or Brick and mortar	with Riprap or Brick and mortar	with Riprap	
Landfill Area					
Stage1					
	drainage ditch on eml	6,000			(425m + 325m) x 2 x 4layer
	Vertical	210			installation each of 100m
	Ground Level	400	2,700	2,810	Around Embankment in grand level
	Sub Total	6,610	2,700	2,810	
Stage2					
	each embankment lay	5,200			(300m + 350m) x 2 x 4layer
	Vertical	180			installation each of 100m
	Ground Level	400	370	600	Around Embankment in grand level
	Sub Total	5,780	370	600	
TOTAL		11,560	740	1,200	
		11,500	710	1,200	ļļ

11. Turfing Work in embankment Slope

	top Area	Н	L	A	Layer	total		
	m	m	m	m2/laer	unit	m2		
1st Stage	120,000	14.8	1,512	22,378	4	89,510		
2nd Stage	72,000	14.8	1,218	18,026	4	72,110		
otal	192,000		2,730	40,404	8	161,620		
Note) 3rd Layer is Average layer								

Administration Facility

	Items		Qty	specification
1. Measurement office				
	Truck scale ,Paven	ent of concrete t=30 cm	1 Unit	
	Measurement offic	e	15 m2	5m x 3m
Security facility				
	Light fixture on road		20 Unit	at interval of 50m
	Light fixture aroun	d building	5 Unit	per 300m2
	Gate galvanization pipe and Wire net		1 unit	W=8m
	Boundary fence	barbed -wire fence	4,000 m	
	Guards room	3.5m x 3m	10 m2	3.5m x 3m
Work shop			•	
	Resting Room		300 m2	10m x 30m
	Parking of Heavy e	quipment, Rc, Cocrete pavement	5,000 m2	100m x 50m
	Fuel tank		5000 L	

			Dimension of Inside Bottom Area (Landfill Area) (ha)		Eml (1:S)=(V	bankment S ertical : Ho	llope prizontal)			Distance from Tail end Blanket	Bottom Dir waste fill	mension of ing layer	Top Surfac	e dimension Filling Layer	n in Waste r	Layer Dimension Landfill Area			Embankme	ent Volume	Soil Volume of Embankm ent				
Stage Number	Required Condition(m3)	Volume	Layer		Inside Slope	Outside Slope	Height	Width top	Width Bottom		Length bottom	Width bottom	L top	W top	Height	Each dimension	Sum Volume (*A)	Balance of volume demand	Section Area	Length		Lbt	Wbt	Lbt	Wbt
		(A*)	Number		non.	non.	М	М	М	М	М	М	М	М	М	m3	m3	m3	m3	m	m3	m	m	m	m
New Site 1 L	andfill																								
Stage 1	Required Volumen(m3)	2,275,000	1st Layer	Excavation	2.0	-	5.0	-	-	-	400	300	420	320	5.0	635,660	635,660	-1,753,090	-		-				
			2nd Layer	Mounding	2.0	3.0	3.5	5.0	22.5	2.0	424	324	438	338	3.5	499,370	1,135,030	-1,253,720	48.13	1,580	76,100	469	369	448	348
			3rd Layer	Mounding	2.0	2.0	3.5	3.0	17.0	2.0	408	308	422	322	3.5	457,590	1,592,620	-796,130	35.00	1,500	52,500	442	342	428	328
			4th Layer	Mounding	2.0	2.0	3.5	3.0	17.0	2.0	392	292	406	306	3.5	417,610	2,010,230	-378,520	35.00	1,440	50,400	426	326	412	312
			5th Layer	Mounding	2.0	2.0	3.5	3.0	17.0	2.0	376	276	390	290	3.5	379,410	2,389,640	890	35.00	1,380	48,300	410	310	396	296
	Necessary Volume	2,388,750	Sub Total				19.0								19.0		-				227,300				
Stage 2	Required Volume (m3)	1,400,000	1st Layer	Excavation	2.0		5.0	-	-	-	250	300	270	320	5.0	403,160	403,160	-1,066,840	-						
			2nd Layer	Mounding	2.0	3.0	3.5	5.0	22.5	2.0	274	324	288	338	3.5	325,590	728,750	-741,250	48.13	1,280	61,700	319	369	298	348
			3rd Layer	Mounding	2.0	2.0	3.5	3.0	17.0	2.0	258	308	272	322	3.5	292,210	1,020,960	-449,040	35.00	1,200	42,000	292	342	278	328
			4th Layer	Mounding	2.0	2.0	3.5	3.0	17.0	2.0	242	292	256	306	3.5	260,630	1,281,590	-188,410	35.00	1,140	39,900	276	326	262	312
			5th Layer	Mounding	2.0	2.0	3.5	3.0	17.0	2.0	226	276	240	290	3.5	230,840	1,512,430	42,430	35.00	1,080	37,800	260	310	246	296
	Necessary Volume	1,470,000	Sub Total				19.0								19.0						181,400				
Total	Required Volume (m3)	3,675,000																			408,700				
	Necessary Volume	3,858,750																							

					Final	Layer		
Earth Work Volume	Dimension of Inside Bottom Area (ha)	Construction Method	Embankment Volume	Protective layer for Liner Sheet	Gravel	Rich Native Soil	Compacte d condition	Natural ground condition
				t=30cm	t= 30 cm	t= 30 cm		
Stage Number	Layer No.		m3		m3	m3	m3	m3
Stage 1	1st Layer	Excavation		41,170	-	-		
-	2nd Layer	Mounding	76,100		-	-		
	3rd Layer	Mounding	52,500		-	-		
	4thLayer	Mounding	50,400		-	-		
	5th Layer	Mounding	48,300		35,165	35,165		
	Sub Total		227,300		35,165	35,165	268,470	298,300
Stage 2	1st Layer	Excavation		26,160	-	-		
-	2nd Layer	Mounding	61,700		-	-		
	3rd Layer	Mounding	42,000		-	-		
	4thLayer	Mounding	39,900		-	-		
	5th Layer	Mounding	37,800		21,845	21,845		
	Sub Total		181,400		21,845	21,845	207,560	230,700
Total			408,700	67,330	57,010	57,010	476,030	529,000

Table

- C3.7 -

Calculation of Earth Volume Landfill of New site 1 Landfill In NEW SITE 1 Landfill

Г						
		Cutting Soil	m3	Mounding Soil	m	3
Г	Landfill	1st Stage	635,660	Embankment	1st Stage	298,300
		2nd Stage	403,160		2nd Stage	230,700
				Dairy cover soil		0
				protective soil layer	1st Stage	51,900
				protective soil layer	2nd Stage	34,400
		sub-total	1,038,820		sub total	615,300
Γ	Pond	1st Stage	31,290			
		2nd Stage	20,580	Road bed	(L=3000m)	12,000
		sub-total	51,870			
Γ	total		1,090,690	TOTAL		615,300
Γ				balance		475,390

Note: Estimated Volume is condition of Natural ground

		Required volume (m3)	Slope 1:s	Botto	m (m)	High	Water Leve	l (m)	Allowanc	e Level (HV	VL+0.5m)	Deposit Volume of Water Area	Excavation Volume	Compactio n Cray Soil Area	Anchor ditch for liner sheet
		part of Under H.W.L		Lb	Wb	Iho	Who	H ho	La	Wa	На	V (m3)	(m3)	m2	m
(ALTERN	ATIVE 6)														
	Anaerobic	Pond + Ae	rated Lago	on + Matur	ation Pond	with recir	culation								
	Anaerobic	Pond (Emb	ankment slo	pe 1:3)											
	Stage1	6,230	3.0	84	8	105	29	3.5	107	31	4.0	6,240	7,410 x 1 pond	3,530	296
	Stage2	4,270	3.0	72	4	93	25	3.5	95	27	4.0	4,310	5,170 x 1 pond	2,440	264
	Total	10,500										10,550	12,580	5,970	560
	Aerated La	goon (Emba	ankment slo	pe 1:1.5)											
	Stage1	6,230	1.5	77	17	87	27	3.5	88	28	4.0	6,250	7,260 x 1 pond	2,570	252
	Stage2	3,990	1.5	63	12	73	22	3.5	74	23	4.0	4,000	4,670 x 1 pond	1,790	214
	Total	10,220										10,250	11,930	4,360	466
	Maturation	Pond (Emb	ankment slo	pe 1:3)											
	Stage1	6,250	3.0	107	32	116	41	1.5	118	43	2.0	6,110	8,310 x 2 ponds	9,660	342
	Stage2	4,000	3.0	76	28	85	37	1.5	87	39	2.0	3,930	5,370 x 2 ponds	6,400	272
	Total	10,250									each pond	10,040	27,360	16,060	614
	TOTAL												51,870	26,390	1,640

Table	Calculation of	of Pond Volume	e in New Si	te 1 Landfill
-------	----------------	----------------	-------------	---------------

New Guanabacoa Landfill 3.2

Table 3.2.1 Breakdown of Quantities Estimation for New Guanabacoa Landfill

. Require capacity of Landfil	l Area			(unit m3)
Propose by M/P				
	Necessary of Landfill Volume	filled waste Volume	Necessary Covering soil Volume (*1)	Necessary Covering soil Volume at Natural ground, before cutting
Dimension of Landfill Area	After compaction	After compaction	After compaction	(*1)/0.9
	(m3)	(m3)	(m3)	(m3)
1st Stage East area 7.8 ha	850,500	599,000	120,100	133,400
2nd Stage West area 5.5 ha	550,000	458,800	91,600	101,800
Total	1,400,500	1,058,000	211,700	235,200

2. Earth Work (calculated condition is natural ground condition)

					(unit m3)
		1st Stage	2nd Stage	total	Note
Cutting Volu	me				
	Landfill Area				
	l st layer	9,525	97,675	107,200	
	2nd layer	55,325	116,650	171,975	
	3rd layer	70,900	11,850	82,750	
	4th layer	84,250	0	84,250	
	5th layer	19,400	0	19,400	
	Sub-Total	239,400	226,175	465,575	
	Compost Yard	50,000	0	50,000	
	Administration Area	67,500	0	67,500	
	Sub-Total	117,500	0	117,500	
	Total	356,900	226,175	583,075	1)
Filling in site		Stage 1	Stage 2	Ttotal	
	Filling	99,722	72	99,794	
	Enclosure Embankment	100,123	110,474	210,597	
	Administration area	120,000	0	120,000	
	Protection Soil for Liner sheet	25,920	26,667	52,587	
	Total	345,766	137,213	482,978	2)
Surplus Soil		11,134	88,962	100,097	1)-2)
Necessary of	Cover Soil m3	133,400	101,800	235,200	
by Onsite soi	I excavated m3	11,134	88,962	100,097	
Transport fro	om out site				
-	m3	122,266	12,838	135,103	

3. Pond Construction Work

		1st Stage	2nd Stage	total
Excavation	Anaerobic Pond	3,950	2,750	6,700
Volume	Aerobic Pond	3,810	2,590	6,400
(m3)	Maturation Pond	9,480	7,100	16,580
	Total	17,240	12,440	29,680
installation	Anaerobic Pond	2,102	2,039	4,141
area of liper	Aerobic Pond	1,544	1,184	2,728
alea of miler	Maturation Pond	5,944	4,684	10,628
sneet (III2)	Total	9,590	7,907	17,497
Length of	Anchorage ditch for liner sheet (m)	610	580	1,190

4. Dimension of Enclosure Embankment

	3.5m height type	5.0m height type
Upper length of embankment	3 m	3 m
height of Embankment	3.5 m	5 m
Bottom length embankment	17 m	28 m
Out side Slope	1:2	1: 3
Inside slope	1:2	1:2
Average Section are	35.0 m2	77.5 m2

5. Volume of inside Area

		Enclosure Dike	Embankment		capacity
		L (m)	H (m)	Section Area(m3/m)	V(m3)
Stage1	1st Layer	-	5	-	12,87
	2nd Layer	-	3.5	-	109,77
	3rd Layer	-	3.5	-	238,50
	4th Layer	-	3.5	-	285,72
	5th Layer	-	3.5	-	250,02
	Total	-	-	-	896,90
Stage 2	1st Layer	-	5	-	107,05
	2nd Layer	-	3.5	-	172,27
	3rd Layer	-	3.5	-	159,37
	4th Layer	-	3.5	-	105,70
	5th Layer	-	3.5	-	74,00
	Total		-	0	618.40

5-1. Liner Sheet Installation Work

	Bottom Area	Slope Area	total	anchorage Length	
	m2	m2	m2	m	
Stage 1	70,000	26,000	96,000	1,300	
Stage 2	50,000	30,000	80,000	1,500	

6. Leachate Collection Pipe

	Area	Main Pipe 600mm	Branch Pipe 300mm
	ha	L (m)	L (m)
Stage1	8	700	2,340
Stage2	6	300	1,650
total	13.3	1000	3 990

7. Leachate Collection Connection Pipe from Landfill to Pond

Connection Pipe									
	From Landfill to pond	Connection for each pond	Total						
	m	m	m						
Syage1	50	70	120						
Stage 2	50	70	120						
Total	100	140	240						

8. Gas vent pipe , vertical type Dia=300mm

	9 unit per ha, installa	ation of 30m pite	ch	
	Area of 1st layer		Height per unit	Sum Height
	ha	unit	m	
Stage1	7.8	70.2	14	983
Stage2	6.0	54.0	10.5	567
total		124	-	1549.8

9. Road facility

		Approach Road	Approach Road	Maintenance	Onsite		
	unit	Type A	Type B	Road	Road	amount	note
Stage1	m	700	900	600	700	2900	
Stage2	m	0	500	900	700	2100	
total	m	700	1400	1500	1400	5000	
Height of road bed	m	1.0	0.5	-	-	-	
Width of road	m	8.0	8.0	5.0	7.0	-	
Width of road shoulder	m	0.5	0.5	0.3	0.3	-	
Condition of pavement		Asphalt Con.	Asphalt Con.	Gravel	Gravel		
-		5cm x2 layer	5cm x 2 layer	30 cm	30 cm		
Volume of Road Bed by soil	m3/m	5.50	2.63	-	-	-	
Thickness of Gravel paving laye	cm	30	30	30	30	-	
Volume of Section per meter leng	m3/m	2.4	2.4	1.5	2.1	-	
Thickness of Asphalt paving layer	t cm	10	5	-	-	-	
Volume of Section per meter leng	m3/m	0.80	0.40	-	-	-	

10. Rain St	orm drainage system					
		Type1	Type2	Type3	Type4	Note
W x H	WxH		0.5m x 1.0m	2.0m x 1.0m	2.0m x 2.0m	
		with Riprap or	with Riprap or		with Dinron o	
		Brick and	Brick and	with Riprap	Conorata	
		mortar	mortar		Concrete	
Landfill an	d Embankment Area					
Stage1	Included administrat	tion area				
	each embankment la	2,600	0	0		
	Vertical	260	0	0		installation each length 100m of embankment distance
	Around Landfill	650	200	100		Around Embankment in grand level
	Sub Total	3,510	200	100		
	Pond area	200	100	100		
	Total	3,710	300	200		
Stage2						
	each embankment la	2,250				
	Vertical	225				installation each of 100m
	Around Landfill	750	200	100		Around Embankment in grand level
	Sub Total	3,225	200	100		
	Pond area	200	100	100]
	Total	3,425	300	200		

11. Turfing Work for protective erosion in embankment Slope

	Height average	Wide bench	Embankment sl	Slop length	Length average	Turfing area
	m	m	m	m	m	m2
Stage 1	14.0	8	2	39	1,300	51,096
Stage 2	10.5	6	2	29	1,500	44,218
total	-		-	-	-	95,315

		Area (ha)	I	Dimension (I	m)	Required volume (m3)	Slope 1:s	Bottor	n (m)		H.W.L (m)		Allowance	Level (HW	/L+0.5m)	Deposit Volume of Water Area	Excavation Volume	Liner Sheet Area	Anchor length
			L	w	H (MWL)	part of Under H.W. L		Lb	Wb	Lh	Wh	Hh	La	Wa	На	V (m3)	m3	m2	m
Alter	native 6																		
	Anaerobic	Pond + Aerated Lagoor	n + Matura	ation Pond															
	Anaerobic	Pond (Embankment slop	e 1:3)																
	Stage1	3,080	44	20	3.5	3,080	3	46	5.0	67	26	3.5	69	28	4.0	3,190	3,950 x 1 pond	2,102 x 1 pond	204 x 1 pond
	Stage2	2,100	40	15	3.5	2,100	3	46	5.0	67	21	3.5	69	23	4.0	2,200	2,750 x 1 pond	2,039 x 1 pond	194 x 1 pond
	Total	5,180	-		-	5,180										5,390	6,700 x 1 pond	4,141 x 1 pond	398 x 1 pond
	Aerobic La	igoon (Embankment slop	e 1:1.5)																
	Stage1	3,080	44	20	3.5	3,080	1.5	44.5	12.5	55	23	3.5	56	24	4.0	3,120	3,810 x 1 pond	1,544 x 1 pond	170 x 1 pond
	Stage2	2,100	40	15	3.5	2,100	1.5	41.5	7.5	52	18	3.5	53	19	4.0	2,110	2,590 x 1 pond	1,184 x 1 pond	154 x 1 pond
	Total	5,180	-		-	5,180										5,230	6,400 x 1 pond	2,728 x 1 pond	324 x 1 pond
	Maturation	Pond (Embankment slop	e 1:3)																
	Stage1	3,150 x 2 ponds	70	30	1.5	3,150	3	69	24.0	78	33	1.5	80	35	2.0	3,150	4,740 x 2 ponds	2,972 x 2 ponds	240 x 2 ponds
	Stage2	2,250 x 2 ponds	60	25	1.5	2,250	3	62	19.0	71	28	1.5	73	30	2.0	2,350	3,550 x 2 ponds	2,342 x 2 ponds	216 x 2 ponds
	Total	5,400 x 2 ponds	-	-	-	5,400										5,500	8,290 x 2 ponds	5,314 x 2 ponds	456 x 2 ponds

3.5 m

3.3 Expansion of Calle 100

1. 1Neces

1st Stage

1. Landfill

isary Vol	Average Volume (Average Volume 1,764,000	er with daily cove m3	Operation Perio 2007y-2008y O 10000 m2 x 1.7	bd Iperation area 15 m x 10 layer	1:2 B top	1:2	Ţ	H= 3rd Layer
;	1,400,000 m3 200 800		2008y-2010y 8000 m2 x 1.75	m x 10 layer	· /		t	
3,164,000 m3					I 1:1/	1:2		H= 2nd Layer
lard sect	ion of Enclosure e	mbankment			. (+	
		2nd Layer		upper 3rd layer	1	Bottom	†	
	Upper width of b	3.0	m	3.0 m				
	Height of bank	5.0	m	3.5 m		1:2		H=
n	Bottom width	23.0	m	15.3 m				1st Layer
ure	Outside slope	1:	2	1:2			< *	
nent	Inside slope	1:	2	1: 1.5				
	Average Dimensi	65.0	m2	31.9 m2				

1.3. Mounding	g volume						
	Bank layer	Section Area	Length	gth Volume		Volume	
		(m2)	(m)	(m3)	-	(m3)	
1st Stage	1st layer	65.0	1412	91,780	0	0	
	2nd layer	31.9	1488	47,467	70	33,227	
	3rd layer	31.9	1406	44,851	100	44,851	
	4th layer	31.9	1324	42,236	100	42,236	
	5th layer	31.9	1242	39,620	100	39,620	
	Total			265,954		159,934	
2nd Stage	1st layer	65.0	1272	82,680	0	(
	2nd layer	31.9	1332	42,491	70	29,744	
	3rd layer	31.9	1250	39,875	100	39,875	
	4th layer	31.9	1168	37,259	100	37,259	
	5th layer	31.9	1086	34,643	100	34,643	
	Total			236,948		141,521	
TOTAL		T		300 597		194 577	

1:1	H= 2nd Layer	5.0 m	
Bottom	H= 1st Layer	3.0 m	
l			

1.4. Cutting volu	ime								
		L(m)		W (m)			Layer Volume		Cut Volume
		Bottom	Top	Bottom	Top	Н	Val	% of Cutting a	Vic
	section layer	(m)	(m)	(m)	(m)	(m)	(m3)		(m3)
1st Stage	1st layer	440	456	250	266	3.0	346,752	100	346,752
	2nd layer	460	474	270	284	5.0	646,795	80	517,436
	3rd layer	439.5	454	249.5	264	3.5	400,845	50	200,423
	4th layer	419	433	229	243	3.5	351,876	5	17,594
	5th layer	398.5	413	208.5	223	3.5	305,848	0	0
	Total					18.5	2,052,116		1,082,205
2nd Stage	1st layer	370	386	250	266	3.0	292,572	100	292,572
	2nd layer	386	400	266	280	5.0	536,445	90	482,801
	3rd layer	365.5	380	245.5	260	3.5	329,197	50	164,599
	4th layer	345	359	225	239	3.5	285,824	10	28,582
	5th layer	324.5	339	204.5	219	3.5	245,393	0	0
	Total					18.5	1,689,431		968,554
TOTAL							3,741,547		2,050,759

1.5.Liner Sheet Installation Area

	Waste Layer
	m2
1st Stage	127,177
2nd Stage	107,957
total	235,134

1.6.Liner sheet Anchor ditch

	1stLayer	total
	m	m
1st Stage	1,484	1,484
2nd Stage	1,344	1,344
total	2,828	2,828

1.7.Liner Sheet Protection Layer

	sand layer (m3)
	t= 30 cm
1st Stage	38,153
2nd Stage	32,387
total	70,540

1.8. Leachate Collection Pipe

	Area	Main pipe	Branch Pipe
	ha	600mm	200mm
1st Stage	10	400	6,000
2nd Stage	9	450	5,400
total	19	850	11,400

1.9.Gas removing Facility

Diameter 300mm PVC Perforated pipe

	9 unit per ha (at i	interval of 30m)
	Unit	Height (m)
		14.5m each
1st Stage	90	1,575
2nd Stage	81	1,418
total	171	2,993

2.Pond Construction Work

21.Anaerobic Pon	d Construction		
	Excavation	Liner Sheet	Anchor ditch
	Volume	Area	Anchor unch
	m3	m2	m
1st Stage	2,490	1,738	234
2nd Stage	2,090	1,842	234
total	4,580	3,580	468

22. Connection Leachate Pipe to Pond (connection Pipe Dia. 600mm)

		Excavated Dime		Liner Sheet	filling	
	Length	Width	Depth	Volume	А	Volume
	m	m	m	m3	m2	m3
1st Stage	50	1.5	4.5	337.5	675	323
2nd Stage	50	1.5	4.5	337.5	675	323
total	100	-	-	-	1350	646

Table -C-3-7 Calculation for dimensionof expansion of callel00 landfill

Stage Number	Required Condition	Requirement capacity	Dimension of Inside Bottom Area (Landfill Area) (ha)	Method of earth work	Embankment Slope (1:S)=(Vertical : Horizontal)		Distance from Tail end Blanket	Landfill Area Layer Dimension (Bottom Surface)		om Layer Dimension with embankment (Top Surface)) Layer Dimension Area in Waste layer		Embankment Volume		Soil Volume of Embankmen t					
		(m3)	Layer		Inside Slope	Outsid e Slope	Height	Width top	Width Bottom		L bottom	W bottom	L top	W top	Height	Each dimension	Sum Total Volume (*A)	Balance of volume demand	Section Area	Length	
		(A*)	Number				m	m	m	m	m	m	m	m	m	m3	m3	m3	m3/m	m	m3
Expansion of C	alle100 Landfill																				
First Stage	Required Volume (m3)	1,764,000	1st Layer	Excavation	2.0		4.0				440	250	456	266	4.0	462,420	462,420	-1,477,980			
	Length (M) =		2nd Layer	Excavation	2.0	2.0	3.5	3.0	17.0	2.0	460	270	474	284	3.5	452,810	915,230	-1,025,170	35.00	1,530	53,600
	Width (M) =		3rd Layer	mounding	2.0	1.5	3.5	3.0	15.3	2.0	439.5	249.5	453.5	263.5	3.5	400,900	1,316,130	-624,270	31.94	1,450	46,400
	Average Height (M) =		4thLayer	mounding	2.0	1.5	3.5	3.0	15.3	2.0	419	229	433	243	3.5	351,930	1,668,060	-272,340	31.94	1,370	43,800
	Volume (M3)		5th Layer	mounding	2.0	1.5	3.5	3.0	15.3	2.0	398.5	208.5	412.5	222.5	3.5	305,900	1,973,960	33,560	31.94	1,290	41,300
	x 1.1 for preparative (m3)	1,940,400	Sub Total				18.0								18.0						185,100
Second Stage	Required Volume (m3)	1,400,000	1st Layer	Excavation	2.0		4.0				370	250	386	266	4.0	390,180	390,180	-1,149,820			
	Length (M) =		2nd Layer	mounding	2.0	2.0	3.5	3.0	17.0	2.0	386	266	400	280	3.5	375,560	765,740	-774,260	35.00	1,380	48,300
	Width (M) =		3rd Layer	mounding	2.0	1.5	3.5	3.0	15.3	2.0	365.5	245.5	379.5	259.5	3.5	329,250	1,094,990	-445,010	31.94	1,290	41,300
	Average Height (M) =		4thLayer	mounding	2.0	1.5	3.5	3.0	15.3	2.0	345	225	359	239	3.5	285,880	1,380,870	-159,130	31.94	1,210	38,700
			5th Layer	mounding	2.0	1.5	3.5	3.0	15.3	2.0	324.5	204.5	338.5	218.5	3.5	245,450	1,626,320	86,320	31.94	1,130	36,100
	x 1.1 for preparative (m3)	1,540,000	Sub Total				18.0								18.0						164,400
Total	Required Volume (m3)	3,164,000					I	I —													349,500

Earth Work Volume	Dimension of Inside Bottom Area (Landfill Area) (ha)	Blanket Soil Volume		Liner Sheet installation Area	Gravel of final cover layer	Rich Native Soil for final cover layer
Stage Number	Layer	Compacted condition	Natural Condition	Area	t= 30 cm	t= 30 cm
	Number	m3		m2	m3	m3
Expansion of Ca	alle 100 landfill					
Stage 1	1st Layer	-		127,177		
	2nd Layer	53,600				
	3rd Layer	46,400				
	4thLayer	43,800				
	5th Layer	41,300			27,534	27,534
	Sub Total	185,100	205,700	127,177	27,534	27,534
Stage 2	1st Layer	-		107,957		
	2nd Layer	48,300				
	3rd Layer	41,300				
	4thLayer	38,700				
	5th Layer	36,100			22,189	22,189
	Sub Total	164,400	182,700	107,957	22,189	22,189
Total		349,500	388,400	235,134	49,723	49,723

	Cuttin	g Volume		Mounding Volume				
		(m3)			(m3)			
Landfill	1st Stage		462,420	Embankment	1st Stage	205,700		
	2nd Stage		390,180		2nd Stage	182,700		
	sub-total		852,600	daily coversoil		673,800		
					sub total	1,062,200		
Pond		Pond		Road work	(L=3000m)	30,000		
	1st Stage		36,670					
	2nd Stage		24,230	rprotective layer	1st Stage	44,300		
	sub-total		60,900		2nd Stage	37,700		
					sub total	82,000		
total			913,500	TOTAL		1,174,20		
Balance						-260,700		

3. Road Construction Work 3.1 .Road

		Access Road	Access Road	Maintenance	Onsite		
		Type A	Type B	Road	Road	amount	note
1st Stage		0	300	400	450	1150	
2nd Stage		0	0	300	300	600	
total		0	300	700	750	1750	
Height of road bed	m	1.0	0.5	0.0	0.0		
Width of road	m	8.0	8.0	5.0	7.0		
width of road	m	0.5	0.5	0.3	0.3		
specification			Asphalt Con.	Gravel	Gravel		
		5cm x2 layer	5cm x 2 layer	30 cm	30 cm		
Earth volume of road bed	m3/m	5.50	2.63	0.00	0.00		Soil layer
Gravel Pavement	thickness (cm)	30	30	30	30		Gravel
	Volume (m3/m)	2.4	2.4	1.5	2.1		
Asphalt Pavement	thickness (cm)	10	5	-	-		As
	Volume (m3/m)	0.80	0.40	-	-		

4. Rain Storm drainage system 41 Category of Ditch

41. Category of Ditch type		
	Type1 Typ	e2 Type3
Width m	0.5	1 2
Depth m	0.5	1 1
	with Ripran or Brick	and mortar

42. Landfill and Embankment Area

1st Stage	Landfill Area					
	embankment 4 la	2800				
	on slope	400				installation each length 100m of embankment distance
	Around Dike		1600			
	Road side		300	600		Around Embankment in grand level
	total	3,200	1,900	600		
2nd Stage	Landfill Area					
	embankment per	2400				
	on Slope	100				installation each of 100m
	Around Dike		1400			
	Road side		500	400		Around Embankment in grand level
	total	2,500	1,900	400		

43. Turfing Work in embankment Slope

	Area m2/laer	total m2
1st Stage	116,000	116000
2nd Stage	90,000	90000
total	206,000	206,000

5. Final Covering Work in top layer Final Cover Layer

I mai cover Layer							
	L	W	A	thickness	Volume	thickness	Volume
	m	m	m2	cm	m3	cm	m3
1st Stage	419	229	95,627	30	28,688	30	28,688
2nd Stage	345	225	77,340	30	23,202	30	23,202
total (Turfing area)		172,968		51,890		51,890

Table 3.3.2	Calculation o	of Pond Volume	at Calle100 Landfill

												(unit : 1000n	13)
			First stage				Second stage	;			Total		
	Items	Total	Sandy Clay	Top soil and sand	soft rock and construction waste	Total	Sandy Clay	Top soil and sand	soft rock and construction waste	Total	Sandy Clay	Top soil and sand	soft rock and construction waste
Ratio of e	xcavated Natural Soil Volume		30%	65%	5%		30%	65%	5%		30%	65%	5%
1. Cut Vol	ume	374	112	243	19	239	72	155	12	612	184	398	31
2.1 Use so	ils in site												
	Mounding and filling	320	100	110	10	111	50	55	6	430	150	165	16
	Protection layer for Liner sheet	26	-	26	-	27		27		53		53	
	Landfill facility of Landfill Site							50	19			50	19
	Sub Total	346	100	136	10	137	50	132	25	483	150	268	35
	Surplus Soil	28	12	107	9	101	22	23	-13	130	34	130	-4
1 - 2	Necessary Volume for Dairy Cove	133				92				235		212	
	Obtain inside	28				101				130			
	From outside	105				-10				106			

Table 3.3.3	Calculation of Soil V	olume in the Expansion	Area of Calle100 Landfill
1abic 5.5.5	Calculation of Son v	orume in the Expansion	

	Stage	Dime	nsion (A size)	verage	Required volume (m3)	Slope 1:s *1	Botto	m (m)	H	H.W.L (r	n)	Allo (H	wance WL+0.	Level 5m)	Deposit Volume of Water Area (m3)*2	Impermeable	e Liner Zone (m)	Excavati on Volume
		La	Wa	На	part of Under HOW. L		Lb	Web	Lahr	Who	Hz	La	Way	На	v	Vertical Thickness	Horizontal Thickness	(m3)
(ALTERNATIVE 6)	Anaerobic P	ond (En	nbankme	nt slope	1:3)													
Level 3	1st Stage	59	25	3.5	5,163	3.0	63	10	84	31	3.5	86	33	4.0	5,400	0.75	2.25	6,630
	2nd Stage	60	20	3.5	4,200	3.0	70	5	91	26	3.5	93	28	4.0	4,490	0.75	2.25	5,530
	Total	-	-	-	9,363										9,890			12,160

4. Unit Cost

Items	Specification	Unit Cost	Unit	Specification
HDPE liner Sheet with Geo-composite	1.5 mm double sided textured HDPE	9.80	US\$ / m2	Geomembran 60mil, t=1.5mm Pavco
	Double Sided geo-composite	9.16	US\$ / m2	geodren planar PAVCO
	Fitting cost for installation	16,000	US\$	Installation kit for installation HDPE liner Sheet
PVC pipe for Under ground water drainage	Perforated type, Dia.600mm	35.07	US\$ per meter	novafort PAVCO 515mm
Perforated type	Perforated type, Dia.400mm	30.74	US\$ per meter	novafort PAVCO 400mm
	Perforated type, Dia.300mm	15.04	US\$ per meter	novafor PAVCO 315mm
	Perforated type, Dia.200mm	7.25	US\$ per meter	novafort PAVCO 200mm

Table 4.1 Unit Cost of Materials

Table 4.2 Unit Cost by Design and Cost estimation of Pilot Project in Campo Florido

Items	Specification	unit	Amount	Unit Price (CUP)	Note
Boundary Wire Fence	Barbed -wire Fence	m	950	14,051.29	
		m	1	14.79	
littering prevention equipment, Fence type	Installation Fence	m	200	3,505.87	
	Unit Cost per meter	m	1	17.53	
Slope Protection Work	Turfing Work, each 10m x 10m	m2	100	2.58	
Net fence Installation Work		m	360	31,237.66	
	Unit Cost per meter	m	1	86.78	
Entrance Gate setting work		unit	1	500.00	
Administration office	RC column and block wall	m2	70	27,126.38	
	Unit Cost	m2	1	387.52	
Parking Area with Roof	Steel beam with slate a roof, 12m x 18 m	m2	216	31930.18	
	Unit Cost	m2	1	147.83	
Fuel Tank	1500Liters of Steel tank with RC column	Liter	1500	3110.13	
	Unit Cost	Liter	1000	2073.5	
Parking Area for visitors	Concrete pavement ,2.5m x $9m = 18.5m2$	m2	18.5	11837.06	
	Unit Cost	m2	1	639.85	
Asphalt pavement	thickness asphalt is 5cm, thickness of road bed is 18cm	m2	1542	11416.91	
	Unit Cost	m2	1	7.41	

5. Existing Topographical Landfill Map

Figure 5.1 Topographical Map of Calle 100 Landfill

Figure 5.2 Topographical Map of Existing Guanabacoa Landfill

6. Method of Operation for Second Layer in Campo Florido PLP site

Figure 6.1 Cover Soil Operation in Campo Frorido PLP Site (1)

<u>#2 nd</u> <u>Prepara de Entrada para piso 2ndo</u>

Pagina #02

1.Cuand llena de Cerda 16-D, Construcir el entrada para 2nda Piso de tierra de cantera 2. La Entrada de Vehiclo tiene #A.0m de Ancho

3.En Linea 16 y 17(final) ,se Cambian turno de tapado,como sigeuente,

16E =>17E=>16D=>17D=>16C=>17C=>16B=>16A=>17B=>17A

4.La Enrtada Talud de Piso 2nda va empesar la costruction acabo de llenado de la Cerda de 17E.

Figure 6.2 Cover Soil Operation in Campo Frorido PLP Site (2)

<u>#3 ro</u> Enpesar Cubierto piso segundo

Pagina #03

1. Tamanyo de Carda son 6mts de Larga, 10mts de Ancho

<u>#4 to</u> <u>Llenado en el Piso 2ndo</u>

Pagina #04

Figure 6.4 Cover Soil Operation in Campo Frorido PLP Site (4)

<u>#5 to</u> Cubierto final de Piso 2nda

Pagina #05

Figure 6.5 Cover Soil Operation in Campo Frorido PLP Site (5)

<u>#6 to</u> <u>Cubierto final de Piso 2nda</u>

Pagina #06

Figure 6.6 Cover Soil Operation in Campo Frorido PLP Site (6)

7. Improvement plan of Calle100 Landfill existing area at the Almendares riverside

Figure7.1 Actual Situation

Figure 7.2 Proposed Implementation Plan

C. Final Disposal:

C4 Cost of Leachate Treatment Alternatives

C4 COST OF LEACHATE TREATMENT ALTERNATIVES

Leachate Treatment alternatives for the Expansion of Calle 100

Alternative 1: Aerated Lagoon + Maturation Pond with recirculation -calle100 Expansion

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is the same as the one which was adopted in the original pilot project in Campo Florido. However, an aerated lagoon alone cannot remove T-BOD₅ and SS. Therefore, a maturation pond after the aerated lagoon is proposed.

1. Assumptions

1.1 There are no discharge quality criteria for treated leachate. Therefore, the following temporary criteria were proposed.

Leochote Quality		Unit-mg/L	
Leachate Quanty	T-BOD ₅	SS	S-BOD ₅
Inlet	920	540	600
Outlet	60	70	30
Removal rate (%)	93.5	87.0	95

 Table 1
 Proposed Waste Quality Criteria

Even though discharge quality criteria will be established in the future, only T-BOD₅ and SS are removed by this system.

There are formulas for estimating leachate generation, including one that considers evaporation; however, in the case of using a pond system as the final treatment, the pond volume is designed ignoring evaporation.

1) Leachate generation

Landfill Area			
Stage1	A1	10.1 ha	$10,800 \text{ m}^2$
Stage2	A2	8.4 ha	$8,400 \text{ m}^2$
Stage3	A3	0.0 ha	0 m^2

Once the surface liner facility is constructed in the landfill site, it is assumed that no water flows into the landfill site

 $q = f^*C^*A^*I/1000 (m^3/day)$

Where

- q: Daily effluent amount of leachate water (m^3/day)
- c: Leachate coefficient of on-going landfill section 0.4
- 1: Annual maximum rainfall (mm/day) Maximum rainfall during 2000 to 2002
 38 mm in September, 2002 11.3 mm/day

16

- A: Landfill area (m^2)
- f: Safety factor

Q: Daily effluent amount of leachate with safety factor (m^3/day)

Table 2 Troposed Leachate volume	Table 2	Proposed	Leachate	Volume
----------------------------------	---------	----------	----------	--------

Q	Stage1	Stage2	Stage3
(m ^{3/} day)	730	610	0

2. Leachate treatment

2.1 Aerated Lagoon Process Design

Design Base:

	Symbol	Unit	
Influent flow	Q	m ³ /d	
Influent suspended solids	SS0	mg/L	540
Influent soluble BOD ₅	S 0	mg/L	920
Effluent soluble BOD ₅	S-BOD ₅	mg/L	30
Effluent suspended solids after settling	SSe	mg/L	70
Kinetic coefficients:		I/d	0.65
Y		mg-BOD ₅ /L	100
Ks		mg-BOD ₅ /L/d	6.0
Kmax		I/d	0.07
Kd	k (20)	I/d	2.5
First order soluble BoD5 removal rate constants at 20 °C	Ti	°C	21.0
Waste water temperature			
in leachate	α		0.6
in treated water	В		0.9
Oxygen concentration to be maintained in liquid		mg-O ₂ /L	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	14

2.2 Surface area of the lagoon

 $\theta c = V/Q$ $\therefore \theta c^*Q$ V: volume of the lagoon

A=V/H

Dimensions

			-	
	Unit	Stage1	Stage2	Stage3
V	m ³	10,220	8,540	-
A	m^2	2,920	2,440	-
L	m	90	90	-
W	m	35	30	-
Н	m	3.5	3.5	-
A'(Connected A)	m ³	3,150	200	-
V'(Connected V)	m^2	11,100	9,500	-

Table 3 Dimensions of Aerated Lagoon

Number of lagoon:1

2.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅ out = {Ks $(1+\theta c^*kd)$ }/ { $\theta c (Y^*kmax-kd)$ -1}(mg/L)

Ks	θc*kd	1+θc*kd	Ks (1+ θc^*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅ out
100	0.98	1.98	198	14	3.9	3.83	52.6	3.8

2.4 Effluent BOD₅

1) Correct the removal-rate for temperature effects

k(t)=k(20)*θT-20

Ti	k ₍₂₀₎	T-20	θ	θ ^(T-20)	$k^{(20)\theta(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

2) Determine the effluent BOD₅: St-out (mg/L)

kt	V/Q	1+kV/Q	1/(1+kV/Q)	S_0	St-out
2.7	14	38.10	0.03	920	24

2.5 Concentration of biological solids produced: X(mg.L)

 $X=Y(S_0-S-BOD_5-out)/(1+kd\theta c)(mg-VSS/L)$

Y	S ₀ -S-BOD _{5-out}	kd	θc	$Y(S_0-S-BOD_{5-out})/(1+kd\theta c)$
0.65	916.2	0.07	14	301

2.6 Suspended solids in the lagoon before settling

SSi=Influent suspended solids + X/0.7 (mg/L)

SSo	Х	SSi		
540	301	970		
olids	0.7			

Ratio of volatile suspended solids

2.7 Oxygen requirements

 $Q_2(kg/d)=Q(S_0-S-BOD_{5-out})/f-1.42Px$

f: conversion factor for BOD_5 to BODL 0.68

Px =Q*(concentration of biological solids produced)

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
S ₀ -S-BOD _{5-out}	mg/L	916	916	-
f	-	0.68	0.68	-
Px	kg/day	220	183	-
Required O ₂	kg/day	672	561	-

Table 4 Required O₂

2.8 Ratio of oxygen required to BOD₅ removed

BOD₅ removed (kg/d)

O₂/BOD₅ removed

			-	
	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
S ₀ -S-BOD _{5-out}	mg/L	916	916	-
BOD ₅ removed	kg/day	669	559	-
O ₂ /BOD ₅	-	1.0	1.0	-

Table 5Removed BOD5

2.9 Surface aerator power requirements

assumption: kg O./kw/h	ka O./kw/h	No	16
assumption. kg-O ₂ /kw/n	kg-O ₂ /kw/II	INO	1.0
a) Correction factor for surface aerators for sun	nmer conditions	f	
f=No. /N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)	mg/L	9.08	
3) Do concentration in Lagoon	C_{L}	mg/L	1.5
$f = (D * C_{\alpha}T CI) / C_{\alpha}(20) * 1.024T (20) * \alpha)$			

 $f = \{B^*CsT-CL\}/Cs(20)^*1.024T-20^*\alpha\}$

Γ	Ti-20	1.024 ^{T-20}	α	В	f
	1	1.029	0.6	0.9	0.44

b) Field transfer rate: N

N=fNo

kg-O₂/kw/h 0.71

Total amount of transfer O₂ kg-O₂/kw/d

kg-O₂/kw/h 17.0

The total axis power required to meet the required oxygen

Table 6Required O2Supply

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	672	561	-
Required power for O ₂ supply	kw	39.5	33.0	-

2.10 Energy requirements for mixing

Tuble / Specifications of Herator					
	Unit	Stage1	Stage2	Stage3	
Power for Mixing	kW/m ³	0.005	0.005	-	
Lagoon volume	m ³	11,100	9,500	-	
Axis power for mixing	kW	55.5	47.5	-	
Total efficiency	-	0.75	0.75	-	
Required power	kW	74	63	-	
Unit Power	kW/No.	15	15	-	
No. of Aerators	Nos.	6	5	-	

t

Table 7 **Specifications of Aerator**

3. Solid separation for aerated lagoon

3.1 Design Base:

1) Process: maturation pond

2) HRT (days):

3) Depth (m)	D
Necessary Area (m ²)	Α
A=Qt/d	
Volume of the maturation pond (m^3)	V

Volume of the maturation pond (m^3)

The effluent SS may be expected to be at about 50-100 mg/L

Dimension	Length	L
	width	W
	Height	Н

Table 8 Dimensions of Maturation Pond

	Unit	Stage1	Stage2	Stage3
Q	m ^{3/} day	730	610	-
t	days	14	14	-
V	m ³	10,220	8,540	-
No.of Pounds	-	2	2	-
D_0	m	1.5	1.5	-
A/pond	m ²	3,450	2,850	-
D/pond	m	100	90	-
W/pond	m	35	35	-
A'(corrected A)/pond	m ²	3,500	3,150	-

Leachate recirculation pump 4.

1) Recirculation rate times/leachate r m³/day Recirculation pump flow Qr $Qr = r^*Q$

Required Power	Ps	
ps=0.163*Qr(m ³ /min)*H(m)/ŋ	Hose power	
Here		
Total head of the pump	Н	m
Total efficiency	ŋ	
Liquid density	ρs	1.05

From the entrance of aerated lagoon to landfill

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
r	-	3	3	-
Or	m ³ /day	2,190	1,830	-
Qr	m ³ /min	1.52	1.27	-
Head	m	50	50	-
ŋ	-	0.56	0.56	-
Ps	Horse power	23.2	19.4	-
	kW	17.4	14.6	-
Unit power	kW/No.	19	19	-
Nos.of pumps	Nos.	(1+1)	(1+1)	-

 Table 9
 Specifications of Leachate Recirculation Pump

5. Sludge accumulation

5.1 Mass of sludge accumulated in the basin each year without anaerobic decomposition

Mass= $(SSi-SSe)(g/m^3)*10^{-3}(kg/g)*q(m^3/day)*365(day/year)$

SSi : SS from aerated lagoon

SSe : SS after solid separation

VSS: Volatile solids of the mass to be decomposition = 0.7* mass

Fixed solid = Mass-Volatile

	8			
	Unit	Stage1	Stage2	Stage3
SSi	mg/L	970	970	-
SSe	mg/L	70	70	-
Q	m ³ /min	730	610	-
Mass	kg/year	239,800	200,400	-
Vss	kg/year	168,000	141,000	-
Fixed solid	kg/year	71,800	59,400	-

 Table 10
 Accumulated Sludge

 m^2

m

5.2	Amount of sludge to be accumulated at the end of	ty	years
Assump	tion		
1) Maxi	mum volatile solids reduction	75	%
2) it wil	l occur within	1	year
3) depos	sited volatile suspended solids undergo a liner decomp	position	

Mass of volatile suspended solids accumulated at the end of 2 year:

$(VSS)t = \{0.75+0.25(t-1)\}*VSS$		kg
Total mass of solids accumulated at the end of	ty1	year
SSt=Vsst + ty*Fixed solid		kg

	Unit	Stage1	Stage2	Stage3
VSS	kg/year	168,000	141,000	-
ty	year	2	2	-
(Vss)t	kg	159,600	133,950	-
SSt	kg	303,200	252,750	-

Table 11 Accumulated Volatile Suspended Solids

5.3	Required liquid volume and the dimensions for the sedimentation b	asin
1) Volur	me of sedimentation basin:V	m^3
	$V=t*q(m^3/d)$	

- 2) Surace area of the sedimentation basin A
- 3) Effective depth of the solid -liquid separation

Table 12Required Liquid Volume

	Unit	Stage1	Stage2	Stage3
V	m ³	10,220	8,540	-
A'	m^2	7,000	6,300	-
D1	m	1.0	1.0	-

5.4 Depth required for the storage of sludge

1) the mass of accumulated sludge per square meter	kg/m ²
Accumulated mass of sludge: SSt	kg
mass per unit area	kg/m ²

%

ton/m³

	Unit	Stage1	Stage2	Stage3
SSt	kg	303,200	252,750	-
Α'	m ²	7,000	6,300	-
SSt/A	kg/m ²	43	40	-

Table 13 Accumulated Sludge per Square Meter

2) Required depth

Vds: deposited solids accumulated

ps: density of the sludge:

The volume of sludge: Vsst (m³)

$$0.15*Vsst (m^3)*1.06*103(kg/m^3) = SSt(kg)$$

Hs: the height of the sludge zone (m)

Vsst=H*A Hs=Vsst/A

	Table 14 R	equired Deptl	n	
	Unit	Stage1	Stage2	Stage3
Vds	%	15	15	-
$ ho_s$	ton/m ³	1.06	1.06	-
SSt	kg	303,200	252,750	-
Vsst	m ³	1,907	1,590	-
А	m ²	7,000	6,300	-
Hs	m	0.27	0.25	-

m

- C4.8 -
Alternative 2: Aerated Lagoon + Sedimentation Tank + Wetland with recirculation-Calle 100 Expansion

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is the same as the one which was adopted in the original pilot project in Campo Florido. However an aerated lagoon alone cannot remove T-BOD₅ and SS. Therefore a sedimentation pond and wetland were proposed.

1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leochote Quality		Unit-mg/L	
Leachate Quality	T-BOD ₅	SS	S-BOD ₅
Inlet	920	540	600
Outlet	60	70	30
Removal rate (%)	93.5	87.0	95

 Table 15
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1) Leachate generation

Landfill Area

Stage1	A1	10.1ha	$10,800 \text{ m}^2$
Stage2	A2	8.4 ha	8,400 m ²
Stage3	A3	0.0 ha	0 m^2

Once surface liner facility is constructed in landfill site, it is assumed that no water flows into the landfill site

$q = f^*C^*A^*I/1000(m^3/day)$

Where

- q: Daily effluent amount of leachate water (m^3/day)
- c: Leachate coefficient of on-going landfill section 0.4
- 1: Annual maximum rainfall (mm/day) Maximum rainfall during 2000 to 2002

38mm in September in 2002 11.3mm/day

16

A: Landfill area (m^2)

f: Safety factor

Q: Daily effluent amount of leachate with safety factor (m^3/day)

Table 16Proposed Leachate Volume

Q	Stage1	Stage2	Stage3
(m ³ /day)	730	610	0

2. Leachate treatment

2.1 Aerated Lagoon Process Design

Design Base:

	Symbol	Unit	
Influent flow	Q	m ³ /d	
Influent suspended solids	SS0	mg/L	540
Influent soluble BOD ₅	S 0	mg/L	920
Effluent soluble BOD ₅	S-BOD ₅	mg/L	30
Effluent suspended solid after settling	SSe	mg/L	70
Kinetic coefficients:		I/d	0.65
Υ		mg-BOD ₅ /L	100
Ks		mg-BOD ₅ /L/d	6.0
Kmax		I/d	0.07
Kd	k (20)	I/d	2.5
First order soluble BOD ₅ removal rate constants at $20 \ ^{\circ}\text{C}$	Ti	°C	21.0
Waste water temperature			
in leachate	α		0.6
in treated water	В		0.9
Oxygen concentration to be maintained in liquid		mg-02/L	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	14

2.2 Surface area of the lagoon

 $\theta c = V/Q$ $\therefore \theta c^*Q$ V: volume of the lagoon

A=V/H

Dimension

Table 17	Dimensions	of Aerated Lagoon
----------	------------	-------------------

	Unit	Stage1	Stage2	Stage3
V	m ³	10,220	8,540	-
А	m^2	2,920	2,440	-
L	m	90	90	-
W	m	35	30	-
Н	m	3.5	3.5	-
A'(Connected A)	m ³	3,150	200	-
V'(Connected V)	m^2	11,100	9,500	-

Number of lagoon:1

2.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅ out = {Ks $(1+\theta c^*kd)$ }/ { $\theta c (Y^*kmax-kd)$ -1}(mg/L)

Ks	θc*kd	1+θc*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅ out
100	0.98	1.98	198	14	3.9	3.83	52.6	3.8

2.4 Effluent BOD₅

1) Correct the removal-rate for temperature effects

k(t)=k(20)*θT-20

Ti	k ₍₂₀₎	T-20	θ	$\theta^{(T-20)}$	$k^{(20)\theta(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

2) Determine the effluent BOD₅: St-out (mg/L)

kt	V/Q	1+kV/Q	1/(1+kV/Q)	S_0	St-out
2.7	14	38.10	0.03	920	24

2.5 Concentration of biological solids produced: X (mg.L)

 $X=Y (S_0-S-BOD_5-out)/(1+kd\theta c) (mg-VSS/L)$

Y	S ₀ -S-BOD _{5-out}	kd	θc	$Y(S_0-S-BOD_{5-out})/(1+kd\theta c)$
0.65	916.2	0.07	14	301

2.6 Suspended solids in the lagoon before settling

SSi =Influent suspended solids + X/0.7(mg/L)

	SSo	Х	SSi
	540	301	970
suspended solid			0.7

Ratio of volatile suspended solid

2.7 Oxygen requirements

 $Q_2(kg/d)=Q(S_0-S-BOD_{5-out})/f-1.42Px$

f: conversion factor for BOD₅ to BODL 0.68

 $Px = Q^*$ (concentration of biological solids produced)

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
S ₀ -S-BOD _{5-out}	mg/L	916	916	-
f	-	0.68	0.68	-
Px	kg/day	220	183	-
Required O ₂	kg/day	672	561	-

Table 18 Required O₂

2.8 Ratio of oxygen required to BOD₅ removed

BOD₅ removed (kg/d)

O₂/BOD₅ removed

			U	
	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
S ₀ -S-BOD _{5-out}	mg/L	916	916	-
BOD ₅ removed	kg/day	669	559	-
O ₂ /BOD ₅	-	1.0	1.0	-

Table 19Removed BOD5

29	Surface	aerator	nower	rea	uirements
4.)	Surface	actator	power	100	unemento

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6
a) Correction factor for surface aerators for sur	nmer conditions	f	
f=No. /N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)	mg/L	9.08	
3) Do concentration in Lagoon	$C_{\rm L}$	mg/L	1.5
f_{-} (D*C ₂ T CL)/C ₂ (20)*1 024T 20*a)			

 $f = {B*CsT-CL} / Cs (20)*1.024T-20*\alpha$

ĺ	Ti-20	$1.024^{\text{T-}20}$	α	В	f
	1	1.029	0.6	0.9	0.44

b) Field transfer rate : N

N=fNo

 $kg-O_2/kw/h = 0.71$ kg-O₂/kw/h 17.0 Total amount of transfer O₂ kg-O₂/kw/d

The total axis power required to meet the required oxygen

Table 20	Required	O ₂	Supply
----------	----------	-----------------------	--------

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	672	561	-
Required power for O ₂ supply	kw	39.5	33.0	-

2.10 Energy requirements for mixing

	1			
	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	-
Lagoon volume	m ³	11,100	9,500	-
Axis power for mixing	kW	55.5	47.5	-
Total efficiency	-	0.75	0.75	-
Required power	kW	74	63	-
Unit Power	kW/No.	15	15	-
No. of Aerator	Nos.	6	5	-

t

V

Table 21 Specifications of Aerator

3. Solid separation for aerated lagoon

3.1 Design Base:

1) Process: maturation pond

3) Depth (m) D А

Necessary Area (m²)

A=Qt/d

Volume of the maturation pond (m³)

V=A*D0

The effluent SS may be expected to be at about 50-100 mg/L

Dimension	Length	L
	width	
	Height	

Η Table 22 Dimension of Maturation Pond

W

	Unit	Stage1	Stage2	Stage3
Q	m ^{3/} day	730	610	-
t	days	14	14	-
V	m ³	10,220	8,540	-
No.of Pounds	-	2	2	-
D_0	m	1.5	1.5	-
A/pond	m ²	3,450	2,850	-
D/pond	m	100	90	-
W/pond	m	35	35	-
A'(corrected A)/pond	m ²	3,500	3,150	-

Solid-liquid separation: sedimentation tank 4.

Qi: Inflow	m ³ /day
Safety factor	3
R.t: Retention time at Qi*3	hr

OL: Overflow rate at Qi*3		m ³ /m ² /day
Qi*Ci= Qo*Co+Qu*Cu		
Ci: Inflow SS		mg/L
Co: Outflow SS		mg/L
Cu: Concentrated SS in the	e sedimentation tank	mg/L
Qo: Outflow		m ³ /day
Qu: Underflow (Sludge flo	ow)	m ³ /day
Qu=Qi-Qo		m ³ /day
Qo=Qi*(Cu-Ci) / (Cu-Co)		m ³ /day
As: surface area=Qo/OL		m ³
Dimension	Ls: Length of sedimentation tank	m
	Ws: Width of sedimentation tank	m
Hs: Height of sludge zone =Vs/A	As	m
Vs: Volume of sedimentation tar	nk	m ³
H2: Height allowance = Vs/As		m^2

Table 23	Dimension	of sedimentation tai	nk

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
Qi	m ³ /day	2,190	1,830	-
RT	hr	2	2	_
OL	m ³ /m ² /day	22	22	-
Ci	mg/L	970	970	-
Со	mg/L	70	70	-
Cu	mg/L	5,000	5,000	-
Qo	m ³ /day	1,800	1,500	-
As	m ²	90	70	-
Ls	m	20	20	-
Ws	m	5	5	-
Hs	m	2.2	2.3	-
Vs	m ³	190	160	-
Qu	m ³ /day	390	330	-
H2	m	1.5	1.5	-
H0	m	3.7	3.8	-

Total Height Ho=H2+Hs

Sludge is returned to land fill

Pump specification Head Liquid density

5. To removal nutrients, use wetland.

Only by aerated lagoon, only BOD₅ and SS are removed. For further treatment for nutrients another process is necessary.

Here, wetland was considered as an alternative for this purpose, considering cost efficiency.

Levels of nitrogen and phosphates are estimated as below based on the analysis of leachate during this Study.

Total-N:	240	mg/L
Total-P:	64	mg/L

In biological treatment nitrogen and phosphate are necessary. The ratio of N and P towards BOD_5 is 3:0.3:100

Therefore N and P after biological tre	atment, their lev	els are expected	d as below.
Inlet BOD ₅		920	mg/L
Therefore N to be removed by biolog	ical treatment	27.6	mg/L
After aerated lagoon remained N	Ν	212	mg/L
	Р	61	mg/L

Criteria*				
20	mg/L. as KTN			
10	mg/L. as P			

*:Discharge criteria of industrial waste water into general public water body

Inlet T-P level will be reduced by using cover soil.

Therefore, only removal of nitrogen would be considered.

Here, subsurface-flow (SSF) systems was considered. In a SSF wetland, the basin is filled with gravel or some other coarse substrate, and the water level is maintained below-ground. Water flows horizontally, or sometimes vertically, through the gravel and the root mat of the wetland vegetation.

Arrow arum (Polyandry spp.) and Pickerel wee (Pontederia spp.) have been used in constructewetlands.

Also common reed (Phragmitescommunis) is used

Figure 1 Conceptual diagram of subsurface-flow wetlands

Example of determination of basin design for SFS wetlands system

Nitrogen removal will proceed when BOD₅ level is less than 10 mg/L.

1.	Premises		
	Influent BOD ₅	C_0	60 mg/L
	Effluent BOD ₅	Q	m ³ /day
			m ³ /day
	Vegetation type		cattails
	Minimum water temperature	Т	21°C
	Basin media	coarse sand with 2	2 mm of maximum effective size
	Basin slope	S	0.01
2.	Solution		
1.	Basin depth for use wit cattail	d	0.3m
2.	Porosity	α	0.39
	Hydraulic conductivity	Ks	$480 \text{ m}^3/\text{m}^2/\text{day}$
		K ₂₀	1.35
3.	Temperature-dependent first order	rate constant	
		K _T at	21°C
			1.49 d^{-1}
4.	Pore-space detention time	t ¹ =-1nCe/C0/Kt	d
5.	Cross-sectional area	AC=Q/Ks/S	m^2
6.	Basin width	W=Ac/d	m
7.	Basin length	$L=t'Q/W/d/\alpha$	m
8.	Required surface area	As=L*W	m^2
			ha
9.	Check hydraulic-loading rate or sp	pecific area requirem	nents
		Lw = Q/L/W	150 to 500 m ³ /ha/day
			0.015 to $0.005 \text{ m}^3/\text{m}^2/\text{day}$
	or	Asp= 1/Lw for ad	vanced treatment 2.1 ha/10 ³ m ³
10.	Check BOD ₅ loading rate	Max.BOD _{5L}	60kg/ha/day
	LBOD ₅		kg/day
	BOD _{5L}		kg/ha/day
11.	Vegetation		
	Reed can absprb	Ν	18 to 21g/kg
		Р	2.0 to 3.0 g/kg
	Inlet N		212.4 mg/L
	Vd: vegetation density		10 kg/m^2

	Unit	Stage1	Stage2	Stage3
C0	mg/L	60	60	-
Ce	mg/L	8	8	-
Q	m ³ /day	730	610	-
Т	°C	21.0	21.0	-
S		0.01	0.01	-
d	m	0.3	0.3	-
α		0.39	0.39	-
Ks	m ³ /m ² /day	480	480	-
K ₂₀		1.35	1.35	-
Kt	d ⁻¹	1.49	1.49	-
t'	day	1.36	1.36	-
Ac	m ²	1.52	1.27	-
W	m	510	430	-
L	m	17	16	-
As	m ²	8,500	7,100	-
Lw	m ³ /m ² /day	0.09	0.09	-
Asp	ha/1000m ³	11.60	11.60	-
L-BOD ₅	kg/day	43.8	36.6	-
BOD _{5L}	kg/ha/day	52	52	-
V	m ³	2,550	2,130	-
RT	day	3.5	3.5	-
Inlet N	mg/L	212	212	-
Total N in WL	g	550,000	460,000	-
N absorption	g/kg	18	18	-
Nos. of reed	kg	30,556	2,556	-
Vd	kg/m ²	10	10	-
Max Reed	kg	85,000	71,000	_

Table 24 Specification of Wetland

Alternative 3: Natural Pond System (Anaerobic + Facultative + Maturation Pond) -Calle 100 Expansion

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is so called natural pond system to remove BOD₅, SS and nutrients such as N and P.

1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Lasshata Quality	Unit-mg/L				
Leachate Quality	T-BOD ₅	SS	S-BOD ₅		
Inlet	920	540	600		
Outlet	60	70	30		
Removal rate (%)	93.5	87.0	95		

 Table 25
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

2. Anaerobic pond

RTa: Retention time of anaerobic	pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			m^2
Va: Anaerobic pond volume			m ³
Dimension	Length	La	m
	Width	Wa	m
BOD _{5La} : BOD ₅ load of anaerobic	100 to 350 g-BOD ₅ /m	³ -pond/day	

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
R.T	days	7	7	-
Va	m ³	5,110	4,270	-
Da	m	3.5	3.5	-
Aa	m ²	1,460	1,220	-
La	m	60	60	-
Wa	m	25	22	-
BOD ₅	g/day	671,600	561,200	-
BOD _{5La}	g/m³/day	131	131	-

Table 26 Dimension of Anaerobic Pond

Number of ponds: 1

3. Facultative Pond

ls ₁ : BOD permissible loading			kg/ha/day
$ls_1 = 350 (1.107 - 0.002T)^{T-25}$			100 to 400 kg/ha/day
or			
$1s_2 = 20T-120$			kg/ha/day
Here, T: Minimum temperature			21 °C
Ls: BOD ₅ loading			
Ls = 10 Li Q / Af			kg/ha/day
Here,			
Li: Inflow BOD ₅			mg/L
Af: Facultative pond area			m^2
$Af = Q * (Li - Le)/18D/(1.05)^{T-20}$			
Here,			
Le: Outflow BOD ₅			mg/L
L _r : BOD ₅ removal			kg/ha/day
$Lr = 0.725Ls \div 10.75$			
Df: Depth of the facultative pond			m
Dimensions of facultative pond	Length	Lf	m
	Width	Wf	m

UnitStage1Stage2Stage3Q m^3/day 730610-T°C2121- ls_1 kg/ha/day272272- ls_2 kg/ha/day300300-Lskg/ha/day269270-Limg/L368368-Dfm1.21.2-Afm²10,0008,300-Lrkg/ha/day206207-BOD _{SRf} %76.576.5-BOD _{Sout-f} mg/L8787-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Unit	Stage1	Stage2	Stage3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q	m ³ /day	730	610	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Т	°C	21	21	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ls ₁	kg/ha/day	272	272	-
Ls kg/ha/day 269 270 - Li mg/L 368 368 - Df m 1.2 1.2 - Af m ² 10,000 8,300 - Le mg/L 60 60 - Lr kg/ha/day 206 207 - BOD _{5Rf} % 76.5 76.5 - BOD _{5out-f} mg/L 87 87 -	ls_2	kg/ha/day	300	300	-
Li mg/L 368 368 - Df m 1.2 1.2 - Af m² 10,000 8,300 - Le mg/L 60 60 - Lr kg/ha/day 206 207 - BOD _{5Rf} % 76.5 76.5 - BOD _{5out-f} mg/L 87 87 -	Ls	kg/ha/day	269	270	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Li	mg/L	368	368	-
Af m ² 10,000 8,300 - Le mg/L 60 60 - Lr kg/ha/day 206 207 - BOD _{5Rf} % 76.5 76.5 - BOD _{5out-f} mg/L 87 87 -	Df	m	1.2	1.2	-
Le mg/L 60 60 - Lr kg/ha/day 206 207 - BOD _{5Rf} % 76.5 76.5 - BOD _{5out-f} mg/L 87 87 -	Af	m^2	10,000	8,300	-
Lr kg/ha/day 206 207 - BOD _{5Rf} % 76.5 76.5 - BOD _{5out-f} mg/L 87 87 -	Le	mg/L	60	60	-
BOD _{5Rf} % 76.5 76.5 - BOD _{5out-f} mg/L 87 87 -	Lr	kg/ha/day	206	207	-
BOD _{5out-f} mg/L 87 87 -	BOD_{5Rf}	%	76.5	76.5	-
	BOD _{5out-f}	mg/L	87	87	-
R.T _f days 16 -	R.T _f	days	16	16	_

Table 27 Dimension of Sedimentation Tank

Remarks:

(a) There is a difference between ls_1 and ls_2 . Adopt ls_1 for safety.

- (b) There is a difference between Le and BOD_{5out-f}. This is because Equations for Ls and Af are the one to get 60 mg/L-BOD₅ in South America.
- (c) On the contrary, the value of BOD_{5out-f} is calculated by the equation for Lr. Lr shows the average of the data arranged by MacGarry and Pescord.
- (d) The BOD₅ removal in primary facultative ponds is usually in the range 70-80 percent based on unfiltered samples (that is, including the BOD exerted by the algae).

Therefore, effluent BOD_{5out-f} level from facultative pond will be considered 60-117 mg/L with algae.

(e) It is said BOD₅ quality of the effluent from a facultative ponds as most of the BOD contained (70 to 90%) will be "algal BOD. Therefore, the filtered (soluble) BOD₅ level will be at least 18-35 mg/L.

	Unit	Stage1	Stage2	Stage3
Af	m ²	10,000	8,300	-
Nos. of ponds	-	2	2	-
Af/pond	m ²	5,000	4,150	-
Lf/pond	m	120	110	-
Wf/pond	m	45	40	-
Df	m	1.2	1.2	-
Vf/pond	m ³	6,480	5,280	-
Total Vf	m ³	12,960	10,560	-

Table 28 Dimensions of Facultative Pond

Pond arrangement: Parallel

4. Maturation pond

Maturation ponds (low-cost polishing ponds, which succeed the primary or secondary facultative pond) are primarily designed for tertiary treatment, i.e., the removal of pathogens, nutrients and possibly algae.

With the combination of facultative pond and maturation pond,

- (1) Total nitrogen removal in WSP systems can reach 80 percent or more, and ammonia removal can be as high as 95 percent.
- (2) The best way of increasing phosphorus removal in WSP is to increase the number of

maturation ponds, so that progressively more and more phosphorus becomes immobilized in the sediments. From a well functioning 2 ponds system, 70% mass removal of total.

(3) The removal rate increases by adding maturation ponds.

Design criteria

D _m : Depth of maturation pond	4.5 m
---	-------

RT _m : Retention time of maturation pond 14 d	ays
--	-----

A_m: Area od maturation pond

Dimensions of maturation pond

Length	Lm	m
Width	Wm	m

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
RT _m	days	14	14	-
Vm	m ³	10,220	8,540	-
Nos. of Ponds	-	2	2	-
Vm/Pond	m ³	5,110	4,270	-
Dm/Pond	m	1.5	1.5	-
Am/Pond	m ²	3,500	2,900	-
Lm/Pond	m	100	100	-
Wm/Pond	m	35	35	-

Table 29Dimensions of Maturation Pond

Pond arrangement: Series

5. Leachate Recirculation pump

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05
From the entrance of anaerobic lagoon to landfi	i11	

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
r	-	3	3	-
Or	m ³ /day	2,190	1,830	-
QI	m ³ /min	1.52	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
Da	Horse power	23.2	19.4	-
18	kW	17.4	14.6	-
Unit power	kW	19	19	-
Nos. of pumps	Nos.	(1+1)	(1+1)	-

Table 30 Specifications of Leachate Recirculation Pump

Alternative 4: Natural Pond System (Anaerobic + Facultative + Wetland) -Calle 100 Expansion

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is an alternative to use wetland instead of Maturation Pond in Alternative 3 in order to remove nutrients such as N and P.

1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Lasshata Quality		Unit-mg/L	
Leachate Quality	T-BOD ₅	SS	S-BOD ₅
Inlet	920	540	600
Outlet	60	70	30
Removal rate (%)	93.5	87.0	95

 Table 31
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

2. Anaerobic pond

RTa : Retention time of anaerobio	c pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			m^2
Va: Anaerobic pond volume			m ³
Dimension	Length	La	m
	Width	Wa	m
BOD _{5La} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
R.T	days	7	7	-
Va	m^3	5,110	4,270	-
Da	m	3.5	3.5	-
Aa	m^2	1,460	1,220	-
La	m	60	60	-
Wa	m	25	22	-
BOD ₅	g/day	671,600	561,200	-
BOD _{5La}	g/m³/day	131	131	-

Table 32 Dimension of Anaerobic Pond

Number of ponds: 1

3. Facultative Pond

ls ₁ : BOD permissible loading			kg/ha/day
$ls_1 = 350 (1.107 - 0.002T)^{T-25}$			100 to 400 kg/ha/day
or			
$ls_2 = 20T-120$			kg/ha/day
Here, T: Minimum temperature			21 °C
Ls: BOD ₅ loading			
Ls = 10 Li Q / Af			kg/ha/day
Here,			
Li: Inflow BOD ₅			mg/L
Af: Facultative pond area			m ²
$Af = Q * (Li - Le)/18D/(1.05)^{T-20}$			
Here,			
Le: Outflow BOD ₅			mg/L
L _r : BOD ₅ removal			kg/ha/day
$Lr = 0.725Ls \div 10.75$			
Df: Depth of the facultative pond			m
Dimensions of facultative pond	Length	Lf	m
	Width	Wf	m

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
Т	°C	21	21	-
ls_1	kg/ha/day	272	272	-
ls_2	kg/ha/day	300	300	-
Ls	kg/ha/day	269	270	-
Li	mg/L	368	368	-
Df	m	1.2	1.2	-
Af	m ²	10,000	8,300	-
Le	mg/L	60	60	-
Lr	kg/ha/day	206	207	-
BOD _{5Rf}	%	76.5	76.5	-
BOD _{5out-f}	mg/L	87	87	_
R.T _f	days	16	16	-

Table 33 Dimension of Sedimentation Tank

Remarks:

(a) There is a difference between ls_1 and ls_2 . Adopt ls_1 for safety.

(b) There is a difference between Le and BOD_{5out-f} . This is because Equations for Ls and Af are the one to get 60 mg/L-BOD₅ in South America.

- (c) On the contrary, the value of BOD_{5out-f} is calculated by the equation for Lr. Lr shows the average of the data arranged by MacGarry and Pescord.
- (d) The BOD₅ removal in primary facultative ponds is usually in the range 70-80 percent based on unfiltered samples (that is, including the BOD exerted by the algae).

Therefore, effluent BOD_{5out-f} level from facultative pond will be considered 60-117 mg/L with algae.

(e) It is said BOD₅ quality of the effluent from a facultative ponds as most of the BOD contained (70 to 90%) will be "algal BOD. Therefore, the filtered (soluble) BOD₅ level will be at least 18-35 mg/L.

	Unit	Stage1	Stage2	Stage3
Af	m ²	10,000	8,300	-
Nos. of ponds	-	2	2	-
Af/pond	m ²	5,000	4,150	-
Lf/pond	m	120	110	-
Wf/pond	m	45	40	-
Df	m	1.2	1.2	-
Vf/pond	m ³	6,480	5,280	-
Total Vf	m ³	12,960	10,560	-

 Table 34
 Dimensions of Facultative Pond

Pond arrangement: Parallel

4. To removal nutrients, use wetland

Only by aerated lagoon, only BOD₅ and SS are removed. For further treatment for nutrients another process is necessary.

Here, wetland was considered as an alternative for this purpose, considering cost efficiency.

Levels of nitrogen and phosphates are estimated as below based on the analysis of leachate during this Study.

Total-N:	240	mg/L
Total-P:	64	mg/L

In biological treatment nitrogen and phosphate are necessary. The ratio of N and P towards BOD_5 is 3:0.3:100

Therefore N and P after biological tr	reatment, their lev	els are expected	d as below.
Inlet BOD ₅		920	mg/L
Therefore N to be removed by biolo	gical treatment	27.6	mg/L
Therefore P to be removed by biolog	gical treatment	2.76	mg/L
After aerated lagoon remained N N		212	mg/L
	Р	61	mg/L

Criteria*			
20	mg/L. as KTN		
10	mg/L. as P		

*:Discharge criteria of industrial waste water into general public water body

Inlet T-P level will be reduced by using cover soil. Therefore, only removal of nitrogen would be considered.

Here, subsurface-flow (SSF) systems was considered.

In a SSF wetland, the basin is filled with gravel or some other coarse substrate, and the water level is maintained below-ground. Water flows horizontally, or sometimes vertically, through the gravel and the root mat of the wetland vegetation.

Arrow arum (Polyandry spp.) and Pickerel weed (Pontederia spp.) have been used in constructed wetlands.

Also common reed (Phragmitescommunis) is used

Figure 2 Conceptual diagram of subsurface-flow wetlands

Example of determination of basin design for SFS wetlands system

Nitrogen removal will proceed when BOD₅ level is less than 10 mg/L.

1.	Premises		
	Influent BOD ₅	C_0	60 mg/L
	Effluent BOD ₅	Ce	8 mg/L
	Inflow	Q	m ³ /day
			m ³ /day
	Vegetation type		cattails
	Minimum water temperature	Т	21°C
	Basin media	coarse sand with 2	mm of maximum effective size
	Basin slope	S	0.01
2.	Solution		
1.	Basin depth for use wit cattail	d	0.3 m
2.	Porosity	α	0.39
	Hydraulic conductivity	Ks	$480 \text{ m}^3/\text{m}^2/\text{day}$
		K ₂₀	1.35
3.	Temperature-dependent first order	rate constant	
		K _T at	21°C
			1.49 d ⁻¹
4.	Pore-space detention time	t' = -1nCe/C0/Kt	d
5.	Cross-sectional area	Ac = Q/Ks/S	m^2
6.	Basin width	W = Ac/d	m
7.	Basin length	$L = t'Q/W/d/\alpha$	m
8.	Required surface area	As = L*W	m^2
			ha
9.	Check hydraulic-loading rate or sp	ecific area requireme	nts
		Lw = Q/L/W	150 to 500 $m^3/ha/day$
			0.015 to $0.005 \text{ m}^3/\text{m}^2/\text{day}$
	or	Asp= $1/Lw$ for adva	anced treatment 2.1 ha/ 10^3 m ³
10.	Check BOD ₅ loading rate	Max.BOD _{5L}	60kg/ha/day
		LBOD ₅	kg/day
		BOD _{5L}	kg/ha/day
11.	Vegetation		
	Reed can absprb	Ν	18 to 21g/kg
		Р	2.0 to 3.0 g/kg
	Inlet N		240 mg/L
	Vd: vegetation density		10 kg/m^2

	Unit	Stage1	Stage2	Stage3
C_0	mg/L	87	87	-
Ce	mg/L	8	8	-
Q	m ³ /day	730	610	-
Т	°C	21.0	21.0	-
S		0.01	0.01	-
d	m	0.3	0.3	-
α		0.39	0.39	-
Ks	m ³ /m ² /day	480	480	-
K ₂₀		1.35	1.35	-
Kt	d ⁻¹	1.49	1.49	-
ť'	day	1.61	1.61	-
Ac	m ²	152	127	-
W	m	510	430	-
L	m	20	20	-
As	m ²	10,100	8,600	-
Lw	m ³ /m ² /day	0.07	0.07	-
Asp	ha/1000m ³	13.74	14.10	-
L-BOD ₅	kg/day	63.5	53.07	-
BOD _{5L}	kg/ha/day	63	62	-
V	m ³	3,030	2,580	-
RT	day	4.2	4.2	-
Inlet N	mg/L	240	240	-
Total N in WL	g	730,000	620,000	-
N absorption	g/kg	18	18	-
Nos. of reed	kg	40,556	34,444	-
Vd	kg/m ²	10	10	-
Max Reed	kg	101,000	86,000	-

Table 35 Specification of Wetland

This system seems to be inferior in performance.

5. Leachate Recirculation pump

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05
From the outron of an earlie loss on to low	1C11	

From the entrance of anaerobic lagoon to landfill

			1	1
	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
r	-	3	3	-
Or	m ³ /day	2,190	1,830	-
Qr	m ³ /min	1.52	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
Do	Horse power	23.2	19.4	-
PS	kW	17.4	14.6	-
Unit power	kW	19	19	-
Nos. of pumps	Nos.	(1+1)	(1+1)	-

Table 36 Specifications of Leachate Recirculation Pump

Alternative 5: Anaerobic Pond + Aerated Lagoon + Sedimentation Pond + Wetland with recirculation -Calle 100 Expansion

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is an alternative adding Anaerobic Pond to Alternative 2 in order to reduce area.

1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality		Unit-mg/L	
	T-BOD ₅	SS	S-BOD ₅
Inlet	920	540	600
Outlet	60	70	30
Removal rate (%)	93.5	87.0	95

 Table 37
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

2. Anaerobic pond

RTa : Retention time of anaerobic	e pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			m^2
Va: Anaerobic pond volume			m^3
Dimension	Length	La	m
	Width	Wa	m
BOD _{5La} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
R.T	days	7	7	-
Va	m ³	5,110	4,270	-
Da	m	3.5	3.5	-
Aa	m^2	1,460	1,220	-
La	m	60	60	-
Wa	m	25	22	-
BOD ₅	g/day	671,600	561,200	-
BOD _{5La}	g/m³/day	131	131	-

Table 38 Dimension of Anaerobic Pond

Number of ponds: 1

3. Aerated Lagoon

3.1 Aerated Lagoon Process

Design Base:

	Symbol	Unit	
Influent flow	Q	m^3/d	
Influent suspended solids	SS_0	mg/L	378
Influent soluble BOD ₅	S_0	mg/L	368
Effluent soluble BOD ₅	S-BOD _{5-out}	mg/L	30
Effluent suspended solid after setting	SSe	mg/L	70
Kinetic coefficients:			
Υ		1/d	0.65
Ks		mg-BOD ₅ /L	100
Kmax		mg-BOD ₅ /L/d	6.0
Kd		1/d	0.07
First order soluble BOD ₅ removal rate c	onstants at 20 °	°C	
	k ₍₂₀₎	l/d	2.5
Waste water temperature	Ti	°C	21.0
Aeration constants in leachate			
in leachate	α		0.6
in treated water	β		0.9
Oxygen concentration to be maintained	in liquid	mg - O ₂ /L	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	7

3.2 Surface area of the lagoon $A m^2$

$$\theta c = V/Q$$
 \therefore $V = \theta c^*Q$ V: volume of the lagoon

A = V/H

Dimension

Table 39	Dimension	of Aerated	Lagoon
	Dimension	of i fer accu	Lagoon

	Unit	Stage1	Stage2	Stage3
V	m ³	5,110	4,270	-
А	m ²	1,460	1,220	-
L	m	60	60	-
W	m	25	22	-
Н	m	3.5	3.5	-
A' (corrected A)	m ²	1,500	1,320	-
V' (Corrected V)	m ³	5,300	4,700	-

3.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅out = { Ks (1 + 0c*kd) } / { $\theta c (Y*kmax - kd) - I$ } (mg/L)

Ks	θc*kd	1+θc*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅ out
100	0.49	1.49	149	7	3.9	3.83	25.8	5.8

3.4 Effluent BOD₅

(1) Correct the removal-rate for temperature effects

$$\mathbf{k}(t) = \mathbf{k}(20)^* \mathbf{\theta}^{\mathrm{T-}20}$$

Ti	k ₍₂₀₎	T-20	θ	$\theta^{(T-20)}$	$k_{(20)}\theta^{(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

(1/d)

(2) Determine the effluent BOD₅: St- $_{out}$ (mg/L)

St-out/S₀ = $1/(1+k\theta_H) = S/S_0 = 1/(1+kV/Q)$

kt	V/Q	1+kV/Q	1/(1+kV/Q)	S_0	St-out
2.7	14	19.55	0.05	368	19

3.5 Concentration of biological solids produced: X (mg/L)

 $X = Y (S_0-S-BOD_5-out)/(1+k_d\theta_c) (mg-VSS/L)$

Y	S ₀ -S-BOD _{5-out}	k _d	θc	$Y(S_0-S-BOD_{5-out})/(1+k_d\theta_c)$
0.65	362.2	0.07	7	158

3.6 Suspended solids in the lagoon before settling

SSi = Influent suspended solids + X/0.7(mg/L)

Ratio of volatile suspended solid

 SSo
 X
 SSi

 378
 158
 604

0.7

3.7 Oxygen requirements

 $Q_2(kg/d) = Q(S_0-S-BOD_{5-out})/f-1.42Px$

f: conversion factor for BOD_5 to BOD_L 0.68

Px = Q*(concentration of biological solids produced)

Table 40	Required O ₂

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
S ₀ -s-BOD _{5-out}	mg/L	362	362	-
f	-	0.68	0.68	-
Px	kg/day	115	96	-
Required O ₂	kg/day	225	188	-

3.8 Ratio of oxygen required to BOD₅ removed

BOD₅ removed (kg/d)

O₂/BOD₅ removed

Table 41	Removed BOD ₅
	3

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
So-S-BOD _{5-out}	mg/L	362.2	362.2	-
BOD ₅ removed	kg/day	264	221	-
O ₂ /BOD ₅	-	0.9	0.9	-

3.9 Surface aerator power requirements

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6
a) Correction factor for surface aerators for surf	mer conditions	f	
f = No/N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)		mg/L	9.08
3) DO concentration in Lagoon	CL	mg/L	1.5
$f = {B*CsT-CL}/Cs (20)*1.024T-20*\alpha}$			

Ti-20	$1.024^{\text{T-}20}$	α	В	f
1	1.029	0.6	0.9	0.44

b) Field transfer rate : N

 $N = fN_0$

kg-O₂/kw/h 0.71 g-O₂/kw/h 17.0

Total amount of transfer O₂

kg-O ₂ /kw/d	kg
kg-O ₂ /kw/d	kg

The total axis power required to meet the required oxygen

Table 42Required O2Supply

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	225	188	-
Required power for O ₂ supply	kW	13.2	11.1	-

3.10 Energy requirements for mixing

	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	-
Lagoon volume	m ³	5,300	4,700	-
Axis power for mixing	kW	26.5	23.5	-
Total efficiency	-	0.75	0.75	-
Required power	kW	35	31	-
Required power per unit	kW/No.	11	7.5	-
Power for Mixing	Nos.	4	5	-

Table 43 Specifications of Aerator

4. Leachate recirculation pump

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05

From the entrance of anaerobic lagoon to landfill

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
r	-	3	3	-
Or	m ³ /day	2,190	1,830	-
QI	m ³ /min	1.52	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
De	Horse power	23.2	19.4	-
Г5	kW	17.4	14.6	-
Unit power	kW/Nos.	19	19	-
Nos. of pumps	Nos.	(1+1)	(1+1)	-

5. Solid-liquid separation: sedimentation tank

Qi: Inflow		m ³ /day	
Safety factor		3	
R.t: Retention time at Qi*3		hr	
OL: Overflow rate at Qi*3		m ³ /m ² /day	
Qi*Ci = Qo*Co+Qu*Cu			
Ci: Inflow SS		mg/L	
Co: Outflow SS		mg/L	
Cu: Concentrated SS in the	e sedimentation tank	mg/L	
Qo: Outflow		m ³ /day	
Qu: Underflow (Sludge flo	ow)	m ³ /day	
Qu = Qi-Qo		m ³ /day	
Qo = Qi*(Cu-Ci) / (Cu-Co)		m ³ /day	
As: surface area=Qo/OL		m ³	
Dimension	Ls: Length of sedimentation tank	m	
	Ws: Width of sedimentation tank	m	
Hs: Height of sludge zone =Vs/A	As	m	
Vs: Volume of sedimentation tank			
H_2 : Height allowance = Vs/As			

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
Qi	m ³ /day	2,190	1,830	-
R.T	hr	2	2	-
O_L	m ³ /m ² /day	22	22	-
Ci	mg/L	604	604	-
Со	mg/L	70	70	-
Cu	mg/L	5,000	5,000	-
Qo	m ³ /day	2,000	1,600	-
As	m^2	100	80	-
Ls	m	20	20	-
Ws	m	5	5	-
Hs	m	1.9	2.0	-
Vs	m ³	190	160	-
Qu	m ³ /day	190	230	-
H ₂	m	1.5	1.5	-
H0	m	3.4	3.5	-

Table 45 Dimension of Sedimentation Tank

6. To removal nutrients, use wetland.

Only by aerated lagoon, only BOD_5 and SS are removed. For further treatment for nutrients another process is necessary.

Here, wetland was considered as an alternative for this purpose, considering cost efficiency.

Levels of nitrogen and phosphates are estimated as below based on the analysis of leachate during this Study.

Total-N:	240	mg/L
Total-P:	64	mg/L

In biological treatment nitrogen and phosphate are necessary. The ratio of N and P towards BOD_5 is 3:0.3:100

Therefore N and P after biological treatment, their levels are expected as below.

Inlet BOD ₅		920	mg/L
Therefore N to be removed by biological treatment		27.6	mg/L
Therefore P to be removed by biological treatment		2.76	mg/L
After aerated lagoon remained N N		212	mg/L
	Р	61	mg/L

	Criteria*
20	mg/L. as KTN
10	mg/L. as P

*:Discharge criteria of industrial waste water into general public water body

Inlet T-P level will be reduced by using cover soil.

Therefore, only removal of nitrogen would be considered.

Here, subsurface-flow (SSF) systems was considered.

In a SSF wetland, the basin is filled with gravel or some other coarse substrate, and the water level is maintained below-ground. Water flows horizontally, or sometimes vertically, through the gravel and the root mat of the wetland vegetation.

Arrow arum (Polyandry spp.) and Pickerel weed (Pontederia spp.) have been used in constructed wetlands.

Also common reed (Phragmitescommunis) is used

Figure 3 Conceptual diagram of subsurface-flow wetlands

Example of determination of basin design for SFS wetlands system

Nitrogen removal will proceed when BOD₅ level is less than 10 mg/L.

1.	Premises		
	Influent BOD ₅	C_0	60 mg/L
	Effluent BOD ₅	Ce	8 mg/L
	Inflow	Q	m ³ /day
			m ³ /day
	Vegetation type		cattails
	Minimum water temperature	Т	21°C
	Basin media	coarse sand with 2	mm of maximum effective size
	Basin slope	S	0.01
2.	Solution		
1.	Basin depth for use wit cattail	d	0.3 m
2.	Porosity	α	0.39
	Hydraulic conductivity	Ks	$480 \text{ m}^3/\text{m}^2/\text{day}$
		K ₂₀	1.35
3.	Temperature-dependent first order	rate constant	
		K _T at	21°C
			1.49 d ⁻¹
4.	Pore-space detention time	t' = -1nCe/C0/Kt	d
5.	Cross-sectional area	$A_C = Q/K_S/S$	m^2
6.	Basin width	W = Ac/d	m
7.	Basin length	$L = t'Q/W/d/\alpha$	m
8.	Required surface area	As = L*W	m^2
			ha
9.	Check hydraulic-loading rate or sp	ecific area requireme	ents
		Lw = Q/L/W	150 to 500 $m^3/ha/day$
			0.015 to $0.005 \text{ m}^3/\text{m}^2/\text{day}$
	or	Asp= $1/Lw$ for adv	anced treatment 2.1 ha/ 10^3 m ³
10.	Check BOD ₅ loading rate	Max.BOD _{5L}	60 kg/ha/day
	LBOD ₅		kg/day
	BOD _{5L}		kg/ha/day
11.	Vegetation		
	Reed can absorb	Ν	18 to 21 g/kg
		Р	2.0 to 3.0 g/kg
	Inlet N		212.4 mg/L
	Vd: vegetation density		10 kg/m^2

	Unit	Stage1	Stage2	Stage3
C ₀	mg/L	60	60	-
Ce	mg/L	8	8	-
Q	m ³ /day	730	610	-
Т	°C	21.0	21.0	-
S		0.01	0.01	-
d	m	0.3	0.3	-
α		0.39	0.39	-
Ks	m ³ /m ² /day	480	480	-
K ₂₀		1.35	1.35	-
Kt	d ⁻¹	1.49	1.49	-
ť'	day	1.36	1.36	-
Ac	m ²	152	127	-
W	m	510	430	-
L	m	17	16	-
As	m ²	8,500	7,100	-
Lw	m ³ /m ² /day	0.09	0.09	-
Asp	ha/1000m ³	11.60	11.60	-
L-BOD ₅	kg/day	43.8	36.6	-
BOD _{5L}	kg/ha/day	52	52	-
V	m ³	2,550	2,130	-
R.T	day	3.5	3.5	-
Inlet N	mg/L	212	212	-
Total N in WL	g	550,000	460,000	-
N absorption	g/kg	18	18	
Nos. of reed	kg	30,556	25,556	-
Vd	kg/m ²	10	10	-
Max Reed	kg	85,000	71,000	-

Table 46 Specification of Wetland

Alternative 6: Anaerobic Pond + Aerated Lagoon + Maturation Pond with recirculation -Calle 100 Expansion

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is an alternative adding Anaerobic Pond to Alternative 1 to reduce area.

1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Lanchata Quality		Unit-mg/L	
Leachate Quality	T-BOD ₅	SS	S-BOD ₅
Inlet	920	540	600
Outlet	60	70	30
Removal rate (%)	93.5	87.0	95

Table 47Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

2. Anaerobic pond

RTa: Retention time of anaerobic	pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			m^2
Va: Anaerobic pond volume			m ³
Dimension	Length	La	m
	Width	Wa	m
BOD _{5La} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
R.T	days	7	7	-
Va	m ³	5,110	4,270	-
Da	m	3.5	3.5	-
Aa	m^2	1,460	1,220	-
La	m	60	60	-
Wa	m	25	22	-
BOD_5	g/day	671,600	561,200	-
BOD _{5La}	g/m³/day	131	131	_

Table 48 Dimension of Anaerobic Pond

Number of ponds: 1

3. Aerated Lagoon

3.1 Aerated Lagoon Process

Design Base:

	Symbol	Unit	
Influent flow	Q	m ³ /d	
Influent suspended solids	SS_0	mg/L	378
Influent soluble BOD ₅	\mathbf{S}_{0}	mg/L	368
Effluent soluble BOD ₅	S-BOD _{5-out}	mg/L	30
Effluent suspended solid after setting	SSe	mg/L	70
Kinetic coefficients:			
Y		l/d	0.65
Ks		mg-BOD ₅ /L	100
Kmax		mg-BOD ₅ /L/d	6.0
Kd		l/d	0.07
First order soluble BOD5 removal rate	constants at 20	°C	
	k ₍₂₀₎	l/d	2.5
Waste water temperature	Ti	°C	21.0
Aeration constants in leachate			
in leachate	α		0.6
in treated water	β		0.9
Oxygen concentration to be maintaine	d in liquid	mg - O_2/L	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	7

3.2 Surface area of the lagoon $A m^2$

 $\theta c = V/Q$ \therefore $V = \theta c^*Q$ V: volume of the lagoon

A = V/H

Dimension

Table 49 Dimension of	of Aerated Lagoon
-----------------------	-------------------

	Unit	Stage1	Stage2	Stage3
V	m ³	5,110	4,270	-
А	m^2	1,460	1,220	-
L	m	60	60	-
W	m	25	22	-
Н	m	3.5	3.5	-
A' (corrected A)	m^2	1,500	1,320	-
V' (Corrected V)	m ³	5,300	4,700	-

3.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅out = { Ks (1 + 0c*kd) } / { $\theta c (Y*kmax - kd) - I$ } (mg/L)

Ks	θc*kd	1+θc*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅ out
100	0.49	1.49	149	7	3.9	3.83	25.8	5.8

3.4 Effluent BOD₅

(1) Correct the removal-rate for temperature effects

$$\mathbf{k}(t) = \mathbf{k}(20)^* \mathbf{\theta}^{\mathrm{T-}20}$$

(l/d)

Ti	k ₍₂₀₎	T-20	θ	$\theta^{(T-20)}$	$k_{(20)}\theta^{(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

(2) Determine the effluent BOD₅: St-_{out} (mg/L)

St-out/S₀ = $1/(1+k\theta_{\rm H}) = S/S_0 = 1/(1+kV/Q)$

kt	V/Q	1+kV/Q	1/(1+kV/Q)	S_0	St-out
2.7	14	19.55	0.05	368	19

3.5 Concentration of biological solids produced: X (mg/L)

 $X = Y (S_0-S-BOD_5-out)/(1+k_d\theta_c) (mg-VSS/L)$

Y	S ₀ -S-BOD _{5-out}	k _d	θc	$Y(S_0-S-BOD_{5-out})/(1+k_d\theta_c)$
0.65	362.2	0.07	7	158

3.6 Suspended solids in the lagoon before settling

SSi = Influent suspended solids + X/0.7(mg/L)

Ratio of volatile suspended solid

 SSo
 X
 SSi

 378
 158
 604

0.7

3.7 Oxygen requirements

 $Q_2(kg/d) = Q(S_0-S-BOD_{5-out})/f-1.42Px$

f: conversion factor for BOD_5 to BOD_L 0.68

Px = Q*(concentration of biological solids produced)

Table 50 Required O₂

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
S_0 -s- BOD_{5-out}	mg/L	362	362	-
f	-	0.68	0.68	-
Px	kg/day	115	96	-
Required O ₂	kg/day	225	188	-

3.8 Ratio of oxygen required to BOD₅ removed

BOD₅ removed (kg/d)

O₂/BOD₅ removed

Table 51Removed BOD5

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
So-S-BOD _{5-out}	mg/L	362.2	362.2	-
BOD ₅ removed	kg/day	264	221	-
O ₂ /BOD ₅	-	0.9	0.9	-

3.9 Surface aerator power requirements

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6	
a) Correction factor for surface aerators for summer conditions f				
f = No/N				
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91	
2) Cs(20)		mg/L	9.08	
3) DO concentration in Lagoon	CL	mg/L	1.5	
$f = {B*CsT-CL}/Cs (20)*1.024T-20*\alpha$				

Ti-20	$1.024^{\text{T-}20}$	α	В	f
1	1.029	0.6	0.9	0.44

b) Field transfer rate: N

 $N = fN_0$

kg-O₂/kw/h 0.71 kg-O₂/kw/h 17.0

Total amount of transfer O₂

kg-O ₂	2/kw/d	k

The total axis power required to meet the required oxygen

Table 52Required O2Supply

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	225	188	-
Required power for O ₂ supply	kW	13.2	11.1	-

3.10 Energy requirements for mixing

	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	-
Lagoon volume	m ³	5,300	4,700	-
Axis power for mixing	kW	26.5	23.5	-
Total efficiency	-	0.75	0.75	-
Required power	kW	35	31	-
Unit power	kW/No.	11	7.5	-
No. of Aerator	Nos.	(4+1)	(5+1)	-

Table 53 Specifications of Aerator

4. Leachate recirculation pump

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163 * Qr(m^3/min) * H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05

From the entrance of anaerobic lagoon to landfill
	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
r	-	3	3	-
Or	m ³ /day	2,190	1,830	-
QI	m ³ /min	1.52	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
Da	Horse power	23.2	19.4	-
18	kW	17.4	14.6	-
Unit power	kW	19	19	-
Nos. of pumps	Nos.	(1+1)	(1+1)	-

Table 54 Specifications of Leachate Recirculation Pump

5. Maturation Pond

Design criteria

D _m : Depth of maturation pond	1.5 m
RT _m : Retention time of maturation pond	14 days

A_m: Area od maturation pond

Dimensions of maturation pond

Length	Lm	m
Width	Wm	m

Table 55 Dimensions of Maturation Pond

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	730	610	-
RT _m	days	14	14	-
Vm	m ³	10,220	8,540	-
Nos. of Ponds	-	2	2	-
Vm/Pond	m ³	5,110	4,270	-
Dm/Pond	m	1.5	1.5	-
Am/Pond	m ²	3,500	2,900	-
Lm/Pond	m	100	100	-
Wm/Pond	m	35	35	-

Pond arrangement: Series

Leachate Treatment Alternatives of New Site-1

Alternative 1: Aerated Lagoon + Maturation Pond with recirculation -New Site 1

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is the same as the one which was adopted in the original pilot project in Campo Florido. However only aerated lagoon can not remove T-BOD₅ and SS. Therefore maturation pond after aerated lagoon was proposed.

1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality	Unit-mg/L				
Leachate Quality	T-BOD ₅	SS	S-BOD ₅		
Inlet	920	540	600		
Outlet	60	70	30		
Removal rate (%)	93.5	87.0	95		

 Table 56
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1) Leachate generation

Stage1	\mathbf{A}_1	13.41 ha	134,000 m ²
Stage2	A_2	8.4 ha	84,000 m ²
Stage3	A_3	0.0 ha	0 m ²

Once surface liner facility is constructed in landfill site, it is assumed that no water flows into the landfill site

 $q = f^*C^*A^*I/1000 (m^3/day)$

Where

- q: Daily effluent amount of leachate water(m^3/day)
- C: Leachate coefficient of on-going landfill section 0.4
- I: Annual maximum rainfall (mm/day) Maximum rainfall during 2000 to 2002 338 mm in September in 2002 11.3 mm/day

16

A: Landfill area (m^2)

f: Safety factor

Q: Daily effluent amount of leachate with safety factor (m^3/day)

Fable 57 Proposed Leachate Volum
--

Q	Stage1	Stage2	Stage3
$(m^{3/}day)$	730	610	0

2. Leachate treatment

2.1 Aerated Lagoon Process Design

Design Base:

	Symbol	Unit	
Influent flow	Q	m ³ /d	
Influent suspended solids	SS_0	mg/L	540
Influent soluble BOD ₅	\mathbf{S}_0	mg/L	920
Effluent soluble BOD ₅	S-BOD _{5-out}	mg/L	30
Effluent suspended solid after settling	SSe	mg/L	70
Kinetic coefficients:		l/d	0.65
Υ		mg-BOD ₅ /L	100
Ks		mg-BOD ₅ /L/d	6.0
Kmax		l/d	0.07
Kd	k (20)	l/d	2.5
First order soluble BOD ₅ removal rate constants at $20 \ ^{\circ}\text{C}$	Ti	°C	21.0
Waste water temperature			
in leachate	α		0.6
in treated water	β		0.9
Oxygen concentration to be maintained in liquid		mg-O ₂ /L	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	14

2.2 Surface area of the lagoon

 $\theta c = V/Q$ \therefore $V = \theta c^*Q$ V: volume of the lagoon A = V/H

Dimension

Table 58	Dimensions	of Aerated	Lagoon
----------	------------	------------	--------

	Unit	Stage1	Stage2	Stage3
V	m ³	13,580	8,540	-
А	m^2	3,880	2,440	-
L	m	100	90	-
W	m	40	30	-
Н	m	-	-	-
A' (Connected A)	m^2	4,000	2,700	-
V' (Connected V)	m ³	14,000	9,500	-

Number of lagoon: 1

2.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅ out = {Ks $(1+\theta c^*kd)$ }/ { $\theta c (Y^*kmax-kd)$ -1}(mg/L)

Ks	θc*kd	1+θc*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅ out
100	0.98	1.98	198	14	3.9	3.83	52.6	3.8

2.4 Effluent BOD₅

1) Correct the removal-rate for temperature effects

 $k(t) = k(20)*\theta T-20$

Ti	k ₍₂₀₎	T-20	θ	$\theta^{(T-20)}$	$k_{(20)} \theta^{(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

2) Determine the effluent BOD₅: St-out (mg/L)

kt	V/Q	1+kV/Q	1/(1+kV/Q)	S_0	St-out
2.7	14	38.10	0.30	920	24

2.5 Concentration of biological solids produced : X(mg.L)

 $X = Y(S0-S-BOD_5-out)/(1+kd\theta c)(mg-VSS/L)$

Y	S ₀ -S-BOD _{5-out}	kd	θc	$Y(S_0-S-BOD_{5-out})/(1+kd\theta c)$
0.65	916.2	0.07	14	301

2.6 Suspended solids in the lagoon before settling

SSi = Influent suspended solids + X/0.7(mg/L)

SSo	Х	SSi
540	301	970

0.7

Ratio of volatile suspended solid

2.7 Oxygen requirements

 $Q_2(kg/d) = Q(S_0-S-BOD_{5-out})/f - 1.42Px$

f: conversion factor for BOD_5 to BODL 0.68

 $Px = Q^*$ (concentration of biological solids produced)

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
S ₀ -s-BOD _{5-out}	mg/L	-	-	-
f	-	-	-	-
Px	kg/day	292	183	-
Required O ₂	kg/day	893	561	-

Table 59 Required O₂

Ratio of oxygen required to BOD₅ removed 2.8

BOD₅ removed (kg/d)

O₂/BOD₅ removed

Table 60	Removed BOD ₅
	5

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
S ₀ -S-BOD _{5-out}	mg/L	-	-	-
BOD ₅ removed	kg/day	889	559	-
O_2/BOD_5	-	-	-	-

2.9 Surface aerator power requirements

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6
a) Correction factor for surface aerators for sur	nmer conditions	f	
f=No. /N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)	mg/L	9.08	
3) Do concentration in Lagoon	C_L	mg/L	1.5
$f = \frac{1}{2} R * C_{s} T C L \frac{1}{C_{s}} (20) * 1 024 T 20 * \alpha$			

 $\{B^{*}CsT^{-}CL\}/Cs(20)^{*}1.024T^{-}20^{*}\alpha\}$

Ti-20	1.024 ^{T-20}	α	В	f
1	1.029	0.6	0.9	0.44

b) Field transfer rate : N

Total amount of transfer O₂

N=fNo

kg-O₂/kw/h 0.71

kg-O₂/kw/h 17.0 kg-O₂/kw/d

The total axis power required to meet the required oxygen

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	893	561	-
Required power for O ₂ supply	kw	52.5	33	_

2.10 Energy requirements for mixing

	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	-
Lagoon volume	m ³	14,000	9,500	-
Axis power for mixing	kW	70	47.5	-
Total efficiency	-	0.75	0.75	-
Required power	kW	93	63	-
Unit Power	kW/No.	15	15	-
No. of Aerator	Nos.	7	5	-

t

V

3. Solid separation for aerated lagoon

3.1 Design Base:

1) Process: maturation pond

2) HRT (days):

3) Depth (m)	D
Necessary Area (m ²)	А
A = Qt/d	

Volume of the maturation pond (m^3)

$$V = A*D0$$

The effluent SS may be expected to be at about 50-100 mg/L

Dimension	Length	L	
	Width	W	
	Height	Н	

Table 63 Dimension of Maturation Pond

	Unit	Stage1	Stage2	Stage3
Q	m ^{3/} day	970	610	-
t	days	14	14	-
V	m ³	13,580	8,540	-
No. of Ponds	-	2	2	-
D_0	m	1.5	1.5	-
A/pond	m ²	4,550	2,850	-
D/pond	m	120	90	-
W/pond	m	40	35	-
A' (corrected A)/pond	m ²	4,800	3,150	-

4. Leachate recirculation pump

1) Recirculation rate

times/leachate m³/day

Recirculation pump flow

Qr

r

 $Qr = r^*Q$

Ps	
Hose pov	ver
Н	m
ή	
ρs	1.05
	Ps Hose pow Η ή ρs

From the entrance of aerated lagoon to landfill

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
r	-	3	3	-
Or.	m ³ /day	2,910	1,830	-
QI	m ³ /min	2.02	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
Ps	Horse power	15.4	19.4	-
	kW	19.6	14.6	-
Unit power	kW/No.	15	19	-
Nos. of pumps	Nos.	(2+1)	(1+1)	-

 Table 64 Specifications of Leachate Recirculation Pump

5. Sludge accumulation

5.1 Mass of sludge accumulated in the basin each year without anaerobic decomposition

Mass = (SSi - SSe) $(g/m^3) * 10^{-3} (kg/g) * q(m^3/day) * 365(day/year)$

SSi: SS from aerated lagoon

SSe: SS after solid separation

VSS: Volatile solids of the mass to be decomposition = 0.7 * mass

Fixed solid = Mass - Volatile

	Unit	Stage1	Stage2	Stage3
SSi	mg/L	970	970	-
SSe	mg/L	70	70	-
Q	m ³ /min	970	610	-
Mass	kg/year	318,600	200,400	-
Vss	kg/year	224,000	141,000	-
Fixed solid	kg/year	94,600	59,400	-

 Table 65
 Accumulated Sludge

 m^3

 m^2

m

5.2	Amount of sludge to be accumulated at the end of	ty	years
Assum	ption		
1) Max	imum volatile solids reduction	75	%
2) it wi	ll occur within	1	year
3) depo	osited volatile suspended solids undergo a liner decom	nposition	
Mass o	f volatile suspended solids accumulated at the end of	2 year:	
	$(VSS)t = \{0.75+0.25(t-1)\}*VSS$		kg
	Total mass of solids accumulated at the end of	ty-1	year
	SSt = Vsst + ty*Fixed solid		kg

	Unit	Stage1	Stage2	Stage3
VSS	kg/year	224,000	141,000	-
ty	year	2	2	-
(Vss)t	kg	212,800	133,950	-
SSt	kg	402,000	252,750	-

5.3	Required liquid	volume and	the dimension	ons for the	sedimentation	basin
-----	-----------------	------------	---------------	-------------	---------------	-------

 $V = t^*q(m^3/d)$

2) Surface area of the sedimentation basin A

3) Effective depth of the solid -liquid separation

Table 67	Required	Liquid	Volume
10010 07	i i qui vu	219.11	

	Unit	Stage1	Stage2	Stage3
V	m ³	13,580	8,540	-
Α'	m ²	9,600	6,300	-
D1	m	1.0	1.0	_

5.4 Depth required for the storage of sludge

1) the mass of accumulated sludge per square meter	kg/m ²
Accumulated mass of sludge: SSt	kg
mass per unit area	kg/m ²

ter
(

	Unit	Stage1	Stage2	Stage3
SSt	kg	402,000	252,750	-
A'	m^2	9,600	6,300	-
SSt/A	kg/m ²	42	40	-

2) Required depth

Vds: deposited solids accumulated to the extend of	%
ρs: density of the sludge:	ton/m ³
The volume of sludge: Vsst (m ³)	

 $0.15 * Vsst (m^3) * 1.06*103 (kg/m^3) = SSt (kg)$

Hs: the height of the sludge zone (m)

Vsst = H*A Hs = Vsst/A

m

	Unit	Stage1	Stage2	Stage3
Vds	%	15	15	-
ρ _s	ton/m ³	1.06	1.06	-
SSt	kg	402,000	252,750	-
Vsst	m ³	2,528	1,590	-
А	m ²	9,600	6,300	-
Hs	m	0.26	0.25	-

Table 69 Required Depth

Alternative 2: Aerated Lagoon + Sedimentation Pond + Wetland with recirculation -New Site 1

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is the same as the one which was adopted in the original pilot project in Campo Florido. However only aerated lagoon can not remove T-BOD₅ and SS. Therefore sedimentation pond and wetland were proposed.

1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Lasshata Quality	Unit-mg/L				
Leachate Quality	T-BOD ₅	SS	S-BOD ₅		
Inlet	920	540	600		
Outlet	60	70	30		
Removal rate (%)	93.5	87.0	95		

Table 70Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1) Leachate generation

Landfill Area			
Stage1	\mathbf{A}_1	13.41 ha	134,000 m ²
Stage2	A_2	8.4 ha	84,000 m ²
Stage3	A_3	0.0 ha	0 m^2

Once surface liner facility is constructed in landfill site, it is assumed that no water flows into the landfill site

 $q = f^*C^*A^*I/1000 (m^3/day)$

Where

- q: Daily effluent amount of leachate water(m^3/day)
- C: Leachate coefficient of on-going landfill section 0.4
- 1: Annual maximum rainfall (mm/day)

Maximum rainfall during 2000 to 2002	38 mm in September in 2002
2	11.3 mm/day

16

- A: Landfill area (m^2)
- f: Safety factor
- Q: Daily effluent amount of leachate with safety factor (m^3/day)

Table 71	Proposed Leachate Volume

Q	Stage1	Stage2	Stage3
(m ^{3/} day)	730	610	0

2. Leachate treatment

Aerated Lagoon Process Design 2.1

Design Base:

	Symbol	Unit	
Influent flow	Q	m ³ /d	
Influent suspended solids	SS_0	mg/L	540
Influent soluble BOD ₅	\mathbf{S}_0	mg/L	920
Effluent soluble BOD ₅	S-BOD _{5-out}	mg/L	30
Effluent suspended solid after settling	SSe	mg/L	70
Kinetic coefficients:		1/d	0.65
Υ		mg-BOD ₅ /L	100
Ks		mg-BOD ₅ /L/d	6.0
Kmax		1/d	0.07
Kd	k (20)	1/d	2.5
First order soluble BoD5 removal rate constants at $20 \ ^{\circ}\text{C}$	Ti	°C	21.0
Waste water temperature			
in leachate	α		0.6
in treated water	β		0.9
Oxygen concentration to be maintained in liquid		mg-O ₂ /L	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	14

2.2 Surface area of the lagoon

 $\theta c = V/Q$ $\therefore V = \theta c^*Q$ V: volume of the lagoon

A=V/H

Dimension

	Unit	Stage1	Stage2	Stage3
V	m ³	13,580	8,540	-
А	m^2	3,880	2,440	-
L	m	100	90	-
W	m	40	30	-
Н	m	3.5	3.5	-
A' (Connected A)	m^2	4,000	2,700	-
V' (Connected V)	m ³	14,000	9,500	-

Table 72 Dimensions of Aerated Lagoon

Number of lagoon: 1

2.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅₋out = {Ks $(1+\theta c^*kd)$ }/ { $\theta c (Y^*kmax-kd)$ -1}(mg/L)

Ks	θc*kd	1+θc*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅₋ out
100	0.98	1.98	198	14	3.9	3.83	52.6	3.8

2.4 Effluent BOD5

1) Correct the removal-rate for temperature effects

 $k(t) = k(20) * \theta T - 20$

Ti	k ₍₂₀₎	T-20	θ	θ ^(T-20)	$k_{(20)}\theta^{(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

2) Determine the effluent BOD₅: St-out (mg/L)

kt	V/Q	1+kV/Q	1/(1+kV/Q)	S_0	St-out
2.7	14	38.10	0.03	920	24

2.5 Concentration of biological solids produced: X (mg/L)

 $X = Y (S0-S-BOD_{5-out}) / (1+kd\theta c) (mg-VSS/L)$

Y	S ₀ -S-BOD _{5-out}	kd	θc	$Y(S_0-S-BOD_{5-out})/(1+k_d\theta_c)$
0.65	916.2	0.07	14	301

2.6 Suspended solids in the lagoon before settling

SSi = Influent suspended solids + X/0.7(mg/L)

	SSo	Х	SSi	
	540	301	970	
led s	olid	0.7		

Ratio of volatile suspended solid

2.7 Oxygen requirements

 $Q_2 (kg/d) = Q(S_0-S-BOD_{5-out})/f-1.42Px$

f: conversion factor for BOD₅ to BODL 0.68

Px = Q*(concentration of biological solids produced)

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
S ₀ -S-BOD _{5-out}	mg/L	916	916	-
f	-	0.68	0.68	-
Px	kg/day	292	183	-
Required O ₂	kg/day	893	561	-

Table 73Required O2

2.8 Ratio of oxygen required to BOD₅ removed

BOD₅ removed (kg/d)

O₂/BOD₅ removed

Table 74	Removed	BOD ₅

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
S ₀ -S-BOD _{5-out}	mg/L	916	916	-
BOD ₅ removed	kg/day	889	559	-
O ₂ /BOD ₅	-	1.0	1.0	-

2.9 Surface aerator power requirements

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6
a) Correction factor for surface aerators for sum	mer conditions f		
f = No. /N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)	mg/L	9.08	
3) Do concentration in Lagoon	C_L	mg/L	1.5
f= {B*CsT-CL}/Cs (20)*1.024T-20* α }			

Ti-20	$1.024^{\text{T-}20}$	α	В	f
1	1.029	0.6	0.9	0.44

b) Field transfer rate: N

N = fNo

kg-O₂/kw/h 0.71 kg-O₂/kw/h 17.0

Total amount of transfer O2kg-O2/kw/d

The total axis power required to meet the required oxygen

Table 75 Required O₂

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	893	561	-
Required power for O ₂ supply	kw	52.5	33.0	-

2.10 Energy requirements for mixing

	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	-
Lagoon volume	m ³	14,000	9,500	-
Axis power for mixing	kW	70	47.5	-
Total efficiency	-	0.75	0.75	-
Required power	kW	93	63	-
Unit Power	kW/No.	15	15	-
No. of Aerator	Nos.	7	5	-

 Table 76
 Specifications of Aerator

3. Leachate recirculation pump

1) Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$	Hose po	ower
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05

From the entrance of aerated lagoon to landfill

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
r	-	3	3	-
0*	m ³ /day	2,910	1,830	-
QI	m ³ /min	2.02	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
Ps	Horse power	15.4	19.4	-
	kW	19.6	14.6	-
Unit power	kW/No.	15	19	-
Nos. of pumps	Nos.	(2+1)	(1+1)	-

Table 77 Specifications of Leachate Recirculation Pump

4. Solid-liquid separation: sedimentation tank

Qi: Inflow	m ³ /day
Safety factor	3
R.T: Retention time at Qi*3	hr
OL: Overflow rate at Qi*3	m ³ /m ² /day

Qi*Ci = Qo*Co+Qu*Cu		
Ci: Inflow SS		mg/L
Co: Outflow SS		mg/L
Cu: Concentrated SS in the sedimentation tank		
Qo: Outflow		m ³ /day
Qu: Underflow (Sludge flo	w)	m ³ /day
Qu = Qi-Qo		m ³ /day
Qo=Qi*(Cu-Ci) / (Cu-Co)		m ³ /day
As: Surface area = Qo/OL		m^2
Dimension	Ls: Length of sedimentation tank	m
	Ws: Width of sedimentation tank	m
Hs: Height of sludge zone = Vs/A	As	m
Vs: Volume of sedimentation tan	k	m ³
H2: Height allowance = Vs/As		m^2

Table 78	Dimension	of sedimentation	tank

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
Qi	m ³ /day	2,910	1,830	-
RT	hr	2	2	-
OL	m ³ /m ² /day	22	22	-
Ci	mg/L	970	970	-
Со	mg/L	70	70	-
Cu	mg/L	5,000	5,000	-
Qo	m ³ /day	2,400	1,500	-
As	m ²	110	70	-
Ls	m	30	20	-
Ws	m	5	5	-
Hs	m	2.3	2.3	-
Vs	m ³	250	160	-
Qu	m ³ /day	510	330	-
H2	m	1.5	1.5	-
H0	m	3.8	3.8	-

Total Height Ho=H2+Hs

5. To removal nutrients, use wetland.

Only by aerated lagoon, only BOD_5 and SS are removed. For further treatment for nutrients another process is necessary.

Here, wetland was considered as an alternative for this purpose, considering cost efficiency.

Levels of nitrogen and phosphates are estimated as below based on the analysis of leachate during this Study.

Total-N:	240	mg/L
Total-P:	64	mg/L

In biological treatment nitrogen and phosphate are necessary. The ratio of N and P towards BOD_5 is 3:0.3:100

Therefore N and P after biological treatment, their levels are expected as below.

Inlet BOD ₅		920	mg/L
Therefore N to be removed by biological treatment		27.6	mg/L
Therefore P to be removed by biological treatment		2.76	mg/L
After aerated lagoon remained N	d lagoon remained N N		mg/L
	Р	61	mg/L

Criteria*			
20	mg/L. as KTN		
10	mg/L. as P		

*:Discharge criteria of industrial waste water into general public water body

Inlet T-P level will be reduced by using cover soil.

Therefore, only removal of nitrogen would be considered.

Here, subsurface-flow (SSF) systems was considered.

In a SSF wetland, the basin is filled with gravel or some other coarse substrate, and the water level is maintained below-ground. Water flows horizontally, or sometimes vertically, through the gravel and the root mat of the wetland vegetation.

Arrow arum (Polyandry spp.) and Pickerel weed (Pontederia spp.) have been used in constructed wetlands.

Also common reed (Phragmitescommunis) is used

Figure 4 Conceptual diagram of subsurface-flow wetlands

Example of determination of basin design for SFS wetlands system

Nitrogen removal will proceed when BOD₅ level is less than 10 mg/L.

1.	Premises		
	Influent BOD ₅	C_0	60 mg/L
	Effluent BOD ₅	Ce	8 mg/L
	Inflow	Q	m ³ /day
			m ³ /day
	Vegetation type		cattails
	Minimum water temperature	Т	21°C
	Basin media	coarse sand with 2	mm of maximum effective size
	Basin slope	S	0.01
2.	Solution		
1.	Basin depth for use wit cattail	d	0.3 m
2.	Porosity	α	0.39
	Hydraulic conductivity	Ks	$480 \text{ m}^3/\text{m}^2/\text{day}$
		K ₂₀	1.35
3.	Temperature-dependent first order	rate constant	
		K _T at	21°C
			1.49 d^{-1}
4.	Pore-space detention time	t' = -1nCe/C0/Kt	d
5.	Cross-sectional area	Ac = Q/Ks/S	m^2
6.	Basin width	W = Ac/d	m
7.	Basin length	$L = t'Q/W/d/\alpha$	m
8.	Required surface area	As = L*W	m^2
			ha
9.	Check hydraulic-loading rate or sp	ecific area requireme	ents
		Lw = Q/L/W	150 to 500 m ³ /ha/day
			0.015 to 0.005 m ³ /m ² /day
	or	Asp= $1/Lw$ for adv	anced treatment 2.1 ha/10 ³ m ³
10.	Check BOD ₅ loading rate	Max.BOD _{5L}	60 kg/ha/day
	LBOD ₅		kg/day
	BOD _{5L}		kg/ha/day
11.	Vegetation		
	Reed can absprb	Ν	18 to 21g/kg
		Р	2.0 to 3.0 g/kg
	Inlet N		212.4 mg/L
	Vd: vegetation density		10kg/m^2

	Unit	Stage1	Stage2	Stage3
C ₀	mg/L	60	60	-
Ce	mg/L	8	8	-
Q	m ³ /day	970	610	-
Т	°C	21	21	-
S		0.01	0.01	-
d	m	0.3	0.3	-
α		0.39	0.39	-
Ks	m ³ /m ² /day	480	480	-
K ₂₀		1.35	1.35	-
Kt	d ⁻¹	1.49	1.49	-
t'	day	1.36	1.36	-
Ac	m ²	202	127	-
W	m	680	430	-
L	m	17	16	-
As	m ²	11,300	7,100	-
Lw	m ³ /m ² /day	0.09	0.09	-
Asp	ha/1000m ³	11.60	11.60	-
L-BOD ₅	kg/day	58.2	36.6	-
BOD _{5L}	kg/ha/day	52	52	-
V	m ³	3,390	2,130	-
R.T	day	3.5	3.5	-
Inlet N	mg/L	212	212	-
Total N in WL	g	739,000	460,000	-
N absorption	g/kg	18	18	-
Nos. of reed	kg	40,556	25,556	-
Vd	kg/m ²	10	10	-
Max Reed	kg	113,000	71,000	-

Table 79 Specification of Wetland

Alternative 3: Natural Pond System (Anaerobic + Facultative + Maturation Pond) -New Site 1

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is so called natural pond system to remove BOD₅, SS and nutrients such as N and P.

1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality		Unit-mg/L	
	T-BOD ₅	SS	S-BOD ₅
Inlet	920	540	600
Outlet	60	70	30
Removal rate (%)	93.5	87.0	95

 Table 80
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

2. Anaerobic pond

RTa: Retention time of anaerobic	pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			m^2
Va: Anaerobic pond volume			m ³
Dimension	Length	La	m
	Width	Wa	m
BOD _{51.a} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
R.T	days	7	7	-
Va	m^3	6,790	4,270	-
Da	m	3.5	3.5	-
Aa	m^2	1,940	1,220	-
La	m	70	60	-
Wa	m	30	22	-
BOD_5	g/day	892,410	561,200	-
BOD _{5La}	g/m³/day	131	131	-

Table 81 Dimension of Anaerobic Pond

Number of ponds: 1

3. Facultative Pond

ls ₁ : BOD permissible loading			kg/ha/day
$ls_1 = 350 (1.107 - 0.002)$	Γ) ^{T-25}		100 to 400 kg/ha/day
or			
$ls_2 = 20T-120$			kg/ha/day
Here, T: Minimum temp	perature		21 °C
Ls: BOD ₅ loading			
Ls = 10 Li Q / Af			kg/ha/day
Here,			
Li: Inflow BOD ₅			mg/L
Af: Facultative pond are	a		m^2
$Af = Q * (Li - Le)/18D/(1.05)^{2}$	Г-20		
Here,			
Le: Outflow BOD ₅			mg/L
L _r : BOD ₅ removal			kg/ha/day
$Lr = 0.725Ls \div 10.75$			
Df: Depth of the facultative p	ond		m
Dimensions of facultative por	nd Lengt	n Lf	m
	Width	Wf	m

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
Т	°C	21	21	-
ls_1	kg/ha/day	272	272	-
ls_2	kg/ha/day	300	300	-
Ls	kg/ha/day	270	270	-
Li	mg/L	368	368	-
Df	m	1.2	1.2	-
Af	m ²	13,200	8,300	-
Le	mg/L	60	60	-
Lr	kg/ha/day	207	207	-
BOD_{5Rf}	%	76.5	76.5	-
BOD _{5out-f}	mg/L	87	87	-
R.T _f	days	16	16	-

Table 82 Dimension of Sedimentation Tank

Remarks:

(a) There is a difference between ls_1 and ls_2 . Adopt ls_1 for safety.

- (b) There is a difference between Le and BOD_{5out-f}. This is because Equations for Ls and Af are the one to get 60 mg/L-BOD₅ in South America.
- (c) On the contrary, the value of BOD_{5out-f} is calculated by the equation for Lr. Lr shows the average of the data arranged by MacGarry and Pescord.
- (d) The BOD₅ removal in primary facultative ponds is usually in the range 70-80 percent based on unfiltered samples (that is, including the BOD exerted by the algae).

Therefore, effluent BOD_{5out-f} level from facultative pond will be considered 60-117 mg/L with algae.

(e) It is said BOD₅ quality of the effluent from a facultative ponds as most of the BOD contained (70 to 90%) will be "algal BOD. Therefore, the filtered (soluble) BOD₅ level will be at least 18-35 mg/L.

	Unit	Stage1	Stage2	Stage3
Af	m ²	13,200	8,300	-
Nos. of ponds	-	2	2	-
Af/pond	m ²	6,600	4,150	-
Lf/pond	m	140	110	-
Wf/pond	m	50	40	-
Df	m	1.2	1.2	-
Vf/pond	m ³	8,400	5,280	-
Total Vf	m ³	16,800	10,560	-

Table 83 Dimensions of Facultative Pond

Pond arrangement: Parallel

4. Maturation pond

Maturation ponds (low-cost polishing ponds, which succeed the primary or secondary facultative pond) are primarily designed for tertiary treatment, i.e., the removal of pathogens, nutrients and possibly algae.

With the combination of facultative pond and maturation pond,

- (1) Total nitrogen removal in WSP systems can reach 80 percent or more, and ammonia removal can be as high as 95 percent.
- (2) The best way of increasing phosphorus removal in WSP is to increase the number of

maturation ponds, so that progressively more and more phosphorus becomes immobilized in the sediments. From a well functioning 2 ponds system, 70% mass removal of total.

(3) The removal rate increases by adding maturation ponds.

Design criteria

D _m : Depth of maturation	pond	1.5 m
1 1		

RT _m : Retention time of maturation pond	14 days
---	---------

A_m: Area od maturation pond

Dimensions of maturation pond

Length	Lm	m
Width	Wm	m

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
RT _m	days	14	14	-
Vm	m ³	13,580	8,540	-
Nos. of Ponds	-	2	2	-
Vm/Pond	m ³	6,790	4,270	-
Dm/Pond	m	1.5	1.5	-
Am/Pond	m ²	4,600	2,900	-
Lm/Pond	m	120	90	-
Wm/Pond	m	40	35	-

Table 84Dimensions of Maturation Pond

Pond arrangement: Series

5. Leachate Recirculation pump

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05
From the entrance of anaerobic lagoon to landfi	i11	

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
r	-	3	3	-
Or	m ³ /day	2,910	1,830	-
QI	m ³ /min	2.02	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
Ps	Horse power	15.4	19.4	-
	kW	19.6	14.6	-
Unit power	kW/No.	15	19	-
Nos. of pumps	Nos.	(2+1)	(1+1)	-

Table 85 Specifications of Leachate Recirculation Pump

Alternative 4: Natural Pond System (Anaerobic + Facultative + Wetland) -New Site 1

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is an alternative to use wetland instead of Maturation Pond in Alternative 3 in order to remove nutrients such as N and P.

1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality	Unit-mg/L				
Leachate Quanty	T-BOD ₅	SS	S-BOD ₅		
Inlet	920	540	600		
Outlet	60	70	30		
Removal rate (%)	93.5	87.0	95		

Table 86Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

2. Anaerobic pond

RTa : Retention time of anaerobio	c pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			m^2
Va: Anaerobic pond volume			m ³
Dimension	Length	La	m
	Width	Wa	m
BOD _{5La} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
R.T	days	7	7	-
Va	m^3	6,790	4,270	-
Da	m	3.5	3.5	-
Aa	m^2	1,940	1,220	-
La	m	70	60	-
Wa	m	30	70	-
BOD ₅	g/day	892,400	20	-
BOD _{5La}	g/m³/day	131	131	-

Table 87 Dimension of Anaerobic Pond

Number of ponds: 1

3. Facultative Pond

ls ₁ : BOD permissible loading			kg/ha/day
$ls_1 = 350 (1.107 - 0.002T)^{T-25}$			100 to 400 kg/ha/day
or			
$ls_2 = 20T-120$			kg/ha/day
Here, T: Minimum temperature			21 °C
Ls: BOD ₅ loading			
Ls = 10 Li Q / Af			kg/ha/day
Here,			
Li: Inflow BOD ₅			mg/L
Af: Facultative pond area			m ²
$Af = Q * (Li - Le)/18D/(1.05)^{T-20}$			
Here,			
Le: Outflow BOD ₅			mg/L
L _r : BOD ₅ removal			kg/ha/day
$Lr = 0.725Ls \div 10.75$			
Df: Depth of the facultative pond			m
Dimensions of facultative pond	Length	Lf	m
	Width	Wf	m

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
Т	°C	21	21	-
ls_1	kg/ha/day	272	272	-
ls_2	kg/ha/day	300	300	-
Ls	kg/ha/day	270	270	-
Li	mg/L	368	368	-
Df	m	1.2	1.2	-
Af	m^2	13,200	8,900	-
Le	mg/L	60	60	-
Lr	kg/ha/day	207	207	-
BOD _{5Rf}	%	76.5	76.5	-
BOD _{5out-f}	mg/L	87	87	-
R.T _f	days	16	16	_

Table 88 Dimension of Sedimentation Tank

Remarks:

(a) There is a difference between ls_1 and ls_2 . Adopt ls_1 for safety.

(b) There is a difference between Le and BOD_{5out-f} . This is because Equations for Ls and Af are the one to get 60 mg/L-BOD₅ in South America.

- (c) On the contrary, the value of BOD_{5out-f} is calculated by the equation for Lr. Lr shows the average of the data arranged by MacGarry and Pescord.
- (d) The BOD₅ removal in primary facultative ponds is usually in the range 70-80 percent based on unfiltered samples (that is, including the BOD exerted by the algae).

Therefore, effluent BOD_{5out-f} level from facultative pond will be considered 60-117 mg/L with algae.

(e) It is said BOD₅ quality of the effluent from a facultative ponds as most of the BOD contained (70 to 90%) will be "algal BOD. Therefore, the filtered (soluble) BOD₅ level will be at least 18-35 mg/L.

	Unit	Stage1	Stage2	Stage3
Af	m ²	13,200	8,300	-
Nos. of ponds	-	2	2	-
Af/pond	m ²	6,600	6,600	-
Lf/pond	m	140	140	-
Wf/pond	m	50	50	-
Df	m	1.2	1.2	-
Vf/pond	m ³	8,400	8,400	-
Total Vf	m ³	16,800	16,800	-

 Table 89 Dimensions of Facultative Pond

Pond arrangement: Parallel

4. To removal nutrients, use wetland

Only by aerated lagoon, only BOD₅ and SS are removed. For further treatment for nutrients another process is necessary.

Here, wetland was considered as an alternative for this purpose, considering cost efficiency.

Levels of nitrogen and phosphates are estimated as below based on the analysis of leachate during this Study.

Total-N:	240	mg/L
Total-P:	64	mg/L

In biological treatment nitrogen and phosphate are necessary. The ratio of N and P towards BOD_5 is 3:0.3:100

Therefore N and P after biological tr	reatment, their lev	els are expected	d as below.
Inlet BOD ₅		920	mg/L
Therefore N to be removed by biolo	27.6	mg/L	
Therefore P to be removed by biolog	gical treatment	2.76	mg/L
After aerated lagoon remained N N		212	mg/L
	Р	61	mg/L

Criteria*					
20	mg/L. as KTN				
10	mg/L. as P				

*:Discharge criteria of industrial waste water into general public water body

Inlet T-P level will be reduced by using cover soil. Therefore, only removal of nitrogen would be considered.

Here, subsurface-flow (SSF) systems was considered.

In a SSF wetland, the basin is filled with gravel or some other coarse substrate, and the water level is maintained below-ground. Water flows horizontally, or sometimes vertically, through the gravel and the root mat of the wetland vegetation.

Arrow arum (Polyandry spp.) and Pickerel weed (Pontederia spp.) have been used in constructed wetlands.

Also common reed (Phragmitescommunis) is used

Figure 5 Conceptual diagram of subsurface-flow wetlands

Example of determination of basin design for SFS wetlands system

Nitrogen removal will proceed when BOD₅ level is less than 10 mg/L.

1.	Premises		
	Influent BOD ₅	C_0	87 mg/L
	Effluent BOD ₅	Ce	8 mg/L
	Inflow	Q	m ³ /day
			m ³ /day
	Vegetation type		cattails
	Minimum water temperature	Т	21°C
	Basin media	coarse sand with 2 i	mm of maximum effective size
	Basin slope	S	0.01
2.	Solution		
1.	Basin depth for use wit cattail	d	0.3 m
2.	Porosity	α	0.39
	Hydraulic conductivity	Ks	$480 \text{ m}^3/\text{m}^2/\text{day}$
		K ₂₀	1.35
3.	Temperature-dependent first order	rate constant	
		K _T at	21 °C
			1.49 d ⁻¹
4.	Pore-space detention time	t' = -1nCe/C0/Kt	d
5.	Cross-sectional area	Ac = Q/Ks/S	m^2
6.	Basin width	W = Ac/d	m
7.	Basin length	$L = t'Q/W/d/\alpha$	m
8.	Required surface area	As = L*W	m^2
			ha
9.	Check hydraulic-loading rate or sp	ecific area requireme	nts
		Lw = Q/L/W	150 to 500 $m^3/ha/day$
			0.015 to $0.005 \text{ m}^3/\text{m}^2/\text{day}$
	or	Asp= $1/Lw$ for adva	anced treatment 2.1 ha/ 10^3 m ³
10.	Check BOD ₅ loading rate	Max.BOD _{5L}	60kg/ha/day
		LBOD ₅	kg/day
		BOD _{5L}	kg/ha/day
11.	Vegetation		
	Reed can absprb	Ν	18 to 21g/kg
		Р	2.0 to 3.0 g/kg
	Inlet N		240 mg/L
	Vd: vegetation density		10 kg/m^2

	Unit	Stage1	Stage2	Stage3
C_0	mg/L	87	87	-
Ce	mg/L	8	8	-
Q	m ³ /day	970	610	-
Т	°C	21.0	21.0	-
S		0.01	0.01	-
d	m	0.3	0.3	-
α		0.39	0.39	-
Ks	m ³ /m ² /day	480	480	-
K ₂₀		1.35	1.35	-
Kt	d ⁻¹	1.49	1.49	-
ť'	day	1.61	1.61	-
Ac	m ²	202	127	-
W	m	680	430	-
L	m	20	19	-
As	m ²	13,400	8,400	-
Lw	m ³ /m ² /day	0.07	0.07	-
Asp	ha/1000m ³	13.74	13.74	-
L-BOD ₅	kg/day	84.4	53.07	-
BOD _{5L}	kg/ha/day	63	63	-
V	m ³	4,020	2,520	-
RT	day	4.1	4.1	-
Inlet N	mg/L	240	240	-
Total N in WL	g	970,000	610,000	-
N absorption	g/kg	18	18	-
Nos. of reed	kg	53,889	33,889	-
Vd	kg/m ²	10	10	-
Max Reed	kg	134,000	84,000	-

Table 90 Specification of Wetland

This system seems to be inferior in performance.

5. Leachate Recirculation pump

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05
From the outron of an earchie loss on to low	1C11	

From the entrance of anaerobic lagoon to landfill

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
r	-	3	3	-
Or	m ³ /day	2,910	1,830	-
QI	m ³ /min	2.02	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
Ps	Horse power	15.4	19.4	-
	kW	19.6	14.6	-
Unit power	kW/No.	15	19	-
Nos. of pumps	Nos.	(2+1)	(1+1)	-

Table 91	Specifications	of Leachate	Recirculation	Pump
Table 71	specifications	of Leachate	ittentulation	1 ump

Alternative 5: Anaerobic Pond + Aerated Lagoon + Sedimentation Pond + Wetland with recirculation -New Site 1

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is an alternative adding Anaerobic Pond to Alternative 2 in order to reduce area.

1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality	Unit-mg/L				
Leachate Quality	T-BOD ₅	SS	S-BOD ₅		
Inlet	920	540	600		
Outlet	60	70	30		
Removal rate (%)	93.5	87.0	95		

 Table 92
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

2. Anaerobic pond

RTa : Retention time of anaerobic	e pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			m^2
Va: Anaerobic pond volume			m^3
Dimension	Length	La	m
	Width	Wa	m
BOD _{5La} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
R.T	days	7	7	-
Va	m ³	6,790	4,270	-
Da	m	3.5	3.5	-
Aa	m^2	1,940	1,220	-
La	m	70	66	-
Wa	m	30	22	-
BOD ₅	g/day	892,400	561,200	-
BOD _{5La}	g/m³/day	131	131	-

Table 93 Dimension of Anaerobic Pond

Number of ponds: 1

3. Aerated Lagoon

3.1 Aerated Lagoon Process

Design Base:

	Symbol	Unit	
Influent flow	Q	m^3/d	
Influent suspended solids	SS_0	mg/L	378
Influent soluble BOD ₅	S_0	mg/L	368
Effluent soluble BOD ₅	S-BOD _{5-out}	mg/L	30
Effluent suspended solid after setting	SSe	mg/L	70
Kinetic coefficients:			
Υ		1/d	0.65
Ks		mg-BOD ₅ /L	100
Kmax		mg-BOD ₅ /L/d	6.0
Kd		1/d	0.07
First order soluble BOD ₅ removal rate c	onstants at 20 °	°C	
	k ₍₂₀₎	l/d	2.5
Waste water temperature	Ti	°C	21.0
Aeration constants in leachate			
in leachate	α		0.6
in treated water	β		0.9
Oxygen concentration to be maintained	in liquid	mg - O ₂ /L	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	7

3.2 Surface area of the lagoon $A m^2$

$$\theta c = V/Q$$
 \therefore $V = \theta c^*Q$ V: volume of the lagoon

A = V/H

Dimension

Table 94	Dimension	of Aerated	Lagoon
	Dimension	orrieratea	Lagoon

	Unit	Stage1	Stage2	Stage3
V	m ³	6,790	4,270	-
А	m ²	1,940	1,220	-
L	m	70	60	-
W	m	30	22	-
Н	m	3.5	3.5	-
A' (corrected A)	m ²	2,100	1,320	-
V' (Corrected V)	m ³	7,400	4,700	-

3.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅out = { Ks (1 + 0c*kd) } / { $\theta c (Y*kmax - kd) - I$ } (mg/L)

Ks	θc*kd	1+θc*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅ out
100	0.49	1.49	149	7	3.9	3.83	25.8	5.8

3.4 Effluent BOD₅

(1) Correct the removal-rate for temperature effects

$$\mathbf{k}(t) = \mathbf{k}(20)^* \mathbf{\theta}^{\mathrm{T-}20}$$

Ti	k ₍₂₀₎	T-20	θ	$\theta^{(T-20)}$	$k_{(20)}\theta^{(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

(1/d)

(2) Determine the effluent BOD₅: St-_{out} (mg/L)

St-out/S₀ = $1/(1+k\theta_H) = S/S_0 = 1/(1+kV/Q)$

kt	V/Q	1+kV/Q	1/(1+kV/Q)	S_0	St-out
2.7	14	19.55	0.05	368	19

3.5 Concentration of biological solids produced: X (mg/L)

 $X = Y (S_0-S-BOD_5-out)/(1+k_d\theta_c) (mg-VSS/L)$

Y	S ₀ -S-BOD _{5-out}	k _d	θc	$Y(S_0-S-BOD_{5-out})/(1+k_d\theta_c)$
0.65	362.2	0.07	7	158

3.6 Suspended solids in the lagoon before settling

SSi = Influent suspended solids + X/0.7(mg/L)

Ratio of volatile suspended solid

 SSo
 X
 SSi

 378
 158
 604

0.7

3.7 Oxygen requirements

 $Q_2(kg/d) = Q(S_0-S-BOD_{5-out})/f-1.42Px$

f: conversion factor for BOD_5 to BOD_L 0.68

Px = Q*(concentration of biological solids produced)

Table 95 Required O₂

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
S_0 -s- BOD_{5-out}	mg/L	362	362	-
f	-	0.68	0.68	-
Px	kg/day	153	96	-
Required O ₂	kg/day	299	188	-

3.8 Ratio of oxygen required to BOD₅ removed

BOD₅ removed (kg/d)

O₂/BOD₅ removed

Table 96Removed BOD5

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
So-S-BOD _{5-out}	mg/L	362	362.2	-
BOD ₅ removed	kg/day	351	221	-
O ₂ /BOD ₅	-	0.9	0.9	-

3.9 Surface aerator power requirements

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6
a) Correction factor for surface aerators for sum	mer conditions f	f	
f=No/N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)		mg/L	9.08
3) DO concentration in Lagoon	CL	mg/L	1.5
f= {B*CsT-CL}/Cs (20)*1.024T-20* α }			

- C4.78 -

Ti-20	$1.024^{\text{T-}20}$	α	В	f
1	1.029	0.6	0.9	0.44

b) Field transfer rate : N

 $N = fN_0$

 $kg-\Omega_2/kw/h = 0.71$ $kg-O_2/kw/d$

Total amount of transfer O₂

	n 8	02/ KV	v/ u	
~~~	4			

Kg-02/KW/II	0.71
kg-O ₂ /kw/h	17.0

The total axis power required to meet the required oxygen

Table 97Required O2Supply

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	299	188	-
Required power for O ₂ supply	kW	17.6	11.1	-

Energy requirements for mixing 3.10

Table 98	Specifications of Aerator

	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	-
Lagoon volume	m ³	7,400	7,400	-
Axis power for mixing	kW	37	23.5	-
Total efficiency	-	0.75	0.75	-
Required power	kW	49.3	31	-
Required power per unit	kW/No.	11	7.5	-
Power for Mixing	Nos.	5	5	-

#### Leachate recirculation pump 4.

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05

From the entrance of anaerobic lagoon to landfill

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
r	-	3	3	-
Or	m ³ /day	2,910	1,830	-
QI	m ³ /min	2.02	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
De	Horse power	15.4	19.4	-
F 5	kW	19.6	14.6	-
Unit power	kW	15	19	-
Nos. of pumps	Nos.	(2+1)	(1+1)	-

Table 99	Specifications of	f Leachate	Recirculation	Pump
----------	-------------------	------------	---------------	------

# 5. Solid-liquid separation: sedimentation tank

Qi: Inflow	m ³ /day			
Safety factor				
R.t: Retention time at Qi*3				
OL: Overflow rate at Qi*3	m ³ /m ² /day			
Qi*Ci = Qo*Co+Qu*Cu				
Ci: Inflow SS	mg/L			
Co: Outflow SS	mg/L			
Cu: Concentrated SS in the	mg/L			
Qo: Outflow	m ³ /day			
Qu: Underflow (Sludge flo	m ³ /day			
Qu = Qi-Qo	m ³ /day			
Qo = Qi*(Cu-Ci) / (Cu-Co)	m ³ /day			
As: surface area=Qo/OL	m ³			
Dimension	Ls: Length of sedimentation tank	m		
	Ws: Width of sedimentation tank	m		
Hs: Height of sludge zone =Vs/A	m			
Vs: Volume of sedimentation tank				
$H_2$ : Height allowance = Vs/As				
	Unit	Stage1	Stage2	Stage3
----------------	-------------------------------------	--------	--------	--------
Q	m ³ /day	970	610	-
Qi	m ³ /day	2,910	1,830	-
R.T	hr	2	2	-
$O_L$	m ³ /m ² /day	22	22	-
Ci	mg/L	604	604	-
Со	mg/L	70	70	-
Cu	mg/L	5,000	5,000	-
Qo	m ³ /day	2,600	1,600	-
As	m ²	120	80	-
Ls	m	30	20	-
Ws	m	5	5	-
Hs	m	2.1	2.0	-
Vs	m ³	250	160	-
Qu	m ³ /day	310	230	-
H ₂	m	1.5	1.5	-
H0	m	3.6	3.5	-

### Table 100 Dimension of Sedimentation Tank

### 6. To removal nutrients, use wetland.

Only by aerated lagoon, only  $BOD_5$  and SS are removed. For further treatment for nutrients another process is necessary.

Here, wetland was considered as an alternative for this purpose, considering cost efficiency.

Levels of nitrogen and phosphates are estimated as below based on the analysis of leachate during this Study.

Total-N:	240	mg/L
Total-P:	64	mg/L

In biological treatment nitrogen and phosphate are necessary. The ratio of N and P towards  $BOD_5$  is 3:0.3:100

Therefore N and P after biological treatment, their levels are expected as below.

Inlet BOD ₅		920	mg/L
Therefore N to be removed by biolog	27.6	mg/L	
Therefore P to be removed by biological treatment		2.76	mg/L
After aerated lagoon remained N	fter aerated lagoon remained N N		mg/L
	Р	61	mg/L

	Criteria*
20	mg/L. as KTN
10	mg/L. as P

*:Discharge criteria of industrial waste water into general public water body

Inlet T-P level will be reduced by using cover soil.

Therefore, only removal of nitrogen would be considered.

Here, subsurface-flow (SSF) systems was considered.

In a SSF wetland, the basin is filled with gravel or some other coarse substrate, and the water level is maintained below-ground. Water flows horizontally, or sometimes vertically, through the gravel and the root mat of the wetland vegetation.

Arrow arum (Polyandry spp.) and Pickerel weed (Pontederia spp.) have been used in constructed wetlands.

Also common reed (Phragmitescommunis) is used



Figure 6 Conceptual diagram of subsurface-flow wetlands

# Example of determination of basin design for SFS wetlands system

Nitrogen removal will proceed when BOD₅ level is less than 10 mg/L.

1.	Premises		
	Influent BOD ₅	$C_0$	60 mg/L
	Effluent BOD ₅	Ce	8 mg/L
	Inflow	Q	m ³ /day
			m ³ /day
	Vegetation type		cattails
	Minimum water temperature	Т	21°C
	Basin media	coarse sand with 2	mm of maximum effective size
	Basin slope	S	0.01
2.	Solution		
1.	Basin depth for use wit cattail	d	0.3 m
2.	Porosity	α	0.39
	Hydraulic conductivity	Ks	$480 \text{ m}^3/\text{m}^2/\text{day}$
		K ₂₀	1.35
3.	Temperature-dependent first order	rate constant	
		K _T at	21°C
			1.49 d ⁻¹
4.	Pore-space detention time	t' = -1nCe/C0/Kt	d
5.	Cross-sectional area	$A_C = Q/K_S/S$	$m^2$
6.	Basin width	W = Ac/d	m
7.	Basin length	$L = t'Q/W/d/\alpha$	m
8.	Required surface area	As = L*W	$m^2$
			ha
9.	Check hydraulic-loading rate or sp	ecific area requireme	ents
		Lw = Q/L/W	150 to 500 $m^3/ha/day$
			$0.015$ to $0.005 \text{ m}^3/\text{m}^2/\text{day}$
	or	Asp= $1/Lw$ for adv	anced treatment 2.1 ha/ $10^3$ m ³
10.	Check BOD ₅ loading rate	Max.BOD _{5L}	60 kg/ha/day
	LBOD ₅		kg/day
	BOD _{5L}		kg/ha/day
11.	Vegetation		
	Reed can absorb	Ν	18 to 21 g/kg
		Р	2.0 to 3.0 g/kg
	Inlet N		212.4 mg/L
	Vd: vegetation density		$10 \text{ kg/m}^2$

	Unit	Stage1	Stage2	Stage3
C ₀	mg/L	60	60	-
Ce	mg/L	8	8	-
Q	m ³ /day	970	610	-
Т	°C	21.0	21.0	-
S		0.01	0.01	-
d	m	0.3	0.3	-
α		0.39	0.39	-
Ks	m ³ /m ² /day	480	480	-
K ₂₀		1.35	1.35	-
Kt	d ⁻¹	1.49	1.49	-
t'	day	1.36	1.36	-
Ac	m ²	202	127	-
W	m	680	430	-
L	m	17	16	-
As	m ²	11,300	7,100	-
Lw	m ³ /m ² /day	0.09	0.09	-
Asp	ha/1000m ³	11.60	11.60	-
L-BOD ₅	kg/day	58.2	36.6	-
BOD _{5L}	kg/ha/day	52	52	-
V	m ³	3,390	2,130	-
R.T	day	3.5	3.5	-
Inlet N	mg/L	212	212	-
Total N in WL	g	730,000	460,000	-
N absorption	g/kg	18	18	-
Nos. of reed	kg	40,556	25,556	-
Vd	kg/m ²	10	10	-
Max Reed	kg	113,000	71,000	-

# Table 101Specification of Wetland

# Alternative 6: Anaerobic Pond + Aerated Lagoon + Maturation Pond with recirculation -New Site 1

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is an alternative adding Anaerobic Pond to Alternative 1 to reduce area.

# 1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality		Unit-mg/L	
Leachate Quality	T-BOD ₅	SS	S-BOD ₅
Inlet	920	540	600
Outlet	60	70	30
Removal rate (%)	93.5	87.0	95

 Table 102
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

# 2. Anaerobic pond

RTa: Retention time of anaerobic	pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			$m^2$
Va: Anaerobic pond volume			m ³
Dimension	Length	La	m
	Width	Wa	m
BOD _{5La} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day

	Unit Stage1 Stage2		Stage3	
Q	m ³ /day	m ³ /day 970 610		-
R.T	days	7	7	-
Va	m ³	m ³ 6,790 4,270		-
Da	m	3.5	3.5	-
Aa	m ²	n ² 1,940 1,220		-
La	m	70	60	-
Wa	m	30	22	-
BOD ₅	g/day	892,400	561,200	-
BOD _{5La}	g/m³/day	131	131	-

### Table 103 Dimension of Anaerobic Pond

Number of ponds: 1

# 3. Aerated Lagoon

# 3.1 Aerated Lagoon Process

Design Base:

	Symbol	Unit	
Influent flow	Q	m ³ /d	
Influent suspended solids	$SS_0$	mg/L	378
Influent soluble BOD ₅	$\mathbf{S}_{0}$	mg/L	368
Effluent soluble BOD ₅	S-BOD _{5-out}	mg/L	30
Effluent suspended solid after setting	SSe	mg/L	70
Kinetic coefficients:			
Y		l/d	0.65
Ks		mg-BOD ₅ /L	100
Kmax		mg-BOD ₅ /L/d	6.0
Kd		l/d	0.07
First order soluble BOD ₅ removal rate	constants at 20	°C	
	k ₍₂₀₎	l/d	2.5
Waste water temperature	Ti	°C	21.0
Aeration constants in leachate			
in leachate	α		0.6
in treated water	β		0.9
Oxygen concentration to be maintained	d in liquid	$mg$ - $O_2/L$	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	7

3.2 Surface area of the lagoon  $A m^2$ 

 $\theta c = V/Q$   $\therefore$   $V = \theta c^*Q$  V: volume of the lagoon

A = V/H

Dimension

	Unit	Stage1	Stage2	Stage3
V	m ³	6,790	4,270	-
А	m ²	1,940	1,220	-
L	m	70	60	-
W	m	30	22	-
Н	m	3.5	3.5	-
A' (corrected A)	m ²	2,100	1,320	-
V' (Corrected V)	m ³	7,400	4,700	-

## Table 104Dimension of Aerated Lagoon

3.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅out = { Ks (1 + 0c*kd) } / { $\theta c (Y*kmax - kd) - I$  } (mg/L)

Ks	θc*kd	1+0c*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅ out
100	0.49	1.49	149	7	3.9	3.83	25.8	5.8

# 3.4 Effluent BOD₅

(1) Correct the removal-rate for temperature effects

$$k(t) = k(20)^* \theta^{T-20}$$
 (1/d)

Ti	k ₍₂₀₎	T-20	θ	θ ^(T-20)	$k_{(20)}\theta^{(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

(2) Determine the effluent BOD₅: St- $_{out}$  (mg/L)

St-out/ $S_0 = 1/(1+k\theta_H) = S/S_0 = 1/(1+kV/Q)$ 

kt	V/Q	1+kV/Q	1/(1+kV/Q)	$S_0$	St-out
2.7	14	19.55	0.05	368	19

3.5 Concentration of biological solids produced: X (mg/L)

 $X = Y (S_0-S-BOD_5-out)/(1+k_d\theta_c) (mg-VSS/L)$ 

Y	S ₀ -S-BOD _{5-out}	k _d	θc	$Y(S_0-S-BOD_{5-out})/(1+k_d\theta_c)$
0.65	362.2	0.07	7	158

3.6 Suspended solids in the lagoon before settling

SSi = Influent suspended solids + X/0.7(mg/L)

Ratio of volatile suspended solid

0.7

SSo	Х	SSi
378	158	604

# 3.7 Oxygen requirements

 $Q_2(kg/d) = Q(S_0-S-BOD_{5-out})/f-1.42Px$ 

f: conversion factor for  $BOD_5$  to  $BOD_L$  0.68

Px = Q*(concentration of biological solids produced)

Table 105 Required O₂

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
S ₀ -s-BOD _{5-out}	mg/L	362	362	-
f	-	0.68	0.68	-
Px	kg/day	153	96	-
Required O ₂	kg/day	299	188	-

3.8 Ratio of oxygen required to BOD₅ removed

BOD₅ removed (kg/d)

O₂/BOD₅ removed

Table 1	06 R	emoved	BOD ₅

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
So-S-BOD _{5-out}	mg/L	362	362.2	-
BOD ₅ removed	kg/day	351	22.1	-
O ₂ /BOD ₅	-	0.9	0.9	-

3.9 Surface aerator power requirements

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6
a) Correction factor for surface aerators for sur	nmer conditions	f	
f=No/N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)		mg/L	9.08
3) DO concentration in Lagoon	CL	mg/L	1.5

f= {B*CsT-CL}/ Cs (20)*1.024T-20* $\alpha$ }

Ti-20	$1.024^{\text{T-}20}$	α	В	f
1	1.029	0.6	0.9	0.44

b) Field transfer rate: N

 $N = fN_0$ 

kg-O₂/kw/h 0.71 kg-O₂/kw/d kg-O₂/kw/h 17.0 Total amount of transfer O₂

The total axis power required to meet the required oxygen

Table 107Required O2Supply

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	299	188	-
Required power for O ₂ supply	kW	17.6	11.1	-

3.10 Energy requirements for mixing

### Table 108Specifications of Aerator

	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	_
Lagoon volume	m ³	7,400	4,700	-
Axis power for mixing	kW	37	23.5	-
Total efficiency	-	0.75	0.75	-
Required power	kW	49	31	-
Unit power	kW/No.	11	11	-
No. of Aerator	Nos.	5	3	-

#### Leachate recirculation pump 4.

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05
From the entrance of anaerobic lagoon to landfill		

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
r	-	3	3	-
Or	m ³ /day	2,910	1,830	-
Qr	m ³ /min	2.02	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
Da	Horse power	15.4	19.4	-
18	kW	11.6	14.6	-
Unit power	kW/No.	15	19	-
Nos. of pumps	Nos.	(2+1)	(1+1)	-

### Table 109 Specifications of Leachate Recirculation Pump

### 5. Maturation Pond

# Design criteria

D _m : Depth of maturation pond	1.5 m
RT _m : Retention time of maturation pond	14 days

A_m: Area od maturation pond

Dimensions of maturation pond

Length	Lm	m
Width	Wm	m

### Table 110Dimensions of Maturation Pond

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
RT _m	days	14	14	-
Vm	m ³	13,580	8,540	-
Nos. of Ponds	-	2	2	-
Vm/Pond	m ³	6,790	4,270	-
Dm/Pond	m	1.5	1.5	-
Am/Pond	m ²	4,600	2,900	-
Lm/Pond	m	120	90	-
Wm/Pond	m	40	35	-

Pond arrangement: Series

# Leachate Treatment Alternatives of New Guanabacoa

### Alternative 1: Aerated Lagoon + Maturation Pond with recirculation -New Guanabacoa

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is the same as the one which was adopted in the original pilot project in Campo Florido. However only aerated lagoon can not remove T-BOD₅ and SS. Therefore maturation pond after aerated lagoon was proposed.

### 1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality	Unit-mg/L				
Leachate Quality	T-BOD ₅	SS	S-BOD ₅		
Inlet	920	540	600		
Outlet	60	70	30		
Removal rate (%)	93.5	87.0	95		

 Table 111
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1) Leachate generation

Stage1	$\mathbf{A}_1$	6.0 ha	$60,000 \text{ m}^2$
Stage2	$A_2$	4.0 ha	$40,000 \text{ m}^2$
Stage3	$A_3$	0.0 ha	0 m ²

Once surface liner facility is constructed in landfill site, it is assumed that no water flows into the landfill site

 $q = f^*C^*A^*I/1000 (m^3/day)$ 

Where

- q: Daily effluent amount of leachate water( $m^3/day$ )
- C: Leachate coefficient of on-going landfill section 0.4
- I: Annual maximum rainfall (mm/day) Maximum rainfall during 2000 to 2002 338 mm in September in 2002 11.3 mm/day

A: Landfill area (m²)

f: Safety factor

- 1.6
- Q: Daily effluent amount of leachate with safety factor  $(m^3/day)$

Fable 112	Proposed	Leachate	Volume
-----------	----------	----------	--------

Q	Stage1	Stage2	Stage3
(m ^{3/} day)	730	610	0

# 2. Leachate treatment

# 2.1 Aerated Lagoon Process Design

Design Base:

	Symbol	Unit	
Influent flow	Q	m ³ /d	
Influent suspended solids	$SS_0$	mg/L	540
Influent soluble BOD ₅	$\mathbf{S}_0$	mg/L	920
Effluent soluble BOD ₅	S-BOD _{5-out}	mg/L	30
Effluent suspended solid after settling	SSe	mg/L	70
Kinetic coefficients:		l/d	0.65
Υ		mg-BOD ₅ /L	100
Ks		mg-BOD ₅ /L/d	6.0
Kmax		l/d	0.07
Kd	k (20)	l/d	2.5
First order soluble BOD ₅ removal rate constants at $20 \ ^{\circ}\text{C}$	Ti	°C	21.0
Waste water temperature			
in leachate	α		0.6
in treated water	β		0.9
Oxygen concentration to be maintained in liquid		mg-O ₂ /L	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	14

# 2.2 Surface area of the lagoon

 $\theta c = V/Q$   $\therefore$   $V = \theta c^*Q$  V: volume of the lagoon A = V/H

Dimension

	Unit	Stage1	Stage2	Stage3
V	m ³	6,160	4,060	-
А	m ²	1,760	1,160	-
L	m	60	60	-
W	m	30	20	-
Н	m	3.5	3.5	-
A' (Connected A)	m ²	1,800	1,200	-
V' (Connected V)	m ³	6,300	4,200	-

Number of lagoon: 1

# 2.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅ out = {Ks  $(1+\theta c^*kd)$ }/ { $\theta c (Y^*kmax-kd)$ -1}(mg/L)

Ks	θc*kd	1+θc*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅ out
100	0.98	1.98	198	14	3.9	3.83	52.6	3.8

# 2.4 Effluent BOD₅

1) Correct the removal-rate for temperature effects

 $k(t) = k(20)*\theta T-20$ 

Ti	k ₍₂₀₎	T-20	θ	$\theta^{(T-20)}$	$k_{(20)} \theta^{(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

2) Determine the effluent BOD₅: St-out (mg/L)

kt	V/Q	1+kV/Q	1/(1+kV/Q)	$S_0$	St-out
2.7	14	38.10	0.03	920	24

2.5 Concentration of biological solids produced : X(mg/L)

 $X = Y(S0-S-BOD_5-out)/(1+kd\theta c)(mg-VSS/L)$ 

Y	S ₀ -S-BOD _{5-out}	kd	θc	$Y(S_0-S-BOD_{5-out})/(1+kd\theta c)$
0.65	916.2	0.07	14	301

2.6 Suspended solids in the lagoon before settling

SSi = Influent suspended solids + X/0.7(mg/L)

SSo	Х	SSi
540	301	970

0.7

Ratio of volatile suspended solid

2.7 Oxygen requirements

 $Q_2(kg/d) = Q(S_0-S-BOD_{5-out})/f - 1.42Px$ 

f: conversion factor for  $BOD_5$  to BODL 0.68

 $Px = Q^*$ (concentration of biological solids produced)

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
S ₀ -s-BOD _{5-out}	mg/L	916	916	-
f	-	0.68	0.68	-
Px	kg/day	132	87	-
Required O ₂	kg/day	405	267	-

### Table 114 Required O₂

# 2.8 Ratio of oxygen required to BOD₅ removed

### BOD₅ removed (kg/d)

O₂/BOD₅ removed

<b>Fable 115</b>	<b>Removed BOD</b> ₅
	110110100 2023

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
S ₀ -S-BOD _{5-out}	mg/L	916	916	-
BOD ₅ removed	kg/day	403	266	-
$O_2/BOD_5$	-	1.0	1.0	-

2.9 Surface aerator power requirements

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6
a) Correction factor for surface aerators for sur	nmer conditions	f	
f=No. /N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)	mg/L	9.08	
3) Do concentration in Lagoon	$C_{L}$	mg/L	1.5
$f = (D * C_{a}T CI) / C_{a}(20) * 1.024T 20 * a)$			

 $f = \{B*CsT-CL\}/Cs(20)*1.024T-20*\alpha\}$ 

Ti-20	1.024 ^{T-20}	α	В	f
1	1.029	0.6	0.9	0.44

b) Field transfer rate : N

Total amount of transfer O₂

N=fNo

kg-O₂/kw/h 0.71

 $kg\text{-}O_2/kw/d \qquad kg\text{-}O_2/kw/h \quad 17.0$ 

The total axis power required to meet the required oxygen

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	405	267	-
Required power for O ₂ supply	kw	23.8	15.7	_

# 2.10 Energy requirements for mixing

	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	-
Lagoon volume	m ³	6,300	4,200	-
Axis power for mixing	kW	31.5	21	-
Total efficiency	-	0.75	0.75	-
Required power	kW	42	28	-
Unit Power	kW/No.	11	11	-
No. of Aerator	Nos.	5	4	-

t

V

Table 117Specifications of Aerator

# 3. Solid separation for aerated lagoon

# 3.1 Design Base:

1) Process: maturation pond

2) HRT (days):

3) Depth (m)	D
Necessary Area (m ² )	А
A = Qt/d	

Volume of the maturation pond (m³)

$$V = A*D0$$

The effluent SS may be expected to be at about 50-100 mg/L  $\,$ 

Dimension	Length	L
	Width	W
	Height	Н

### Table 118 Dimension of Maturation Pond

	Unit	Stage1	Stage2	Stage3
Q	m ^{3/} day	440	290	-
t	days	14	14	-
V	m ³	6,160	4,060	-
No. of Ponds	-	2	2	-
$D_0$	m	1.5	1.5	-
A/pond	m ²	2,100	1,400	-
D/pond	m	70	60	-
W/pond	m	30	25	-
A' (corrected A)/pond	m ²	2,100	1,500	-

# 4. Leachate recirculation pump

1) Recirculation rate

times/leachate

Recirculation pump flow

m³/day

 $Qr = r^*Q$ 

r

Qr

Required Power Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$ Ho	ose power
Here	
Total head of the pump H	m
Total efficiency ή	
Liquid density ps	1.05

From the entrance of aerated lagoon to landfill

	<b>TT 1</b>			G. 0
	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
r	-	3	3	-
Or	m ³ /day	2,9910	1,830	-
QI	m ³ /min	2.02	1.27	-
Head	m	50	50	-
ή	- 0.56		0.56	-
De	Horse power	15.4	19.4	-
15	kW	11.6	14.6	-
Unit power	kW/No.	15	19	-
Nos. of pumps	Nos.	(2+1)	(1+1)	-

# Table 119 Specifications of Leachate Recirculation Pump

# Alternative 2: Aerated Lagoon + Sedimentation Pond + Wetland with recirculation -New Guanabacoa

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is the same as the one which was adopted in the original pilot project in Campo Florido. However only aerated lagoon can not remove T-BOD₅ and SS. Therefore sedimentation pond and wetland were proposed.

### 1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leochote Quality	Unit-mg/L				
Leachate Quality	T-BOD ₅	SS	S-BOD ₅		
Inlet	920	540	600		
Outlet	60	70	30		
Removal rate (%)	93.5	87.0	95		

 Table 120
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1) Leachate generation

Landfill Area			
Stage1	$A_1$	6.0 ha	$60,000 \text{ m}^2$
Stage2	$A_2$	4.0 ha	$40,000 \text{ m}^2$
Stage3	A ₃	0.0 ha	$0 \text{ m}^2$

Once surface liner facility is constructed in landfill site, it is assumed that no water flows into the landfill site

 $q = f^*C^*A^*I/1000 (m^3/day)$ 

Where

- q: Daily effluent amount of leachate water( $m^3/day$ )
- C: Leachate coefficient of on-going landfill section 0.4
- 1: Annual maximum rainfall (mm/day) Maximum rainfall during 2000 to 2002
   338 mm in September in 2002

11.3 mm/day

16

- A: Landfill area (m²)
- f: Safety factor
- Q: Daily effluent amount of leachate with safety factor  $(m^3/day)$

Table	e 121	Propos	sed Leac	hate V	olume
	<i>a</i> .		<i>a</i> .		a

Q	Stage1	Stage2	Stage3
(m ^{3/} day)	440	290	0

#### 2. Leachate treatment

#### Aerated Lagoon Process Design 2.1

Design Base:

	Symbol	Unit	
Influent flow	Q	m ³ /d	
Influent suspended solids	$SS_0$	mg/L	540
Influent soluble BOD ₅	$S_0$	mg/L	920
Effluent soluble BOD ₅	S-BOD _{5-out}	mg/L	30
Effluent suspended solid after settling	SSe	mg/L	70
Kinetic coefficients:		l/d	0.65
Υ		mg-BOD ₅ /L	100
Ks		mg-BOD ₅ /L/d	6.0
Kmax		l/d	0.07
Kd	k (20)	l/d	2.5
First order soluble BoD5 removal rate constants at $20 \ ^{\circ}\text{C}$	Ti	°C	21.0
Waste water temperature			
in leachate	α		0.6
in treated water	β		0.9
Oxygen concentration to be maintained in liquid		mg-O ₂ /L	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	14

#### 2.2 Surface area of the lagoon

 $\theta c = V/Q$   $\therefore V = \theta c^*Q$ 

V: volume of the lagoon

A=V/H

Dimension

	Unit	Stage1	Stage2	Stage3
V	$m^3$	6,160	4,060	-
А	$m^2$	1,760	1,160	-
L	m	60	60	-
W	m	30	20	-
Н	m	3.5	3.5	-
A' (Connected A)	$m^2$	1,800	1,200	-
V' (Connected V)	m ³	6,300	4,200	-

# Table 122 Dimensions of Aerated Lagoon

Number of lagoon: 1

# 2.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅₋out = {Ks  $(1+\theta c^*kd)$ }/ { $\theta c (Y^*kmax-kd)$ -1}(mg/L)

Ks	θc*kd	1+θc*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅₋ out
100	0.98	1.98	198	14	3.9	3.83	52.6	3.8

### 2.4 Effluent BOD5

1) Correct the removal-rate for temperature effects

 $k(t) = k(20) * \theta T - 20$ 

Ti	k ₍₂₀₎	T-20	θ	θ ^(T-20)	$k_{(20)}\theta^{(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

2) Determine the effluent BOD5: St-out (mg/L)

kt	V/Q	1+kV/Q	1/(1+kV/Q)	$S_0$	St-out
2.7	14	38.10	0.03	920	24

2.5 Concentration of biological solids produced: X (mg/L)

 $X = Y (S0-S-BOD_{5-out}) / (1+kd\theta c) (mg-VSS/L)$ 

Y	S ₀ -S-BOD _{5-out}	kd	θc	$Y(S_0-S-BOD_{5-out})/(1+k_d\theta_c)$
0.65	916.2	0.07	14	301

2.6 Suspended solids in the lagoon before settling

SSi = Influent suspended solids + X/0.7(mg/L)

	SSo	Х	SSi
	540	301	970
led solid			0.7

Ratio of volatile suspended solid

2.7 Oxygen requirements

 $Q_2 (kg/d) = Q(S_0-S-BOD_{5-out})/f-1.42Px$ 

f: conversion factor for BOD₅ to BODL 0.68

 $Px = Q^*$ (concentration of biological solids produced)

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
S ₀ -S-BOD _{5-out}	mg/L	916	916	-
f	-	0.68	0.68	-
Px	kg/day	132	87	-
Required O ₂	kg/day	405	267	-

Table	123	Required O ₂	

# 2.8 Ratio of oxygen required to BOD₅ removed

BOD₅ removed (kg/d)

O₂/BOD₅ removed

Table	124	Removed	BOD ₅
			2023

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
S ₀ -S-BOD _{5-out}	mg/L	916	916	-
BOD ₅ removed	kg/day	403	266	-
$O_2/BOD_5$	-	1.0	1.0	-

2.9 Surface aerator power requirements

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6
a) Correction factor for surface aerators for sum	mer conditions f		
f = No. /N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)	mg/L	9.08	
3) Do concentration in Lagoon	$C_{\rm L}$	mg/L	1.5
f= {B*CsT-CL}/ Cs (20)*1.024T-20* $\alpha$ }			

Ti-20	$1.024^{\text{T-}20}$	α	В	f
1	1.029	0.6	0.9	0.44

b) Field transfer rate: N

N = fNo

kg-O₂/kw/h 0.71

Total amount of transfer  $O_2$  kg- $O_2/kw/d$  kg- $O_2/kw/h$  17.0

The total axis power required to meet the required oxygen

### Table 125Required O2 Supply

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	405	267	-
Required power for O ₂ supply	kw	23.8	15.7	-

# 2.10 Energy requirements for mixing

	1			
	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	-
Lagoon volume	m ³	6,300	4,200	-
Axis power for mixing	kW	31.5	21	-
Total efficiency	-	0.75	0.75	-
Required power	kW	42	28	-
Unit Power	kW/No.	11	11	-
No. of Aerator	Nos.	5	4	_

# Table 126Specifications of Aerator

# 3. Leachate recirculation pump

r	times/leachate
Qr	m ³ /day
Ps	
Hose pow	ver
Н	m
ή	
ρs	1.05
	r Qr Ps Hose pow Η ή ρs

From the entrance of aerated lagoon to landfill

Table 127         Specifications of Leachate Recirculation Pu
---------------------------------------------------------------

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	970	610	-
r	-	3	3	-
Or	m ³ /day	2,910	1,830	-
QI	m ³ /min	2.02	1.27	-
Head	m	50	50	-
ή	-	0.56	0.56	-
Ps	Horse power	15.4	19.4	-
	kW	11.6	14.6	-
Unit power	kW/No.	15	19	-
Nos. of pumps	Nos.	(2+1)	(1+1)	_

# 4. Solid-liquid separation: sedimentation tank

Qi: Inflow	m ³ /day
Safety factor	3
R.T: Retention time at Qi*3	hr
OL: Overflow rate at Qi*3	m ³ /m ² /day
Qi*Ci = Qo*Co+Qu*Cu	

Ci. Inflow SS		mg/L
		/T
Co: Outflow SS		mg/L
Cu: Concentrated SS in the	sedimentation tank	mg/L
Qo: Outflow		m ³ /day
Qu: Underflow (Sludge flor	w)	m ³ /day
Qu = Qi-Qo		m ³ /day
Qo=Qi*(Cu-Ci) / (Cu-Co)		m ³ /day
As: Surface area = Qo/OL		$m^2$
Dimension	Ls: Length of sedimentation tank	m
	Ws: Width of sedimentation tank	m
Hs: Height of sludge zone = $Vs/A$	As	m
Vs: Volume of sedimentation tan	k	m ³
H2: Height allowance = $Vs/As$		$m^2$

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
Qi	m ³ /day	1,320	870	-
RT	hr	2	2	-
OL	m ³ /m ² /day	22	22	-
Ci	mg/L	970	970	-
Со	mg/L	70	70	-
Cu	mg/L	5,000	5,000	-
Qo	m ³ /day	1,100	700	-
As	m ²	50	40	-
Ls	m	20	10	-
Ws	m	4	4	-
Hs	m	2.2	2.0	-
Vs	m ³	110	80	-
Qu	m ³ /day	220	170	-
H2	m	1.5	1.5	-
H0	m	3.7	3.8	-

 Table 128
 Dimension of sedimentation tank

Total Height Ho=H2+Hs

### 5. To removal nutrients, use wetland.

Only by aerated lagoon, only  $BOD_5$  and SS are removed. For further treatment for nutrients another process is necessary.

Here, wetland was considered as an alternative for this purpose, considering cost efficiency.

Levels of nitrogen and phosphates are estimated as below based on the analysis of leachate during this Study.

Total-N:	240	mg/L
Total-P:	64	mg/L

In biological treatment nitrogen and phosphate are necessary. The ratio of N and P towards  $BOD_5$  is 3:0.3:100

Therefore N and P after biological treatment, their levels are expected as below.

Inlet BOD ₅		920	mg/L
Therefore N to be removed by biological treatment		27.6	mg/L
Therefore P to be removed by biological treatment		2.76	mg/L
After aerated lagoon remained N N		212	mg/L
	Р	61	mg/L

Criteria*			
20	mg/L. as KTN		
10	mg/L. as P		

*:Discharge criteria of industrial waste water into general public water body

Inlet T-P level will be reduced by using cover soil.

Therefore, only removal of nitrogen would be considered.

Here, subsurface-flow (SSF) systems was considered.

In a SSF wetland, the basin is filled with gravel or some other coarse substrate, and the water level is maintained below-ground. Water flows horizontally, or sometimes vertically, through the gravel and the root mat of the wetland vegetation.

Arrow arum (Polyandry spp.) and Pickerel weed (Pontederia spp.) have been used in constructed wetlands.

Also common reed (Phragmitescommunis) is used



Figure 7 Conceptual diagram of subsurface-flow wetlands

# Example of determination of basin design for SFS wetlands system

Nitrogen removal will proceed when BOD₅ level is less than 10 mg/L.

1.	Premises		
	Influent BOD ₅	$C_0$	60 mg/L
	Effluent BOD ₅	Ce	8 mg/L
	Inflow	Q	m ³ /day
			m ³ /day
	Vegetation type		cattails
	Minimum water temperature	Т	21°C
	Basin media	coarse sand with 2	mm of maximum effective size
	Basin slope	S	0.01
2.	Solution		
1.	Basin depth for use wit cattail	d	0.3 m
2.	Porosity	α	0.39
	Hydraulic conductivity	Ks	$480 \text{ m}^{3}/\text{m}^{2}/\text{day}$
		K ₂₀	1.35
3.	Temperature-dependent first order	rate constant	
		K _T at	21 °C
			$1.49 \text{ d}^{-1}$
4.	Pore-space detention time	t' = -1nCe/C0/Kt	d
5.	Cross-sectional area	Ac = Q/Ks/S	$m^2$
6.	Basin width	W = Ac/d	m
7.	Basin length	$L = t'Q/W/d/\alpha$	m
8.	Required surface area	As = L*W	$m^2$
			ha
9.	Check hydraulic-loading rate or sp	ecific area requireme	ents
		Lw = Q/L/W	150 to 500 m ³ /ha/day
			$0.015 \text{ to } 0.005 \text{ m}^3/\text{m}^2/\text{day}$
	or	Asp= $1/Lw$ for adva	anced treatment 2.1 ha/ $10^3$ m ³
10.	Check BOD ₅ loading rate	Max.BOD _{5L}	60 kg/ha/day
	LBOD ₅		kg/day
	BOD _{5L}		kg/ha/day
11.	Vegetation		
	Reed can absprb	Ν	18 to 21g/kg
		Р	2.0 to 3.0 g/kg
	Inlet N		212.4 mg/L
	Vd: vegetation density		$10 \text{ kg/m}^2$

	Unit	Stage1	Stage2	Stage3
C ₀	mg/L	60	60	-
Ce	mg/L	8	8	-
Q	m ³ /day	440	290	-
Т	°C	21	21	-
S		0.01	0.01	-
d	m	0.3	0.3	-
α		0.39	0.39	-
Ks	m ³ /m ² /day	480	480	-
K ₂₀		1.35	1.35	-
Kt	d ⁻¹	1.49	1.49	-
ť	day	1.36	1.36	-
Ac	m ²	92	60	-
W	m	310	210	-
L	m	16	16	-
As	m ²	5,200	3,400	-
Lw	m ³ /m ² /day	0.09	0.09	-
Asp	ha/1000m ³	11.60	11.60	-
L-BOD ₅	kg/day	26.4	17.4	-
BOD _{5L}	kg/ha/day	51	51	-
V	m ³	1,560	1,020	-
R.T	day	3.5	3.5	-
Inlet N	mg/L	212	212	-
Total N in WL	g	340,000	220,000	-
N absorption	g/kg	18	18	-
Nos. of reed	kg	18,889	12,222	-
Vd	kg/m ²	10	10	-
Max Reed	kg	52,000	34,000	_

# Table 129Specification of Wetland

# Alternative 3: Natural Pond System (Anaerobic + Facultative + Maturation Pond) -New Guanabacoa

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is so called natural pond system to remove BOD₅, SS and nutrients such as N and P.

# 1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality	Unit-mg/L			
	T-BOD ₅	SS	S-BOD ₅	
Inlet	920	540	600	
Outlet	60	70	30	
Removal rate (%)	93.5	87.0	95	

 Table 130
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

### 2. Anaerobic pond

RTa: Retention time of anaerobic	pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			$m^2$
Va: Anaerobic pond volume			m ³
Dimension	Length	La	m
	Width	Wa	m
BOD _{51.a} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	940	290	-
R.T	days	7	7	-
Va	m ³	3,080	2,080	-
Da	m	3.5	3.5	-
Aa	$m^2$	880	580	-
La	m	50	40	-
Wa	m	20	15	-
BOD ₅	g/day	404,800	266,800	-
BOD _{5La}	g/m³/day	131	131	-

### Table 131 Dimension of Anaerobic Pond

Number of ponds: 1

### **3.** Facultative Pond

ls ₁ : BOD permissible loading			kg/ha/day
$ls_1 = 350 (1.107 - 0.002T)^{T-25}$			100 to 400 kg/ha/day
or			
$1s_2 = 20T-120$			kg/ha/day
Here, T: Minimum temperature			21 °C
Ls: BOD ₅ loading			
Ls = 10 Li Q / Af			kg/ha/day
Here,			
Li: Inflow BOD ₅			mg/L
Af: Facultative pond area			$m^2$
$Af = Q * (Li - Le)/18D/(1.05)^{T-20}$			
Here,			
Le: Outflow BOD ₅			mg/L
L _r : BOD ₅ removal			kg/ha/day
$Lr = 0.725Ls \div 10.75$			
Df: Depth of the facultative pond			m
Dimensions of facultative pond	Length	Lf	m
	Width	Wf	m

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
Т	°C	21	21	-
ls ₁	kg/ha/day	272	272	-
$ls_2$	kg/ha/day	300	300	-
Ls	kg/ha/day	270	267	-
Li	mg/L	368	368	-
Df	m	1.2	1.2	-
Af	m ²	6,000	4,000	-
Le	mg/L	60	60	-
Lr	kg/ha/day	206	204	-
$BOD_{5Rf}$	%	76.5	76.5	-
BOD _{5out-f}	mg/L	87	87	-
R.T _f	days	16	17	-

### Table 132 Dimension of Sedimentation Tank

Remarks:

(a) There is a difference between  $ls_1$  and  $ls_2$ . Adopt  $ls_1$  for safety.

- (b) There is a difference between Le and BOD_{5out-f}. This is because Equations for Ls and Af are the one to get 60 mg/L-BOD₅ in South America.
- (c) On the contrary, the value of BOD_{5out-f} is calculated by the equation for Lr. Lr shows the average of the data arranged by MacGarry and Pescord.
- (d) The BOD₅ removal in primary facultative ponds is usually in the range 70-80 percent based on unfiltered samples (that is, including the BOD exerted by the algae).

Therefore, effluent BOD_{5out-f} level from facultative pond will be considered 60-117 mg/L with algae.

(e) It is said BOD₅ quality of the effluent from a facultative ponds as most of the BOD contained (70 to 90%) will be "algal BOD. Therefore, the filtered (soluble) BOD₅ level will be at least 18-35 mg/L.

	Unit	Stage1	Stage2	Stage3
Af	m ²	6,000	4,000	-
Nos. of ponds	-	2	2	-
Af/pond	m ²	3,000	2,000	-
Lf/pond	m	90	70	-
Wf/pond	m	35	30	-
Df	m	1.2	1.2	-
Vf/pond	m ³	3,780	2,520	-
Total Vf	m ³	7,560	5,040	-

Table 133Dimensions of Facultative Pond

Pond arrangement: Parallel

### 4. Maturation pond

Maturation ponds (low-cost polishing ponds, which succeed the primary or secondary facultative pond) are primarily designed for tertiary treatment, i.e., the removal of pathogens, nutrients and possibly algae.

With the combination of facultative pond and maturation pond,

- (1) Total nitrogen removal in WSP systems can reach 80 percent or more, and ammonia removal can be as high as 95 percent.
- (2) The best way of increasing phosphorus removal in WSP is to increase the number of

maturation ponds, so that progressively more and more phosphorus becomes immobilized in the sediments. From a well functioning 2 ponds system, 70% mass removal of total.

(3) The removal rate increases by adding maturation ponds.

### Design criteria

D _m : Depth of maturation pond	1.5 m
-------------------------------------------	-------

RT _m : Retention time of maturation pond	14 days
-----------------------------------------------------	---------

A_m: Area od maturation pond

Dimensions of maturation pond

Length	Lm	m
Width	Wm	m

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
RT _m	days	14	14	-
Vm	m ³	6,160	4,060	-
Nos. of Ponds	-	2	2	-
Vm/Pond	m ³	3,080	2,030	-
Dm/Pond	m	1.5	1.5	-
Am/Pond	m ²	2,100	1,400	-
Lm/Pond	m	70	60	-
Wm/Pond	m	30	25	-

Table 134Dimensions of Maturation Pond

Pond arrangement: Series

# 5. Leachate Recirculation pump

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05
From the entrance of anaerobic lagoon to landfill		

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
r	-	3	3	-
Or	m ³ /day	1,320	870	-
QI	m ³ /min	0.92	0.60	-
Head	m	40	40	-
ή	-	0.56	0.56	-
Ps	Horse power	11.2	7.4	-
	kW	8.4	5.5	-
Unit power	kW/No.	11	7.5	-
Nos. of pumps	Nos.	(1+1)	(1+1)	-

 Table 135
 Specifications of Leachate Recirculation Pump

## Alternative 4: Natural Pond System (Anaerobic + Facultative + Wetland) - New Guanabacoa

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is an alternative to use wetland instead of Maturation Pond in Alternative 3 in order to remove nutrients such as N and P.

# 1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality	Unit-mg/L			
	T-BOD ₅	SS	S-BOD ₅	
Inlet	920	540	600	
Outlet	60	70	30	
Removal rate (%)	93.5	87.0	95	

Table 136Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

# 2. Anaerobic pond

RTa : Retention time of anaerobio	c pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			$m^2$
Va: Anaerobic pond volume			m ³
Dimension	Length	La	m
	Width	Wa	m
BOD _{5La} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
R.T	days	7	7	-
Va	m ³	3,080	2,030	-
Da	m	3.5	3.5	-
Aa	m ²	880	580	-
La	m	50	40	-
Wa	m	20	15	-
BOD ₅	g/day	404,800	266,800	-
BOD _{5La}	g/m³/day	131	131	-

### Table 137 Dimension of Anaerobic Pond

Number of ponds: 1

# **3.** Facultative Pond

ls ₁ : BOD permissible loading			kg/ha/day
$ls_1 = 350 (1.107 - 0.002T)^{T-25}$			100 to 400 kg/ha/day
or			
$ls_2 = 20T-120$			kg/ha/day
Here, T: Minimum temperature			21 °C
Ls: BOD ₅ loading			
Ls = 10 Li Q / Af			kg/ha/day
Here,			
Li: Inflow BOD ₅			mg/L
Af: Facultative pond area			m ²
$Af = Q * (Li - Le)/18D/(1.05)^{T-20}$			
Here,			
Le: Outflow BOD ₅			mg/L
L _r : BOD ₅ removal			kg/ha/day
$Lr = 0.725Ls \div 10.75$			
Df: Depth of the facultative pond			m
Dimensions of facultative pond	Length	Lf	m
	Width	Wf	m

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
Т	°C	21	21	-
$ls_1$	kg/ha/day	272	272	-
$ls_2$	kg/ha/day	300	300	-
Ls	kg/ha/day	270	267	-
Li	mg/L	368	368	-
Df	m	1.2	1.2	-
Af	m ²	6,000	4,000	-
Le	mg/L	60	60	-
Lr	kg/ha/day	206	204	-
$BOD_{5Rf}$	%	76.5	76.5	-
BOD _{5out-f}	mg/L	87	87	-
R.T _f	days	16	17	-

Table 138	Dimension	of Sedimentation	Tank
-----------	-----------	------------------	------

Remarks:

(a) There is a difference between  $ls_1$  and  $ls_2$ . Adopt  $ls_1$  for safety.

(b) There is a difference between Le and  $BOD_{5out-f}$ . This is because Equations for Ls and Af are the one to get 60 mg/L-BOD₅ in South America.

- (c) On the contrary, the value of BOD_{5out-f} is calculated by the equation for Lr. Lr shows the average of the data arranged by MacGarry and Pescord.
- (d) The BOD₅ removal in primary facultative ponds is usually in the range 70-80 percent based on unfiltered samples (that is, including the BOD exerted by the algae).

Therefore, effluent BOD_{5out-f} level from facultative pond will be considered 60-117 mg/L with algae.

(e) It is said BOD₅ quality of the effluent from a facultative ponds as most of the BOD contained (70 to 90%) will be "algal BOD. Therefore, the filtered (soluble) BOD₅ level will be at least 18-35 mg/L.

	Unit	Stage1	Stage2	Stage3
Af	m ²	6,000	4,000	-
Nos. of ponds	-	2	2	-
Af/pond	m ²	3,000	2,000	-
Lf/pond	m	90	70	-
Wf/pond	m	35	30	-
Df	m	1.2	1.2	-
Vf/pond	m ³	3,780	2,520	-
Total Vf	m ³	7,560	5,040	-

 Table 139
 Dimensions of Facultative Pond

Pond arrangement: Parallel

### 4. To removal nutrients, use wetland

Only by aerated lagoon, only BOD₅ and SS are removed. For further treatment for nutrients another process is necessary.

Here, wetland was considered as an alternative for this purpose, considering cost efficiency.

Levels of nitrogen and phosphates are estimated as below based on the analysis of leachate during this Study.

Total-N:	240	mg/L
Total-P:	64	mg/L

In biological treatment nitrogen and phosphate are necessary. The ratio of N and P towards  $BOD_5$  is 3:0.3:100

Therefore N and P after biological tr	reatment, their lev	els are expected	d as below.
Inlet BOD ₅		920	mg/L
Therefore N to be removed by biological treatment		27.6	mg/L
Therefore P to be removed by biological treatment		2.76	mg/L
After aerated lagoon remained N N		212	mg/L
	Р	61	mg/L

Criteria*			
20	mg/L. as KTN		
10	mg/L. as P		

*:Discharge criteria of industrial waste water into general public water body

Inlet T-P level will be reduced by using cover soil. Therefore, only removal of nitrogen would be considered.

Here, subsurface-flow (SSF) systems was considered.

In a SSF wetland, the basin is filled with gravel or some other coarse substrate, and the water level is maintained below-ground. Water flows horizontally, or sometimes vertically, through the gravel and the root mat of the wetland vegetation.

Arrow arum (Polyandry spp.) and Pickerel weed (Pontederia spp.) have been used in constructed wetlands.

Also common reed (Phragmitescommunis) is used



Figure 8 Conceptual diagram of subsurface-flow wetlands

# Example of determination of basin design for SFS wetlands system

Nitrogen removal will proceed when BOD₅ level is less than 10 mg/L.

1.	Premises		
	Influent BOD ₅	$C_0$	87 mg/L
	Effluent BOD ₅	Ce	8 mg/L
	Inflow	Q	m ³ /day
			m ³ /day
	Vegetation type		cattails
	Minimum water temperature	Т	21°C
	Basin media	coarse sand with 2	mm of maximum effective size
	Basin slope	S	0.01
2.	Solution		
1.	Basin depth for use wit cattail	d	0.3 m
2.	Porosity	α	0.39
	Hydraulic conductivity	Ks	$480 \text{ m}^3/\text{m}^2/\text{day}$
		K ₂₀	1.35
3.	Temperature-dependent first order	rate constant	
		K _T at	21 °C
			1.49 d ⁻¹
4.	Pore-space detention time	t' = -1nCe/C0/Kt	d
5.	Cross-sectional area	Ac = Q/Ks/S	$m^2$
6.	Basin width	W = Ac/d	m
7.	Basin length	$L = t'Q/W/d/\alpha$	m
8.	Required surface area	As = L*W	$m^2$
			ha
9.	Check hydraulic-loading rate or sp	ecific area requireme	ents
		Lw = Q/L/W	150 to 500 m ³ /ha/day
			$0.015$ to $0.005 \text{ m}^3/\text{m}^2/\text{day}$
	or	Asp= $1/Lw$ for adv	anced treatment 2.1 ha/ $10^3$ m ³
10.	Check BOD ₅ loading rate	Max.BOD _{5L}	60kg/ha/day
		LBOD ₅	kg/day
		BOD _{5L}	kg/ha/day
11.	Vegetation		
	Reed can absprb	Ν	18 to 21g/kg
		Р	2.0 to 3.0 g/kg
	Inlet N		240 mg/L
	Vd: vegetation density		$10 \text{ kg/m}^2$

	Unit	Stage1	Stage2	Stage3
C ₀	mg/L	87	87	-
Ce	mg/L	8	8	-
Q	m ³ /day	440	290	-
Т	°C	21	21	-
S		0.01	0.01	-
d	m	0.3	0.3	-
α		0.39	0.39	-
Ks	m ³ /m ² /day	480	480	-
K ₂₀		1.35	1.35	-
Kt	d ⁻¹	1.49	1.49	-
ť'	day	1.61	1.61	-
Ac	m ²	92	60	-
W	m	310	210	-
L	m	19	19	-
As	m ²	6,100	4,000	-
Lw	m ³ /m ² /day	0.07	0.07	-
Asp	ha/1000m ³	13.74	13.74	-
L-BOD ₅	kg/day	38.3	25.23	-
BOD _{5L}	kg/ha/day	63	63	-
V	m ³	1,830	1,200	-
RT	day	4.2	4.1	-
Inlet N	mg/L	240	240	-
Total N in WL	g	440,000	290,000	-
N absorption	g/kg	18	18	-
Nos. of reed	kg	24,444	290,000	-
Vd	kg/m ²	10	10	-
Max Reed	kg	61,000	40,000	-

# Table 140 Specification of Wetland

This system seems to be inferior in performance.

# 5. Leachate Recirculation pump

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05
From the entropy of encountrie loss of the test of	10.11	

From the entrance of anaerobic lagoon to landfill
	Unit		Stage2	Stage3
Q	m ³ /day	440	290	-
r	-	3	3	-
Or	m ³ /day	1,320	870	-
QI	m ³ /min	0.92	0.60	-
Head	Head m		40	-
ή	-	0.56	0.56	-
Ps	Horse power	11.2	7.4	-
	kW	8.4	5.5	-
Unit power	kW/No.	11	7.5	-
Nos. of pumps	Nos. of pumps Nos.		(1+1)	-

Table 141	Specifications of Leachate Recirculation	Pump
14010 1 11	Specifications of Deachate Recent culation	1 ump

## Alternative 5: Anaerobic Pond + Aerated Lagoon + Sedimentation Pond + Wetland with recirculation -New Guanabacoa

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is an alternative adding Anaerobic Pond to Alternative 2 in order to reduce area.

## 1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality	Unit-mg/L					
	T-BOD ₅	SS	S-BOD ₅			
Inlet	920	540	600			
Outlet	60	70	30			
Removal rate (%)	93.5	87.0	95			

 Table 142
 Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

## 2. Anaerobic pond

RTa : Retention time of anaerobic pond					
BOD ₅ Removal rate			60%		
BOD ₅ out-a					
Da: Depth of the anaerobic pond					
Aa: Surface area			$m^2$		
Va: Anaerobic pond volume			m ³		
Dimension	Length	La	m		
	Width	Wa	m		
BOD _{5La} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day		

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
R.T	days	7	7	-
Va	$m^3$	3,080	2,030	-
Da	m	3.5	3.5	-
Aa	$m^2$	880	580	-
La	m	50	40	-
Wa	m	20	15	-
BOD ₅	g/day	404,800	266,800	-
BOD _{5La}	g/m³/day	131	131	-

#### Table 143 Dimension of Anaerobic Pond

Number of ponds: 1

## 3. Aerated Lagoon

## 3.1 Aerated Lagoon Process

Design Base:

	Symbol	Unit	
Influent flow	Q	m ³ /d	
Influent suspended solids	$SS_0$	mg/L	378
Influent soluble BOD ₅	$S_0$	mg/L	368
Effluent soluble BOD ₅	S-BOD _{5-out}	mg/L	30
Effluent suspended solid after setting	SSe	mg/L	70
Kinetic coefficients:			
Y		l/d	0.65
Ks		mg-BOD ₅ /L	100
Kmax		mg-BOD ₅ /L/d	6.0
Kd		l/d	0.07
First order soluble BOD ₅ removal rate	constants at 20	°C	
	k ₍₂₀₎	l/d	2.5
Waste water temperature	Ti	°C	21.0
Aeration constants in leachate			
in leachate	α		0.6
in treated water	β		0.9
Oxygen concentration to be maintained	l in liquid	$mg$ - $O_2/L$	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	7

#### $m^2$ 3.2 Surface area of the lagoon А

$$\theta c = V/Q$$
  $\therefore$   $V = \theta c^*Q$  V: volume of the lagoon

A = V/H

Dimension

Γ

	Table 144	4 Dimensio	n of Aerated l	Lagoon	
		Unit	Stage1	Stage2	Τ
V		m ³	3 080	2 030	

	Unit	Stage1	Stage2	Stage3
V	m ³	3,080	2,030	-
А	m ²	880	580	-
L	m	50	40	-
W	m	20	15	-
Н	m	3.5	3.5	-
A' (corrected A)	m ²	1,000	600	-
V' (Corrected V)	m ³	3,500	2,100	-

3.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅out = { Ks (1 + 0c*kd) } / { $\theta c (Y*kmax - kd) - I$  } (mg/L)

Ks	θc*kd	1+θc*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅ out
100	0.49	1.49	149	7	3.9	3.83	25.8	5.8

3.4 Effluent BOD₅

#### Correct the removal-rate for temperature effects (1)

$$\mathbf{k}(t) = \mathbf{k}(20)^* \mathbf{\theta}^{\mathrm{T-20}}$$

Ti	k ₍₂₀₎	T-20	θ	$\theta^{(T-20)}$	$k_{(20)}\theta^{(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

(l/d)

Determine the effluent BOD₅: St-out (mg/L) (2)

St-out/S₀ =  $1/(1+k\theta_H) = S/S_0 = 1/(1+kV/Q)$ 

kt	V/Q	1+kV/Q	1/(1+kV/Q)	$S_0$	St-out
2.7	7	19.55	0.05	368	19

3.5 Concentration of biological solids produced: X (mg/L)

 $X = Y (S_0-S-BOD_5-out)/(1+k_d\theta_c) (mg-VSS/L)$ 

Y	S ₀ -S-BOD _{5-out}	k _d	θc	$Y(S_0-S-BOD_{5-out})/(1+k_d\theta_c)$
0.65	362.2	0.07	7	158

3.6 Suspended solids in the lagoon before settling

SSi = Influent suspended solids + X/0.7(mg/L)

Ratio of volatile suspended solid

 SSo
 X
 SSi

 378
 158
 604

0.7

3.7 Oxygen requirements

 $Q_2 (kg/d) = Q (S_0-S-BOD_{5-out})/f-1.42Px$ 

f: conversion factor for  $BOD_5$  to  $BOD_L$  0.68

Px = Q*(concentration of biological solids produced)

#### Table 145 Required O₂

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
S ₀ -s-BOD _{5-out}	mg/L	362	362	-
f	-	0.68	0.68	-
Px	kg/day	70	46	-
Required O ₂	kg/day	136	89	-

3.8 Ratio of oxygen required to BOD₅ removed

BOD₅ removed (kg/d)

O₂/BOD₅ removed

#### Table 146Removed BOD5

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
So-S-BOD _{5-out}	mg/L	362	362	-
BOD ₅ removed	kg/day	159	105	-
O ₂ /BOD ₅	-	0.9	0.9	-

3.9 Surface aerator power requirements

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6
a) Correction factor for surface aerators for sun	nmer conditions	f	
f=No/N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)		mg/L	9.08
3) DO concentration in Lagoon	CL	mg/L	1.5
$f = {B*CsT-CL}/Cs (20)*1.024T-20*\alpha$			

- C4.121 -

Ti-20	$1.024^{\text{T-}20}$	α	В	f
1	1.029	0.6	0.9	0.44

b) Field transfer rate : N

 $N = fN_0$ 

kg-O₂/kw/h 0.71

Total amount of transfer O₂

kg-O ₂ /kw/d	k
-------------------------	---

kg-O₂/kw/h 17.0

The total axis power required to meet the required oxygen

Table 147Required O2 Supply

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	136	89	-
Required power for O ₂ supply	kW	8.0	5.3	-

3.10 Energy requirements for mixing

	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	-
Lagoon volume	m ³	3,500	2,100	-
Axis power for mixing	kW	17.5	10.5	-
Total efficiency	-	0.75	0.75	-
Required power	kW	23	14	-
Required power per unit	kW/No.	11	11	-
Power for Mixing	Nos.	3	2	_

#### Table 148Specifications of Aerator

## 4. Leachate recirculation pump

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05

From the entrance of anaerobic lagoon to landfill

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
r	-	3	3	-
Or	m ³ /day	1,320	870	-
Qr	m ³ /min	0.92	0.60	-
Head	m	40	40	-
ή	-	0.56	0.56	-
Da	Horse power	11.2	7.4	-
PS	kW	8.4	5.5	-
Unit power	kW/No.	11	7.5	-
Nos. of pumps	Nos.	(1+1)	(1+1)	-

## 5. Solid-liquid separation: sedimentation tank

Qi: Inflow		m³/day	
Safety factor		3	
R.t: Retention time at Qi*3		hr	
OL: Overflow rate at Qi*3		m ³ /m ² /day	
Qi*Ci = Qo*Co+Qu*Cu			
Ci: Inflow SS		mg/L	
Co: Outflow SS		mg/L	
Cu: Concentrated SS in the sedimentation tank			
Qo: Outflow		m ³ /day	
Qu: Underflow (Sludge flo	m ³ /day		
Qu = Qi-Qo		m ³ /day	
Qo = Qi*(Cu-Ci) / (Cu-Co)		m ³ /day	
As: surface area=Qo/OL		m ³	
Dimension	Ls: Length of sedimentation tank	m	
	Ws: Width of sedimentation tank	m	
Hs: Height of sludge zone =Vs/A	m		
Vs: Volume of sedimentation tar	m ³		
$H_2$ : Height allowance = Vs/As		$m^2$	

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
Qi	m ³ /day	1,320	870	-
R.T	hr	2	2	-
$O_L$	m ³ /m ² /day	22	22	-
Ci	mg/L	604	604	-
Со	mg/L	70	70	-
Cu	mg/L	5,000	5,000	-
Qo	m ³ /day	1,200	800	-
As	m ²	60	40	-
Ls	m	20	10	-
Ws	m	5	4	-
Hs	m	1.9	2.0	-
Vs	m ³	110	80	-
Qu	m ³ /day	120	70	-
H ₂	m	1.5	1.5	-
H0	m	3.4	3.5	-

#### Table 150 Dimension of Sedimentation Tank

#### 6. To removal nutrients, use wetland.

Only by aerated lagoon, only BOD₅ and SS are removed. For further treatment for nutrients another process is necessary.

Here, wetland was considered as an alternative for this purpose, considering cost efficiency.

Levels of nitrogen and phosphates are estimated as below based on the analysis of leachate during this Study.

Total-N:	240	mg/L
Total-P:	64	mg/L

In biological treatment nitrogen and phosphate are necessary. The ratio of N and P towards  $BOD_5$  is 3:0.3:100

Therefore N and P after biological treatment, their levels are expected as below.

Inlet BOD ₅		920	mg/L
Therefore N to be removed by biolo	27.6	mg/L	
Therefore P to be removed by biolo	gical treatment	2.76	mg/L
After aerated lagoon remained N	Ν	212	mg/L
	Р	61	mg/L

Criteria*					
20	mg/L. as KTN				
10	mg/L. as P				

*:Discharge criteria of industrial waste water into general public water body

Inlet T-P level will be reduced by using cover soil.

Therefore, only removal of nitrogen would be considered.

Here, subsurface-flow (SSF) systems was considered.

In a SSF wetland, the basin is filled with gravel or some other coarse substrate, and the water level is maintained below-ground. Water flows horizontally, or sometimes vertically, through the gravel and the root mat of the wetland vegetation.

Arrow arum (Polyandry spp.) and Pickerel weed (Pontederia spp.) have been used in constructed wetlands.

Also common reed (Phragmitescommunis) is used



Figure 9 Conceptual diagram of subsurface-flow wetlands

## Example of determination of basin design for SFS wetlands system

Nitrogen removal will proceed when BOD₅ level is less than 10 mg/L.

1.	Premises		
	Influent BOD ₅	$C_0$	60 mg/L
	Effluent BOD ₅	Ce	8 mg/L
	Inflow	Q	m ³ /day
			m ³ /day
	Vegetation type		cattails
	Minimum water temperature	Т	21°C
	Basin media	coarse sand with 2	mm of maximum effective size
	Basin slope	S	0.01
2.	Solution		
1.	Basin depth for use wit cattail	d	0.3 m
2.	Porosity	α	0.39
	Hydraulic conductivity	Ks	$480 \text{ m}^3/\text{m}^2/\text{day}$
		K ₂₀	1.35
3.	Temperature-dependent first order	rate constant	
		K _T at	21°C
			1.49 d ⁻¹
4.	Pore-space detention time	t' = -1nCe/C0/Kt	d
5.	Cross-sectional area	$A_C = Q/K_S/S$	$m^2$
6.	Basin width	W = Ac/d	m
7.	Basin length	$L = t'Q/W/d/\alpha$	m
8.	Required surface area	As = L*W	$m^2$
			ha
9.	Check hydraulic-loading rate or sp	ecific area requireme	ents
		Lw = Q/L/W	150 to 500 $m^3/ha/day$
			$0.015$ to $0.005 \text{ m}^3/\text{m}^2/\text{day}$
	or	Asp= $1/Lw$ for adv	anced treatment 2.1 ha/ $10^3$ m ³
10.	Check BOD ₅ loading rate	Max.BOD _{5L}	60 kg/ha/day
	LBOD ₅		kg/day
	BOD _{5L}		kg/ha/day
11.	Vegetation		
	Reed can absorb	Ν	18 to 21 g/kg
		Р	2.0 to 3.0 g/kg
	Inlet N		212.4 mg/L
	Vd: vegetation density		$10 \text{ kg/m}^2$

	Unit	Stage1	Stage2	Stage3
C ₀	mg/L	60	60	-
Ce	mg/L	8	8	-
Q	m ³ /day	440	290	-
Т	°C	21	21	-
S		0.01	0.01	-
d	m	0.3	0.3	-
α		0.39	0.39	-
Ks	m ³ /m ² /day	480	480	-
K ₂₀		1.35	1.35	-
Kt	d ⁻¹	1.49	1.49	-
t'	day	1.36	1.36	-
Ac	m ²	92	60	-
W	m	310	210	-
L	m	16	16	-
As	m ²	5,200	3,400	-
Lw	m ³ /m ² /day	0.09	0.09	-
Asp	ha/1000m ³	11.60	11.60	-
L-BOD ₅	kg/day	26.4	17.4	-
BOD _{5L}	kg/ha/day	51	51	-
V	m ³	1,560	1,020	-
R.T	day	3.5	3.5	-
Inlet N	mg/L	212	212	-
Total N in WL	g	340,000	220,000	-
N absorption	g/kg	18	18	-
Nos. of reed	kg	18,889	12,222	-
Vd	kg/m ²	10	10	-
Max Reed	kg	52,000	34,000	-

## Table 151Specification of Wetland

## Alternative 6: Anaerobic Pond + Aerated Lagoon + Maturation Pond with recirculation -New Guanabacoa

(Remarks): Dimensions are at mid-depth. Height allowance should be 50 cm at least.

This system is an alternative adding Anaerobic Pond to Alternative 1 to reduce area.

### 1. Premises

1.1 There are no discharge quality criteria for treated leachate. Therefore, a temporary guideline was proposed as follows.

Leachate Quality		Unit-mg/L	
Leachate Quality	T-BOD ₅	SS	S-BOD ₅
Inlet	920	540	600
Outlet	60	70	30
Removal rate (%)	93.5	87.0	95

Table 152Proposed Water Quality Criteria

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

1.2 Recirculation rate of leachate 3 times/day toward the leachate generated

#### 2. Anaerobic pond

RTa: Retention time of anaerobic	pond		7 days
BOD ₅ Removal rate			60%
BOD ₅ out-a			368 mg/L
Da: Depth of the anaerobic pond			3.5 m
Aa: Surface area			$m^2$
Va: Anaerobic pond volume			m ³
Dimension	Length	La	m
	Width	Wa	m
BOD _{5La} : BOD ₅ load of anaerobic	pond	100 to 350 g-BOD ₅ /m	³ -pond/day

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
R.T	days	7	7	-
Va	m ³	3,080	2,030	-
Da	m	3.5	3.5	-
Aa	m ²	880	580	-
La	m	50	40	-
Wa	m	20	15	-
BOD ₅	g/day	404,800	266,800	-
BOD _{5La}	g/m³/day	131	131	-

#### Table 153Dimension of Anaerobic Pond

Number of ponds: 1

## 3. Aerated Lagoon

### 3.1 Aerated Lagoon Process

Design Base:

	Symbol	Unit	
Influent flow	Q	m ³ /d	
Influent suspended solids	$SS_0$	mg/L	378
Influent soluble BOD ₅	$\mathbf{S}_{0}$	mg/L	368
Effluent soluble BOD ₅	S-BOD _{5-out}	mg/L	30
Effluent suspended solid after setting	SSe	mg/L	70
Kinetic coefficients:			
Y		l/d	0.65
Ks		mg-BOD ₅ /L	100
Kmax		mg-BOD ₅ /L/d	6.0
Kd		l/d	0.07
First order soluble BOD5 removal rate	constants at 20	°C	
	k ₍₂₀₎	l/d	2.5
Waste water temperature	Ti	°C	21.0
Aeration constants in leachate			
in leachate	α		0.6
in treated water	β		0.9
Oxygen concentration to be maintaine	d in liquid	mg - $O_2/L$	1.5
Lagoon depth	Н	m	3.5
Design mean cell - residence time	θc	d	7

3.2 Surface area of the lagoon  $A m^2$ 

 $\theta c = V/Q$   $\therefore$   $V = \theta c^*Q$  V: volume of the lagoon

A = V/H

Dimension

	Unit	Stage1	Stage2	Stage3
V	m ³	3,080	2,030	-
А	m ²	880	580	-
L	m	50	40	-
W	m	20	15	-
Н	m	3.5	3.5	-
A' (corrected A)	m ²	1,000	600	-
V' (Corrected V)	m ³	3,500	2,100	-

#### Table 154Dimension of Aerated Lagoon

3.3 Soluble effluent BOD₅ at the lagoon outlet: S-BOD₅-out

S-BOD₅out = { Ks (1 + 0c*kd) } / { $\theta c (Y*kmax - kd) - I$  } (mg/L)

Ks	θc*kd	1+0c*kd	Ks (1+θc*kd)	θc	Y*kmax	Y*kmax-kd	θc (Y*kmax-kd)-1	S-BOD ₅ out
100	0.49	1.49	149	7	3.9	3.83	25.8	5.8

## 3.4 Effluent BOD₅

(1) Correct the removal-rate for temperature effects

$$k(t) = k(20)^* \theta^{T-20}$$
 (1/d)

Ti	k ₍₂₀₎	T-20	θ	$\theta^{(T-20)}$	$k_{(20)} \theta^{(T-20)}$
21.0	2.5	1	1.06	1.06	2.7

(2) Determine the effluent BOD₅: St-_{out} (mg/L)

St-out/ $S_0 = 1/(1+k\theta_H) = S/S_0 = 1/(1+kV/Q)$ 

kt	V/Q	1+kV/Q	1/(1+kV/Q)	$S_0$	St-out
2.7	7	20	0.05	368	19

3.5 Concentration of biological solids produced: X (mg/L)

 $X = Y (S_0-S-BOD_5-out)/(1+k_d\theta_c) (mg-VSS/L)$ 

Y	S ₀ -S-BOD _{5-out}	k _d	θc	$Y(S_0-S-BOD_{5-out})/(1+k_d\theta_c)$
0.65	362.2	0.07	7	158

3.6 Suspended solids in the lagoon before settling

SSi = Influent suspended solids + X/0.7(mg/L)

Ratio of volatile suspended solid

0.7

SSo	Х	SSi
378	158	604

## 3.7 Oxygen requirements

 $Q_2(kg/d) = Q(S_0-S-BOD_{5-out})/f-1.42Px$ 

f: conversion factor for  $BOD_5$  to  $BOD_L$  0.68

Px = Q*(concentration of biological solids produced)

Table 155 Required O₂

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
S ₀ -s-BOD _{5-out}	mg/L	362	362	-
f	-	0.638	0.68	-
Px	kg/day	70	46	-
Required O ₂	kg/day	136	89	-

3.8 Ratio of oxygen required to BOD₅ removed

BOD₅ removed (kg/d)

O₂/BOD₅ removed

Table 156 Removed BOD₅

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
So-S-BOD _{5-out}	mg/L	362.2	362.2	-
BOD ₅ removed	kg/day	159	105	-
O ₂ /BOD ₅	-	0.9	0.9	-

3.9 Surface aerator power requirements

assumption: kg-O ₂ /kw/h	kg-O ₂ /kw/h	No	1.6
a) Correction factor for surface aerators for sur	nmer conditions	f	
f=No/N			
1) Oxygen saturation concentration at 21 °C	Cs(21)	mg/L	8.91
2) Cs(20)		mg/L	9.08
3) DO concentration in Lagoon	CL	mg/L	1.5

f= {B*CsT-CL}/ Cs (20)*1.024T-20* $\alpha$ }

Ti-20	$1.024^{\text{T-}20}$	α	В	f
1	1.029	0.6	0.9	0.44

b) Field transfer rate: N

 $N = fN_0$ 

kg-O₂/kw/h 0.71 Total amount of transfer O₂ kg-O₂/kw/d kg-O₂/kw/h 17.0

The total axis power required to meet the required oxygen

Table 157Required O2Supply

	Unit	Stage1	Stage2	Stage3
Required O ₂	kg/day	136	89	-
Required power for O ₂ supply	kW	8.0	5.3	-

3.10 Energy requirements for mixing

Table 158	Specifications	of Aerator
-----------	----------------	------------

	Unit	Stage1	Stage2	Stage3
Power for Mixing	kW/m ³	0.005	0.005	-
Lagoon volume	m ³	3,500	2,100	-
Axis power for mixing	kW	17.5	10.5	-
Total efficiency	-	0.75	0.75	-
Required power	kW	23	14	-
Unit power	kW/No.	11	11	-
No. of Aerator	Nos.	(3+1)	(2+1)	-

#### Leachate recirculation pump 4.

Recirculation rate	r	times/leachate
Recirculation pump flow	Qr	m ³ /day
$Qr = r^*Q$		
Required Power	Ps	
$Ps = 0.163*Qr(m^3/min)*H(m)/\eta$		Horse power
Here		
Total head of the pump	Н	m
Total efficiency	ή	
Liquid density	ρs	1.05
From the entrance of anaerobic lagoon to landfill		

	Unit	Stage1	Stage2	Stage3
Q	m ³ /day	440	290	-
r	-	3	3	-
Or	m ³ /day	1,320	870	-
Qi	m ³ /min	0.92	0.60	-
Head	m	40	40	-
ή	-	0.56	0.56	-
Da	Horse power	11.2	7.4	-
PS	kW	8.4	5.5	-
Unit power	kW	11	7.5	-
Nos. of pumps	Nos.	(1+1)	(1+1)	-

#### Table 159 Specifications of Leachate Recirculation Pump

#### 5. Maturation Pond

## Design criteria

D _m : Depth of maturation pond	1.5 m
RT _m : Retention time of maturation pond	14 days

A_m: Area od maturation pond

Dimensions of maturation pond

Length	Lm	m
Width	Wm	m

#### Table 160Dimensions of Maturation Pond

	Unit	Unit Stage1		Stage3
Q	m ³ /day	440	290	-
RT _m	days	14	14	-
Vm	m ³	6,160	4,060	-
Nos. of Ponds	-	2	2	-
Vm/Pond	m ³	3,080	2,030	-
Dm/Pond	m	1.5	1.5	-
Am/Pond	m ²	2,100	1,400	-
Lm/Pond	m	70	60	-
Wm/Pond	m	30	25	-

Pond arrangement: Series

# C. Final Disposal:

C5 Supplemental Explanation on Leachate Treatment System

# C5 SUPPLEMENTAL EXPLANATION ON LEACHATE TREATMENT SYSTEM

#### Table of Contents

1.	Adopted leachate treatment system in this project with flow diagram, quality and major
	facility
2.	Outline of adopted leachate treatment system
3.	Example of the capacity calculation on the adopted treatment system
4.	Out line of alternative study on selecting leachate treatment system
5.	References regarding wastewater treatment system and adopted treatment system with the
	design parameters
6.	Examples of leachate treatment systems in other parts of the world

# 1. Adopted leachate treatment system in this project with flow diagram, quality and major facility

#### 1.1 Location: NEW GUANABACOA

Recirculation to land	1fill			
<b>▲</b> -				To public water body
			5	
From landfill	(P)			
BOD=920mg/L				60ma/I
920	11g/L 308	mg/L		oung/L
	Anaerobic pond	Aerated Lagoon	Maturation Pond	Maturation Pond
			Primary	Secondary
Legend: (P)	Leachate recirculation p	oump 🧲	Aerator	
Retention time	7 days	7 days	14 da	iys
1st stage	Design flow = $440 \text{ m}$	³ /day		
2nd stage	Design flow = $290 \text{ m}^3$	³ /day		
In T-BOD ₅ (mg/L)	920	368	-	
Out T-BOD ₅ (mg/L)	368	-	60	1
BOD removal rate (%)	60		84	
In SS (mg/L)	540	378	-	
Out SS (mg/L)	378	-	70	1
Size of pond				
1st stage				
Width (m)	20	20	30	
Length (m)	50	50	70	
Effective depth (m)	3.5	3.5	1.5	
No. of pond	1	1	2	
Surface area (m ² )	1,000	1,000	4,200	
Volume of pond (m ³ )	3,500	3,500	6,300	
2nd stage				
Width (m)	15	15	25	
Length (m)	40	40	60	
No. of pond	3.3	3.5	1.5	
$\frac{100.01\text{pollu}}{\text{Symface error}}$	1	1	2 000	
Surface area (m)	000	000	3,000	
Volume of pond (m ² )	2,100	2,100	4,500	
Specification of aerator	1			
1st stage	1.6kg-O ₂ /kwh x 11kw	v x (3+1)		including 1 spare
2nd stage	1.6kg-O ₂ /kwh x 7.5kv	w x (2+1)		including 1 spare
Specification of leachate	recirculation pump			
1st stage	0.92m ³ /min x 40mH	x 11kw x (1+1)		including 1 spare
2nd stage	0.60m ³ /min x 40mH	x 7.5kw x (1+1)		including 1 spare
Specification of sludge pu	ımp			
1st stage	0.07m ³ /min x70mH x	x2.2kw x (1+1)		including 1 spare
2nd stage	0.05m ³ /min x 70mH	x 1.5kw x (1+1)		including 1 spare

### 1.2 NEW SITE 1

Recirculation to landfi	11			
				To public water body
Enom lon dfill		$\rightarrow$	<b>-</b>	
Prom landfill BOD-920mg/I	(P)			
920 I	mg/L 368 1	mg/L		60mg/L
	Anaerobic pond	Aerated Lagoon	Maturation Pond Primary	Maturation Pond Secondary
Legend:	Leachate recirculation p	oump 🧲	Aerator	
Retention time	7 days	7 days	14	days
1st stage	Design flow = 970 m	³ /day		
2nd stage	Design flow = $610 \text{ m}$	³ /day		
In T-BOD ₅ (mg/L)	920	368		-
Out T-BOD ₅ (mg/L)	368	-	(	50
BOD removal rate (%)	60		84	
In SS (mg/L)	540	378		-
Out SS (mg/L)	378	-		70
Size of pond				
1st stage				
Width (m)	30	30	40	
Length (m)	70	70	120	
Effective depth (m)	3.5	3.5	1.5	
No. of pond	1	l	2	
Surface area (m ² )	2,100	2,100	9,600	
Volume of pond (m ³ )	7,350	7,350	14,400	
2nd stage		22	25	
Width (m)	22	22	35	
Effective depth (m)	60	<u> </u>	90	
No. of pond	5.5		2	
Surface area $(m^2)$	1 320	1 320	6 300	
Volume of pond (m ³ )	4,620	4,620	9,450	
Specification of aerator				
1st stage	1.6kg-O ₂ /kwh x 11ky	v x (5+1)		including 1 spare
2nd stage	1.6kg-O ₂ /kwh x7.5kv	v x (5+1)		including 1 spare
Specification of leachate	recirculation pump			÷ +
1st stage	1.01m ³ /min x 50mH	x15kw x (2+1)		including 1 spare
2nd stage	1.27m ³ /min x 50mH	x 19kw x (1+1)		including 1 spare
Specification of sludge p	ump			
1st stage	0.15m ³ /min x80mH x	x5.5kw x (1+1)		including 1 spare
2nd stage	0.10m ³ /min x 80mH	x 3.7kw x (1+1)		including 1 spare

## 1.3 Calle 100

Recirculation to landfill	,		
From landfill BOD=920mg/L 920 m	g/L Anaerobic pond		
Legend:	Leachate recirculation r	oump	
Retention time	7 days		
1st stage	Design flow = $730m^3$	/day	
2nd stage	Design flow = $610m^3$	/day	
In T-BOD ₅ (mg/L)	920		1
Out T-BOD ₅ (mg/L)	368		
BOD removal rate (%)	60		
In SS (mg/L)	540		
Out SS (mg/L)	378		
Size of pond			
1st stage			
Width (m)	25		
Length (m)	60		
Effective depth (m)	3.5		
No. of pond	1		
Surface area (m ² )	1,500		
Volume of pond (m ³ )	5,250		
2nd stage			
Width (m)	22		
Length (m)	60		
Effective depth (m)	3.5		
No. of pond	1		
Surface area (m ² )	1,320		
Volume of pond (m ³ )	4,620		
Specification of leachate	recirculation pump		
1st stage	1.52m ³ /min x50mH y	x19kw x (1+1)	including 1 spare
2nd stage	1.27m ³ /min x50mH y	x19kw x (1+1)	including 1 spare

#### 2. Outline of adopted leachate treatment system

Leachate is discharged from the landfill to the treatment system. The proposed leachate treatment system consists of an anaerobic pond, aerated lagoon, and maturation pond.

In the anaerobic pond, high organic load is removed as it is best to pretreat strong wastes having a high solid content. The solids settle to the bottom where they are digested anaerobically. The retention time is set at 7 days and BOD removal ratio at 60%. The treated leachate in the anaerobic pond is sent to the aerated lagoon and is also recirculated to the landfill. The recirculated landfill undergoes contact filtration system, although the treatment efficiency is not considered in calculation.

In the aerated lagoon, BOD removal is estimated at about 85% for a 7-day retention time. The aerated lagoon is developed as a modified waste stabilization pond (facultative pond) for hot climates where mechanical aeration is used to supplement the algal oxygen supply. Aerators are installed to add oxygen into the pond and to mix water in the lagoon. The capacity of the aerators is designed based on the power required for mixing water in the lagoon. Treated wastewater at the aerated lagoon flows into the maturation pond.

The aerated lagoon effluent includes high BOD due to the presence of bacteria. The maturation pond predominantly reduces the bacterial cells, still the BOD is also considerably reduced. Moreover the maturation pond destroys pathogens. Two maturation ponds in series, each with a retention time of 7 days, are provided to achieve the treatment.

A sludge pump is provided to remove sludge from the maturation pond and anaerobic pond, and hence to facilitate maintenance of the ponds.

It is desirable to construct a storage pond to reduce the peak inflow and to stabilize the leachate quality to the leachate treatment system, but it is not included due to financial constraints. To mitigate the negative impact, when influent flow exceeds the design flow due to high rainfall, the following actions are taken, i) inflow is stopped by closing the inflow gate, ii) the inflow is stored in the ponds, iii) the recirculation of flow to the landfill site by the leachate recirculation pump is increased.

#### 3. Example of the capacity calculation on the adopted treatment system

Capacity calculation of Alternative 6 for New Guanabacoa landfill is described below as an example of the adopted leachate treatment system. Parameters used in the calculation are obtained from "Wastewater Engineering, Metcalf & Eddy, Third Edition, 1991", although they shall be established based on experimental results. So, the retention time of ponds is set with a high safety factor.

#### 1. Premises)

I

#### 1.1 Planned Leachate Quality

There is no discharge quality criteria for treated leachate. Therefore, a temporally guideline was proposed as the following.

Loochoto quality	Unit: mg/L				
Leachate quality	T-BOD ₅	SS	S-BOD ₅		
Inlet	920	540	600		
Outlet	60	70	30		
Removal rate (%)	93.5	87.0	95		
			0		

Even though discharge quality criteria are established in the future, only removal of T-BOD₅ and SS is considered by this system.

There are some estimation formula for leachate generation, including the one with the consideration of evaporation, however, in case of using pond system as the final treatment, pond volume is designed with ignoring evaporation.

#### 1.2 Estimated Leachate Generation

andfill Area			
Stage 1	$A_1$	6.0 ha	60,000 m ²
Stage 2	$A_2$	4.0 ha	40,000 m ²
Stage 3	$A_3$	0.0 ha	$0 m^2$

Once surface liner facility is constructed in landfill site, it is assumed that no water flows into the landfill site.

$q = f^*C^*A^*I/1000 (m^3/day)$	
Where	
q : Daily effluent amount of leachate water (m ³ /day)	
C: Leachate coefficient of on-going landfill section	0.4
I: Annual maximum rainfall (mm/day)	
Maximum rainfall during 2000 to 2002	338 mm in September in 2002
	11.3 mm/day
A: Landfill area $(m^2)$	
f: Safety factor	1.6

Q : Daily effluent amount of leachate with safety factor  $(m^3/day)$ 

Q (m ³ /day)	Stage1	Stage2	Stage3
	440	290	-

#### 2. Anaerobic Pond

naerobic Pond					Dimensio	ns of Anaer	obic Pond	
RTa : Retention time	of anaerobic por	nd	7 days		Unit	Stage1	Stage2	Stage3
BOD ₅ Removal rat	e		60 %	Q	m ³ /day	440	290	-
BOD ₅ out-a			368 mg/L	R.T	days	7	7	-
SS Removal rate			30 %	Va	m ³	3,080	2,030	-
SSout			378 mg/L	Da	m	3.5	3.5	-
Da: Depth of the an	naerobic pond		3.5 m	Aa	m ²	880	580	-
Aa: Surface area re	equired		m ²	La	m	50	40	-
Va: Anaerobic pon	d volume requi	red	m ³	Wa	m	20	15	-
Dimension	Length	La	m	BOD ₅	g/day	404,800	266,800	-
	Width	Wa	m	BOD _{5La}	g/m ³ /day	131	131	-
BOD _{5La} : BOD ₅ loa	ad of anaerobic	pond		Number of	ponds: 1			

100 to 350 g-BOD₅/ m³-pond/day

#### 3. Aerated Lagoon

3.1 Aerated	Lagoon	Process

Q (	stage 1) m ³ /d	440
Q (	stage 2) $m^3/d$	290
SS	mg/L	378
$S_0$	mg/L	368
S-E	BOD _{5-out} mg/L	30
SSe	e mg/L	70
Y	1/d	0.65
Ks	$mg-BOD_5/L$	100
Kmax	mg-BOD ₅ /L/d	6.0
K _d	1/d	0.07
C k ₍₂₀	) 1/d	2.5
Ti	°C	21.0
	α	0.6
	β	0.9
	mg - $O_2/L$	1.5
Н	m	3.5
θc	d	7
	$\begin{array}{c} Q ( \\ Q ( \\ SS_{0} \\ S_{0} \\ S-E \\ SS_{0} \\ \\ SS_{0} \\ \\ SS_{0} \\ \\ \\ SS_{0} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{cccc} Q \; (stage \; 1) & m^3/d \\ Q \; (stage \; 2) & m^3/d \\ SS_0 & mg/L \\ S_0 & mg/L \\ S-BOD_{5-out} & mg/L \\ SSe & mg/L \\ SSe & mg/L \\ \\ Kmax & mg-BOD_{5}/L \\ Kmax & mg-BOD_{5}/L \\ Kmax & mg-BOD_{5}/L \\ Kmax & mg-BOD_{5}/L \\ C & k_{(20)} & 1/d \\ Ti & ^{\circ}C \\ & & & & & & \\ & & & & & & \\ & & & & $

#### 3.2 Surface area of the lagoon

V required = $\theta c^*Q$	Dimensions of Aerated Lagoon						
V: volume oflagoon		Unit	Stage1	Stage2	Stage3		
A required = V required/H	V required	m ³	3,080	2,030	-		
	A required	m ²	880	580	-		
	L	m	50	40	-		
	W	m	20	15	-		
	Н	m	3.5	3.5	-		
	A designed	m ²	1,000	600	-		
	V designed	m ³	3,500	2,100	-		

#### 3. 3 Soluble effluent BOD₅ at lagoon outlet: S-BOD₅-out

S-BOD ₅ out	$= \{ K_{s} (1 + )$	$\theta_{c}^{*}k_{d}$ ) }/ { $\theta_{c}$	$(Y * k_{max} - l)$	$(x_d) - 1 \}$	(mg/L)			
Ks	$\theta_c * k_d$	$1 + \theta_c * k_d$	$K_s (1 + \theta_c * k_d)$	$\theta_{c}$	Y * k _{max}	Y * k _{max} - k _o	$\theta_{c} (Y * k_{max} - k_{d}) - 1$	S-BOD ₅ -out
100	0.49	1.49	149	7	3.9	3.83	25.8	5.8

#### 3.4 Effluent BOD₅:

3.4.1 Modify the remov	al-rate for temperature effe	ects
$k(t) = k(20) * \theta^{T-20}$	(1/d)	

(1/d)	Ti	k ₍₂₀₎	T-20	θ	$\theta^{(T-20)}$	$k_{(20)}\theta^{(T-20)}$
	21.0	2.5	1	1.06	1.060	2.7
uent BOD ₅ : St- _{out} (mg/L)						

3.4.2 Determine the effluent BOD₅ : St-_{out} (mg/I St-out/S₀ = 1/( 1 + k $\theta_{\rm H}$  ) = S/S₀ = 1/( 1 + kV/Q)

kt	V/Q	1 + kV/Q	1/(1 + kV/Q)	$S_0$	St-out
2.7	7	19.55	0.05	368	19
					<(0 OV

<60 OK BOD removal rate at AL=1-60/368=84%

3.5 Concentration of biological solids produced : X (mg/L) X = Y(S₀ - S-BOD_{5-out})/(1 + k_d $\theta_c$ ) (mg - VSS /L)

)				
Y	S ₀ - S-BOD _{5-out}	k _d	θc	$Y(S_0 - S-BOD_{5-out})/(1 + k_d \theta_c)$
0.65	362.2	0.07	7	158

3.6	Suspended solids in the lagoon before settling					_	
	$SSi = SS_0 + X/0.7 \text{ (mg/L)}$		$SS_0$	Х	SSi	It is reduced	to be less
	0.7 = Ratio of volatile suspended solid		378	158	604	than 70 in M	P.OK
37	Oxygen requirements						
5.7	$O_2(\text{kg/d}) = O(S_0 - \text{S-BOD}_{5-\text{out}})/\text{f} - 1.42P_x$			Unit	Stage1	Stage2	Stage3
	f: conversion factor for BOD ₅ to BOD	$0_1 = 0.68$	0	m ^{3/} day	440	290	-
	$Px = O^*(concentration of biological solids produce$	ced)	So-S-BOD _{5-out}	mg/L	362	362	-
	ζ (		f	-	0.68	0.68	-
			Px	kg/day	70	46	-
			Required O ₂	kg/day	136	89	-
3.8	Ratio of oxygen required to BOD ₅ removed						
	$BOD_5$ removed (kg/d)			Unit	Stage1	Stage2	Stage3
			Q	m ^{3/} day	440	290	-
	O ₂ /BOD ₅ removed		So-S-BOD _{5-out}	mg/L	362	362	-
			BOD ₅ removal	kg/day	159	105	-
			O ₂ /BOD ₅	-	0.9	0.9	-
2.0	Surfa an annatan manan manai						
3.9	Surface aerator power requirements			1	1.6		
	assumed Unit Oxygen supply per power: No			kg-O ₂ /kw/n	1.6		
	a) Modification factor for surface aerators for sum	mer conditi	ons f	f = No/N			
	1) Oxygen saturation concentration at 21 $^{\circ}$ C		$C_{s(21)}$	mg/L	8.91		
	2) $C_{s(20)}$		5(21)	mg/L	9.08		
	3) DO concentration in Lagoon		CL	mg/L	1.5		
	$f = \{(\beta * C_{sT} - C_{I}) / C_{s(20)} * 1.024^{T-20} * \alpha\}$		Ti-20	$1.024^{\text{T-}20}$	α	β	f
	- (1 31 L) 3(20)		1	1.024	0.6	0.9	0.44
ł	) Field transfer rate : N						
	$N = f N_0$		kg-O ₂ /kw/h	0.71			
	Total amount of transfer O ₂ kg-O ₂ /kw/d		$kg-O_2/kw/d$	16.9			
	The total axis power required to meet the require	d oxygen					
				Unit	Stage1	Stage2	Stage3
		Requi	red O ₂	kg/day	136	89	-
		Required powe	er for O ₂ supply	kW	8.0	53	_

3.10 Energy requirements for mixing

#### Specifications of Aerator

	Unit	Stage1	Stage2
Power for Mixing	kW/m ³	0.005	0.005
Lagoon volume	m ³	3,500	2,100
Axis power for mixing	kW	17.5	10.5
Total efficiency	-	0.75	0.75
Required power	kW	23	14
Unit power	kW/No.	11	11
Number of Aerator	Nos.	(3+1)	(2+1)

1) Recirculation rate	r times	/leachate	Specif	fications of l	Leachate R	ecirculation	Pump
Recirculation pump fl	Qr m ³	/day		Unit	Stage1	Stage2	Stage3
$Qr = r^*Q$			Q	m ³ /day	440	290	-
Required Power	Ps		r	-	3	3	-
$Ps = 0.163*Qr(m^3/min)*H$	(m)/ή horse	power	Or	m ³ /day	1,320	870	-
			QI	m ³ /min	0.92	0.60	-
Here			Head	m	40	40	-
Total head of the pu	ump	H m	ή	-	0.56	0.56	-
Total efficiency		ή	De	Horse power	11.2	7.4	-
Liquid denisty	1	os 1.05	13	kW	8.4	5.5	-
From the entrance of aerat	ed lagoon to lan	dfill	Unit power	kW/No.	11	7.5	-
			No. of pumps	Nos.	(1+1)	(1+1)	-
5. Maturation Pond							
Design criteria				Dimension	s of Matura	ation Pond	
D . Douth of motion				Dimension Unit	s of Matura Stage1	ation Pond Stage2	Stage3
$D_m$ : Depth of maturation	ı pond	1.5 m	Q	Dimension Unit m ³ /day	s of Matura Stage1 440	ation Pond Stage2 290	Stage3
$D_m$ : Depth of maturation RT _m : Retention time of	1 pond maturation	1.5 m 14 days	Q RT _m	Dimension Unit m ³ /day days	s of Matura Stage1 440 14	Stage2 290 14	Stage3
$D_m$ : Depth of maturation RT _m : Retention time of A _m : Area od maturation	n pond maturation pond	1.5 m 14 days	Q RT _m Vm	Dimension Unit m ³ /day days m ³	s of Matura Stage1 440 14 6,160	Stage2           290           14           4,060	Stage3
$D_m$ : Depth of maturation $RT_m$ : Retention time of $A_m$ : Area od maturation $V_m = Am \times Dm$	1 pond maturation pond	1.5 m 14 days	Q RT _m Vm Nos. of Ponds	Dimension Unit m ³ /day days m ³	s of Matura Stage1 440 14 6,160 2	Stage2           290           14           4,060           2	Stage3 - - -
$D_m$ : Depth of maturation $RT_m$ : Retention time of $A_m$ : Area od maturation $V_m = Am \times Dm$ Dimensions of maturation	1 pond maturation pond pond.	1.5 m 14 days	Q RT _m Vm Nos. of Ponds Vm/Pond	Dimension Unit m ³ /day days m ³ - m ³	s of Matura Stage1 440 14 6,160 2 3,080	Stage2           290           14           4,060           2           2,030	Stage3 - - - - -
$D_m$ : Depth of maturation $RT_m$ : Retention time of $A_m$ : Area od maturation $V_m$ = Am x Dm Dimensions of maturation Length	n pond maturation pond pond. Lm	1.5 m 14 days m	Q RT _m Vm Nos. of Ponds Vm/Pond Dm/Pond	Dimension Unit m ³ /day days m ³ - m ³ m	s of Matur: Stage1 440 14 6,160 2 3,080 1.5	ation Pond           Stage2           290           14           4,060           2           2,030           1.5	Stage3 - - - - - -
$D_m$ : Depth of maturation $RT_m$ : Retention time of $A_m$ : Area od maturation $V_m$ = Am x Dm Dimensions of maturation Length Width	n pond maturation pond pond. Lm Wm	1.5 m 14 days m m	Q RT _m Vm Nos. of Ponds Vm/Pond Dm/Pond Am/Pond	Dimension Unit m ³ /day days m ³ - m ³ m m m ²	s of Matura Stage1 440 14 6,160 2 3,080 1.5 2,100	ation Pond           Stage2           290           14           4,060           2           2,030           1.5           1,400	Stage3 - - - - - - -
$D_m$ : Depth of maturation $RT_m$ : Retention time of $A_m$ : Area od maturation $V_m = Am \times Dm$ Dimensions of maturation Length Width	n pond maturation pond pond. Lm Wm	1.5 m 14 days m m	Q RT _m Vm Nos. of Ponds Vm/Pond Dm/Pond Am/Pond Lm/Pond	Dimension Unit m ³ /day days m ³ - m ³ m m m ² m	s of Matura Stage1 440 14 6,160 2 3,080 1.5 2,100 70	ation Pond           Stage2           290           14           4,060           2           2,030           1.5           1,400           60	Stage3 - - - - - - - - -

As described above, the retention time is set at 7 days in the anaerobic ponds, 7 days in the aerated lagoon and 14 days in the maturation ponds, and the total retention time is 28 days. And each pond characteristics are set followings,

Anaerobic pond with 7 days retention time reduces BOD by 60%.

Finally, aerated lagoon with 7 days retention time and two (2) maturation ponds with each 7 days retention time reduce BOD to less than 60 mg/L.

#### 4. Out line of alternative study on selecting leachate treatment system



Alternative 6 is adopted, after studying characteristics of six (6) alternatives shown below.

Characteristics of the ponds applied in the Alternative 6 are described below,

- Anaerobic Pond: Organic matter is reduced under anaerobic conditions, and it is effective for high load wastewater. If an aerobic treatment system is applied for high load wastewater, the cost of the aerobic equipment and O/M cost are higher.
- ② Aerated Lagoon : Required area and required sheet area are reduced by introducing the aerated lagoon system.
- ③ Maturation Pond: Suspended solids contained in the effluent from the aerated lagoon are settled in the maturation pond using a long retention time. Moreover, pathogens, faecal bacteria and viruses are removed in the inhospitable environment with sun light, high dissolved oxygen and high pH.

Reasons for not selecting the other alternatives are described below,

- Alternative 1 consists of aerated lagoon + maturation pond and it does not have an anaerobic pond. The system required a large scale aerated lagoon and the OM cost is very high. So, Alternative 1 is eliminated.
- Although wetland is utilized for 2nd treatment or 3rd treatment that would remove nutrients, it is difficult to select appropriate type of plants. Moreover it is labor intensive to cut and remove them. So, Alternatives 2, 4, and 5 are not selected.
- Required retention time of the facultative pond is around one (1) month or more to remove organic matter utilizing oxygen from algal photosynthesis and surface re-aeration. It does not require any mechanical equipment and electric power and the OM is easy. However, it requires large land area. So Alternative 3 is not selected.

# 5. References regarding wastewater treatment system and adopted treatment system with the design parameters

#### 1. Reference

References used in the study and design of the leachate treatment system and the relevant design parameters are given below.

(1) Ref. 1: Design Manual for	or Waste	Stabilization	Ponds	in	Mediterranean	Countries,	European
Investment Bank,	1998						

Kind of pond	Anaerobic Pond	Aerated Pond	Facultative Pond	Maturation Pond
Depth (m)	2 - 5	_	1 - 2	1 – 1.5
Retention time (day)	1-7	_	4 - 5	1-7
BOD removal rate (%)	40 - 70	_	70 - 80	_
	Temperature less		Temperature: over	
	10°C: 40		20°C	
	Temperature over			
	25°C: 70			

(2) Ref. 2: Wastewater Engineering, Metcalf & Eddy, Third Edition, 1	1991
----------------------------------------------------------------------	------

Kind of pond	Anaerobic Pond	Aerated Pond	Facultative Pond	Maturation Pond		
Retention time (day)	_	_	_	18 - 20		
BOD removal rate (%)	70 - 85	Over 95	_	_		

#### (3) Ref. 3: Sewage Treatment in Hot Climates, Duncan Mara, 1976

Kind of pond	Anaerobic Pond	Aerated Pond	Facultative Pond	Maturation Pond
Depth (m)	2-4m	3 - 5	1-1.5m	1-1.5m
Retention time (day)	5	2-6	_	7 x 2ponds
BOD removal rate (%)	70	90 以上	_	65
Remark	Over 20°C			bacteria coliform
				removal rate95%

2. Adopted pond system and its specification for this project

Following specification is adopted based on engineering judgment referring to the above mentioned reference and field condition.

Kind of pond	Anaerobic Pond	Aerated Pond	Maturation Pond			
Depth (m)	3.5m	3.5	1.5m			
Retention time (day)	7	7	7x2ponds=14			
BOD removal rate (%)	60	Over 85%				

#### 6. Examples of leachate treatment systems in other parts of the world

Examples of leachate treatment systems in Latin America, Asia and Africa are described below. (Reference: Observations of Solid Waste Landfills in Developing Countries: Africa, Asia, and Latin America, Urban Development Division, The World Bank)

#### 1. Instances in Latin America

Leachate treatment systems at landfill sites in Latin America

Country	Brazil	Brazil	Brazil	Brazil	Brazil	Brazil	Brazil	Mexico	
City	Curitiba	Caxias do Sul	Salvador	Belo Horizonte Macae		Rio de Janeiro	Americana	Bordo Xochiaca	
Waste type	-Domestic	-Domestic	-Domestic	-Domestic	-Domestic -Domestic		-Domestic	-Domestic	
	-Demolition		-Demolition	-Demolition					
Amount(t/d)	1,800	150	3,000	4,500	150	6,500	150	1,700	
Leachate	Lagoon	Biological + physical	None	None	None	Recirculation	None	None	
treatment		chemical							

Country	Mexico	Mexico	Mexico	Argentina	Argentina	Chile	Chile	Colombia	
City	Queretaro	Nuevo Laredo	Monterrey	Villa Dominico	Relleno Norte 3	Santiago	Colihues La-Yesca	Bogotá	
Waste type	-Domestic	-Domestic -Non-hazardous industrial	-Domestic -Non-hazardous industrial	-Domestic -industrial	-Domestic -Non-hazardous industrial	-Domestic	-Domestic	-Domestic	
Amount(t/d)	450	350	3,000	8,000	4,500	4,200	400	4,500	
Leachate treatment	Evaporation and recirculation	Evaporation and recirculation	Recirculation	None	Physico/chemical followed by biological anaerobic / aerobic BOD in 3000ppm BOD out 80ppm,	Recirculation	Recirculation / physico-chemical	Recirculation	

Country	Colombia	Colombia	Colombia	Colombia	Colombia
City	Marinilla	Viboral	Medellin	Lima South	Zapalla
Waste type	-Domestic	-Domestic	-Domestic -Demolition -Industrial -Health care	-Domestic	-Domestic
Amount(t/d)	15	5	2,000	1,200-1,400	600-700
Leachate treatment	Release of Leachate through fascine	Release of Leachate through fascine	None	None	None

As shown above, the abundance of leachate management systems applied at Latin America landfill sites are in the following order:

1) No treatment system applied.

2) Circulation and evaporation system is applied, and both are adopted in this project.

3) Lagoon and pond system, including anaerobic and aerobic system, is applied.

In the references it is also reported that anaerobic + aerobic + physical/chemical treatment system, which is similar to the system adopted in this project, is utilized in Relleno Norte 3 in Argentina where influent BOD is 3000 mg/L and effluent BOD is 80 mg/L, although the details are not clear.

#### 2. Instance in Asia

A series of aeration channels followed by settlement tanks is used in Asuwei landfill in China, and it is reported that influent BOD is 1000 mg/L and effluent BOD is 60 mg/L.

The Carmona and San Mateo land fills in the Philippines and the Bantar Geban landfill in Indonesia treat leachate in aerated and facultative ponds. Leachate is circulated in the Philippines and during the rainy season excess leachate is drained into an adjacent creek.

The Kuda landfill in Indonesia has a leachate treatment facility that consists of a facultative pond followed by an aerobic pond, after which the leachate flows through a reed bed (artificial wetland system) for polishing.

#### 3. Instance in Africa

In Africa, leachate is generally not treated, but in Durban in South Africa and Ghana, located in a wet climate zone, pond systems for leachate treatment are applied. Wetlands are applied at some landfills and one (1) case was reported of the wetland being practically non-functional due to insufficient resources for maintenance.

#### 4. Conclusion

As described above there are similar working examples of the adopted treatment system for this project (anaerobic pond + aerated lagoon + maturation pond).

D. Financial Data

## **D. FINANCIAL DATA**

## List of Tables

Table 1	SWM Expenditure of Havana CityD.2
Table 2	SWM Staff Distribution in Havana City
Table 3	SWM Expenditure of UPPHD.4
Table 4	SWM Expenditure of Aurora Plaza
Table 5	Balance Sheet of Aurora PlazaD.6
Table 6	Income Statement of Aurora PlazaD.6
Table 7	SWM Expenditure of Aurora Habana ViejaD.7
Table 8	Balance Sheet of Aurora Habana ViejaD.8
Table 9	Income Statement of Aurora Habana ViejaD.8
Table 10	SWM Expenditure of DMSC and Small Scaled AurorasD.9
Table 11	Tariff Scenario 1: Current Tariff Applicable to All Havana CityD.10
Table 12	Tariff Scenario 2: Full O/M Cost Recovery with Least Cross Subsidy D.11
Table 13	Tariff Scenario 3: 50% O/M Cost Recovery with Cross SubsidyD.12
Table 14	Tariff Setting Example 1: Year 2015; Full Cost Recovery for CUC; 50% Cost Recovery for CUP; and Cross Subsidy 1:2:3 (partial presentation 1/3)D.13
Table 15	Tariff Setting Example 1: Year 2015; Full Cost Recovery for CUC; 50% Cost Recovery for CUP; and Cross Subsidy 1:2:3 (partial presentation 2/3)D.14
Table 16	Tariff Setting Example 1: Year 2015; Full Cost Recovery for CUC; 50% Cost Recovery for CUP; and Cross Subsidy 1:2:3 (partial presentation 3/3)
Table 17	Tariff Setting Example 2: Year 2015; 70% Cost Recovery for CUC and CUP CUP; and Cross Subsidy 2:3:4 (partial presentation 1/3)D.16
Table 18	Tariff Setting Example 2: Year 2015; 70% Cost Recovery for CUC and CUP CUP; and Cross Subsidy 2:3:4 (partial presentation 2/3)D.17
Table 19	Tariff Setting Example 2: Year 2015; 70% Cost Recovery for CUC and CUP CUP; and Cross Subsidy 2:3:4 (partial presentation 3/3)D.18
Table 20	Population Benefited from Sanitary Landfill (inhabitants within a 1km radius of landfills)D.19
Table 21	BOD Reduction by Leachate TreatmentD.20
Table 22	Summary of Master Plan CostD.21
Table 23	Disbursement Schedule of Master Plan Costs
Table 24-1	Cost Disbursement of Master Plan Components (2005 constant price: 1/4)D.23
Table 24-2	Cost Disbursement of Master Plan Components (2005 constant price: 2/4)D.24
Table 24-3	Cost Disbursement of Master Plan Components (2005 constant price: 3/4)D.25
Table 24-4	Cost Disbursement of Master Plan Components (2005 constant price: 4/4)D.26
Table 25-1	Fund Requirement of Master Plan Components (2005 constant price: 1/4)D.27
Table 25-2	Fund Requirement of Master Plan Components (2005 constant price: 2/4)D.28
Table 25-3	Fund Requirement of Master Plan Components (2005 constant price: 3/4)D.29
Table 25-4	Fund Requirement of Master Plan Components (2005 constant price: 4/4)D.30
Table 26	Financial Cash Flow of the Master Plan (2005 constant price)

									(Data of y	year 2003	; Unit: C	CUC 000)	
	Sweep	oing *1	Collection *2		Land	fill *2	Others *3		Administration			Total	
	CUP	CUC	CUP	CUC	CUP	CUC	CUP	CUC	CUP	CUC	CUP	CUC	Total*4
Revenue	12,531	107	13,241	1,542	0	0	1,491	0	1,000	100	28,263	1,749	30,012
Expenditure													
Personnel cost	14,929	0	36,611	0	2,428	0	4,461	0	7,380	0	65,809	0	65,809
Materials	3,455	127	24,945	393	2,472	59	739	16	13,187	108	44,798	702	45,500
Clothing and provisions *5	0	85	0	166	0	9	0	24	0	156	0	440	440
Fuel and energy cost	575	6	3,236	23	320	3	123	0	1,966	1	6,220	33	6,253
Administrative cost	3,955	4	16,836	0	1,697	1	1,259	0	3,243	494	26,989	499	27,488
Depreciation and investment	1,604	0	9,361	315	639	0	404	0	1,058	0	13,065	315	13,380
Total expenditure	24,518	222	90,989	897	7,556	72	6,985	40	26,833	759	156,881	1,989	158,870
Unit cost	4.96	0.04	98.80	0.97	8.21	0.08					133.63	1.29	134.93
(direct cost only)	(Peso/m2)	(Peso/m2)	(Peso/ton)	(Peso/ton)	(Peso/ton)	(Peso/ton)					(Peso/ton)	(Peso/ton)	(Peso/ton)
Unit cost	5.98	1.03	119.19	1.57	9.90	0.13					161.21	2.09	163.30
(including indirect cost)	(Peso/m2)	(Peso/m2)	(Peso/ton)	(Peso/ton)	(Peso/ton)	(Peso/ton)					(Peso/ton)	(Peso/ton)	(Peso/ton)

#### Table 1 SWM Expenditure of Havana City

*1: Street sweeping work was performed for 4,941,813 thousand m2 (3,676,813 by DMSC & Auroritas + 622,837 by Aurora Habana Vieja + 642,163 by Aurora Plaza). The wastes was collected in bins or trucks and sent to landfills. The volume of wastes collected by street sweeping was estimated at 36,720 tons a year, given that Havana City had 1,700 street cleaning cars of 200 liter capacity; the capacity utilization of a cleaning car is 40%; anual working days was 360; and the specific gravity fo the street waste is

*2: The volume of solid wastes collected and landfilled was 7739.206 thousand m3 (5378.7 by DMSC & Auroritas + 1471.5 by UPPH + 567.7 by Aurora Plaza + 321.306 by Aurora Habana Vieja), which was considered as 920,895 tons, given that the average weight of wastes collected in Havana City was 2523 ton/dat. As a result, the average specific gravity of the wastes was 119kg/m3.

*3: Other activities include cleaning of monuments and public places, and gardener.

*4: CUP and CUC are added up at par.

*5: Item includes foodstuffs, soaps, clothes, and shoes.

Source: DPSC

D.2

		Composition of workers				Number of workers															
		Compo	sition of v	workers		5	Sweeping				Collec	ction			Landfill		Others *1		Adminis	tration	Total
	Sweep	Collect.	Landfill	Others	Admin.	Sweep	Park	Public	Ditch	Collect.	Sanitation	Green	Street	Garage		Public	Funeral,	Others	Admin.	Inspecter	
DDCC *2	_					_		places				area		-		place	cemetry		technical	-	00
DPSC *2	0.07	7.00	110/	0.0/	1.20/					100	224			171	0.4				80	10	80
UPPH *3	0%	/6%	11%	0%	13%					198	224			1/1	84	_			93	12	/82
Aurora Plaza	46%	39%	0%	9%	5%	313		76		25	98	123	73	9	2	76	)		46		839
Aurora Habana Vieja	66%	18%	0%	5%	10%	201	237	39		64	35	21		13		39			71		720
Playa	32%	65%	0%	0%	4%	58	81		19	34	56	135	19	22						17	441
Aurora Miramar *4	81%	19%	0%	0%	0%	77				7	11										95
Centro Habana	60%	36%	0%	0%	4%	108	43			1	35	21	19	14						11	252
Aurora Cayo Hueso *4	75%	25%	0%	0%	0%	27				3	6										36
Habana del Este	16%	74%	3%	4%	1%	86	31			28	123	329	41	10	25		32			10	715
Aurora Guanabo *4	68%	32%	0%	0%	0%	60				5	23										88
Regla	23%	45%	0%	15%	17%	44	35		6	33	32	54	23	11			22	31	51	8	350
Guanabacoa	26%	43%	0%	17%	14%	129	26			148		72	17	15			98		72	8	585
San Miguel de Padron	21%	42%	0%	24%	13%	84	43		54	121		51	16	13			10	139	71	11	613
10 de octubre	46%	33%	0%	5%	16%	219	60		8	117	1	33	23	15				31	78	17	602
Cerro	35%	45%	0%	4%	17%	115	48		17	107		54	10	20	)			17	61	16	465
Marianao	30%	43%	0%	15%	11%	104	26		21	72		76	15				20	46	41	6	427
Lisa	26%	34%	0%	27%	13%	147	25		39	97		66	12	9	2		36	139	77	7	656
Boyeros	24%	52%	1%	10%	12%	116	57		13	237	49	36	24	14	10		69	2	77	12	716
Arroyo Naranjo	23%	56%	1%	10%	11%	186	51		55	422		80	19	7	15		36	67	92	20	1,050
Cotorro	18%	62%	1%	8%	11%	94	38		7	126		278	21	14	6		33	27	75	6	725
Total	30%	48%	1%	9%	11%	2,168	801	115	239	1.845	693	1.429	332	357	142	115	356	499	985	161	10.237

#### Table 2 SWM Staff distribution in Havana City

*1: Auroras and DMSCs have workers not involved in SWM such as maintenance and custody of monuments and public places, and funeral services.

*2: Total number of workers at DPSC is 120, of which 80 is considered as workers for SWM.

*3: Total of 225 workers (184 direct and 41 indirect) are working for recycling activities. Due to difficulty of cost separation, those workers are included in collection.

*4: Aurora Miramar, Cayo Hueso, and Guanabao are experimental units belonging to municipalities of Playa, Centro Habana and Habana del Este respectively.

Source: "Comportamiento de los componentes esenciales de la política laboral y salarial en el sistema de comunales LL trimestre Ano2003" DPSC, and UPPH

#### (Data of year 2003; Unit: CUP 000, CUC 000) Collection *1 Landfill Administration Total CUP CUC CUP CUC CUP CUC CUP CUC Total*2 594 Revenue *3 594 340 340 934 Expenditure Personnel cost *4 15,847 0 2,294 0 2,711 0 20,851 0 20,851 244 27 40 311 Materials *5 15.695 1.744 2.561 20.00020.311 10 Foodstuff 56 74 8 74 10 Fuel and energy cost *5 1,600 200 200 2.000 13 2.013 33 Administrative cost *5 10.931 0 1,582 0 1.870 14.383 33 14.416 Depreciation and investment*6*7 37 4,500 250 0 250 0 5,000 37 5,037 347 Total expenditure 48,573 6.070 36 7.591 83 62.234 467 62,701 Unit cost 277.39 1.98 34.66 0.21 2.19 314.24 312.05 (direct cost only) (Peso/ton) (Peso/ton) (Peso/ton) (Peso/ton) (Peso/ton) (Peso/ton) (Peso/ton) 0.25 Unit cost 315.93 2.41 39.48 355.40 2.67 358.07 (including indirect cost) (Peso/ton) (Peso/ton) (Peso/ton) (Peso/ton) (Peso/ton) (Peso/ton) (Peso/ton)

#### Table 3SWM expenditure of UPPH

*1: The volume of solid waste collected was 1471.5 thousand m3 (equivalent to 175,109 tons, applying the specific gravity of 119kg/m3)

*2: CUP and CUC are added up at par.

*3: UPPH is the budgeted whose primary financing source depends on the government budget. However UPPH can also charge tariffs to some users and record them as revenues.

*4: Cost distribution among departments is considered same as staff distribution, which is sweeping (76%), collection (11%), and administration (13%). 225 workers working at recycling section are included in collection department.

*5: Total costs in CUP is estimated. Cost distribution among departments is supposedly same as that of CUC.

*6: Total costs in peso is estimated. Distribution of equipment invested is considered 90% for collection, 5% for landfill, and 5% for administration.

*7: UPPH only expenses its cost in cash basis. The amount of investment and payment of loan for equipment purchase is considered as capital cost instead of depreciation.
							(Data o	t year 200	3; Unit: C	CUP 000,	<u>CUC 000)</u>
	Sweeping *1		Collection *2		Others *3		Administration		Total		
	CUP	CUC	CUP	CUC	CUP	CUC	CUP	CUC	CUP	CUC	Total*4
Revenue	4,531	7	4,317	220	491	0			9,339	227	9,566
Expenditure											
Personnel cost *5	2,799		2,373		548		365		6,085		6,085
Materials *6	5	1	133	22	0	0	31	5	169	28	197
Clothing and provisions		28		24		5		4		60	60
Fuel and energy cost *6	0	0	116	2	0	0	0	0	116	2	118
Administrative cost *5	136	4	115	0	27	0	18	97	295	101	396
Depreciation and investment*7	4	0	61	7	4	0	8	0	76	7	83
Total expenditure	2,944	33	2,798	55	578	5	421	106	6,741	198	6,939
Unit cost	4.58	0.05	41.42	0.81					84.99	1.29	86.29
(direct cost only)	(Peso/m2)	(Peso/m2)	(Peso/ton)	(Peso/ton)					(Peso/ton)	(Peso/ton)	(Peso/ton
Unit cost	4.89	0.11	44.18	1.73					90.66	2.76	93.42
(including indirect cost)	(Peso/m2)	(Peso/m2)	(Peso/ton)	(Peso/ton)					(Peso/ton)	(Peso/ton)	(Peso/ton

## Table 4 SWM Expenditure of Aurora Plaza

*1: Street sweeping work was performed for 642,163 thousand m2.

*2: The volume of solid waste collected was 567.7 thousand m3 (equivalent to 67,556 tons, applying the specific gravity of 119kg/m3)

*3: Other activities include cleaning and maintenance of monuments and public places.

*4: CUP and CUC are added up at par.

*5: Cost distribution among departments is considered same as staff distribution, which is sweeping (46%), collection (39%), others (9%), and administration (6%).

*6: Total costs in CUP is estimated. Cost distribution among departments is supposedly same as that of CUC.

*7: Distribution of depreciable equipment is considered 5% for sweeping, 80% for collection, 5% for others, and 10% for administration.

(At the end of 2003: I	a Init: Peso *)
Assets	) )
Current assets	
Cash on hand	2,800
Cash to be deposited at bank (CUP)	9,422
Cash to be deposited at bank (CUC)	1.420
Cash at bank	807.831
Account receivable in short term (CUP)	970.872
Account receivable in short term (CUC)	23.224
Anticipated payment to suppliers	48.095
Debt from state budget	51
Materials and spare parts	19.872
Foodstuff	2.263
Utensils and tools in use	73,923
Utensils and tools in stock	1.935
Wardrobe and linen	9.661
Ornamental plants	15.219
Total current assets	1.986.588
Fixed assets	, ,
Fixed tangible assets in use	601.539
Fixed tangible assets in stock	23.822
Fixed intangible assets	18.404
Depreciation of fixed tangible assets	(496,948)
Amortization of intangible fixed assets	(17,704)
Total fixed assets	129 113
Other assets	129,115
Differed expenses in short term	(4 166)
Account receivable	640
Account receivable for countervalues	36 691
Account receivable from workers	2,106
Deposits and finance in CUC	3 124
Total other assets	38 395
Total assets	2 154 096
	2,10 1,090
Liability	
Current liabilities	
Account payable in short term	21,871
Anticipated collection	2,974
Anticipated collection in CUC	143
Liabilities for social security in the state budg	100,459
Liabilities for profit account in the state budge	785,031
Social security payable to budget	48,030
Retention payable to L.G.V.	397
Retention payable to personal credits	5,989
Retention payable to judicial embargo	70
Retention payable for saving accounts	190
Provision for investments	53,289
Provision for vacations	159,447
Total current liabilities	1,177,890
Other liabilities	
Various accounts payable	27,018
Accounts payable for unclaimed salaries	2,058
Total other liabilities	29,076
Net worth	
State investment	662,883
Reserve for contingencies	99,088
Reserves for development	185,159
Total net worth	947,130
Total liabilities and net worth	2,154,096

Table 5 Bal SP ot of A DI

Table 6 Income Statements of Aurora Plaza(Year ending Dec. 2003; Unit: Peso 000 *)

Revenue	
Sales	9,561
Other revenue	118
of which employee's restaurants	67
Total revenues	9,679
Expenditure	
Salaries	4,422
Laborforce utilization tax	1,105
Social security	557
Materials	293
Depriciation and amortization	76
Other monetary expenses	240
of which, energy costs	152
Restaurant and foodstuff	45
Financial expense	30
Other expenses (adjustment)	-39
Total expenditure	6,729
Profit	2,950
Reserve for contingency	29
Income tax	1,022
Profit after tax	1,898
Reserve for development	135
Contiribution for state investment	1,763

* CUP and CUC are added up at par. Source: DPSC

* CUP and CUC are added up at par. Source: DPSC

## Table 7 SWM Expenditure of Aurora Habana Vieja

(Data of year 2003: Unit: CUP 000, CU	UU (000)	
---------------------------------------	----------	--

							(Duiu )	51 jeur 200	<i>55</i> , 0 m.	ccr oco,	00000
	Sweep	oing *1	Collec	tion *2	Other	rs *3	Admini	stration		Total	
	CUP	CUC	CUP	CUC	CUP	CUC	CUP	CUC	CUP	CUC	Total*4
Revenue	5,201		2,988	61				84	8,189	145	8,334
Expenditure *5											
Personnel cost *6	3,397	0	978	0	257	0	515	0	5,147	0	5,147
Materials *7	58	8	102	14	11	1	192	26	363	49	412
Clothing and provisions *6	0	34	0	10	0	3	0	5	0	51	51
Fuel and energy cost *7	16	0	28	0	3	0	52	1	98	2	100
Administrative cost *6	114	52	33	15	9	4	17	8	173	79	252
Depreciation and investment*8	11	1	171	16	11	1	21	2	214	20	234
Total expenditure	3,596	95	1,311	55	291	9	798	42	5,995	201	6,196
Unit cost	5.77	0.15	34.29	1.43					128.33	3.92	132.25
(direct cost only)	(Peso/m2)	(Peso/m2)	(Peso/ton)	(Peso/ton)					(Peso/ton)	(Peso/ton)	(Peso/ton)
Unit cost	6.66	0.19	39.56	1.81					148.03	4.96	152.98
(including indirect cost)	(Peso/m2)	(Peso/m2)	(Peso/ton)	(Peso/ton)					(Peso/ton)	(Peso/ton)	(Peso/ton)

*1: Street sweeping work was performed for 622,837 thousand m2.

*2: The volume of solid waste collected was 321,306 m3 (equivalent to 38,236 tons, applying the specific gravity of 119kg/m3)

*3: Other activities include cleaning and maintenance of monuments and public places.

*4: CUP and CUC are added up at par.

*5: Cost distribution among departments is considered same as Aurora Plaza, which is as follows:

Between CUP and CUC		
	CUP	CUC
Personnel cost	100%	0%
Materials	88%	12%
Clothing and provisions	0%	100%
Fuel and energy cost	98%	2%
Administrative cost	69%	31%
Depreciation and investment	92%	8%

*6: Cost distribution among departments is considered same as staff distribution, which is sweeping (66%), collection (19%), others (5%), and administration (10%).

*7: Cost distribution among departments is considered same as distribution of CUC expenses, which is sweeping (16%), collection (28%), others (3%), and

administration (53%).

*8: Distribution of depreciable equipment is considered 5% for sweeping, 80% for collection, 5% for others, and 10% for administration.

(At the end of 2003;	Unit: Peso *)
Assets	
Current assets	
Cash on hand	500
Cash at bank	536,301
Account receivable in short term	970,232
Anticipated payment to suppliers	42,721
Income tax payment	1,571,214
Profit contribution for state investment	889,788
Debt from state budget	573
Inventory	226,796
Total current assets	4,238,125
Fixed assets	
Fixed tangible assets	326,222
Depreciation	(202,090)
Total fixed assets	124,132
Total assets	4,362,257
Liability	
Current liabilities	
Account payable in short term	103,193
Liabilities for social security in the state budge	38,260
Income tax payable	129,855
Labor force tax payable	79,708
Contribution for state investment	536,432
Other contribution payable	31,529
Retention payable	6,529
Provision for vacations	150,684
Total current liabilities	1,076,190
Other liabilities	
Various accounts payable	4
Total other liabilities	4
Net worth	
State investment	1,012,104
Donation received	23,168
Reserve for contingencies	109,252
Accumulated profit	2,141,539
Total net worth	3,286,063
Total liabilities and net worth	4,362,257

## Table 8 Balance Sheet of Aurora Habana Vieja

# Table 9 Income Statements of AuroraHabana Vieja

(Ur	nit: Peso 000	*a)
Revenue		
Sales	8,254	*b
Other revenue	84	
of which employee's restaur	ants 54	
Total revenues	8,338	
Expenditure		
Salaries	3,734	
Laborforce utilization tax	933	
Social security	480	
Materials	412	
Depriciation and amortization	234	
Other monetary expenses	334	
of which, energy costs	62	
Restaurant and foodstuff	51	
Financial expense	1	
Other expenses (adjustment)	18	
Total expenditure	6,196	
Profit	2,142	
Reserve for contingency	107	
Income tax	712	
Profit after tax	1,322	
Reserve for development		
Contiribution for state investment	it 1,243	
Distributable profit	79	
_		

*a: CUP and CUC are added up at par.

*b: Comprised of CUP8,158,764 and CUC94,594 Source: DPSC

* CUP and CUC are added up at par. Source: DPSC

(Data of year 2003 *a;							*a; Unit: (	CUP 000,	CUC 000)				
	Sweep	ing *b	Collec	tion *c	Lan	dfill	Oth	ers	Admini	stration		Total	
	CUP	CUC	CUP	CUC	CUP	CUC	CUP	CUC	CUP	CUC	CUP	CUC	Total*d
Revenue	2,799	100	5,342	922	0	0	1,000	0	1,000	16	10,141	1,038	11,179
Expenditure													
Personnel cost	8,733	0	17,413	0	134		3,656	0	3,790	0	33,726	0	33,726
Materials	3,392	119	9,015	113	728	32	728	14	10,403	36	24,266	314	24,580
Foodstuff	0	24	0	77	0	1	0	16	0	137	0	255	255
Fuel and energy cost	559	5	1,492	11	120	2	120	-0	1,714	-1	4,005	17	4,023
Administrative cost	3,705	-52	5,757	-15	115	1	1,223	-4	1,338	357	12,138	286	12,425
Depreciation and investment	1,589	-1	4,629	255	389		389	-1	779	-2	7,775	251	8,026
Total expenditure	17,978	94	38,306	440	1,486	35	6,117	25	18,023	528	81,910	1,123	83,034
Unit cost	4.89	0.03	59.85	0.69	2.32	0.06					90.26	0.89	91.15
(direct cost only)	(Peso/m2)	(Peso/m2)	(Peso/ton)	(Peso/ton)	(Peso/ton)	(Peso/ton)					(Peso/ton)	(Peso/ton)	(Peso/ton)
Unit cost	5.41	0.03	66.18	0.72	2.32	0.06					115.72	1.68	117.40
(including indirect cost)	(Peso/m2)	(Peso/m2)	(Peso/ton)	(Peso/ton)	(Peso/ton)	(Peso/ton)					(Peso/ton)	(Peso/ton)	(Peso/ton)

## Table 10 SWM Expenditure of DMSC and Small Scaled Auroras

*a: Data of sum of DMSC and 3 small Auroras is computed by subtracting quantity of Aurora Habana Vieja from the total of DMSC, Aurora Habana Vieja, and 3 small Auroras. Some values are negative as a result of artificial allocation of costs.

*b: Street sweeping work was performed for 3,676,813 m2.

*c: The volume of solid waste collected was 5378.7 thousand m3 (equivalent to 640,065 tons, applying the specific gravity of 119kg/m3)

*d: CUP and CUC are added up at par.

-

## Table 11: Tariff Scenario 1- Current Tariff Applicable to All Havana City

## Table 11-1: Assumption of MSW generation (2005-2015) in Tariff Analysis

Table 11-1. Assumption of MDW generation (2003-2013) in Tarini Analysis								
Category	No. of	MSW generation assumption						
	users	(liter/user	Specific	(kg/user)	(ton/cate-			
		/day)	gravity		gory/day)			
Inhabitant	2,100,000	3.1	0.22	0.68	1,432			
Office (non-CUC earner) by communal bin	7,700	30.0	0.30	9.00	69			
Office (non-CUC earner) by exclusive bin	300	300.0	0.30	90.00	27			
Office (CUC earner) by communal bin	1,700	30.0	0.30	9.00	15			
Office (CUC earner) by exclusive bin	300	300.0	0.30	90.00	27			
Foreigner by communal bin	700	30.0	0.30	9.00	6			
Foreigner with exclusive bin	300	300.0	0.30	90.00	27			
Total	2,111,000				1,604			

## Table 11-2: Assumption of Waste Collection in Tariff Analysis

Tuble II 21 Ibbumption of Wuble Concernor	
	(ton/day)
	2005
MSW to be collected by Havana City	940
MSW to be collected by other systems	664
Construction and bulk waste	520
Industrial waste	350
Total	2,474

## Table 11-3 Landfill O/M cost to be recovered from MSW collected by Havana City

	(Peso '000, current prices)			
	2003	2005		
CUC	116	44		
CUP	9,115	3,463		

Table 11-4 Collection O/M cost to be recovered from MSW collected by Havana City (Peso '000, current prices)

	(1 cso ooo, current prices)		
	2003	2005	
CUC	1,450	753	
CUP	109,763	57,004	

### Table 11-5: Collection cost to be recovered

rubie if et concention cobt to be recovered		
	(P	eso '000)
Cost item	CUC	CUP
Collection cost (annual)	797	60,467
Collection cost (monthly)	66	5,039
Recovery target (monthly)	66	1,364
Recovery rate	100%	27%

### Table 11-6: Tariff for cost recovery

	(Peso/user/montr	
User Category	CUC	CUP
Inhabitant	0.0	0.4
Office (non-CUC earner) by communal bin	0.0	63.0
Office (non-CUC earner) by exclusive bin	0.0	114.0
Office (CUC earner) by communal bin	30.0	33.0
Office (CUC earner) by exclusive bin	45.0	69.0
Foreigner by communal bin	30.0	0.0
Foreigner with exclusive bin	120.0	0.0
Efficiency of bill collection	95%	95%
Surplus/deficit (Peso/month)	48,984	295

#### Table 11-7: Cross Subsidy Coefficient

Office (CUC earner) by communal bin

Office (CUC earner) by exclusive bin

Foreigner by communal bin

Foreigner with exclusive bin

User Category	CUC	CUP
Inhabitant	0.0	1.0
Office (non-CUC earner) by communal bin	0.0	16.3
Office (non-CUC earner) by exclusive bin	0.0	2.9
Office (CUC earner) by communal bin	6.7	8.5
Office (CUC earner) by exclusive bin	1.0	1.8
Foreigner by communal bin	6.7	0.0
Foreigner with exclusive bin	2.7	0.0

Table 11-8: Per liter tariff	(Peso/liter)	
User Category	CUC	CUP
Inhabitant	0.000	0.004
Office (non-CUC earner) by communal bin	0.000	0.070
Office (non-CUC earner) by exclusive bin	0.000	0.013
Office (CUC earner) by communal bin	0.033	0.037
Office (CUC earner) by exclusive bin	0.005	0.008
Foreigner by communal bin	0.033	0.000
Foreigner with exclusive bin	0.013	0.000
Table 11-9: Monthly revenue	(P	eso '000)
User Category	CUC	CUP
Inhabitant	0	798
Office (non-CUC earner) by communal bin	0	461
Office (non-CUC earner) by exclusive bin	0	32

48

13

20

34

115

Total

53

20

0

0 1,364

D.1	0 -
-----	-----

## Table 12: Tariff Scenario 2 - Full O/M Cost Recovery with Least Cross Subsidy

## Table 12-1: Assumption of MSW generation (2005-2015) in Tariff Analysis

Category	No. of	MSW generation assumption			nption
	users	(liter/user	Specific	(kg/user)	(ton/cate-
		/day)	gravity		gory/day)
Inhabitant	2,100,000	3.1	0.22	0.68	1,432
Office (non-CUC earner) by communal bin	7,700	30.0	0.30	9.00	69
Office (non-CUC earner) by exclusive bin	300	300.0	0.30	90.00	27
Office (CUC earner) by communal bin	1,700	30.0	0.30	9.00	15
Office (CUC earner) by exclusive bin	300	300.0	0.30	90.00	27
Foreigner by communal bin	700	30.0	0.30	9.00	6
Foreigner with exclusive bin	300	300.0	0.30	90.00	27
Total	2,111,000				1.604

## Table 12-2: Assumption of Waste Collection in Tariff Analysis

	(ton/day)
	2005
MSW to be collected by Havana City	940
MSW to be collected by other systems	664
Construction and bulk waste	520
Industrial waste	350
Total	2,474

## Table 12-3 Landfill O/M cost to be recovered from MSW collected by Havana City

	(Peso '000, curr	ent prices)
	2003	2005
CUC	116	44
CUP	9,115	3,463

## Table 12-4 Collection O/M cost to be recovered from MSW collected by Havana City

	(Peso '000, current prices)		
	2003 2005		
CUC	1,450	753	
CUP	109,763	57,004	

## Table 12-5: Collection cost to be recovered

	(Pe	eso '000)
Cost item	CUC	CUP
Collection cost (annual)	797	60,467
Collection cost (monthly)	66	5,039
Recovery target (monthly)	66	5,039
Recovery rate	100%	100%

#### Table 12-6: Tariff for cost recovery

	(Peso/user	(month)
User Category	CUC	CUP
Inhabitant	0.0	1.9
Office (non-CUC earner) by communal bin	3.7	69
Office (non-CUC earner) by exclusive bin	37.0	690
Office (CUC earner) by communal bin	3.7	69
Office (CUC earner) by exclusive bin	37.0	690
Foreigner by communal bin	3.7	69
Foreigner with exclusive bin	37.0	690
Efficiency of bill collection	95%	95%
Surplus/deficit (Peso/month)	695	3,571

## Table 12-7: Cross Subsidy Coefficient

User Category	CUC	CUP
Inhabitant	0.0	1.0
Office (non-CUC earner) by communal bin	1.0	3.8
Office (non-CUC earner) by exclusive bin	1.0	3.8
Office (CUC earner) by communal bin	1.0	3.8
Office (CUC earner) by exclusive bin	1.0	3.8
Foreigner by communal bin	1.0	3.8
Foreigner with exclusive bin	1.0	3.8

Table 12-8: Per liter tariff (Peso/lit		so/liter)
User Category	CUC	CUP
Inhabitant	0.000	0.020
Office (non-CUC earner) by communal bin	0.004	0.077
Office (non-CUC earner) by exclusive bin	0.004	0.077
Office (CUC earner) by communal bin	0.004	0.077
Office (CUC earner) by exclusive bin	0.004	0.077
Foreigner by communal bin	0.004	0.077
Foreigner with exclusive bin	0.004 0.07	
Table 12-9: Monthly revenue	(Pe	so '000)
User Category	CUC	CUP
Inhabitant	0	3,791
Office (non-CUC earner) by communal bin	27	505
Office (non-CUC earner) by exclusive bin	11	197
Office (CUC earner) by communal bin	6	111
Office (CUC earner) by exclusive bin	11 197	
Foreigner by communal bin	2	46
Foreigner with exclusive bin	11	197
Total	67	5,043

## Table 13: Tariff Scenario 3 - 50% O/M Cost Recovery with Cross Subsidy

## Table 13-1: Assumption of MSW generation (2005-2015) in Tariff Analysis

Category	No. of	No. of MSW generation assumption			nption
	users	(liter/user	Specific	(kg/user)	(ton/cate-
		/day)	gravity		gory/day)
Inhabitant	2,100,000	3.1	0.22	0.68	1,432
Office (non-CUC earner) by communal bin	7,700	30.0	0.30	9.00	69
Office (non-CUC earner) by exclusive bin	300	300.0	0.30	90.00	27
Office (CUC earner) by communal bin	1,700	30.0	0.30	9.00	15
Office (CUC earner) by exclusive bin	300	300.0	0.30	90.00	27
Foreigner by communal bin	700	30.0	0.30	9.00	6
Foreigner with exclusive bin	300	300.0	0.30	90.00	27
Total	2,111,000				1,604

## Table 13-2: Assumption of Waste Collection in Tariff Analysis

	(ton/day)
	2005
MSW to be collected by Havana City	940
MSW to be collected by other systems	664
Construction and bulk waste	520
Industrial waste	350
Total	2,474

## Table 13-3 Landfill O/M cost to be recovered from MSW collected by Havana City

	(Peso '000, curr	ent prices)
	2003	2005
CUC	116	44
CUP	9,115	3,463

## Table 13-4 Collection O/M cost to be recovered from MSW collected by Havana City

	(Peso '000, curr	ent prices)
	2003	2005
CUC	1,450	753
CUP	109,763	57,004

## Table 13-5: Collection cost to be recovered

	(Pe	eso '000)
Cost item	CUC	CUP
Collection cost (annual)	797	60,467
Collection cost (monthly)	66	5,039
Recovery target (monthly)	33	2,519
Recovery rate	50%	50%

## Table 13-6: Tariff for cost recovery

	(Peso/user	/month)
User Category	CUC	CUP
Inhabitant	0.0	1.1
Office (non-CUC earner) by communal bin	1.2	11
Office (non-CUC earner) by exclusive bin	12.0	110
Office (CUC earner) by communal bin	2.4	22
Office (CUC earner) by exclusive bin	24.0	220
Foreigner by communal bin	3.6	33
Foreigner with exclusive bin	36.0	330
Efficiency of bill collection	95%	95%
Surplus/deficit (Peso/month)	2.347	1.073

## Table 13-7: Cross Subsidy Coefficient

User Category	CUC	CUP
Inhabitant	0.0	1.0
Office (non-CUC earner) by communal bin	0.5	1.0
Office (non-CUC earner) by exclusive bin	0.5	1.0
Office (CUC earner) by communal bin	1.0	2.1
Office (CUC earner) by exclusive bin	1.0	2.1
Foreigner by communal bin	1.5	3.1
Foreigner with exclusive bin	1.5	3.1

Table 13-8: Per liter tariff	(Pe	eso/liter)
User Category	CUC	CUP
Inhabitant	0.000	0.012
Office (non-CUC earner) by communal bin	0.001	0.012
Office (non-CUC earner) by exclusive bin	0.001	0.012
Office (CUC earner) by communal bin	0.003	0.024
Office (CUC earner) by exclusive bin	0.003	0.024
Foreigner by communal bin	0.004	0.037
Foreigner with exclusive bin	0.004	0.037

Table 13-9: Monthly revenue	(Pe	so '000)
User Category	CUC	CUP
Inhabitant	0	2,195
Office (non-CUC earner) by communal bin	9	80
Office (non-CUC earner) by exclusive bin	3	31
Office (CUC earner) by communal bin	4	36
Office (CUC earner) by exclusive bin	7	63
Foreigner by communal bin	2	22
Foreigner with exclusive bin	10	94
Total	36	2.521

## Table 14 Tariff Setting Example 1: Year 2015; Full Cost Recovery for CUC; 50% Cost Recovery for CUP; and Cross Subsidy 1:2:3 (partial presentation 1/3)

Table 1: Assumption of MSW generation (2005-2015) in Tariff Analysis					
Category	No. of	MSW generation assumption			mption
	users	(liter/user	Specific	(kg/user)	(ton/cate-
		/day)	gravity		gory/day)
Inhabitant	2,100,000	3.1	0.22	0.68	1,432
Office (non-CUC earner) by communal bin	7,700	30.0	0.30	9.00	69
Office (non-CUC earner) by exclusive bin	300	300.0	0.30	90.00	27
Office (CUC earner) by communal bin	1,700	30.0	0.30	9.00	15
Office (CUC earner) by exclusive bin	300	300.0	0.30	90.00	27
Foreigner by communal bin	700	30.0	0.30	9.00	6
Foreigner with exclusive bin	300	300.0	0.30	90.00	27
Total	2,111,000				1,604

## Table 2: Assumption of Waste Collection in Tariff Analysis

Table 2: Assumption of Waste Collection i	n Tariff Analy	ysis									(ton/day)
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
MSW to be collected by Havana City	940	940	940	940	940	940	940	940	940	940	940
MSW to be collected by other systems	664	664	664	664	664	664	664	664	664	664	664
Construction and bulk waste	520	520	520	520	520	520	520	520	520	520	520
Industrial waste	350	350	350	350	350	350	350	350	350	350	350
Total	2.474	2.474	2.474	2.474	2.474	2.474	2.474	2.474	2.474	2.474	2.474

## Table 3: Collection O/M cost (with M/P) to be recovered from all SW

									(Pesc	000, curi	rent prices)
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	2,164	2,317	2,348	2,379	2,746	3,043	3,082	3,121	3,161	3,201	27,560
CUP	119,665	122,499	125,316	128,199	131,402	135,207	138,317	141,498	144,752	148,082	1,334,936

Table 4: Collection O/M cost (with M/P) to be recovered from MSW collected by Havana City

									(Peso	'000, curre	ent prices)
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	1,124	1,203	1,219	1,235	1,426	1,581	1,601	1,621	1,641	1,662	14,313
CUP	62,146	63,618	65,081	66,578	68,242	70,218	71,833	73,485	75,175	76,904	693,282

## Table 5 Landfill O/M cost (without M/P)

										(Pese	o '000, curre	ent prices)
	2003	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
CUC	116	119	120	121	122	124	125	126	127	129	130	131
CUP	9.115	9.298	9.512	9.731	9,955	10.184	10.418	10.657	10.903	11.153	11.410	11.672

Table 6 Collection O/M cost (without M/P)

____

(Peso												
	2003	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
CUC	1,450	1,479	1,494	1,509	1,524	1,539	1,555	1,570	1,586	1,602	1,618	1,634
CUP	109,763	114,870	117,512	120,215	122,980	125,808	128,702	131,662	134,690	137,788	140,957	144,199

Table 7: Landfill O/M cost (with M/P) to be recovered from all SW

									(Peso	000, curre	ent prices)
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	124	797	804	813	765	773	780	788	796	804	7,243
CUP	9,512	11,314	11,574	11,848	12,121	12,481	12,761	13,055	13,343	13,649	121,658

Table 8: Landfill O/M cost (with M/P) to be recovered from MSW collected by Havana City

									(Peso	000, curre	nt prices)
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	41	244	247	250	237	237	240	244	244	247	2,230
CUP	2,906	3,455	3,534	3,620	3,702	3,812	3,898	3,987	4,076	4,169	37,158

#### Table 9: Collection and landfill O/M cost (with M/P) to be recovered from MSW collected by Havana City

										(Peso	'000, curre	ent prices)
		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
	CUC	1,165	1,447	1,466	1,486	1,663	1,817	1,841	1,864	1,885	1,909	16,543
	CUP	65,053	67,073	68,615	70,198	71,944	74,030	75,731	77,472	79,251	81,073	730,439
Table 10: Household income check (CUI	?/month)											
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	
Household income	777	795	814	832	852	871	891	912	933	954	976	
1% of income	7.8	8.0	8.1	8.3	8.5	8.7	8.9	9.1	9.3	9.5	9.8	
1% of income divided by 4 members	1.9	2.0	2.0	2.1	2.1	2.2	2.2	2.3	2.3	2.4	2.4	

# Table 15Tariff Setting Example 1: Year 2015; Full Cost Recovery for CUC; 50% Cost<br/>Recovery for CUP; and Cross Subsidy 1:2:3 (partial presentation 2/3)

										(Peso/use	r/month)
User Category		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Inhabitant	CUC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	CUP	1.0	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.2	1.2
Office (non-CUC earner) by communal bir	CUC	3.3	4.1	4.1	4.2	4.7	5.1	5.2	5.3	5.3	5.4
	CUP	24.0	27.0	29.0	32.0	34.0	24.0	26.0	28.0	31.0	33.0
Office (non-CUC earner) by exclusive bin	CUC	33.0	41.0	41.0	42.0	47.0	51.0	52.0	53.0	53.0	54.0
	CUP	240.0	270.0	290.0	320.0	340.0	240.0	260.0	280.0	310.0	330.0
Office (CUC earner) by communal bin	CUC	6.6	8.2	8.2	8.4	9.4	10.2	10.4	10.6	10.6	10.8
	CUP	48.0	54.0	58.0	64.0	68.0	48.0	52.0	56.0	62.0	66.0
Office (CUC earner) by exclusive bin	CUC	66.0	82.0	82.0	84.0	94.0	102.0	104.0	106.0	106.0	108.0
	CUP	480.0	540.0	580.0	640.0	680.0	480.0	520.0	560.0	620.0	660.0
Foreigner by communal bin	CUC	9.9	12.3	12.3	12.6	14.1	15.3	15.6	15.9	15.9	16.2
	CUP	72.0	81.0	87.0	96.0	102.0	72.0	78.0	84.0	93.0	99.0
Foreigner by exclusive bin	CUC	99.0	123.0	123.0	126.0	141.0	153.0	156.0	159.0	159.0	162.0
	CUP	720.0	810.0	870.0	960.0	1,020.0	720.0	780.0	840.0	930.0	990.0
Tipping fee (MSW hauled by Havana City)	CUC	0.1	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
(unit: peso/ton)	CUP	8.5	10.1	10.3	10.6	10.8	11.1	11.4	11.6	11.9	12.2
Tipping fee (other SW)	CUC	0.2	1.1	1.1	1.1	1.0	1.0	1.1	1.1	1.1	1.1
(unit: peso/ton)	CUP	12.7	15.1	15.5	15.8	16.2	16.7	17.0	17.4	17.8	18.2

## Table 11: CUC cost recovery 100%, CUP cost recovery 50%, and cross subsidy 1:2:3

### Table 12 (Table 6.15.9 of Main Report): Simulated Tariffs

Table 12 (Table 0.15.9 of Main Report). Si	mulateu 1a	11115												
(unit: peso/user/month) er Category 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015														
User Category		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015		
		Actual	Plan											
Inhabitant	CUC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	CUP	0.4	0.4	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.2	1.2		
Office (non-CUC earner) by communal bir	CUC	0.0	3.3	4.1	4.1	4.2	4.7	5.1	5.2	5.3	5.3	5.4		
	CUP	63.0	24.0	27.0	29.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0		
Office (non-CUC earner) by exclusive bin	CUC	0.0	33.0	41.0	41.0	42.0	47.0	51.0	52.0	53.0	53.0	54.0		
-	CUP	114.0	240.0	270.0	290.0	320.0	320.0	320.0	320.0	320.0	320.0	320.0		
Office (CUC earner) by communal bin	CUC	30.0	6.6	8.2	8.2	8.4	9.4	10.2	10.4	10.6	10.6	10.8		
	CUP	33.0	48.0	54.0	58.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0		
Office (CUC earner) by exclusive bin	CUC	45.0	66.0	82.0	82.0	84.0	94.0	102.0	104.0	106.0	106.0	108.0		
	CUP	69.0	480.0	540.0	580.0	640.0	640.0	640.0	640.0	640.0	640.0	640.0		
Foreigner by communal bin	CUC	30.0	9.9	12.3	12.3	12.6	14.1	15.3	15.6	15.9	15.9	16.2		
	CUP	0.0	72.0	81.0	87.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0		
Foreigner by exclusive bin	CUC	120.0	99.0	123.0	123.0	126.0	141.0	153.0	156.0	159.0	159.0	162.0		
	CUP	0.0	720.0	810.0	870.0	960.0	960.0	960.0	960.0	960.0	960.0	960.0		
Tipping fee (MSW hauled by Havana City)	CUC	0.0	0.1	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7		
(unit: peso/ton)	CUP	0.5	8.5	10.1	10.3	10.6	10.8	11.1	11.4	11.6	11.9	12.2		
Tipping fee (other SW)	CUC	0.0	0.2	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		
(unit: peso/ton)	CUP	0.5	12.7	15.1	15.5	15.8	16.2	16.7	17.0	17.4	17.8	18.2		

## Table 13: Expected Revenue under Proposed Tariff (With M/P)

										(Pesc	000, curr	ent prices)
User Category		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
Inhabitant	CUC	0	0	0	0	0	0	0	0	0	0	0
	CUP	9,576	23,940	23,940	23,940	23,940	28,728	28,728	28,728	28,728	28,728	248,976
Office (non-CUC earner) by communal bin	CUC	290	360	360	369	413	448	456	465	465	474	4,099
	CUP	2,107	2,370	2,546	2,809	2,809	2,809	2,809	2,809	2,809	2,809	26,685
Office (non-CUC earner) by exclusive bin	CUC	113	140	140	144	161	174	178	181	181	185	1,597
	CUP	821	923	992	1,094	1,094	1,094	1,094	1,094	1,094	1,094	10,397
Office (CUC earner) by communal bin	CUC	128	159	159	163	182	198	202	205	205	209	1,810
	CUP	930	1,047	1,124	1,240	1,240	1,240	1,240	1,240	1,240	1,240	11,783
Office (CUC earner) by exclusive bin	CUC	226	280	280	287	321	349	356	363	363	369	3,194
	CUP	1,642	1,847	1,984	2,189	2,189	2,189	2,189	2,189	2,189	2,189	20,794
Foreigner by communal bin	CUC	79	98	98	101	113	122	124	127	127	129	1,118
	CUP	575	646	694	766	766	766	766	766	766	766	7,278
Foreigner by exclusive bin	CUC	339	421	421	431	482	523	534	544	544	554	4,791
	CUP	2,462	2,770	2,975	3,283	3,283	3,283	3,283	3,283	3,283	3,283	31,190
Tipping fee (other SW) *	CUC	96	569	574	585	585	585	559	569	569	574	5,266
	CUP	6,761	8,037	8,218	8,420	8,612	8,867	9,064	9,271	9,479	9,697	86,425
Total	CUC	1,269	2,027	2,033	2,079	2,257	2,399	2,408	2,454	2,454	2,495	21,876
	CUP	24.873	41.581	42,473	43,742	43,933	48,977	49.174	49.381	49.588	49.807	443,528

Note: Efficiency of bill collection is assumed to be 95%

* Tipping fee revenue from MSW hauled by Havana City system is offset by the same amount of tipping cost when the entire Havana City SWM accounting is consolidated.

Table	14:	Expected	Revenue	under	Current	Tariff	(Without	M/P)

										(Peso	'000, curre	nt prices)
	2005*	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	1,108	1,119	1,130	1,142	1,153	1,165	1,176	1,188	1,200	1,212	1,224	11,710
CUP	6,877	6,945	7,015	7,085	7,156	7,227	7,300	7,373	7,446	7,521	7,596	72,663
*2005 revenues were estimated from 2003 revenues, taking account of the ratio of MSW collection and non-MSW collection.												
CUC escalation 1% CUP escalation 2.3%												

## Table 16 Tariff Setting Example 1: Year 2015; Full Cost Recovery for CUC; 50% Cost Recovery for CUP; and Cross Subsidy 1:2:3 (partial presentation 3/3)

#### Year 2006 Tipping Fee Table 16: Hauled SW

	SW	volume
	(ton/category	(ton/category
	/day)	/year)
MSW collected by Havana City	940	343,100
MSW collected by other systems	664	242,360
Construction and bulk waste	520	189,800
Industrial waste	350	127,750
Total waste collection	2,474	903,010

#### Table 17: Landfill Cost to Be Recoverd

	(F	eso '000/year)
	CUC	CUP
Landfill cost	124	9,512
Recovery target	124	9,512
Recovery rate	100%	100%
Efficiency of tariff collection	95%	95%
Billing target	131	10,013

#### Table 18: Cross Subsidy Coefficient in Tipping Fee

User Category	CUC	CUP
MSW collected by Havana City	1.0	1.0
MSW collected by other systems	1.5	1.5
Construction and bulk waste	1.5	1.5
Industrial waste	1.5	1.5

#### Table 19: Tipping Fee for Cost Recovery

		(Peso/ton)
	CUC	CUP
MSW collected by Havana City	0.12	8.47
MSW collected by other systems	0.18	12.71
Construction and bulk waste	0.18	12.71
Industrial waste	0.18	12.71

#### Year 2006 Collection Fee:

## (100% CUC recovery; 50% CUP recovery; Cross Subsidy 1:2:3) Table 20: Collection cost to be recovered

		(Peso '000)
Cost item	CUC	CUP
Collection cost (annual)	1,165	65,053
Collection cost (monthly)	97	5,421
Recovery target (monthly)	97	2,711
Recovery rate	100%	50%

#### Table 21: Tariff for cost recovery

	(Pesc	Peso/user/month)	
User Category	CUC	CUP	
Inhabitant	0.0	1.0	
Office (non-CUC earner) by communal bin	3.3	24	
Office (non-CUC earner) by exclusive bin	33.0	240	
Office (CUC earner) by communal bin	6.6	48	
Office (CUC earner) by exclusive bin	66.0	480	
Foreigner by communal bin	9.9	72	
Foreigner with exclusive bin	99.0	720	
Efficiency of bill collection	95%	95%	
Surplus/deficit (Peso/month)	746	-4.162	

## Table 22: Cross Subsidy Coefficient

User Category	CUC	CUP
Inhabitant	0.0	1.0
Office (non-CUC earner) by communal bin	1.0	2.5
Office (non-CUC earner) by exclusive bin	1.0	2.5
Office (CUC earner) by communal bin	2.0	5.0
Office (CUC earner) by exclusive bin	2.0	5.0
Foreigner by communal bin	3.0	7.4
Foreigner with exclusive bin	3.0	74

Table 23: Per liter tariff		(Peso/liter)
User Category	CUC	CUP
Inhabitant	0.000	0.011
Office (non-CUC earner) by communal bin	0.004	0.027
Office (non-CUC earner) by exclusive bin	0.004	0.027
Office (CUC earner) by communal bin	0.007	0.053
Office (CUC earner) by exclusive bin	0.007	0.053
Foreigner by communal bin	0.011	0.080
Foreigner with exclusive bin	0.011	0.080

Table 24: Monthly revenue		(Peso '000)
User Category	CUC	CUP
Inhabitant	0	1,995
Office (non-CUC earner) by communal bin	24	176
Office (non-CUC earner) by exclusive bin	9	68
Office (CUC earner) by communal bin	11	78
Office (CUC earner) by exclusive bin	19	137
Foreigner by communal bin	7	48
Foreigner with exclusive bin	28	205
Total	98	2,706

## Year 2015 Tipping Fee Table 16: Hauled SW

		SW volume		
	(	(ton/category (ton/category		
		/day)	/year)	
MSW collected by Havana City		940	343,100	
MSW collected by other systems		664	242,360	
Construction and bulk waste		520	189,800	
Industrial waste		350	127,750	
Total waste collection		2,474	903,010	

#### Table 17: Landfill Cost to Be Recoverd

	(Peso '000/year)		
	CUC	CUP	
Landfill cost	804	13,649	
Recovery target	804	13,649	
Recovery rate	100%	100%	
Efficiency of tariff collection	95%	95%	
Billing target	846	14,368	

#### Table 18: Cross Subsidy Coefficient in Tipping Fee

User Category	CUC	CUP
MSW collected by Havana City	1.0	1.0
MSW collected by other systems	1.5	1.5
Construction and bulk waste	1.5	1.5
Industrial waste	1.5	1.5

#### Table 19: Tipping Fee for Cost Recovery

	•	(Peso/ton)
	CUC	CUP
MSW collected by Havana City	0.72	12.15
MSW collected by other systems	1.08	18.23
Construction and bulk waste	1.08	18.23
Industrial waste	1.08	18.23

#### Year 2015 Collection Fee:

(100% CUC recovery; 50% CUP recovery; Cross Subsidy 1:2:3) Table 20: Collection cost to be recovered

		(Peso '000)
Cost item	CUC	CUP
Collection cost (annual)	1,909	81,073
Collection cost (monthly)	159	6,756
Recovery target (monthly)	159	3,378
Recovery rate	100%	50%

#### Table 21: Tariff for cost recovery

	(Pese	o/user/month)
User Category	CUC	CUP
Inhabitant	0.0	1.2
Office (non-CUC earner) by communal bin	5.4	33
Office (non-CUC earner) by exclusive bin	54.0	330
Office (CUC earner) by communal bin	10.8	66
Office (CUC earner) by exclusive bin	108.0	660
Foreigner by communal bin	16.2	99
Foreigner with exclusive bin	162.0	990
Efficiency of bill collection	95%	95%
Surplus/deficit (Peso/month)	956	-5,919

## Table 22: Cross Subsidy Coefficient

User Category	CUC	CUP
Inhabitant	0.0	1.0
Office (non-CUC earner) by communal bin	1.0	2.8
Office (non-CUC earner) by exclusive bin	1.0	2.8
Office (CUC earner) by communal bin	2.0	5.7
Office (CUC earner) by exclusive bin	2.0	5.7
Foreigner by communal bin	3.0	8.5
Foreigner with exclusive bin	3.0	8.5

Table 23: Per liter tariff		(Peso/liter)
User Category	CUC	CUP
Inhabitant	0.000	0.013
Office (non-CUC earner) by communal bin	0.006	0.037
Office (non-CUC earner) by exclusive bin	0.006	0.037
Office (CUC earner) by communal bin	0.012	0.073
Office (CUC earner) by exclusive bin	0.012	0.073
Foreigner by communal bin	0.018	0.110
Foreigner with exclusive bin	0.018	0.110

Table 24: Monthly revenue		(Peso '000)
User Category	CUC	CUP
Inhabitant	0	2,394
Office (non-CUC earner) by communal bin	40	241
Office (non-CUC earner) by exclusive bin	15	94
Office (CUC earner) by communal bin	17	107
Office (CUC earner) by exclusive bin	31	188
Foreigner by communal bin	11	66
Foreigner with exclusive bin	46	282
Total	160	3.372

## Table 17 Tariff Setting Example 2: Year 2015; 70% Cost Recovery for CUC and CUP CUP; and Cross Subsidy 2:3:4 (partial presentation 1/3)

#### Table 1: Assumption of MSW generation (2005-2015) in Tariff Analysis

Category	No. of		MSW gene	eration assu	mption
	users	(liter/user	Specific	(kg/user)	(ton/cate-
		/day)	gravity		gory/day)
Inhabitant	2,100,000	3.1	0.22	0.68	1,432
Office (non-CUC earner) by communal bin	7,700	30.0	0.30	9.00	69
Office (non-CUC earner) by exclusive bin	300	300.0	0.30	90.00	27
Office (CUC earner) by communal bin	1,700	30.0	0.30	9.00	15
Office (CUC earner) by exclusive bin	300	300.0	0.30	90.00	27
Foreigner by communal bin	700	30.0	0.30	9.00	6
Foreigner with exclusive bin	300	300.0	0.30	90.00	27
Total	2,111,000				1,604

Table 2: Assumption of Waste Collection in Tariff Analysis     (ton/day)													
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015		
MSW to be collected by Havana City	940	940	940	940	940	940	940	940	940	940	940		
MSW to be collected by other systems	664	664	664	664	664	664	664	664	664	664	664		
Construction and bulk waste	520	520	520	520	520	520	520	520	520	520	520		
Industrial waste	350	350	350	350	350	350	350	350	350	350	350		
Total	2,474	2,474	2,474	2,474	2,474	2,474	2,474	2,474	2,474	2,474	2,474		

Table 3: Col	lection O/M	cost (with	M/P) to be	recovered	from all SV	W					
									(Pesc	000, curr	ent prices)
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	2,164	2,317	2,348	2,379	2,746	3,043	3,082	3,121	3,161	3,201	27,560
CUP	119,665	122,499	125,316	128,199	131,402	135,207	138,317	141,498	144,752	148,082	1,334,936

## Table 4: Collection O/M cost (with M/P) to be recovered from MSW collected by Havana City

									(Peso	'000, curre	ent prices)
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	1,124	1,203	1,219	1,235	1,426	1,581	1,601	1,621	1,641	1,662	14,313
CUP	62,146	63,618	65,081	66,578	68,242	70,218	71,833	73,485	75,175	76,904	693,282

#### Table 5 Landfill O/M cost (without M/P)

										(Pese	o '000, curre	ent prices)
	2003	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
CUC	116	119	120	121	122	124	125	126	127	129	130	131
CUP	9,115	9,298	9,512	9,731	9,955	10,184	10,418	10,657	10,903	11,153	11,410	11,672

#### Table 6 Collection O/M cost (without M/P) (Peso '000, current prices) 2003 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 CUC 1,450 1,494 1,509 1,524 1,539 1,555 1,570 1,586 1,634 1,479 1,602 1,618 CUP 109,763 114,870 122,980 134,690 140,957 117,512 120,215 125,808 128,702 131,662 137,788 144,199

## Table 7: Landfill O/M cost (with M/P) to be recovered from all SW

									(Peso	'000, curre	ent prices)
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	124	797	804	813	765	773	780	788	796	804	7,243
CUP	9,512	11,314	11,574	11,848	12,121	12,481	12,761	13,055	13,343	13,649	121,658

## Table 8: Landfill O/M cost (with M/P) to be recovered from MSW collected by Havana City

									(Peso	'000, curre	nt prices)
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	41	244	247	250	237	237	240	244	244	247	2,230
CUP	2,906	3,455	3,534	3,620	3,702	3,812	3,898	3,987	4,076	4,169	37,158

## Table 9: Collection and landfill O/M cost (with M/P) to be recovered from MSW collected by Havana City

									(Peso	'000, curre	ent prices)
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	1,165	1,447	1,466	1,486	1,663	1,817	1,841	1,864	1,885	1,909	16,543
CUE	65,053	67,073	68,615	70,198	71,944	74,030	75,731	77,472	79,251	81,073	730,439
10: Household income check (CUP/month	)										

Table 10. Household mcome check (COT/month)											
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Household income	777	795	814	832	852	871	891	912	933	954	976
1% of income	7.8	8.0	8.1	8.3	8.5	8.7	8.9	9.1	9.3	9.5	9.8
1% of income divided by 4 members	1.9	2.0	2.0	2.1	2.1	2.2	2.2	2.3	2.3	2.4	2.4

# Table 18Tariff Setting Example 2: Year 2015; 70% Cost Recovery for CUC and CUP CUP; and<br/>Cross Subsidy 2:3:4 (partial presentation 2/3)

Table 11: CUC cost recovery 100%, CUP cost recovery 50%, and cross subsidy 1:2:3

										(Peso/us	er/month)
User Category		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Inhabitant	CUC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	CUP	1.0	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.2	1.2
Office (non-CUC earner) by communal bin	CUC	2.3	2.9	2.9	2.9	3.3	3.6	3.6	3.7	3.7	3.8
	CUP	61.0	65.0	68.0	71.0	74.0	65.0	68.0	72.0	75.0	79.0
Office (non-CUC earner) by exclusive bin	CUC	23.0	29.0	29.0	29.0	33.0	36.0	36.0	37.0	37.0	38.0
	CUP	610.0	650.0	680.0	710.0	740.0	650.0	680.0	720.0	750.0	790.0
Office (CUC earner) by communal bin	CUC	4.6	5.8	5.8	5.8	6.6	7.2	7.2	7.4	7.4	7.6
	CUP	122.0	130.0	136.0	142.0	148.0	130.0	136.0	144.0	150.0	158.0
Office (CUC earner) by exclusive bin	CUC	46.0	58.0	58.0	58.0	66.0	72.0	72.0	74.0	74.0	76.0
	CUP	1,220.0	1,300.0	1,360.0	1,420.0	1,480.0	1,300.0	1,360.0	1,440.0	1,500.0	1,580.0
Foreigner by communal bin	CUC	6.9	8.7	8.7	8.7	9.9	10.8	10.8	11.1	11.1	11.4
	CUP	183.0	195.0	204.0	213.0	222.0	195.0	204.0	216.0	225.0	237.0
Foreigner by exclusive bin	CUC	69.0	87.0	87.0	87.0	99.0	108.0	108.0	111.0	111.0	114.0
	CUP	1,830.0	1,950.0	2,040.0	2,130.0	2,220.0	1,950.0	2,040.0	2,160.0	2,250.0	2,370.0
Tipping fee (MSW hauled by Havana City)	CUC	0.1	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
(unit: peso/ton)	CUP	8.5	10.1	10.3	10.6	10.8	11.1	11.4	11.6	11.9	12.2
Tipping fee (other SW)	CUC	0.2	1.1	1.1	1.1	1.0	1.0	1.1	1.1	1.1	1.1
(unit: peso/ton)	CUP	12.7	15.1	15.5	15.8	16.2	16.7	17.0	17.4	17.8	18.2

## Table 12: Proposed Tariff

										(u	nit: peso/use	er/month)
User Category		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
		Actual	Plan	Plan								
Inhabitant	CUC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	CUP	0.4	0.4	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.2	1.2
Office (non-CUC earner) by communal bin	CUC	0.0	2.3	2.9	2.9	2.9	3.3	3.6	3.6	3.7	3.7	3.8
	CUP	63.0	63.0	65.0	68.0	71.0	74.0	74.0	74.0	74.0	74.0	74.0
Office (non-CUC earner) by exclusive bin	CUC	0.0	23.0	29.0	29.0	29.0	33.0	36.0	36.0	37.0	37.0	38.0
	CUP	114.0	610.0	650.0	680.0	710.0	740.0	740.0	740.0	740.0	740.0	740.0
Office (CUC earner) by communal bin	CUC	30.0	4.6	5.8	5.8	5.8	6.6	7.2	7.2	7.4	7.4	7.6
	CUP	33.0	122.0	130.0	136.0	142.0	148.0	148.0	148.0	148.0	148.0	158.0
Office (CUC earner) by exclusive bin	CUC	45.0	46.0	58.0	58.0	58.0	66.0	72.0	72.0	74.0	74.0	76.0
	CUP	69.0	1,220.0	1,300.0	1,360.0	1,420.0	1,480.0	1,480.0	1,480.0	1,480.0	1,480.0	1,580.0
Foreigner by communal bin	CUC	30.0	6.9	8.7	8.7	8.7	9.9	10.8	10.8	11.1	11.1	11.4
	CUP	0.0	183.0	195.0	204.0	213.0	222.0	222.0	222.0	222.0	222.0	237.0
Foreigner by exclusive bin	CUC	120.0	69.0	87.0	87.0	87.0	99.0	108.0	108.0	111.0	111.0	114.0
	CUP	0.0	1,830.0	1,950.0	2,040.0	2,130.0	2,220.0	2,220.0	2,220.0	2,220.0	2,220.0	2,370.0
Tipping fee (MSW hauled by Havana City)	CUC	0.0	0.1	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
(unit: peso/ton)	CUP	0.5	8.5	10.1	10.3	10.6	10.8	11.1	11.4	11.6	11.9	12.2
Tipping fee (other SW)	CUC	0.0	0.2	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
(unit: peso/ton)	CUP	0.5	12.7	15.1	15.5	15.8	16.2	16.7	17.0	17.4	17.8	18.2

Table 13: Expected Revenue under Proposed Tariff (With M/P)

										(Peso	'000, curre	ent prices)
User Category		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
Inhabitant	CUC	0	0	0	0	0	0	0	0	0	0	0
	CUP	9,576	23,940	23,940	23,940	23,940	28,728	28,728	28,728	28,728	28,728	248,976
Office (non-CUC earner) by communal bin	CUC	202	255	255	255	290	316	316	325	325	334	2,870
	CUP	5,530	5,706	5,969	6,232	6,496	6,496	6,496	6,496	6,496	6,496	62,412
Office (non-CUC earner) by exclusive bin	CUC	79	99	99	99	113	123	123	127	127	130	1,118
	CUP	2,086	2,223	2,326	2,428	2,531	2,531	2,531	2,531	2,531	2,531	24,248
Office (CUC earner) by communal bin	CUC	89	112	112	112	128	140	140	143	143	147	1,267
	CUP	2,364	2,519	2,636	2,752	2,868	2,868	2,868	2,868	2,868	3,062	27,675
Office (CUC earner) by exclusive bin	CUC	157	198	198	198	226	246	246	253	253	260	2,237
	CUP	4,172	4,446	4,651	4,856	5,062	5,062	5,062	5,062	5,062	5,404	48,838
Foreigner by communal bin	CUC	55	69	69	69	79	86	86	89	89	91	783
	CUP	1,460	1,556	1,628	1,700	1,772	1,772	1,772	1,772	1,772	1,891	17,093
Foreigner by exclusive bin	CUC	236	298	298	298	339	369	369	380	380	390	3,355
	CUP	6,259	6,669	6,977	7,285	7,592	7,592	7,592	7,592	7,592	8,105	73,256
Tipping fee (other SW) *	CUC	96	569	574	585	585	585	559	569	569	574	5,266
	CUP	6,761	8,037	8,218	8,420	8,612	8,867	9,064	9,271	9,479	9,697	86,425
Total	CUC	914	1,601	1,606	1,617	1,759	1,866	1,839	1,885	1,885	1,926	16,897
	CUP	38,209	55,096	56,344	57,613	58,872	63,915	64,112	64,320	64,527	65,914	588,923

Note: Efficiency of bill collection is assumed to be 95% * Tipping fee revenue from MSW hauled by Havana City system is offset by the same amount of tipping cost when the entire Havana City SWM accounting is consolidated.

Table 14: Expected Revenue under Current Tariff (Without M/P)

										(Peso	'000, curre	nt prices)
	2005*	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
CUC	1,108	1,119	1,130	1,142	1,153	1,165	1,176	1,188	1,200	1,212	1,224	11,710
CUP	6,877	6,945	7,015	7,085	7,156	7,227	7,300	7,373	7,446	7,521	7,596	72,663

*2005 revenues were estimated from 2003 revenues, taking account of the ratio of MSW collection and non-MSW collection.

CUC escalation 1%

CUP escalation 2.3%

## Table 19 Tariff Setting Example 2: Year 2015; 70% Cost Recovery for CUC and CUP CUP; and Cross Subsidy 2:3:4 (partial presentation 3/3)

Year 2006 Tipping Fee
Table 16: Hauled SW

## Year 2015 Tipping Fee

	SW volume			
	(ton/category	(ton/category		
	/day)	/year)		
MSW collected by Havana City	940	343,100		
MSW collected by other systems	664	242,360		
Construction and bulk waste	520	189,800		
Industrial waste	350	127,750		
Total waste collection	2,474	903,010		

### Table 17: Landfill Cost to Be Recoverd

Table 17. Lanum Cost to be Recoveru		
	(Pe	eso '000/year)
	CUC	CUP
Landfill cost	124	9,512
Recovery target	124	9,512
Recovery rate	100%	100%
Efficiency of tariff collection	95%	95%
Billing target	131	10,013

## Table 18: Cross Subsidy Coefficient in Tipping Fee

Table 18: Cross Subsidy Coefficient in Tipping Fee		
User Category	CUC	CUP
MSW collected by Havana City	1.0	1.0
MSW collected by other systems	1.5	1.5
Construction and bulk waste	1.5	1.5
Industrial waste	1.5	1.5

#### Table 19: Tipping Fee for Cost Recovery

ruble 19. ripping ree for cost Recovery		
		(Peso/ton)
	CUC	CUP
MSW collected by Havana City	0.12	8.47
MSW collected by other systems	0.18	12.71
Construction and bulk waste	0.18	12.71
Industrial waste	0.18	12.71

#### Year 2006 Collection Fee:

(70% CUC recovery; 70% CUP recovery; Cross Subsidy 1:2:3) Table 20: Collection cost to be recovered

		(Peso '000)
Cost item	CUC	CUP
Collection cost (annual)	1,165	65,053
Collection cost (monthly)	97	5,421
Recovery target (monthly)	68	3,795
Recovery rate	70%	70%

#### Table 21: Tariff for cost recovery

	(Peso/user/month)	
User Category	CUC	CUP
Inhabitant	0.0	1.0
Office (non-CUC earner) by communal bin	2.3	61
Office (non-CUC earner) by exclusive bin	23.0	610
Office (CUC earner) by communal bin	4.6	122
Office (CUC earner) by exclusive bin	46.0	1220
Foreigner by communal bin	6.9	183
Foreigner with exclusive bin	69.0	1830
Efficiency of bill collection	95%	95%
Surplus/deficit (Peso/month)	226	8,309

#### Table 22: Cross Subsidy Coefficient

User Category	CUC	CUP
Inhabitant	0.0	1.0
Office (non-CUC earner) by communal bin	1.0	6.3
Office (non-CUC earner) by exclusive bin	1.0	6.3
Office (CUC earner) by communal bin	2.0	12.6
Office (CUC earner) by exclusive bin	2.0	12.6
Foreigner by communal bin	3.0	18.9
Foreigner with exclusive bin	3.0	18.9

Table 23: Per liter tariff		(Peso/liter)
User Category	CUC	CUP
Inhabitant	0.000	0.011
Office (non-CUC earner) by communal bin	0.003	0.068
Office (non-CUC earner) by exclusive bin	0.003	0.068
Office (CUC earner) by communal bin	0.005	0.136
Office (CUC earner) by exclusive bin	0.005	0.136
Foreigner by communal bin	0.008	0.203
Foreigner with exclusive bin	0.008	0.203

Table 24: Monthly revenue		(Peso '000)
User Category	CUC	CUP
Inhabitant	0	1,995
Office (non-CUC earner) by communal bin	17	446
Office (non-CUC earner) by exclusive bin	7	174
Office (CUC earner) by communal bin	7	197
Office (CUC earner) by exclusive bin	13	348
Foreigner by communal bin	5	122
Foreigner with exclusive bin	20	522
Total	68	3,803

	SW	SW volume	
	(ton/category	(ton/category	
	/day)	/year)	
MSW collected by Havana City	940	343,100	
MSW collected by other systems	664	242,360	
Construction and bulk waste	520	189,800	
Industrial waste	350	) 127,750	
Total waste collection	2,474	903,010	

#### Table 17: Landfill Cost to Be Recoverd

	(Peso '000/year)	
	CUC	CUP
Landfill cost	804	13,649
Recovery target	804	13,649
Recovery rate	100%	100%
Efficiency of tariff collection	95%	95%
Billing target	846	14.368

Table 18: Cross Subsidy Coefficient in Tipping Fee		
User Category	CUC	CUP
MSW collected by Havana City	1.0	1.0
MSW collected by other systems	1.5	1.5
Construction and bulk waste	1.5	1.5
Industrial waste	1.5	1.5

#### Table 19: Tipping Fee for Cost Recovery

		(Peso/ton)
	CUC	CUP
MSW collected by Havana City	0.72	12.15
MSW collected by other systems	1.08	18.23
Construction and bulk waste	1.08	18.23
Industrial waste	1.08	18.23

#### Year 2015 Collection Fee:

(70% CUC recovery; 70% CUP recovery; Cross Subsidy 1:2:3) Table 20: Collection cost to be recovered

		(Peso '000)
Cost item	CUC	CUP
Collection cost (annual)	1,909	81,073
Collection cost (monthly)	159	6,756
Recovery target (monthly)	111	4,729
Recovery rate	70%	70%

#### Table 21: Tariff for cost recovery

	(Pes	o/user/month)
User Category	CUC	CUP
Inhabitant	0.0	1.2
Office (non-CUC earner) by communal bin	3.8	79
Office (non-CUC earner) by exclusive bin	38.0	790
Office (CUC earner) by communal bin	7.6	158
Office (CUC earner) by exclusive bin	76.0	1580
Foreigner by communal bin	11.4	237
Foreigner with exclusive bin	114.0	2370
Efficiency of bill collection	95%	95%
Surplus/deficit (Peso/month)	1,262	6,305

#### Table 22: Cross Subsidy Coefficient

r	User Category	CUC	CUP
1.0	Inhabitant	0.0	1.0
6.3	Office (non-CUC earner) by communal bin	1.0	6.8
6.3	Office (non-CUC earner) by exclusive bin	1.0	6.8
12.6	Office (CUC earner) by communal bin	2.0	13.6
12.6	Office (CUC earner) by exclusive bin	2.0	13.6
18.9	Foreigner by communal bin	3.0	20.4
18.9	Foreigner with exclusive bin	3.0	20.4

Table 23: Per liter tariff		(Peso/liter)
User Category	CUC	CUP
Inhabitant	0.000	0.013
Office (non-CUC earner) by communal bin	0.004	0.088
Office (non-CUC earner) by exclusive bin	0.004	0.088
Office (CUC earner) by communal bin	0.008	0.176
Office (CUC earner) by exclusive bin	0.008	0.176
Foreigner by communal bin	0.013	0.263
Foreigner with exclusive bin	0.013	0.263

Table 24: Monthly revenue		(Peso '000)
User Category	CUC	CUP
Inhabitant	0	2,394
Office (non-CUC earner) by communal bin	28	578
Office (non-CUC earner) by exclusive bin	11	225
Office (CUC earner) by communal bin	12	255
Office (CUC earner) by exclusive bin	22	450
Foreigner by communal bin	8	158
Foreigner with exclusive bin	32	675
Total	112	1 726

No.	Landfill	Closing/operation status	Municipality	Landfill	Outer	Net outer	Population	Population
				area	1km area	area	density	benefited
				(ha)	(ha)	(km2)	(person/km2)	)
1	Ocho Vias	Operational until 2015	Cotorro	30.0	538.1	5.1	1,134	5,762
2	Barreras	Operational until 2015	Habana este	10.0	436.1	4.3	1,280	5,454
3	Lugardita	Closed by the end of 2008	Boyeros	1.5	358.9	3.6	1,407	5,029
4	Prensa Latina	Closed by the end of 2008	Boyeros	2.0	366.1	3.6	1,407	5,123
5	Rincon	Closed by the end of 2008	Boyeros	0.5	339.6	3.4	1,407	4,771
6	Las Canas	Closed by the end of 2008	Boyeros	1.0	350.4	3.5	1,407	4,917
7	El Vidrio	Closed by the end of 2008	La Lisa	2.5	372.5	3.7	3,408	12,611
8	Los Perros	Closed by the end of 2008	Cotorro	2.0	366.1	3.6	1,134	4,129
9	Campo Florido	Operational until 2015	Habana este	1.8	363.3	3.6	1,280	4,628
10	New Guanabacoa	Operational until 2015	Guanabacoa	18.0	482.4	4.6	834	3,873
11	New site	Operational from 2011 to 2015	Boyeros	60.0	648.5	5.9	1,407	8,280
12	Calle 100 (existing)	Closed by the end of 2008	Marianao	80.0	711.0	6.3	6,464	40,787
13	Calle 100 (extension)	Operational until 2010	Marianao	24.0	68.4	0.4	6,464	2,872
	Closed landfill total (3	3+4+5+6+7+8+12)		89.5	2,222.1	21.9		39,451
	Operational landfill to	otal (1+2+9+10+11+13)		143.8	2,468.4	23.5		27,997
	Total (1+2+3+4+5+6+	+7+8+9+10+11+12+13)		233.3	4,690.5	45.4		67,448

			•		(BO	D ton/year)
	New Site 1	New Site 1	New Site 1	New Guan.	New Guan.	Total
	Stage 1	Stage 2	Stage 3	Stage 1	Stage 2	BOD
	-	-	-	-	-	reduction
2007	76			41		117
2008	76			41		117
2009	76			41		117
2010	76			41		117
2011	76			44	35	155
2012	81	47		44	35	207
2013	81	47		44	35	207
2014	81	50	47	44	35	256
2015	81	50	47	44	35	256
Total	704	193	94	382	176	1,549
				Ann	ual average	172
Where:					0	
BOD	reduction is	940mg/L (=	=1000mg/L	- 60mg/L)		
Leach	ate generati	on coefficier	nt =	0.4		
Annu	al rainfall (y	/ear 2002) =	1,557	mm		
Envir	onmental lo	ad of Havan	a City (vear	2003)=	28,501	BOD ton
Landf	ill area:			/	- ,	
Ne	w site 1(stag	(e1) =	13	ha =	130.000	m2
Ne	w site 1(stag	(e2) =	8	ha =	80,000	m2
Ne	w site 1(stag	(e3) =	8	ha =	80.000	m2
Ne	w Guanabac	(stage1)	7	ha =	70,000	m2
Ne	w Guanabac	coa (stage2)	6	ha =	60.000	m2
Precir	oitation at la	ndfill:				
Ne	w site 1(stag	(e1) =	202.410	m3/vear		
Ne	w site 1(stag	$(e^2) =$	124.560	m3/year		
Ne	w site 1(stag	(e3) =	124,560	m3/vear		
Ne	w Guanabac	oa (stage1)	108,990	m3/vear		
Ne	w Guanabac	coa (stage2)	93,420	m3/vear		
Leach	ate generati	on at landfil	1:			
Ne	w site 1(stag	(e1) =	80,964	m3/vear		
Ne	w site 1(stag	re2) =	49.824	m3/year		
Ne	w site 1(stag	$(e^{3}) =$	49.824	m3/year		
Ne	w Guanabac	(stage1)	43.596	m3/year		
Ne	w Guanabac	coa (stage2)	37.368	m3/year		
BOD	reduction be	efore closure	:			
Ne	w site 1(stag	(e1) =	76	ton/vear		
Ne	w site 1(stag	$(e^2) =$	47	ton/year		
Ne	w site 1(stag	$(e^{-1}) =$	47	ton/year		
Ne	w Guanabac	coa (stage1):	41	ton/year		
Ne	w Guanabac	coa (stage2):	35	ton/year		
BOD	reduction af	ter closure:	55	ton, year		
Ne	w site 1(stag	re1) =	81	ton/vear		
Ne	w site 1(stag	$re^{2} = 1$	50	ton/year		
Ne	w site 1(stag	(-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) = (-2) =	50	ton/year		
Ne	w Guanahao		50 41	ton/year		
Ne	w Guanabac	coa (stage?)	37	ton/year		
110	Guunuoae	ou (blugo2)	57	com your		

 Table 21
 BOD Reduction by Leachate Treatment

	1		~	IOII, LC: (		111011, 2003	prices)			
		Capital cost						Cost	Capital Cost +	
Component	Direct	Cost	Indirect	Indirect Cost		Direct+Indirect			O/M Cost	
	FC	LC	FC	LC	FC	LC	FC	LC	FC	LC
Composting (total)	4.7	4.0	0.4	0.6	5.1	4.6	0.3	6.4	5.4	11.0
Composting at Calle 100	2.1	2.2	0.1	0.3	2.3	2.5	0.1	2.2	2.4	4.7
Composting at New Guanabacoa	1.6	1.8	0.2	0.3	1.8	2.2	0.2	4.2	2.0	6.3
Home composting	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0
Recycling (total)	4.0	3.9	0.3	0.5	4.3	4.4	0.3	14.2	4.5	18.6
Recycling at Calle 100	2.3	2.2	0.2	0.3	2.5	2.5	0.2	9.8	2.6	12.3
Recycling at New Guanabacoa	1.7	1.7	0.1	0.2	1.8	1.9	0.1	4.4	1.9	6.3
Collection and transportation (total)	22.7	0.0	1.6	0.0	24.2	0.0	7.5	65.5	31.8	65.5
Collection vehicle replacement	13.9	0.0	1.0	0.0	14.9	0.0	6.3	57.0	21.2	57.0
Improvement of waste bin	5.4	0.0	0.4	0.0	5.8	0.0	0.3	0.0	6.1	0.0
Maintenance workshop improvement	3.3	0.0	0.2	0.0	3.6	0.0	1.0	8.5	4.5	8.5
Landfill (total)	42.0	26.8	6.0	4.0	48.0	30.9	4.3	11.0	52.3	41.8
Construction of new site	7.5	6.5	1.3	1.1	8.7	7.6	2.2	4.6	11.0	12.2
Construction of New Guanabacoa	10.7	4.9	1.5	0.8	12.2	5.6	1.0	2.9	13.2	8.5
Extension of Calle 100	18.0	7.2	2.2	1.0	20.2	8.2	0.9	1.7	21.2	9.9
Closure of special period dumping sites	2.2	3.3	0.3	0.4	2.5	3.7	0.0	0.0	2.5	3.7
Closure of Calle 100	1.9	2.9	0.4	0.5	2.4	3.3	0.0	0.0	2.4	3.3
Closure of Extended Area of Calle 100	0.2	0.3	0.1	0.1	0.3	0.4	0.0	0.0	0.3	0.4
Closure of Guanabacoa landfill	1.2	1.7	0.2	0.2	1.4	2.0	0.0	0.0	1.4	2.0
Central workshop improvement	0.3	0.0	0.0	0.0	0.3	0.0	0.1	1.8	0.4	1.8
Awareness raising	0.0	0.0	0.0	0.0	0.0	0.0	2.1	1.4	2.1	1.4
Environmental monitoring	0.3	0.1	0.0	0.0	0.3	0.1	0.3	0.0	0.6	0.1
Total	73.6	34.8	8.3	5.2	81.9	40.0	14.8	98.4	96.7	138.4

Table 22Summary of Master Plan Cost

(FC: US\$ million, LC: CUP million, 2005 prices)

- D.21 -

							(FC:	US\$'000, I	.C: CUP'00	0, Total: U	S\$'000, con	stant prices)
		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
Composting (Total)	FC	0	0	231	1,919	151	151	2,440	186	186	186	5,448
	LC	0	0	0	2,164	693	693	3,168	1,425	1,425	1,425	10,993
Composting at Calle 100	FC							2,290	35	35	35	2,395
	LC							2,475	732	732	732	4,671
Composting at	FC				1,803	35	35	35	35	35	35	2,013
New Guanabacoa	LC				2,164	693	693	693	693	693	693	6,322
Home compositing	FC			231	116	116	116	116	116	116	116	1,040
Home composting	LC											0
Recycling (Total)	FC				2,475	28	28	1,836	56	56	56	4,535
	LC				2,535	1,630	1,630	3,516	3,104	3,104	3,104	18,623
Banyaling at Calls 100	FC				2,475	28	28	28	28	28	28	2,643
Recycling at Calle 100	LC				2,535	1,630	1,630	1,630	1,630	1,630	1,630	12,315
Basseling at New Courselance	FC							1,808	28	28	28	1,892
Recycling at New Guanabacoa	LC							1,886	1,474	1,474	1,474	6,308
Collection & transportation	FC	0	0	8,319	928	5,384	5,721	948	8,279	1,097	1,097	31,772
(Total)	LC	0	0	6,481	6,481	7,115	8,564	8,564	9,421	9,421	9,421	65,470
	FC			7,419	891	3,331	2,832	780	4,069	930	930	21,181
Collection vehicle replacement	LC			5,461	5,461	6,094	7,480	7,480	8,337	8,337	8,337	56,986
T	FC					2,015			4,042			6,058
Improvement of waste bin	LC											0
	FC			899	38	38	2,889	167	167	167	167	4,534
Maintenance workshop improvement	LC			1,021	1,021	1,021	1,084	1,084	1,084	1,084	1,084	8,485
Final Disposal (Total)	FC		336	27,917	5,802	5,125	6,996	625	4,097	625	767	52,291
	LC		229	12,233	8,480	6,483	5,267	1,596	4,398	1,575	1,575	41,837
	FC		40	160	66	4,339	1,355	454	3,491	455	605	10,965
Construction of new site	LC		33	125	48	4,867	994	928	3,403	913	913	12,224
	FC			7,812	144	299	4,289	144	218	148	144	13,196
Construction of New Guanabacoa	LC			3.868	415	494	2.076	411	411	411	411	8,498
	FC		139	19.736	847	447	10		10			21.188
Extension of Calle 100	LC		50	8,185	853	853			-			9,942
Closure of special period dumping	FC		25	7	2.455	11						2,498
sites	LC		25	5	3.654	10						3.694
	FC		95	23	2.240							2.358
Closure of Calle 100	LC		88	20	3.230							3,338
Closure of Extended Area of Calle	FC		37	34				9	222			302
100	LC		33	30				6	333			402
	FC				32	7	1.325	Ť				1.364
Closure of Guanabacoa landfill	LC				28	8	1,946					1.982
	FC			146	 19	22	18	18	157	22	18	420
Central workshop improvement	LC				251	251	251	251	251	251	251	1 757
Awareness raising	FC		364	363	361	242	284	284	92	50	50	2.090
B			257	256	254	162	194	194	46	14	14	1 391
Environmental monitoring	FC		115	110	95	91	29	29	29	29	29	555
			13	31	17	11	5	5	5	5	5	97
Total	FC	0	815	36 940	11 581	11 019	13 208	6 162	12.738	2.042	2.185	96 691
		0	499	19.002	19 930	16 094	16 354	17 043	18 400	15 545	15 545	138 412
Grand Total (US\$'000)	LC	0	835	37 671	12,347	11 638	13 837	6 818	13 446	2.640	2 783	102 014
Stand 10(a) (050000)		0	035	57,071	12,577	11,050	15,057	0,010	15,440	2,040	2,705	102,014

Table 23	<b>Disbursement Schedule of Master Plan Costs</b>
----------	---------------------------------------------------

Grand Total at US\$1 : CUP26

								(FC	: US\$'000,	LC: CUP'00	00, Total: U	JS\$'000, coi	nstant prices)
Commonsting at	Contrations (11000)	FC	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
Composting at	Capital cost (direct)	FC							2,140				2,140
Calle 100	Capital cost (direct)	LC							2,190				2,190
	Total capital cost (direct) *a	EC							4,550				4,330
	Engineering cost *D	FC							45				43
	Engineering cost *c	EC							110				110
	Administration	FC			i i								0
	Administration *d	LC							66				60
	Physical conting. *e	FC			i i				107				107
	Physical conting. *e	LC							110				110
	O/M cost	FC								35	35	35	105
	O/M cost	LC	ļ							732	732	732	2,196
	Total FC portion	FC							2,290	35	35	35	2,395
	Total LC portion	LC							2,475	732	732	732	4,671
	Total FC + LC *f								2,385	63	63	63	2,574
-	Total FC + LC *a								4,765	767	767	767	7,066
Composting at	Capital cost (direct)	FC				1,610							1,610
New	Capital cost (direct)	LC				1,834							1,834
Guanabacoa	Total capital cost (direct) *a					3,444							3,444
	Engineering cost *b	FC				32							32
	Engineering cost *c	LC				92							92
	Administration	FC											0
	Administration *d	LC				55							55
	Physical conting. *e	FC				161							161
	Physical conting. *e	LC				183							183
	O/M cost	FC	Î				35	35	35	35	35	35	210
	O/M cost	LC					693	693	693	693	693	693	4.158
	Total FC portion	FC		(	1	1.803	35	35	35	35	35	35	2.013
	Total LC portion	LC				2.164	693	693	693	693	693	693	6.322
	Total FC + LC *f	~~~	<u> </u>	1	1	1 886	67	67	67	67	67	67	2,55
	Total FC + LC *a					3 967	728	728	728	728	728	728	2,230
Home composting	Capital cost (direct)	FC			220	110	110	110	110	110	110	110	0,555
Home composting	Capital cost (direct)				220	110	110	110	110	110	110	110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Capital cost (direct)	LC			220	110	110	110	110	110	110	110	000
	Total capital cost (direct) *a	FC			220	110	110	110	110	110	110	110	990
	Engineering cost *b	FC											0
	Engineering cost *c	LC											0
	Administration	FC											0
	Administration *d	LC											0
	Physical conting. *e	FC			11	6	6	6	6	6	6	6	50
	Physical conting. *e	LC											0
	O/M cost	FC											0
	O/M cost	LC											0
	Total FC portion	FC	I		231	116	116	116	116	116	116	116	1,040
	Total LC portion	LC											0
	Total FC + LC *f		ľ		231	116	116	116	116	116	116	116	1,040
	Total FC + LC *a				231	116	116	116	116	116	116	116	1,040
Recycling at Calle	Capital cost (direct)	FC				2,313							2,313
100	Capital cost (direct)	LC				2,243							2,243
	Total capital cost (direct) *a					4,556							4,556
	Engineering cost *b	FC				46							46
	Engineering cost *c	LC				112							112
	Administration	FC											.12
	Administration *d	IC				67							67
	Physical conting *e	FC				114							114
	Physical conting *e	IC				110							110
	O/M cost	EC				112	20	20	<b>1</b> 0	<b>1</b> 0	<b>1</b> 0	<b>1</b> 0	112
	O/M cost	FC LC					1 620	28	1 620	28	1 620	28	108
	U/W COSt		<b></b>			2 475	1,030	1,050	1,030	1,050	1,030	1,030	9,780
	Total FC portion	FC				2,475	28	28	28	28	28	28	2,643
	1 otal LC portion	LC		Į		2,535	1,630	1,630	1,630	1,630	1,630	1,630	12,315
	Total FC + LC *t					2,572	91	91	91	91	91	91	3,117
D 11	Total FC + LC *a			ļ	<u>                                     </u>	5,010	1,658	1,658	1,658	1,658	1,658	1,658	14,958
Recycling at New	Capital cost (direct)	FC							1,690				1,690
Guanabacoa	Capital cost (direct)	LC							1,669				1,669
	Total capital cost (direct) *a								3,359				3,359
	Engineering cost *b	FC		l					34				34
	Engineering cost *c	LC							83				83
	Administration	FC		ł									0
	Administration *d	LC							50				50
	Physical conting. *e	FC							85				85
	Physical conting. *e	LC							83				83
	O/M cost	FC	<u> </u>							28	28	28	84
	O/M cost	LC								1.474	1.474	1.474	4,422
	Total FC portion	FC		İ	1		·		1.808	28	28	28	1.892
	Total LC portion	LC							1.886	1.474	1.474	1.474	6.308
	Total FC + LC *f		<u> </u>		1				1 881	-,., ,	-,4	-, . , , , , ,	2 135
	Total EC + L C *a								3 694	1 502	1 502	1 502	8 200

## Table 24-1 Cost Disbursement of Master Plan Components (2005 constant price: 1/4)

Caleston where Control and Con				2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
ngenoment Page of the set of the	Collection vehicle	Capital cost (direct)	FC	2000	2007	6,352	260	2,340	1,954	2012	2,990	2014	2015	13,895
Image capie of direct 's         FC         6.33         2.30         2.34         1.85         2.98         1.8         1           Inglement or 's         LC         1.33         1.34         1.13         0.44         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1.95         1	replacement	Capital cost (direct)	LC			.,			,					0
Bipseconig cos %         PC         132         148         PA         PA         PA         PA           Administration         LC         318         LS         LS         No         PA         No		Total capital cost (direct) *a				6,352	260	2,340	1,954		2,990			13,895
Bisliconing on %         LC         Jame		Engineering cost *b	FC			132		146						278
Administration         FC         Image: Second Seco		Engineering cost *c	LC											0
Administration M         LC         33         33         13         17         98         18         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99         99		Administration	FC											0
Physical outing, %         PC         316         131         117         9.8         1.00         1.00         1.00           DM cost         FC         6.44         6.04         5.44         0.04         7.80         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90         9.90		Administration *d	LC											0
Physical conting, "w         LC		Physical conting. *e	FC			318	13	117	98		150			695
OM out         PC         0.06         0.06         7.26         7.06         7.06         9.09         9.09         9.09           Total IC portion         IC         5.46         5.46         6.06         7.48         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33         8.33		Physical conting. *e	LC											0
OAd out 9 minute         Contor 10 contor         Contor 10 contor         State 1		O/M cost	FC			618	618	728	780	780	930	930	930	6,312
Teal IC perim         FC         7.410         870         3.33         2.32         7.00         4.000         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970         970		O/M cost *g	LC			5,461	5,461	6,094	7,480	7,480	8,337	8,337	8,337	56,986
Total LC protein         LC         5.40         5.40         6.90         7.80         8.37         8.37         8.37         5.25         1           Total FC - LC "a         -         12.88         6.35         9.25         1.10         5.60         1.40         5.40         9.267         9.267         7           Improvement         Copital cost (direct) 'n         C         -         1.0         1.0         3.675         1.0         3.675         1.0         3.675         1.0         3.675         1.0         3.675         1.0         3.675         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 <t< td=""><td></td><td>Total FC portion</td><td>FC</td><td></td><td></td><td>7,419</td><td>891</td><td>3,331</td><td>2,832</td><td>780</td><td>4,069</td><td>930</td><td>930</td><td>21,181</td></t<>		Total FC portion	FC			7,419	891	3,331	2,832	780	4,069	930	930	21,181
Total FC + LC 'n         7.009         1.100         3.569         3.109         1.066         4.209         1.250         7.207         7           Improvement         Capilat cost (direct) 'n & Equipacent (cost 'n = 1000)         LC         1.288         6.33         9.261         9.267         7           wate hin         Capilat cost (direct) 'n & Equipacent (cost 'n = 1000)         LC         1.734         3.675         1.8         2.00         3.675         1.8         1.8           Physical conting: 'n         PC         1.03         1.03         3.675         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8         1.8		Total LC portion	LC			5,461	5,461	6.094	7,480	7,480	8.337	8.337	8.337	56,986
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total FC + LC *f				7.629	1.101	3.565	3.119	1.068	4.390	1.250	1.250	23.372
Improvement of Capial out direct "n EC 1 1.714 1 1.714 1 1.714 1 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1.714 1		Total FC + LC *a				12,880	6.351	9,425	10.311	8,260	12,406	9,267	9.267	78,166
waise bin         Copial cost discot)         LC         Image of the second s	Improvement of	Capital cost (direct)	FC			,	.,,	1.734		.,	3.675			5,409
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	waste bin	Capital cost (direct)	LC					-,			.,			0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total capital cost (direct) *a						1.734			3.675			5.409
Pagineering cont 'v         LC         LC <td></td> <td>Engineering cost *h</td> <td>FC</td> <td></td> <td></td> <td></td> <td></td> <td>108</td> <td></td> <td></td> <td>.,</td> <td></td> <td></td> <td>108</td>		Engineering cost *h	FC					108			.,			108
Administration         PC         Administration         PC         Adv         Adv <td></td> <td>Engineering cost *c</td> <td>IC</td> <td></td> <td></td> <td></td> <td></td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>		Engineering cost *c	IC					100						0
Administration *0         LC         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R         R		Administration	FC											0
Physical conting. ":         PC         PC <td></td> <td>Administration *d</td> <td></td> <td>0</td>		Administration *d												0
Product conting, "e         LC         O         O         O         O         O           ON cost         CC         C         S7         S7         S7         4.01         S7         4.01         S7         S7         4.01         S7         2.015         4.04         S7         5.02         4.01         S7         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02         5.02 <td< td=""><td></td><td>Physical conting *e</td><td>FC</td><td> </td><td></td><td></td><td></td><td>87</td><td></td><td></td><td>18/</td><td></td><td></td><td>270</td></td<>		Physical conting *e	FC					87			18/			270
Image: Section of the sectin of the section of the section		Physical conting *e	IC					07			104			270
Order         IC         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O <td></td> <td>O/M cost</td> <td>FC</td> <td>ł</td> <td></td> <td></td> <td></td> <td>87</td> <td></td> <td></td> <td>18/</td> <td></td> <td></td> <td>0 270</td>		O/M cost	FC	ł				87			18/			0 270
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		O/M cost	IC					07			104			270
Trans. particle         LC         LO         LO         Provide Light or control of the second s		Total FC portion	FC			†		2 015			4 042			6.058
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total I C portion						2,013			4,042			0,038
Total FC + 1C + 1         201         4012         4012           Maintenance         Capital cost (direct) * IC         757         2.592         4012           imporvement         Engineering cost * C         IC         757         2.592         IC		Total EC   LC *f	LC					2.015			4 042			6.059
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total FC + LC *a						2,015			4,042			6.058
Mathematics workshop improvement         Capital cost (direct) *n Engineering cost *n         LC         2.592         L         L           757         2.592         2.592         2.592         1.5         1.5         1.5           Engineering cost *n         LC         677         2.592         1.5         1.5         1.6           Administration *1         LC         677         1.30         1.67         1.67         1.67         1.67           Monistration *1         LC         3.8         3.8         1.07         1.67         1.67         1.67         1.67           OM cost         LC         1.021         1.021         1.021         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084         1.084	Maintananaa	Comital cost (direct)	EC			757		2,015	2 502		4,042			2 2 4 0
Construction of Improvement         Construction of Engineering cost %         LC         757         2.592         2.592           Engineering cost %         LC         67         67         130         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         140         14	workshop	Capital cost (direct)				151			2,392					3,349
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	improvement	Tatal againal aget (direct)	LC			757			2 502					2 2 40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	improvement	Final capital cost (direct) *a	EC			131			2,392					5,549
Indimension of C Administration "d         LC         38         130           Physical conting, "e         LC         38         130           OM cost         LC         1,021         1,021         1,084         1,084         1,084           Total IC portion         FC         38         38         167         167         167         167           Total IC portion         FC         1,021         1,021         1,021         1,084         1,084         1,084           Total IC portion         FC         1,021         1,021         1,021         1,084         1,084         1,084           Total IC C tot "         1,021         1,021         1,084         1,084         1,084         1,084           Total C C portion         LC         1,021         1,021         1,084         1,084         1,084           Construction of set in the cont direct)         FC         1,920         1,057         1,221         1,222         1,222         1,222         1,221         1,222         1,221         1,221         1,221         1,221         1,221         1,221         1,221         1,221         1,221         1,221         1,221         1,221         1,221         1,221         1,221		Engineering cost *b	FC LC			07								0/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Engineering cost *C	EC											0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Administration	FC											0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Administration *d	EC			20			120					0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Physical conting. *e	FC			38			130					16/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Physical conting. *e	EC			20	20	20	167	1.67	1.67	1.67	1.67	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		O/M cost	FC			38	38	38	16/	16/	16/	1.004	1.004	951
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		O/M cost	LC			1,021	1,021	1,021	1,084	1,084	1,084	1,084	1,084	8,485
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total FC portion	FC			899	38	38	2,889	167	167	167	167	4,534
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total LC portion	LC			1,021	1,021	1,021	1,084	1,084	1,084	1,084	1,084	8,485
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total FC + LC *f				939	77	77	2,931	209	209	209	209	4,860
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G	Total FC + LC *a	-			1,920	1,059	1,059	3,973	1,252	1,252	1,252	1,252	13,019
new site I Capital cost (direct) * a Engineering cost *b FC 26 100 441 81.50 770 44920 88 151 1 Fund acpital cost (direct) * a Engineering cost *c LC 13 50 19 30 28 2 30 449 4920 84 151 10 62 44 30 770 44920 755 29 45 42 33 45 770 770 770 770 770 770 770 770 770 77	Construction of	Capital cost (direct)	FC					3,794	770		2,734	8	151	7,456
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	new site 1	Capital cost (direct)	LC					4,356			2,186	_		6,542
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total capital cost (direct) *a						8,150	770		4,920	8	151	13,998
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Engineering cost *b	FC		26	100	41	110	62	4	30			373
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Engineering cost *c	LC		13	50	19	30	28	2	30			172
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Administration	FC		14	60	25	66	38	3	19			225
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Administration *d	LC		20	75	29	45	42	3	45			259
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Physical conting. *e	FC					369	39		261	0	8	677
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Physical conting. *e	LC			ļ		436			219			654
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		O/M cost	FC						447	447	447	447	447	2,234
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		O/M cost	LC	ļ					924	923	923	913	913	4,597
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total FC portion	FC		40	160	66	4,339	1,355	454	3,491	455	605	10,965
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total LC portion	LC		33	125	48	4,867	994	928	3,403	913	913	12,224
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total FC + LC *f			41	165	68	4,526	1,393	489	3,622	490	640	11,435
		Total FC + LC *a			73	285	114	9,206	2,349	1,382	6,894	1,369	1,518	23,189
$ \begin{array}{                                    $	Construction of	Capital cost (direct)	FC			6,952		3	3,631		70	3		10,659
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	New Guanabacoa	Capital cost (direct)	LC			3,422			1,434					4,856
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total capital cost (direct) *a				10,374		3	5,065		70	3		15,515
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Engineering cost *b	FC			156		94	99					349
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Engineering cost *c	LC			42		31	33					106
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Administration	FC			93		57	60					210
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Administration *d	LC			62		47	50					159
Physical conting. *e         LC         342         143           O/M cost         FC         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141         141		Physical conting. *e	FC			611		0	355		4	0		969
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Physical conting. *e	LC			342			143					486
O/M cost         LC         415         416         416         411         411         411         411           Total FC portion         FC         7,812         144         299         4,289         144         218         148         144         1           Total FC portion         LC         3,868         415         494         2,076         411         411         411         411           Total FC portion         LC         3,868         415         494         2,076         411         411         411         411           Total FC + LC *f         7,960         160         317         4,369         160         233         163         160         160           Total FC + LC *fa         11680         560         579         6 365         5555         6 20         5555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555         555		O/M cost	FC				144	144	144	144	144	144	144	1,009
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		O/M cost	LC				415	416	416	411	411	411	411	2,891
Total LC portion         LC         3.868         415         494         2.076         411         411         411           Total FC + LC *f         7,960         160         317         4,369         160         233         163         160         1           Total FC + LC *f         7,960         160         317         4,369         160         233         163         160         1           Total FC + LC *f         11.680         560         792         6.365         555         629         555         555         555         555         555         555         550         555         550         555         550         555         550         555         550         555         550         555         550         555         550         555         550         555         550         555         550         555         550         550         555         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550		Total FC portion	FC			7,812	144	299	4,289	144	218	148	144	13,196
Total FC + LC *f         7,960         160         317         4,369         160         233         163         160         1           Total FC + LC *f         11,680         560         792         6,365         555         620         550         555         520         555         550         555         550         555         520         550         555         520         555         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         550         <		Total LC portion	LC			3,868	415	494	2,076	411	411	411	411	8,498
Total EC + LC *a 116801 560 792 6 365 555 620 555 7		Total FC + LC *f		<u> </u>		7,960	160	317	4,369	160	233	163	160	13.523
11,000 J00 172 0,00J JJJ JJJ 2		Total FC + LC *a				11,680	560	792	6,365	555	629	559	555	21,694

## Table 24-2 Cost Disbursement of Master Plan Components (2005 constant price: 2/4)

			2005	2007	2000	2000	2010	(FC	: US\$'000,	LC: CUP'0	00, Total:	US\$'000, co	nstant prices
Extension of	Capital cost (direct)	EC	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
Calle 100	Capital cost (direct)				7 234	551		,		, ,			7 23
	Total capital cost (direct) *a	10			24 908	331		9		9			25.25
	Engineering cost *b	FC		100	359	551		-		Í			45
	Engineering cost *c	LC		20	91								11
	Administration	FC		39	139								17
	Administration *d	LC		30	137								16
	Physical conting. *e	FC			1,564	17		0		0			1,58
	Physical conting. *e	LC			723								72
	O/M cost	FC		••••••		499	447						94
	O/M cost	LC				853	853					ļ	1,70
	Total FC portion	FC		139	19,736	847	447	10		10		1	21,18
	Total LC portion	LC		50	8,185	853	853						9,94
	Total FC + LC *f			141	20,051	880	480	10		10			21,57
	Total FC + LC *a			189	27,921	1,700	1,300	10		10			31,13
Closure of special	Capital cost (direct)	FC				2,217							2,21
period dumping	Capital cost (direct)	LC				3,308							3,30
sites	Total capital cost (direct) *a			i i		5,525							5,52
	Engineering cost *b	FC		16	4	10	7						3
	Engineering cost *c	LC		10	2	6	4						2
	Administration	FC		9	3	6	4						2
	Administration *d	LC		15	3	9	6					1	3
	Physical conting. *e	FC				222							22
	Physical conting. *e		ļ			331							33
	O/M cost	FC											
	U/IVI COST	EC		25		2 455	11						2.40
	Total I C portion	FU		25	/	2,455	11						2,49
	Total EC portion	LC		23	כ ד	3,034 2,505	10						3,094 2,64
	Total FC + LC "T			26	12	2,395	11						2,04
Closure of Calle	Capital cost (direct)	FC		50	12	1 9/15	21						1.0/
100	Capital cost (direct)					2 852							2.85
100	Total capital cost (direct) *a	LC				2,852							2,65
	Engineering cost *h	FC		59	14								134
	Engineering cost *c			35	14	37							13.
	Administration	FC		36	9	38							8
	Administration *d			53	12	56							12
	Physical conting, *e	FC		55		195							19
	Physical conting *e	LC				285							28
	O/M cost	FC		İ								1	(
	O/M cost	LC											(
	Total FC portion	FC		95	23	2.240						1	2.358
	Total LC portion	LC		88	20	3,230							3,33
	Total FC + LC *f			98	24	2,364						·•	2,480
	Total FC + LC *a			183	43	5,470							5,69
Closure of	Capital cost (direct)	FC								202		1	202
Extended Area of	Capital cost (direct)	LC								303			30
Calle 100	Total capital cost (direct) *a									505			50
	Engineering cost *b	FC		22	20				9				5
	Engineering cost *c	LC		13	12				6				3
	Administration	FC		15	14							1	29
	Administration *d	LC		20	18								31
	Physical conting. *e	FC								20			20
	Physical conting. *e	LC		ļļ						30		. <u> </u>	3(
	O/M cost	FC										ļ	(
	O/M cost	LC	ļ										(
	Total FC portion	FC		37	34				9	222			302
	Total LC portion	LC		33	30				6	333			402
	Total FC + LC *f			38	35				9	235			318
Classing of	I otal FC + LC *a	50		.70	64				15	556		<u> </u>	/0
Ciosure of	Capital cost (direct)	FC						1,175					1,175
landfill	Capital cost (direct)	LC						1,/42				1	1,742
	Finding cost *1	EC				20		2,917					2,91
	Engineering cost *c					20	4	20					44
	Administration	EC				11	2	12					20
	Administration *d					12	3 5	12					2. Al
	Physical conting *e	EC				1/	3	10					11
	Physical conting *e							110					11
	O/M cost	ьс FC	ł					1/4				1	1/4
	O/M cost												
	Total FC portion	FC				37	7	1 325					1 36
	Total LC portion	LC		l İ		28	, 8	1,946					1,98
	Total FC + LC *f	~~~	h			-0	7	1,399					1.44(
1	Total FC + LC *a					60	15	2 271				1	2 2 4

## Table 24-3 Cost Disbursement of Master Plan Components (2005 constant price: 3/4)

15,545 2,042

15,545

2,640 17,587

15,545 2,185

15,545

2,783 17,730

98,408

96,691

138,412

102,014

235.102

								(FC	: US\$'000,	LC: CUP'00	00, Total: U	JS\$'000, co	nstant prices)
			2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
Central workshop	Capital cost (direct)	FC			135		4			132	4		275
improvement	Capital cost (direct)	LC											(
	Total capital cost (direct) *a				135		4			132	4		275
	Engineering cost *b	FC											0
	Engineering cost *c	LC											0
	Administration	EC											0
	Administration *d												0
	Administration 'd	EC			7		0			7	0		1/
	Physical conting. *e	FC			/		0			/	0		14
	Physical conting. *e	LC											(
	O/M cost	FC			4	19	18	18	18	18	18	18	132
	O/M cost	LC		ļ		251	251	251	251	251	251	251	1,757
	Total FC portion	FC			146	19	22	18	18	157	22	18	420
	Total LC portion	LC				251	251	251	251	251	251	251	1,757
	Total FC + LC *f		I		146	29	32	28	28	166	32	28	488
	Total FC + LC *a				146	270	273	269	269	408	273	269	2,177
Awareness raisin	g Capital cost (direct)	FC											C
	Capital cost (direct)	LC											(
	Total capital cost (direct) *a	20											(
	Engineering cost *h	FC											0
	Engineering cost *0	IC IC											(
	Engineering cost *c	EC											(
	Administration	FC											(
	Administration *d	LC											0
	Physical conting. *e	FC											0
	Physical conting. *e	LC											0
	O/M cost	FC		364	363	361	242	284	284	92	50	50	2,090
	O/M cost	LC		257	256	254	162	194	194	46	14	14	1,391
	Total FC portion	FC	1	364	363	361	242	284	284	92	50	50	2,090
	Total LC portion	LC		257	256	254	162	194	194	46	14	14	1.391
	Total FC + LC *f			374	373	371	248	291	291	94	51	51	2 144
	Total FC + LC *a			621	610	615	404	178	178	138	64	64	3 / 81
Environmental	Capital cost (direct)	FC		85	72	72	36	470	470	150	04	04	265
monitoring	Capital cost (direct)	IC IC		0J 10	27	12	50						203
monitoring	The local difference of the second	LC		10	27	12	10						201
	Total capital cost (direct) *a	FC		93	99	64	42						521
	Engineering cost *b	FC											(
	Engineering cost *c	LC											(
	Administration	FC											(
	Administration *d	LC											(
	Physical conting. *e	FC		4	4	4	2						13
	Physical conting. *e	LC		1	1	1	0						3
	O/M cost	FC	1	26	34	20	53	29	29	29	29	29	276
	O/M cost	LC		3	3	4	5	5	5	5	5	5	40
	Total FC portion	FC		115	110	95	91	29	29	29	29	29	554
	Total I C portion	IC		13	31	17	11						07
	Total EC + LC *f	LC		11	111	17	01	20	20	20	20	20	550
	Total FC + LC *1			110	111	90	91	29	29	29	29	29	555
	Total FC + LC *a			128	141	112	102	54	54	54	54	54	652
Total	Capital cost (direct)	FC		85	32,161	8,858	8,020	10,241	3,940	9,922	125	261	73,614
	Capital cost (direct)	LC		10	10,683	10,249	4,362	3,176	3,859	2,489			34,828
	Total capital cost (direct) *a			95	42,844	19,107	12,382	13,417	7,799	12,411	125	261	108,442
	Engineering cost *b	FC		223	852	211	469	181	90	30	- 20		2.056
	Engineering cost *c	IC		01	205	211	68	73	201	30			2,050 Q/14
	Administration	EC		112	205	2//	120	110	201	10			74.
	Administration *1	FC LC		113	207	222	130	110	110	19			1 05
	Administration "d	LC EC		138	507	233	103	110	119	45	-		1,055
	Physical conting. *e	FC		4	2,552	732	581	744	197	631	6	13	5,459
	Physical conting. *e	LC		1	1,067	912	436	318	193	249			3,175
1	O/M cost	FC	1	390	1.057	1.699	1.819	1.932	1.932	2.137	1.911	1.911	14.787

## Table 24-4 Cost Disbursement of Master Plan Components (2005 constant price: 4/4)

*a. FC portion (US\$) and LC portion (CUP) are added up at exchange rate of US\$1=CUP 1

LC FC

LC

O/M cost

Total FC portion

Total LC portion

Total FC + LC *f Total FC + LC *a

*b. Engineering cost in FC portion will be incurred at the designing stage, which is 2% of the direct capital cost.

*c. Engineering cost in LC portion will be incurred at the designing stage, which is 5% of the direct capital cost.

*d. Administration cost will be incurred during construction/acquisition period, which is 3% of direct capital cost of LC portion.

6,740

36,940

19,002

37,671 55,942

11,125

11,019

16,094

11,638

27.113

8,259

11,581

19,930

12,347 31,511

12,677

13,208

16,354

13,837

29 562

12,672

6,162

17,043

6,818

23 205

15,587

12,738

18,400

13,446

31 138

260

815

499

835 1,314

*e. Physical contingency is 10% of direct construction cost and 5% of direct equipment cost, both for FC and LC portions.

*f. FC portion (US\$) and LC portion (CUP) are added up at exchange rate of US\$1= CUP26

			2006	2007	2008	2000	2010	(FC	2: US\$'000	, LC: CUP(	2014	US\$'000, c	urrent prices)
Composting at	Capital cost (direct)	FC	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	1 otal 2 294
Calle 100	Capital cost (direct)	LC							2,254				2,254
	Total capital cost (direct) *a	20							4 862				4 862
	Engineering cost *b	FC							46				46
	Engineering cost *c	LC							128				128
	Administration	FC							-				0
	Administration *d	LC							77				77
	Physical conting, *e	FC							115				115
	Physical conting, *e	LC							128				128
	O/M cost	FC			·					38	38	39	115
	O/M cost	LC								878	898	919	2.695
	Total FC portion	FC			<u>.</u>				2.455	38	38	39	2.570
	Total LC portion								2,002	878	898	919	5 597
	Total EC + LC *f	20			·				2,567	72	73	74	2 785
	Total FC + LC *a								5 357	916	937	958	8 167
Composting at	Capital cost (direct)	FC				1 675			5,557	,10	201	,50	1.675
New	Capital cost (direct)					2,009							2,009
Guanabacoa	Total capital cost (direct) *a	20				3 684							3 684
	Engineering cost *h	FC				34							34
	Engineering cost *c					100							100
	Administration	FC				100							100
	Administration *d					60							0
	Physical conting *	EC				169							160
	Physical conting. *e					201							201
	O/M cost	EC	ł		-	201	27	27	20	20	20	20	201
	O/M cost						וג זרר	704	30 010		20	59 070	4 025
	Total EC portion	EC				1 074	//0 27	194 27	20	001 20	020	070 20	4,933
	Total I C portion	FC LC				1,0/0	/ כ קרר	3/ 704	38 912	28 921	36	29 070	2,103
	Total EC portion	LL				2,570	//0 67	/94 69	615 60	651 70	63U 71	870 70	7,503
	Total FC + LC *T					1,968	0/	08 921	69 850	/0	/1	/2	2,384
	Total FC + LC *a	EC			227	4,247	813	831	850	869	889	909	9,408
Home composting	Capital cost (direct)	FC			227	114	110	11/	118	119	120	122	1,052
	Capital cost (direct)	LC			207		11.6	115	110	110	100	100	0
	Total capital cost (direct) *a	E.C.			227	114	116	11/	118	119	120	122	1,052
	Engineering cost *b	FC											0
	Engineering cost *c	LC											0
	Administration	FC											0
	Administration *d	LC					_		_				0
	Physical conting. *e	FC			11	6	6	6	6	6	6	6	53
	Physical conting. *e	LC		ļ	ļ								0
	O/M cost	FC											0
	O/M cost	LC	ļ		ļļ								0
	Total FC portion	FC			238	120	121	123	124	125	126	128	1,105
	Total LC portion	LC			Įį								0
	Total FC + LC *f				238	120	121	123	124	125	126	128	1,105
	Total FC + LC *a				238	120	121	123	124	125	126	128	1,105
Recycling at Calle	Capital cost (direct)	FC				2,407							2,407
100	Capital cost (direct)	LC				2,457							2,457
	Total capital cost (direct) *a					4,864							4,864
	Engineering cost *b	FC		l		48							48
	Engineering cost *c	LC				123							123
	Administration	FC	1	l									0
	Administration *d	LC	1			74							74
	Physical conting. *e	FC				120							120
	Physical conting. *e	LC				123							123
	O/M cost	FC					29	30	30	30	31	31	181
	O/M cost	LC	<b>[</b>	<b>[</b>			1,826	1,868	1,911	1,955	2,000	2,046	11,607
	Total FC portion	FC	ľ	ľ	ľ	2,575	29	30	30	30	31	31	2,756
	Total LC portion	LC				2,776	1,826	1,868	1,911	1,955	2,000	2,046	14,383
	Total FC + LC *f		1		T	2,682	100	102	104	106	108	110	3,310
	Total FC + LC *a					5,351	1,856	1,898	1,941	1,986	2,031	2,077	17,140
Recycling at New	Capital cost (direct)	FC							1,812				1,812
Guanabacoa	Capital cost (direct)	LC							1,957				1,957
	Total capital cost (direct) *a								3,769				3,769
	Engineering cost *b	FC							36				36
	Engineering cost *c	LC							98				98
	Administration	FC											0
	Administration *d	LC							59				59
	Physical conting *e	FC							91				91
	Physical conting *e								98				91
	O/M cost	FC	f	1	1				20	30	31	31	90
	O/M cost	IC								1 768	1 800	1 850	5 427
	Total FC portion	FC			·				1 930	1,700	1,009	1,050	2 031
l	Total LC portion								2 211	1 768	1 809	1 850	7 639
	Total FC + I C *f	L.C.	f		1				2,211	1,700	1,009	1,000	7,057
ĺ	Total FC + LC *a								2,024 4 150	70 1 798	1 830	1 881	2,324 9.669
	· · · · · · · · · · · · · · · · · · ·								-1.1.00	- 1./20	1.0.17	1.001	2.007

## Table 25-1 Fund Requirement of Master Plan Components (2005 constant price: 1/4)

			2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
Collection vehicle	Capital cost (direct)	FC	2000	2007	6,544	2005	2,459	2,074	2012	3,238	2011	2010	14,586
replacement	Capital cost (direct)	LC			.,.		_,	_,		-,			0
-	Total capital cost (direct) *a				6.544	271	2.459	2.074		3.238			14.586
	Engineering cost *b	FC			136		153	,		.,			289
	Engineering cost *c	LC											0
	Administration	FC											0
	Administration *d	LC											0
	Physical conting *e	FC			327	14	123	104		162			729
	Physical conting *e	IC			521		120	101		102			0
	O/M cost	FC			636	643	765	878	836	1.007	1.017	1 027	6 7 5 9
	O/M cost *g	IC			5 846	5 980	6 828	8 573	8 771	10,000	10 230	10 466	66 694
	Total FC portion	FC			7 644	927	3 501	3 006	836	4 406	1 017	1 027	22 363
	Total I C portion				5.846	5 980	6 8 2 8	8 573	8 771	10,000	10.230	10.466	66 694
	Total EC + I C *f				7 869	1 157	3 763	3 335	1 174	4 791	1 410	1 429	24 929
	Total FC + LC *a				13 490	6 907	10 328	11 579	9.607	14 407	11 247	11 493	89.058
Improvement of	Capital cost (direct)	FC			15,470	0,707	1 822	11,577	9,007	3 979	11,247	11,475	5 801
waste bin	Capital cost (direct)						1,022			5,717			0,001
	Total capital cost (direct) *a	LC					1 822			3 979			5 801
	Engineering cost *h	FC					1,022			3,919			114
	Engineering cost *c						114						114
	Administration	FC											0
	Administration *d	IC											0
	Physical conting *a	EC					01			100			200
	Physical conting *e						91			199			290
	O/M cost	EC	h				01			100			0.000
	O/M cost						91			199			290
	Total FC portion	EC		l			2 110			1 277			6 405
	Total I C portion	FC LC					2,118			4,377			0,495
	Total EC portion	LC					2 1 1 9			4 277			6 405
	Total FC + LC *T						2,118			4,377			6,495
Maintanana	Total FC + LC *a	EC			790		2,118	2 751		4,377			0,493
workshop	Capital cost (direct)	FC LC			/80			2,731					5,551
improvement	Capital cost (direct)	ц			700			0.751					2 5 2 1
improvement	Total capital cost (direct) *a	FC			/80			2,751					3,531
	Engineering cost *D	FC			69								69
	Engineering cost *c	LC FG											0
	Administration	FC											0
	Administration *d	LC			20			120					0
	Physical conting. *e	FC			39			138					1//
	Physical conting. *e	LC							100				0
	O/M cost	FC			39	39	40	178	180	181	183	185	1,025
	O/M cost	LC			1,093	1,118	1,144	1,243	1,2/1	1,301	1,331	1,361	9,862
	Total FC portion	FC			927	39	40	3,067	180	181	183	185	4,802
	Total LC portion	LC			1,093	1,118	1,144	1,243	1,271	1,301	1,331	1,361	9,862
	Total FC + LC *f				969	82	84	3,115	228	231	234	237	5,181
<u> </u>	Total FC + LC *a	-			2,020	1,158	1,184	4,310	1,451	1,482	1,514	1,546	14,664
Construction of	Capital cost (direct)	FC					3,987	817		2,960	9	167	7,940
new site	Capital cost (direct)	LC					4,881			2,622			7,503
	Total capital cost (direct) *a						8,868	817		5,582	9	167	15,443
	Engineering cost *b	FC		27	103	43	116	66	4	33			390
	Engineering cost *c	LC		14	54	21	34	32	2	36			192
	Administration	FC		14	62	26	69	40	3	21			236
	Administration *d	LC		21	80	32	50	48	4	54			289
	Physical conting. *e	FC					388	41		283	0	8	721
	Physical conting. *e	LC		ļ			488			262		ļ	750
	O/M cost	FC						474	479	484	489	494	2,419
	O/M cost	LC	ļ					1,059	1,083	1,107	1,121	1,146	5,516
	Total FC portion	FC		41	165	69	4,560	1,439	487	3,780	498	669	11,706
	Total LC portion	LC		35	134	53	5,453	1,139	1,089	4,082	1,121	1,146	14,250
	Total FC + LC *f			42	170	71	4,770	1,482	528	3,937	541	713	12,254
-	Total FC + LC *a			75	299	121	10,013	2,577	1,575	7,862	1,619	1,815	25,956
Construction of	Capital cost (direct)	FC			7,163		3	3,854		76	3		11,100
New Guanabacoa	Capital cost (direct)	LC			3,663			1,644					5,307
	Total capital cost (direct) *a				10,826		3	5,498		76	3		16,407
	Engineering cost *b	FC			161		99	105					365
	Engineering cost *c	LC			45		35	38					118
	Administration	FC			96		60	64					219
	Administration *d	LC			66		53	57					176
	Physical conting. *e	FC			629		0	376		4	0		1,010
	Physical conting. *e	LC		ļ	366			164				Į	531
	O/M cost	FC				150	151	153	155	156	158	159	1,082
	O/M cost	LC				455	466	477	482	493	504	516	3,393
	Total FC portion	FC			8,048	150	314	4,553	155	236	161	159	13,775
	Total LC portion	LC		<b>.</b>	4,141	455	553	2,380	482	493	504	516	9,525
	Total FC + LC *f		ľ	[	8,207	167	335	4,644	173	255	181	179	14,142
	Total FC + LC *a		1		12,189	605	867	6.933	636	729	666	675	23,300

## Table 25-2 Fund Requirement of Master Plan Components (2005 constant price: 2/4)

			2006	2007	2008	2009	2010	(F0 2011	2012	LC: CUP'	2014	US\$'000, c	urrent prices) Total
Extension of	Capital cost (direct)	FC	2000	2007	18,209	344	2010	10	2012	10	2014	2015	18,574
Calle 100	Capital cost (direct)	LC			7,745								7,745
	Total capital cost (direct) *a				25,954	344		10		10			26,319
	Engineering cost *b	FC		102	370								472
	Engineering cost *c	LC		21	97								118
	Administration	FC		40	143								183
	Administration *d	LC		31	147								178
	Physical conting. *e	FC			1,612	17		1		1			1,630
	Physical conting. *e	EC			//4	510	170						//4
	O/M cost	FC				519	4/0						989
	Total EC portion	FC		142	20 334	934 881	930 470	11		11		ł	1,890 21,848
	Total I C portion			52	8 763	03/	470	11		11			21,040
	Total EC + LC *f			144	20.671	917	506	11		11			22 259
	Total FC + LC *a			194	29,097	1.815	1.425	11		11			32,553
Closure of special	Capital cost (direct)	FC				2,307							2,307
period dumping	Capital cost (direct)	LC				3,623							3,623
sites	Total capital cost (direct) *a					5,930							5,930
	Engineering cost *b	FC		16	4	10	7						38
	Engineering cost *c	LC		10	2	7	4						24
	Administration	FC		9	3	6	4						23
	Administration *d	LC		16	3	10	7						35
	Physical conting. *e	FC				231							231
	Physical conting. *e	LC				362							362
	O/M cost	FC											0
	U/M COSt	FC		26	7	2 554	12					+	2 500
	Total I C portion			20	/	2,334	12						2,399
	Total EC + LC *f	LC		20 27	7	2 708	11						2 754
	Total FC + LC *a			52	13	6,556	23						6.643
Closure of Calle	Capital cost (direct)	FC				2,024							2,024
100	Capital cost (direct)	LC				3,124							3,124
	Total capital cost (direct) *a					5,148							5,148
	Engineering cost *b	FC		60	14	65							139
	Engineering cost *c	LC		37	9	41							86
	Administration	FC		37	9	40							86
	Administration *d	LC		55	13	61							130
	Physical conting. *e	FC				202							202
	Physical conting. *e	LC				312							312
	O/M cost	FC											0
	O/M cost	LC				2 220							0
	Total FC portion	FC		97	24	2,330							2,451
	Total LC portion	Ц		92 100	21	3,338						••••••	3,031 2,501
	Total FC + LC *a			100	23 45	5 868							6 102
Closure of	Capital cost (direct)	FC		107	45	5,000				219			219
Extended Area of	Capital cost (direct)	LC								363			363
Calle 100	Total capital cost (direct) *a									582			582
	Engineering cost *b	FC		22	21				10				53
	Engineering cost *c	LC		14	13				7				34
	Administration	FC		15	14								30
	Administration *d	LC		21	19								40
	Physical conting. *e	FC								22			22
	Physical conting. *e	LC		ļļ						36			36
	O/M cost	FC											0
	O/M cost	LC		20					10	241			0
	Total FC portion	FC		38	35				10	241			323
	Total LC portion	LC		35	32				/	400			4/4
	Total FC + LC *a			59 72	50 67				10	230 640			541 707
Closure of	Capital cost (direct)	FC		12	07			1 247	17	040			1 247
Guanabacoa	Capital cost (direct)							1,247					1,247
landfill	Total capital cost (direct) *a	20						3,244					3,244
	Engineering cost *b	FC				21	4	21					46
	Engineering cost *c	LC				12	3	14					29
	Administration	FC				12	3	13					28
	Administration *d	LC				19	6	21					45
	Physical conting. *e	FC			I	I	l	125					125
	Physical conting. *e	LC						200				ļ	200
	O/M cost	FC											0
	O/M cost	LC										<u> </u>	0
	Total FC portion	FC		Ĩ		33	7	1,406	ſ			-	1,447
	Total LC portion	LC	ļ			31	9	2,231				ļ	2,270
	Total FC + LC *f					34	8	1,492					1,534
	Total FC + LC *a		1			64	16	3,637				1	3,717

## Table 25-3 Fund Requirement of Master Plan Components (2005 constant price: 3/4)

								(FG	C: US\$'000,	LC: CUP'	000, Total:	US\$'000, c	urrent prices
			2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
Central workshop	Capital cost (direct)	FC			139		4			143	4		29
improvement	Capital cost (direct)	LC											(
	Total capital cost (direct) *a				139		4			143	4		291
	Engineering cost *b	FC											(
	Engineering cost *c	LC											(
	Administration	FC											(
	Administration *d	LC											(
	Physical conting. *e	FC			7		0			7	0		15
	Physical conting. *e	LC											(
	O/M cost	FC	h		4	20	19	19	19	20	20	20	141
	O/M cost	LC				275	281	288	294	301	308	315	2.062
	Total FC portion	FC		11	151	20	23	19	19	170	24	20	446
	Total LC portion				101	275	281	288	294	301	308	315	2.063
	Total EC + LC *f	20	h		151	30	34	200	31	181	36	32	-,00 524
	Total FC + LC *a				151	205	305	307	314	101	332	325	2 505
Awareness raising	Capital cost (direct)	FC			151	2)5	505	507	514	4/1	352	555	2,500
rivareness raising	Capital cost (direct)												(
	Total appital cost (direct) *a	LC											(
	Engineering cost *h	FC											(
	Engineering cost *a								İ				(
	Engineering cost "c	EC											(
	Administration	FC											(
	Administration *d	LC											(
	Physical conting. *e	FC							İ				(
	Physical conting. *e	LC								100			(
	O/M cost	FC		3/1	374	376	254	301	304	100	55	55	2,19
	O/M cost	LC		269	274	278	182	222	227	55	17	18	1,542
	Total FC portion	FC		371	374	376	254	301	304	100	55	55	2,19
	Total LC portion	LC		269	274	278	182	222	227	55	17	18	1,542
	Total FC + LC *f			382	385	386	261	310	313	102	55	56	2,250
	Total FC + LC *a			640	648	654	436	524	532	155	72	73	3,733
Environment.	Capital cost (direct)	FC		87	74	75	38						274
monitoring	Capital cost (direct)	LC		11	29	13	7						59
	Total capital cost (direct) *a			98	103	88	45						333
	Engineering cost *b	FC											(
	Engineering cost *c	LC											(
	Administration	FC											(
	Administration *d	LC											(
	Physical conting. *e	FC		4	4	4	2						14
	Physical conting. *e	LC		1	1	1	0						3
	O/M cost	FC		26	35	21	55	31	31	31	31	32	293
	O/M cost	LC		3	3	4	6	6	6	6	6	6	46
	Total FC portion	FC		118	113	99	95	31	31	31	31	32	58
	Total LC portion	LC		14	34	18	13	6	6	6	6	6	108
	Total FC + LC *f			118	114	100	96	31	31	31	32	32	585
	Total FC + LC *a			131	147	118	108	36	37	37	38	38	689
Total	Capital cost (direct)	FC		87	33,136	9,218	8,430	10,871	4,224	10,744	137	288	77,13
	Capital cost (direct)	LC		11	11,437	11,225	4,887	3,640	4,525	2,986			38,71
	Total capital cost (direct) *a			98	44,573	20,443	13,317	14,512	8,749	13,730	137	288	115,845
	Engineering cost *b	FC	1	227	878	220	493	192	96	33			2.139

## Table 25-4 Fund Requirement of Master Plan Components (2005 constant price: 4/4)

Total	Capital cost (direct)	FC		87	33,136	9,218	8,430	10,871	4,224	10,744	137	288	77,135
	Capital cost (direct)	LC		11	11,437	11,225	4,887	3,640	4,525	2,986			38,711
	Total capital cost (direct) *a			98	44,573	20,443	13,317	14,512	8,749	13,730	137	288	115,845
	Engineering cost *b	FC		227	878	220	493	192	96	33			2,139
	Engineering cost *c	LC		95	219	303	76	84	236	36			1,050
	Administration	FC		115	328	84	137	117	3	21			804
	Administration *d	LC		144	329	256	115	126	139	54			1,163
	Physical conting. *e	FC		4	2,629	761	610	790	211	683	7	14	5,710
	Physical conting. *e	LC		1	1,142	999	488	364	226	299			3,519
	O/M cost	FC		398	1,089	1,768	1,912	2,051	2,072	2,314	2,090	2,111	15,803
	O/M cost	LC		272	7,216	9,045	12,464	14,530	14,858	18,696	19,075	19,514	115,671
	Total FC portion	FC		832	38,059	12,051	11,581	14,021	6,607	13,794	2,234	2,413	101,591
	Total LC portion	LC		522	20,344	21,828	18,032	18,744	19,984	22,071	19,075	19,514	160,114
	Total FC + LC *f			852	38,841	12,890	12,275	14,742	7,375	14,643	2,967	3,164	107,750
	Total FC + LC *a			1,354	58,403	33,879	29,613	32,765	26,591	35,864	21,309	21,927	261,705

2008

1.03

1.07

2009

1.04

1.10

2010

1.05 1.12 2011

1.06 1.15 2012

1.07

1.17

2013

1.08

1.20

2014

1.09

1.23

2015

1.10

1.26

*•	EC nortion	O I bee (2211)	nortion (CUP	) are added ur	at avchange rate	of US\$1-CUP 1
·a.	re portion	(US\$) and LC	portion (COF	) are added up	) at exchange rate	010391-C0F1

1.0%

2.3%

Price Escalation Index

alation rate of US\$

calation rate of CUP

*b. Engineering cost in FC portion will be incurred at the designing stage, which is 2% of the direct capital cost.

2006

1.01

1.02

*c. Engineering cost in LC portion will be incurred at the designing stage, which is 5% of the direct capital cost.

*d. Administration cost will be incurred during construction/acquisition period, which is 3% of direct capital cost of LC portion.

2007

1.02

1.05

*e. Physical contingency is 10% of direct construction cost and 5% of direct equipment cost, both for FC and LC portions.

*f. FC portion (US\$) and LC portion (CUP) are added up at exchange rate of US\$1= CUP26

									(FC:US\$ mi	llion, LC:CU	P million)
Year		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Cost											
Composting	FC	0.0	0.0	0.2	1.9	0.2	0.2	2.4	0.2	0.2	0.2
	LC	0.0	0.0	0.0	2.2	0.7	0.7	3.2	1.4	1.4	1.4
Recycling	FC	0.0	0.0	0.0	2.5	0.0	0.0	1.8	0.1	0.1	0.1
	LC	0.0	0.0	0.0	2.5	1.6	1.6	3.5	3.1	3.1	3.1
Collection & Transportation	FC	0.0	0.0	8.3	0.9	5.4	5.7	0.9	8.3	1.1	1.1
	LC	0.0	0.0	6.5	6.5	7.1	8.6	8.6	9.4	9.4	9.4
Final Disposal	FC	0.0	0.3	27.9	5.8	5.1	7.0	0.6	4.1	0.6	0.8
	LC	0.0	0.2	12.2	8.5	6.5	5.3	1.6	4.4	1.6	1.6
Awareness raising	FC	0.0	0.4	0.4	0.4	0.2	0.3	0.3	0.1	0.1	0.1
	LC	0.0	0.3	0.3	0.3	0.2	0.2	0.2	0.0	0.0	0.0
Environmental monitoring	FC	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
	LC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MP Cost Total	FC	0.0	0.8	36.9	11.6	11.0	13.2	6.2	12.7	2.0	2.2
	LC	0.0	0.5	19.0	19.9	16.1	16.4	17.0	18.4	15.5	15.5
Salvage Value	FC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-21.9
	LC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.7
TOTAL	FC	0.0	0.8	36.9	11.6	11.0	13.2	6.2	12.7	2.0	-19.7
	LC	0.0	0.5	19.0	19.9	16.1	16.4	17.0	18.4	15.5	5.9
Total Cost*		0.0	0.8	37.7	12.3	11.6	13.8	6.8	13.4	2.6	-19.5
Benefit											
Compost Products	LC	0.0	0.0	0.0	0.0	2.5	3.3	3.7	9.8	10.8	11.8
Recycle Products	FC	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.6	0.7	0.7
	LC	0.0	0.0	0.0	0.0	0.6	0.7	0.9	2.1	2.4	2.8
Tariff Revenue from Inhabitants	FC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	LC	0.0	5.2	5.6	5.9	6.3	6.7	7.1	7.5	7.8	8.2
Tariff Revenue from Institute	FC	0.0	0.7	0.8	0.8	0.9	0.9	1.0	1.1	1.1	1.2
	LC	0.0	3.6	3.8	4.1	4.4	4.6	4.9	5.2	5.5	5.7
Tipping Fee Revenue	FC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	LC	0.0	0.0	0.0	0.0	0.2	0.2	0.2	0.2	0.2	0.3
Total	FC	0.0	0.7	0.8	0.8	1.1	1.2	1.2	1.7	1.8	1.9
	LC	0.0	8.8	9.4	10.1	13.9	15.6	16.8	24.7	26.8	28.8
Total Benefit*		0.0	1.1	1.1	1.2	1.6	1.8	1.9	2.6	2.8	3.0
Balance		0.0	0.2	-36.5	-11.1	-10.0	-12.1	-4.9	-10.8	0.2	22.5
Base Case											
O&M Cost	FC	0.0	0.4	1.1	1.7	1.8	1.9	1.9	2.1	1.9	1.9
	LC	0.0	0.3	6.7	8.3	11.1	12.7	12.7	15.6	15.5	15.5
Bakance	FC	0.0	0.3	-0.3	-0.9	-0.8	-0.8	-0.7	-0.5	-0.1	-0.0
	LC	0.0	8.5	2.7	1.8	2.8	2.9	4.1	9.1	11.3	13.2
		0.0	0.7	-0.2	-0.8	-0.6	-0.7	-0.5	-0.1	0.3	0.5
Alternative Case											
Balance	FC	0.0	-0.1	-36.2	-10.7	-10.0	-12.1	-4.9	-11.1	-0.3	21.6
	LC	0.0	8.3	-9.6	-9.9	-2.2	-0.8	-0.2	-10.8	0.2	22.9
		0.0	0.2	-30.5	-11.1	-10.0	-12.1	-4.9	-10.8	0.2	22.5

## Table 26 Financial Cash Flow of the Master Plan (2005 constant price)

# E. Industrial and Medical Waste:

E1 Questionnaire Survey for Industries

## **E1 QUESTIONNAIRE SURVEY TO INDUSTRIES**

## 1. Objective of Survey

To collect information about the existing operational conditions and opinions on the industrial solid waste management system generated in the factory in Havana City and problem issues, and future plan for treatment of hazardous waste.

## 2. Area Subject to Survey and Number of Sampling

15 factories located inside of Havana City

## 3. Method of Survey

Data collection with questionnaire, by means of direct interview by visit or indirect inquiry by mailing to sample industries

Subject	Questions
General conditions	Name of factory, Products of factory, Number of workers, Constructed/Established
	year, etc.
Conditions of	Waste generation, Quantity, Type of waste, Type of bins/containers, Hazardous
waste	waste, etc.
Collection of waste	Times of waste collection per week, Segregation and separate collection,
	Requirement of collection and disposal, etc.
Recycling	Items of recycling,
Disposal and	Name of dumping site, Operation of disposal, In charge of transportation and
dumping of waste	dumping, Methodology of treatment, Monitoring, Waste treatment system, etc.
Future Plan	Future plan, etc.

## 4. Main Items Included in Questionnaire

## 5. Analysis and Data Processing

Being based on the results of the answered questionnaires:

- To analyze the existing conditions of industrial waste disposal and treatment
- · To clarify issues related to industrial waste and environmental conditions
- To statistically edit the survey data, especially for generated hazardous waste

## 6. Survey Duration: 10 days

This survey was conducted in the last ten days of March, 2004

## 7. Output

- Survey Reports
- Filled questionnaires

Date:

## QUESTIONNAIRE TO FACTORIES

1. Name of factory:		
2. Number of workers:		
3. Address of Factory:		
4. Constructed/Established year:		
5. Name of products:		
6. Production: Name		
(1)	unit:	_(/month_)
(2)	unit:	_(/month_)
(3)	unit:	_(/month_)
<ul><li>7. Volume of generated waste in factory:</li><li>7.1 Municipal solid waste</li></ul>	m ³ /day	
7.2 Industrial waste (A+B)	m ³ /day	
-Hazardous waste (A):		m ³ /day
-Non-hazardous waste (B)	):	m ³ /day
8. Type of hazardous waste:		
<ul><li>9. Is there hazardous waste treatment facilities in you</li><li>9.1 Yes</li><li>9.2 No</li></ul>	ur factory?	
10. For those who answered "Yes", please answer fo 10.1 Type and name of facilities:	ollowing	
10.2 Capacity:	kg/day	
10.3 Year of Construction/Installation:		

18. Volume of solid waste dumping to landfill site: _____ m³/week

19. Times of dumping to landfill site per week: ______ Times

- 20. Do you want equipment or facilities for the treatment of industrial waste? 20.1 Yes 20.2 No
- 21. For those who answered "Yes", please describe required items below:

- 22. Do you have plans of construction/ installation of waste treatment facilities?22.1 Yes 22.2 No
- 23. For those who answered "Yes", please describe following:

23.1 Proposed year: _____

23.2 Name of facilities:

24. Do you have willing to carry out monitoring of hazardous waste?24.1 Yes 24.2 No

25. How do you think treatment of hazardous waste in future?

- 25.1 Recommend self treatment system by each factory
- 25.2 Would like to request other company
- 25.3 Recommend construction of centralized plant for treatment
- 25.4 No idea
- 26. Do you want to preserve environment in Havana City area as it is?
  - 26.1 Yes, never change by any development
  - 26.2 Yes, but some developments to improve residents' life are acceptable.
  - 26.3 No, I do not mind any development is done.
  - 26.4 No, but if living and natural environment can be kept as it is or better.

27. If you have comments, opinions and troubles concerning the industrial waste management, please describe below:

Thank you very much for your kind cooperation.

## Survey Data of Questionnaire for Industries

## Survey Data of Industries (1/4)

No.	Enterprises	Solid Waste	Quantity	Unit	Reuse	Quantity	Unit
1	"El Lucero" Pasteurizing Factory	Polyethylene Broken Boxes	30	t	NR (contaminated with milk) Recycling	300	11
		Dioken Boxes	500	u D		4 205	u
2	Beatriz Pasteurizing	Paper Data 125 an	5,800	B	For cereal boxes	4,385	В
	Factory	Pots 125 cc	3	Kg/y	it because of the lithography		
		Plastia buokata	850		It, because of the intrography.	800	
		Broken baskets	830 400		Por yogurt and ree cream pois.	800 400	
		White glass	30	t	Reprocessing	30	t
3	"Havana" Refractory	Small nieces and sweenings	11 800	t/v	As raw materials for maintenance	11 800	t/v
5	Factory (for firebricks)	Shan proces and sweepings	11,000	u y	15 fuw materials for maintenance	11,000	u y
4	Connelia Ice cream	Ordinary Paper	1.833	t	Raw material Enterprise	1.833	t
•	Factory	Cans of 5 gallons	437	u	Raw material Enterprise	437	u
		Polyethylene	4,118	t	Raw material Enterprise	4,118	t
		Polypropylene bags	2,502	u	Raw material Enterprise	2,502	u
		Jute bags	250	u	Raw material Enterprise	250	u
		Plastic buckets	32,000	u	I	32,000	u
		Large buckets	1,100	u	Raw material Enterprise	1,100	u
		Tops of buckets	2,000	u	-	2,000	u
		Egg shells	0.633	t	NR	-	
5	COLFA	Iron inner part	90	u/y	For the production of dry and low voltage	90	u/y
					transformers.		
		Copper	23	t/y	As raw materials	23	t/y
		Scrap iron	290	t/y	As raw materials	290	t/y
6	Suchel Camacho SA	Plastic Flasks	56	t/y	As raw materials	56	t/y
		Glass Flasks	43	t/y	As raw materials	43	t/y
		Cardboard Boxes	25	t/y	As raw materials	25	t/y
7	HILATEX Textile	Burlap	7.3	t/y	It is used in the same enterprise in the	7.3	t/y
	Factory			-	maintenance workshops.		-
	-	Scrapings	10	t/y	To manufacture dishcloth, remnant, layettes, etc	10	t/y
8	Jose Marti Airport	Iron Scraps	21	t/y	As raw materials	21	t/y
		Paper and Cardboard	3	t/y	As raw materials	3	t/y

No.	Enterprises	Solid Waste	Quantity	Unit	Reuse	Quantity	Unit
9	Electronically Factory	Steel, tin.	38	t/y	As raw materials	38	t/y
		Plastic waste	-	. /	It is reinserted in the production process	-	
10		Cardboard and paper	7	t/y	As raw materials	7	t/y
10	LABIOFAM	Plastic divisions	8,640	cb/y	Division of pots	8,640	cb/y
	$(PU \ 1-2 \ and \ 5)$	Cardboard divisions	8,640	cb/y	For file manufacturing	8,640	cb/y
		Defective pots and burrs	1/2.8	t/y	It is reinserted in the production process	1/2.8	t/y
11		Food waste	5,184	t/y	Food supplement	5,184	t/y
11	Santiago de las Vegas Slaughterhouse of poultry	Feather, entrails, heads	50	t/y	Production of flour for animal consumption	50	t/y
12	"Villena Revolucion"	Offal of agriculture (straw, pods, etc)	60	t/y	Ground, it is part of the fodder for animal	60	t/y
	Pigs Raising Farm	Animal manure		-	consumption		
			1,200	t/y	For the production of Compost and vermin	1,200	t/y
					production		
13	"La Estrella" Candies	Cardboard Boxes	1,200	u	As raw materials	1,120	u
	Factory	Sweepings	2,000	t/y	For animal consumption	2,000	t/y
14	Managua Cheese	Soy bean shell (20.1 t)			For animal Consumption (20.1 t)		
	Factory						
15	"8 de octubre" Rural	Crops waste, leaves, cattle manure,	350	m ^{3/} y	Organic fertilizer	350	m ^{3/} y
16	"La Vaquita" Voal	Small pieces of leather for shoe making	4 000	$m^2/v$	To manufacture the gloves used for cutting cane		
10	Eactory	Shavings of leather for shoe making	4,000	III / y	To manufacture the gloves used for cutting cane		
	Puciory	Shavings of leather for shoe making	80	t/v	For conglomerates		
17	Antillana de Acero	Fragmented silica sand	720	t/v	In other activities that do not require special	720	t/v
1,	Factory	Metal scraps	,20	c, y	granulometry	120	u y
	(Steel factory)	Shells from the mill	1.055	t/v	For steel melting	1.055	t/v
	(2000)		100	t/v	Other uses	100	t/v
18	"Guido Lopez" Beer	Bran	1.926	t/v	For animal consumption	1.926	t/v
	Enterprise		-,	<i></i> )	r	.,	. )
19	Havana Complex for	Soy beans skin	95.6	t/y	For animal consumption	95.6	t/y
	Dairy Products	Metal scrap	136	t/y	As raw materials	136	t/y
	-	Reusable Plastics	31.5	t/y	As raw materials for the production of high	31.5	t/y
				5	demand products.		5

## Survey Data of Industries (2/4)
## Survey Data of Industries (3/4)

No.	Enterprises	Solid Waste	Quantity	Unit	Reuse	Quantity	Unit
20	"9 de Abril" Textile	Textile remnant and cotton sweepings	1,102	kg/y	For the production of mattresses	1,102	kg/y
	Factory	Steel scraps	1 5 5 7	+/ <del>-</del>	A a row motoriala	1 5 5 7	1.0/11
21	"Aulat a Canala" Istata	Staal gamang	1,337	t/y	As law inaterials	1,337	Kg/y
21	Factory	Steel scraps	540	Uy	As raw materials	243	Uγ
22	Regil Roasting Factory	Shells	235	t/y	For animal consumption	200	t/y
23	"Diaz Machado" Fusing Factory. (Metal fittings plant)	Scunps, defective parts, metal chips, shavings, and strapping scraps.	400	t/y	As raw materials	400	t/y
24	Factory for Guarina Ice	Boxes 125 cc	500	u/y	As raw materials	480	u/y
	creams	Boxes 250 cc	900	u/y	As raw materials	850	u/y
		Large buckets of 5.5	1,400	u/y	As raw materials	1,150	u/y
		Pots of 2 L	30	u/y	As raw materials	25	u/y
		Pots of $\frac{1}{2}$	130	u/y	As raw materials	130	u/y
25	"La Lechera"	Sweepings	3.32	t	For animal consumption 3.32 t	3.32	t
	Pasteurizing Factory						
26	INDAL	Fish offal	203	t/y	For animal consumption	203	t/y
27	Glass Factory	Broken glass	1.200	t/v	It is reinserted in the production process	1.080	t/v
		Mold of rejected cast iron	, 7		It is given to Vulcano forging center	7	t/y
		Iron scraps		t/y			5
		Remnants of cardboard and packing	250	t/y	As raw materials	250	t/y
		Sand rejected by the sieve	App 5	-	As raw materials	4.75	t/y
				t/y			-
			35		To build houses for the workers.	33.5	t/y
28	COPEXTEL	Plastics	7	t/y	They are recycled at the same enterprise	7	t/y
		Ferrous metals	22	t/y	As raw materials	22	t/y
		Non-ferrous metals	11	t/y	As raw materials	11	t/y
		Paper and cardboard	3	t/y	As raw materials	3	t/y
29	"Chenard Piña"	Sweepings for the production of powder	1,040	t/y	As raw materials	1,040	t/y
	Factory	soft drinks, jellies, custards, chocolate,					-
		small cakes, and flavored desserts (all in					
		powder)					

#### Survey Data of Industries (4/4)

No.	Enterprises	Solid Waste	Quantity	Unit	Reuse	Quantity	Unit
30	"J.A. Echeverria" Cereals Factory	Bran, thick and fine bran of wheat, also wheat germ derived from the production of wheat flour	36,000	t/y	Fodder and human consumption	36,000	t/y
31	"Nico Lopez" Refinery	The recovered slop in the treatment system	14	t	Mainly, it is reinserted in the distillation plant		
32	PRODAL Enterprise	Solid waste from the production	576	t/y	Animal consumption	576	t/y
33	T. Lima Grains Mill	Bran, thick and fine bran of wheat, also wheat germ derived from the production of wheat flour	9,500	t/y	Fodder and human consumption	9,500	t/y
34	Roasting Factory for Pilon Coffee	Shells	1,050	t/y	For animal consumption	970	t/y

#### Data Source: CITMA 2003

Remarks:

B: bag

Kg: kilogram

t/y: tons per year

cb/y: cardboards per year

u: units

NR: not reused

t: ton

u/y: unit per year

## Table. The Result of QA Survey (1/4)

No	ltem	Answer				
1	Name	Mario Muñoz Pharmaceuticals Lab	La Estrella Candy Factory	PRODAL Enterprise	INDAI	Habana Dairy Complex
2	Total staff	96	427	1 000	300	1 124
~	lotal otali		121	1 000	000	
3	Address of the factory	Hacendado #1, Habana Vieja	Calle Vega y Via Blanca, Cerro	Pereira y Litoral s/n , Regla	Calle Hacendado # 55, H. Vieja	Ave Monumental Km 23 1/2, Cotorro
4	Construction year	1939		1964	1964	1974
5	Type of product(s)	Natural medicine and medicine obtained by synthesis	Chocolates, candies, cookies (1 643 ton/y)	Sausages and canned chicken	Fish sausages and canned food	Natural yogurt, milk, ice cream, cheese
	a) Yield	See remarks	all mentioned above (149.36 ton /m)	all mentioned above (496 t/m)	canned food (1 700 t/y)	cheese (1 200 t/y) ice cream (1 480 000 gallons/year) milk (7 988 t/y) yogurt (2 733 t/y)
6	Amount of generated waste					
	a) Urban solid waste in m3/day	0.048	0.21	0.5	0.15	0.56
	<li>b) Industrial waste in m3/day</li>	-2	0.7			0.3
7	Type of hazardous waste	NA	NA	NA	NA	NA
8	No. of Containers and Amplirolls					
	a) Containers (of 0.8 m3)	2	2	2	2	3
	b) Amplirolls					
9	Frequency of collection in a week	3 times	2 times (done by the enterprise)			
10	Segregation of waste for collection	Yes	Yes	Yes	Yes	Yes
	a) Examples	Glass, cardboard, paper, polyethylene				
		bags	Cardboard boxes	Cardboard	Wood	Plastics, metal scraps
	Contract for transport to dumping site or					
11	waste treatment	Yes	No	No	No	No
	a) Name of the enterprise	Aurora				
	b) Scope of the contract	Collect and discharge at dumping site				
	c) Monthly cost	120 Cuban pesos				
12	Dumping site used for industrial waste and USW	Ocho Vias				
13	Amount of waste carried to dumping site in m3 per week	0.3	1.3	3	1	5
14	Frequency of discharge at the dumping site per week	3 times	2 times	2 times	2 times	2 times
	Need for treatment equipment or facilities as					
15	to industrial waste	No	No	No	No	No
	a) Name the equipment					
40	Plans of building or installing a new				N	
10	treatment plant	NO	NO	NO	NO	NO
	a) Mention date					
17	waste	Yes	Yes	Yes	Yes	Yes
	In your opinion, how the hazardous waste management should be done	I recommend the implementation of treatment systems by every factory	I recommend the implementation of treatment systems by every factory	I recommend the implementation of treatment systems by every factory	I recommend the implementation of treatment systems by every factory	I recommend the implementation of treatment systems by every factory
18						
	environmental condiditions continue?	changes that do not harm the environment				
19						
20	Remarks:	Natural products: Vimang - 1.5 -2 ton/month	Reuse of waste: cardboard boxes-1 200 for raw material	Of the waste generated by the production of canned chicken and sausages	203 t/y of fish waste is used in the production of animal foods	Reuse of waste: soy shells - 95.6 t/y for animal foods
		Propolis extract - 100-150kg/month	sweepings- 2 000 t /y for animal	270 t/y are devoted to animal foods.		metal scraps- 136 t/y for raw materials
		Aloe extract - 2 500 l/month Aloe shampoo- 20 000 containers of 200	consumption	* The non hazardous waste is reused in the production of animal foods.		recyclable plastic- 31.5 t/y for raw material

RME : Law materials Recovery Enterprise

## Table. The Result of QA Survey (2/4)

Item			Answer		
News	Beatriz Pasteurizing Factory	EI Lucero Pasteurizing Factory	Guarina Ice creams Factory	Coppelia Ice creams Factory	Suchel Camacho
Name	220	260	120	180	240
i otal staff	220	360	120	180	240
	Sta. Beatriz # 71 e/1ra y 2da,	Carretera Lucero # 35, Calzada	oncho 54, esquina via Biana, H. Viej	ve. Independencia, Km 7 1/2, Boyero	-
Address of the factory	Vibora, Arroyo Naranjo	Managua, Arroyo Naranjo	1000		Boyeros
Construction year		<b>A</b>	1933		
Type of products)	Natural yogurt, soy yogurt, goat's milk	Concentrated milk, fresh cream, soy milk	Ice cream production	Ice creams	Perfumes, toilet soap, detergent
a) Yield	Natural yogurt - 3 612 t/y Soy yogurt - 5 800 t/y Goat's milk - 60 t/y	Concentrated milk- 14 130 t/y Fresh cream- 20t/y Soy milk- 860 t/y	Ice creams - 700 gallons per year	Ice creams - 980 gallons per day	Total production - 114.6 t/y
Amount of generated waste					
a) Urban solid waste in m3/day	0.11	0.18	0.06	0.09	0.12
<ul> <li>b) Industrial waste in m3/day</li> </ul>					0.45
Type of hazardous waste	NA	NA	NA	NA	NA
No. of Containers and Amplirolls					
a) Containers (of 0.8 m3)	2	2	2	2	3
b) Amplirolls					
Frequency of collection in a week	1 time (done by the enterprise)	2 times (done by the enterprise)	1 time	1 time	2 times
Segregation of waste for collection	Yes	Yes	Yes	Yes	Yes
a) Examples	Glass, paper, plastic buckets	Broken plastic boxes	Boxes and plastic pots	Paper, cans, sacks, plastic buckets	Glass , plastics, boxes, cardboards
Contract for transport to dumping site					
or waste treatment	No	No	No	No	No
<ul> <li>a) Name of the enterprise</li> </ul>					
<ul> <li>b) Scope of the contract</li> </ul>					
c) Monthly cost					
Dumping site used for industrial waste					
and USW	Ocho Vias	Ocho Vias	Ocho Vias	Ocho Vias	Ocho Vias
Amount of waste carried to dumping					
site in m3 per week	0.11	1.08	0.36	0.54	3.4
Frequency of discharge at the					
dumping site per week	I time	2 times	1 time	1 time	2 times
Need for treatment equipment or					
facilities as to industrial waste	No	No	No	No	No
a) Name the equipment					
Plans of building or installing a new					
treatment plant	No	No	No	No	No
a) Mention date					
Will to monitor hazardous and					
Infectious waste	Yes	Yes	Yes	Yes	Yes
In your opinion, how the hazardous	I recommend the implementation of	I recommend the implementation of	I recommend the implementation of	I recommend the implementation of	I recommend the implementation of
waste management should be done	the treatment system by every factory	the treatment system by every factory	the treatment system by every factory	the treatment system by every factory	the treatment system by every factory
Do you wish that the capital's current	No, but I would only agree to accept	No, but I would only agree to accept	No, but I would only agree to accept	No, but I would only agree to accept	No, but I would only agree to accept
environmental conditions continue?	changes that do not harm the	cahnges that do not harm the	changes that do not harm the	changes that do not harm the	the ones that do not harm the
	environment	environment	environment	environment	environment
-		-			
Remarks:	Reuse of waste:	Reuse of waste:	Reuse of waste:	Reuse of waste:	Reuse of the waste:
	Paper - 5 800 sacks for cereal				
	boxes	300 boxes per year are devoted to	125 cc boxes - 500 u/y for RME	Paper - 1 833 t/y for RME	Plastic containers - 56 t/y for RME
	Plastic buckets - 850 for yogurt and	recycling activities	250 cc boxes - 900 u/y for RME	5 gallons cans - 437 u/y for RME Polypropylene sacks - 250 u/y for	Glass containers - 43 t/y for RME
	ice cream pots	* Industrial waste is reused in the	I liter pots - 300 u/y for RME	RME	Cardboard boxes - 25 t/y for RME
	White glass - 30 t for RME.	production process	1/2 liter pots - 1 30 u/y for RME	Plastic buckets 32 000 u/y for RME	
	125 cc pots - 3kg/y are not reusable		*		

## Table. The Result of QA Survey (3/4)

Image         Outling         Quido Pérze browary         Antiliana de Acerc(Steatworks)         Nume         Pour Station Maintenance Company           1         Name         Correlete Contract. Into 10, Columo         20         1167         700         300           2         Total stat         Correlete Contract. Into 10, Columo         20         1167         700         300           4         Construction year         1240         10522, Columo         1355         Columo Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo         Columo	No	Item		Δης	wor	
Image         Current of a constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of constraint of	140.	Rein	Guido Bároz browony	Antillana da Asara(Stashuarka)	Nico Lónez Befinen/	Power Station Maintenance Company
I Name         Product         Stor         111         Product         Stor			Guido Perez brewery	Antiliana de Acero(Steelworks)	NICO LOPEZ Refinery	Power Station Maintenance Company
2         Details staff         520         Details staff         700         330           2         Details staff         Carneters Cental, rules         08 10522, Closeno         Valid Blanca y Media         Call 100 2 00, Lian           4         Construction year         1948         1961         1965         Monodecare of Austraction year         Monodecare of Austraction year         1966         Monodecare of Austraction year         Monodecare	1	Name				
Answer of the same         Carteria Central, thi 16, Control         20 # 1052; Columo         Viel Billing y Belot         Call 100 # 69, Lies           5         Type of products)         Balan         Billing         Billi	2	Total staff	520	1167	700	320
3         Address of the factory         1943         1944         1944         1944         1944           4         Construction year         Paper of products			Carretera Central, km 18, Cotorro	20 # 10522, Cotorro	Via Blanca y Belot	Calle 100 # 69, Lisa
4     Construction year     1948     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     1965     196	3	Address of the factory			-	
5         Type of products()         Beer         Steeworks         OIL by products() (solime, LPC, Asphalt, Karosene, Desk)         Monulecture of Anconditioning system, new predictioning, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new relations, new	4	Construction year	1948	1961	1955	
Incrementation         Late         Recorder to the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second	5	Type of products)	Beer	Steelworks	Oil by-products(gasoline LP6_Asphalt	Manufacture of Air-conditioning systems, repair
Image: second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	-	· )   · · · · · · · · · · · · · · · · ·			Kerosene Diesel)	of electric fans, repair of high-voltage
a) Yield         Jain and corrugated time: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth betwee: 883.3 kg/momth b						transformers, manufacture of parts
Determinant     Interfer (each gamma fail wate)     Interfer (each gamma fail wate)     Interfer (each gamma fail wate)       6     Amount of gamma fail wate)     0.20     0.88     0.35     0.16       7     Type of fazardou wate     NA     NA     NA     NA       8) Indicating wate for 30 and ya     0.20     0.88     0.25     0.16       9) Indicating wate for 30 and ya     2     8     3     2       10     gamma faith and ya     2     8     3     2       10     gamma faith and ya     2     8     3     2       10     gamma faith and ya     2     8     3     2       10     gamma faith and ya     2     8     3     2       10     garge gation of wasts for collection     Yes     2 times for and ya     Yes       10     garge gation of wasts for collection     Yes     9     2 times       11     wast for and ya     0     No     No     No       12     wast for collection in a wast for collection     Yes     2 times       13     mage filte enterprise     0     0     No       14     wast for collection of mast filte enterprise     1.56     3.48     2.11     1       14     frequency of dischar		a) Yield	1524190 packs/year	plain and corrugated bars: 5833 3 kg/month	1449692 83 m ³ /v total production	
Image: Product of generated wase         Permit: 18333333/g/m.         Permit: 18333333/g/m.         Permit: 18333333/g/m.         Permit: 18333333/g/m.         Permit: 1833333/g/m.         Permit: 18333333/g/m.         Permit: 18333333/g/m.         Permit: 18333333/g/m.         Permit: 1833333/g/m.		a) 1101a	102 1100 paolas joan	sheets: 1666666 kg/m reinforcement		
6     Anount of generated waste				beams: 18333333kg/m		
0         0.58         0.35         0.16           0         10.0000 Waste m 7000/ Properting and Amplicities         NA         NA         NA         NA           7         Type of heardcour waste         NA         NA         NA         NA         NA           8         No. of Containers and Amplicities         2         5         3         2           0         Amplifiedia         2         3         2         2           10         Segregation of waste for collection         Yes         Yes         Yes         Yes           11         Segregation of waste for collection         Yes         Yes         Yes         Yes           12         Constact for transmitted for segregation of the set protocid         No         No         No         No           13         Demographic of the contract         No         No         No         No         No         No           14         Diamo of the contract         No         No         No         No         No         No         No           12         USWs         Ocho Vias	6	Amount of non-noted works		beams. Teoebookg/m		
B) Lotant solutions in hugary     U.B     U.B     U.B     U.B       7 Type of heardhous wastes     NA     NA     NA     NA       8 No. of Containers and Amplicols     -     -     -       9 Containers and Amplicols     -     -     -       9 Containers and Amplicols     -     -     -       9 Containers and Amplicols     -     -     -       9 Containers and Amplicols     -     -     -       9 Containers and Amplicols     -     -     -       9 Containers and Amplicols     -     -     -       9 Containers and Amplicols     -     -     -       9 Containers and Amplicols     -     -     -       9 Frequency of collection in a week     1 time     2 times (done by the enterprise)     2 times       10 State and the amprise     -     -     -     -       11 wasta creatment     No     No     No     No       12 USW     -     -     -     -       12 USW     -     -     -     -       12 wasta created to aurping site in     -     -     -       13 wasta created to aurping site in     -     -     -       14 per week     16     -     -     -	0	Amount of generated waste	0.00	0.50	0.05	0.40
2         Dyne of instantion works         NA         NA         NA         NA         NA         NA           2         No. Containers of 0.8 mS)         2         5         3         2           3         Distributions         2         5         3         2           4         Frequency of collection in a week         1 time         2 times (done by the enterprise)         2 times           10         Sagregation of wast to reatment         No         No </th <th></th> <th>a) Orban solid waste in m3/day</th> <th>0.26</th> <th>0.58</th> <th>0.35</th> <th>0.16</th>		a) Orban solid waste in m3/day	0.26	0.58	0.35	0.16
6         MA         NA         NA         NA         NA         NA           0         Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 03 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outscher Got 04 molecular 0) Outsche Got 04 mole	-	b) Industrial waste in mo/day			N1A	
a     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b     b <th>/</th> <th>Type of nazardous waste</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>NA</th>	/	Type of nazardous waste	NA	NA	NA	NA
B) Lottating (or) et ma)       2       5       3       2         B) Angulating (or) et ma)       2       5       3       2         B) Angulating (or) et ma)       2       2       5       3       2         B) Angulating (or) et ma)       2       1       2       1       3       2       1       3       2       1       2       1       3       2       1       3       2       1       3       2       1       3       2       1       3       2       1       3       2       1       3       3       2       1       3       3       3       2       1       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3	8	No. of Containers and Ampiirolis	<u>_</u>		~	
b) Ampurous     2     4       0)     Frequency of collection in a week     1 time     2 times (done by the enterprise)     2 times (done by the enterprise)     2 times       10)     Sagregation of wasts for collection     Yes     Yes     Yes     Yes       10)     Contract for transport to dumping site or     No     No     No     No       11)     wasts the realment     No     No     No     No       12)     Montrot wasts carried to dumping site in     1.66     3.48     2.1     1       12)     Reveek     1 time     2 times     2 times     2 times       14)     per week     1 time     2 times     2 times     2 times       14)     per week     1 time     2 times     2 times     2 times       14)     per week     1 time     2 times     2 times     2 times       16)     Inductarial waste     No     No     No     No       16)     Inductarial waste     No     No     No     No <th></th> <th>a) Containers (of 0.8 m3)</th> <th>2</th> <th>5</th> <th>3</th> <th>2</th>		a) Containers (of 0.8 m3)	2	5	3	2
9     Frequency of collection in a week     1 time     2 times (done by the enterprise)     2 times (done by the enterprise)     2 times       10     Begregation of waste for collection     Yes     Yes     Yes       a) Isample's     Glass     steel excep)     Paper, Stop     Yes       b) somple's     No     No     No     No       a) Isample's     No     No     No     No       b) Somple of the contract     No     No     No       c) Monthly coet     Ocho Vias     Ocho Vias     Ocho Vias     Ocho Vias       d) Kampion of the contract     Image: State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State and State		d) Ampiiroiis		2		
9     Prequency or collection in a week     1 time     2 times (done by the enterprise)     2 times (done by the enterprise)     2 times       10     Segregation of wasts for collection     Yes     Yes     Yes     Yes       a) Examples     Gottract for transport to dumping site or 11 wasts treatment     No     No     No     No       a) Name of the enterprise     0     0     No     No     No       b) Scope of the contract     0     0     0     0       11 wasts treatment     0     No     No     No       12 UBW     Ochto Vias     Ochto Vias     Ochto Vias     Ochto Vias       13 Amount of wasts carried to dumping site in     1.66     3.48     2.1     1       14 per week     1 time     2 times     2 times     2 times       14 per week     1 time     2 times     2 times     2 times       15 to industrial wasts     No     No     No     No       16 plant     No     No     No     No       19 week     I starter system by every factory     Yes     Yes     Yes       16 industrial wasts     No     No     No     No       14 per week     1 time     2 times     Yes     Yes       16 to industrial waste     No <th>0</th> <th></th> <th>4 fbm a</th> <th>O for a city of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of</th> <th></th> <th>0.1/20.0</th>	0		4 fbm a	O for a city of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of		0.1/20.0
10     Segregation of waste for collection     Yes     Yes     Yes       a) Examples     Glass     steel scrap)     Paper, Stop        c) Contract for transport to dumping site or     No     No     No     No       a) Name of the entreprise            b) Scope of the contract            c) Monthly cost            d) Name of the entreprise            d) Scope of the contract            d) Name of the entreprise            d) Name of the entreprise            d) Monthly cost      Ocho Vias     Ocho Vias         d) May meet be equipment of facilities as     1 time     2 times     2 times     2 times       f) to industrial waste     No     No     No     No     No       a) Name the equipment facilities as     No     No     No     No       a) Name the equipment facilities as or building or installing a new treatment No     No     No     No       f) boind outerial waste factor of the inplementation of the incommentation of th	9	Frequency of collection in a week	1 time	2 times (done by the enterprise)	2 times (done by the enterprise)	2 times
a) Examples     Glass     stell scrap)     Paper, Stop       Contract for transport to dumping site or a) Name of the enterprise.     No     No     No       a) Name of the enterprise.	10	Segregation of waste for collection	Yes	Yes	Yes	Yes
Contract for transport to dumping site or 11 waste treatment         No         No         No         No           a) Name the equipment         No         No         No         No         No           b) Scope of the contract		a) Examples	Glass	ataal aaran)	Banar Slan	
Contract for transport to dumping site or a) Name of the enterprise         No         No         No           a) Name of the enterprise         No         No         No           b) Second the contract D) Second the contract D) Second the contract waster and D) Second to dumping site in Presence of the contract of the dumping site Deriver of science of the dumping site Deriver of science of the contract of the dumping site Deriver of science of the dumping site Deriver of science of the dumping site Deriver of science of the dumping site Deriver of science of the dumping site Difference of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dumping site of the dump				steel scrap)	Гарег, Зюр	
11     No     No     No     No       a) Name of the entreprise		Contract for transport to dumping site or				
a) Name of the enterprise	11	waste treatment	No	No	No	No
b) Scope of the contract       b) Scope of the contract       b) Scope of the contract       b) Scope of the contract         c) Monthly cost       Ocho Vias       Ocho Vias       Ocho Vias       Ocho Vias         d) Monthly cost       Ocho Vias       Ocho Vias       Ocho Vias       Ocho Vias         d) Monthly cost       1.56       3.48       2.1       1         in por week       1 time       2 times       2 times       2 times         is to industrial weste       No       No       No       No         a) Name the equipment       No       No       No       No         equipment       No       No       No       No         a) Mame the equipment       No       No       No       No         in your opinion, how the hazardous and infectious       Yes       Yes       Yes       Yes         in your opinion, how the hazardous waste       I recommend the implementation of the irecommend the indiverse of tharms the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment the use of waste:		a) Name of the enterprise				
c) Monthly cost       Ocho Vias       Ocho Vias       Ocho Vias       Ocho Vias         12       USW       Amount of waste carried to dumping site in 1.56       3.48       2.1       1         13       ms per vecks       Frequency of discharge at the dumping site in 1.56       3.48       2.1       1         14       per vecks       Frequency of discharge at the dumping site in 1.56       3.48       2.1       1         14       per vecks       No       No       No       No       No         15       to industrial waste       No       No       No       No       No         16       plant       No       No       No       No       No       No         16       plant       No       No       No       No       No       No       No         17       waste       No       No </th <th></th> <th>b) Scope of the contract</th> <th></th> <th></th> <th></th> <th></th>		b) Scope of the contract				
Company Site used for moustain waste and Amount of waste carried to dumping site in manual provesk.       Ocho Vias       Ocho Vias       Ocho Vias         1       USW Amount of waste carried to dumping site in manual provesk.       1.56       3.48       2.1       1         1       manual provesk.       1.56       3.48       2.1       1         1       provesk       2 times       2 times       2 times         15       to industrial waste       No       No       No       No         16       plant       No       No       No       No       No         17       Waste       recommend the implementation of the ir recommend the implementation of the ir recommend the implementation of the ir recommend the implementation of the ir reatment system by every factory       Yes       Yes         18       Do you wish that the capita's current environmental conditions continue?       Reuse of waste:       Reuse of waste:       The solid waste similar to the domestic waste       Reuse of waste:         19       20       Remarks:       Reuse of waste:       Reuse of waste:       The solid waste similar to the domestic waste are accopeed with the company's scrap to recycle 1055 tly filings for other works-720 tly scrap to recycle 1055 tly       Reuse of waste:       The solid waste similar to the domestic waste are accopeed with the company's scrap to recycle 1055 tly		c) Monthly cost				
12     USW     Ocho Vias     Ocho Vias     Ocho Vias     Ocho Vias       Amount of waste carried to dumping site in 13     m3 per week     1     1.56     3.48     2.1     1       13     m3 per week     1     1.56     3.48     2.1     1       14     per week     1 time     2 times     2 times     2 times       15     to industrial waste     No     No     No     No       a) Name the equipment     No     No     No     No       16     plant     No     No     No     No       17     Vasta     No     No     No     No       18     Meedion date     1     recommend the implementation of the I recommend the implementation of the I recommend the implementation of the I recommend the implementation of the I reatment system by every factory     1       18     Do you wish that the capital's current invironmental conditions continue?     No. but 1 would only agree to accept Changes that do not harm the environment changes that do not harm the environment     No. but 1 would only agree to accept Changes that do not harm the environment       19     Reuse of waste:     Reuse of waste:     Reuse of waste:     Reuse of waste:       19     Reuse of waste:     Ne soft waste similar to the doments' starter are disposed with the companys trucks     Reuse of waste:       10<		Dumping site used for muustrial waste and				
Amount of waste carried to dumping site in m3 m3 per week         Amount of waste carried to dumping site prequency of discharge at the dumping site prevek         1.56         3.48         2.1         1           Frequency of discharge at the dumping site prevek         Frequency of discharge at the dumping site prevek         10         2 times         2 times         2 times           Need for treatment equipment of facilities as to industrial waste         No         No         No         No           a) Name the equipment         Image frequency         Image frequency         Image frequency         Image frequency         Image frequency           a) Mention date         Image frequency	12	USW	Ocho Vias	Ocho Vias	Ocho Vias	Ocho Vias
13       m3 per week       1.56       3.48       2.1       1         14       per week       1 time       2 times		Amount of waste carried to dumping site in				
Frequency of discharge at the dumping site         Itime         2 times	13	m3 per week	1.56	3.48	2.1	1
14     per week     1 time     2 times     2 times     2 times       15     No dor treatment equipment or facilities as     No     No     No     No       15     to industrial waste     No     No     No     No       a) Name the equipment     Image: state of treatment equipment or installing a new treatment plant     No     No     No       16     plant     No     No     No     No       16     plant     No     No     No     No       17     Waste     Yes     Yes     Yes     Yes       18     No your opinion, how the hazardous waste mangement should be done     I recommend the implementation of the treatment system by every factory     I recommend the implementation of the treatment system by every factory     I recommend the implementation of the treatment system by every factory       18     Do you wish that the capital's current which makes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment changes that do not harm the environment chan		Frequency of discharge at the dumping site				
Need for treatment equipment or facilities as industrial waste         No         No         No         No           15         industrial waste         No         No         No         No           16         industrial waste         Indus	14	per week	I time	2 times	2 times	2 times
15       to industrial waste       No       No       No       No       No         a) Name the equipment       a) Name the equipment       industrial waste       industrial waste <th></th> <th>Need for treatment equipment or facilities as</th> <th></th> <th></th> <th></th> <th></th>		Need for treatment equipment or facilities as				
a) Name the equipment       Image: constant of building or installing a new treatment plant       No       No       No         16       Plans of building or installing a new treatment plant       No       No       No       No         a) Mention date       No       No       No       No       No         will to monitor hazardous and infectious       Yes       Yes       Yes       Yes       Yes         17       waste       I'recommend the implementation of the implementation of the implementation of the interment system by every factory       I'reatment system by every factory       the interment system by every factory       the interment system by every factory         18       Do you wish that the capital's current No, but I would only agree to accept No, but I would only agree to accept hon otharm the environment       No       No       No         19       Remarks:       Reuse of waste:       Reuse of waste:       The solid waste similar to the domestic waste are disposed with the company's trucks       Reuse of waste:         19       use 1926 mt/y bran for animal feed       silica sand for other works-720 t/y filings for other works-720 t/y       silica sand for other works-720 t/y       The solid waste similar to the domestic waste siliar to the domestic         19       scrap to recycle 1055 t/y       filings for other uses 100 t/y       Slop recovered at the treatment systemsthe set set set set show the company's truck	15	to industrial waste	No	No	No	No
a) Name the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equipment       Image: constraint of the equ						
Plane of building or installing a new treatment plant       No       No       No       No       No         a) Mention date       Image: State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of		a) Name the equipment				
16       plant       No       No       No       No       No       No         a) Mention date		Plans of building or installing a new treatment				
a) Mention date       with the monitor hazardous and infectious       Yes       Yes       Yes         17       waste       Yes       Yes       Yes       Yes         18       In your opinion, how the hazardous waste management should be done       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory         18       Do you wish that the capital's current environment       No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept No, but I would only agree to accept changes that do not harm the environment         19       20       Remarks:       Reuse of waste:       Reuse of waste:       Reuse of waste:         20       Remarks:       use 1926 mt/y bran for animal feed       silica sand for other works-720 t/y filings for other uses 100 t/y       Silica sand for other uses 100 t/y       Reuse of at the treatment systems	16	plant	Νο	No	No	No
a) Mention date       value						
17       waste       Yes       Yes       Yes       Yes       Yes         18       In your opinion, how the hazardous waste management should be done       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implementation of the treatment system by every factory       I recommend the implem		a) Mention date				
Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites       Ites	17	wasto	Ver	Ves	Vec	Vec
In your opinion, now the hazardous waster       The commentation of the Precommentation of the Pr	17	waste	tes	tes	res	tes
management should be done       iteatment system by every factory         18       Do you wish that the capital's current environmental conditions continue?       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment         19       20       Remarks:       Reuse of waste:         19       use 1926 mt/y bran for animal feed       silica sand for other works-720 t/y filings for other uses 100 t/y       Reuse of waste:       Reuse of waste:       Reuse of waste:		in your opinion, now the nazardous waste	recommend the implementation of the	recommend the implementation of the	recommend the implementation of the	recommend the implementation of the
18       Do you wish that the capital's current environment conditions continue?       No, but I would only agree to accept changes that do not harm the environment changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I would only agree to accept changes that do not harm the environment       No, but I		management should be done	treatment system by every factory	treatment system by every factory	treatment system by every factory	treatment system by every factory
Do you wish that the capital's current environment       No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree to accept Agree No, but I would only agree No, but I would only agree No, but I would only agree No, but I would only agree No, but I would only agree No, but I would only agree No, but I would only agree No, but I would only agree No, but I would only agree No, bu	18					
environmental conditions continue?       changes that do not harm the environment         20       Remarks:       Reuse of waste:       The solid waste similar to the domestic waste are disposed with the company's trucks       reuse of waste:       Reuse of waste:       Slop recovered at the treatment systems- 14 t/m to inject to distillation plant       environment		Do you wish that the capital's current	No, but I would only agree to accept	No, but I would only agree to accept	No, but I would only agree to accept	No, but I would only agree to accept
19     Reuse of waste:       20     Remarks:     use 1926 mt/y bran for animal feed     silica sand for other works-720 t/y filings for other uses 100 t/y     Reuse of waste:     The solid waste similar to the domestic waste are disposed with the company's trucks		environmental conditions continue?	changes that do not harm the environment	changes that do not harm the environment	changes that do not harm the environment	changes that do not harm the environment
19     Reuse of waste:       20     Remarks:     use 1926 mt/y bran for animal feed     silica sand for other works-720 t/y silica sand for other works-720 t/y     The solid waste similar to the domestic waste are disposed with the company's trucks     Reuse of waste:       Slop recovered at the treatment systems- 14 t/m to inject to distillation plant     Slop recovered at the treatment systems- 14 t/m to inject to distillation plant						
20     Reuse of waste:       20     Reuse of waste:     The solid waste similar to the domestic waste are disposed with the company's trucks     The solid waste similar to the domestic waste are disposed with the company's trucks     Slop recovered at the treatment systems-14 t/m to inject to distillation plant	19					
use 1926 mt/y bran for animal feed silica sand for other works-720 t/y scrap to recycle 1055 t/y filings for other uses 100 t/y filings for other uses 100 t/y	20	Remarks:	Reuse of waste:	Reuse of waste:	Reuse of waste:	Reuse of waste:
use 1926 mt/y bran for animal feed silica sand for other works-720 t/y scrap to recycle 1055 t/y filings for other uses 100 t/y filings for other uses 100 t/y					The solid waste similar to the domestic	
use 1926 mt/y bran for animal feed silica sand for other works-720 t/y trucks scrap to recycle 1055 t/y filings for other uses 100 t/y silica to the treatment systems- 14 t/m to inject to distillation plant					waste are disposed with the company's	
Slop recovered at the treatment systems- 14 t/m to inject to distillation plantSlop recovered at the treatment systems- 14 t/m to inject to distillation plant			use 1926 mt/y bran for animal feed	silica sand for other works-720 t/y	trucks	
scrap to recycle 1055 t/y 14 t/m to inject to distillation plant filings for other uses 100 t/y			-		Slop recovered at the treatment systems-	
filings for other uses 100 t/y				scrap to recycle 1055 t/y	14 t/m to inject to distillation plant	
				filings for other uses 100 t/y		
				-		

## Table. The Result of QA Survey (4/4)

No.	Item	Answer					
		Pilón Coffee Roasting Factory	El Lucero Pasteurizing Factory	Guarina Ice creams Factory	Coppelia Ice creams Factory	Suchel Camacho	
				_			
1	Name						
2	Total staff	80	360	120	180	240	
		26 y 51, Plaza	Carretera Lucero # 35, Calzada	Concho 54, esquina Via Blana, H.	Ave. Independencia, Km 7 1/2, Boyeros		
3	Address of the factory		Managua, Arroyo Naranjo	Vieja		Boyeros	
4	Construction year	1950		1933			
5	Type of products)	Coffee	Concentrated milk, fresh cream, soy milk	Icecream production	Ice creams	Perfumes, toilet soap, detergent	
	a) Yield	Coffee - 604.7 t/y	Concentrated milk- 14 130 t/y Fresh	Ice creams - 700 gallons per year	Ice creams - 980 gallons per day	Total production - 114.6 t/y	
			cream- 20t/y Soy milk- 860 t/y				
	A						
6	Amount of generated waste	0.01	0.40	0.00	0.00	0.40	
	a) Urban solid waste in m3/day	0.04	0.18	0.06	0.09	0.12	
7	D) Industrial waste in mo/day	NA	NA	NA	NA	0.45	
0	No. of Containers and Amplifolia	NA	NA	NA	NA	INA	
0	a) Containers (of 0.8 m3)	2	2	2	2	3	
	h) Amplirolls	2	2	2	۷	5	
	b) Ampinons						
0	Franciscus of collection in a weak	1 time (dans but he entermine)	O times (dame by the enternine)	1 times	1 time	2 times	
9	Sogregation of waste for collection	T time (done by the enterprise)	2 times (done by the enterprise)	i uille Xee	Yee	2 times	
10	a) Examples	Glass paper plastic buckets	Broken plastic boxes	Boxes and plastic pots	Tes	Tes	
	a) Examples	Glass, paper, plastic buckets	Broken plastic boxes	Boxes and plastic pots	Dense sees seels also the busilists	Olever also the based and based	
					Paper, cans, sacks, plastic buckets	Glass, plastics, boxes, cardboards	
	Contract for transport to dumping site or						
11	waste treatment	No	No	No	No	No	
	a) Name of the enterprise						
	b) Scope of the contract						
	c) Monthly cost						
	Dumping site used for industrial waste and						
12	USW	Ocho Vias	Ocho Vias	Ocho Vias	Ocho Vias	Ocho Vias	
	Amount of waste carried to dumping site in						
13	m3 per week	0.11	1.08	0.36	0.54	3.4	
	Frequency of discharge at the dumping site						
14	per week	I time	2 times	1 time	1 time	2 times	
	Need for treatment equipment or facilities as						
15	to industrial waste	No	No	No	No	No	
	a) Name the equipment						
	Plans of building or installing a new						
16	treatment plant	No	No	No	No	No	
-	• • •					-	
	a) Mention date						
	Will to monitor hazardous and infectious						
17	waste	Yes	Yes	Yes	Yes	Yes	
	In your opinion, how the hazardous waste	I recommend the implementation of the	I recommend the implementation of the	I recommend the implementation of the	I recommend the implementation of the	I recommend the implementation of the	
	management should be done	treatment system by every factory	treatment system by every factory	treatment system by every factory	treatment system by every factory	treatment system by every factory	
18							
	Do you wish that the capital's current	No, but I would only agree to accept	No, but I would only agree to accept	No, but I would only agree to accept	No, but I would only agree to accept	No, but I would only agree to accept the	
	environmental conditions continue?	changes that do not harm the	changes that do not harm the	changes that do not harm the	changes that do not harm the	ones that do not harm the environment	
19		environment	environment	environment	environment		
20	Remarks:	Reuse of waste:	Reuse of waste:	Reuse of waste:	Reuse of waste:	Reuse of the waste:	
20		Paper - 5 800 sacks for cereal boxes	300 boxes per year are devoted to	125 cc boxes - 500 u/v for RMF	Paper - 1 833 t/v for RMF	Plastic containers - 56 t/v for RME	
		Plastic buckets - 850 for vogurt and	recycling activities	250 cc boxes - 900 u/v for RME	5 gallons cans - 437 µ/v for RMF	Glass containers - 43 t/v for RMF	
		ice cream pots	* Industrial waste is reused in the	Liter pots - 300 µ/v for RME	Polypropylene sacks - 250 µ/y for RMF	Cardboard boxes - 25 t/v for RMF	
		White glass - 30 t for RME.	production process	1/2 liter pots - 1 30 u/v for RME	Plastic buckets 32 000 u/v for RME		
		125 cc nots - 3kg/v are not reusable		*			
		120 00 polo - org/y are not reusable					

# E. Industrial and Medical Waste:

E2 Questionnaire Survey for Hospitals

# **E2 QUESTIONNAIRE SURVEY TO HOSPITAL**

# 1. Objective of Survey

To collect information about the existing conditions and opinions on the medical solid waste management system in hospitals in Havana City and problem issues, and future plan for treatment of generated waste in hospitals.

# 2. Area Subject to Survey and Number of Sampling

5 hospitals located inside of Havana City

# 3. Method of Survey

Data collection with questionnaire, by means of direct interview by visit or indirect inquiry by mailing to sample hospitals

# 4. Main Items Included in Questionnaire

Subject	Questions
General conditions	Name of hospital, Number of beds, Number of doctors and stuff, Constructed/Established
	year, etc.
Conditions of	Waste generation, Quantity, Type of waste, Number and type of incinerators, Number of
waste	bins/containers, etc.
Collection of	Times of waste collection per week, Segregation and separate collection, Operation
waste	company (organization), Necessity of the segregation, etc.
Recycling	Items of recycling,
Disposal and	Name of dumping site, Operation of disposal, In charge of transportation and dumping,
dumping of waste	Methodology of treatment, Monitoring, Waste treatment system, etc.
Future Plan	Future plan, etc.

# 5. Analysis and Data Processing

Being based on the results of the answered questionnaires:

- To analyze the existing conditions of medical waste disposal and treatment
- To clarify issues related to medical waste and environmental conditions
- To statistically edit the survey data, especially for generated hazardous waste

## 6. Survey Duration

This survey was conducted in the last ten days of March, 2004.

# 7. Output

- Survey Reports
- Filled questionnaires

Date:

# **QUESTIONNAIRE TO HOSPITALS**

1. Name of hospital:	
2. Number of beds:	
3. Number of doctors and staff:	
4. Constructed/Established year:	
5. Type of hospital:	
6. Volume of generated waste in hospital (total $=a+b$ ):	
6.1 Municipal solid waste (a):	_m ^{3/} day
6.2 Medical waste (b):	_m ³ /day
(Breakdown) :	
- Hazardous/ infectious waste:	_m ³ /day
- Non Hazardous/ infectious waste:	_m ³ /day
- Non flammable waste:	_m ³ /day
7. Is there incinerator in your hospital?	
7.1 Yes 7.2 No	
8. For those who answered "Yes", please answer following:	
Number:set	
Model:	
Capacity:kg/day	
Year of Construction/Installation:	

<ol><li>Number of bins and contain</li></ol>	iers
----------------------------------------------	------

Bins: _____Nos.

Containers (for medical waste): _____Nos.

10. Times of waste collection per week: ______Times

- 11. Do you carry out segregation and separate collection for medical waste?11.1 Yes 11.2 No
- 12. For those who answered "Yes", please describe categories:Example: Example; syringe, clothes, infectious waste, chemicals, bottles, glass
- 13. Do you have a contract of waste transportation to dumping site and/or treatment of waste?

13.1 Yes 13.2 No

14. For those who answered "Yes", please describe following:

14.1 Name of operation companies:

14.2 Scope of contract:

14.3 Amount (\$) _____/month

15. Do you carry out treatment of hazardous/infectious waste?15.1 Yes 15.2 No

16. For those who answered "Yes", please describe methodology

17. Do you have a contract of waste transportation and /or treatment of waste?

17.1 Yes 17.2 No

18. For those who answered "Yes", please answer following:

Name of Operation Company:

Scope of contract:

Amount (\$): _____/month

19. Dumping site of medical waste and municipal solid waste, please select the location:

- Calle 100
   Guanabacoa
- 3) Ocho Vias
- 4) Municipal landfill
- 5) Provincial landfill
- 6) Others

20. Volume of solid waste dumping to landfill site: _____ m³/day Number of Bin: _____Nos.

21. Times of dumping to landfill site per week: ______Times

22. Do you want equipment or facilities for treatment of medical waste?22.1 Yes 22.2 No

23. For those who answered "Yes", please describe required items:

24. Do you have plans of construction/ installation of new incinerators for medical waste?24.1 Yes 24.2 No

25. For those who answered "Yes", please describe proposed year:

- 26. Do you have willing to carry out monitoring of hazardous/infectious waste?26.1 Yes 26.2 No
- 27. How do you think treatment of hazardous/infectious waste?
  - 27.1 Would like to do self treatment in the hospital
  - 27.2 Would like to request other company/organization by contract
  - 27.3 Recommend construction of centralized plant for treatment
  - 27.4 No idea
- 28. If you have comments, opinion and troubles for the medical waste management, please describe below.

Thank you very much for your kind cooperation.

# Survey Data of Questionnaire for Hospitals

## Survey Data of Hospital

No	Item			Answers		
1	Name of Hospital	America Arias	Calixto Garcia	Miguel Enrique	Pediatrico de Centro Habana	Salvador Allende
2	No. of beds	273	1 000	897	303	1 085
3	Total staff	380	2 700	1 200	430	1 548
4	Construction year	1892	1896	1891	1895	1886
5	Type of Hospital	Maternity	Clinical and Surgical	Clinical and Surgical	Pedriatic	Teaching Clin. & Surgical
6	Amount of generated waste			2		<u> </u>
	a) MSW in m ³ /day	1.6	6.7	5.3	1.8	6.5
	b) Medical waste in m ³ /day	0.2	1.6	1.3	0.2	1.62
7	Incinerator at the hospital	Yes	Yes	Yes	Yes	Yes (under repair)
	a) Quantity	1	2	1	1	1
	b) Model	Creole	Creole	Creole	Creole	Creole
	c) Capacity in kg/day	65	300	250	70	300
8	Year of installation	100 years ago	~100 years ago	~1891	~100 years ago	N/A
9	No. of Containers and Amplirolls					
	a) Containers	6	35	6	15	28
	b) Amplirolls					
10	Frequency of collection	Daily	Daily	Daily	Daily	Daily
11	Segregation waste for collection	Yes	Yes	Yes	Yes	Yes
	a) Examples	(all mentioned in the questionnaire)	(all mentioned in the questionnaire)	(all mentioned in the questionnaire)	(all mentioned in the questionnaire)	(all mentioned in the questionnaire)
12	Contract for transport to	Yes	Yes	Yes	Yes	Yes
	dumping site or waste treatment					
	a) Name of the enterprise	Aurora Hospitals				
	b) Scope of the contract	free of charge				
	c) Monthly cost	free of charge				
13	Treatment for hazardous and	Yes	Yes	Yes	Yes	Yes
	infectious waste					
	a) Method used	incineration	incineration	incineration	incineration	incineration
14	Contract for waste treatment or	Yes	Yes	Yes	Yes	Yes
	transport					
	a) Name of the enterprise	Communal	Communal	Communal	Communal	Communal
	b) Scope of the contract	free of charge				

Survey Da	ata of Hospital	(Continue)
-----------	-----------------	------------

	c) Monthly cost	free of charge				
15	Dumping site used for hospital waste and MSW	Calle 100				
16	Amount of waste carried to dumping site in m3	1.6	6.7	5,3	1,8	6,5
	a) No. of containers	6	35	6	15	28
17	Frequency of discharge at the dumping site	Daily	Daily	Daily	Daily	-
18	Need for treatment equipment as to hospital waste	Yes	Yes	Yes	Yes	Yes
	a) Name the equipment	Furnace type incinerator	Furnace type incinerator (more modern)	Furnace type incinerator (two chambers)	Furnace type incinerator	Furnace type incinerator (two chambers)
19	Plans of building or installing a new incinerator	Yes	Yes	Yes	Yes	Yes
	a) Mention date	In the next 3-years term				
	Will to monitor hazardous and infectious waste	Yes	Yes	Yes	Yes	Yes
20	In your opinion, how the hazardous waste management should be done	*Waste management shall be done every hospitals	*Waste management shall be done every hospitals	*Waste management shall be done every hospitals	*Waste management shall be done every hospitals	*Waste management shall be done every hospitals
21	Remarks:	*Continue improving the hospital waste management program, that includes the systematic monitoring of this activity.	*Continue improving the hospital waste management program, that includes the systematic monitoring of this activity.	*Continue improving the hospital waste management program, that includes the systematic monitoring of this activity.	*Continue improving the hospital waste management program, that includes the systematic monitoring of this activity.	*Continue improving the hospital waste management program, that includes the systematic monitoring of this activity.