JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

GENERAL DIRECTORATE OF WATER SUPPLY AND SEWERAGE (DPUK) MINISTRY OF PUBLIC WORK, TRANSPORT AND TELECOMMUNICATION (MoPWTT), THE REPUBLIC OF ALBANIA

THE STUDY ON THE DEVELOPMENT PLAN FOR SEWERAGE SYSTEM AND SEWAGE TREATMENT PLANT FOR GREATER TIRANA IN THE REPUBLIC OF ALBANIA

FINAL REPORT Volume III : Supporting Report

MARCH 2007

NIHON SUIDO CONSULTANTS CO.,LTD. TOKYO ENGINEERING CONSULTANTS CO.,LTD

Exchange Rate

Exchange Rate Applied for Master Plan (Date of Application: November 1, 2005) **1 US Dollar = Lek 107.23 = Yen 115.74 1 Euro = Lek 129.463**

Exchange Rate Applied for Feasibility Study (Date of Application: June 21, 2006) **1 US Dollar = Lek 96.28 = Yen 115.13 1 Euro = Lek 122.96**

Final Report

Volume I:	Executive Summary
Volume II:	Main Report
Volume III:	Supporting Report (This volume)

PREFACE

In response to a request from the Government of the Republic of Albania, the Government of Japan decided to conduct a study on "The Study on the Development Plan for Sewerage System and Sewage Treatment Plant for Greater Tirana in the Republic of Albania" and entrusted to the study to the Japan International Cooperation Agency (JICA).

JICA selected and dispatched a study team headed by Mr. Harutoshi Uchida of NIHON SUIDO CONSULTANTS Co., LTD. and consisted of experts from NIHON SUIDO CONSULTANTS Co., LTD. and TOKYO ENGINEERING CONSULTANTS CO., LTD. between July 2005 and August 2006. In addition, JICA set up an advisory committee headed by Ms. Hiroko Kamata, Senior Advisor, Institute for International Cooperation, JICA, which examined the study from specialist and technical points of view.

The team held discussions with the officials concerned of the Government of the Republic of Albania and conducted field surveys at the study area. Upon returning to Japan, the team conducted further studies and prepared this final report.

I hope that this report will contribute to the promotion of this project and to the enhancement of friendly relationship between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of Albania for their close cooperation extended to the study.

March 2007

Ariyuki Matsumoto Vice President Japan International Cooperation Agency

March, 2007

Ariyuki Matsumoto Vice President Japan International Cooperation Agency Tokyo, Japan

Letter of Transmittal

Dear Sir,

We are pleased to submit this Final Report on the Study on the Development Plan for Sewerage System and Sewage Treatment Plant for Greater Tirana in the Republic of Albania. This report incorporates the views and suggestions of the authorities concerned of the Government of Japan, including your Agency. It also includes the comments made on the Draft Final Report by General Directorate of Water Supply and Sewerage and Ministry of Public Work, Transport and Telecommunication of the Government of the Republic of Albania and other government agencies concerned of the Republic of Albania.

The Final Report comprises a total of three volumes as listed below.

Volume I:	Executive Summary
Volume II:	Main Report
Volume III:	Supporting Report

The report contains the Study Team's findings, conclusions and recommendations derived from the two phases of the Study. The main objective of the Phase 1 was to collect data and analysis and formulate a master plan and to identify a priority project, whilst that of the Phase 2 Study was to examine the feasibility of the priority project which had previously been identified in Master Plan during the course of the Phase 1 Study.

We wish to take this opportunity to express our sincere gratitude to your Agency, the Ministry of Foreign Affairs and the Ministry of Land, Infrastructure and Transport of the Government of Japan for their valuable advice and suggestions. We would also like to express our deep appreciation to the General Directorate of Water Supply and Sewerage and Ministry of Public Work, Transport and Telecommunication, and other agencies of the Republic of Albania for their cooperation and assistance extended to us throughout our Study.

Very truly yours,

Harutoshi UCHIDA, Team Leader Study on the Development Plan for Sewerage System and Sewage Treatment Plant for Greater Tirana in the Republic of Albania

The Study on the Development Plan for Sewerage System and Sewage Treatment Plant for Greater Tirana in the Republic of Albania

Final Report

Volume III: Supporting Report

Table of Contents

List of References	A1 - 1 to A1 - 2
River Survey and river management	A2 - 1 to A2 - 22
Water Quality	A3 - 1 to A3 - 54
Topographic Survey	A4 - 1 to A4 - 21
Geotechnical Investigation	A5 - 1 to A5 - 20
Public Awareness and Water Usage Survey	A6 - 1 to A6 - 18
Sewerage Planning Fundamentals	A7 - 1 to A7 - 13
Sewage Collection System	A8 - 1 to A8 - 85
Sewage Treatment Plants	A9 - 1 to A9 - 52
Cost Estimates	A10 - 1 to A10 - 79
Organization and Institutional Matters	A11 - 1 to A11 - 14
Economic and Financial Considerations	A12 - 1 to A12 - 45
Environmental and Social Considerations	A13 - 1 to A13 - 116
	River Survey and river management Water Quality Topographic Survey Geotechnical Investigation Public Awareness and Water Usage Survey Sewerage Planning Fundamentals Sewage Collection System Sewage Treatment Plants Cost Estimates Organization and Institutional Matters Economic and Financial Considerations

Abbreviations

AL	Aerated Lagoon
ATP	Affordability-to-pay
AWSSA	Association of Water Supply and Sewerage Enterprises of Albania
BOD ₅	Biochemical Oxygen Demand
BWI	Berlin Water International
BMZ	German Federal Ministry for Economic Cooperation and Development
C/P	Counterpart
COD	Chemical Oxygen Demand
DPUK	General Directorate of Water Supply and Sewerage
DWF	Dry Weather Flow
EBRD	European Bank for Reconstruction and Development
EIA	Environmental Impact Assessment
EIB	European Investment Bank
EU	European Union
FC	Foreign Currency
F/S	Feasibility Study
GoA	Government of the Republic of Albania
GoJ	Government of Japan
GTW&SA	Greater Tirana Water & Sewerage Authority
IEE	Initial Environmental Examination
JICA	Japan International Cooperation Agency
LC	Local Currency
LG	Local Government
M/M	Minutes of Meeting
M/P	Master Plan
MDGs	Millennium Development Goals
MIS	Management Information System
MoE	Ministry of Economy
MoEFWM	Ministry of Economy Ministry of Environment, Forests and Water Management
MoEr wivi	Ministry of Finance
Mol	Ministry of Interior
	•
MoPW MoPWTT	Ministry of Public Works Ministry of Public Works Transport & Telecommunications
	Ministry of Public Works, Transport & Telecommunications
MoTAT	Ministry of Territorial Adjustment and Tourism
MWWP	Municipal Water and Wastewater Project
NEAP	National Environmental Action Plan
NGO	Non Government Organization
NRA	National Regulatory Agency (Water Sector)
NWC	National Water Council
PIU	Project Implementation Units
PSP	Private Sector Participation
RAWSS	Rural Agency for Water Supply & Sanitation
REAs	Regional Environmental Agencies
SAp	Stabilization & Association Process
SC	Supervisory Councils
SSI	State Sanitary Inspectorate
STP	Sewage Treatment Plant
TAC	Territorial Adjustment Council
UKK	Water Supply and Sewerage Enterprise of Kamza

UKT	Water Supply and Sewerage Enterprise of Tirana
VWSE	Village Water Supply Enterprise
WTP	Willingness-to-pay
WWF	Wet Weather Flow

Appendix 1 List of References

Appendix 1 List of References

List of References

No	Title	Source	Publication Date
1	The Study on the Sewerage System in Metropolitan Tirana in the Republic of Albania – Final Report - Summary	Nippon Jogesuido Sekkei Co Ltd Tohmatsu & Co.	March 1998
2	The Study on the Sewerage System in Metropolitan Tirana in the Republic of Albania – Final Report – Main Report Chapters 5, 12, 14, 15, 16	Nippon Jogesuido Sekkei Co Ltd Tohmatsu & Co.	March 1998
3	Rapid Land & Infrastructure Assessment (Urban Land Management Project – Background studies: Strategic Plan for Greater Tirana)	PADCO Valu Add Consultants/DGI Mix Tech	Aug 2001
4	Strategic Plan for Greater Tirana Vol 1 Main Report Urban Land Management Project (Draft)	PADCO for Min of PW Financed by IDA	1 Feb 2002
5	Joint IDA-IMF Assessment of the Poverty Reduction Strategy Paper Annual Progress Report	World Bank	Jun 2003
6	Albania Water supply and Wastewater Sector Strategy (with support of World Bank)	Ministry of Regulatory Adjustments & Tourism	September 2003
7	Albania – Integrated Water & Ecosystem Management Project (Project Document)	World Bank GEF	Feb 2004
8	Compendium of Environmental Legislation of Albania	Rep. of Albania Min. o Environment	March 2004
9	On progress toward achieving the Millennium Development Goals	Albania National Report (with UN)	2004
10	Heading Towards Efficient Municipal Water Services (Conference Documentation support from KfW)	MinofTerritorialAdjustmentsKTourism	March 2004
11	Compendium of Environmental Legislation of Albania	Min. of Environment	March 2004
12	MASTER PLAN Second update (Italian Cooperation)	Tiana Acque (s.c.a.r.l.)	Sep 2004
13	PP Presentation – Outline of JICA Project	JICA StudyTeam	Aug 2005
14	Excerpts taken from the Albanian Govt. program related to the Water Supply and Sewage Sector 2005-2009 (submitted to National Assembly)	Min o TAT (with GTZ)	Sep 2005
15	MASTER PLAN Third update (Italian Cooperation)	Tiana Acque (s.c.a.r.l.)	Sep 2005
16	Water Vision Beyond Supply Conference Documentation	Water Supply & Sewerage Association of Albania	19-21 Oct 2005

17	Second mission, Feb 15-17 th . "Decentralization Water &	Thilo Steinbach,	Feb 20 2006
	Wastewater Greater Tirana"Interviews with Mayors of	GTZ Consultant	
10	surrounding municipalities		12 4 12000
18	Spring 2006 Water Policy conference	Water Supply &	12 April 2006
	Conference Program Documentation	Sewerage	
	Decentralization of Government & Regionalization of	Association of	
	Water Supply & Wastewater Services	Albania	
	Policy Challenges & Opportunities, World Experiences		
10	etc-Successes & Failures		25 4 1 2 0 0 6
19	Spring 2006 Water Policy Conference	MoPWTT	27 April 2006
	Consensus of the Conference Attendees	AWWA	
	Signed Document	MoI (Local	
• •		Government)	
20	Comparative Study of Aggregation Policies	GTZ Water	May 2006
	For Water & Sanitation Provision	Program	
		Manager	
21	Decentralization of Government & Regionalization of	GTZ Newsletter	May 2006
	Water Supply & Wastewater Services		
	Policy Challenges & Opportunities		• • • • •
22	Agriculture, Livestock, Agro-industry, Fishery, Forestry,	Ministry of	2004
	Ministry of Agriculture and Food	Agriculture and	
		Food	
23	Bulletin 2003	Tirana	2003
		Municipality	• • • • •
24	Komente per studimin e cilesise se ajrit ne Shqiperi, viti 2004	MoEFWM	2004
25	Përmbledhja e monitorimeve për cilësinë e ajrit dhe ujrave	MoEFWM	2005
23	si dhe niveli i zhurmave, Monitorim vitin 2005		2003
26	The Environmental Aspects Study of the Tirana-Durres	MoEFWM	2005
20	Hilly Area		2003
27	The Statistical Yearbook 1991-1999	INSTAT	2002
28	Compendium of Environmental Legislation of Albania	MoE	2004
29	Updated National Environmental Action Plan 2001	MoE	2005
30	Environmental Performance Review of Albania	Economic and	2002
20		social Council,	_00_
		United Nations	
31	Albania Poverty Assessment	The World Bank,	November 5,
		Report No.	2003
		26213-AL	
32	The Economics of Project Analysis – A Practitioner's Guide	The World Bank,	1991
		EDI Technical	
		Materials	
33	Millennium Development Goals -Global Target - Local	UNDP Albania	2003
	Approaches- Tirana Regional Report		
34	Design Manual for Water Supply and Treatment	The	1999
		Environment	
		Protection	
		Agency (EPA),	
		USA	

Appendix 2

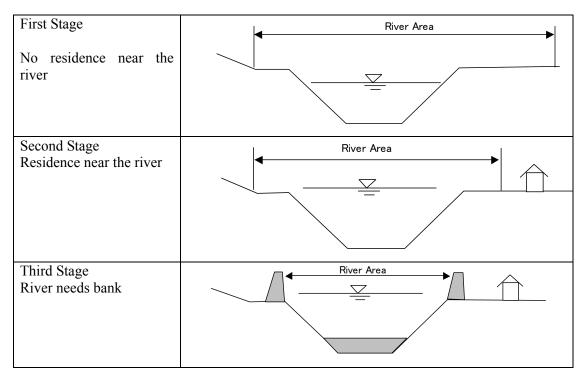
River Survey and river management

Appendix 2River Survey and River Management

2.1	River Pla	nning	A2 - 1
	2.1.1	Zone Wise Division of a River	A2 - 1
	2.1.2	Rivers in the Planning Area	A2 - 2
	2.1.3	Calculation of River Section	
2.2	Recomm	endation	A2 - 7
	2.2.1	Problem of disposal to the river	A2 - 7
	2.2.2	Data Collection	A2 - 7
2.3	Attached	Table	A2 - 8
2.4	Attached	Figure	A2 - 8

2.1 River planning

2.1.1 Zone wise division of a river


A river is divided into upstream, midstream and downstream. Each fraction has its characteristics as follows.

(1) Upstream

Since the upstream part of a river has a steep inclination, flow velocity there is high and erosion easily occurs. Consequently, riverbed becomes considerably lower than the ground level and the capacity of flow is large. As a result, river water rarely overflows the river itself.

(2) Midstream

A river has smaller inclination at its midstream than at the upstream. Therefore, flooding occasionally occurs. The damage by flooding is not serious, since the area near the river is not inhabited under these circumstances. However, repeated flooding makes the riverbed deeper, and flooding tends to occur less frequently. The area near the river will be inhabited for less frequent flooding. As a result, the river area becomes smaller and the sands flown from upstream are deposited, which leads to the shallow riverbed. The capacity of flow is also lowered and river bank is needed for flood prevention.

Lana River is currently at the second stage in the above figure. Tirana River is also nearly at the second stage, but the downstream area of the confluence of Tirana and Lana Rivers is not densely inhabited and is supposed to be at the first stage at present. However, the area currently used for agriculture has been occupied by houses year by year and is approaching the second stage.

(3) Downstream

The downstream area has the very small inclination resulting in small flow velocity. The conveyed sands are deposited, which forms swamp and/or plains. The sea water level in the area is often higher than that of ground level or the river water level is often higher than that of the ground level due to the deposited sands. These situations necessitate the construction of river banks to protect the inhabited areas.

2.1.2 Rivers in the planning area

Two rivers of Lana and Tirana flow in the planning area. These two rivers are at their midstream in the planning area and their river bed gradient is more than 0.4 %. Therefore, their flow velocities are comparatively large and their channel areas are also comparatively large due to erosion by river water. In other words, these rivers are natural ones or excavated ones with no banks. Even if these rivers cause flooding, the flooded area is limited to the area near the rivers and the damage is very small.

Though river improvement is not urgently needed, the required river section is temporarily calculated here to cater for a certain flow estimated for given catchment area, rainfall intensity, runoff coefficient and so forth. Flow estimate method is described below according to its procedure.

2.1.3 Calculation of river section

(1) Flow formula

Three methods shown below are used to calculate river flow using the rainfall in the basin.

- Rational Formula
- Storage function a
- Unit hydrograph

The rational formula shown below is applied here for its simplicity and easy understanding of coefficients.

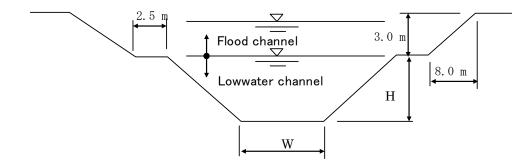
$$Q = \frac{1}{360} CIA$$

where, Q is flow rate in qu.m/sec,

C is runoff coefficient,

I is rainfall intensity in mm/hour and

A is catchment area in hectares.


Runoff coefficient is the ratio of the flow on the ground to the total rainfall and varies depending upon ground conditions. The Study applies the coefficients commonly used in river planning, or 0.5 for flat areas and 0.5 for mountain areas. But in sewerage planning,0.1 to 0.2 for mountain area is adapted.

(2) Rainfall intensity

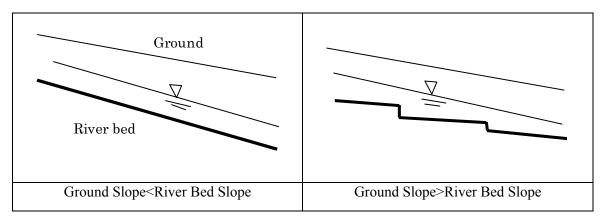
Design rainfall intensity is calculated for each return period by analyzing the data on past rainfall intensity. The previous JICA Study in 1998 calculated the intensity by applying n/N instead of n/(N+1), which makes the difference between two studies shown below.

Rainfall intensity			
Return Period	Previous JICA Study	This Study	
1	$I = \frac{2,150}{t+18}$	$I = \frac{2,240}{t+18}$	
2		$I = \frac{2,500}{t+17}$	
2.5	$I = \frac{2,520}{t+17}$		
4	$I = \frac{2,750}{t+17}$	$I = \frac{2,780}{t+16}$	
5	$I = \frac{2,870}{t+16}$	$I = \frac{2,870}{t+16}$	
10	$I = \frac{3,270}{t+16}$	$I = \frac{3,150}{t+15}$	
30		$I = \frac{3,600}{t+13}$	

Return period is set to be 1 year and 30 year. The shapes of lowwater channel are designed to flow the calcurated flowrate (1 year return period). For the 30 year return period, the water level will be considered.

(3) Catchment area and length of channel

Boundaries of catchment areas are set on the map referring to the contour lines. The river is divided into several blocks taking the flowing tributaries into account. Then, the area and the length of each block are measured on the map. Urban and green areas are separately measured because the runoff coefficient

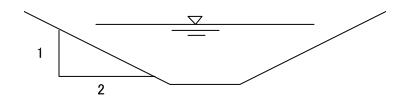

depends upon ground conditions. Lana River is divided into four blocks and Tirana River into three. The following table shows the area and the length of channel of each block.

		the length of channel	
Block	Area of flat land	Mountain area	Length of channel
	(ha)	(ha)	(km)
L1	240	1,140	4.8
L2	740	920	4.8
L3	1,810	40	3.8
L4	2,710	550	4.2
T1	190	5,410	8.0
T2	1,800	1,600	8.9
Т3	2,560	0	6.5
	· · ·	L for I	ana River and T for Tirana F

The area and the length of channel

(4) Slope of riverbed

Riverbed level and the length of the block are read on the map, and the slope in the block is calculated. Design riverbed slope is set smaller than the calculated value, because the greater slope makes the riverbed separate from the ground level.


Present riverbed slope and design riverbed slope in each block are shown in the following table.

Tresent and design Treford stopes			
Block	Present riverbed slope	Design riverbed slope	
L1	6.6	6.0	
L2	6.2	6.0	
L3	4.5	4.0	
L4	3.0	3.0	
T1	10.9	8.0	
T2	4.2-8.0	4.5	
Т3	4.5	4.0	

Present and design riverbed slopes

(5) Setting of river section

Trapezoid, which is applied to improved Lana River, is also applied as design river section. The slope of the bevel is set two to one. By applying this slope, water level raise can be avoided even if the river flow exceeds the design value, which means the safer section against the possible flood.

(6) Velocity formula

Manning formula is applied as velocity formula which is commonly applied in sewerage and river planning.

$$v = \frac{1}{n} R^{2/3} I^{1/2}$$

Q=A v
Where, v is velocity (m/s),

n is roughness coefficient (0.025), I is slope, A is area (m²) and Q is flow rate(m³/s).

(7) Concentration time

Concentration time is the total of inlet time, or the time necessary for the storm water to flow from the most upstream point to the nearest sewer, and the time of flow to a certain point of the sewer to consider. In a certain fraction of channel, the time of flow for the fraction is calculated using the flow velocity obtained from design section and the slope.

T = L/(60v)Where, T is inlet time in minutes, L is length of river in meter and V is flow velocity of river in m/s.

For the upstream part where no river section is designed, concentration time is set using Carbay Formula.

 $T=(2/3*3.28*L*0.6/S^{0.5})^{0.467}$ Where, T is concentration time, L is length of channel in m and S is slope of channel

(8) **Results of calculation**

The calculated concentration time of t is applied to rainfall intensity formula with one year return period to obtain rainfall intensity as follows.

$$I = \frac{2,240}{t+18}$$

The rainfall intensity is then substituted to rational formula to calculate the flow and the design river section (lowwater channel) to cover the flow. The velocity in each fraction is calculated for the

Volume III Supporting Report

corresponding design section and the slope.

River flow and design river section			
Brock	Flow rate(m^3/s)	River Shape (m)	Flow Area (m^2)
L1	28.014	10.0×1.5	10.5
L2	53.200	12.0×1.5	13.5
L3	61.387	$\checkmark \frac{14.0}{6.0} \times 2.0$	20.0
L4	74.504	$\checkmark \frac{18.0}{10.0} \times 2.0$	28.0
T1	86.240	$\checkmark \frac{14.0}{6.0} \times 2.0$	20.0
T2	115.200	$\searrow \frac{21.0}{13.0} \times 2.0$	34.0
Т3	192.888	$\checkmark \frac{31.0}{23.0} \times 2.0$	54.0

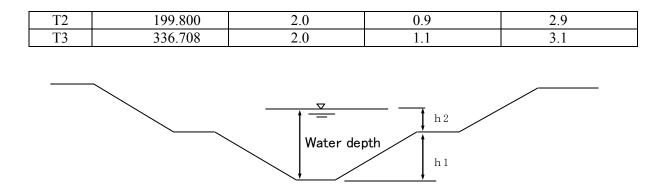
The calculated flow and the section are shown below.

(9) Flowrate for 30 year return period

For the rainfoll of 30 year return period, the flowrates of river are calcurated as following.

Rainfall intencity

$$I = \frac{3,600}{t+13}$$


Velocity of the river

The velocity is assumed 1.2 times to the 1 year return period.

Roughness coefficient 0.030 (Flood channel is covered with grasses. Then its value is higher than lowwater cannnel.)

The shape of flood area is assumed same as existing reformed Lana River. The water level for 30 year return period is obtained as following table. The depth of the river will be 2.4m to 3.1m.

	Water depth										
Brock	Flow rate(m^3/s)	h1(m)	h2(m)	Depth(m)							
L2	92.416	1.5	0.9	2.4							
L3	107.525	2.0	0.9	2.9							
L4	132.392	2.0	0.9	2.9							
T1	146.160	2.0	0.8	2.8							

The actual river section is greater than the design one used in the calculation and the present riverbed is four to five meters below the ground level. Therefore, it is judged that the actual river has the sufficient capacity of flow. In the last winter, river section survey was done, and then the water level for 30 year return period rainfall has been obtained as same method.

2.2 Recommendation

2.2.1 Problem of disposal to the river

The river is not adequately managed in Albania. Rivers are reclaimed from both sides in many spots where they cross roads, which easily narrow the river width. Flood will surely occur unless the prompt and adequate control measures are taken. Especially, the prompt restoration measures have to be taken at the following two locations.

• Near the bridge where Lana River crosses Rruga Konferenca e Pezes.

Informal residences were recently demolished, but the scrap wood and bricks were disposed into the Lana River. As a result, the riverbed was raised and the river section became smaller. Furthermore, the Lana Interceptor discharges collected sewage near the bridge but its section has been half filled with the disposed scrap.

• Near the bridge where Tirana River crosses Klhesa e Kamzes

The soil is conveyed to the river from the banks and fills the river. The situations have become worse day by day and it is urgent to stop further reclamation. The sand filling not only makes the river width smaller but also causes soil accumulation at the downstream of the river, which will result in smaller margin of safety of the river.

2.2.2 Data collection

Above calculation are done in assumming some figures. It is nessisary to obtain the date of rainfall, flowrate of the river. Then the relation of the rainfall and flowrate of river will be annalized.

2.3 Attached Figure

- Design of the river (*Figure 2.3.1*)
- Survey point of the river (*Figure 2.3.2*)

2.4 Attached Table

- Water flow rate calculation table (*Table 2.4.1*)
- Q-H table for the planned river section (*Figure 2.4.1*)
- Q-H table for the existing river section (*Figure 2.4.2*)

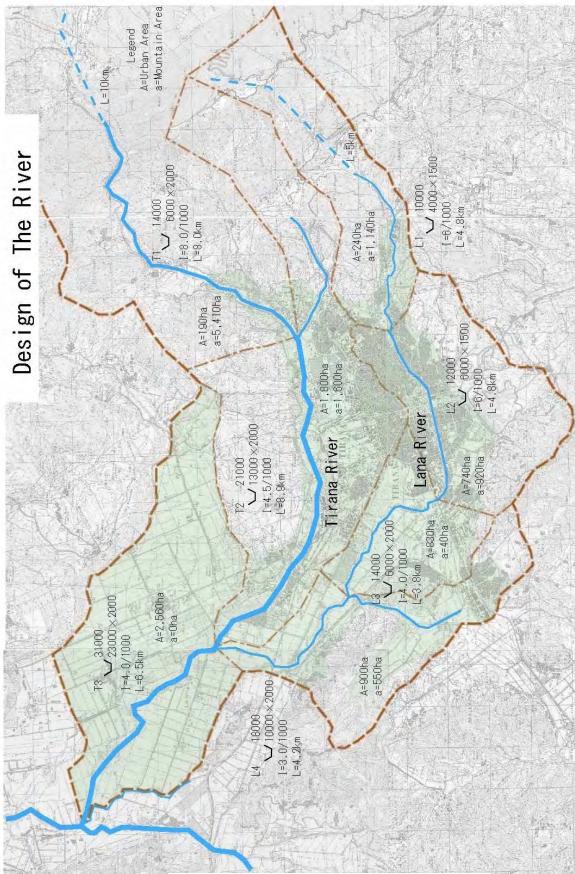


Figure 2.3.1 Design of the river

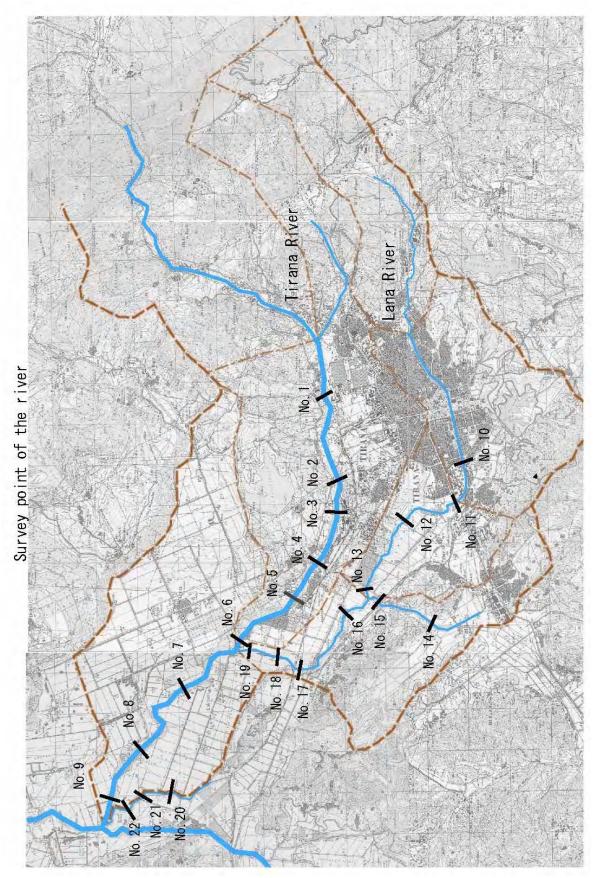
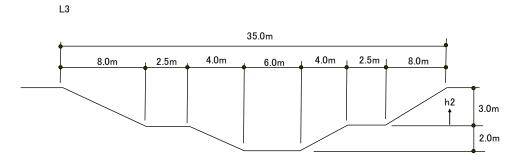
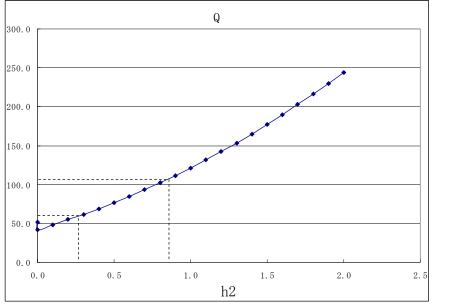


Figure 2.3.2 Survey point of the river

Table 2.4.1 Water flow rate calculation table

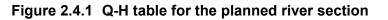

Return period=1 year

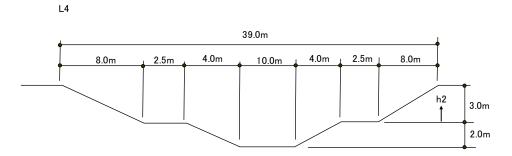
6				rks			600	200	0.080			50						1000	230	0.077				
0. 025	-			Remarks			hl	h2				Existing						h1						
=u			ver		End	ш	4	4	S			E								s				
	po		Earth Cover		Begin	ш												\vdash						
	Return Period							_										\vdash						
	Retu		Ground Level		n End	m		_																
Square	b= 18	Pipe	Grot		Begin	ш																		
		Sewer Pipe	Pipe Invert		End	ш																		
1.(a= 2240		Pipe		Begin	ш																		
Circle	a=			Quantity		m ³ /s				32.110		43.548		61.446		79.597					86.897		122.157	
	+b)			Slope Velocity		m/s				3.06		3.23		3.07		2.84					4.34		3.59	1
cio (I=a/(t+b)			Slope		%o				6.0		6.0		4.0		3.0					8.0		4.5	
Depth Ratio	ıla	Pipe shape	:circle		Sewer	Diameter			10000	$2 \Box 4000 \times 1500$	12000	6000×1500	14000	6000×2000	18000	\Box 10000 × 2000				14000	$2 \square 6000 \times 2000$	21000	$2 \square 13000 \times 2000$	31000
	1 form	Pipe	1	2								2		2		2]
	Rain fall formula			Quntity	in	Pipe				28.014		53.200		61.387		74.504					86.240		224.6 0.0128 115.200 115.200	
			_		Quntity					28.014		53.200		61.387		74.504					86.240		15.200	
			rain		Run-off Q			_															0128 1	
		_		Most.T pe	Rur	min	109.3	109.3		135.1 0.0203		160.1 0.0175		180.5 0.0157		205.50.0139		152.4	152.4		183.4 0.0154		4.60.	
		time			_		10	10		25.8 13		25.0 16		20.4 18		25.0 20		15	15		31.0 18		41.2 22	
	50 50	ti		o Incre.	_	/s min				3.1 25		3.2 25		3.1 20		. 8 25					4.3 31		3.6 41	
	Green 0.	h		Velo	лI.	m		5,000		9,800 3.						5			000					
		Pipe Length			e. Camul	п						4,800 14,600		3,800 18,400		4, 200 22, 600			10,000 10,000		8,000 18,000		8,900 26,900	0
	City 0.50	Pip			I. Incre.	ш		5,000		0 4,800		0 4, 8				0 4,2			10,0		0 8,0		0 8,9	
	Cit		Green Area		e. Camul.	ha				10 1, 14		920 2, 060		40 2, 100		550 2, 650					0 5, 41		00 7, 01	0
	runn-off.co				L. Incre.	ha				240 1, 140 1, 140		980 92									190 5, 410 5, 410		1,990 1,600 7,010	
	runn-	(ha)	City Area		 Camul. 	ha								0 1,810		0 2,710								t
		Area (ha)	Cit		Incre.	m ha	ver			240		3 740		830		3 900	River				190		3 1,800	
		No.		Pipe No	of	down	Lana River	L1		L1 L2		L2 L3		L3 L4		L4 T3	Tinara I		TI	-	T1 T2		T2 T3	

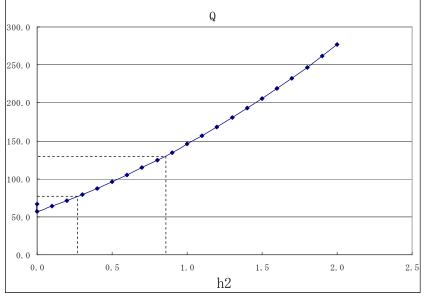

Table 2.4.1 Water flow rate calculation table

Return period=30 years

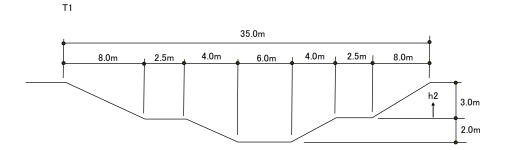
0.025				Remarks		600	200	0.080		Existing				1000	230	0.077		
=u	30		ver	End	m	hl	h2	S	+	Ex				h1	h2	s		
	iod		Earth Cover	Begin	m		_		+	_					_			
_	Return Period			End Be	m		_		+	_								
Square	Ret		Ground Level	Begin E	m		_		+	_								
Sq	b = 13	Sewer Pipe		End Be	m		_		+									
1. 0		Sew	Pipe Invert	Begin E	m		_		-						_			
Circle	a= 3600		Pi				_		-									
Cir				Quantity	m ³ /s													
	-b)			Velocity	m/s													
tio	I=a/(t+b)			Slope	%o													
Depth Ratio	formula	Pipe shape	1 :circle	2 :square Sewer	Diameter													
	Rain fall formula	1		Quntity in	Pipe				48.024	92.416	07.525	132. 392				146.160	199.800	
	R		_	Quntity					48.024	92.416	168. 6 0. 0275 107. 525 107. 525	132. 392				178. 2 0. 0261 146. 160 146. 160	212. 5 0. 0222 199. 800 199. 800	0
			rain	per ha Run-off Q							0275 10	0247 1:				0261 1.	0222 19	0
		-		Most. T pe Ru	min	109.3	109.3		130.8 0.0348	151.6 0.0304	68.60.	189.40.0247		152.4	152.4	78.20.	12.50.	0 1
		time		Incre. Mo	min	1			21.5 1	20.8	17.0	20.8				25.8 1	34.3 2	
	0.50			Velo Ir	m/s				3.7	3.8	3.7	3.4				5.2	4.3	
	Green 0	ength		Camul.	ш		5,000		9,800	4,600	8,400	22,600			0,000	8,000	26, 900	-
	0.50	Pipe Length		Incre.	m		5,000		4,800	4,800 14,600	3. 800 18, 400	4, 200 22, 600			10,000 10,000	8,000 18,000	8, 900 26, 900	
	City 0.50		Area						1, 140	9202,060	402,100	5502.650			_	5,410		
	f.co		Green	Incre. Camul.	ha				240 1, 140 1, 140							190 5, 410 5, 410	1, 990 1, 600 7, 010	
	runn-off.co	(a)	City Area	Camul.	ha					980	1,810	2.710					1, 990	
		Area(ha)	City	No of Incre.	n ha	Lana River			240	740	830	006	. ^ _			190	1,800	
				No of	down	2	Ξ		L2	L3	L4	Τ3	4		글	T2	T3	1

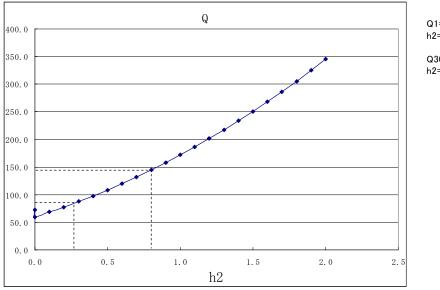



	. h	2-Q Rela	ation		n=	0.03	I=	4.0/1000	
h2	A1	A2	Total A	S1	S2	Total S	R=A/S	$v=1/nR^{2/3}I^{1/2}$	Q=Av
0.0	20.00	0.00	20.00	14.94		14.94	1.338	2.5602	51.205
0.0	20.00	0.00	20.00	14.94	5.00	19.94	1.003	2.1121	42.242
0.1	20.00	1.93	21.93	14.94	5.57	20.51	1.069	2.2040	48.326
0.2	20.00	3.91	23.91	14.94	6.14	21.08	1.134	2.2926	54.809
0.3	20.00	5.94	25.94	14.94	6.70	21.65	1.198	2.3783	61.692
0.4	20.00	8.03	28.03	14.94	7.27	22.22	1.261	2.4613	68.979
0.5	20.00	10.17	30.17	14.94	7.84	22.78	1.324	2.5419	76.676
0.6	20.00	12.36	32.36	14.94	8.41	23.35	1.386	2.6202	84.784
0.7	20.00	14.60	34.60	14.94	8.98	23.92	1.447	2.6966	93.310
0.8	20.00	16.90	36.90	14.94	9.54	24.49	1.507	2.7710	102.257
0.9	20.00	19.25	39.25	14.94	10.11	25.06	1.567	2.8437	111.630
1.0	20.00	21.66	41.66	14.94	10.68	25.62	1.626	2.9149	121.434
1.1	20.00	24.12	44.12	14.94	11.25	26.19	1.684	2.9845	131.673
1.2	20.00	26.63	46.63	14.94	11.82	26.76	1.743	3.0528	142.352
1.3	20.00	29.20	49.20	14.94	12.38	27.33	1.800	3.1197	153.476
1.4	20.00	31.81	51.81	14.94	12.95	27.90	1.857	3.1855	165.051
1.5	20.00	34.49	54.49	14.94	13.52	28.46	1.914	3.2501	177.080
1.6	20.00	37.21	57.21	14.94	14.09	29.03	1.971	3.3136	189.570
1.7	20.00	39.99	59.99	14.94	14.66	29.60	2.027	3.3761	202.525
1.8	20.00	42.82	62.82	14.94	15.22	30.17	2.082	3.4377	215.950
1.9	20.00	45.70	65.70	14.94	15.79	30.74	2.138	3.4983	229.850
2.0	20.00	48.64	68.64	14.94	16.36	31.30	2.193	3.5582	244.231

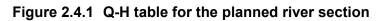

Q1=61.3m3/s h2=0.3m

Q30=107.5m3/s h2=0.9m

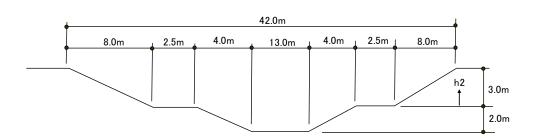

	, h	2-Q Rela	ation		n=	0.03	I=		
h2	A1	A2	Total A	S1	S2	Total S	R=A/S	$v=1/nR^{2/3}I^{1/2}$	Q=Av
0.0	28.00	0.00	28.00	18.94		18.94	1.478	2.3690	66.331
0.0	28.00	0.00	28.00	18.94	5.00	23.94	1.169	2.0265	56.742
0.1	28.00	2.33	30.33	18.94	5.57	24.51	1.237	2.1041	63.810
0.2	28.00	4.71	32.71	18.94	6.14	25.08	1.304	2.1792	71.275
0.3	28.00	7.14	35.14	18.94	6.70	25.65	1.370	2.2521	79.139
0.4	28.00	9.63	37.63	18.94	7.27	26.22	1.435	2.3230	87.404
0.5	28.00	12.17	40.17	18.94	7.84	26.78	1.500	2.3919	96.072
0.6	28.00	14.76	42.76	18.94	8.41	27.35	1.563	2.4592	105.148
0.7	28.00	17.40	45.40	18.94	8.98	27.92	1.626	2.5248	114.632
0.8	28.00	20.10	48.10	18.94	9.54	28.49	1.688	2.5888	124.530
0.9	28.00	22.85	50.85	18.94	10.11	29.06	1.750	2.6515	134.843
1.0	28.00	25.66	53.66	18.94	10.68	29.62	1.811	2.7129	145.577
1.1	28.00	28.52	56.52	18.94	11.25	30.19	1.872	2.7731	156.733
1.2	28.00	31.43	59.43	18.94	11.82	30.76	1.932	2.8322	168.317
1.3	28.00	34.40	62.40	18.94	12.38	31.33	1.992	2.8901	180.330
1.4	28.00	37.41	65.41	18.94	12.95	31.90	2.051	2.9471	192.779
1.5	28.00	40.49	68.49	18.94	13.52	32.46	2.110	3.0031	205.665
1.6	28.00	43.61	71.61	18.94	14.09	33.03	2.168	3.0582	218.994
1.7	28.00	46.79	74.79	18.94	14.66	33.60	2.226	3.1124	232.769
1.8	28.00	50.02	78.02	18.94	15.22	34.17	2.283	3.1658	246.993
1.9	28.00	53.30	81.30	18.94	15.79	34.74	2.341	3.2185	261.672
2.0	28.00	56.64	84.64	18.94	16.36	35.30	2.397	3.2704	276.809


Q1=74.5m3/s h2=0.3m

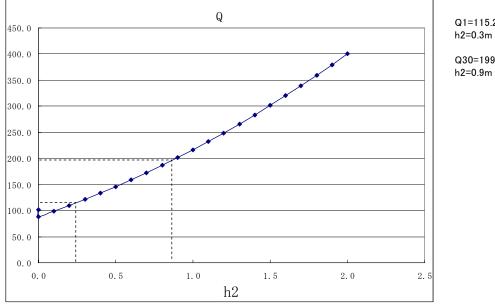
Q30=132.4m3/s h2=0.9m



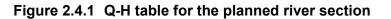
	h	2-Q Rela	ation		n=	0.03	I=	8.0/1000	
h2	A1	A2	Total A	S1	S2	Total S	R=A/S	$v=1/nR^{2/3}I^{1/2}$	Q=Av
0.0	20.00	0.00	20.00	14.94		14.94	1.338	3.6207	72.414
0.0	20.00	0.00	20.00	14.94	5.00	19.94	1.003	2.9870	59.740
0.1	20.00	1.93	21.93	14.94	5.57	20.51	1.069	3.1169	68.344
0.2	20.00	3.91	23.91	14.94	6.14	21.08	1.134	3.2423	77.511
0.3	20.00	5.94	25.94	14.94	6.70	21.65	1.198	3.3634	87.245
0.4	20.00	8.03	28.03	14.94	7.27	22.22	1.261	3.4808	97.552
0.5	20.00	10.17	30.17	14.94	7.84	22.78	1.324	3.5948	108.436
0.6	20.00	12.36	32.36	14.94	8.41	23.35	1.386	3.7056	119.903
0.7	20.00	14.60	34.60	14.94	8.98	23.92	1.447	3.8135	131.961
0.8	20.00	16.90	36.90	14.94	9.54	24.49	1.507	3.9188	144.614
0.9	20.00	19.25	39.25	14.94	10.11	25.06	1.567	4.0217	157.869
1.0	20.00	21.66	41.66	14.94	10.68	25.62	1.626	4.1223	171.733
1.1	20.00	24.12	44.12	14.94	11.25	26.19	1.684	4.2207	186.213
1.2	20.00	26.63	46.63	14.94	11.82	26.76	1.743	4.3173	201.316
1.3	20.00	29.20	49.20	14.94	12.38	27.33	1.800	4.4120	217.048
1.4	20.00	31.81	51.81	14.94	12.95	27.90	1.857	4.5049	233.417
1.5	20.00	34.49	54.49	14.94	13.52	28.46	1.914	4.5963	250.429
1.6	20.00	37.21	57.21	14.94	14.09	29.03	1.971	4.6861	268.092
1.7	20.00	39.99	59.99	14.94	14.66	29.60	2.027	4.7746	286.413
1.8	20.00	42.82	62.82	14.94	15.22	30.17	2.082	4.8616	305.399
1.9	20.00	45.70	65.70	14.94	15.79	30.74	2.138	4.9474	325.058
2.0	20.00	48.64	68.64	14.94	16.36	31.30	2.193	5.0320	345.395



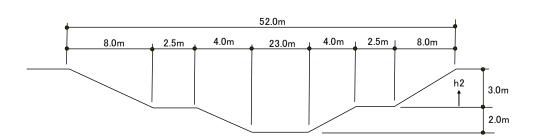
Q1=86.2m3/s h2=0.3m


Q30=146.2m3/s h2=0.8m

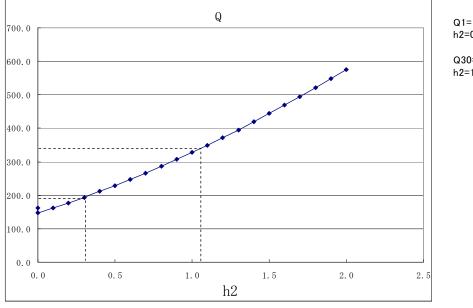
Т2



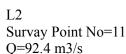
	h	2-Q Rel	ation		n=	0.03		4.5/1000	
h2	A1	A2	Total A	S1	S2	Total S	R=A/S	v=1/nR ^{2/3} I ^{1/2}	Q=Av
0.0	34.00	0.00	34.00	21.94		21.94	1.549	2.9940	101.797
0.0	34.00	0.00	34.00	21.94	5.00	26.94	1.262	2.6111	88.778
0.1	34.00	2.63	36.63	21.94	5.57	27.51	1.331	2.7060	99.112
0.2	34.00	5.31	39.31	21.94	6.14	28.08	1.400	2.7981	109.982
0.3	34.00	8.04	42.04	21.94	6.70	28.65	1.467	2.8875	121.389
0.4	34.00	10.83	44.83	21.94	7.27	29.22	1.534	2.9745	133.335
0.5	34.00	13.67	47.67	21.94	7.84	29.78	1.600	3.0593	145.823
0.6	34.00	16.56	50.56	21.94	8.41	30.35	1.666	3.1421	158.855
0.7	34.00	19.50	53.50	21.94	8.98	30.92	1.730	3.2229	172.435
0.8	34.00	22.50	56.50	21.94	9.54	31.49	1.794	3.3019	186.565
0.9	34.00	25.55	59.55	21.94	10.11	32.06	1.858	3.3792	201.250
1.0	34.00	28.66	62.66	21.94	10.68	32.62	1.921	3.4550	216.492
1.1	34.00	31.82	65.82	21.94	11.25	33.19	1.983	3.5293	232.296
1.2	34.00	35.03	69.03	21.94	11.82	33.76	2.045	3.6023	248.665
1.3	34.00	38.30	72.30	21.94	12.38	34.33	2.106	3.6739	265.604
1.4	34.00	41.61	75.61	21.94	12.95	34.90	2.167	3.7443	283.117
1.5	34.00	44.99	78.99	21.94	13.52	35.46	2.227	3.8135	301.207
1.6	34.00	48.41	82.41	21.94	14.09	36.03	2.287	3.8816	319.880
1.7	34.00	51.89	85.89	21.94	14.66	36.60	2.347	3.9486	339.139
1.8	34.00	55.42	89.42	21.94	15.22	37.17	2.406	4.0147	358.989
1.9	34.00	59.00	93.00	21.94	15.79	37.74	2.465	4.0798	379.435
2.0	34.00	62.64	96.64	21.94	16.36	38.30	2.523	4.1440	400.481



Q1=115.2m3/s


Q30=199.8m3/s h2=0.9m

Т3


	h	2-Q Rela	ation		n=	0.03	I=	4.0/1000	
h2	A1	A2	Total A	S1	S2	Total S	R=A/S	$v=1/nR^{2/3}I^{1/2}$	Q=Av
0.0	54.00	0.00	54.00	31.94		31.94	1.690	2.9916	161.548
0.0	54.00	0.00	54.00	31.94	5.00	36.94	1.462	2.7152	146.622
0.1	54.00	3.63	57.63	31.94	5.57	37.51	1.536	2.8068	161.745
0.2	54.00	7.31	61.31	31.94	6.14	38.08	1.610	2.8959	177.535
0.3	54.00	11.04	65.04	31.94	6.70	38.65	1.683	2.9827	193.992
0.4	54.00	14.83	68.83	31.94	7.27	39.22	1.755	3.0674	211.113
0.5	54.00	18.67	72.67	31.94	7.84	39.78	1.826	3.1501	228.899
0.6	54.00	22.56	76.56	31.94	8.41	40.35	1.897	3.2309	247.349
0.7	54.00	26.50	80.50	31.94	8.98	40.92	1.967	3.3100	266.465
0.8	54.00	30.50	84.50	31.94	9.54	41.49	2.037	3.3874	286.246
0.9	54.00	34.55	88.55	31.94	10.11	42.06	2.106	3.4633	306.695
1.0	54.00	38.66	92.66	31.94	10.68	42.62	2.174	3.5378	327.812
1.1	54.00	42.82	96.82	31.94	11.25	43.19	2.242	3.6109	349.598
1.2	54.00	47.03	101.03	31.94	11.82	43.76	2.309	3.6826	372.056
1.3	54.00	51.30	105.30	31.94	12.38	44.33	2.375	3.7531	395.188
1.4	54.00	55.61	109.61	31.94	12.95	44.90	2.441	3.8225	418.995
1.5	54.00	59.99	113.99	31.94	13.52	45.46	2.507	3.8907	443.480
1.6	54.00	64.41	118.41	31.94	14.09	46.03	2.572	3.9578	468.646
1.7	54.00	68.89	122.89	31.94	14.66	46.60	2.637	4.0240	494.495
1.8	54.00	73.42	127.42	31.94	15.22	47.17	2.701	4.0891	521.029
1.9	54.00	78.00	132.00	31.94	15.79	47.74	2.765	4.1533	548.252
2.0	54.00	82.64	136.64	31.94	16.36	48.30	2.829	4.2167	576.166

Q1=192.9m3/s h2=0.3m

Q30=336.7m3/s h2=1.1m

Figure 2.4.1 Q-H table for the planned river section

Lana River

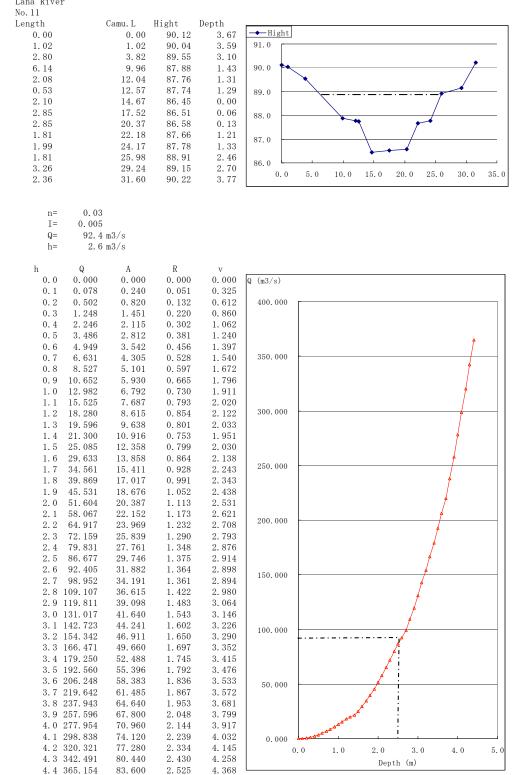
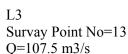



Figure 2.4.2 Q-H table for the existing river section

Long Pi

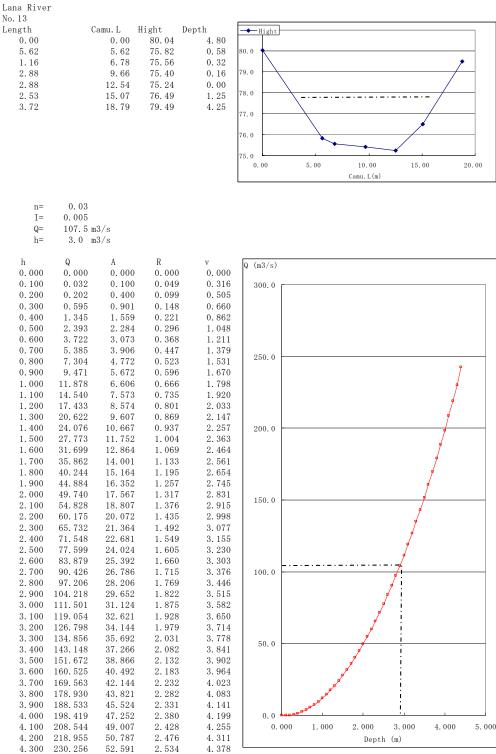
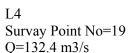
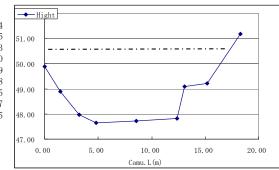



Figure 2.4.2 Q-H table for the existing river section

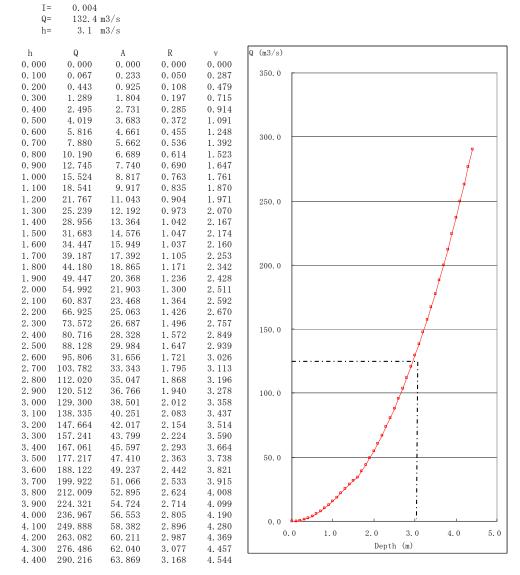
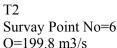


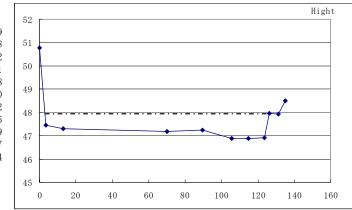
Lana River No. 19

> > n=

No. 19			
Length	Camu. L	Hight	Depth
0.00	0.00	49.88	2.24
1.48	1.48	48.89	1.25
1.73	3.21	47.97	0.33
1.62	4.83	47.64	0.00
3.76	8.59	47.73	0.09
3.76	12.35	47.82	0.18
0.75	13.10	49.09	1.45
2.08	15.18	49.21	1.57
3.11	18.29	51.19	3.55

0.03


Figure 2.4.2 Q-H table for the existing river section

Q-199.8 M3/S Tirana River

No. 6

NO. 0			
Length	Camu.L	Hight	Depth
0	0	50.76	3.89
3.47	3.47	47.45	0.58
9.42	12.89	47.29	0.42
57.17	70.06	47.18	0.31
19.37	89.43	47.25	0.38
16.34	105.77	46.87	0.00
8.88	114.65	46.89	0.02
8.88	123.53	46.92	0.05
2.96	126.49	47.96	1.09
4.92	131.41	47.94	1.07
3.63	135.04	48.51	1.64

n=	0.03
I=	0.007
Q=	199.8 m3/s
h=	1.1 m3/s

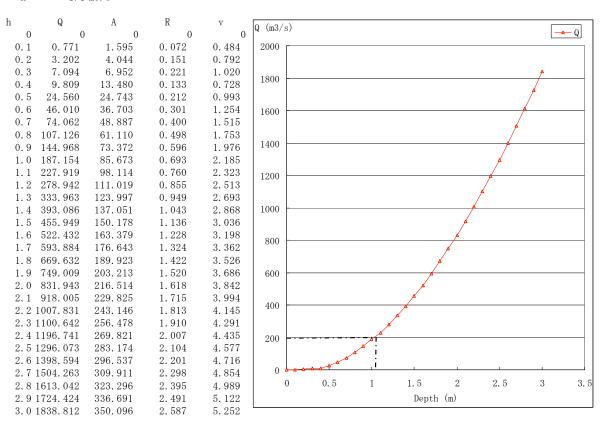
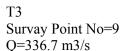



Figure 2.4.2 Q-H table for the existing river section

. Tirana River

TILGHG HIVEL				
No. 9				Hight
Length	Camu.L	Hight	Depth	
0.00	0.00	33.63	11.92	35.0
9.45	9.45	25.17	3.46	
4.15	13.60	24.96	3.25	
3.36	16.96	22.73	1.02	
4.57	21.53	22.32	0.61	30.0
8.33	29.86	22.01	0.30	
8.34	38.20	21.71	0.00	
4.87	43.07	25.09	3.38	
6.43	49.50	25.41	3.70	25.0
3.14	52.64	26.37	4.66	
4.61	57.25	27.02	5.31	
16.76	74.01	34.29	12.58	
				20.0
				0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0

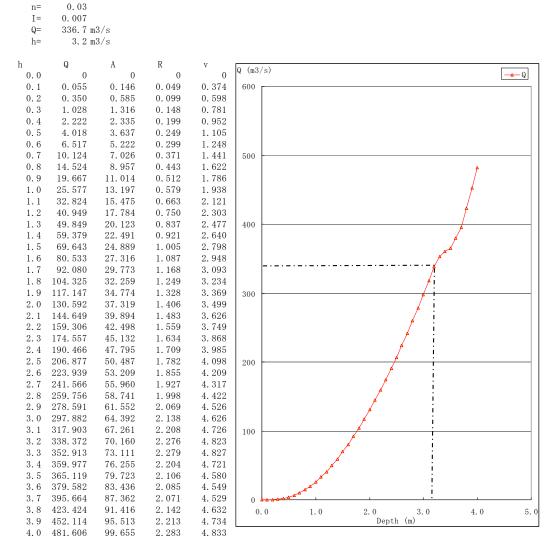


Figure 2.4.2 Q-H table for the existing river section

Appendix 3 Water Quality

Appendix 3 Water Quality

3.1	Technica	l Specifications	A3 - 1
	3.1.1	Purpose	A3 - 1
	3.1.2	General Requirements	A3 - 1
	3.1.3	Scope of Work	A3 - 1
	3.1.4	Submittal	A3 - 4
3.2	Result of	Water Quality Survey	A3 - 6
3.3	Future P	rojection for Water Quality	A3 - 35

3.1 Technical Specifications

3.1.1 Purpose

The work called for water quality survey (hereinafter referred to as the Work) will be conducted as a part of on the Development Plan of Sewerage system and Sewage Treatment Plant for the Greater Tirana in the Republic of Albania. The Work results will be used by the JICA Study Team (hereinafter referred to as the Client) to understand the present water quality of Rivers and sewage and pollution level in the Rivers and to preparation a design of influent quality to a sewage treatment plant proposed in the Sewerage Master Plan and a Feasibility Study of the Priority projects identified in the Master Plan.

3.1.2 General Requirements

Water samples shall be taken at sites as specified, water quality analysis on the parameters specified for each sample shall be conducted at the contractor's laboratory or at the laboratory approved by the Client, and submit Reports on the result of the analysis. When some water quality parameters will not be analyzed at the contractor's laboratory, the Contractor shall propose an appropriate laboratory in his technical proposal for the Work.

The followings are general requirements in undertaking the Work.

- (1) Analysis methods shall be according to "Standard Method for the Examination of Water and Wastewater, 19th or 20th Edition, APHA, AWWA, WEF." Analysis method other than this may be allowed as the Study Team judged adequate and acceptable.
- (2) Water quality analysis shall be carried out with the precision as specified in the above methods.
- (3) The Contractor shall assign a specialist familiar with water quality survey and the sampling and analysis shall be conducted under supervision of the specialist.
- (4) The Contractor shall assign sufficient number of personnel in order to carry out sampling smoothly.
- (5) All necessary work and equipment for sampling including car arrangements, staff assignment, sampling bottles shall be provided by the Contractor.
- (6) All necessary work and equipment for water quality analysis and reporting of its result shall be provided by the Contractor.

3.1.3 Scope of Work

(1) Sampling

At 10 different locations, total 20 water samples shall be taken at two different events: one water sample each at fine weather condition and one water sample each at wet weather condition. The sampling details and locations are shown in *Table 3.1.1* and *Figure 3.1.1*, respectively.

The exact sampling locations shall be as designated by the Client.

Samples shall be preserved around 4 Celsius after taken.

When the samples are taken, some photos shall be taken, and the site conditions, weather and other field observations shall be recorded by the Contractor.

(2) Measurements at the sites

When samples are taken, the following parameters shall be measured and recorded at the site immediately samples are taken:

- Weather, date and time, and ambient temperature
- Water temperature and pH of each sample

	SAMPLE									
	NUMBER									
1. Six (8) locations along the river										
Upper stream,	R1	One (1) location at the upstream area of Lana	2 (1 locations x 1							
confluent, and		River	sample x 2							
downstream of		(same location as the 1st sampling point of Lana	events)							
the outfalls to		River monitored by the Institute of Environment)								
the rivers	R2	One (1) location at the upstream of the sewage	2 (1 locations x 1							
		inflowing point in Lana River	sample x 2							
		(near Shyqyri Ishimi Street along Lana River)	events)							
	R3	One (1) location at the upstream of Tirana River	2 (1 locations x 1							
		(same location as the 1st sampling point of Tirana	sample x 2							
		River monitored by the Institute of Environment)	events)							
	R4	One (1) location in Tirana River, at the upstream	2 (1 locations x 1							
		of the confluence point of Lana River and Tirana	sample x 2							
		River	events)							
	R5	One (1) location in Lana River, at the upstream of	2 (1 locations x 1							
		the confluence point of Lana River and Tirana	sample x 2							
		River	events)							
	R6	One (1) location at the downstream of the	2 (1 locations x 1							
		proposed sewage treatment plant	sample x 2							
			events)							
Upstream and	F1	One (1) point at the upstream of the discharge	2 (1 locations x 1							
downstream of		from industry area in Lana River	sample x 2							
discharging		(Same location as the 2nd sampling point of Lana	events)							
from major		River monitored by the Institute of Environment)								
industrial area	F2	One (1) point at the downstream of the discharge	2 (1 locations x 1							
		from industry area in Lana River	sample x 2							
		(Near the crossing of railway and Lana River, just	events)							
		after the discharging point of Stera Beer Factory)								
Sub-Total		8 locations	16 samples							
2. Two locations	s in th	e existing combined sewers								
Influent	S1	One (1) location at the sewage discharging point	2 (1 locations x 1							
wastewater		(near Shyqyri Ishimi Street along Lana River)	sample x 2							
quality to			events)							
propose	S2	One (1) location at the sewage discharging point of	2 (1 locations x 1							
sewage		Tirana Interceptor	sample x 2							
treatment plant			events)							
Sub-Total		2 locations	4 samples							
3. Total		10 locations	20 samples							

 Table 3.1.1
 Sampling Locations and Sample Numbers

(3) Water Quality Analysis

Samples shall be analyzed on parameters instructed by the following table except pH and water temperature as specified above.

	Sample Number at one event			Total	
No.	Parameter	River	Sewer	Sub Total	Total
1	pH	8	2	10	20
2	Water Temp, °C	8	2	10	20
3	Color	8	2	10	20
4	BOD ₅ , mg/L	8	2	10	20
5	COD, mg/L	8	2	10	20
6	NH_4^+ -N, mg/L	8	2	10	20
7	T-N, mg/L	8	2	10	20
8	T-P, mg/L	8	2	10	20
9	Total Residuals, mg/L	8	2	10	20
10	Total Coliform, MPN/100mL	8	2	10	20
11	Fecal Coliform, MPN/100mL	8	2	10	20
	Total	88	22	110	220

 Table 3.1.2
 Water Quality Parameters and Sample Number

3.1.4 Submittal

Upon the completion of water quality analysis, analysis results shall be submitted to the Client within two weeks from the date of second sampling.

A report shall be prepared and submitted in English (A4 size) to the Client within three weeks after the second sampling which shall contain the followings:

- A description of the work carried out, including sampling location map, sampling date and time, and records of observations and findings during sampling events
- Analytical methods, and equipment used if any special equipment
- Results of analysis
- An interpretation of analytical results with reference to the water quality standards/guidelines used in Albania applicable to rivers and discharges from industries.

The report shall be comprised with three (3) sets each of hard copies, including one set of copy of electronic files with compact disks (CD) saving the contents of the report. The application software shall be mutually agreed.

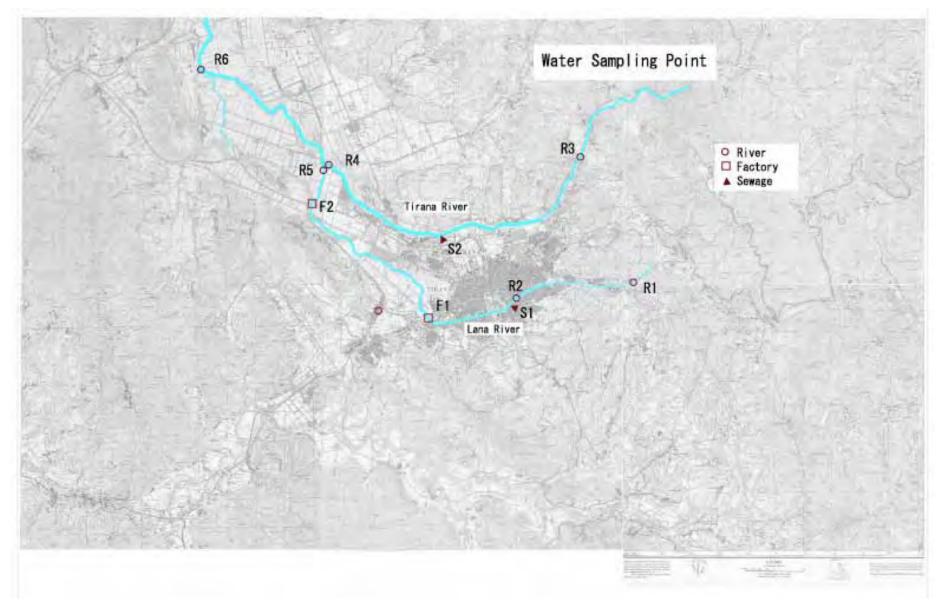


Figure 3.1.1 Sampling Locations