JAPAN INTERNATIONAL COOPERATION AGENCY

THE STUDY ON INTEGRATED PLAN OF ENVIRONMENTAL IMPROVEMENT IN THE CATCHMENT AREA OF LAKE BILLINGS IN SAO BERNARDO DO CAMPO CITY IN THE FEDERATIVE REPUBLIC OF BRAZIL

Final Report

Main Report

February 2007 JICA LIBRARY

NJS CONSULTANTS CO., LTD. & YACHIYO ENGINEERING CO., LTD.

> G E J R 07-005

1

PREFACE

In response to a request from the Government of Federative Republic of Brazil, the Government of Japan decided to conduct 'The Study on Integrated Plan of Environmental Improvement in the Catchment Area of Lake Billings in Sao Bernardo do Campo City in the Federative Republic of Brazil" and entrusted to the study to the Japan International Cooperation Agency (JICA).

JICA selected and dispatched a study team headed by Mr. Ikuo Miwa of NJS CONSULTANTS CO., LTD. between July 2005 and October 2006. In addition, JICA set up an advisory committee headed by Mr. Haruo Iwahori, Senior Advisor, Institute for International Cooperation of JICA, which examined the study from specialist and technical points of view.

The team held discussions with the officials concerned of Sao Bernardo do Campo City and the Government of Federative Republic of Brazil, and conducted field surveys at the study area. Upon returning to Japan, the team conducted further studies and prepared this final report.

I hope that this report will contribute to the promotion of this project and to the enhancement of friendly relationship between two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of Sao Bernardo do Campo City and the Government of Federative Republic of Brazil for their close cooperation extended to the study.

February 2007

Ariyuki Matsumoto

Vice President

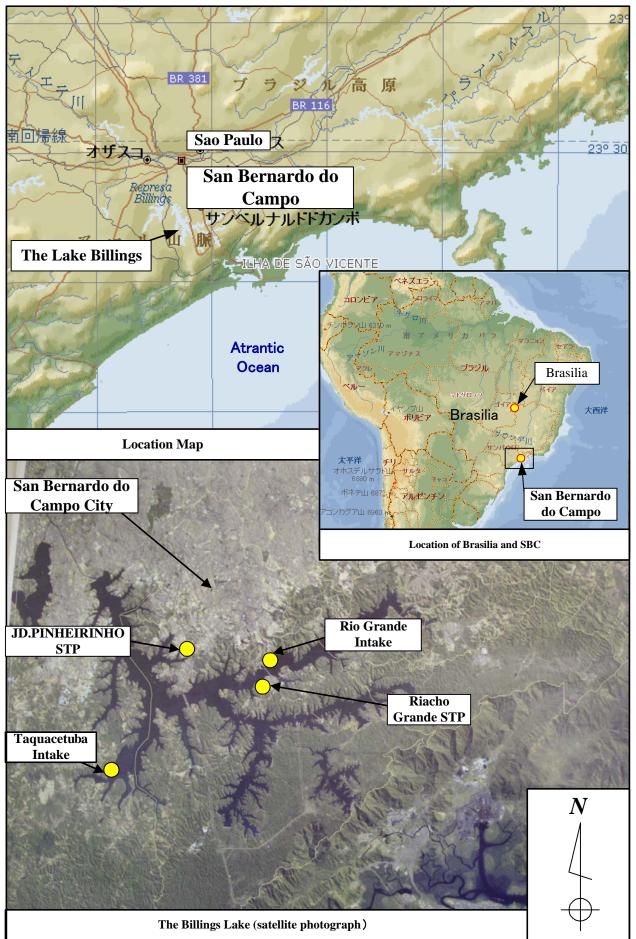
Japan International Cooperation Agency

Mr. Ariyuki Matsumoto Vice-President Japan International Cooperation Agency

Letter of Transmittal

Dear Sir,

We are pleased to submit herewith the final report for "The Study on Integrated Plan of Environmental Improvement in The Catchment Area of Lake Billings in Sao Bernardo do Campo".


The Study aims to achieve the environmental inprovement in the Lake Billings, and the Study Team formulated Master Plan in order to improve the water quality, Feasibility Study for priority projects and technology transfer through study activity and seminar/workshop.

The Billings Lake one of the important water source in the grater San Paulo Region. However the situation is getting worse because of progress of water pollution in the Lake Billings arising from the increase of untreated sewage inflow by population growth and elution of nutrient from the sediment. To encounter these issues, soft measures such as residents education as well as engineering measures such as construction of sewerage and permeable pavement, etc. are planned. For the attainment of sustainablity of the project, the Environmental Protection Center is also planned. Some of the recommendations made by the Study Team have already been incorporated into the Master Plan of Sao Bernard do Campo city.

We wish to take this opportunity to express the sincere gratitude to the officials of your Agency, the Steering Committee, the Ministry of Foreign Affairs, the Ministry of Land, Infrastructure and Transport, and Japan Bank for International Cooperation for their kind support and advice. We also would like to show the appreciation to the officials of Sao Bernard do Campo City, SABESP(Public company of water supply and sewerage in Sao Paulo State), ABC Consorcium, JICA Brazil Office, and the Embassy of Japan in Brazil for their kind cooperation and assistance throughout the field survey. Finally, We hope that the recommendations of the Study Team will contribute to further environmental improvement in the Lake Billings.

Very truly yours,

Ikuo Miwa Team Leader Study Team for The Study on Integrated Plan of Environmental Improvement in The Catchment Area of Lake Billings in Sao Bernardo do Campo City

The Study on Integrated Plan of Environmental Improvement in the Catchment Area of Lake Billings in Sao Bernardo do Campo City, Brazil

THE STUDY ON INTEGRATED PLAN

OF

ENVIRONMENTAL IMPROVEMENT

IN

THE CATCHMENT AREA OF LAKE BILLINGS

IN

SAO BERNARDO DO CAMPO CITY

IN

THE FEDERATIVE REPUBLIC OF BRAZIL

Preface

Letter of Transmittal

Location Maps

Table of Contents

List of Tables and Figures

Abbreviation

Table of Contents

PART 1 FUNDAMENTAL STUDY

1		HISTORY AND ENVIRONMENT OF THE BILLINGS LAKE	1-1
	1.1	Natural condition of Lake Billings Basin	1-1
	1.1.1	Weather	1-1
	1.1.2	Geography and Geology	1-13
	1.1.3	Hydrology and Future of the Basin	1-22
	1.1.4	Natural Environment	1-31
	1.2	Social Condition of Lake Billings	1-36
	1.2.1	Municipalities involved in the Lake Billings Basin	1-36
	1.2.2	Population	1-39
	1.2.3	Land Use	1-40
	1.3	Water Use and History of the Lake Billings	1-46
	1.3.1	Water Use and History of the Lake Billings	1-46
	1.3.2	Multipurpose Water Use of Lake Billings	1-49
	1.3.3	Importance of the Billings Lake as the sources of drinking water	1-51
2		WATER RESOURCE AND ENVIRONMENTAL POLICY AND LAW	2-1
	2.1	Water Resource Policy in the State of São Paulo	2-2
	2.2	State Water Resource Policy	2-4

	2.3	Environmental Policy in the State of São Paulo	2-7
	2.3.1	Organization Chart of the Secretariat for the Environment (SMA) cabinet	2-7
	2.3.2	Policy of the Secretariat for the Environment (SMA)	2-9
	2.3.3	Secretariat of Housing and Environment of SBC Municipality	2-10
	2.3.4	Environmental Licensing	2-10
	2.3.5	Water Quality	2-12
	2.3.6	Environmental standards for water quality and effluent standards	2-13
	2.4	State Water Source Development and Environmental Protection Law	2-21
	2.4.1	Summary of Main Laws	2-21
	2.4.2	Other Environmental and Water Source Laws	2-23
	2.5	Water Source Development and Soil Occupation Plan	2-27
	2.5.1	Environmental Development and Protection Plans (PDPA)	2-27
	2.5.2	Guarapiranga Dam PDPA	2-29
	252	Relation between the Project Implantation Process and PDPA, Master Plan, and	
	2.5.3	Legislation	2-29
	2.6	Studies and Projects developed in Water Source Protection Areas	2-35
	2.6.1	Environmental Sanitation Program for Guarapiranga Basin - (1993-2000)	2-35
	262	Integrated Water Resource Exploration and Control Plan for Alto Tietê,	
	2.6.2	Piracicaba, and Baixada Santista Basins - DAEE / Consortium Hidroplan (1995)	2-36
	2.6.3	Terms of Reference of the Environmental Recovery Program for the Billings	
	2.0.3	Lake Basin - CPLA/SMA (1999)	2-37
	2.6.4	Environmental Sanitation Program for Tietê River Water Sources	2-39
	2.6.5	Other Existing and Ongoing Studies, Projects and Plans	2-45
	2.7	Future Additional Electric Power Generation at Henry Borden Hydroelectric	
	2.7	Plant	2-47
3	2	CURRENT STATUS OF MUNICIPALITIES INVOLVED IN THE LAKE	
3	,	BILLINGS BASIN	3-1
	3.1	Socioeconomic Status	3-1
	3.2	Financial situation	3-2
	3.2.1	Scale of public finance of the municipalities relevant to the Billings Lake basin	3-2
	3.2.2	Financial Status of SBC	3-3
	3.2.3	Eligibility of direct loan based on fiscal responsibility law	3-6
	3.3	Issue of irregular residential area	3-7
	3.4	Sanitary facilities	3-12
	3.4.1	Existing Condition of Sanitary Facilities	3-13
	3.4.2	Classification of sanitary facilities	3-14
	3.4.3	Organization and Legal Regulation for Administration of Sanitary Facilities	3-17

3.4.4	Sanitary Facilities Issues	3-17
3.5	Storm water and Drainage Facility	3-18
3.5.1	Existing Condition of Storm Water and Drainage Facility	3-18
3.5.2	Current status of storm water drainage facility	3-20
3.6	Waste Disposal	3-22
3.6.1	Waste Disposal of the Basin	3-22
3.6.2	Solid Waste Landfil Site	3-27
3.6.3	Old Landfill Sites	3-30
3.7	Parks	3-34
3.7.1	Government attributions of Park Administration	3-34
3.7.2	Parks of Federal Level	3-34
3.7.3	Parks of State Level	3-35
3.7.4	Parks Development in Municipality Level	3-38
3.8	Road and Street System	3-43
3.8.1	General Description of Road and Street System	3-43
3.8.2	Government Attributions for Road and Street System	3-43
3.8.3	Federal Road System	3-43
3.8.4	State Road System	3-44
3.8.5	Road System in Municipalities	3-46
3.8.6	Current Status and Subjects of Roads	3-46
3.8.7	Future Situation on Road Network	3-48
3.8.8	Permeable Pavement	3-50
4	WATER SUPPLY AND SEWERAGE SYSTEMS	4-1
4.1	Introduction	4-1
4.2	SABESP	4-2
4.2.1	General	4-2
4.2.2	Organization of SABESP	4-3
4.2.3	Water and Wastewater Rates	4-4
4.2.4	Financial Status of SABESP	4-7
4.3	Water Supply	4-12
4.3.1	Existing Condition of Water Supply System	4-12
4.3.2	Operation Condition on Rio Grande Water Treatment Plant	4-14
4.3.3	Operation Condition on the Other WTPs	4-23
4.3.4	Water Supply Development Plan	4-28
4.3.5	Consumption of chemicals at the Rio Grande Water Treatment Plant (WTP)	4-32
4.3.6	Problems in Water Supply Facilities	4-36
4.4	Sewerage	4-37

	4.4.1	Current Sewerage System Status	4-37
	4.4.2	Status of operation of sewerage system facilities	4-46
	4.4.3	Ongoing and/or scheduled plans	4-57
5		WATER QUALITY IN THE LAKE BILLINGS AND RIO GRANDE ARM	5-1
	5.1	Situation of Water Quality Based on the Previous Studies	5-1
	5.1.1	Study by CETESB	5-1
	5.1.2	Water Quality of Rio Grande Arm	5-10
	5.1 .3	Water Quality of the Taquacetuba Arm	5-19
	5.2	Water Quality Evaluation based on the Previous Studies	5-27
	5.2.1	Current status of eutrophication	5-27
	5.2.2	Water quality evaluation from the view of environmental preservation	5-32
	5.2.3	Water quality evaluation from the view point of drinking water source	5-35
	5.3	Water Quality, Pollutant Load and Bottom Sediment of the Lake Billings and	
	5.5	Rio Grande Arm and Their Incoming Rivers	5-38
	5.3.1	General Trend of Water Quality at the Principal Monitoring Points	5-38
	5.3.2	Trend of water quality of lakes	5-39
	5.3.3	Sludge of Lake Bottom	5-65
6		STUDY ON POLLUTION SOURCES AND INFLUENCE TO THE WATER	
6		STUDY ON POLLUTION SOURCES AND INFLUENCE TO THE WATER QUALITY	6-1
6	6.1		6-1 6-1
6	6.1 6.2	QUALITY	
6		QUALITY Outline	6-1
6	6.2	QUALITY Outline Domestic sewage	6-1 6-1
6	6.2 6.3	QUALITY Outline Domestic sewage Underground infiltration from septic tank	6-1 6-1 6-2
6	6.2 6.3 6.4	QUALITY Outline Domestic sewage Underground infiltration from septic tank Industrial waste water	6-1 6-1 6-2 6-3
6	6.26.36.46.5	QUALITY Outline Domestic sewage Underground infiltration from septic tank Industrial waste water Agricultural pollution	6-1 6-1 6-2 6-3 6-8
6	 6.2 6.3 6.4 6.5 6.6 	QUALITY Outline Domestic sewage Underground infiltration from septic tank Industrial waste water Agricultural pollution Livestock waste water	6-1 6-1 6-2 6-3 6-8 6-9
6	 6.2 6.3 6.4 6.5 6.6 6.7 	QUALITY Outline Domestic sewage Underground infiltration from septic tank Industrial waste water Agricultural pollution Livestock waste water Tourism Waste Water	 6-1 6-2 6-3 6-8 6-9 6-10
6	 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	QUALITY Outline Domestic sewage Underground infiltration from septic tank Industrial waste water Agricultural pollution Livestock waste water Tourism Waste Water Natural pollution load	 6-1 6-2 6-3 6-8 6-9 6-10 6-11
	 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 	QUALITY. Outline. Domestic sewage. Underground infiltration from septic tank. Industrial waste water. Agricultural pollution. Livestock waste water. Tourism Waste Water. Natural pollution load. Storm water drainage.	 6-1 6-2 6-3 6-8 6-9 6-10 6-11 6-12
	 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 	QUALITY.Outline.Domestic sewage.Underground infiltration from septic tank.Industrial waste water.Agricultural pollution.Livestock waste water.Tourism Waste Water.Natural pollution load.Storm water drainage.Influence of pumping up of Pinheiros river water.	 6-1 6-1 6-2 6-3 6-8 6-9 6-10 6-11 6-12 6-16
	 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 	QUALITY.Outline.Domestic sewage.Underground infiltration from septic tank.Industrial waste water.Agricultural pollution.Livestock waste water.Tourism Waste Water.Natural pollution load.Storm water drainage.Influence of pumping up of Pinheiros river water.	 6-1 6-1 6-2 6-3 6-8 6-9 6-10 6-11 6-12 6-16
	 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 	QUALITY. Outline. Domestic sewage. Underground infiltration from septic tank. Industrial waste water. Agricultural pollution. Livestock waste water. Tourism Waste Water. Natural pollution load. Storm water drainage. Influence of pumping up of Pinheiros river water. Specific Pollution Source.	6-1 6-2 6-3 6-8 6-9 6-10 6-11 6-12 6-16 6-20
	 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 	QUALITY.Outline.Domestic sewage.Underground infiltration from septic tank.Industrial waste water.Agricultural pollution.Livestock waste water.Tourism Waste Water.Natural pollution load.Storm water drainage.Influence of pumping up of Pinheiros river water.Specific Pollution Source.	6-1 6-2 6-3 6-8 6-9 6-10 6-11 6-12 6-16 6-20 7-1
	 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 7.1 	QUALITY.Outline.Domestic sewage.Underground infiltration from septic tank.Industrial waste water.Agricultural pollution.Livestock waste water.Tourism Waste Water.Natural pollution load.Storm water drainage.Influence of pumping up of Pinheiros river water.Specific Pollution Source.WATER POLLUTION ANALYSIS FOR LAKES AND RIVERS.Pollution Load Analysis.	 6-1 6-1 6-2 6-3 6-8 6-9 6-10 6-11 6-12 6-16 6-20 7-1 7-1

7.3	Runoff Load Model of CETESB	7-5
7.3.1	Overview of Runoff Load Model	7-5
7.3.2	Calculation of Runoff Load from the Billings Lake and Rio Grande Arm	7-7
7.3.3	Improvement of Runoff Load Model	7-9
7.3.4	Issues for application of Runoff Load Model	7-9
7.3.5	Rainfall Analysis for the Year of 2005	7-16
7.3.6	Calculation of discharged load	7-17
7.3.7	Calculation of Runoff Loads by Sub-basin	7-25
7.4	Water Quality Model	7-30
7.4.1	Improvements over the water quality analysis model for the Lake Billings	7-36
8	SOCIETY AND OPINION SURVEY OF THE BASIN REGION RESIDENTS	8-1
8.1	Purpose of the Survey	8-1
8.2	Methodology	8-1
8.2.1	Survey Procedure	8-2
8.2.2	Sampling Number and Distribution Method	8-2
8.3	Execution of Survey by Interview and Survey's Approach Area	8-3
8.3.1	Survey Team, Training and Field Work	8-3
8.3.2	Execution of Survey by Interview	8-3
8.3.3	Survey Area	8-6
8.3.4	Survey Instrument	8-7
8.4	Main Results – Residents and Companies of the Billings Basin	8-7
8.4.1	Main Results-Basin Residents	8-7
8.4.2	Main Results – Businesses (Companies) situated in the Basin	8-14

PART 2 MASTER PLAN (M/P)

FORMULATION OF WATER QUALITY CONSERVATION PLAN FOR THE 9 BILLINGS LAKE..... 9-1 Idea and Target..... 9.1 9-1 9.2 Establishment of Water Quality Conservation..... 9-7 Environmental Standards and Drinking Water Standards..... 9.2.1 9-7 Issues from the Environmental Viewpoint of the Lake Billings and the Rio 9.3 Grande Arm..... 9-11 9.4 Basic policy of master plan..... 9-13 9.5 Measures to be taken..... 9-14 10 ESTABLISHMENT OF SOCIO-ECONOMIC FRAME..... 10-1

10.1	Population	10-1
10.1	Target Year	10-1
10.2	Projected area and population	10-1
10.2	Land Use	10-2
10.3	Economics	10-3

	COUNTERMEASURES AGAINST WATER POLLUTION BY	
11	ENGINEERING	11
11.1	Sewerage Construction in the Urbanized area	11
11.1.1	General	11
11.1.2	The existing sewerage plan and issues	11
11.1.3	Sewerage Plans for Urban Area in Northern Part	11
11.2	Sewerage Construction for communities scattered	11
11.2.1	Outline	11
11.2.2	Sewerage Plan in the scattered community	11
11.3	Improvement of Sanitary Facilities	11
11.4	Water-Permeable Paving Road	1
11.4.1	Current status and issues	1
. 11.5	Parks and green areas	1
11.6	Measures for the purification of rivers and channels	1
11.7	Plan of measures for specific sources of pollution	1
11.7.1	Colonia crater	1
11.7.2	Old dumping site of Alvarenga	1
11.8	Measure for the sludge deposited at the bottom of the lake	1
11.9	Aeration of the water in the Lake (Direct Purification)	1
11.10	Purification by aquatic plant	1
11.11	Construction of the Environmental Protection Center	1
11.11.1	Center of Environmental Experience/Study of the Billings Lake	1
11.11.2	Center of Water Quality Monitoring	1
12	PUBLIC ENLIGHTENMENT AND ENVIRONMENTAL EDUCATION	1
12.1	Current State on Environmental Education in Relevant Authorities	1
12.2	Problems related to Environmental Education	1
10.0	Current State on Public Awareness for Environmental / Sanitation and Its	
12.3	Problems	12
12.4	Master Plan on Public Enlightenment and Environment Education	12
12.5	Possible Software Measures	12
13	SUMARRY OF M/P	13

13.1	Background	13-1
13.1.1	Brief History of the Lake Billings	13-1
13.1.2	Situation of Water Pollution in the Lake Billings	13-1
13.1.3	Situation of Pollutant Sources	13-3
13.1.4	Current measures and their evaluation	13-5
13.2	Outline of Measures and their Appropriateness	13-7
13.3	Project Implementation Program for Master Plan	13-12
14	ORGANIZATIONAL AND INDUSTRIAL PROGRAM	14-1
14.1	Organizational and Institutional Program	14-1
14.1.1	System for Program Promotion	14-1
14.1.2	Immediate Organizational and Institutional Program	14-4
14.1.3	At the Stage f Project Implementation	14-10
14.1.4	At the Stage of Operation and Maintenance	14-12
14.1.5	Legislation	14-12
14.2	Operation and Maintenance Program	14-16
14.2.1	SABESP	14-16
14.2.2	SBC	14-18
15	ENVIRONMENTAL AND SOCIAL CONDIDERATIONS	15-1
151		1.5.1
15.1	General	15-1
15.1	General Current Environmental and Social Situation around Project Sites	15-1 15-1
15.2	Current Environmental and Social Situation around Project Sites	15-1
15.2 15.3	Current Environmental and Social Situation around Project Sites Environmental and Social Impact	15-1 15-10
15.2 15.3 15.4	Current Environmental and Social Situation around Project Sites Environmental and Social Impact Screening	15-1 15-10 15-13
15.2 15.3 15.4 15.5	Current Environmental and Social Situation around Project Sites Environmental and Social Impact Screening Recommended Mitigation Measures ASSISTANCE FOR INITIAL ENVIRONMENTAL EXAMINATION	15-1 15-10 15-13 15-15
15.2 15.3 15.4 15.5 16	Current Environmental and Social Situation around Project Sites Environmental and Social Impact Screening Recommended Mitigation Measures ASSISTANCE FOR INITIAL ENVIRONMENTAL EXAMINATION General	15-1 15-10 15-13 15-15 16-1
15.2 15.3 15.4 15.5 16 16.1	Current Environmental and Social Situation around Project Sites Environmental and Social Impact Screening Recommended Mitigation Measures ASSISTANCE FOR INITIAL ENVIRONMENTAL EXAMINATION General Background of Information Disclosure to Local Stakeholders	15-1 15-10 15-13 15-15 16-1 16-1
15.2 15.3 15.4 15.5 16 16.1 16.2	Current Environmental and Social Situation around Project Sites Environmental and Social Impact Screening Recommended Mitigation Measures ASSISTANCE FOR INITIAL ENVIRONMENTAL EXAMINATION General	15-1 15-10 15-13 15-15 16-1 16-1 16-2
15.2 15.3 15.4 15.5 16 16.1 16.2 16.3	Current Environmental and Social Situation around Project Sites Environmental and Social Impact Screening Recommended Mitigation Measures ASSISTANCE FOR INITIAL ENVIRONMENTAL EXAMINATION General Background of Information Disclosure to Local Stakeholders Information Disclosure by Printed Materials	15-1 15-10 15-13 15-15 16-1 16-1 16-2 16-2
15.2 15.3 15.4 15.5 16 16.1 16.2 16.3 16.3.1	Current Environmental and Social Situation around Project Sites Environmental and Social Impact Screening Recommended Mitigation Measures ASSISTANCE FOR INITIAL ENVIRONMENTAL EXAMINATION General Background of Information Disclosure to Local Stakeholders Information Disclosure by Printed Materials Objective of Preparation of Printed Materials	15-1 15-10 15-13 15-15 16-1 16-1 16-2 16-2 16-2
15.2 15.3 15.4 15.5 16 16.1 16.2 16.3 16.3.1 16.3.2	Current Environmental and Social Situation around Project Sites Environmental and Social Impact Screening Recommended Mitigation Measures ASSISTANCE FOR INITIAL ENVIRONMENTAL EXAMINATION General Background of Information Disclosure to Local Stakeholders Information Disclosure by Printed Materials Objective of Preparation of Printed Materials Area for Distribution Outline of Printed Materials	15-1 15-10 15-13 15-15 16-1 16-1 16-2 16-2 16-2 16-2
15.2 15.3 15.4 15.5 16 16.1 16.2 16.3 16.3.1 16.3.2 16.3.3	Current Environmental and Social Situation around Project Sites Environmental and Social Impact Screening Recommended Mitigation Measures ASSISTANCE FOR INITIAL ENVIRONMENTAL EXAMINATION General Background of Information Disclosure to Local Stakeholders Information Disclosure by Printed Materials. Objective of Preparation of Printed Materials. Area for Distribution Outline of Printed Materials.	15-1 15-10 15-13 15-15 16-1 16-1 16-2 16-2 16-2 16-2 16-2 16-3
15.2 15.3 15.4 15.5 16 16.1 16.2 16.3 16.3.1 16.3.2 16.3.3	Current Environmental and Social Situation around Project Sites Environmental and Social Impact Screening Recommended Mitigation Measures ASSISTANCE FOR INITIAL ENVIRONMENTAL EXAMINATION General Background of Information Disclosure to Local Stakeholders Information Disclosure by Printed Materials Objective of Preparation of Printed Materials Area for Distribution Outline of Printed Materials	15-1 15-10 15-13 15-15 16-1 16-1 16-2 16-2 16-2 16-2 16-3

.

	17.2	Affect on water quality of the Lake Billings by continuous pumping of the	
	17.2	Pinheiros River water	17-22
	17.2.1	Setting of conditions and cases for simulation	17-22
	17.2.2	Simulation results	17-25
	17.2.3	Application limit of mathematical model	17-34
	17.2.4	Use of the Lake Billings as a drinking water source at continuous pumping	17-35
18		ECONOMIC -FINANCIAL ANALYSIS ON MASTER PLAN PROGRAM	18-1
	18.1	Rough Cost Estimation	18-1
	18.1.1	Premise of Cost Estimation	18-1
	18.1.2	Results of estimation	18-5
	18.2	Financial Plan for Master Plan Program	18-5
	18.3	Financial Analysis of Sewer Projects	18-8
	18.4	Economic Evaluation on the Master Plan	18-16
19		PROJECT EVALUATION	19-1
	19.1	Financial	19-1
	19.2	Socioeconomic	19-1
	19.3	Technical	19-2
	19.4	Organizational and Institutional	19-2
	19.5	Environmental	19-3
	19.6	Overall Evaluation	19-3

PART 3 FEASIBILITY STUDY (F/S)

20	SELECTION OF PRIORITY PROJECT	20-1
20.1	Proposed Projects	20-1
20.2	Measures for Pollutant Load Reduction	20-2
20.3	Priority Order among Projects	20-8
21	URBAN SEWAGE TRANSPORT SYSTEM	21-1
21.1.1	General Introduction of the northern part of the Billings Lake basin	21-1
21.1.2	The Couros trunk sewer route	21-3
21.1.3	The Project for transport of sewage in the northern part of the catchment area of	
	Lake Billings	21-3
21.1.4	General Project Description	21-4
21.1.5	Project Area	21-5

THE LA

21.1.6	Basic Requirements for Sewerage Projects	21-6
21.2	Projects	21-7
21.2.1	Project Discharges	21-7
21.2.2	The trunk and branch sewer design	21-8
21.2.3	Sewage Pumping Stations	21-11
21.3	Implementation Plan	21-18
21.3.1	Soil Condition	21-18
21.3.2	Construction Method	21-20
21.3.3	Implementation Schedule	21-20
21:4	Operation and Maintenance Plan	21-22
21.5	Implementation Cost	21-23
21.5.1	Construction Cost	21-23
21.5.2	Maintenance Cost	21-25
22	SEWERAGE IN THE ISOLATED SMALL COMMUNITIES	22-1
22.1	Study on fundamentals	22-1
22.2	Outline of the facilities	22-8
22.3	Construction Plan	22-17
22.3.1	Conditions of the soil	22-17
22.3.2	Construction Plan	22-17
22.3.3	Construction Schedule	22-18
22.4	Operation and Maintenance	22-18
22.5	Project Cost	22-20
22.5.1	Construction cost	22-20
22.5.2	Maintenance cost	22-20
23	PERMEABLE ROAD PAVEMENT PROJECT	23-1
23.1	Planning Condition	23-1
23.1.1	Selection of Project Sites suitable for Permeable Pavement	23-1
23.1.2	Road Alignment Plan	23-6
23.1.3	Road Longitudinal Plan	23-6
23.1.4	Road Cross-sectional Design	23-7
23.2	Outlined Facility Design	23-8
23.2.1	Standard Design of Permeable Pavement Road	23-8
23.2.2	Road Width Design	23-9
23.2.3	Stormwater Drainage Facility	23-9
23.3	Construction Plan	23-10
23.3.1	Ground Condition	23-10

23.3.2	Construction Plan	23-10
23.3.3.	Implementation Schedule	23-12
23.4	Operation & Maintenance Plan	23-14
23.4.1	Maintenance Work for Keeping Infiltration Capacity of Permeable Pavement	23-14
23.4.2	Maintenance Work for Keeping Capacity of Permeable Facilities (e.g. Pervious	
	Trench)	23-14
23.5	Cost Estimate	23-15
23.5.1	Construction Cost	23-15
23.5.2	Operation & Maintenance Cost	23-17
24	ALVARENGA PARK PLANNING	24-1
24-1	Design Policy	24-1
24-2	The concept design of facilities	24-1
24-3	Implementation Program	24-1
24.3.1	Construction Planning	24-1
24.3.2	Implementation Schedule	24-4
24.4	Maintenance	24-4
24.5	Project Cost	24-4
24.5.1	Construction Cost	24-4
24.5.2	Maintenance Cost	24-4
25	REMEDIATION OF THE OLD SANITARY LAND FILL OF	
	ALVARENGA	25-1
25.1	Outline of the project	25-1
25.2	Outline of the facility plan	25-2
25.3	Construction Plan	25-3
25.3.1	Conditions of the soil	25-3
25.3.2	Scheme of construction	25-3
25.3.3	Construction schedule	25-4
25.4	Maintenance and Administration	25-8
25.5	Project Cost	25-8
25.5.1	Construction Cost	25-8
25.5.2	Maintenance Cost	25-8
26	WATER TREATMENT BY AQUATIC PLANTS	26-1
26.1	Fundamentals	26-1
26.2	Outline of facility design	26-2
26.3	Construction Plan	26-2

Martin State

26.3.1	Condition of the soil	26-2
26.3.2	Construction plan	26-3
26.3.3	Construction schedule	26-6
26.4	Maintenance	26-6
26.5	Project Cost	26-7
26.5.1	Construction cost	26-7
26.5.2	Maintenance cost	26-7
27	ENVIRONMENTAL PROTECTION CENTER (Center of Environmental	
	Experience/Study and Center of Monitoring of the Water Quality)	27-1
27.1	Fundamentals	27-1
27.2	Outline of Design	27-2
27.3	Construction Plan	27-3
27.3.1	Soil Condition	27-3
27.3.2	Construction Plan	27-3
27.3.3	Construction Schedule	27-7
27.4	Project Cost	27-7
27.4.1	Construction Cost	27-7
27.4.2	Maintenance cost	27-7
28	MEASURES OF SOFT COMPONENT	28-1
29	FINANCIAL PLAN	29-1
29.1	Financial plan of SBC jurisdiction projects	29-1
29.1.1	Cost estimates of SBC jurisdiction projects	29-2
29.1.2	Funding plan of SBC jurisdiction projects	29-4
29.1.3	Financial Alternatives of SBC jurisdiction Projects	29-6
29.2	SABESP jurisdiction Projects	29-8
29.2.1	Cost Estimates of SABESP jurisdiction projects	29-8
29.2.2	Funding plan of SABESP jurisdiction projects	29-9
29.2.3	Cost-Benefit Analysis	29-10
30	PROJECT EVALUATION	30-1
30.1	Financial	30-1
30.2	Socio-economic	30-2
30.3	Technical	30-3
30.4	Organizational and Institutional	30-4
30.5	Environmental	30-4

30.6	Overall Evaluation	30-5
31	SUPPORT FOR EIA	31-1
31.1	Requirement on Environmental Licenses and Its Details for Priority Projects	31-1
31.1.1	Outlines of Priority Projects	31-1
31.1.2	Necessity on Environmental Licenses for Priority Projects	31-3
31.1.3	Details of Requirement on Environmental License	31-6
31.2	Scoping on Priority Projects	31-9
31.2.1	Possible Environmental and Social Impact caused by Priority Projects	31-9
31.2.2	Consideration for Alternatives and Mitigation Measures for Possible Impacts	31-17
31.3	Stakeholder Meeting	31-26
32	PROJECT IMPLEMENTATION PROGRAM	32-1
32.1	Implementation Schedule and Cost Estimates	32-1
32.1.1	Implementation Schedule	32-1
32.1.2	Cost Estimates	32-1
32.2	Method for Project Implementation	32-4
32.2.1	Contract Package for Construction Works	32-4
32.2.2	Implementation Process	32-5
32.3	Indicators for Operation and Effect	32-5
32.3.1	Indicators for Operation	32-5
32.3.2	Effect Indicators	32-6
33	CONCLUSION AND RECOMMENDATION	33-1

List of Tables and Figures

Table 1.1.1	Meteorological and Hydrological Observation stations around the Billings	1-3
	Reservoir Basin	
Table 1.1.2	Monthly Wind Direction and Velocity	1-7
Table 1.1.3	Annual Discharge of RG-1(Rio Grande Campo)	1-22
Table 1.1.4	Annual Discharge and Pump-Up Inflow of the Lake Billings	1-25
Table 1.1.5	Annual Withdrawal from the Lake Billings Basin	1-26
Table 1.1.6	Flora in the Surrounding Area of Lake Billings Basin	1-34
Table 1.1.7	Fauna in the Surrounding Area of Lake Billings Basin	1-35
Table 1.2.1	Municipalities Involved in the Lake Billings Basin	1-36
Table 1.2.2	Population Share by Municipality in the Lake Billings Basin	1-40
Table 1.2.3	Number and Population of Sub-normal Settlements	1-40
Table 1.2.4	Land Use Change of the Lake Billings Basin from 1989 to 1999	1-41
Table 1.2.5	Land Use of Sub-Region in the Billings Reservoir Basin in 2000	1-43
Table 1.2.6	Land Use in the Billings Reservoir Basin in 2000 (Sub-Region and	1-45
	Sub-Basin)	
Table 1.3.2	Long-term Average Runoff from the Natural Basin of the Lake Billings	1-49
Table 2.3.1	Relationship of water quality class between federal and state environmental	2-14
	standards	
Table 2.3.2	Environmental standards for freshwater quality of the federal	2-17
	government	
Table 2.3.3	Relationship between federal and state effluent standards	2-14
Table 2.3.4	Effluent standard	2-20
Table 2.3.5	Environmental standards Class 4	2-15
Table 2.5.1	Sub-Committees and Related Municipalities	2-27
Table 2.5.2	Water Source Protection Areas in São Bernardo do Campo	2-31
Table 2.6.1	Project Cost and Source of Funds (US\$ million)	2-44
Table 3.1.1	Distribution of magnification over the minimum wage of family income	3-1
Table 3.1.2	Index of Educational Medical Treatment (SBC City)	3-1
Table 3.1.3	Transition of unemployment rate (SBC city)	3-2
Table 3.2.1	Financial force of the municipalities relevant to the Billings Lake	3-3
Table 3.2.2	Budget for the fiscal year of 2005 in SBC	3-4
Table 3.2.3	Limit based on fiscal responsibility law of SBC city	3-6
Table 3.4.1	Current status of sanitary facilities in the Billings Lake	3-14
Table 3.4.2	Typical sanitary facilities currently used in Brazil	3-16
Table 3.6.1	Waste Disposal of Each City Surrounding Billings Reservoir Basin	3-22

Table 3.6.2	General Solid Waste Generation in Sao Bernardo do Campo	3-25
Table 3.6.3	Per Capita Domestic Solid Waste Generation (SBC)	3-25
Table 3.6.4	No. of Eco-stations for Valuables Collection Installed (SBC)	3-25
Table 3.6.5	Collection of Valuables for Recycle (SBC)	3-25
Table 3.6.6	Solid Waste Collection by Source (SP)	3-27
Table 3.6.7	Solid Waste Collection by Disposal Method (SP)	3-27
Table 3.6.8	Garbage collection in the basin of the Lake Billings	3-33
Table 3.7.1	Land Section of the Srra do Mar State Park(PESM) per municipality and	3-37
	per Micro-Basin	
Table 3.7.2	Current Municipal Park per Micro Basin and Municipality	3-40
Table 3.7.3		3-41
Table 3.8.1	Current Road Situation by Municipality	3-48
Table 3.8.2	Per Capita Road Area	3-48
Table.4.1.1	Service Provider in Brazil by Type	4-2
Table 4.1.2	The service ratio of water supply and sewerage by provider type	4-2
Table 4.2.1	Water Supply and Sewerage Service	4-3
Table 4.2.2	Water waste water Rate applied to the Greater Metropolitan by SABESP	4-6
Table 4.2.3	Wholesale Water and Wastewater Rates of SABESP to Municipalities	4-7
Table 4.2.4	Financial Status of SEBESP (1995-2004)	4-10
Table.4.3.1	Outline of Intake facility and WTP of Rio Grande System	4-16
Table 4.3.2	Features of Old and New Filters	4-22
Table 4.3.3	Planned Population Served by City	4-28
Table 4.3.4	Unit Water Consumption by User Type and City	4-28
Table 4.3.5	Water Demand in 2025 (Upper Scenario)	4-29
Table 4.3.6	Water Demand in 2025 (Lower Scenario)	4-29
Table 4.4.1	Coverage rate of Basic Sanitation in SPMR	4-37
Table.4.4.2	Evolution of SABESP basic sanitation coverage rate	4-38
Table 4.4.3	Scope of the 5 major STPs in Greater São Paulo	4-39
Table 4.4.4	Sewerage Coverage in the Greater Sao Paulo Region	4-42
Table 4.4.5	Characterization of Raw Sewage and Final Effluent (BOD) – STP ABC (10/2002-09/2003)	4-49
Table 4.4.6	Characterization of Raw Sewage and Final Effluent (Nitrogen Compounds) - STP ABC (10/2002-09/2003)	4-50

Table 4.4.7	Characterization of Raw Sewage and Final Effluent of STP Riacho Grande (2004)	4-53
Table 4.4.8	Average Inflow in STP JD Pinheirinho (2004)	4-56
Table 4.4.9	Characterization of Raw Sewage and Final Effluent of STP JD Pinheirinho (2004)	4-56
Table 4.4.10	Status of works in the municipality of São Bernardo do Campo	4-65
Table 4.4.11	Status of works in the municipality of São Paulo	4-75
Table 4.4.12	Status of works in the municipality of Diadema	4-78
Table 4.4.13	Status of works in the municipality of Santo André	4-82
Table 4.4.14	Status of works in the municipality of Ribeirão Pires	4-85
Table 4.4.15	Status of works in the municipality of Rio Grande da Serra	4-87
Table 5.1.1	Current status of water pollution of the Billings Lake	5-3
Table 5.1.2	Water Quality of Intake Point (RGDE 02900) in 2000 (1)	5-11
Table 5.1.3	Water Quality of Intake Point (RGDE 02900) in 2000	5-11
Table 5.1.4	Water Quality of Intake Point (RGDE 02900) in 2000	5-12
Table 5.1.5	Water Quality of Intake Point (RGDE 02900) in 2000	5-12
Table 5.1.6	Water Quality in 2003 and Average of 1993- 2002 in Rio Grande Arm	5-13
Table 5.1.7	Water Quality in 2004 and average 1994- 2003 in Rio Grande Arm	5-13
Table 5.1.8	Plankton in Main Part of Lake Billings	5-15
Table 5.1.9	Plankton in Rio Grande Arm	5-16
Table 5.1.10	Mycrocystin Removal Performance by Treatment Proces	5-17
Table 5.1.11	Water Quality Monitoring Results in the Taquacetuba Arm (From August 2005 to January 2006)	5-24
Table 5.1.12	Water quality monitoring results by the CETEB and the JICA Study (2005)	5-25
Table 5.2.1	Cause and its influence to water pollution or contamination	5-26
Table 5.2.2	Concentration of nitrogen and phosphorus in the Billings Lake and Rio	5-29
	Grande Arm	
Table 5.2.3	Type of water body of lakes by nitrogen and phosphorus concentration	5-29
Table 5.2.4	State of eutrophication in the Billings Lake and Rio Grande arm	5-30
Table 5.2.5	Eutrophication criteria of Vollenweider	5-31
Table 5.2.6	Chlorophyll-a in the Billings Lake	5-32
Table 5.2.7	Unattainment of environmental standards in the Lake billings and the Rio	5-33
	grande Arm	
Table 5.2.8	Eligibility for Swimming in the Lake billings and Rio grande arm	5-34
Table 5.2.9	Cyanobacterium by which musty odor production was confirmed	5-37

Table 5.3.1	Outline of the Scheme for Water Quality Monitoring	5-38
Table 5.3.2	Runoff Load by Sub-basin	5-60
Table 5.3.3	Comparison of environmental guidelines for sediment quality	5-69
Table 5.3.4	Analysis Results of Permeant Water Quality and Bottom Sediment in the	5-72
	Lake Billings and Rio Grande Arm (15/05/2005)	
Table 5.3.5	Analysis Results of Water Quality in the Lake billings (11-13/07/2006)	5-73
Table 5.3.6	Analysis Results of Bottom Sediment in the Lake billings (11-13/07/2006)	5-74
Table 6.3.1	Ground infiltration and its load by septic tank	6-3
Table 6.4.1	Interview result to the eight companies listed in the CETESB data	6-5
Table 6.4.2	Waste Water Data in 11 Factories (based on CETESB)	6-7
Table6.7.1	Interview result of Golden Lake Club	6-11
Table 6.8.1	Natural Pollution Load by each river in the Billings Basin	6-12
Table 6.9.1	Rainfall depth and frequency in Sao Paulo (1995- 2004)	6-13
Table 6.9.3	Intensity-of-rainfall type calculation result	6-14
Table 6.9.4	Increase of non-permeable area by expansion of urbanized area	6-15
Table 6.9.5	Fundamentals for the storm runoff in the Jardin Laura area	6-15
Table 6.10.1	Examination of BOD load inflow to the Billings Lake by pump-up	6-18
Table 6.10.2	Examination of sludge deposition in the Billings Lake	6-19
Table 7.3.1	Acquisition organization of hydrological data	7-10
Table 7.3.2	Unit Loads from Domestic Wastewater and Non-point Sources Derived in the SMA Study (Guarapiranga and Lake Billings Basin)	7-11
Table 3.3.3	Standard Values of Runoff Ratios	7-13
Table 7.3.4	Annual Rainfall for 1984~2005 (IAG-USP、E3-035)	7-17
Table 7.3.5	Estimated effluent loads by sub-basin (2005)	7-19
Table 7.3.6(1)	Breakdown of estimated effluent loads from sub-basins in 2005 (BOD ₅)	7-22
Table 7.3.6(2)	Breakdown of estimated effluent loads from sub-basins in 2005 (TN)	7-23
Table 7.3.6(3)	Breakdown of estimated effluent loads from sub-basins in 2005 (TP)	7-24
Table 7.3.7	Breakdown of estimated runoff loads from sub-basins in 2005	7-25
Table 7.3.7(1)	Estimated runoff load from sub-basins by target year (BOD)	7-27
Table 7.3.7(2)	Estimated runoff load from sub-basins by target year (TN)	7-28
Table 7.3.7(3)	Estimated runoff load from sub-basins by target year (TP)	7-28
Table 8.2.1	Population (estimate of year 1996), Families (Domicile) and Companies	8-3
Table 8.3.4	Sampling number by City, Districts, Villages and Clusters	8-5
Table 8.4.1	Possession of Domicile, per city and of the basin in (%)	8-10

i.

Table 8.4.2	Internal Distribution, Occupation and Residents per Domicile, per city and of the Basin	8-11
Table 8.4.3	Basic Sanitation by the Public Service System per city and of the basin in	8-12
	(%)	
Table 8.4.4	Evaluation rate of City Governments per city and of the basin (%)	8-13
Table 8.4.5	Knowledge of Community Leaderships per city and of the basin	8-13
	(%)	
Table 8.4.6	Main Actions Required for the Environmental Preservation of the Billings	8-14
	Lake	
Table 8.4.7	Number of Company Employees per city and of the Basin	8-16
Table 8.4.8	Number of Companies with Existing Public System per city and of the	8-18
	Basin	
Table 9.1.1	Fundamentals of the Billings Lake	9-1
Table 9.1.2	Deterioration of Water Quality in the Billings Lake (1975-1983)	9-3
Table 9.1.3	Change of the Billings Lake during This decade	9-5
Table 9.2.3	Water quality conservation target	9-10
Table10.1.1	Population projection	10-1
Table10.2.1	Land use in the basin of the Billings Lake in 2000	10-3
Table 11.1.1	Outline of sewerage planning	11-2
Table 11.1.2	Population projection and sewage flowrate	11-5
Table 11.2.1	Outline of scattered community	11-6
Table11.2.2	Alternatives of sewerage construction for scattered communities	11-8
Table 11.2.9	Result of examination of economical efficiency	11-12
Table11.2.10	Projection scenario in sewerage planning	11-13
Table 11.4.1	Small-basins and their road status	11-16
Table 11.4.2	Relationship between the extensions of public roads and areas (Alvarenga	11-17
	13 to 24)	
Table 11.4.3	Cost of the permeable pavement application in Alvarenga / Cocaia	11-18
Table 11.5.1	Project of parks in the Billings Lake	11-19
Table 11.5.2	Cost of the work for construction of parks	11-20
Table 11.7.1	Historical data of the sanitary dumping site	11-24
Table 11.7.2	Analysis and Evaluation of the Current Status of Old dumping site of	11-25
	Alvarenga	
Table 11.8.1	Removal of the sludge and cost of the works	11-27

Table 11.11.1	Priority of the monitoring items	11-34
Table 11.11.2	Instruments for analysis to be installed	11-35
Table 11.11.3	Measurement Instruments to be installed	11-35
Table 12.1.1	Environmental Education Programs / Projects by Sao Paulo State	12-4
Table 12.1.2	Environmental Education Programs / Projects by SBC City	12-5
Table 12.1.3	Environmental Education Programs / Projects by SABESP	12-7
Table 12.1.4	Results of Analysis on Public Awareness Survey	12-9
Table 12.1.5	Problems related to Basin Residents' Awareness on Environment / Sanitation	12-10
Table 12.1.6	Outline of Proposed Environment Education Center	12-11
Table 12.1.7	Overall Implementation Schedule on Public Enlightenment and	12-13
	Environmental Education Projects	
Table 13.1.1	Water quality of the Lake Billings and Rio Grande Arm	13-3
Table 13.1.2	Sewerage coverage in the basin of the Lake Billings	13-4
Table 13.1.3	Composition of BOD load in 2005	13-5
Table 13.2.1	Objectives and considerations of the projects proposed in the Master Plan	13-9
Table 14.1.1	Role Sharing at the Stage of Project implementation	14-11
Table 15.2.1	Current Environmental and Social Situation around Project Sites (1)	15-6
Table 15.2.1	Current Environmental and Social Situation around Project Sites (2)	15-7
Table 15.4.1	Screening Results for Proposed Projects in Master Plan	15-14
Table 15.5.1	Governing Laws and Applicable Articles related to Land Expropriation (Partial)	15-16
Table 15.5.2	Recommended Mitigation Measures (1)	15-21
Table 15.5.2	Recommended Mitigation Measures (2)	15-22
Table 16.1.1	Background up to SBC's Preparation of Printed Materials	16-2
Table 17.1.1	Initial water quality of the Lake Billings and Rio Grande Arm	17-2
Table 17.1.2	Setting of elution rates	17-2
Table 17.1.3	Water quality of pumping water from the Pinheiros River	17-3
Table 17.1.4	Attainment status of WQCTs for the Lake Billings	17-7
Table 17.1.5	Attainment status of Environmental Standards at the Taquacetuba Arm	17-9
Table 17.1.6	Attainment status of WQCTs for the Rio Grande Arm	17-18
Table 17.2.1	Cases for simulation	17-25

Table 18.1.1	Project Cost Rough Estimate	18-5
Table 18.2.1	Funding Source by Project	18-7
Table 18.3.1	Financial / Operating indicators for the past five years of SABESP	18-8
Table 18.3.2	Amount of water produced and invoiced by the SABESP	18-9
Table 18.3.3	Income calculation process for Sewer project in urban area	18-11
Table 18.3.4	Income calculation process for Sewer Project in Isolated Communities	18-12
Table 18.3.5	Financial analysis result	18-13
Table 18.4.1	Measurement method economic benefits	18-17
Table 18.4.2	Water Treatment Cost Prediction	18-18
Table 18.4.3	Water supply plan by water purification plant	18-19
Table 18.4.4	Rio Grande and medicine use results change of Guarau water purification	18-20
	plant	
Table 18.4.5	Economic Assessment Result	18-21
Table 18.4.6	Economic Analysis of Master Plan Program	18-22
Table 18.4.7	Economic Benefit	18-23
Table 18.4.8	Water Intake	18-23
Table 18.4.9	Economic Cost Calculation	18-24
Table 20.1.1	Selection of priority projects	20-2
Table 20.1.2	Evaluation of emergency, effect and possibility of realization by project	20-4
Table 20.2.1	Composition of pollutant loads on generation, effluent and runoff base	20-7
Table 21.1.1	The comparison of construction and maintenance costs per capita by present value	21-4
Table 21.2.1	Project Sewage Discharges	21-7
Table 21.2.2	The length of trunk and branch sewer by diameter	21-10
Table 21.2.3	Discharges Adopted in this Study	21-11
Table 21.2.4	Characteristics of Pumping Stations	21-11
Table 21.2.5	Characteristics of Pumping Stations	21-12
Table 21.3.1	Analysis of Soil Conditions	21-19
Table 21.3.2	Implementation Schedule of Pumping Station	21-21
Table 21.4.1	Total Construction Cost	21-23
Table 21.5.2	Construction Cost of Pumping Stations	21-24
Table 21.5.3	Total Cost of Sewage Pumping Stations - Areas A - F and Submerged	21.25
	Pumps	21-25
Table 21.5.4	Power Cost	21-25
Table 21.5.5	Operation and Maintenance Costs	21-26

Table 22.1.1	Fundamentals for Riacho Grande	22-2
Table 22.1.2	Plan of Sewerage in the Riacho Grande area	22-5
Table 22.1.3	Santa Cruz and villages around	22-6
Table 22.1.4	Quality of the water in the sampling point of 24, 5	22-6
Table 22.1.5	Plan of sewerage in Santa Cruz	22-8
Table 22.2.1	Design Water Quality for ETE Riacho Grande	22-9
Table 22.2.2	Outline of ETE Riacho Grande	22-10
Table 22.2.3	Design Water Quality of ETE Santa Cruz	22-14
Table 22.2.4	Outline of ETE Santa Cruz	22-15
Table 22.3.1	Sewerage construction schedule for the isolated area	22-18
Table 22.5.1	Construction cost of ETEs	22-20
Table 22.5.2	Maintenance cost of ETEs	22-20
Table 23.1.1	Residential Areas suitable for Permeable Pavement Road by Work Lot	23-5
Table 23.1.2	Height Adjustment of Neighboring Lots (m)	23-7
Table 23.1.3	Three Types of Standard Road Width applied in Special Sector District in	23-7
	SBC	23-1
Table 23.2.1	Standard Road Type	23-9
Table 23.3.1	Soil Condition at Proposed of Pump Stations Sites in Courous Sewer Pipes	23-10
Table 23.3.2	Construction Work Plan by Work Lot and Residential Area	23-11
Table 23.3.3	Implementation Schedule of the Permeable Pavement	23-13
Table 23.5.1	Cost Estimaste of Construction by Work Lot & Residential Area (R\$)	23-16
Table 23.5.2	Cost Estimate of Operation and Maintenance/Cleansing Work by WaterCannon Trucks (R\$)	23-17
Table 24.3.1	Implementation Schedule of Alvarenga Park	24-4
Table 24.5.1	Approximate Construction Costs	24-4
Table 24.5.2	Annual Maintenance Costs	24-4
Table 25.1.1	Water Quality of Leachate and Regulation of the State of Sao Paulo	25-1
Table 25.3.1	Remediation of old dumping site of Alvarenga	25-4

Table 25.5.1	Estimate of the project cost of Remediation of old dumping site of Alvarenga	27-8
Table 25.5.2	Annual Expense of Maintenance of Old dumping site of Alvarenga	27-8
Table 26.3.1	Construction schedule of the experimental system	26-6
Table 26.5.1	Construction cost of the experimental purification system	26-7
Table 26.5.2	Maintenance cost of the experimental system of purification with aquatic	26-7
	plants	
Table 27.3.1	Environmental Protection Center	27-7
Table 27.4.1	Construction Cost of the Environmental Protection Center	27-7
Table 27.4.2	Annual Expense of Maintenance of the Environmental Protection Center	27-7
Table 29.1.1	Cost Estimation for Priority Projects: SBC jurisdiction	29-3
Table 29.1.2	Fund plan of SBC jurisdiction Projects	29-5
Table 29.1.3	Financial Alternatives of Environment Centre	29-6
Table 29.1.4	Results of Cost-Benefit Analysis	29-6
Table 29.1.5	Expense Advantage Calculation for Environment Center Alternative E	29-7
Table 29.2.1	Cost Estimation of SABESP Jurisdiction Projects	29-9
Table 29.2.2	SABESP Jurisdiction Business Fund Plan	29-10
Table 29.2.3	Cost-Benefit Analysis for SABESP Jurisdiction Projects	29-11
Table 29.2.4	Sensitivity Analysis	29-12
Table 29.2.5	Cost-Benefit Analysis for Sewerage Construction in the Urban Areas	29-13
Table 29.2.6	Cost-Benefit Analysis for Sewerage Construction in the Isolated	
	Communities	29-14
Table 31.1.1	Outlines of Priority Projects	31-1
Table 31.1.2	Necessity on Environmental Licenses for Priority Projects	31-3
Table 31.2.1	Possible Environmental and Social Impact caused by Priority Projects	31-9
Table 31.2.2	Possible Resettlement and Land Acquisition to be caused by Sewage Treatment Project in Urban Areas	31-10
Table 31.2.3	Possible Roads to be affected by Proposed Project	31-12
Table 31.2.4	Surrounding Environment of Proposed Pump Stations	31-13
Table 31.2.5	Public Communication Program	31-19
Table 31.2.6	Water Tariff directed for Dwellers in SBC city released by SABESP	31-22

Table 31.2.7	Regulation on Treatment and Disposal of Construction Waste based on CONAMA Resolution	31-24
Table 31.2.8	Evaluation Standard in Ambient Noise based on NBR 10151	31-25
Table 31.3.1	Methods of Stakeholder Meetings	31-27
Table 31.3.2	Results of Stakeholder Meetings	31-27
Table 32.1.1	Cost Estimates	32-3
Figure 1.1.1	Meteorological and Hydrological Observation stations around the Billings Reservoir Basin	1-2
Figure 1.1.2	Mean Monthly and Mean Annual Temperature	1-4
Figure 1.1.3	Mean monthly and Mean annual Relative Humidity	1-5
Figure 1.1.4	Mean Monthly and Mean Annual Atmospheric Pressure	1-6
Figure 1.1.5	Mean Monthly Evaporation and Annual Evaporation	1-8
Figure 1.1.6	Mean Monthly and Annual Duration of Sunshine and Percentage of Sunshine	1-8
Figure 1.1.7	Mean Monthly Precipitation	1-11
Figure 1.1.8	Annual Precipitation	1-12
Figure 1.1.9	Map of Classification of Declination in Surrounding Area of billings Reservoir Basin	1-16
Figure 1.1.10	Geological Map in Surrounding Area of Billings Reservoir Basin (1)	1-17
Figure 1.1.11	Geological Map in Surrounding Area of Billings Reservoir Basin (2)	1-18
Figure 1.1.12	Soil Map in Surrounding Area of Bllings Reservoir Basin	1-19
Figure 1.1.13	Map of Susceptibility for erosion in Surrounding area of Lake Billings Basin	1-20
Figure 1.1.14	Geotechnical Map in Surrounding Area of Billings Reservoir Basin	1-21
Figure 1.1.15	Annual Variation of RG-1 (Daily Discharge) and E3-149 (Daily Precipitation)	1-23
Figure 1.1.16	Discharge of Summit Control and Inflow by Pump-Up of Pedeira Dam	1-24
Figure 1.1.17	Annual Variation of Withdrawal from Billings Reservoir	1-27
Figure 1.1.18	Water Level and storage volume of Billings Reservoir	1-27
Figure 1.1.19	Map of Channel Stream System in Lake Billings Basin	1-29
Figure 1.1.20	Partition Map of Billings Reservoir Basin	1-30
Figure 1.1.21	Vegetation Map in Surrounding Area of Billings Reservoir Basin	1-33
Figure 1.1.22	Forestation Area Map in Surrounding Area of Billings Reservoir Basin	1-33

i.

Figure 1.2.1	Municipalities Involved in the Lake Billings Basin	1-37
Figure 1.2.2	Environmental protection area in the Lake Billings Basin	1-34
Figure 1.2.3	Transition of Total Population by Municipality and Basin Population	1-35
Figure 1.2.4	Land Use of Billings Reservoir Basin in 1989	1-38
Figure 1.2.5	Land Use of Billings Reservoir Basin in 1999	1-38
Figure 1.2.6	Land Use of Billings Reservoir Basin in 2000	1-41
Figure 1.3.1	Pumping-up of Tiete River Water to the Lake Billings	1-43
Figure 1.3.2	Pumping Discharge of River Water at Pedreira Dam to the Lake Billings	1-44
Figure 1.3.3	Water Use in the Lake Billings	1-45
Figure 1.3.4	Water Use in the Lake Billings for Water Supply	1-46
Figure 2.3.1	Organization Chart of the Secretariat for the Environment	2-7
Figure 2.3.2	Flowchart of Environmental License and Impact Assessment	2-12
Figure 2.3.3	Environmental standard	2-16
Figure 2.3.4	Effluent standards application by situation	2-15
Figure 2.5.1	Process for approval of PDPA - Water Source Preservation Plan	2-28
Figure 3.2.1	Scale of finance of the municipalities relevant to the Billings Lake(2002)	3-2
Figure 3.2.1	Annual revenue of SBC	3-5
Figure 3.2.2	Annual expenditure of SBC	3-21
Figure 3.5.1	J. Laura area in Alvarenga As-built drawing of storm water	3-21
Figure 3.6.1	Location Map of Main Landfill in Surrounding Area of Billings Reservoir	3-32
	Basin	
Figure 3.7.1	Location of the Administrative Area of the Cubatão Administrative Unit of PESM.	3-36
Figure 3.7.2	Municipal Parks by Sub Basin and Municipality	3-42
Figure 4.2.1	Organization of SABESP	4-4
Figure 4.2.2	Water Tariff of SABESP and SBC (Before Transfer of Water Supply to	4-7
	SABESP)	
Figure 4.2.3	Financial Status of SABESP	4-8
Figure 4.2.4	No. of Connections and Annual Accounted-for Water of SABESP	4-8
Figure 4.3.1	Water Supply Systems by SABESP	4-13
Figure 4.3.2	Production Amount and Population Served by Water Supply System	4-13
Figure 4.3.3	Location of Water Supply Facilities	4-17
Figure 4.3.4	Layout of Existing Facilities of Rio Grande WTP	4-18

Figure 4.3.5	Organization of Rio Grande WTP	4-19
Figure 4.3.6	Treatment Process	4-20
Figure 4.3.7	The water demand for RMSP and SABESP water supply system	4-30
Figure 4.3.8	Plan of Rio Grande WTP (after Renovation)	4-32
Figure 4.3.9	Chemical consumption at the Rio Grande WTP(Total)	4-32
Figure 4.3.10	Chemical consumption at the Rio Grande WTP (ferric sulphate)	4-33
Figure 4.3.11	Chemical consumption at the Rio Grande WTP (pH conditioner)	4-33
Figure 4.3.12	Chemical consumption at the Rio Grande WTP (fluorine)	4-34
Figure 4.3.13	Chemical consumption at the Rio Grande WTP (algaecide)	4-34
Figure 4.3.14	Chemical consumption at the Rio Grande WTP (coagulant aid)	4-35
Figure 4.3.15	Chemical consumption at the Rio Grande WTP (oxidant/disinfectant)	4-35
Figure 4.1.16	Chemical consumption at the Rio Grande WTP (powdered activated carbon)	4-36
Figure 4.4.1	View of Sewerage System Plan in Greater São Paulo	4-38
Figure 4.4.2	ABC Sewerage System	4-43
Figure 4.4.3	Sewerage System in São Bernardo do Campo – Sewerage	4-46
Figure 4.4.4	STP ABC Process Flowchart	4-47
Figure 4.4.5	Location of STP Riacho Grande	4-51
Figure 4.4.6	STP Riacho Grande	4-52
Figure 4.4.7	Flowchart of STP Riacho Grande	4-53
Figure 4.4.8	Location of STP JD Pinheirinho	4-55
Figure 4.4.9	Flowchart of STP Pinheirinho	4-55
Figure 4.4.10	Project Tiete	4-61
Figure 4.4.11	Design of the Sewerage System in São Bernardo do Campo region	4-64
Figure 5.1.1	CETESB and SABESP have conducted regular water quality monitoring at the	5-2
	locations	
Figure 5.1.2	Current status of water pollution of the Billings Lake	5-5
Figure 5.1.3	Secular Changes in Water Quality (BOD) of the Lake Billings	5-6
Figure 5.1.4	Secular Changes in Water Quality (TP) of Lake Billings	5-7
Figure 5.1.5	Secular Changes in Water Quality (Hg) of Lake Billings	5-7
Figure 5.1.6	Secular Changes in Water Quality (BOD) of Lake Rio Grande Arm	5-8
Figure 5.1.7	Secular Changes in Water Quality (NH_4) of Lake Rio Grande Arm	5-8
Figure 5.1.8	Secular Changes in Water Quality (Chlorophyll-a) of Lake Rio Grande	5-9
	Arm	
Figure 5.1.9	Sampling Point by SABESP in Rio Grande Arm	5-13
Figure 5.1.10	Algicide Scattering Map in the Rio Grande Arm	5-14
Figure 5.1.11	Sampling Points for Plankton Survey	5-15
Figure 5.1.12	Yearly Change of Cyanobacteria (Dec. 2004 to Dec. 2005)	5-21

Figure 5.1.13	Change of water quality (conductivity, TN, TP, pH) at BL105 of the Taquacetuba Arm (Dec. 2004 to Dec. 2005)	5-22
Figure 5.1.14	Pumping operation from the Taquacetuba Arm to the Lake Guarapiranga in	5-23
riguie still i	2005	5-25
Figure 5.1.15	Water quality monitoring results by the CETEB and tha JICA Study (2005)	5-26
Figure 5.2.1	Mass circulation by inflow, internal production, sedimentation, elution and	5-28
- Bare etart	discharge in a lake	5 20
Figure 5.2.2	Clubs and Parks around the Lake Billings and Rio Grande Arm	5-34
Figure 5.2.3	Area where damages for cattle were caused by harmful	5-36
rigure 5.2.5	cyanobacterium	5-50
Figure 5.3.1	The points of monitoring for lakes	5-40
Figure 5.3.2	The points of monitoring for incoming rivers	5-41
Figure 5.3.3 (1)	Horizontal variation of water quality (BOD,TP) along the river drifts at the	5-42
Figure $5.5.5(1)$	Lake Billings	3-42
Figure 5.3.3 (2)		5 12
Figure 5.5.5 (2)	Horizontal variation of water quality (TN,Chlo-a) along the river driftsat the Billings Lake	5-43
Figure 5.3.4	Vertical variation of water quality at BL-01of the Lake Billings	5-45
Figure 5.3.5	Seasonal variations of water quality in the Lake Billings	5-46
Figure 5.3.6	Relationship between parameters (T-N vs. T-P and F-Coli vs. BOD) at the	5-47
	Lake Billings	
Figure 5.3.7(1)	Horizontal variation of water quality (BOD, T-P) along the river drifts at Rio	5-48
	Grande Arm	
Figure 5.3.7(2)	Horizontal variation of water quality (T-N, Chlo-a) along the river drifts at Rio	5-49
	Grande Arm	
Figure 5.3.8	Vertical variation of Water Quality at Rio Grande Arm (RGDE01)	5-50
Figure 5.3.9	Seasonal Variations of water quality at RGDE01 of Rio Grande Arm	5-52
Figure 5.3.10	Relationship between parameters (T-N vs. T-P and F-Coli vs. BOD at Rio	5-54
	Grande	
	Arm	
Figure 5.3.11(1)	Water quality of incoming rivers (BOD/COD/T-N)	5-56
Figure 5.3.11(2)	Water quality of incoming rivers (T-P/TSS/TOC)	5-57
Figure 5.3.12	Seasonal variation of water quality of incoming rivers to the lakes	5-58
Figure 5.3.13	Proportion of contribution by river in runoff load (BOD, T-N, T-P) during	5-63
	dry season	
Figure 5.3.14	Proportion of contribution by river in runoff load (BOD, T-N, T-P) during	5-64
	wet season	
Figure 5.3.15	H-V Curve of EMAE	5-65

Figure 5.3.16	Monitoring Points for Water Quality and Bottom Sediment in the arms of the Lake Billings	5-67
Figure 5.3.17	Monitoring Points in the Lake Billings and Estimation of Piled Sludge Volume	5-68
Figure 6.2.1	Comparison of amount of sewage generated and discharged (Scenario 2)	6-2
Figure 6.4.1	Factories location map in the Billings basin (source: CETESB)	6-4
Figure 6.6.1	Location of piggery and waste disposal site (source: Billings2000)	6-10
Figure 6.9.1	Rainfall frequency distribution of meteorological observatory in Sao Paulo University	6-13
Figure 6.10.1	Current status of pumping up from the Pinheiros river	6-17
Figure 6.10.3	Presumption of amount of SS inflow to the Billings Lake	6-20
Figure 6.11.1	Locations of specific Pollution Source	6-20
Figure 7.1.1	Definition of Loads(Point Sources and Non-point Sources)	7-2
Figure 7.2.1	Plan of continuous pumping and quality of the Pinheiros Rover water	7-4
Figure 7.3.1	Runoff Load Model and Effluent Load Model (Runoff Load Model and Effluent Load Model)	7-6
Figure 7.3.2	Separation of Runoff Load	7-6
Figure 7.3.3	Detailed Diagram of Runoff Load Model	7-7
Figure 7.3.4	Work flow for calculation of runoff load from the Lake Billings and Rio	7-8
- Bure there	Grande Arm Basin work flow of runoff load model applied to the Lake Billings and Rio Grande Armwork flow for calculation of runoff load from the Lake Billings and Rio Gramde Arm basin	, 0
Figure 7.3.7	Relationship between Runoff Ratio and Population Density/Basin Area ^{1/2}	7-12
Figure 7.3.8	Relationship between Runoff Ratio and Population Density/Basin Area ^{1/2}	7-12
Figure 7.3.9	Relationship between Effluent Load/Basin Area/Basin Area ^{1/2} and Runoff Ratio	7-13
Figure 7.3.10(1)	Relationship between effluent load (BOD) and runoff coefficient of model river.	7-14
Figure 7.3.10(2)	Relationship between effluent load (TN) and runoff coefficient of model river.	7-15
Figure 7.3.10(3)	Relationship between effluent load (TP) and runoff coefficient of model river	7-15
Figure 7.3.11	Map for sub-basins of the Lake Billings and Rio Grande Arm	7-16

Figure 7.3.12	Annual rainfall variation for 1984 ~ 2005 (IAG-USP , E3-035)	7-17
Figure 7.3.13	Estimated effluent loads by sub-basin	7-18
Figure 7.3.14	Composition of estimated runoff load from sub-basins	7-21
Figure 7.3.15	Estimated runoff loads from sub-basins in 2005 (BOD, TN, TP)	7-26
Figure 7.3.16	Estimated runoff load from sub-basins by target year	7-29
Figure 7.3.17	Yearly change of estimated runoff loads from sub-basins after sewerage	7-30
	construction (BOD)	7-50
Figure 7.4.1	ELCOM-CAEDYM MODEL	7-32
Figure 7.4.2	Example of ELCOM-CAEDYM Output for Billings Reservoir	7-34
Figure7.4.4	Computational grids of Billings Reservoir	7-38
Figure 7.4.5	Comparison between numerical simulations with ELCOM/CAEDYM and	7-39
	field data obtained by SABESP automatic water quality station located at	
	Taquacetuba arm of Billings resevoir. The top panel compares the water	
	temperatura and the bottom one show the dissolved oxygen results. The	
	simulations were conducted with the new grid (500×500 meters with enhanced	
	resolution near Imigrantes)	
Figure 7.4.6	Frames of computer animation illustrating the evolution of a tracer inside	7-43
-	Billings reservoir.	
Figure 7.4.7	Discretization of Rio Grande Reservoir on 200x200 meters horizontal cells	7-43
Figure 8.2.1	Procedure for the Society and Opinion Survey involving Residents of the	8-2
	Basin	
Figure 8.3.1	Billings Lake – Sampling Locations	8-6
Figure 8.4.1	Socio-economic Classification of Families per City and in the Basin	8-9
Figure 9.1.1	Population in Sao Paulo & Basin and Pumping Discharge to the Lake Billings	9-4
	Reservoir	
Figure 9.1.2	Image for Improvement of Basin Environment of the Billings Lake	9-6
Figure 9.2.1	Federal environmental standards for freshwater and drinking water	9-8
	standards	
Figure 9.5.1	Planning framework for basin environment improvement of the Lake	9-15
	Billings	
Figure10.1.1	Population projection(Adopted, CASE JICA)	10-2
J	· spannen projection (Adopted, CAOD FICA)	10-2
Figure 11.1.1	Flow sheet diagram of pollution load reduction	11-1

Figure 11.1.2	Densely populated district of the Billings Lake basin (2025)	11-3
Figure 11.1.3	Couros river basin sewage trunk line plan	11-4
Figure 11.1.4	SBC Couros trunk line service area	11-4
Figure 11.2.1	Distribution of scatterd community	11-7
Figure 11.2.2	Plan of CASE-1	11-2
Figure 11.2.3	Plan of CASE-2	11-10
Figure 11.2.4	Plan of CASE-3	11-10
Figure 11.2.5	Plan of CASE-4	11-11
Figure 11.2.6	Plan of CASE-5	11-11
Figure 11.2.7	Plan of CASE-6	11-12
Figure 11.7.1	Location of the Colonia Crater	11-22
Figure 11.7.2	Section of Crater	11-28
Figure 11.11.1	Monitoring Points in the arms	11-36
Figure 11.11.2	Monitoring points of rivers	11-36
Figure 13.3.1	Project Implementation Programme for Master Plan	13-13
Figure 14.1.1	Association of Clean the Billings and Role Sharing among Stakeholders	14-2
Figure 14.1.2	Organization of the Municipality of Sao Bernardo do Campo	14-5
Figure 14.1.3	Organization of the Department of Planning and Information Technology	14-6
• ,	(SP)	
Figure 14.1.4	Organization of the Department of Housing and Environment (SHAMA)	14-9
Figure 14.1.5	Project Implementation System in SBC	14-12
Figure 14.2.1	Number of Employees and Labor Productivity in SABESP	14-16
Figure 14.2.2	International Comparison of the Number of Staff per 1000 Connections	14-17
Figure 15.2.1	Project Location Map	15-9
Figure 15.3.1	Concept of Project Area	15-11
Figure 15.5.1	General Method of Secure of Project Area in Sewerage Project	15-17
Figure 16.1.1	Covering of SBC's Pamphlet	16-4
Figure 16.2.1	Contents of SBC's Pamphlet	16-4
Figure 17.1.1	Monitoring points and computational structure of the Lake Billings	17-1
Figure 17.1.2	Relationship between the water quality at PINH 0490 and the rainfall for	17-4
	three consecutive days	
Figure 17.1.3	How to See the Figures Showing the Simulation Results	17-10
Figure 17.1.4(1)	Attainment status of WQCTs for the Lake Billings (Chlorophyll-a in 2025	17-11

	sewered)	
Figure 17.1.4(2)	Attainment status of WQCTs for the Lake Billings (BOD ₅ in 2025	17-12
	sewered)	
Figure 17.1.4(3)	Attainment status of WQCTs for the Lake Billings (DO in 2025 sewered)	17-13
Figure 17.1.4(4)	Attainment status of WQCTs for the Lake Billings $(NH_4-N \text{ in } 2025)$	17-14
	sewered)	
Figure 17.1.4(5)	Attainment status of WQCTs for the Lake Billings (PO4-P in 2025	17-15
	sewered)	
Figure 17.1.4(6)	Attainment status of WQCTs for the Lake Billings (TP in 2025 sewered)	17-16
Figure 17.1.5	Monitoring points and computational structure of the Rio Grande Arm	17-18
Figure 17.1.6	Change of water surface cell concentration in the Rio Grande Arm	17-20
Figure 17.2.1	Plan of continuous pumping and quality of the Pinheiros River	17-23
	water	
Figure 17.2.2	Possible pumping pattern	17-24
Figure 17.2.3(1)	Attainment status of WQCTs for the Lake Billings (Chlorophyll-a)	17-28
Figure 17.2.3(2)	Attainment status of WQCTs for the Lake Billings (BOD ₅)	17-29
Figure 17.2.3(3)	Attainment status of WQCTs for the Lake Billings (DO)	17-30
Figure 17.2.3(4)	Attainment status of WQCTs for the Lake Billings (NH ₄ -N)	17-31
Figure 17.2.3(5)	Attainment status of WQCTs for the Lake Billings (PO ₄ -P)	17-32
Figure 17.2.3(6)	Attainment status of WQCTs for the Lake Billings (TP)	17-33
Figure 17.2.4	Attainment status of WQCTs	17-34
Figure 17.2.5	Comparison of Estimated Loads	17-37
Figure 18.4.1	Water Production cost and Water Quality	18-16
Figure 20.2.1	Composition of pollutant loads in the Lake Billings and The Rio Grande	20-6
	Arm	
Figure 21.1.1	Location Map of Sewerage Project in Urban Area	21-5
Figure 21.2.1	Imigrantes trunk sewer in the Lake The Billings Lake basin	21-8
Figure 21.2.2	The route of Couros trunk sewer and sewer longitudinal section	21-9
Figure 21.2.5	Drawings of Pumping Stations EEE-01	21-17
Figure 22.1.1	ETE Riacho Grande (present state)	22-3
Figure 22.1.2	The project area of Riacho Grande	22-4
Figure 22.2.1	Flowchart of the treatment in ETE Riacho Grande	22-9
Figure 22.2.2	The facility arrangement of ETE Riacho Grande (1)	22-11
Figure 22.2.3	The facility arrangement of ETE Riacho Grande (2)	22-12

Figure 22.2.4	The facility arrangement of ETE Riacho Grande (3)	22-13
Figure 22.2.5	Flowchart of treatment in ETE Santa Cruz	22-14
Figure 22.2.6	ETE Santa Cruz	22-16
Figure 23.1.1	Suitable residential areas for road permeable pavement by construction	23-4
	work lot	
Figure 23.2.1	Standard Construction Method of Permeable Pavement Road	23-8
Figure 24.2.1	The location of Alvarenga Park	24-2
Figure 24.2.2	Sectioned drawing of Alvarenga Park	24-3
Figure 24.2.3	General design maps of Alvarenga Park	24-3
Figure 25.2.1	Remediation of the Old Sanitary Land fill of ALVARENGA (1)	25-5
Figure 25.2.2	Remediation of the Old Sanitary Land fill of ALVARENGA (2)	25-6
Figure 25.2.3	Remediation of the Old Sanitary Land fill of ALVARENGA (3)	25-7
Figure 26.3.1	Plan of Water treatment by aquatic plants	26-4
Figure 26.3.2	Sectioned drawing of Water treatment by aquatic Plants	26-5
Figure 27.2.1	Location map of Environmental Protection Center	27-4
Figure 27.2.2	The plan of Environmental Protection Center	27-5
Figure 27.2.3	The installation of Environmental Protection Center	27-6
Figure 28.1.1	Image of implementation of measures with softcomponent	28-2
Figure 31.1.1	Outlines and locations of the proposed priority projects	31-2
Figure 31.1.2	Remediation of Process Flow Contaminated Areas	31-8
Figure 31.2.1	Location Map of Possible Resettlement and Land Issues	31-11
Figure 31.2.2	Location Map of Squatters	31-16
Figure 31.2.3	Procedures on Land Expropriation	31-21
Figure 32.1.1	Project Implementation Program	32-2
Photo3.5.1	Stone pavement and storm water inlet	3-20
Photo 4.3.1	Intake Pumping Station	4-14
Photo 4.3.2	Copper Sulfate in the Storage	4-15
Photo 4.3.3	Chemical Applying Boat	4-15

1

Photo 4.3.4	Intake from Pond	4-24
Photo 4.3.5	Intake Well with Submersible Pumps	4-24
Photo 4.3.6	Intake Point from Pedroso Reservoir	4-25
Photo 4.3.7	Maze Flocculator	4-26
Photo 4.3.8	Taquacetuba Floating Water Intake System	4-27
Photo 4.3.9	Lakeside Pumping Station (LPS)	4-27
Photo 4.4.1	View of ETE Riacho Grande	4-66
Photo 5.1.1	Water Bloom near Intake Point in 2001	5-14
Photo 5.1.2	Removal Macrofitas	5-18
Photo 5.1.3	Aquatic Plant around Intake P/S	5-18
Photo 5.1.4	Belt Conveyor for Removal of Aquatic Plant	5-18
Photo 5.3.1	Sludge Thickness Survey in the arms of the Lake Billings	5-66
Photo 6.4.1	OD operation status of the Yakult factory	6-6
Photo 6.4.2	The Valspar com.Lagoon Operation status	6-6
Photo 6.4.3	Solvay Indupa Facility operation status	6-7
Photo 9.1.1	Children Enjoining a Swimming in the Billings Lake	9-2
Photo 11.7.1	Existing old dumping site of Alvarenga	11-24
Photo 15.2.1	Project Site of Sewerage construction Project in Urban Areas (SBC city)	15-1
Photo 15.2.2	Riacho Grande WWTP	15-2
Photo 15.2.3	Santa Cruz Project Site	15-2
Photo 15.2.4	Project Sites of Permeable Pavement Project (Alvarenga & Santa Cruz)	15-3
Photo 15.2.5	Project Sites (Alvarenga District in SBC & Municipal Park in Diadema)	15-3
Photo 15.2.6	Former Open Dumping Site (Resident Houses at left side)	15-4
Photo 15.2.7	Exit of Leachate Discharge	15-4
Photo 15.2.8	Project Sites (Cove in Sao Paulo and SBC city (Alvarenga District)	15-4
Photo 15.2.9	Project Sites (Water Area in front of Pinheirinho WWTP and Estoril Park)	15-5
Photo 15.2.10	Project Site inside Estoril Park	15-5
Photo 20.2.1	Eco-town Movement (Bairro Ecologic)	20-8
Photo 23.1.1	Residential areas for permeable pavement	23-3
Photo 31.2.1	Project Site of Sewage Treatment Project in Santa Cruz	31-13

Photo 31.2.2	Project Site of Public Park / Green Space Development Project	31-15
Photo 31.3.1	Stakeholder Meetings	31-28

List of Abbreviations

.

ABC	Brazilian agency of Cooperation
ABNT	Brazilian association of Technical Norms
ANA	National agency of the Water
APA	Area of Environmental Protection
APRM	Area of Protection and Recovery of springs
ARA	Area of Environmental Recovery
ARO / APP	Area of Restriction to the occupation / Area of Permanent Protection
BB	Bank of Brasil S/A
BC	Central bank of Brazil
CADES	Municipal Council of Environment and Maintainable Development
CAEDYM	Computacional Model of Ecological Dynamics Aquatic
CEAM	Center of Environmental Education
CEF	Federal savings bank
CESP	Central Electric of Paulo S.A.
CETESB	Company of Technology of Environmental Sanitation
CONAMA	National Council of the Environment
CONSEMA	State Council of Environment
COT or TOC	Total Organic carbon
CPLEA	Coordination of Strategic Environmental Planning and Environmental Education
СТ	Trunk Collector
DAEE	Department of Waters and Electric power
DAIA	Department of Evaluation of Environmental Impact
DBO or BOD	Biochemical Oxygen demand
DEPRN	State department of Protection of the Natural Resources
DNER	National department of Highway
DNPM	National department of the Mineral Production
DOC	Dissolved Organic carbon
DQO or COD	Chemical demand of Oxygen
EEA	Pumping Station of Water
EEE	Pumping Station of sewage
EIA/RIMA	Study of Environmental Impact / Report of Impact of the Environment

EIRR	Rate of Internal Economical Return						
ELCOM	Model of Estuary, Lake and Oceanic Costa						
EMAE	Metropolitan company of Water and Energia S.A.						
EMPLASA	Metropolitan company of Planning of Great São Paulo						
ETA	Station of Water Treatment						
ETE	Station of Sewage Treatment						
FIESP	Federation of the Industries of the State of São Paulo						
FIRR	Rates of Financial Intern of Return						
FUSP	Foundation of the University of São Paulo						
Grande ABC	Santo André, São Bernardo do Campo and São Caetano do Sul						
IBAMA	Brazilian institute of the Environment and of the Renewable Natural Resources						
IBGE	Brazilian institute of Geography and Statistics						
IPT	Institute of Technological Researches of the State of São Paulo						
ISA	Environmental institute						
JICA	Japan International Cooperation Agency.						
M/M	Minutes of Meeting						
MMA	Ministry of the Environment						
MOD	Dissolved Organic matter						
NPV	Net Present value						
NT or TN	Total nitrogen						
PAT-PROSANEA	AR Technical support organization						
PDPA	Plan of Development and Environmental Protection						
PETROBRÁS	Brazilian petroleum						
RMSP	Metropolitan area of São Paulo						
SABESP	Company of water supply and sewerage of the State of São Paulo						
SBC	São Bernardo do Campo city						
SEMASA	Municipal of Environmental Sanitation of Santo André						
SHAMA	General office of House and Environment						
SIG/ISA	System of Geographical Information of the Partner-environmental Institute						
SMA	General office of the Environment of the State of São Paulo						
TAC	Term of Adjustment of Conduct						
USP	University of São Paulo						

PART 1 FUNDAMENTAL STUDY

Chapter 1 <u>HISTORY AND ENVIRONMENT</u> <u>OF THE BILLINGS LAKE</u>

.

1. HISTORY AND ENVIRONMENT OF THE BILLINGS LAKE

For understanding importance of this Study, it is necessary to know the present water use and its problems of the Lake Billings, and the importance as a water source for the Greater Sao Paulo Area, as well as the policy of the state government for water resource concerned with use in this waters and the legislation and institution for the conservation of water resource.

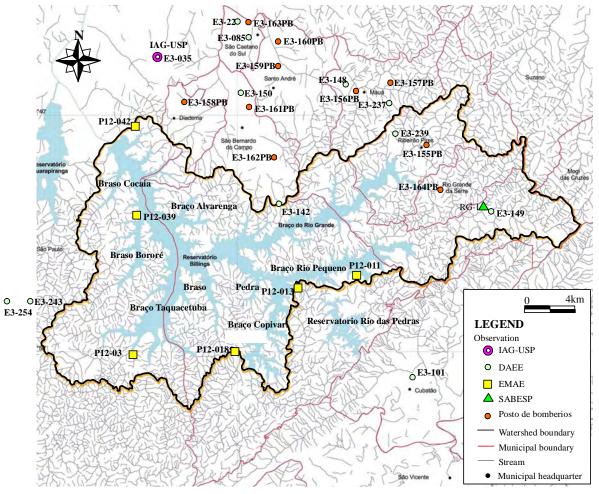
The previous headwater protection law severely regulated land use in the basin, as described in **2**, but could not control illegal land use in the protection area and population increase against the regulation.

From such past experience, the new law make possible with more flexible provisions to formulate the practical solutions for implementation so as to meet the characteristics of each basin. The law regards each basin as an object for planning and operation of the projects and provides to establish the laws and regulations which match the basin conditions in the environmental protection and improvement areas and to urge the participation of not only local governments but also civic groups.

Simultaneously, these laws provide the execution of an emergency countermeasure plan to cope with a state of emergency such as water pollution, and accept onsite wastewater treatment and refuse disposal in each basin, which are not admitted by the previous law

This Study aims at formulating a master plan for the environmental improvement in the catchment area of the Lake Billings. The plan meets the purpose of the PDPA (Plano de Desenvolvimento e Proteção Ambiental da Bacia) established by the state laws and will be submitted later to the Billings/Tamanuduatei River Sub-committee for discussion.

1.1 Natural condition of Lake Billings Basin


1.1.1 Weather

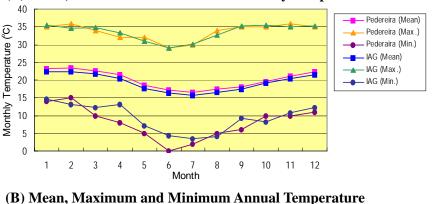
The Lake Billings basin is located at the edge in the plateau part where the relief is gentle and the altitude above sea level about 700m to 800m is steeply lifted from the costal low land with 0m to several 10m. The costal mountain stretches from west-southwest to east-northeast exists in southward of the Lake Billings basin. The costal low land also spreads with the same direction in southward the costal mountain.

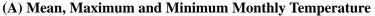
The surrounding area of the basin is located near the southern circle and shows the highland climate of the subtropical climate zone. October - March is a rainy season with high temperature, and June - September is a dry season with comparatively low temperature. The southward region in the basin including the south slope in the coastal mountain and the edge of the plateau part is a rainy region because the air mass of the high temperature and humidity from the Atlantic Ocean in the south hits the coastal mountain wall, and it makes a large amount of rain fall in the rainy season.

The meteorological and hydrological observation stations around the Lake Billings basin are shown in **Table 1.1.1**, and the location map is shown in **Figure 1.1.1**. E3-035 (IAG-USP in Ipiranga park of

the Sao Paulo Municipal) and P-12-042 (Pedreira dam of EMAE) are only the meteorological stations where the long-run observation are continued. A lot of rainfall station exists around the Basin, but quite a lot of station has missing values.

(Base map; Billings 2000 João Paulo Ribeiro Capobianco, Marussia Whately 2002 ISA)


Figure 1.1.1 Meteorological and Hydrological Observation Stations around the Lake Billings Basin


			Lunder	rouðinae Ei		Maillobal			1 2001 4001	1300 1301 13	1366 1363 1330	1997 1992	1323	1 0001 #001	1336 1337	1336 1333	2000 2001	2002	2003 2004
Temperature Daily	r E3-035	Observatório IAG	23° 39'	46°38	780 Sái	São Paulo	Outside	IAG-USP						1					╢
	/ E3-035	Observatório IA G	23° 39'	46°38		o Paulo	Outside	IAG-USP											
		Observatório IAG	23° 39'	46°38'		São Paulo	Outside	IAG-USP						ļ	I	-			
Daily	/ E3-035	Observatório IAG	23° 39'	46°38		São Paulo	Outside	IAG-USP			-			ł	+	-	Ŧ		+
unshine		Ubservatorio IA G	23° 39	46°38	700 54	Sao Paulo	Outside	IAG-USP							-				+
Evaporation Daily		Ubservatorio IA G	23" 33	40~38	_	Sao Paulo	Uutside	IAG-USP						+	Ŧ		-		-
Vieteorology-B Termnerature Nonthly	thiv P-12-042	Pedreira	23º 41' 59"	46° 40' 11"	Să	Săn Pauln	Å-14	FMAF			-	-	-	-	Ħ			Ì	∦
Γ	T		23° 41' 59"	46° 40' 11"	Sãi	cáo Paulo	A-14	EMAE			Ť								
rection)			23° 41' 59"	46° 40' 11"	São	São Paulo	A-14	EMAE						200			1 - 1 - C		
			23° 41' 59"	46° 40' 11"	Sãi	São Paulo	A-14	EMAE											
Evaporation Nonthly			23° 41' 59"	46° 40' 11"	Sãi	São Paulo	A-14	EMAE											
2			100	I	- 1			1									-		
Daily		São Caetano do Sul	23° 38'	46° 35	3	são Caetano do Sul	Outside	DAEE			-			-+	-+	-	-		H
Ually Dorth	T	Observatorio (A G	23° 39'	46°38	700 52	sao Paulo	Outside	DAEE							Ī		+		ł
Ually Dett:	1 E3-USD	Ubservatorio IA G		40,38	3 6	5a0 Paulo	Uutside:	UAEE		-				ţ	Ì	-	ł	Ì	+
Daik		VIIa Prosperidadetusiyi Cubatão		40. 33	1.5U 2.80	oad Caetano do oul Pubatão	Outside Outside	DAFE				ļ		ļ	Ĩ				+
Daily	111	Recalmente do 480.	22° 45'	46°37	840 Sãr	São Bernardo do Camoo	Automo A-11	DAFF		Ħ				Ĩ	F				+
Daily		Mauá	23° 40'	46° 29		ji	Outside	DAFF											$\frac{1}{2}$
Daily		Campo Grande	23° 48' 39"	46° 27 45"	_	to André I	-	DAEE							Ï				
Daily	/ E3-150R	Rudge Ramos	23° 40'	46°34'	780 Sát	São Bernardo do Campo	Outside	DAEE				Î		Ī				į	
Daily		Poundura	23° 21'	46° 56	740 Caj	Cajamar	_	DAEE											\vdash
Daily	(E3-237	Sertãozinho	23° 42'	46°29	790 Mai	Mauá	Outside	DAEE											ļ
Daily		Guapituba	23° 42'	46°27	$\overline{\mathbf{O}}$	Ribeirão Pires	B-4	DAEE					-						
Daily		P arelheiros	23° 50'	46° 44'	05	São Paulo	Outside	DAEE											H
Daily	(E3-245	Taiacupeba Mirim	23° 39'	46° 20		Suzano	Outside	DAEE											╟
Daily		Embura		46° 45'	/80 5a0	sao Paulo	Uutside	DAEE											
Ual)		Bar. Pequeno Peregue Summit Control	23° 48° 39° Doo Ani Aoli	46° 27' 45" Aco 24' 2A"	09 08 0	são Bernardo do Campo São Bernardo do Campo	1-4-4-1 A & A	EMAE								-			
			00 64 02	40.01.24	00	Demardo do Comuni	0 4	CIVINC FAARF			-		Ť,	+	ļ		+		+
Date			00 70 00	40 54 US Aco 20 E4"	000	sau bernaruu uu varripi São Davila	8-8 8 4 5	EMAE	ļ		-	-					-		
Daily		IICAO LICIO	20 02 20 790 AFI EQU	10 00 04	Cár Cár	cau nautu Can Paulo	A-4-2 A 9.9	CIMAC	Ħ	Ŧ	÷	ļ	+	ŧ	Ŧ	Ŧ	ł	t	
Daily	P-12-042	Pedreira	220 41 50	46° 40' 11"	200	Sán Paulo Sán Paulo	A-2-0 A-14	EMAE	đ				ļ	Į	Ĭ	I		Į	∦
Daily		Pires	23° 42' 29"	46° 25 05"	Rib	Ribeirão Pires	B-4	Posto de Bombeiros				L		Ļ					H
Daily		Noêmia	23° 40' 03"	46°28'05"	Ma	Mauá	Outside	Posto de Bombeiros		t									
Daily		Jardim Zaira	23° 39' 02"	46° 26' 26"	Mauá	uá	Outside	Posto de Bombeiros											╢
Daily		Diadema	23° 41' 04"	46°36'44"	Dia	Diadema	Outside	Posto de Bombeiros		F									
Daily		Campestre	23° 38' 53"	46° 32' 47"	Sai	Santo André	Outside	Posto de Bombeiros											
Daily		=	23° 37' 33"	46°31'06"	Sai	Santo André	Outside	Posto de Bombeiros											
Daily		-	23° 41' 15"	46°33'36"	Sãi	são Bernardo do Campo	Outside	Posto de Bombeiros										9	
Daily			23° 43' 18"	46°32 11"	Sãi		Outside	Posto de Bombeiros		_					_				
Daily	/ E3-163PB	Barcelona	23° 36' 55'	46°33'20"	Sã	ão Caetano do Sul	Outside	Posto de Bombeiros											
Daily	1	Rio Grande da Serra			Rio	Rio Grande da Serra	Outside	Posto de Bombeiros											
10	T C C	Country Duranda	NOC ION OCC	124 20024	0	dia fi adat	C	0000		+									
Discharge		vampo Grande	C2 48 38	CF 17_04	08.	oamo Andre	5-2	OABEOL											
Daily	P.12.013	Summit Control	030 TO1 US	"PC 34: 29"	200	ăn Bernardo do Camo	8.8	EMAE							1				-
Withdrawal			22 22	1	5		>	TIMOT											4
Daily	1	Taquacetuba			Sãi	São Paulo	A-3-2	SABESP							F				╢
Daily	12	Rio Grande			Sãu	São Bernardo do Campo		SABESP								1	0. 11/20 10	0	
		Ribarão Estiva			Rio	Rio Grande da Serra	_	SABESP				L							
nflow (Pumping-up)			000 411 From																Ц
Materievel (Bilines Boconcie)	P-12-042	Pedreira	23° 41' 59"	46° 40' 11"	Sa	São Paulo	A-14	EMAE											
בו (סווווולוא עבאבוניטו	(iii)																	-	_

(1) Temperature

The mean monthly temperature for 20 years of 1985 to 2004 at Pedreira dam is 16.6°C to 23.4 °C, and the lowest is in July, and the highest is in February. The mean annual temperature is 20.1 °C, the minimum r temperature is 0.0 °C, and the maximum temperature is 36.0 °C. The upside of about 0.6 °C is perceived by the mean annual temperature of 20 years (refer to **Figure 1.1.2(B)**).

In IAG(USP) observatory, it is 15.7 °C - 22.4 °C, and July is the lowest, and January and February are highest. The mean annual temperature is 19.3 °C, the minimum air temperature is 3.4 °C, and the maximum temperature is 35.4 °C. The upside of about 0.5 °C is perceived by the mean annual temperature of 20 years (refer to **Figure 1.1.2(B)**).

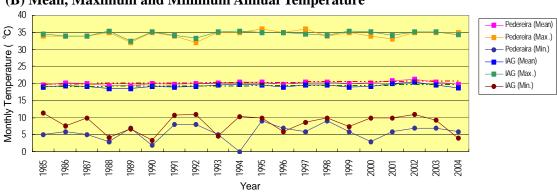
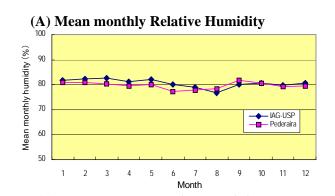


Figure 1.1.2 Mean Monthly and Mean Annual Temperature

(2) Relative humidity

The mean monthly relative humidity of the Pedreira dam for 20 years of 1985 to 2004 is 77.8 - 81.0%, and August is the lowest, and January is highest.


The mean annual relative humidity of 20 years is 79.1 - 83.1% (80.6% on the average), and a remarkable change is not perceived (**Figure 1.1.3**).

In IAG(USP) observatory, it is almost similar to the Pedreira dam station, the mean monthly relative humidity of 20 years is 76.8 - 82.2%, and July is lowest, and February is highest. The mean annual relative humidity of 20 years is 77.0-82.8% (79.7% on the average), and a remarkable change is not perceived (**Figure 1.1.3**).

(3) Atmospheric pressure

The atmospheric pressure is measured in the IAG(USP) observatory.

The mean monthly atmospheric pressure of 20 years of 1985 to 2004 is 922.8 - 929.6 hPa, December is the lowest, and July is the highest. The mean annual atmospheric pressure of and 20 years is 925.5 - 926.4 hPa (average 926.0 hPa), and a remarkable change is not perceived (**Figure 1.1.4**).

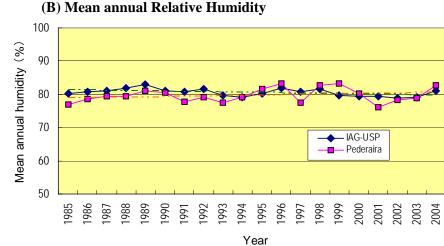
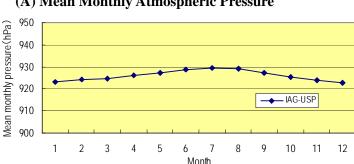
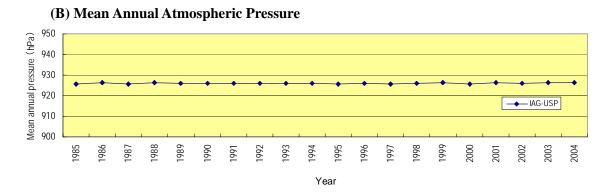




Figure 1.1.3 Mean monthly and Mean annual Relative Humidity

(A) Mean Monthly Atmospheric Pressure

(4) Wind direction and wind velocity

The monthly superior wind direction of the Pedreira dam station for 20 years of 1985 to 2004 is in southwest (SE), and the monthly secondary superior wind direction is in northwest (NW) in December to February. The mean monthly wind velocity is 1.9 to 3.0 km/h, but it has not records in order to non-observation since September 1988.

In the IAG(USP) observatory, the wind of northwest (NW) is superior in January, the wind of southeast (SE) is superior in February to April, the wind of south-southeast (SSE) to southeast (SE) is superior in September to November, and the wind of east- southeast (ESE) is superior in December.

The wind in the superior direction and the wind in the opposite direction mix in December to January, May, and August when the wind direction changes. The second superior wind in northwest (NW) direction mixes with the superior wind in the east-southeast (ESE) direction in December, and the wind in southeast (SE) or east-southeast (ESE) direction mixes with the superior wind in northeast (NW) direction or northwest (NE) direction in January, May and August.

The mean monthly wind velocity is 5.4 - 6.8 km/h. The wind is strong in October to December, and the wind is weak in March to July. The maximum daily wind velocity in month is 21.0 - 26.0 km/h except a temporary strong wind (Refer to Table 1.1.2).

	Month	1	2	3	4	5	6	7	8	9	10	11	12
	Prevailing wind direction	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE	SE
Pederaira	Second prevailing wind direction	NW	NW		С			NW					NW
	Mean wind velocity (km/h)	2.7	2.3	2.3	2.5	1.9	1.9	2.3	2.4	3.0	3.0	3.0	2.6
	Prevailing wind direction	NW	SE	SE	SE	NE	NE	NE	NE	SSE	SE	SE	ESE
IAG-USP	Second prevailing wind direction	ESE	E/ESE	ESE	SSE	ESE	NNE	NNE	SE	SE	SSE	ESE	SE/NW
IAG-USI	Mean wind velocity (km/h)	6.2	5.9	5.6	5.8	5.6	5.4	5.7	5.9	6.6	6.7	6.8	6.7
	Maximum wind velocity (km/h)	22.0	21.0	21.0	22.0	25.0	25.0	26.0	78.0	22.0	26.0	23.0	22.0

 Table 1.1.2
 Monthly Wind Direction and Velocity

(5) Evaporation

The evaporation for 20 years of 1985 to 2004 in the Pedreira dam station is observed at 2 methods of the pitch equipment and the tank on the ground.

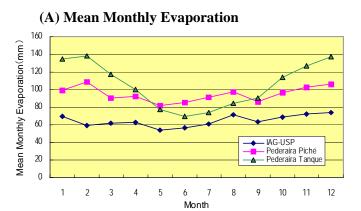
The mean monthly evaporation is 82.2 - 108.7 mm at the pitch equipment, and May is the lowest, and February is highest. The annual evaporation of 20 years is 897 - 1421mm (1120.9 mm on the average).

Moreover, the mean monthly evaporation is 69.6-138.6 mm at the tank on the ground, and June is the lowest, and February is the highest. The annual evaporation of 20 years is 1159-1308 mm (1243 mm on the average).

In IAG(USP) observatory, the daily evaporation in January, 1992 to January, 2000 was observed. The mean monthly evaporation of eight years is 53.5 - 73.8 mm, and May is the lowest, and December is the highest.

The annual evaporation of eight years is 64 2 - 889 mm (763 mm on the average) (Refer to **Figure 1.1.5**).

(6) Duration of Sunshine


Duration of sunshine are observed in the IAG(USP) observatory.

The mean monthly duration of sunshine of 20 years is 4.4 - 5.9 hours, and the mean monthly percentage of possible sunshine is 37.4 - 53.2%. It is short in September to October, and long in April and August. There is a little a lot of weathers of cloudy compared with the coastal area.

The mean annual duration of sunshine is 4.9 - 6.5 hours (average duration of 5.5 hours), the mean annual percentage of possible sunshine is 41.1 - 55.3% (average 46.6%). The increasing trend of about 0.7 hours during 20 years is perceived. (**Figure 1.1.6**)

(7) Rainfall

The mean monthly precipitation shows that a rainy season is in October to March, and a dry season is June to September in the surrounding area of the Lake Billings basin. It rains much in January - March, and August is the fewest (**Figure 1.1.7**).

(B) Mean Annual Evaporation

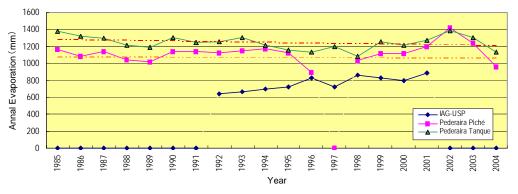
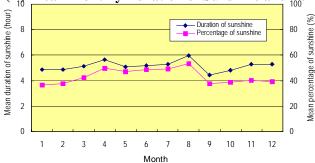
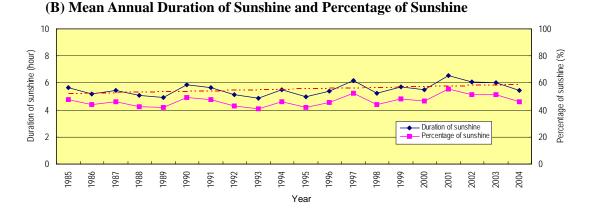
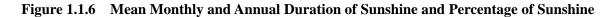





Figure 1.1.5 Mean Monthly Evaporation and Annual Evaporation

(A) Mean Monthly Duration of Sunshine and Percentage of Sunshine

The annual precipitation of 20 years from 1985 to 2004 shows that little rainy year is in 1991 and 1996, and rainy year is in 1985, 1990, 1993 to 1994 and 2003. The downward trend of precipitation is perceived (**Figure 1.1.8**).

The mean annual precipitation of 20 years is 1486 mm in IAG-USP (E3-035), 1378mm at Pedreira dam (P12-042) on the north side of the Lake Billings, 1579 mm at E3-148 (São Bernardo do Campo), 1488 mm at E3-237 (Mauá), 1611 mm at E3-237 (on the south side of Mauá). It is 1544 mm in E3-243 (Parelheiros) on the west side of the Basin. In the south of the basin, it is 1725 mm (P12-035) to 2524 mm (P12-011) at the southwest of the basin where EMAE stations exist, 2830 mm at E3-149 (the south region of Santo André). In the south of the Lake Billings basin, precipitation is increased. The features of the rainfalls of various areas in the basin are as follows.

1) West side area of the basin (Pedreira-Parelheiros-Embu)

The mean annual precipitation is 1377 - 1544 mm in Pedreira (P12-042), Bororé (P12-039), and Parelheiros (E3-243), and it increases in the south. In three stations, the trend of monthly and yearly variation indicates similar together. At Embu (E3-254) located in the outside west of the basin, the mean annual precipitation is slightly high with 1674 mm, and have a slightly different trend of monthly and yearly variation due to a lot of missing value.

2) Northwest area of the basin (São Bernardo do Campo, Diadema and IAG-USP)

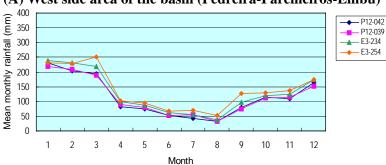
There is a lot of missing value except IAG-USP (E3-035), The mean annual precipitation is 1486mm at IAG-USP(E3-035), 1162 mm at Diadema (E3-150) and 1579 mm at São Bernardo do Campo (E3-142). The three stations show a similar trend of monthly and yearly variation.

The four fire station observatories (PB) are little in mean annual precipitation with 1152 mm at São Bernardo do Campo (E3-162PB) – 1281 mm at Diadema (E3-158PB), and have a slightly different trend such as low precipitation in January to May compared with IAG-USP (E3-035) due to recent five years observation.

3) Northeast area of the basin (Mauá, the north region of Santo André and São Caetano do Sul)

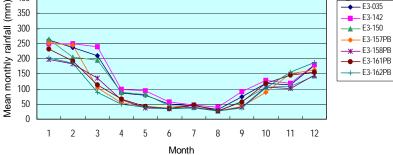
The mean annual precipitation is 1471 mm at São Caetano do Sul (E3-085), 1474 - 1611 mm at Mauá,(E3-148 and E3-237), and increases a little in the south of the area.

The trends of the monthly and yearly annual variations are mutually resemble, and are similar to the stations in northwest side of surrounding the basin. The amount increases a little compared with the northwest side.

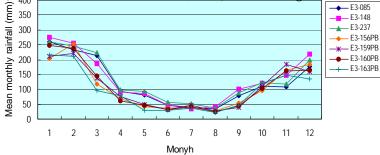

The mean annual precipitation of fire station observatory (PB) is 1170 mm at São Caetano do Sul (E3-163PB) – 1294 mm at the north region of Santo André (E3-159PB), and is few compared with DAEE stations due to recent five years observation. Variation trends between fire station observatories are similar.

4) East side area of the basin (Ribeirão Pires, Rio Grande da Serra, the south region of Santo André)

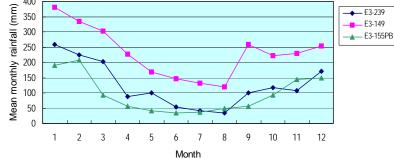
The mean annual precipitation is 1500 mm at Ribeirão Pires (E3-239), 2774 mm at the south region of Santo André (E3-149), and increases clearly in the south of the area. The variation trend of E3-149 is similar to the south side area of the basin.

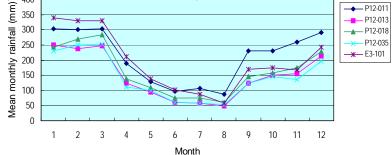

The mean annual precipitation of fire station observatory (PB) is 1255 mm at Ribeirão Pires (E3-155PB), and is very few compared with DAEE stations.

5) South side area of the basin (EMAE stations in the south side area of the basin and Cubatão) The mean annual precipitation is 1725mm at Barragem Córrego Preto (P12-035) – 2525 mm at Barragem Pequeno Prequé (P12-011) and 2583 mm at Cubatão (E3-101), and is rather a lot of precipitations compared with the north side area of the basin. The variation trend of P12-011 and E3-101 are mutually similar, but E3-101 observation stopped since 1992. P12-013(Summit Control), P12-018(Cubatão do Crima), and P12-035 located in the southwest side of the basin show a mutually similar variation trend.



(A) West side area of the basin (Pedreira-Parelheiros-Embu)





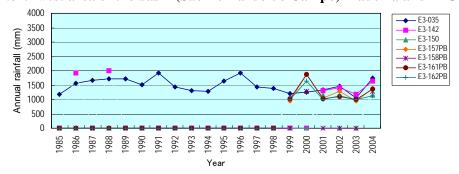
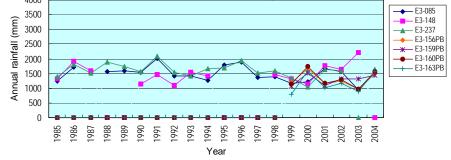
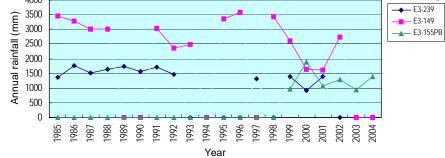


Figure 1.1.7 Mean Monthly Precipitation



(A) West side area of the basin (Pedreira-Parelheiros-Embu)


(B) Northwest area of the basin (São Bernardo do Campo, Diadema and IAG-USP)

(C) Northeast area of the basin (Mauá, the north region of Santo André and São Caetano do Sul)

(D) East side area of the basin (Ribeirão Pires, Rio Grande da Serra, the south region of Santo André)

(E) South side area of the basin (EMAE stations in the south side area of the basin and Cubatão)

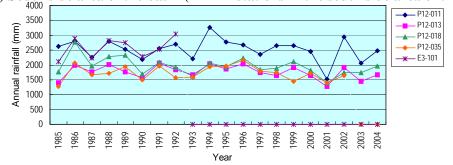


Figure 1.1.8 Annual Precipitation

1.1.2 Geography and Geology

(1) Geographical futures

In the southward of the Lake Billings basin, there is coastal mountain (Serra do Mar) that expands from west-southwest (WSW) to east-northeast (ENE) direction, and a vast plateau with rather gentle relief of elevation 700-1200 m in the north side of the mountain range and the low land of the coast of elevation 0-sebral 10 m in the south side of the mountain range is formed.

The south slope in the mountain range is a fault-line scarp according to the activity of Cubatão fault (Folha do Cubatão) in Paleocene of Tertiary since Cretaceous of Mesozoic, and the plateau is a lift zone.

The plateau stretches to the north side of the coastal mountain. It inclines rather gently to north-northwest (NNW), and the altitude is lowered gradually in the north.

The Lake Billings basin is located near the south edge of the plateau. The land area of the watershed is 582.8 km², and the surface area of the reservoir is 108,142 km² above sea level 747.65 m that EMAE manages (Source; Billings 2000 2002 ISA).

The watershed basin bounds to the coastal mountain cliff on the southeast side. The ridge of the south of Paranapiacaba (relay railway station of FEPSA between Santos and São Paulo of the southern part of the Santo André) is the highest peak (above sea level 1174 m) in the basin.

In the southwest of the basin, the altitude is lowered to from about 800 m to 750 m and the watershed ridge comes to leave the coastal mountain cliff gradually, and the plateau with gentle relief inclined the southward is formed between mountain cliffs and the watershed ridge of the basin.

The east side watershed ridge lowers gradually inclining to north side from above sea level about 900 m to 800 m, and the north side watershed and the east side watershed lower the altitude from above sea level about 800 m up to 750 m on the northwest side of the basin.

The map of Classification of declination in the surrounding area of the basin is shown in **Figure 1.1.9**.

There is a coastal mountain cliff on Cubatão side of the São Paulo state boundary (part of void), and few km of width along the cliff is steep slope land of more than 40% declination.

The slope land of 20-40% and partially the steep slope land of 40% or more are distributed on the east side watershed mountainous slope, the north side watershed mountainous slope in Ribeirão Pires to Santo André, and the east side slope of mountain between Rio Grade Arm and Rio Pequeno arm.

The plain of 0-5% stretches along the main river of the Rio Grande and others, and the shallow dip ground of 5-20% is distributed in the surrounding hill portion widely.

(2) Geological Future

The geological map in the surrounding area of Lake Billings basin is shown in **Figure 1.1.10** and **Figure 1.1.11**.

In geological features, the basement rocks of Precambrian is widely distributed in the whole area of

the surrounding area of the basin, and clay, sand, and gravel in the São Paulo formation (Taupate group) of Tertiary to Quaternary are distributed at low hilly area in the vicinity of Lake Billings front. Moreover, clay, sand, and gravel of the alluvium of Quaternary are distributed on the low land area along the main river channel and the Colônia depression land (It is said that it was formed by the fall of the meteorite) in the southwest of the Basin.

The basement rock of Precambrian are distributed with zonal structures that stretch in direction from west-southwest (WSW) to east-northeast (ENE) or from southwest (SW) to northeast (NE).

migmatite/gneissource granite, maicashist/metaarenite, and granite/granodiolite are widly distributed, and dikes or small rock units that consist of amphiborite/metabasicrocks (Metadiabase, Metagabbro) or Diorite/Quartzdiorite are partly distributed in the southwest to west side of the basin. Small rock units of Phyllite/Meta-argillite with zonal structure are partly distributed in southeast side of the basin (**Figure 1.1.10**).

The geological age of the stratum and name of the formation and the group name are set in detail in **Figure 1.1.11**.

Costeiro complex (mainly consist of migamatite/gneiss) of Archean, Embu complex (Migmatite) of Proterozoic and various kind of granite and granitoid rocks of Proterozoic – Cambrian – Ordovician form basement rocks. São Paulo formation of Pliocene to Plicetocene forms low hilly portion and terrace. Alluvium of Holocene form low land along river, plain and costal low land.

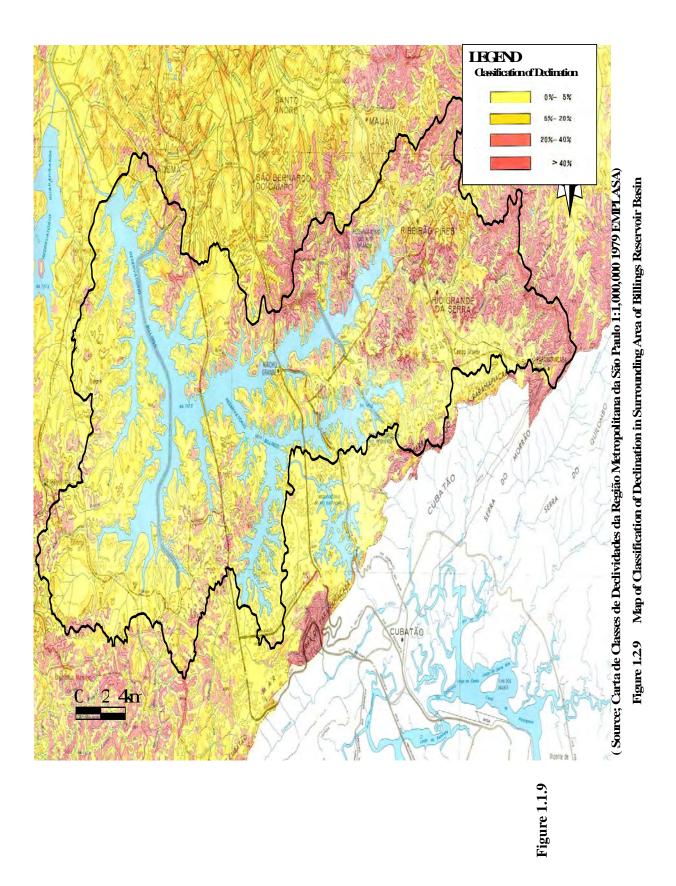
The Lake Billings basin is the basically stability ground, but has the part where weathering progresses under the condition of uplift land exposed long-period since Paleozoic era.

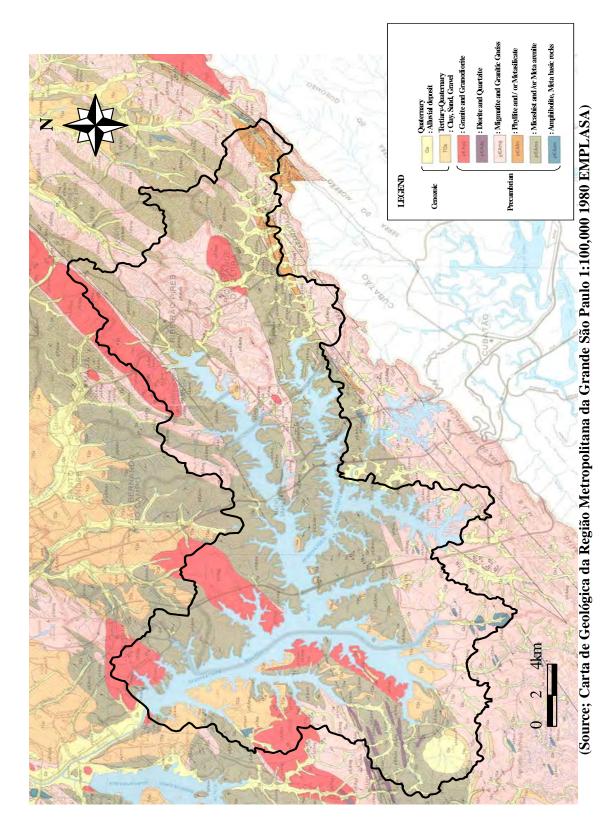
In the Sao Paulo basin of northward of the basin, Tertiary to Quaternary formation makes thick layer in the central basin. In São Bernardo do Campo, deep wells are generally drilled up to 100-150m of total depth and reach the lower basement part to pump up the potable water or others. Usually clay or silt layer with about 40m thickness overlies basement rocks.

(3) Soils

The soil map in the surrounding area of the Lake Billings basin is shown in Figure 1.1.12.

Cambisol (Brown forest soil) is widely distributed in the basin. Acrisol (Reddish yellow Podzol) is distributed in the north side of Ribeirão Pires. Latosol is distributed in the east side mountainous area of Rio Grande da Serra .


In tropical soil conservation, Cambisol is deteriorated when management is poor, and a biological maintenance procedure sustains production from soil and soil conservation. Because the Acrisol is deteriorated easily, and is difficult the reproduction, it is made to the soil that should be sustained in natural vegetation or the condition of the forest. The Latosol is acid soil (ruin soil) with the red color where abundant topsoil with the organic matter flow out by the rock weathering, and the oxide of iron and aluminum remained, and the productivity is low.


(4) Soil nature

The Map of classification of soil nature is shown in Figure 1.1.13 and Figure 1.1.14.

In **Figure 1.1.13**, Susceptibility to erosion is high in the east side and northeast side of the basin evaluating combination of silty soils, cambisol and Maountainous relief on cristalline basement rock. Susceptibility to erosion is low in the wide area of the west, northwest, southwest and central area of the basin evaluating combination of argillaceous soils or latosol and wavy rerief on the cristalline rocks. Low land along the rivers is very low susceptibility to erosion.

In **Figure 1.1.14**, Susceptibility to slope slide is high in mountainous area of the north side, northeast side and southeast side of the basin, and other area is middle. Susceptibility to erosion for surface and subsurface is high in the whole the basin except lowland along river or in plain. Low land is also high area of susceptibility of inundation or repression for foundation.

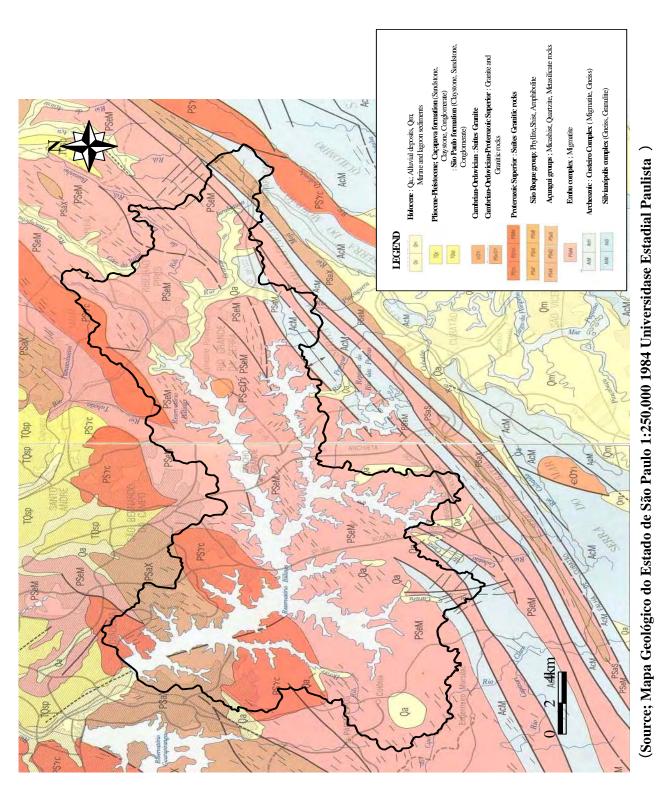
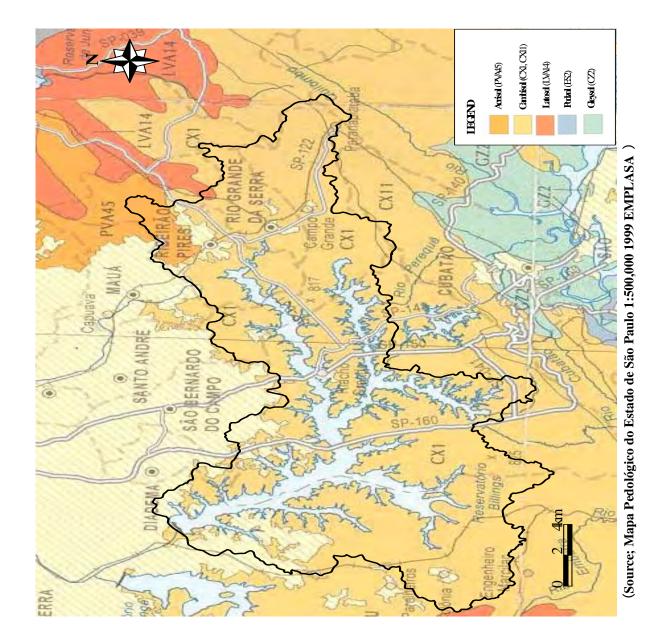
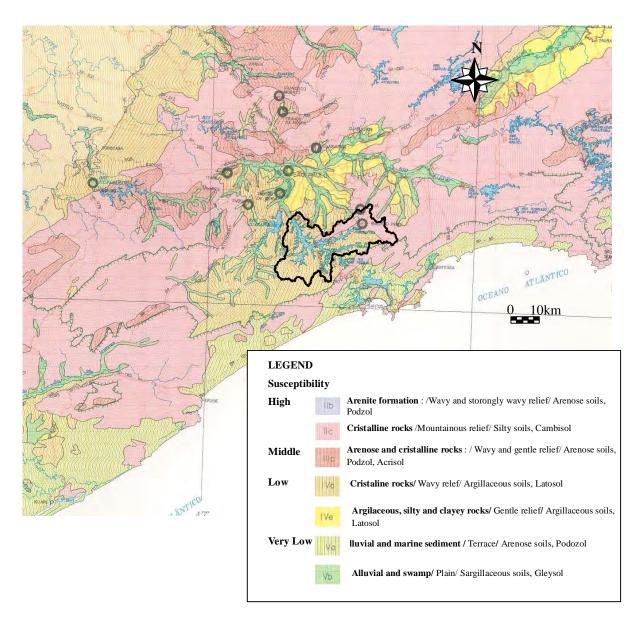
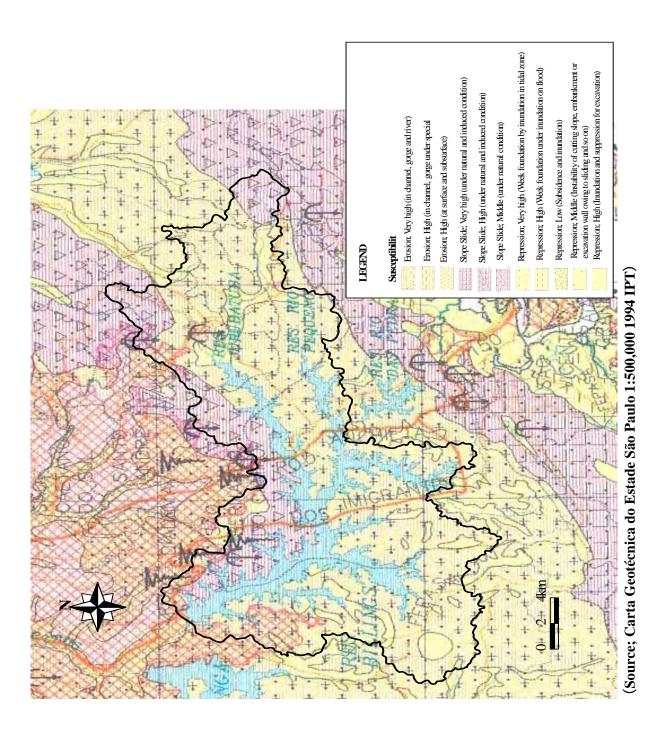




Figure 1.1.11 Geological Map in Surrounding Area of Billings Reservoir Basin (2)

Final Report



Final Report

(Souce; Mapa de Eroão do Estado de São Paulo 1:1,000,000 1950 IPT)

Figure 1.1.13 Map of Susceptibility for erosion in Surrounding area of Lake Billings Basin

