

THE FEASIBILITY STUDY AND IMPLEMENTATION SUPPORT ON THE CALA EAST-WEST NATIONAL ROAD PROJECT 5th Stakeholders' Meeting in Laguna

Session 1: **Environment and Social Considerations (ESC) Study**

14 March 2006

Stakeholder Meetings									
No.	Study Phase	Main Subjects	Period						
lst	Preparation of Scenarios	- Study Outline - Past, Ongoing & Future Transport Projects - Scope of Stakeholders, - Schedule & Objectives of Future Stakeholder Meetings	March 17, 2005						
2nd	Evaluation of Scenarios	Alternative Development Scenarios Environmental Framework Social and Natural Environment Alternative Scenarios for Regional Transport Network	June 16, 2005						
3rd	Demonstrian of	Outline of alternatives Alternative sumsure in zero option Alternative sumsure in zero option Scope and evaluation methodologies for Environmental and Social Considerations Study (EL lave) Obtain optimion on concerned environmental impacts (This STM is the Official Scoping Scosion under EE Process)	Sept. 23, 2005						
4th	Optimum Project Plan	Results of evaluation on alternatives Progress and interim results of ESC study (EIA level) Study framework on preparation of optimum project plan	Dec. 7 (Cavite) Dec. 8 (Laguna) Dec. 12 (Muntenlups 2005						
5th		Results of ESC study (EIA level) Implementation arrangements of the project Mutual consent on optimum project	Mar.14 (Laguna) Mar.15 (Cavite), 2006						
6th		- Outline of F/S - Follow-up of ESC study (EIA level) - Explanation of resettlement policy	Mid-May, 2006						
7th	F/S	Progress of the F/S Explanation of framework of RAP	Early July, 2006						
8th		Outline of results of F/S Mutual consent on framework of RAP Further arrangement and requirement for the implementation	Early Sept., 2006						

Results of the Environmental & Social **Considerations Study**

- · Environmental Baseline Study
 - Field measurement surveys: air, noise/vibration, water
 - Secondary data collection
- Social Survey
 - Focus group discussion (Barangay consultation) - Perception survey
 - · 700 sampled households from project-affected barangays
 - Household inventory survey for resettlement (100% survey for potential households to be resettled for ROW acquisition)
 - Approx. 800 households
- · Impact Assessment

ENVIRONMENTAL BASELINE STUDY

Objective

The main objective of the Environmental Baseline Study is to collect environmental baseline information in order to characterize the existing environmental condition of the project area and identify and assess potential impacts on its social and natural environment.

Main Task of the Environmental Baseline Study

- 1) Collection and review of existing secondary data
- 2) Field Surveys
 - a) Air quality sampling
 - b) Noise and vibration level measurementc) Water quality sampling
 - d) Reconnaissance survey on natural conditions

THE STUDY AREA PHYSICAL ENVIRONMENT I. GEOLOGY

Regional Topography and Geomorphology

The project area lies on the northern portion of the Southwest Luzon Uplands. The regional landscape is characterized by gently sloping to rugged mountainous terrain abutting to a wide central plain area marked by freshwater lakes (Laguna Lake and Taal Lake). The project area is situated on slightly elevated sloping region on the northern portion of the Taal Ignibirte Field, a sequence of quaternary pyroclastic deposits and east of the coastal areas of Cavite.

Regional Geology

The Laguna volcanic plain was created by the volcanic activities that formed the Taal Volcano and neighboring volcanic vents. The volcanoclastic rocks underlying the project area appear to have been expelled mostly from Taal Volcano. The active volcanism provided for the large volume and thick accumulation of volcanic ejectamenta or pyroclasts at sites of deposition at a distance from the volcano source.

The volcanic materials were later eroded and transported by surface water to lower areas where they underwent some sorting that resulted in occasional beds of wellsorted tuffaceous sands and gravel.

Regional Geology

The Laguna volcanic plain is bounded to the west by a fault, known as the West Valley Fault (WVF), that trends northsouth from Muntalan to Tagaytay Ridge and traverses west of Carmona. The trace of the fault from Muntinupa area and about 5kms west of the Project Site is generally not very clear. The abrupt ascent of the land (Carmona area) towards Tagaytay suggests the presence of the fault. The eastern block of WVF moved downward relative to the western block.

Regional Tectonic Setting

Luzon Island is situated at the western margin of the Circum-Pacific region, centered roughly at 15% Natitude and 121°E longitude. The region is characterized y an active convergence between the Eurasian and Pacific plates.

Two active subduction systems of opposing polarity border Luzon: the eastward-dipping Manila trench on the west, and the incipient, northwardpropagating, westward-dipping east Luzon trench, on the east.

At the Laguna and Cavite sector, volcanic rocks show marked difference in chemical composition from typical arcrelated calc-alkaline volcanics. A NE-SW trending "rift" structure – referred to as the Macolod Corridor was proposed to account for this geochemical variation.

Regional Seismicity

Earthquake events tend to cluster in the offshore region along the Verde Island Passage between the southeast coast of Batangas and Mindoro Island. Moderate to deep (> 150 kms) foci seismic events with a predominant thrust focal mechanism solution indicate active convergence along the southern extension of the Manila Trench system. In contrast, shallow seismic events (<70kms) appear to have originated from th movements of regional faults (e.g. Mindoro Fault, Lubang Fault) and their minor splays.

A single event located within Taal Lake is of volcanic origin associated with the 1965 eruption of Taal Volcano.

THE STUDY AREA PHYSICAL ENVIRONMENT II . HYDROGEOLOGY

Hydrogeologic Units

Quaternary Volcanic Sediments The Quaternary volcanic sediments form the main host of the underlying aquifers of the project area. It consists of layers of tuffaceous pebbly sandstone or tuff, which are all capable of storing and transmitting large quantities of groundwater. Known production vields are almost about 20 liters per second (lps) but as high as 60 lps in some areas. The aquifers are under confined to semi-confined conditions.

II. HYDROGEOLOGY

Hydrogeologic Units

Quaternary Alluvium The Quaternary alluvium are recent unconsolidated alluvial deposits that unconsolidated anuval deposits that consists of clay, silt, sand and gravel along coastal areas, river beds and floodplains. Alluvial deposit aquifers in coastal areas are restricted by sea water intrusion while inland aquifers are restricted by low storage due to limited aquifer area and/or thickness. Well yields are mostly about 2 lps but as high as 20 lps in some areas. Shallo aquifers are under unconfined conditions.

II . HYDROGEOLOGY

Groundwater Levels

Groundwater depths at the project area ranges from 60 meters below ground surface (mbgs.) to 100 mbgs.

THE STUDY AREA PHYSICAL ENVIRONMENT III . NATURAL HAZARDS

Seismic Hazards

Of the known major tectonic structures in the region, the nearest earthquake generator to the project site is the extension of the West Valley Fault (WVF).

A paleoseismic study (Nelson and others, 2000) suggests that the northern part of this fault has a recurrence interval of 2004-00 years for magnitude 6-7 earthquakes on the fault for an annual probability rate of 0.5% to 0.25%.

III . NATURAL HAZARDS

Volcanic Hazards

The nearest active volcano within the vicinity of the Project area is Taal Volcano. Eruption-related volcanic hazards for Taal volcano would include airfall tephra, base surge, fissuring and ground subsidence, seiches/tsunami and flooding.

Considering the more than 25-km distance of the Project Site to Taal Volcano, it is unlikely that the area will be directly and adversely affected by eruption-related volcanic hazards from the volcano.

At most the area may be affected by minial ash fall if wind speed and direction were favorably directed towards its location.

Į

III . NATURAL HAZARDS Foundation Hazards Paleosol horizons are known to occur in the pyroclastics at the project area. With contrasting textural types of the under lying foundation, the area is susceptible to differential settlement or long-term settlement. The damage attributable to settlement can range from complete failure of the structure to slight disfigurement. i e Settlement can be reduced: •if the site is preloaded or surcharged prior to construction, or •if the soil is subjected to dynamic compaction or vibrocompaction.

PARAMETERS	DENR Standards	WQ4	WQ5	WQ6	WQ7	WQ12	WQ13
Physical Characteristics							
Temperature	-	26.0	25.3	25.4	26.4	26.9	27.2
Conductivity (ms/cm)	-	0.247	0.982	0.205	0.278	0.307	0.500
Salinity (ppm)	-	0.000	0.047	0.000	0.010	0.017	0.027
Chemical Characteristics							
pH	6.5 - 9.0	7.36	8.27	7.12	7.49	8.23	8.31
BOD	7(10)mg/L	7	10	12	2	3	9
DO	5.0 mg/L	2.18	3	2.13	2.1	11	2.99
Turbidity	NTU	15	20	17	11	32	15
TSS	60 mg/L inc.	40	70	60	30	20	20
Lead	0.05 gm/L	0.067		0.102	0.051		/
Biological Characteristics		4		6			
Total coliform	5,000	22 x 10 [°]		34 x 10°	27 x 10 [°]		6
	MPN/100mL	P. 21.2122	553154	N 18-11 P	11721	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12000-11
		- And	E.	Hart -		•	Y

V . AIR QUALITY					1
PARAMETERS	DENR Standards	AQ4	AQ5	AQ6	Kan (
Total Suspended Prticulates (TSP)	230 ug/Nmc	44	139	252	S7
Sulfur Dioxide (SO ₂)	180 ug/Ncm	22	56	77	
Nitrogen Dioxide (NO ₂)	150 ug/Ncm	31	28	22	AL PA
Carbon Oxide (CO)	35 ug/Ncm	ND	ND	ND	T O
Ozone (O ₃)	140 ug/Ncm	5	18	87	LESS RA
Lead (Pb)	1.50 ug/Ncm	0.021	0.161	0.387	NG-1XXA
SPM	-	19	113	212	HE PAN
NO	-	21	17	14	
		. He			

Stat	ion 4	Stat	ion 5	Stat	ion 6		UK ne Lui
R.C. Sta. R	losa Centro,	Brgy. Big	a I, Silang.	Brgy. San Ar	ntonio, San	DENR	
Sta. Ros	a, Laguna	Cavite (Agu	inaldo Hway)	Pedro,	Laguna	Standard	300 H
Time	Average Noise (dB)	Time	Average Noise (dB)	Time	Average Noise (dB)	Standard	A A
2400H	50.6	2400H	52.4	2400H	59.0	55	TO STAN
0100H	50.8	0100H	50.8	0100H	58.5	55	S. P. M.
0200H	50.2	0200H	50.2	0200H	58.4	55	BAD Fred
0300H	50.4	0300H	50.9	0300H	58.8	55	ALCOR 21
0400H	51.5	0400H	54.1	0400H	68.3	55	NU HANN
0500H	51.5	0500H	55.0	0500H	68.4	55	
0600H	51.9	0600H	55.9	0600H	73.2	60	
0700H	52.0	0700H	56.0	0700H	73.8	60	
0800H	52.5	0800H	56.0	0800H	73.6	60	A FAR AN
0900H	52.8	0900H	56.0	0900H	74.0	60	STATES IN W
1000H	52.0	1000H	56.1	1000H	72.5	65	1 Marta Ada
1100H	52.0	1100H	56.4	1100H	72.0	65	The states
1200H	52.9	1200H	56.9	1200H	72.8	65	
1300H	52.0	1300H	55.3	1300H	72.5	65	6 TOTA
1400H	51.6	1400H	55.7	1400H	72.8	65	and the fait
1500H	52.0	1500H	56.1	1500H	72.9	65	IS: A CO
1600H	52.5	1600H	56.1	1600H	73.0	65	sto la com
1700H	52.9	1700H	56.4	1700H	73.6	65	11 2 17 8 80 22
1800H	52.6	1800H	56.8	1800H	73.9	65	1. 1.9 1. 1.9 2.29
1900H	52.5	1900H	56.7	1900H	74.3	60	all the second
2000H	52.6	2000H	56.1	2000H	68.2	60	nua Line
2100H	51.0	2100H	55.7	2100H	61.5	60	and the second second second
2200H	50.8	2200H	54.2	2200H	60.4	60	1
2300H	50.7	2300H	54.0	2300H	59.4	55	- F

List of Barangays Affected by the Cavite Expressway

Province	Municipality Barangay					
		Cavite Expressway				
Laguna	Santa Rosa	Don Jose, Sto. Domingo, Malitlit	3			
	Dasmariñas	Langkaan I	1			
Cavita	General Trias San Francisco Batas, Biluso, Carmen, Biga I, Malaking Tatiao, Iba, Munting Ilog, Sabutan, Tibig					
Cavite						
		Total for Cavite Expressway	14			

Focus Group Discussion (Barangay Consultation)

- Agenda -Outline of the proposed projects, -Proposed alternative road alignments, -Coordination on social surveys, -Q&A (discussion)
- Participants - Barangay captains and councilors, - Project-affected persons, Residents, - Peoples organizations (PO), - Non-governmental organizations (NGO)
- Resolutions by Barangay for acceptance of the project =>Resolutions for endorsement of the acceptance of the Project by Municipalities and Provinces

establishment be compensated? Will there be alternative income

source in the relocation site? · What documents are needed as proof of ownership?

		(Lagun	a)	
Province	Municipality	Barangay	Barangay Resolution	Municipal Resolution
Laguna	Santa Rosa City	Don Jose	(To follow)	
		Sto. Domingo	(To follow)	Discussion with SB to be scheduled.
		Malitlit	(To follow)	

- 1. Overall Evaluation on Project Viability
- 2. Concepts of Implementation Mechanisms
- 3. Implementation Role of Key Players – Preparatory Activities
 - Key Players and their Roles for Project Implementation

1. Overall Evaluation of Project Viabil Economic Evaluation									
				Evaluation					
	Cost Estimate of Road (Billion Pesos)	Benefit (Billion Pesos/ year) (2020)	EIRR	NPV (Billion Pesos)	B/C				
CALA Expressway	15.0	51.6	33.0	41.0	4.5				
E/W 1 (Daang Hari Ext.)	4.6	29.4	41.1	26.2	7.8				
N/S 3 (Bacoor- Dasmariñas)	3.0	21.1	42.7	19.0	8.6				

· Advance ROW acquisition becomes possible for some other road sections

3. Implementation Role of Key Players

Responsibilities for Implementation

CALA Expressway (non-Toll) DPWH to lead implementation on conventional public sector financing mode

North-South (NS1-NS3:Tolled)

NDC/PIC to lead implementation via BTO scheme

East-West (DH2: Tolled)

NDC/PIC/PNCC to implement toll road via BTO scheme

.

.

 Review & approve ECC
 Monitor ECC compliance during construction DOF: negotiates foreign & domestic loan financing

DBM: releases funds per GAA

NHA: executes resettlement program

- Supplemental funds for ROW & feeder roads

Province:

- Resolution endorsing the project
 Issue ordinance for ROW protection
 Coordinates support of municipalities along road alignment

357

3. Implementation Role of Key Players

Implementation Role of Other Players

For TOLL ROADS

- For TOLL ROADS NDC/PIC: Provide seed equity for toll project company that will have toll concession Advance funds for ROW Harress private sector participation in the project company Advance funds for pre-construction activities, such as for DE

TRB: grants toll concession

IFC/Lenders: provide long term loans to the project company, to finance construction

TPC: toll project company builds and operates the toll road

For Non-Toll ROADS

- Donor/Foreign Lenders:
- Provide long-term concessional loans, to finance road construction
 Oversight of construction to ensure funds are disbursed according to approved plans/programs

- Congressmen: Lobbies for inclusion in GAA as early as possible Allocates CDF for early ROW acquisition and/or relocation of affected constituencies

THANK YOU

THE FEASIBILITY STUDY AND IMPLEMENTATION SUPPORT ON THE CALA EAST-WEST NATIONAL ROAD PROJECT 5th Stakeholders' Meeting in Cavite

Session 1: **Environment and Social Considerations (ESC) Study**

15 March 2006

Stakeholder Meetings								
No.	Study Phase	Main Subjects	Period					
lst	Preparation of Scenarios	 Study Outline Past, Ongoing & Future Transport Projects Scope of Stakeholders, Schedule & Objectives of Future Stakeholder Meetings 	March 17, 2005					
2nd	Evaluation of Scenarios	Alternative Development Scenarios Environmental Framework Social and Natural Environment Alternative Scenarios for Regional Transport Network	June 16, 2005					
3rd	Despanding of	Outline of alternatives Alternative sumsure in zero option Alternative sumsure in zero option Scope and evaluation methodologies for Environmental and Social Considerations Study (EL lave) Obtain optimion on concerned environmental impacts (This STM is the Official Scoping Scosion under EE Process)	Sept. 23, 2005					
4th	Optimum Project Plan	Results of evaluation on alternatives Progress and interim results of ESC study (EIA level) Study framework on preparation of optimum project plan	Dec. 7 (Cavite) Dec. 8 (Laguna) Dec. 12 (Muntenlups 2005					
5th		- Results of ESC study (EIA level) - Implementation arrangements of the project - Mutual consent on optimum project	Mar.14 (Laguna) Mar.15 (Cavite), 2006					
6th		- Outline of F/S - Follow-up of ESC study (EIA level) - Explanation of resettlement policy	Mid-May, 2005					
7th	F/S	Progress of the F/S Explanation of framework of RAP	Early July 2006					
8th		Outline of results of F/S Mutual consent on framework of RAP Further arrangement and requirement for the implementation	Early Sept., 2006					

Results of the Environmental & Social **Considerations Study**

- · Environmental Baseline Study
 - Field measurement surveys: air, noise/vibration, water
 - Secondary data collection
- Social Survey
 - Focus group discussion (Barangay consultation) - Perception survey
 - · 700 sampled households from project-affected barangays
 - Household inventory survey for resettlement (100% survey for potential households to be resettled for ROW acquisition)
 - Approx. 800 households
- · Impact Assessment

ENVIRONMENTAL BASELINE STUDY

Objective

The main objective of the Environmental Baseline Study is to collect environmental baseline information in order to characterize the existing environmental condition of the project area and identify and assess potential impacts on its social and natural environment.

Main Task of the Environmental Baseline Study

- 1) Collection and review of existing secondary data
- 2) Field Surveys
 - a) Air quality sampling
 - b) Noise and vibration level measurement
 - c) Water quality sampling
 d) Reconnaissance survey on natural conditions

THE STUDY AREA PHYSICAL ENVIRONMENT I. GEOLOGY

Regional Topography and Geomorphology

The project area lies on the northern portion of the Southwest Luzon Uplands. The regional landscape is characterized by Gently sloping to rugged mountainous terrain abutting to a wide Central plain area marked by freshwater lakes (Laguna Lake and Taal lake). The project area is situated on slightly elevated Sloping region on the northern protion of the Taal Ignibrite Field, a sequence of Quaternary pyroclastic deposits and east of the Coastal areas of Cavite.

Regional Geology

The Laguna volcanic plain was created by the volcanic activities that formed the Taal Volcano and neighboring volcanic vents. The volcanoclastic rocks underlying the project area appear to have been expelled mostly from Taal Volcano. The active volcanism provided for the large volume and thick accumulation of volcanic ejectamenta or pyroclasts at sites of deposition at a distance from the volcano source.

The volcanic materials were later eroded and transported by surface water to lower areas where they underwent some sorting that resulted in occasional beds of well-sorted tuffaceous sands and gravel.

Regional Geology

The Laguna volcanic plain is bounded to the west by a fault, known as the West Valley Fault (WP), that trends north-south from Muntialan to Tagaytay Ridge and traverses west of Carmona. The trace of the fault from Muntinulpa area and about 5kms west of the Project Site is generally not very clear, ut the abrupt ascent of the land (Carmona area) towards Tagaytay suggests the presence of the fault. The eastern block of WVF moved downward relative to the western block

Regional Tectonic Setting

Luzon Island is situated at the westem margin of the Circum-Pacific region, centered roughly at 15°N latitude and 121°E longitude. The region is characterized y an active convergence between the Eurasian and Pacific plates.

Two active subduction systems of opposing polarity border Luzon: the eastward-dipping Manila trench on the west, and the incipient, northward-propagating, westward-dipping east Luzon trench, on the east.

At the Laguna and Cavite sector, volcanic rocks show marked difference in chemical composition from typical arc-related calcalkaline volcanics. A NE-SW trending "rift" structure – referred to as the Macolod Corridor was proposed to account for this geochemical variation.

Regional Seismicity

Earthquake events tend to cluster in the offshore region along the Verde Island Passage between the southeast coast of Batangas and Mindoro Island. Moderate to deep (> 150 kms) foci seismic events with a predominant thrust focal mechanism solution indicate active convergence along the southern extension of the Manila Trench system. In contrast, shallow seismic events (<70kms) appear to have originated from th movements of regional faults (e.g. Mindoro Fault, Lubang Fault) and their minor splays.

A single event located within Taal Lake is of volcanic origin associated with the 1965 eruption of Taal Volcano.

THE STUDY AREA PHYSICAL ENVIRONMENT II . HYDROGEOLOGY

Hydrogeologic Units

Quaternary Volcanic Sediments The Quaternary volcanic sediments form the main host of the underlying aquifers of the project area. It consists of layers of tuffaceous pebbly sandstone or tuff, which are all capable of storing and transmitting large quantities of groundwater. Known production vields are almost about 20 liters per second (lps) but as high as 60 lps I some areas. The aquifers are under confined to semi-confined conditions.

II. HYDROGEOLOGY

Hydrogeologic Units

Quaternary Alluvium The Quaternary alluvium are recent unconsolidated alluvial deposits that unconsolidated anuval deposits that consists of clay, silt, sand and gravel along coastal areas, river beds and floodplains. Alluvial deposit acquifers in coastal areas are restricted by sea water intrusion while inland aquifers are restricted by low storage due to limited aquifer area and/or thickness. Well yields are mostly about 2 lps but as high as 20 lps in some areas. Shallo acquifers are under unconfined conditions.

II . HYDROGEOLOGY

Groundwater Levels

Groundwater depths at the project area ranges from 60 meters below ground surface (mbgs.) to 100 mbgs.

PHYSICAL ENVIRONMENT III . NATURAL HAZARDS

Seismic Hazards

THE STUDY AREA

Of the known major tectonic structures in the region, the nearest earthquake generator to the project site is the extension of the West Valley Fault (WVF).

A paleoseismic study (Nelson and others, 2000) suggests that the northern part of this fault has a recurrence interval of 200-400 years for magnitude 6-7 earthquakes on the fault for an annual probability rate of 0.5% to 0.25%.

III . NATURAL HAZARDS

Volcanic Hazards

The nearest active volcano within the vicinity of the Project area is Taal Volcano. Eruption-related volcanic hazards for Taal volcano would include airfall tephra, base surge, fissuring and ground subsidence, seiches/tsunami and flooding

Considering the more than 25-km distance of the Project Site to Taal Volcano, it is unlikely that the area will be directly and adversely affected by eruption-related volcanic hazards from the volcano

At most the area may be affected by minial ash fall if wind speed and direction were favorably directed towards its location.

l

III . NATURAL HAZARDS

Foundation Hazards

Paleosol horizons are known to occur in the pyroclastics at the project area. With contrasting textural types of the under lying foundation, the area is susceptible to differential settlement or long-term settlement.

The damage attributable to settlement can range from complete failure of the structure to slight disfigurement.

Settlement can be reduced

•if the site is preloaded or surcharged prior to construction, or •if the soil is subjected to dynamic

compaction or vibrocompaction

PARAMETERS	DENR Standards	WQ4	WQ5	WQ6	WQ7	WQ12	WQ13
Physical Characteristics							
Temperature	-	26.0	25.3	25.4	26.4	26.9	27.2
Conductivity (ms/cm)	-	0.247	0.982	0.205	0.278	0.307	0.500
Salinity (ppm)	-	0.000	0.047	0.000	0.010	0.017	0.027
Chemical Characteristics							
pH	6.5 - 9.0	7.36	8.27	7.12	7.49	8.23	8.31
BOD	7(10)mg/L	7	10	12	2	3	9
DO	5.0 mg/L	2.18	3	2.13	2.1	11	2.99
Turbidity	NTU	15	20	17	11	32	15
TSS	60 mg/L inc.	40	70	60	30	20	20
Lead	0.05 gm/L	0.067		0.102	0.051		/
Biological Characteristics		4		6			
Total coliform	5,000	22 x 10 [°]		34 x 10°	27 x 10 [°]		6
	MPN/100mL	P. 21.2122	553154	N 18-11 P	11721	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12000-11
		- And	E.	Hart -		•	Y

V . AIR QUALITY					1
PARAMETERS	DENR Standards	AQ4	AQ5	AQ6	Kan (
Total Suspended Prticulates (TSP)	230 ug/Nmc	44	139	252	S7
Sulfur Dioxide (SO ₂)	180 ug/Ncm	22	56	77	
Nitrogen Dioxide (NO ₂)	150 ug/Ncm	31	28	22	AL PA
Carbon Oxide (CO)	35 ug/Ncm	ND	ND	ND	T O
Ozone (O ₃)	140 ug/Ncm	5	18	87	LESS RA
Lead (Pb)	1.50 ug/Ncm	0.021	0.161	0.387	NG-1XXA
SPM	-	19	113	212	HE PAN
NO	-	21	17	14	
		. He			

Stat	ion 4	Stat	ion 5	Stat	ion 6		UK ne Lui
R.C. Sta. R	losa Centro,	Brgy. Big	a I, Silang.	Brgy. San Ar	ntonio, San	DENR	
Sta. Ros	a, Laguna	Cavite (Agu	inaldo Hway)	Pedro,	Laguna	Standard	300 H
Time	Average Noise (dB)	Time	Average Noise (dB)	Time	Average Noise (dB)	Standard	A A
2400H	50.6	2400H	52.4	2400H	59.0	55	TO CAN
0100H	50.8	0100H	50.8	0100H	58.5	55	S. P. A.
0200H	50.2	0200H	50.2	0200H	58.4	55	BAD Fred
0300H	50.4	0300H	50.9	0300H	58.8	55	ALCOR 21
0400H	51.5	0400H	54.1	0400H	68.3	55	NU HANN
0500H	51.5	0500H	55.0	0500H	68.4	55	
0600H	51.9	0600H	55.9	0600H	73.2	60	
0700H	52.0	0700H	56.0	0700H	73.8	60	
0800H	52.5	0800H	56.0	0800H	73.6	60	A FAR AN
0900H	52.8	0900H	56.0	0900H	74.0	60	STATES IN W
1000H	52.0	1000H	56.1	1000H	72.5	65	1 Marta Ada
1100H	52.0	1100H	56.4	1100H	72.0	65	The states
1200H	52.9	1200H	56.9	1200H	72.8	65	
1300H	52.0	1300H	55.3	1300H	72.5	65	6 TOTA
1400H	51.6	1400H	55.7	1400H	72.8	65	and the fast
1500H	52.0	1500H	56.1	1500H	72.9	65	IS: A CO
1600H	52.5	1600H	56.1	1600H	73.0	65	sty lites
1700H	52.9	1700H	56.4	1700H	73.6	65	11 9 17 8 80 20
1800H	52.6	1800H	56.8	1800H	73.9	65	1 30 10 10 220
1900H	52.5	1900H	56.7	1900H	74.3	60	all the second
2000H	52.6	2000H	56.1	2000H	68.2	60	nua Line
2100H	51.0	2100H	55.7	2100H	61.5	60	and the second second second
2200H	50.8	2200H	54.2	2200H	60.4	60	1
2300H	50.7	2300H	54.0	2300H	59.4	55	- F

List of Barangays Affected by the Cavite Expressway

Province	Municipality Barangay					
		Cavite Expressway				
Laguna	Santa Rosa	Don Jose, Sto. Domingo, Malitlit	3			
	Dasmariñas	Langkaan I	1			
Cavita	General Trias San Francisco Batas, Biluso, Carmen, Biga I, Malaking Tatiao, Iba, Munting Ilog, Sabutan, Tibig					
Cavite						
		Total for Cavite Expressway	14			

Focus Group Discussion (Barangay Consultation)

- Agenda -Outline of the proposed projects, -Proposed alternative road alignments, -Coordination on social surveys, -Q&A (discussion)
- Participants - Barangay captains and councilors, - Project-affected persons, Residents, - Peoples organizations (PO), - Non-governmental organizations (NGO)
- Resolutions by Barangay for acceptance of the project =>Resolutions for endorsement of the acceptance of the Project by Municipalities and Provinces

establishment be compensated? Will there be alternative income

source in the relocation site? · What documents are needed as proof of ownership?

		(Lagun	a)	
Province	Municipality	Barangay	Barangay Resolution	Municipal Resolution
Laguna	Santa Rosa City	Don Jose	(To follow)	
		Sto. Domingo	(To follow)	Discussion with SB to be scheduled.
		Malitlit	(To follow)	

- 1. Overall Evaluation on Project Viability
- 2. Concepts of Implementation Mechanisms
- 3. Implementation Role of Key Players – Preparatory Activities
 - Key Players and their Roles for Project Implementation

1. Overall Evaluation of Project Viability Economic Evaluation								
				Evaluation				
	Cost Estimate of Road (Billion Pesos)	Benefit (Billion Pesos/ year) (2020)	EIRR	NPV (Billion Pesos)	B/C			
CALA Expressway	15.0	51.6	33.0	41.0	4.5			
E/W 1 (Daang Hari Ext.)	4.6	29.4	41.1	26.2	7.8			
N/S 3 (Bacoor- Dasmariñas)	3.0	21.1	42.7	19.0	8.6			

· Advance ROW acquisition becomes possible for some other road sections

3. Implementation Role of Key Players

Responsibilities for Implementation

CALA Expressway (non-Toll) DPWH to lead implementation on conventional public sector financing mode

North-South (NS1-NS3:Tolled)

NDC/PIC to lead implementation via BTO scheme

East-West (DH2: Tolled)

NDC/PIC/PNCC to implement toll road via BTO scheme

.

.

 Review & approve ECC
 Monitor ECC compliance during construction DOF: negotiates foreign & domestic loan financing

DBM: releases funds per GAA

NHA: executes resettlement program

- Supplemental funds for ROW & feeder roads

Province:

- Resolution endorsing the project
 Issue ordinance for ROW protection
 Coordinates support of municipalities along road alignment

357

3. Implementation Role of Key Players

Implementation Role of Other Players

For TOLL ROADS

- For TOLL ROADS NDC/PIC: Provide seed equity for toll project company that will have toll concession Advance funds for ROW Harress private sector participation in the project company Advance funds for pre-construction activities, such as for DE

TRB: grants toll concession

IFC/Lenders: provide long term loans to the project company, to finance construction

TPC: toll project company builds and operates the toll road

For Non-Toll ROADS

- Donor/Foreign Lenders:
- Provide long-term concessional loans, to finance road construction
 Oversight of construction to ensure funds are disbursed according to approved plans/programs

- Congressmen: Lobbies for inclusion in GAA as early as possible Allocates CDF for early ROW acquisition and/or relocation of affected constituencies

THANK YOU

THE FEASIBILITY STUDY AND IMPLEMENTATION SUPPORT ON THE CALA EAST-WEST NATIONAL ROAD PROJECT 5th Stakeholders' Meeting in Cavite

Session 1: **Environment and Social Considerations (ESC) Study**

15 March 2006

		Stakeholder Meetings	
No.	Study Phase	Main Subjects	Period
lst	Preparation of Scenarios	 Study Outline Past, Ongoing & Future Transport Projects Scope of Stakeholders, Schedule & Objectives of Future Stakeholder Meetings 	March 17, 2005
2nd	Evaluation of Scenarios	Alternative Development Scenarios Environmental Framework Social and Natural Environment Alternative Scenarios for Regional Transport Network	June 16, 2005
3rd	Despanding of	Outline of alternatives Alternative sumsure in zero option Alternative sumsure in zero option Scope and evaluation methodologies for Environmental and Social Considerations Study (EL lave) Obtain optimion on concerned environmental impacts (This STM is the Official Scoping Scosion under EE Process)	Sept. 23, 2005
4th	Optimum Project Plan	Results of evaluation on alternatives Progress and interim results of ESC study (EIA level) Study framework on preparation of optimum project plan	Dec. 7 (Cavite) Dec. 8 (Laguna) Dec. 12 (Muntenlups 2005
5th		- Results of ESC study (EIA level) - Implementation arrangements of the project - Mutual consent on optimum project	Mar.14 (Laguna) Mar.15 (Cavite), 2006
6th		- Outline of F/S - Follow-up of ESC study (EIA level) - Explanation of resettlement policy	Mid-May, 2005
7th	F/S	Progress of the F/S Explanation of framework of RAP	Early July 2006
8th		Outline of results of F/S Mutual consent on framework of RAP Further arrangement and requirement for the implementation	Early Sept., 2006

Results of the Environmental & Social **Considerations Study**

- · Environmental Baseline Study
 - Field measurement surveys: air, noise/vibration, water
 - Secondary data collection
- Social Survey
 - Focus group discussion (Barangay consultation) - Perception survey
 - · 700 sampled households from project-affected barangays
 - Household inventory survey for resettlement (100% survey for potential households to be resettled for ROW acquisition)
 - Approx. 800 households
- · Impact Assessment

ENVIRONMENTAL BASELINE STUDY

Objective

The main objective of the Environmental Baseline Study is to collect environmental baseline information in order to characterize the existing environmental condition of the project area and identify and assess potential impacts on its social and natural environment.

Main Task of the Environmental Baseline Study

- 1) Collection and review of existing secondary data
- 2) Field Surveys
 - a) Air quality sampling
 - b) Noise and vibration level measurement
 - c) Water quality sampling
 d) Reconnaissance survey on natural conditions

THE STUDY AREA PHYSICAL ENVIRONMENT I. GEOLOGY

Regional Topography and Geomorphology

The project area lies on the northern portion of the Southwest Luzon Uplands. The regional landscape is characterized by Gently sloping to rugged mountainous terrain abutting to a wide Central plain area marked by freshwater lakes (Laguna Lake and Taal lake). The project area is situated on slightly elevated Sloping region on the northern protion of the Taal Ignibrite Field, a sequence of Quaternary pyroclastic deposits and east of the Coastal areas of Cavite.

Regional Geology

The Laguna volcanic plain was created by the volcanic activities that formed the Taal Volcano and neighboring volcanic vents. The volcanoclastic rocks underlying the project area appear to have been expelled mostly from Taal Volcano. The active volcanism provided for the large volume and thick accumulation of volcanic ejectamenta or pyroclasts at sites of deposition at a distance from the volcano source.

The volcanic materials were later eroded and transported by surface water to lower areas where they underwent some sorting that resulted in occasional beds of well-sorted tuffaceous sands and gravel.

Regional Geology

The Laguna volcanic plain is bounded to the west by a fault, known as the West Valley Fault (WP), that trends north-south from Muntialan to Tagaytay Ridge and traverses west of Carmona. The trace of the fault from Muntinulpa area and about 5kms west of the Project Site is generally not very clear, ut the abrupt ascent of the land (Carmona area) towards Tagaytay suggests the presence of the fault. The eastern block of WVF moved downward relative to the western block

Regional Tectonic Setting

Luzon Island is situated at the westem margin of the Circum-Pacific region, centered roughly at 15°N latitude and 121°E longitude. The region is characterized y an active convergence between the Eurasian and Pacific plates.

Two active subduction systems of opposing polarity border Luzon: the eastward-dipping Manila trench on the west, and the incipient, northward-propagating, westward-dipping east Luzon trench, on the east.

At the Laguna and Cavite sector, volcanic rocks show marked difference in chemical composition from typical arc-related calcalkaline volcanics. A NE-SW trending "rift" structure – referred to as the Macolod Corridor was proposed to account for this geochemical variation.

Regional Seismicity

Earthquake events tend to cluster in the offshore region along the Verde Island Passage between the southeast coast of Batangas and Mindoro Island. Moderate to deep (> 150 kms) foci seismic events with a predominant thrust focal mechanism solution indicate active convergence along the southern extension of the Manila Trench system. In contrast, shallow seismic events (<70kms) appear to have originated from th movements of regional faults (e.g. Mindoro Fault, Lubang Fault) and their minor splays.

A single event located within Taal Lake is of volcanic origin associated with the 1965 eruption of Taal Volcano.

THE STUDY AREA PHYSICAL ENVIRONMENT II . HYDROGEOLOGY

Hydrogeologic Units

Quaternary Volcanic Sediments The Quaternary volcanic sediments form the main host of the underlying aquifers of the project area. It consists of layers of tuffaceous pebbly sandstone or tuff, which are all capable of storing and transmitting large quantities of groundwater. Known production vields are almost about 20 liters per second (lps) but as high as 60 lps I some areas. The aquifers are under confined to semi-confined conditions.

II. HYDROGEOLOGY

Hydrogeologic Units

Quaternary Alluvium The Quaternary alluvium are recent unconsolidated alluvial deposits that unconsolidated anuval deposits that consists of clay, silt, sand and gravel along coastal areas, river beds and floodplains. Alluvial deposit acquifers in coastal areas are restricted by sea water intrusion while inland aquifers are restricted by low storage due to limited aquifer area and/or thickness. Well yields are mostly about 2 lps but as high as 20 lps in some areas. Shallo acquifers are under unconfined conditions.

II . HYDROGEOLOGY

Groundwater Levels

Groundwater depths at the project area ranges from 60 meters below ground surface (mbgs.) to 100 mbgs.

PHYSICAL ENVIRONMENT III . NATURAL HAZARDS

Seismic Hazards

THE STUDY AREA

Of the known major tectonic structures in the region, the nearest earthquake generator to the project site is the extension of the West Valley Fault (WVF).

A paleoseismic study (Nelson and others, 2000) suggests that the northern part of this fault has a recurrence interval of 200-400 years for magnitude 6-7 earthquakes on the fault for an annual probability rate of 0.5% to 0.25%.

III . NATURAL HAZARDS

Volcanic Hazards

The nearest active volcano within the vicinity of the Project area is Taal Volcano. Eruption-related volcanic hazards for Taal volcano would include airfall tephra, base surge, fissuring and ground subsidence, seiches/tsunami and flooding

Considering the more than 25-km distance of the Project Site to Taal Volcano, it is unlikely that the area will be directly and adversely affected by eruption-related volcanic hazards from the volcano

At most the area may be affected by minial ash fall if wind speed and direction were favorably directed towards its location.

l

III . NATURAL HAZARDS

Foundation Hazards

Paleosol horizons are known to occur in the pyroclastics at the project area. With contrasting textural types of the under lying foundation, the area is susceptible to differential settlement or long-term settlement.

The damage attributable to settlement can range from complete failure of the structure to slight disfigurement.

Settlement can be reduced

•if the site is preloaded or surcharged prior to construction, or •if the soil is subjected to dynamic

compaction or vibrocompaction

IV . WATE	ER QUA	LITY								Frit
PARAMETERS	DENR Standards	WQ1	WQ2	WQ3	WQ4	WQ5	WQ6	WQ7	WQ8	10
Physical Characteristics										
Temperature	-	28.8	26.1	27.7	26.0	25.0	25.4	26.4	28.6	
Conductivity (ms/cm)	-	0.244	0.230	0.238	0.247	0.982	0.205	0.278	0.462	
Salinity (ppm)	-	0.000	0.000	0.000	0.010	0.047	0.000	0.010	0.000	Cite And
Chemical Characteristics										S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
pН	6.5 - 9.0	8.21	7.66	8.37	7.36	8.27	7.12	7.49	7.98	SHALL FACTOR MAN
BOD	7(10)mg/L	3	2	3	7	10	12	2	10	1. S. M. S.
DO	5.0 mg/L	3.08	2.09	3.08	2.18	3	2.13	2.1	2.16	
Turbidity	NTU	21	12	20	15	20	17	11	18	
TSS	60 mg/L inc.	20	60	20	40	70	60	30	60	
Lead	0.05 gm/L		0.145		0.067		0.102	0.051	0.051	
Biological Characteristics										6 6
Total coliform	5,000		12 x 10 ⁶		22 x 10 ⁴		34×10^{6}	27×10^4	27 x 10 ⁵	ANNO COMPANY
	MPN/100mL									24X2310107/995
										SWALL AND
PARAMETERS	DENR Standards	WQ9	WQ10	WQ11	WQ12	WQ13	WQ14	WQ15	WQ16	151 0184
Physical Characteristics										1 1 1 1 1
Temperature		27.5	26.5	27.8	26.9	27.2	28.5	28.1	28.3	11174
Conductivity (ms/cm)	-	0.278	21.600	0.612	0.307	0.500	0.223	0.673	5.700	
Salinity (ppm)		U.010	1.297	0.027	0.017	0.027	0.000	0.027	0.300	4
nemical Gnaracteristics	65 00	7 62	9.40	9.60	0.22	0.24	7 65	0 40	7 20	
POD	7(10)mail	7.03	0.10	0.50	0.23	0.31	7.03	0.40	7.39	
00	5.0 mg/l	21	2 96	2 97	11	2 99	2 18	3.07	2 11	1
Turbidity	NTU	11	2.30	15	32	15	2.10	19	20	
TSS	60 mg/L inc.	60	20	50	20	20	30	20	40	
Lead	0.05 am/L	0.067		0.102	0.051					
Biological Characteristics										t
Total coliform	5,000	8 x 10 ⁵					9 x 10 ⁵		3 x 10 ⁶	1
	MPN/100mL									1

V . AIR QU	ALITY						R AT	0	X	
					1	2	316	0	R.H	
					Æ	- }}	24	3	6	XI.
				X	18	D		X	1Es	BA)
					N	1A	210	5		3
PARAMETERS	DENR Standards	AQ1	AQ2	AQ3	AQ4	AQ5	AQ6	AQ7	AQ8	
Total Suspended Prticulates (TSP)	230 ug/Nmc	87	65	63	44	139	252	364	329	132
Sulfur Dioxide (SO ₂)	180 ug/Ncm	37	42	22	22	56	77	105	83	·
Nitrogen Dioxide (NO ₂)	150 ug/Ncm	44	56	31	31	28	22	38	41	
Carbon Oxide (CO)	35 ug/Ncm	-	-	-	ND	ND	ND	ND	1.0	
Ozone (O3)	140 ug/Ncm	55	22	88	5	18	87	55	32	
Lead (Pb)	1.50 ug/Ncm	0.022	0.043	0.009	0.021	0.161	0.387	0.433	0.322	
SPM	-	35	29	31	19	113	212	289	267	
NO	-	29	34	17	21	17	14	23	26	
1										

VI . NOISE L	EVEL			0 0 0	
1051 01100501701		Average	Noise (dB)	S. S. M. 1988113	
Based on dominant land use)	Morning (5:00 AM - 9:00 AM)	Daytime (9:00 AM - 6:00 PM)	Evening (6:00 PM - 10:00 PM)	Nighttime (10:00 PM - 5:00 AM)	
Class A-residential purposes	40.0	55.0	40.0	45.0	TA ATRON DET
NL-1 Brgy. Pasong Buaya, Imus, Cavite	55.2	61.12	51.28	49.96	1692
NL-2 Brgy. Tapia, Gen. Trias, Cavite	52.38	55.08	52.58	49.59	D.
NL-3 Morzon Subd., Burol Main, Dasmarinas, Cavite	55.68	53.94	52.82	51.67	
Class B-commercial areas	60.0	65.0	60.0	55.0	1
NL-4 R.C. Sta. Rosa Centro, Sta. Rosa, Laguna	52.14	52.33	51.9	50.81	
NL-5 Brgy. Biga I, Silang, Cavite (Aguinaldo Hway)	55.78	56.18	55.9	52.49	1
NL-6 Brgy. San Antonio, San Pedro, Laguna	72.6	73.0	67.7	61.5]
NL-7 Brgy. Panapaan, Int.	75.7	73.7	70.2	66.4	1
ganalao may mona may					1

Results of Social Surveys

	(N/S: 17 I	ogys, E/W: 16 bgys, Cavite Expressway: 14 bgys)				
Province	Municipality	Barangay	Number Baranga			
	•	N/S Road				
	Bacoor	Mambog III, Mambog IV, Talaba II, Talaba III, Talaba VII, Zapote V	6			
Cavite	Dasmariñas	Burol Main, Salitran I, Salitran II, Salitran III, Salitran IV, San Augustin I, San Augustin II, Langkaan I*	8			
	Imus Anabu I-G, Pasong Buaya I*, Buhay na Tubig					
		Total for N/S Road	17			
		E/W Road				
	Bacoor	Molino IV	1			
	General Trias	Pasong Camachile I, Pinagtipunab, Tapia	3			
Cavite	Imus	Anabu II-D, Anabu II-E, Malagasang II-C, Pasong Buaya I*, Pasong Buaya II	5			
	Tanza Amaya I, Biga, Sanja Mayor, Santol, Bunga					
Metro Manila	Muntinlupa city	Tunasan, Poblacion	2			
		Total for E/W Road	16			
		Cavite Expressway				
	Dasmariñas	Langkaan I*	1			
Cavita	General Trias	San Francisco	1			
Carrie	Silang	Batas, Biluso, Carmen, Biga I, Malaking Tatiano, Iba, Munting Ilog, Sabutan, Tibig	9			
Laguna	Santa Rosa	Don Jose, Sto. Domingo, Malitlit	3			
		Total for Cavite Expressway	14			
		Total Barangays	45			

Province Munici Cavite Bacoor	Socio-Economic Characteristics of the Affected Barangays (Population of Directly Affected Barangays)									
Cavite Bacoor	pality	Barangay	Population	Number of Households						
	Mambog III, Talaba VII, 5	, Mambog IV, Talaba II, Talaba III, Zapote V, Molino IV	37,972	8,121						
Dasmarinas	Burol Main, IV, San Aug	Salitran I, Salitran II, Salitran III, Salitran ustin I, San Augustin II, Langkaan I	48,919	10,933						
Imus	Anabu I-G, F II-D, Anabu	Pasong Buaya I, Buhay na Tubig, Anabu II-E, Malagasang II-C, Pasong Buaya II	23,519	5,066						
General Tria	s Pasong Cam Francisco	achile I, Pinagtipunan, Tapia, San	34,854	7,360						
Tanza	Amaya I, Bi	ga, Sanja Mayor, Santol, Bunga	16,178	3,513						
Silang	Batas, Biluso Munting Ilog	o, Carmen, Biga I, Malaking Tatiano, Iba, g, Sabutan, Tibig	22,777	4,729						
Laguna Santa Rosa C	ity Don Jose, St	o. Domingo, Malitlit	21,520	4,701						
Metro Manila Muntinlupa e	ty Tunasan, Po ^l	blacion	87,391	18,468						

Focus Group Discussion (Barangay Consultation)

Agenda

-Outline of the proposed projects, -Proposed alternative road alignments, -Coordination on social surveys, -Q&A (discussion)

Participants

-Barangay captains and councilors, -Project-affected persons, Residents, -Peoples organizations (PO), -Non-governmental organizations (NGO)

 Resolutions by Barangay for acceptance of the project =>Issue of Resolutions for endorsement of the acceptance of the Project by Municipalities and Provinces

Issues & Concern • Is the alignment final? • Will there be compensation for affected assets? When?

Is there a ready relocation site?
How will existing business establishment be compensated?

 Will there be alternative income source in the relocation site?

 What documents are needed as proof of ownership?

Results of the Perception Survey

 Perception Survey

 700 sampled households from project-affected barangays (Indirect affected households from the ROW acquisition)

+

 Household inventory survey for resettlement

 800 households to be potentially resettled (Direct affected households from the ROW acquisition)

- be potentially relocated (Incl. questions on perception of the project)
 Assigning of survey control number
- Assigning of survey control number to the housing units
 Location/marking of interviewed
- Focution/marking of interviewed households on community spot map
 Photo record of the housing unit

Main Items of the Inventory

- Residential condition
 - Lot size, floor area, duration of occupancy, housing type, housing materials/appearance, tenure status/land status, household income
- Intention of the resettlement
 - Acceptability and preferred relocation site

Affected Households on Selected Alignment PROPOSED ROAD HOUSEHOLD MUNICIPALITY BARANGAY Mambog III N/S 1 Talaba II N / S 95 Talaba III N/S 67 Bacoor Talaba VII 31 N/S Zapote V N / S 151 Sub-total 345 **Burol Main** N / S 20 Salitran I 13 N / S Salitran II N / S 5 Dasmariñas San Agustin I N/S 175 San Agustin II N / S 16 Sub-total 229