

1. ARRANGEMENT

a. Frame A1-P3

b. Frame P3-P6

2. SECTION PROPERTIES and MATERIAL PROPERTIES

Katahira & Engineers International

2.1 CONCRETE DECK SECTION PROPERTIES

BALARAJA FLYOVER

NO	ELEMENT	SAP REFERENCE	Area A (m2)	Moment of Inersia Ixx (m4)	Moment of Inersia Iyy (m4)	Torsional Constans C (m4)
1	Abutment	ABUT	5.328	0.5756	30.8814	1.074
2	Footing Abutment	FOOT	4.8	0.5756	2.304	3.175
3	Composite Column 140 cm Dia	C140COMPOSITE	2.1377	0.337	0.337	0.708
4	Composite Bored Pile 250 cm Dia	COMPBP250	5.5802	2.441	2.441	5.094
5	Composite Deck	COMP-DECK	5.512	2.267	81.278	0.8198
6	Concrete Deck Slab	DECKCON	5.8922	0.5579	73.922	0.457

Joint Masses

Pior Location	Joint mass	Joint Load	
	kN.s/m^2	kN	
A1	31.5	280	
P1	Include in model	Include in model	
P2	Include in model	Include in model	
P3	114.86	1021.8	
P4	15	147	
P5	15	147	
P6	Include in model	Include in model	
P7	Include in model	Include in model	
P8	Include in model	Include in model	
P9	Include in model	Include in model	
P10	Include in model	Include in model	
A2	31.5	280	

2.2 STEEL DECK SECTION PROPERTIES

2.3 COMPOSITE COLUMN AND COMPOSITE PILE TOP SECTION PROPERTIES

Katahira & Engineers International

	KATAHIRA & ENGINEERS INTERNATIONAL
Project:	Detailed Design Study of North Java Corridor Flyover Project
Calculation:	Detailed Design Substructure Balaraja Flyover Composite Bored Piles & Coloumn Torsion Properties

Initial Data

Modulus of elasticity of steel	$E_s := 200000 \cdot MPa$	
Characteristic strength of RC concrete	$f_c := 30 \cdot MPa$	
Modulus of elasticity of concrete	$\mathbf{E_c} \coloneqq 4700 \cdot \sqrt{\frac{\mathbf{f_c}}{\mathbf{MPa}}} \cdot \mathbf{MPa}$	E _c = 25743 MPa
Modular ratio wth respect to concrete	$\alpha_{c} := \frac{E_{s}}{E_{c}}$	$\alpha_{c} = 7.769$

Coposite Coloumn Dia 140 cm section properties respect to center point

Solid Concrete Coloumn diameter	D _c := 1.4m
Casing thicknes	t _s := 19mm
Steel Casing Outer Diameter	$\mathbf{D}_{\mathbf{S}} \coloneqq \mathbf{D}_{\mathbf{C}} + 2.\mathbf{t}_{\mathbf{S}}$
	D _s = 1.438 m

Katahira & Engineers International

Area of solid Concrete	$\mathbf{A}_{\mathbf{c}} \coloneqq \frac{1}{4} \cdot \pi \cdot \mathbf{D}_{\mathbf{c}}^{2}$
	$A_{c} = 1.539 m^{2}$
Area of Steel Casing	$\mathbf{A}_{\mathbf{S}} \coloneqq \frac{1}{4} \pi \cdot \left(\mathbf{D}_{\mathbf{S}}^{2} - \mathbf{D}_{\mathbf{C}}^{2} \right)$
	$A_{s} = 0.085 m^{2}$
Combined Area - stress	$A_{\text{comp}} := A_{\text{c}} + A_{\text{s}} \cdot \alpha_{\text{c}}$
	$A_{\text{comp}} = 2.197 \text{ m}^2$
Stiffness of Concrete Solid Circle	$\mathbf{I}_{\mathbf{c}} := \frac{1}{64} \cdot \pi \cdot \mathbf{D}_{\mathbf{c}}^{4}$
Stiffness Steel Casing	$I_{s} := \frac{1}{64} \cdot \pi \cdot \left(D_{s}^{4} - D_{c}^{4} \right)$
	$I_{s} = 0.021 m^{4}$
Combine stiffness Coloumn wrt to Concrete Ixx - Iyy	$I_{\text{comp}} := I_c + I_s \cdot \alpha_c$
	$I_{comp} = 0.354 \text{ m}^4$
Torsional Constant Solid Concrete Circle	$\mathbf{K}_{\mathbf{c}} \coloneqq \frac{1}{2} \pi \cdot \left(\frac{\mathbf{D}_{\mathbf{c}}}{2}\right)^4$
	$K_c = 0.377 m^4$
Torsional Constant Steel Casing Hollow concentric circular	$\mathbf{K}_{\mathbf{S}} := \frac{1}{2} \pi \cdot \left[\left(\frac{\mathbf{D}_{\mathbf{S}}}{2} \right)^{4} - \left(\frac{\mathbf{D}_{\mathbf{C}}}{2} \right)^{4} \right]$
	$K_{s} = 0.043 m^{4}$
Combined Torsional constant wrt to concrete	$K_{\text{comp}} \coloneqq K_c + K_s \cdot \alpha_c$
	$K_{\text{comp}} = 0.708 \text{ m}^4$

Coposite Bored Piles Dia 250 cm section properties respect to center point

Solid Concrete Coloumn diameter	D _c := 2.5m
Casing thicknes	t _s := 13mm
Steel Casing Outer Diameter	$D_s := D_c + 2.t_s$
	D _s = 2.526 m
Area of solid Concrete	$\mathbf{A}_{\mathbf{c}} \coloneqq \frac{1}{4} \cdot \boldsymbol{\pi} \cdot \mathbf{D}_{\mathbf{c}}^{2}$
	$A_{c} = 4.909 \text{ m}^{2}$
Area of Steel Casing	$\mathbf{A}_{\mathbf{S}} \coloneqq \frac{1}{4} \pi \cdot \left(\mathbf{D}_{\mathbf{S}}^{2} - \mathbf{D}_{\mathbf{C}}^{2} \right)$
	$A_{s} = 0.103 m^{2}$
Combined Area - stress	$A_{\text{comp}} \coloneqq A_{\text{c}} + A_{\text{s}} \cdot \alpha_{\text{c}}$
	$A_{\text{comp}} = 5.706 \text{ m}^2$
Stiffness of Concrete Solid Circle	$\mathbf{I}_{\mathbf{c}} \coloneqq \frac{1}{64} \cdot \pi \cdot \mathbf{D}_{\mathbf{c}}^{4}$
Stiffness Steel Casing	$\mathbf{I}_{\mathbf{S}} := \frac{1}{64} \cdot \pi \cdot \left(\mathbf{D}_{\mathbf{S}}^{4} - \mathbf{D}_{\mathbf{C}}^{4} \right)$
	$I_{s} = 0.081 \text{ m}^{4}$

Katahira & Engineers International

2.4. ABUTMENT AND PIER COPING SECTION PROPERTIES

Katahira & Engineers International

Project: Detailed Design Study of North Java Corridor Flyover Project

Calculation: Detailed Design Substructure Balaraja Flyover Abutment Section Properties & Torsion Properties

Torsional Constant based on Circular & Rectangular Section:

$$r := \frac{1}{2} \cdot 1.5m$$
 $a := \frac{1}{2} \cdot 4.0m$ $b := \frac{1}{2} \cdot 0.4m$

Circle Section :

Rectangular Section :

$$CC := \frac{1}{2}\pi \cdot r^{4}$$

$$CR := a \cdot b^{3} \left[\frac{16}{3} - 3.36 \cdot \frac{b}{a} \left(1 - \frac{b^{4}}{12 \cdot a^{4}} \right) \right]$$

$$CC = 0.497 \text{ m}^{4}$$

$$CR = 0.08 \text{ m}^{4}$$

$$C_{ABT} := 2CC + CR$$

 $C_{ABT} = 1.074 m^4$

$$a_1 := \frac{1}{2} \cdot 1.4m$$
 $b_1 := \frac{1}{2} \cdot 1.35m$
 $a_2 := \frac{1}{2} \cdot 3.1m$ $b_2 := \frac{1}{2} \cdot 0.75m$

Rectangular Section :

$$CR_{1} := a_{1} \cdot b_{1}^{3} \left[\frac{16}{3} - 3.36 \cdot \frac{b_{1}}{a_{1}} \left(1 - \frac{b_{1}^{4}}{12 \cdot a_{1}^{4}} \right) \right]$$
$$CR_{1} = 0.501 \text{ m}^{4}$$

Rectangular Section :

$$CR_{2} := a_{2} \cdot b_{2}^{3} \left[\frac{16}{3} - 3.36 \cdot \frac{b_{2}}{a_{2}} \left(1 - \frac{b_{2}^{4}}{12 \cdot a_{2}^{4}} \right) \right]$$

$$CR_{2} = 0.37 \text{ m}^{4}$$

$$CR := CR_{1} + CR_{2}$$

$$CR = 0.87 \text{ m}^{4}$$
MASS OF COPING

$$A := 4.756 \text{m}^{2}$$

$$L := 7.25 \text{m}$$

MASS :=
$$A \cdot L \cdot 2.5 \frac{\text{ton}}{\text{m}^3}$$

MASS = 86.203 ton

2.5. TORSION PROPERTIES

Katahira & Engineers International

Modulus of elasticity of steel	$E_s := 200000 \cdot MPa$		
Characteristic strength of RC concrete	$f_c := 30 \cdot MPa$		
Modulus of elasticity of concrete	$\mathbf{E}_{\mathbf{c}} \coloneqq 4700 \cdot \sqrt{\frac{\mathbf{f}_{\mathbf{c}}}{\mathbf{MPa}}} \cdot \mathbf{MPa}$	E _c = 25743 MPa	
Modular ratio wth respect to concrete	$\alpha_c := \frac{E_s}{E_c}$	$\alpha_{c} = 7.769$	
For rectangular sections torsion constant is calculated as follows:			

Torsional constant

where k1 factor

$C(k1,b,b_{max}) := k1 \cdot b^3 \cdot b_{max}$		$k1(b_{max}, b) :=$	ratio $\leftarrow \frac{b_{max}}{b}$
			0.141 if ratio = 1.0
			0.154 if $(ratio \le 1.2) \cdot (ratio > 1.0)$
			0.166 if $(ratio \le 1.3) \cdot (ratio > 1.2)$
			0.175 if $(ratio \le 1.4) \cdot (ratio > 1.3)$
			0.186 if $(ratio \le 1.5) \cdot (ratio > 1.4)$
			0.196 if $(ratio \le 1.8) \cdot (ratio > 1.5)$
			0.216 if $(ratio \le 2.0) \cdot (ratio > 1.8)$
			0.229 if (ratio ≤ 2.3)·(ratio > 2.0)
			0.242 if $(ratio \le 2.5) \cdot (ratio > 2.3)$
			0.249 if (ratio ≤ 2.8)·(ratio > 2.5)
			0.258 if $(ratio \le 3.0) \cdot (ratio > 2.8)$
			0.263 if $(ratio \le 4.0) \cdot (ratio > 3.0)$
or "thin walled" sections" box			0.281 if $(ratio \le 5.0) \cdot (ratio > 4.0)$
ctions torsion constant is			0.305 if $(ratio \le 7.5) \cdot (ratio > 5.0)$
lculated as follows			0.312 if $(ratio \le 10.0) \cdot (ratio > 7.5)$
j := 1 4	4. A ²		0.333 otherwise

Fo se ca

$$j := 1 ... 4$$

$$CS(A, ds, t) := \frac{4 \cdot A^2}{\sum_{j} \frac{ds_j}{t_j}}$$

Katahira & Engineers International

PC DOUBLE GIRDER DECK - 20m Span

In Span Section

Girder Section	Effective length of short side	b := 955 · mm
	Effective length of long side	$b_{max} := 1200 \cdot mm$
	$k := k1(b_{\max}, b)$	k = 0.166
	$C1 := C(k, b, b_{max})$	
	$C1 = 0.173 m^4$	
Cantilever Slab	Effective length of short side	b := 350·mm
	Effective length of long side	b _{max} := 2645⋅mm
	$k := k1(b_{max}, b)$	k = 0.312
	$C2 := C(k, b, b_{max})$	
	$C2 = 0.035 m^4$	
Central Slab	Effective length of short side	b := 300·mm
	Effective length of long side	$b_{max} := 2195 \cdot 2 \cdot mm$
	$k := k1(b_{max}, b)$	k = 0.333
	$C3 := C(k, b, b_{max})$	
	$C3 = 0.039 m^4$	
Total torsional constant	$C_{SPAN} := C1 \cdot 2 + C2 \cdot 2 + C3$	
	$C_{SPAN} = 0.457 m^4$	

At Pier Section

Girder Section	Effective length of short side	b := 1200·mm
	Effective length of long side	b _{max} := 1460⋅mm
	$k := k1(b_{max}, b)$	k = 0.166
	$C1 := C(k, b, b_{max})$	
	$C1 = 0.419 m^4$	
Cantilever Slab	Effective length of short side	b := 325·mm
	Effective length of long side	b _{max} := 2265⋅mm
	$k := k1(b_{\max}, b)$	k = 0.305
	$C2 := C(k, b, b_{max})$	
	$C2 = 0.024 m^4$	
Central Slab	Effective length of short side	b := 270·mm
	Effective length of long side	b _{max} := 2630⋅mm
	$k := k1(b_{max}, b)$	k = 0.312
	$C3 := C(k, b, b_{max})$	
	$C3 = 0.016 m^4$	
Total torsional constant	$C_{\text{PIER}} \coloneqq C1 \cdot 2 + C2 \cdot 2 + C3$	
	$C_{PIER} = 0.901 m^4$	

At Diaphragm Section

Girder Section	Effective length of short side	b := 1200·mm
	Effective length of long side	$b_{max} := 6560 \cdot mm$
	$k := k1(b_{\max}, b)$	k = 0.305
	$C1 := C(k, b, b_{max})$	
	$C1 = 3.457 m^4$	
Cantilever Slab	Effective length of short side	b := 325∙mm
	Effective length of long side	b _{max} := 2265⋅mm
	$k := k1(b_{max}, b)$	k = 0.305
	$C2 := C(k, b, b_{max})$	
	$C2 = 0.024 m^4$	
Total torsional constant	$C_{-1} = C_{1} + C_{2}^{2}$	
	$C_{\text{total}} = C1 + C2^{-2}$	
	$C_{total} = 3.505 m^4$	

KATAHIRA & ENGINEERS INTERNATIONAL

Project:

Detailed Design Study of North Java Corridor Flyover Project

Calculation:

Detailed Design Substructure Balaraja Flyover Torsion Properties

Initial Data

Modulus of elasticity of steel $E_s := 200000 \cdot MPa$ Characteristic strength of RC
concrete $f_c := 30 \cdot MPa$ Modulus of elasticity of concrete $E_c := 4700 \cdot \sqrt{\frac{f_c}{MPa}} \cdot MPa$ $E_c = 25743 \text{ MPa}$ Modular ratio wth respect to concrete $\alpha_c := \frac{E_s}{E_c}$ $\alpha_c = 7.769$

For rectangular sections torsion constant is calculated as follows:

Torsional constant

where k1 factor

$C(k1,b,b_{max})$	$= k1 \cdot b^3 \cdot b_{max}$	$k1(b_{\max},b) :=$	ratio ∢	$-\frac{b_{max}}{b}$
			0.141	if ratio = 1.0
			0.154	if (ratio ≤ 1.2)·(ratio > 1.0)
			0.166	if (ratio ≤ 1.3)·(ratio > 1.2)
			0.175	if $(ratio \le 1.4) \cdot (ratio > 1.3)$
			0.186	if $(ratio \le 1.5) \cdot (ratio > 1.4)$
			0.196	if $(ratio \le 1.8) \cdot (ratio > 1.5)$
			0.216	if (ratio ≤ 2.0)·(ratio > 1.8)
			0.229	if (ratio ≤ 2.3)·(ratio > 2.0)
			0.242	if $(ratio \le 2.5) \cdot (ratio > 2.3)$
			0.249	if $(ratio \le 2.8) \cdot (ratio > 2.5)$
			0.258	if (ratio ≤ 3.0)·(ratio > 2.8)
			0.263	if (ratio ≤ 4.0)·(ratio > 3.0)
For "thin walled"	sections" box		0.281	if $(ratio \le 5.0) \cdot (ratio > 4.0)$
sections torsion c	onstant is		0.305	if (ratio ≤ 7.5)·(ratio > 5.0)
calculated as follo	ows 2		0.312	if $(ratio \le 10.0) \cdot (ratio > 7.5)$
j := 14	$CS(A, ds, t) := -\frac{4 \cdot A^2}{2}$		0.333	otherwise

Katahira & Engineers International

STEEL GIRDER DECK - 25m/31m Span

Steel Girders

Thickness of walls of steel box

Length of steel box sides:

t _{.j} :=	
21.mm	
16∙mm	
21.mm	
16∙mm	

Area enclosed within median:

$$A := \left(ds_2 - \frac{t_1 + t_3}{2} \right) \cdot \frac{ds_1 + ds_3}{2}$$

$$A = 1.551 m^2$$

This gives the torsion constant for the steel box:

$$CSB := CS(A, ds, t) \qquad CSB = 0.03347 m^4$$

Concrete Deck Slab

Calculate torsion constant based on rectangular elements

Haunch Slab	Effective length of short side	b := 450·mm
	Effective length of long side	b _{max} := 1950∙mm
	$k := k1(b_{\max}, b)$	k = 0.281
	$C1 := C(k, b, b_{max})$	
	$C1 = 0.05 m^4$	
Cantilever Slab	Effective length of short side	b := 350·mm
	Effective length of long side	$b_{max} := 2538 \cdot mm$
	$k := k1(b_{\max}, b)$	k = 0.305
	$C2 := C(k, b, b_{max})$	
	$C2 = 0.033 m^4$	

Central Slab	Effective length of short side	b := 300·mm
	Effective length of long side	$b_{max} := 1862 \cdot 2 \cdot mm$
	$k := k1(b_{\max}, b)$	k = 0.333
	$C3 := C(k, b, b_{max})$	
	$C3 = 0.033 m^4$	
Total torsional constant for slab	$Cslab_{total} := C1 \cdot 2 + C2 \cdot 2 + C3$	
	$Cslab_{total} = 0.2 m^4$	

Total Composite Torsional Constant

 $C_{TOTAL} := Cslab_{total} + 2 \cdot CSB \cdot \alpha_c$

 $C_{TOTAL} = 0.72 m^4$

STEEL COPING FOR OUTRIGGER PIER - P4 & P5

IN SPAN SECTION

Thickness of walls of steel box

Length of steel box sides:

 $ds_{j} :=$ $\frac{2100 \cdot mm}{1900 \cdot mm}$ $\frac{2100 \cdot mm}{1900 \cdot mm}$

 $A := \frac{1}{2} \cdot \left(ds_2 - \frac{t_1 + t_3}{2} \right) \cdot \frac{ds_1 + ds_3}{2}$

Area enclosed within median:

 $A = 1.969 m^2$

This gives the torsion constant for the steel box:

 $CSB := CS(A, ds, t) \qquad CSB = 0.04213 m^4$

SIDE SPAN SECTION

Thickness of walls of steel box

Area enclosed within median:

Length of steel box sides:

 $ds_{j} := 2000 \cdot mm$ $1900 \cdot mm$ $2000 \cdot mm$ $1900 \cdot mm$

$$\mathbf{A} \coloneqq \frac{1}{2} \cdot \left(\mathrm{ds}_2 - \frac{\mathrm{t}_1 + \mathrm{t}_3}{2} \right) \cdot \frac{\mathrm{ds}_1 + \mathrm{ds}_3}{2}$$

$$A = 1.879 m^2$$

This gives the torsion constant for the steel box:

$$CSB := CS(A, ds, t) \qquad CSB = 0.03617 m^4$$

Katahira & Engineers International

CONCRETE COPING FOR EXPANSION PIER

Calculate torsion constant based on rectangular elements

Upper section	Effective length of short side	b := 700·mm
	Effective length of long side	b _{max} := 1400 ⋅ mm
	$k := k1(b_{max}, b)$	k = 0.216
	$C1 := C(k,b,b_{max})$	
	$C1 = 0.104 m^4$	
Lower Section	Effective length of short side	b := 700·mm
	Effective length of long side	b _{max} := 3100 ⋅ mm
	$k := k1(b_{\max}, b)$	k = 0.281
	$C2 := C(k, b, b_{max})$	
	$C2 = 0.299 m^4$	
Total torsional constant for coping	$C_{\text{coping}} := C1 + C2$	
	$C_{coping} = 0.403 m^4$	

ABUTMENT

Calculate torsion constant based on rectangular elements

Column section	Effective length of short side $b := 1150 \cdot mm$	
	Effective length of long side	b _{max} := 1150⋅mm
	$k := k1(b_{\max}, b)$	k = 0.141
	$C1 := C(k, b, b_{max})$	
	$C1 = 0.247 m^4$	
Lower Section	Effective length of short side	b := 400 · mm
	Effective length of long side	b _{max} := 4200 ⋅ mm
	$k := k1(b_{\max}, b)$	k = 0.333
	$C2 := C(k, b, b_{max})$	
	$C2 = 0.09 m^4$	
Total torsional constant for coping	$C_{\text{coping}} \coloneqq 2C1 + C2$	
	$C_{\text{coping}} = 0.583 \text{ m}^4$	

Composite Bored Piles & Coloumn Torsion Properties

Initial Data

Modulus of elasticity of steel	$E_s := 200000 \cdot MPa$	
Characteristic strength of RC concrete	$f_c := 30 \cdot MPa$	
Modulus of elasticity of concrete	$\mathbf{E}_{\mathbf{c}} \coloneqq 4700 \cdot \sqrt{\frac{\mathbf{f}_{\mathbf{c}}}{\mathbf{MPa}}} \cdot \mathbf{MPa}$	$E_c = 25743 \text{ MPa}$
Modular ratio wth respect to concrete	$\alpha_{c} := \frac{E_{s}}{E_{c}}$	$\alpha_{c} = 7.769$

Coposite Coloumn Dia 110 cm section properties respect to center point

Area of solid Concrete	$\mathbf{A}_{\mathbf{c}} := \frac{1}{4} \cdot \pi \cdot \mathbf{D}_{\mathbf{c}}^{2}$
	$A_{c} = 0.95 m^{2}$
Area of Steel Casing	$\mathbf{A}_{\mathbf{S}} := \frac{1}{4} \pi \cdot \left(\mathbf{D}_{\mathbf{S}}^2 - \mathbf{D}_{\mathbf{C}}^2 \right)$
	$A_{s} = 0.067 m^{2}$
Combined Area - stress	$A_{\text{comp}} := A_{\text{c}} + A_{\text{s}} \cdot \alpha_{\text{c}}$
	$A_{\text{comp}} = 1.469 \text{ m}^2$
Stiffness of Concrete Solid Circle	$\mathbf{I}_{\mathbf{c}} := \frac{1}{64} \cdot \pi \cdot \mathbf{D}_{\mathbf{c}}^{4}$
Stiffness Steel Casing	$I_{s} := \frac{1}{64} \cdot \pi \cdot \left(D_{s}^{4} - D_{c}^{4} \right)$
	$I_{s} = 0.01 m^{4}$
Combine stiffness Coloumn wrt to Concrete Ixx - Iyy	$I_{\text{comp}} := I_{\text{c}} + I_{\text{s}} \cdot \alpha_{\text{c}}$
	$I_{comp} = 0.153 \text{ m}^4$
Torsional Constant Solid Concrete Circle	$\mathbf{K}_{\mathbf{c}} \coloneqq \frac{1}{2} \pi \cdot \left(\frac{\mathbf{D}_{\mathbf{c}}}{2}\right)^4$
	$K_{c} = 0.144 m^{4}$
Torsional Constant Steel Casing Hollow concentric circular	$\mathbf{K}_{\mathbf{s}} := \frac{1}{2} \pi \cdot \left[\left(\frac{\mathbf{D}_{\mathbf{s}}}{2} \right)^{4} - \left(\frac{\mathbf{D}_{\mathbf{c}}}{2} \right)^{4} \right]$
	$K_{s} = 0.021 m^{4}$
Combined Torsional constant wrt to concrete	$K_{\text{comp}} \coloneqq K_{c} + K_{s} \cdot \alpha_{c}$
	$K_{comp} = 0.306 m^4$

Katahira & Engineers International

Coposite Coloumn Dia 140 cm section properties respect to center point

Solid Concrete Coloumn diameter	$D_c := 1.4m$
Casing thicknes	t _s := 19mm
Steel Casing Outer Diameter	$\mathbf{D}_{\mathbf{S}} \coloneqq \mathbf{D}_{\mathbf{C}} + 2.\mathbf{t}_{\mathbf{S}}$
	D _s = 1.438 m
Area of solid Concrete	$\mathbf{A}_{\mathbf{c}} \coloneqq \frac{1}{4} \cdot \boldsymbol{\pi} \cdot \mathbf{D}_{\mathbf{c}}^{2}$
	$A_{c} = 1.539 \text{ m}^{2}$
Area of Steel Casing	$\mathbf{A}_{\mathbf{S}} \coloneqq \frac{1}{4} \pi \cdot \left(\mathbf{D}_{\mathbf{S}}^{2} - \mathbf{D}_{\mathbf{C}}^{2} \right)$
	$A_{s} = 0.085 m^{2}$
Combined Area - stress	$A_{\text{comp}} \coloneqq A_c + A_s \cdot \alpha_c$
	$A_{\text{comp}} = 2.197 \text{ m}^2$
Stiffness of Concrete Solid Circle	$\mathbf{I}_{\mathbf{c}} \coloneqq \frac{1}{64} \cdot \pi \cdot \mathbf{D}_{\mathbf{c}}^{4}$
Stiffness Steel Casing	$\mathbf{I}_{s} \coloneqq \frac{1}{64} \cdot \pi \cdot \left(\mathbf{D}_{s}^{4} - \mathbf{D}_{c}^{4} \right)$
	$I_s = 0.021 \text{ m}^4$

Combine stiffness Coloumn wrt to Concrete Ixx - Iyy

$$I_{\text{comp}} = 0.354 \text{ m}^4$$
$$K_{\text{c}} \coloneqq \frac{1}{2}\pi \cdot \left(\frac{D_{\text{c}}}{2}\right)^4$$
$$K_{\text{c}} = 0.377 \text{ m}^4$$

 $I_{\text{comp}} := I_c + I_s \cdot \alpha_c$

Torsional Constant Solid Concrete Circle

Torsional Constant Steel Casing Hollow concentric circular

Combined Torsional constant wrt to concrete

$$\mathbf{K}_{\mathbf{s}} \coloneqq \frac{1}{2} \pi \cdot \left[\left(\frac{\mathbf{D}_{\mathbf{s}}}{2} \right)^{4} - \left(\frac{\mathbf{D}_{\mathbf{c}}}{2} \right)^{4} \right]$$

$$K_{s} = 0.043 \text{ m}^{4}$$

$$K_{\text{comp}} := K_c + K_s \cdot \alpha_c$$

$$K_{comp} = 0.708 \text{ m}^4$$

Coposite Bored Piles Dia 250 cm section properties respect to center point

Solid Concrete Coloumn diameter	$D_c := 2.5m$
Casing thicknes	t _s := 13mm
Steel Casing Outer Diameter	$\mathbf{D}_{\mathbf{S}} \coloneqq \mathbf{D}_{\mathbf{C}} + 2.\mathbf{t}_{\mathbf{S}}$
	D _s = 2.526 m
Area of solid Concrete	$\mathbf{A}_{\mathbf{c}} \coloneqq \frac{1}{4} \cdot \pi \cdot \mathbf{D}_{\mathbf{c}}^{2}$
	$A_{c} = 4.909 m^{2}$

 $\mathbf{A}_{\mathbf{S}} \coloneqq \frac{1}{4} \pi \cdot \left(\mathbf{D}_{\mathbf{S}}^2 - \mathbf{D}_{\mathbf{C}}^2 \right)$ Area of Steel Casing $A_s = 0.103 \text{ m}^2$ $A_{\text{comp}} := A_c + A_s \cdot \alpha_c$ **Combined Area - stress** $A_{\text{comp}} = 5.706 \text{ m}^2$ $I_c := \frac{1}{64} \cdot \pi \cdot D_c^4$ Stiffness of Concrete Solid Circle $I_{s} := \frac{1}{64} \cdot \pi \cdot \left(D_{s}^{4} - D_{c}^{4} \right)$ $I_s = 0.081 \text{ m}^4$ $I_{\text{comp}} := I_c + I_s \cdot \alpha_c$ $I_{\text{comp}} = 2.547 \text{ m}^4$ $K_{c} := \frac{1}{2}\pi \cdot \left(\frac{D_{c}}{2}\right)^{4}$ $K_c = 3.835 m^4$ $\mathbf{K}_{\mathbf{s}} := \frac{1}{2}\pi \cdot \left[\left(\frac{\mathbf{D}_{\mathbf{s}}}{2} \right)^{4} - \left(\frac{\mathbf{D}_{\mathbf{c}}}{2} \right)^{4} \right]$ Torsional Constant Steel Casing Hollow concentric circular $K_{s} = 0.162 \text{ m}^{4}$

Combined Torsional constant wrt to concrete

$$K_{\text{comp}} \coloneqq K_c + K_s \cdot \alpha_c$$

 $K_{\text{comp}} = 5.094 \text{ m}^4$

Combine stiffness Coloumn wrt to Concrete Ixx - Iyy

Torsional Constant Solid Concrete Circle

COPING P6 TORSIONAL CONSTANT

Square Section

$$a := \frac{1}{2} \cdot 1.35m$$

$$CR_1 := 2.25a^4$$

$$CR_1 = 0.467 \text{ m}^4$$

Rectangular Section

$$a := \frac{1}{2} \cdot 3.1 \text{m}$$

$$b := \frac{1}{2} \cdot 1 \text{m}$$

$$CR_2 := a \cdot b^3 \left[\frac{16}{3} - 3.36 \cdot \frac{b}{a} \left(1 - \frac{b^4}{12 \cdot a^4} \right) \right]$$

$$CR_2 = 0.824 \text{ m}^4$$

Total Torsional Constant

$$CR := CR_1 + CR_2$$
$$CR = 1.291 \text{ m}^4$$

2.6 MATERIAL PROPERTIES

Material Properties

1) Structural steel

The type of structure steel shown below shall be used.

CLASS, DESIGNATION AND STRENGTH OF STRUCTURE STEEL

JIS Standard				ASTM Standard	
Designation	Yield Point (N/mm ²)	Tensile Strength (N/mm ²)	Designation	Yield Point (N/mm ²)	Tensile Strength (N/mm ²)
<u>G 3101</u> SS 400	215 – 245	400 – 510	A 36	250	400 – 500
<u>G 3106</u> SM 400 SM 490 SM 490 Y SM 520 SM 570	215 - 245 295 - 325 325 - 365 325 - 365 420 - 460	400– 510 490 – 610 490 – 610 520 – 640 570 – 720	A 242 A440 A 441 A 588 A 572	290 - 340 290 - 340 290 - 340 290 - 340 410 - 450	≥ 430 430 - 480 430 - 480 430 - 480 510 - 550
<u>G 3114</u> SMA 400W SMA 490W SMA 570W	215 – 245 325 – 365 420 – 460	400 – 540 490 – 610 570 – 720	A 514	620 – 690	690 – 900

JIS G 3101 : Rolled Steel of General Structure

JIS G 3106 : Rolled Steel for Welded Structure

JIS G 3114 : Hot-Rolled Atmospheric Corrosion Resisting Steels for Welded Structure

2) Concrete

Concrete Compressive strength:

The 28-days compressive strength and corresponding elastic modulus Ec, shall be as shown below:

Concrete Class	Characteristi c Compressive Strength MPa	Application of Structure
A-1	40	Pre-cast Pre-stressed Concrete Structure
A-2	35	Cast-in-situ Pre-stressed Concrete Structure
B-1	30	Deck slab, Pier heads and Columns, Diaphragms of P.C.I- Girder, Integral Abutments
B-2	30	Cast-in-situ Reinforced Concrete Piles, Bored Piles
С	20	Retaining Walls
D	15	Gravity type Retaining Walls
E	8	Leveling Concrete

CLASSIFICATION OF CONCRETE (CYLINDER)

Characteristic compressive strength of concrete shall be based on standard compression test of cylinder specimens at the stage of 28 days, as specified in JIS or ASTM.

The coefficient of thermal expansion shall be 1.0 x 10-5 (per o Celsius).

3) Reinforcing Steel

Reinforcing steel shall consist generally of high yield deformed steel bar of grade SD 40, and mild steel round bar SR 24 whenever bars must be bent / unbent and for special uses (dowels),

The type reinforcement, yield point, and application standard as shown below.

TYPE OF REINFORCEMENT

Turo	Grada	Yield Point	Applic	Indard	
туре	Glade	(N/mm²)	SII	JIS	BS
Round Bars SR 24		240	SII 0136	G 3112	BS 4449
Deformed Bars	SD 40	390	SII 0136	G 3112	BS 4449

4) Pre-stressing Tendons

The type of pre-stressing of tendons shown below shall be used.

CLASSIFICATION OF PRE-STRESSING TENDONS

Notation	Utilization	Nominal Diameter	Yield Strength	Braking Strength	Application Standard		
		(mm)	(kg/mm²)	(kg/mm²)	JIS	ASTM	
PC Wire SWPR 1A	PC Pile	Ø 7	135	155	G 3536	A 421	
PC 7 Wire Strand SWPR 7B	PC Hollow Core Slab Unit, PC Double Girder, PC I-Girder and T- Girder, Diaphragm of PC I- Girder and T-Girder	T 12.7	160	190	G 3536	A 416	
PC 7 Wire Strand SWPR 7B	Transversal Cable for Deck Slab	T 15.2	160	190	G 3536	A 416	
PC 19 Wire Strand SWPR 19	Diaphragm of PC I- Girder and T-Girder	T 19.3	160	190	G 3536	A 416	

Modulus of elasticity: 2.0 x 105 MPa

Coefficient of thermal expansion = $1.2 \times 10-5$ (per o Celsius).

5) Elastomeric Bearing Pads

Bearings shall be desirably manufactured from natural rubber of IHRD 53 \pm 5 hardness, having properties which comply with the Specification of Authority. The values of G and B,

based on the assumed properties as shown below, may be used for natural rubber (using current formulations) for calculating the strain.

Durometer Hardness	Shear Modulus G	Bulk Modulus
IHRD ± 5	MPa	MPa
53	0.69	2,000
60	0.90	2,000
70	1.20	2,000

ELASTOMER PROPERTIES

Allowable Stresses

1) Reinforced Concrete Structure

- Allowable stress for Bending

The basic allowable stresses calculated in accordance with the "Bridge Design Code" for concrete and reinforcing bars are shown below. The values shall be increased by the percentage of permissible overstress for each load combination given below.

Characte	eristic Concrete Streng	15	20	25	30	
Flexure	Compression	6.00	8.00	10.00	12.00	
Flexure Tension	Plain Concrete	0.15 √(fc')	0.58	0.67	0.75	0.82
	Reinforced Concrete	0.0	0.00	0.00	0.00	0.00
Bond Stress	Round Bars			0.70	0.80	0.90
	Deformed Bars			1.40	1.60	1.80
Bea	0.3 fc'	4.50	6.00	7.50	9.00	

BASIC ALLOWABLE STRESS OF CONCRETE (MPa)

Grade		Allowable stress (MPa)			
	Yield strength fsy (MPa)	Tension 0.5 x fsy ≤ 170	Compression 0.5 x fsy ≤ 110		
BJTD 40	390	170	110		
BJTD 24	240	120	110		

BASIC ALLOWABLE STRESS OF REINFORCING BARS

2) Pre-stressed Concrete Structure

a) Concrete

Allowable stress of concrete for pre-stressed concrete shall be in accordance with "Specification for Road Bridges", 1996, Japan Road Association as shown below.

Designation				Concrete Strength (MPa)				
	Designa	tion	30.0	35.0	40.0	45.0	50.0	
	Immediately	For Rectangular sections	15.0	17.0	19.0	21.0	21.0	
Compression	stressing	For T and Box sections	14.0	16.0	18.0	20.0	20.0	
Bending	Other Case	For Rectangular sections	12.0	13.5	15.0	17.0	17.0	
	Other Case	For T and Box sections	11.0	12.5	14.0	16.0	16.0	
Compression	Immediately after	12.0	12.5	14.5	16.0	18.0		
Axial Load	Other Case		8.5	9.5	11.0	13.5	13.5	
	Immediately after	1.2	1.3	1.5	1.8	1.8		
Tensile Stress	In case without T	raffic Load	0.0	0.0	0.0	0.0	0.0	
Bending	Slabs and Joints l	0.0	0.0	0.0	0.0	0.0		
	Other Case		1.2	1.3	1.5	1.8	1.8	
Tensile Stress	due to Axial Load		0.0	0.0	0.0	0.0	0.0	
Shoon Stroog	Shear and Torsio	n Considered Separately	0.8	0.9	1.0	1.2	1.2	
Shear Stress	Shear and Torsio	n Considered Simultaneously	1.1	1.2	1.3	40.0 45.0 50 19.0 21.0 21 18.0 20.0 20 15.0 17.0 17 14.0 16.0 16 14.5 16.0 18 11.0 13.5 13 1.5 1.8 1 0.0 0.0 0 0.0 0.0 0 1.5 1.8 1 0.0 0.0 0 1.5 1.8 1 0.0 0.0 0 1.5 1.8 1 0.0 0.0 0 1.5 1.8 1 0.0 0.0 0 1.0 1.2 1 1.3 1.5 1 1.0 1.0 1 2.0 2.0 2	1.5	
Dond Strass	Round Bars		0.9	0.9	1.0	1.0	1.0	
Dona Stress	Deformed Bars	1.8	1.9	2.0	2.0	2.0		

ALLOWABLE STRESS OF CONCRETE FOR PC STRUCTURE

Prestressed reinforcement concrete member shall be designed in accordance with the "Specification of Road Bridges".

• Limited Tensile stress without any cracks

 $ftk = M_1 x 0.23x \ fck^{2/3} / \gamma c$ $M_1 = 0.6 / h^{1/3}$

Where:

ftk = Limited tensile stress

fck = Characteristic concrete strength

 M_1 = factor for structural member

h thickness of structural member

In case of h = 1.2 m, fck = 35 MPa

 $M_1 = 0.6/1.2^{1/3} = 0.565$

 $ftk = 0.565 \times 0.23 \times 35^{2/3} / 1.0 = 1.39 \text{ N/mm}^2$

• Crack-width Control

Crack width can be calculated with the following condition

$$W = K_1 * \{4C + 0.7(Cs - \Phi)\}\{fse / Es(or fpe / Ep)\varepsilon'cs\}$$

Where:

- K_1 : Constant to take into account the influence of bond characteristic of steel
 - 1.0 for deformed bars pre-tensioned Prestressing steel
 - 1.3 for plain bars and post-tensioned Prestressing steel

 $K_1 = 1.0$

- *C* : Concrete Cover
- *Cs* : Center to center distance of steel (cm)
- Φ : Diameter of tensile steel (cm)
- fse: Increase of tensile stress of reinforcement (kgf/cm2)
- *Es* : Young's modulus of reinforcing steel (kgf/cm2)
- *fpe*: Increase of tensile stress of Prestressing steel (kgf/cm2)
- Ep : Young's modulus of Prestressing steel (kgf/cm²)
- ε '*cs*:Compressive strain for increment crack width due to shrinkage and creep of concrete usually = 0
- Wa = 0.0035xC

b) Pre-stressing Tendons

Allowable stress of pre-stressing tendons shall be in accordance with the "Specification of Road Bridges" (JRA as follows, and the calculated values are shown below.

During pre-stressing: 0.80 fpu or 0.90 fpy whichever in smallerAfter pre-stressing: 0.70 fpu or 0.85 fpy whichever in smallerUnder design load: 0.60 fpu or 0.75 fpy whichever in smallerWhere;= Tensile strength of tendon

fpy = Yield strength of tendon

	Nominal diameter	During pre- stressing	After pre- stressing	Under design load	
PC wire SWPR 1 A	Ø 7	1215	1085	930	
PC wire SWPR 1 A	Ø 8	1170	1050	900	
PC 7-wire Strand SWPR 7 A	T 12.4	1350	1225	1050	
PC 7-wire Strand SWPR 7 B	T 12.7	1440	1330	1140	
PC 7-wire Strand SWPR 7 B	T 15.2	1440	1330	1140	
PC 19-wire Strand SWPR 19	T 19.3	1440	1330	1140	
PC bar SBPR 785 / 1030	Ø	720	680	600	

ALLOWABLE STRESS OF PRE-STRESSING TENDONS (MPa)

3) Structural Steel

Allowable stress of the structural steel shall be in accordance with "Specification for Road Bridges", 1996, Japan Road Association, as shown below.

Structural Steel	SM 400	SM 490	SM 490 Y	SM 570
Yield Strength (N/mm ²)	235	315	355	450
Axial Tension (N/mm ²)	140	185	210	255

ALLOWABLE STRESS OF STRUCTURAL STEEL

Structural Concrete Design

1) General

The reinforced concrete and pre-stressed concrete shall be designed in accordance with the definitions in these structural design criteria depending on type of concrete structure adopted.

2) Strength Reduction Factor

Strength reduction factor, Φ for concrete structural section shall be taken as shown below.:

STRENGTH REDUCTION FACTOR FOR ULTIMATE LIMIT STATE

Design Condition	Strength Reduction Factor Φ
Bending	0.80
Shear and Torsion	0.70
Axial Compression	
With spiral reinforcement	0.70
With hoops	0.65
Bearing	0.70

Design Strength of Concrete Structural Section

Design strength on structural concrete section for all loads and internal force, i.e bending moment, shear, axial force, and torsion, shall be based on design strength of section, is can be calculated from nominal strength multiplied by strength reduction factor

3) Minimum Concrete Cover to Reinforcement

Minimum concrete cover to outermost reinforcement shall be as follows:

Surface in contact with soil or water	: 75 mm
Columns	: 40 mm
Girders and Beams Cast-In-Situ	: 35 mm
Girders and Beams Pre-cast in Factory	: 25 mm
Slabs, Parapets, etc	: 30 mm

Structural Steel Design

1) General

The steel structure shall be designed in accordance with the definitions in these structural design criteria depending on type of steel structure adopted.

2) Strength Reduction Factor

Strength Reduction Factor, Φ for steel structural section shall be taken as shown in below.

Design Condition	Strength Reduction Factor Φ
a . Bending	0.90
b . Shear	0.90
c . Axial Compression	0.85
d . Axial tension	
1. For yield tension strength	0.90
2. For fracture tension strength	0.75
e . Shear Connection	0.75
f. Welding Connection	
1. Butt welding full penetration	0.90
2 .Throat welding and butt	
Welding partial penetration	0.75

STRENGTH REDUCTION FACTOR FOR ULTIMATE LIMIT STATE

Design Strength of Steel Structural Section

Design strength on section for all loads and internal force, i.e bending moment, shear, axial force, and torsion, shall be based on nominal strength multiplied by strength reduction factor.

3. SOIL PROPERTIES

- 3.1. SOIL PROFILE
- 3.2. SUMMARY OF SPT'S
- 3.3. SUMMARY OF UNDISTURBED TESTS
- 3.4. SUMMARY OF DISTURBED TESTS
- 3.5. SOIL SPRINGS AND LATERAL BEARING CAPACITY OBTAINED FROM SPT CORRELATIONS

3.1 SOIL PROFILE

	Picture VII.1	Soil Pro:	file			1							
Balaraja B-1 (N value)	Balaraja 8-2 (N value)	Balaraja B-3 (N value)	Balaraja B-4 (N value)	Balaraja B-5 (N value)	Balaraja B-6 (N value)	Balaraja B.7 (N value)	siaraja B-8 (N valuo)	Balaraja B-9 (N value)	Balaraja B-10 (N valuo)	Balaraja B-11 (N valuo)	Balaraja B-13 (N value)	Balaraja B-14 (N valuo)	Balaraja B-15 (N value)
			· · · · · · ·	السحاد :		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	