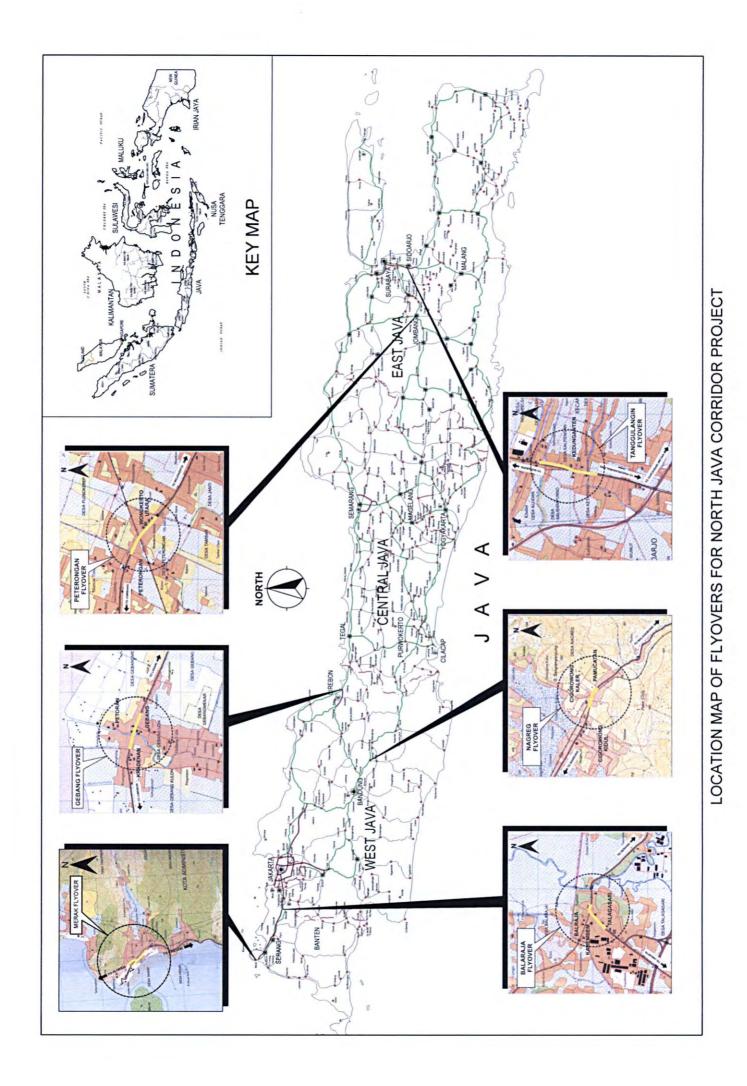
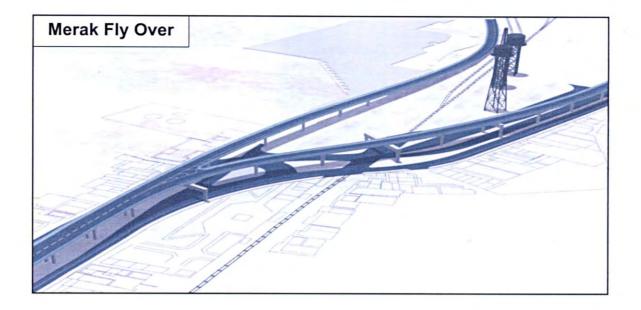
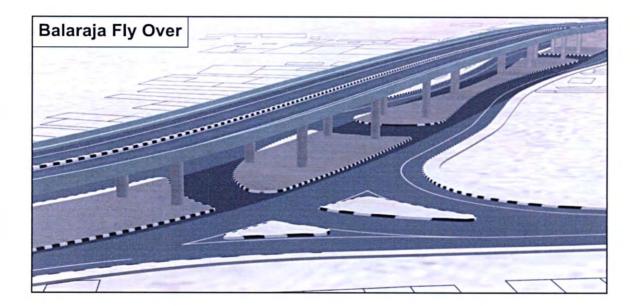


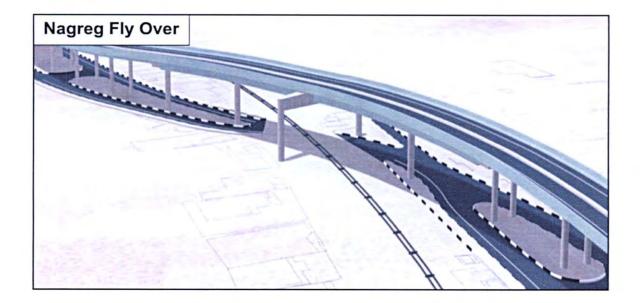
JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

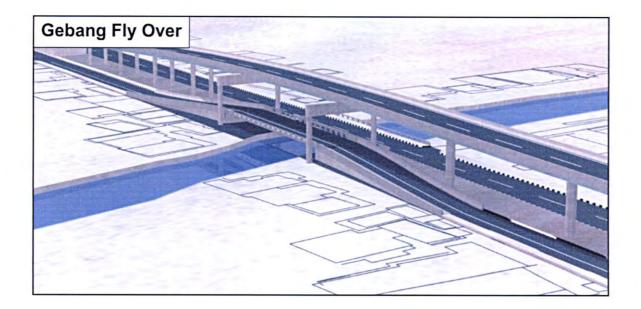
MINISTRY OF PUBLIC WORKS REPUBLIC OF INDONESIA

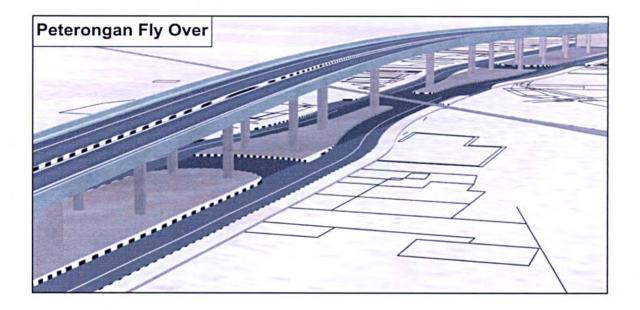

DETAILED DESIGN STUDY OF NORTH JAVA CORRIDOR FLYOVER PROJECT IN THE REPUBLIC OF INDONESIA

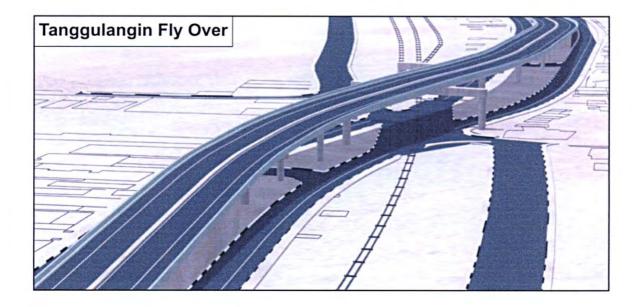

FINAL REPORT MAIN TEXT


DECEMBER 2006









DETAILED DESIGN STUDY OF NORTH JAVA CORRIDOR FLYOVER PROJECT IN THE REPUBLIC OF INDONESIA

FINAL REPORT

TABLE OF CONTENT

PART I	INTF	RODUC	TION	
CHAPTER	1	INTRO	DUCTION	
	1.1	BACK	GROUND	1-1
	1.2	OBJE	CTIVES OF THE STUDY	1-1
	1.3	STUD	Y AREA	1-2
	1.4	SCOP	E OF THE STUDY	1-2
	1.5	STUD	Y SCHEDULE	1-3
	1.6	ORGA	NIZATION FOR THE STUDY	1-4
CHAPTER	2	OBJE	CTIVE OF THE PROJECT	
CHAPTER	3	REVIE	W OF PREVIOUS STUDIES	
	3.1	FEAS	BILITY STUDY OF THE PROJECT	3-1
		3.1.1	Traffic Conditions and Future Traffic Demand	3-1
		3.1.2	Geometric Design Standards	3-2
		3.1.3	Flyover Schemes, Type of Bridge, Construction Cost and Economic Viability	3-3
	3.2	SAPR	OF STUDY OF THE PROJECT	3-5
		3.2.1	Recommended Typical Flyover Approach Cross	
			Section	3-5
		3.2.2	Proposed Flyover Scheme and Estimated Cost	3-5
PART II	TRA ARE	-	AND NATURAL CONDITION OF THE PROJECT	
CHAPTER	4	PROJ	ECT SITE SETTING	
	4.1	MERA	K FLYOVER	4-1
		4.1.1	Flyover Location and Topography	4-1
		4.1.2	Soil Condition	4-1
		4.1.3	Land Use	4-4
		4.1.4	Road Network	4-4
		4.1.5	Existing Road Condition	4-4
		4.1.6	Physical Constrains and Major Control Points	4-4

4.2	BALA	RAJA FLYOVER	4-6
	4.2.1	Flyover Location and Topography	4-6
	4.2.2	Soil Condition	4-6
	4.2.3	Land Use	4-6
	4.2.4	Road Network	4-6
	4.2.5	Existing Road Condition	4-6
	4.2.6	Physical Constrains and Major Control Points	4-8
4.3	NAGR	EG FLYOVER	4-10
	4.3.1	Flyover Location and Topography	4-10
	4.3.2	Soil Condition	4-10
	4.3.3	Land Use	4-10
	4.3.4	Road Network	4-10
	4.3.5	Existing Road Condition	4-10
	4.3.6	Physical Constrains and Major Control Points	4-12
4.4	GEBA	NG FLYOVER	4-14
	4.4.1	Flyover Location and Topography	4-14
	4.4.2	Soil Condition	4-14
	4.4.3	Land Use	4-14
	4.4.4	Road Network	4-14
	4.4.5	Existing Road Condition	4-14
	4.4.6	Physical Constrains and Major Control Points	4-16
4.5	PETE	RONGAN FLYOVER	4-18
	4.5.1	Flyover Location and Topography	4-18
	4.5.2	Soil Condition	4-18
	4.5.3	Land Use	4-18
	4.5.4	Road Network	4-18
	4.5.5	Existing Road Condition	4-18
	4.5.6	Physical Constrains and Major Control Points	4-20
4.6	TANG	GULANGIN FLYOVER	4-21
	4.6.1	Flyover Location and Topography	4-21
	4.6.2	Soil Condition	4-21
	4.6.3	Land Use	4-21
	4.6.4	Road Network	4-21
	4.6.5	Existing Road Condition	4-21
	4.6.6	Physical Constrains and Major Control Points	4-23

CHAPTER	5	TRAFFIC SURVEYS AND ENGINEERING SURVEYS UNDERTAKEN
	5.1	TRAFFIC SURVEY
	5.2	TOPOGRAPHICSURVEYSANDPUBLICUTILITYSURVEY5-1
	5.3	GEO-TECHNICAL SURVEY
	5.4	METEOROLOGICAL AND HYDROLOGICAL DATA COLLECTION
CHAPTER	6	TRAFFIC CONDITIONS AND PROBLEMS
	6.1	PRESENT TRAFFIC CONDITION
		6.1.1 Daily Traffic Volume
		6.1.2 Travel Speed 6-1
		6.1.3 Traffic Characteristics (Through and Local Traffic) . 6-1
		6.1.4 Traffic Queue During Train Passing
	6.2	TRAFFIC PROBLEMS
		6.2.1 Merak Flyover
		6.2.2 Balaraja Flyover
		6.2.3 Nagreg Flyover
		6.2.4 Gebang Flyover
		6.2.5 Peterongan Flyover
		6.2.6 Tanggulangin Flyover 6-9
	6.3	FLYOVER TRAFFIC AND AT-GRADE ROAD TRAFFIC 6-1
	6.4	FUTURE TRAFFIC VOLUME
	6.5	LEVEL OF SERVICE OF EXISTING ROAD WITHOUT FLYOVER
		6.5.1 Existing Road Traffic Capacity 6-1
		6.5.2 Volume / Capacity Ratio of the Existing Road
		without Flyover
	6.6	NUMBER OF LANES REQUIRED FOR FLYOVER
		6.6.1 Flyover and Service Road Traffic Capacity 6-2
		6.6.2 Number of Lanes Required and Volume/ Capacity
		Ratio 6-2
PART III	DES	IGN STANDARDS AND CRITERIA
CHAPTER	7	DESIGN STANDARDS AND CRITERIA
	7.1	HIGHWAY DESIGN
		7.1.1 Flyover and Service Roads
		7.1.2 Intersection Design

iii

7.2	PAVEMENT DESIGN	7-6
	7.2.1 Design Standards	7-6
	7.2.2 Design Procedure	7-6
7.3	BRIDGE DESIGN	7-8
	7.3.1 Design Standards and Specification	7-8
	7.3.2 Loads and Local Combination	7-9
	7.3.3 Structural Analysis	7-22
	7.3.4 Structural Design	7-23
	7.3.5 Geotechnical Design Criteria	7-29
7.4	DRAINAGE DESIGN	7-35
	7.4.1 Design Standards and Guidelines	7-35
	7.4.2 Design Frequency (Return Period)	7-35
	7.4.3 Side Ditches / RC PC	7-35
7.5	MISCELLANEOUS HIGHWAY FACILITIES DESIGN	7-36
7.6	RAILWAY CROSSING REQUIREMENT	7-36
	7.6.1 Horizontal and Vertical Clearance for Permanent Structure	7-36
	7.6.2 Horizontal and Vertical Clearance during Construction	7-36

PART IV BASIC DESIGN

CHAPTER	8	FLYOVER SCHEME SELECTED	
	8.1	BACKGROUND	8-1
	8.2	MERAK FLYOVER SCHEME	8-1
		8.2.1 Vicinity of Traffic Situation	8-1
		8.2.2 Alternative Flyover Scheme	8-2
		8.2.3 Evaluation of Alternative Scheme	8-8
		8.2.4 Recommendation and Selected Scheme	8-10
	8.3	REMAINING FIVE FLYOVER SCHEME	8-10
CHAPTER	9	SELECTION OF BRIDGE TYPE	
	9.1	BRIDGE TYPE SELECTION PROCEDURE	9-1
	9.2	PRINCIPLES IN SELECTING BRIDGE TYPE	9-1
	9.3	PRELIMINARY PLANNING OF BRIDGE SPANS AND GROUPING OF BRIDGES	9-3
	9.4	INITIAL SCREENING OF BRIDGE TYPES	9-4
	9.5	BRIDGE TYPE SELECTION FOR GROUP 1 (APPROACH BRIDGE ORDINARY SOIL)	9-5
		9.5.1 Preliminary Structural Analysis	9-5
		9.5.2 Bridge Type Selection	9-14

	9.6	BRIDGE TYPE SELECTION FOR GROUP 2 (APPROACH SECTION, SOFT GROUND CONDITION)	9-16
		9.6.1 Preliminary Structural Analysis	9-16
		9.6.2 Bridge Type Selection	9-20
	9.7	BRIDGE TYPE SELECTION FOR GROUP 3 (RAILWAY CROSSING)	9-22
	9.8	BRIDGE TYPE SELECTION FOR GROUP 4 (OVER THE EXISTING BRIDGE AT GEBANG FLYOVER)	9-24
	9.9	APPLICATION OF BRIDGE TYPE	9-26
CHAPTER	10	BASIC DESIGN	
	10.1	BASIC DESIGN CONCEPT	10-1
		10.1.1 Technical Requirement of STEP Loan	10-1
		10.1.2 Japanese Technologies to be Utilized for the Project	10-1
		10.1.3 Measures to Cope with External Condition Change.	10-4
		10.1.4 STEP Loan Requirements on Japan Portion	10-5
	10.2	BASIC DESIGN	10-6
		10.2.1 Balaraja Flyover	10-6
		10.2.2 Nagreg Flyover	10-7
		10.2.3 Gebang Flyover	10-8
		10.2.4 Peterongan Flyover	10-8
		10.2.5 Tanggulangin Flyover	10-9
		10.2.6 Summary of Basic Design	10-9
	10.3	PRELIMINARY COST ESTIMATE	10-10
CHAPTER	11	FINDINGS OF BASIC DESIGN	
	11.1	ESTIMATED COST VS LOAN AMOUNT	11-1
	11.2	BRIDGE WIDTH	11-2
	11.3	STEP LOAN REQUIREMENT	11-2
	11.4	FUTURE WIDENING OF FLYOVERS	11-2
	11.5	CLOSURE OF AT-GRADE ROAD AT RAILWAY CROSSING	11-3
PART V	DET	AILED DESIGN	
CHAPTER	12	HIGHWAY DESIGN	
	12.1	FLYOVER LAYOUT	12-1
	12.2	HORIZONTAL ALIGNMENT DESIGN	12-1
	12.3	VERTICAL ALIGNMENT DESIGN	12-10

	12.6	INTERSECTION DESIGN	12-13
CHAPTER	13	DRAINAGE DESIGN	
	13.1	FLYOVER DRAINAGE	13-1
		13.1.1 Design Criteria	13-1
		13.1.2 Flyover Drainage System	13-1
		13.1.3 Summary of Deck Drainage Systems	13-1
	13.2	AT-GRADE ROAD DRAINAGE	13-8
CHAPTER	14	BRIDGE DESIGN	
	14.1	STRUCTURAL ANALYSIS MODELS	14-1
	14.2	STEEL STRUCTURE DESIGN	14-4
		14.2.1 Design Conditions and Superstructure type	14-4
		14.2.2 Basic Dimension of Steel Structure	14-4
	14.3	PC STRUCTURE DESIGN	14-10
		14.3.1 Design Conditions and Superstructure type	14-10
		14.3.2 PC Structure Design	14-10
		14.3.3 Detailed Design Result	14-10
	14.4	SUBSTRUCTURE AND FOUNDATION DESIGN	14-14
		14.4.1 Substructure Design	14-14
		14.4.2 Foundation Design	14-28
		The foundation Decign	1120
CHAPTER	15	APPROACH EMBANKMENT DESIGN	1120
CHAPTER		-	15-1
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN	
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER	15-1
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL	15-1 15-1
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General	15-1 15-1 15-1
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General 15.2.2 Structure Dimension	15-1 15-1 15-1 15-1
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General 15.2.2 Structure Dimension 15.2.3 External Stability	15-1 15-1 15-1 15-1 15-2
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General 15.2.2 Structure Dimension 15.2.3 External Stability 15.2.4 Bearing Capacity and Foundation Stability	15-1 15-1 15-1 15-1 15-2 15-3
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General 15.2.2 Structure Dimension 15.2.3 External Stability 15.2.4 Bearing Capacity and Foundation Stability 15.2.5 Calculation of Loads for Internal Stability 15.2.6 Determination of Reinforcement Length Required	15-1 15-1 15-1 15-2 15-3 15-3
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General 15.2.2 Structure Dimension 15.2.3 External Stability 15.2.4 Bearing Capacity and Foundation Stability 15.2.5 Calculation of Loads for Internal Stability 15.2.6 Determination of Reinforcement Length Required for Internal Stability	15-1 15-1 15-1 15-2 15-3 15-3 15-3
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General 15.2.2 Structure Dimension 15.2.3 External Stability 15.2.4 Bearing Capacity and Foundation Stability 15.2.5 Calculation of Loads for Internal Stability 15.2.6 Determination of Reinforcement Length Required for Internal Stability 15.2.7 Reinforcement Strength Design	15-1 15-1 15-1 15-2 15-3 15-3 15-5 15-6
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General 15.2.2 Structure Dimension 15.2.3 External Stability 15.2.4 Bearing Capacity and Foundation Stability 15.2.5 Calculation of Loads for Internal Stability 15.2.6 Determination of Reinforcement Length Required for Internal Stability 15.2.7 Reinforcement Strength Design 15.2.8 Design of Facing Elements	15-1 15-1 15-1 15-2 15-3 15-3 15-5 15-6 15-9
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General 15.2.2 Structure Dimension 15.2.3 External Stability 15.2.4 Bearing Capacity and Foundation Stability 15.2.5 Calculation of Loads for Internal Stability 15.2.6 Determination of Reinforcement Length Required for Internal Stability 15.2.7 Reinforcement Strength Design 15.2.8 Design of Facing Elements 15.2.9 Seismic Design for Lateral Deformation	15-1 15-1 15-1 15-2 15-3 15-3 15-5 15-6 15-9 15-9
CHAPTER	15.1	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General 15.2.2 Structure Dimension 15.2.3 External Stability 15.2.4 Bearing Capacity and Foundation Stability 15.2.5 Calculation of Loads for Internal Stability 15.2.6 Determination of Reinforcement Length Required for Internal Stability 15.2.7 Reinforcement Strength Design 15.2.8 Design of Facing Elements 15.2.9 Seismic Design for Lateral Deformation 15.2.10 Deformation of Lateral Wall Displacement	15-1 15-1 15-1 15-2 15-3 15-3 15-5 15-6 15-9 15-9 15-9 15-12
CHAPTER	15.1 15.2	APPROACH EMBANKMENT DESIGN APPROCAH EMBANKMENT FOR FLYOVER MECHANICALLY STABILIZED EARTH (MSE) WALL 15.2.1 General 15.2.2 Structure Dimension 15.2.3 External Stability 15.2.4 Bearing Capacity and Foundation Stability 15.2.5 Calculation of Loads for Internal Stability 15.2.6 Determination of Reinforcement Length Required for Internal Stability 15.2.7 Reinforcement Strength Design 15.2.8 Design of Facing Elements 15.2.9 Seismic Design for Lateral Deformation 15.2.10 Deformation of Lateral Wall Displacement 15.2.11 Drainage	15-1 15-1 15-1 15-2 15-3 15-3 15-5 15-6 15-9 15-9 15-9 15-12 15-12
CHAPTER	15.1 15.2	APPROACH EMBANKMENT DESIGNAPPROCAH EMBANKMENT FOR FLYOVERMECHANICALLY STABILIZED EARTH (MSE) WALL15.2.1 General15.2.2 Structure Dimension15.2.3 External Stability15.2.4 Bearing Capacity and Foundation Stability15.2.5 Calculation of Loads for Internal Stability15.2.6 Determination of Reinforcement Length Required for Internal Stability15.2.7 Reinforcement Strength Design15.2.8 Design of Facing Elements15.2.9 Seismic Design for Lateral Deformation15.2.10 Deformation of Lateral Wall Displacement15.2.12 Special Loading Conditions	15-1 15-1 15-1 15-2 15-3 15-3 15-5 15-6 15-9 15-9 15-12 15-12 15-12

15.3.3 External (Global) Stability Evaluation	15-20

15.3.4 Internal Stability Evaluation	15-23
--------------------------------------	-------

CHAPTER 16 UTILITY RELOCATION/PROTECTION

16.1 GENERAL	
16.2 UTILITIES AT MERAK FLYOVER	16-2
16.3 UTILITIES AT BALARAJA FLYOVER	
16.4 UTILITIES AT NAGREG FLYOVER	
16.5 UTILITIES AT GEBANG FLYOVER	
16.6 UTILITIES AT PETERONGAN FLYOVER	

PART VI COST ESTIMATE AND PREPARATION OF DRAFT TENDER DOCUMENTS

CHAPTER 17 CONSTRUCTION PLAN

	17.1	CONDITION OF THE SITE AND PROJECT REQUIREMENT
	17.2	ESTIMATION OF NON-WORKING DAY RATIO
	17.3	CONSTRUCTION METHODOLOGY
		17.3.1 Foundation Works
		17.3.2 Substructure (Column and Coping)
		17.3.3 Superstructure
	17.4	CONSTRUCTION SCHEDULE
	17.5	TRAFFIC MANAGEMENT PLAN AND SAFETY PLAN
		17.5.1 Need for Traffic Management
		17.5.2 Composition of Traffic Management Plan
		17.5.3 Safety Management of Railway
HAPTER	18	PROJECT COST ESTIMATE
	18.1	METHODOLOGY FOR COST ESTIMATION
	18.2	BASIS FOR THE DETERMINATION OF BASIC COST
		18.2.1 Labour Cost
		18.2.1 Labour Cost 18.2.2 Material Cost
	18.3	18.2.2 Material Cost
		18.2.2 Material Cost 18.2.3 Equipment Cost
	18.4	18.2.2 Material Cost 18.2.3 Equipment Cost SITE INVESTIGATION
CHAPTER	18.4	18.2.2 Material Cost 18.2.3 Equipment Cost SITE INVESTIGATION JAPAN COMPONENT

	19.2	ORGANIZATION OF DRAFT PQ AND TENDER DOCUMENTS	19-1
PART VII	PRO	JECT IMPLEMENTATION AND RECOMMENDATION	
CHAPTER	20	UPDATING OF ENVIRONMENTAL MANAGEMENT PLAN (UKL) AND ENVIRONMENTAL MONITORING PLAN (UPL)	
	20.1	SOCIAL SURVEY	20-1
		20.1.1 Study Method and Number of Respondents	20-1
		20.1.2 Status of Family	20-1
		20.1.3 Distance to Workplace Used and Transportation	20-3
		20.1.4 Status of House	20-4
		20.1.5 Knowledge and Opinion on the Project	20-5
		20.1.6 Method of Compensation	20-5
	20.2	UPDATING UKL AND UPL	20-6
		20.2.1 Original UKL and UPL	20-6
		20.2.2 Updating of UKL and UPL	20-6
		20.2.3 Summary of UKL and UPL	20-6
CHAPTER	21	ROW ACQUISITIONS AND RESETTLEMENT ACTIO PLAN	Ν
	21.1	ROW ACQUISITION PROCESS	21-1
	21.2	PRESENT STATUS/PROGRESS OF ROW ACQUISITION	21-1
	21.3	RESETTLEMENT OF PROJECT – AFFECTED PEOPLE	21-4
CHAPTER	22	PROJECT IMPLEMENTATION PROGRAM	
	22.1	IMPLEMENTING AGENCY AND ORGANIZATION	22-1
	22.2	IMPLEMENTATION SCHEDULE	22-2
	22.3	ANNUAL FUND REQUIREMENT	22-3
CHAPTER	23	FLYOVER/BRIDGE OPERATIONS AND MAINTENANCE PLAN & SYSTEM	
	23.1	INTRODUCTION	23-1
		23.1.1 Necessity of Flyover Management Plan & System	23-1
		23.1.2 Scope of the Manual	23-1
		23.1.3 Use of the Manual	23-2
		23.1.4 Manual Contents	23-3
		23.1.5 Updating the Manual	23-3
		FLYOVER MANAGEMENT DECISION PROCESS	23-3
	23.3	MAINTENANCE MANAGEMENT PLAN	23-5
		23.3.1 Maintenance Strategy	23-5
		23.3.2 Maintenance Planning and Programming	23-6

		23.3.3 Maintenance Practices	23-6
		23.3.4 Maintenance Management Systems	23-7
CHAPTER	24	PROJECT EVALUATION AND RECOMMENDATIONS	
	24.1	PROJECT EVALUATION	24-1
		24.1.1 Operation and Effect Indicators of the Project	24-1
	24.2	ECONOMIC EVALUATION	24-3
		24.2.1 Introduction	24-3
		24.2.2 Project Costs	24-4
		24.2.3 Estimation of Vehicle Operation Cost and Travel Time Cost	24-4
		24.2.4 Estimation of Benefits	24-15
	24.3	LOAN AMOUNT VS ESTIMATED COST	24-22
	24.4	CONCLUSION	24-25
	24.5	RECOMMENDATIONS	24-25

LIST OF FIGURES

PAGE

CHAPTER-1

FIGURE	1.6-1	ORGANIZATION CHART FOR THE STUDY	1-4

CHAPTER-4

FIGURE	4.1.1-1	LOCATION OF MERAK FLYOVER	4-2
FIGURE	4.1.1-2	SITE CONDITION OF MERAK FLYOVER	4-3
FIGURE	4.2.1-1	LOCATION OF BALARAJA FLYOVER	4-7
FIGURE	4.2.6-1	R.O.W ACQUIRED	4-9
FIGURE	4.3.1-1	LOCATION OF NAGREG FLYOVER	4-11
FIGURE	4.3.6-1	R.O.W ACQUIRED	4-13
FIGURE	4.4.1-1	LOCATION OF GEBANG FLYOVER	4-15
FIGURE	4.4.6-1	R.O.W ACQUIRED	4-17
FIGURE	4.5.1-1	LOCATION OF PETERONGAN FLYOVER	4-19
FIGURE	4.6.1-1	LOCATION OF TANGGULANGIN FLYOVER	4-22

FIGURE	6.1.1-1(1/3	3) DAILY TRAFFIC VOLUME	6-3
FIGURE	6.1.1-1(2/3	3) DAILY TRAFFIC VOLUME	6-4
FIGURE	6.1.1-1(3/3	3) DAILY TRAFFIC VOLUME	6-5
FIGURE	6.1.1-2(1/2	2)HOURLY VARIATION OF TRAFFIC	6-6
FIGURE	6.1.1-2(2/2	2)HOURLY VARIATION OF TRAFFIC	6-7
FIGURE	6.2-1	TRAFFIC CONGESTION OF EACH LOCATION	6-10
FIGURE	6.3-1(1/3)	FLYOVER TRAFFIC AND AT-GRADE ROAD TRAFFIC	6-12
FIGURE	6.3-1(2/3)	FLYOVER TRAFFIC AND AT-GRADE ROAD TRAFFIC	6-13
FIGURE	6.3-1(3/3)	FLYOVER TRAFFIC AND AT-GRADE ROAD TRAFFIC	6-14
FIGURE	6.5.2-1	FUTURE TRAFFIC VOLUME AND CAPACITY WITHOUT PROJECT (MERAK AND BALARAJA)	6-19
FIGURE	6.5.2-2	FUTURE TRAFFIC VOLUME AND CAPACITY WITHOUT	
		PROJECT (NAGREG AND GEBANG)	6-20
FIGURE	6.5.2-3	FUTURE TRAFFIC VOLUME AND CAPACITY WITHOUT	
		PROJECT (TANGGULANGIN AND PETERONGAN)	6-21

FIGURE	6.6.2-1	FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (MERAK)	6-25
FIGURE	6.6.2-2	FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (BALARAJA)	6-26
FIGURE	6.6.2-3	FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (NAGREG)	6-27
FIGURE	6.6.2-4	FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (GEBANG)	6-28
FIGURE	6.6.2-5	FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (PETERONGAN)	6-29
FIGURE	6.6.2-6	FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (TANGGULANGIN)	6-30

FIGURE	7.1.1-1(1/	3) TYPICAL CROSS SECTION OF FLYOVER	7-3
FIGURE	7.1.1-1(2/	3) TYPICAL CROSS SECTION OF FLYOVERN	7-4
FIGURE	7.1.1-1(3/	3) TYPICAL CROSS SECTION OF FLYOVER	7-5
FIGURE	7.3.2-1	"D" LANE LOADING	7-10
FIGURE	7.3.2-2	"D" LOADING ARRANGEMENT	7-11
FIGURE	7.3.2-3	LATERAL DISTRIBUTION OF "D" LOADING	7-12
FIGURE	7.3.2-4	"T" TRUCK LOADING	7-12
FIGURE	7.3.2-5	MAP OF SEISMIC ZONES FOR INDONESIA WITH A 500 YEAR RETURN PERIOD	7-15
FIGURE	7.3.4-1	INTERACTION CURVE OF COMPRESSION AND UNIAXIAL BENDING FOR COMPOSITE COMPRESSION MEMBERS	7-27
FIGURE	7.3.4-2	TYPICAL SOCKET TYPE CONNECTION	7-28
FIGURE	7.3.4-3	LOAD CARRYING MODEL FOR PREDICTING ULTIMATE LOAD CAPACITY	7-29
FIGURE	7.3.5-1	PORTIONS OF BORED PILE NOT CONCIDERED	7-30
FIGURE	7.6.1-1	HORIZONTAL AND VERTICAL CLEARANCE AT RAILWAY CROSSING	7-37
FIGURE	7.6.1-2	HORIZONTAL AND VERTICAL CLEARANCE DURING CONSTRUCTION	7-38

FIGURE	8.2.2-1(1/	2)ALTERNATIVE FLYOVER SCHEMES	8-5
FIGURE	8.2.2-1(2/	2)ALTERNATIVE FLYOVER SCHEMES	8-6
FIGURE	8.2.2-2	TRAFFIC FLOW OF EACH ALTERNATIVE SCHEMES	8-7

FIGURE	9.1-1	BRIDGE TYPE SELECTION PROCEDURE	9-2
FIGURE	9.5.1-1	COST COMPARISON BY SPAN LENGTH	9-13
FIGURE	9.6.1-1	SOFT SOIL COUNTERMEASURES FOR FOUNDATIONS	9-18

CHAPTER-11

FIGURE	11.4-1	WIDENING SCHEME OF PETERONGAN	11-4
FIGURE	11.4-2	WIDENING SCHEME OF TANGGULANGIN	11-5

FIGURE	12.1-1(1/7) GENERAL PLAN AND ELEVATION (MERAK 1 FLYOVER)	12-3
FIGURE	12.1-1(2/7) GENERAL PLAN AND ELEVATION (MERAK 2 FLYOVER)	12-4
FIGURE	12.1-1(3/7) GENERAL PLAN AND ELEVATION (BALARAJA FLYOVER)	12-5
FIGURE	12.1-1(4/7) GENERAL PLAN AND ELEVATION (NAGREG FLYOVER)	12-6
FIGURE	12.1-1(5/7) GENERAL PLAN AND ELEVATION (GEBANG FLYOVER)	12-7
FIGURE	12.1-1(6/7) GENERAL PLAN AND ELEVATION (PETERONGAN FLYOVER)	12-8
FIGURE	12.1-1(7/7) GENERAL PLAN AND ELEVATION (TANGGULANGIN FLYOVER)	12-9
FIGURE	12.4-1(1/3) TYPICAL CROSS SECTION (MERAK-1)	12-14
FIGURE	12.4-1(2/3) TYPICAL CROSS SECTION (MERAK-1)	12-15
FIGURE	12.4-1(3/3) TYPICAL CROSS SECTION (MERAK-2)	12-16
FIGURE	12.4-2(1/2) TYPICAL CROSS SECTION (BALARAJA)	12-17
FIGURE	12.4-2(2/2) TYPICAL CROSS SECTION (BALARAJA)	12-18
FIGURE	12.4-3(1/2) TYPICAL CROSS SECTION (NAGREG)	12-19
FIGURE	12.4-3(2/2) TYPICAL CROSS SECTION (NAGREG)	12-20
FIGURE	12.4-4(1/2) TYPICAL CROSS SECTION (GEBANG)	12-21
FIGURE	12.4-4(2/2) TYPICAL CROSS SECTION (GEBANG)	12-22
FIGURE	12.4-5(1/2) TYPICAL CROSS SECTION (PETERONGAN)	12-23
FIGURE	12.4-5(2/2) TYPICAL CROSS SECTION (PETERONGAN)	12-24
FIGURE	12.4-6(1/2) TYPICAL CROSS SECTION (TANGGULANGIN)	12-25
FIGURE	12.4-6(2/2) TYPICAL CROSS SECTION (TANGGULANGIN)	12-26
FIGURE	12.6-1(1/2) PLAN OF INTERSECTION (MERAK, BALARAJA AND NAGREG)	12-29
FIGURE	12.6-1(2/2) PLAN OF INTERSECTION (GEBANG, PETERONGAN AND	10.00
	TANGGULANGIN)	12-30

FIGURE	12.6-2	DIRECTIONAL PEAK HOUR TRAFFIC FLOW AT INTERSECTION (2025	
		YEAR)	12-31

FIGURE	13.1.2-1	DETAIL OF STEEL GUTTER	13-3
FIGURE	13.1.2-2	PHOTOS OF STEEL GUTTER	13-4
FIGURE	13.2-1	TYPICAL CROSS SECTION	13-8

FIGURE	14.1-1	TYPICAL ANALYSIS MODEL (GROUND SPRINGS NOT SHOWN)	14-2
FIGURE	14.1-2	TYPICAL ANALYSIS MODEL (GROUND SPRINGS SHOWN)	14-2
FIGURE	14.1-3	TYPICAL PILE ANALYSIS MODEL	14-3
FIGURE	14.2.2-1	GENERAL DIMENSION OF STEEL SUPERSTRUCTURE (1) BALARAJA FLYOVER	14-8
FIGURE	14.2.2-2	GENERAL DIMENSION OF STEEL SUPERSTRUCTURE (2) BALARAJA FLYOVER	14-8
FIGURE	14.2.2-3	SECTIONAL DIMENSION OF GIRDER P4 & P5 – BALARAJA FLYOVER	14-9
FIGURE	14.2.2-4	DETAIL GIRDER P4 (1) – BALARAJA FLYOVER	14-9
FIGURE	14.2.2-5	PIER LAYOUT P6 (PORTAL) – NAGREG FLYOVER	14-10
FIGURE	14.3.3-1	ARRANGEMENT OF PC CABLES A1-P2 BALARAJA FLYOVER	14-13
FIGURE	14.3.3-2	TYPICAL CROSS SECTION A1-P2 BALARAJA FLYOVER	14-13
FIGURE	14.3.3-3	TYPICAL CROSS LAYOUT P1, P2 (FIXED) - BALARAJA FLYOVER	14-14
FIGURE	14.4.1-1	DESIGN OF SUB-STRUCTURE INTEGRAL WITH SUPERSTRUCTURE	14-16
FIGURE	14.4.1-2	TYPICAL TWIN COLUMN PIER LAYOUT (REINFORCED CONCRETE)	14-19
FIGURE	14.4.1-3	TYPICAL SINGLE COLUMN PIER LAYOUT (COMPOSITE COLUMN)	14-21
FIGURE	14.4.1-4	TYPICAL COMPOSITE COLUMN INTERACTION DIAGRAM (EXTRACTED FROM DESIGN CALCULATION)	14-22
FIGURE	14.4.1-5	TYPICAL PORTAL PIER LAYOUT	14-24
FIGURE	14.4.1-6	TYPICAL ABUTMENT LAYOUT	14-25
FIGURE	14.4.1-7	EXPANSION PIER COPING SECTION	14-26
FIGURE	14.4.1-8	BEAM LEDGE	14-27
FIGURE	14.4.2-1	PLASTIC HINGING IN TWIN COLUMN PIERS	14-28

FIGURE	17.3.1-1	FLOW CHART OF BORED PILE WORKS 1
FIGURE	17.3.2-1	WORK SCHEDULE NETWORK (SUBSTRUCTURE) 1
FIGURE	17.3.3-1	WORK SCHEDULE NETWORKS OF PC DOUBLE GIRDER 1
FIGURE	17.3.3-2	WORK SCHEDULE NETWORKS OF PC DECK SLAB
		(STEEL GIRDER SECTION) 1
FIGURE	17.4-1	CONSTRUCTION SCHEDULE (MERAK FLYOVER) 1
FIGURE	17.4-2	CONSTRUCTION SCHEDULE (BALARAJA FLYOVER) 1
FIGURE	17.4-3	CONSTRUCTION SCHEDULE (NAGREG FLYOVER) 1
FIGURE	17.4-4	CONSTRUCTION SCHEDULE (GEBANG FLYOVER) 1
FIGURE	17.4-5	CONSTRUCTION SCHEDULE (PETERONGAN FLYOVER) 1
FIGURE	17.4-6	CONSTRUCTION SCHEDULE (TANGGULANGIN FLYOVER) 1
FIGURE	17.5.2-1	WORKZONE TRAFFIC CONTROL 1
FIGURE	17-5.2-2	CONSTRUCTION STAGE TRAFFIC FLOW (MERAK FLYOVER) 1
FIGURE	17.5.2-3	BORED PILING METHODOLOGY AND TRAFFIC FLOW (MERAK FLYOVER)
FIGURE	17.5.2-4	INSTALLATION OF GIRDER AND TRAFFIC FLOW (MERAK FLYOVER) 1
FIGURE	17.5.2-5	TRAFFIC MANAGEMENT LAYOUT (1/2) (MERAK FLYOVER) 1
FIGURE	17.5.2-6	TRAFFIC MANAGEMENT LAYOUT (2/2) (MERAK FLYOVER) 1
FIGURE	17.5.2-7	CONSTRUCTION STAGE TRAFFIC FLOW (BALARAJA FLYOVER) 1
FIGURE	17.5.2-8	BORED PILING METHODOLOGY AND TRAFFIC FLOW (BALARAJA FLYOVER) 1
FIGURE	17.5.2-9	INSTALLATION OF GIRDER AND TRAFFIC FLOW (BALARAJA FLYOVER)
FIGURE	17.5.2-10	TRAFFIC MANAGEMENT LAYOUT (1/2) (BALARAJA FLYOVER) 1
FIGURE	17.5.2-11	TRAFFIC MANAGEMENT LAYOUT (2/2) (BALARAJA FLYOVER) 1
FIGURE	17.5.2-12	CONSTRUCTION STAGE TRAFFIC FLOW (NAGREG FLYOVER) 1
FIGURE	17.5.2-13	BORED PILING METHODOLOGY AND TRAFFIC FLOW (NAGREG FLYOVER)
FIGURE	17.5.2-14	INSTALLATION OF GIRDER AND TRAFFIC FLOW (NAGREG FLYOVER)
		1
FIGURE		TRAFFIC MANAGEMENT LAYOUT (1/2) (NAGREG FLYOVER) 1
FIGURE		TRAFFIC MANAGEMENT LAYOUT (2/2) (NAGREG FLYOVER)
FIGURE	17.5.2-17	CONSTRUCTION STAGE TRAFFIC FLOW (GEBANG FLYOVER) 1

FIGURE	17.5.2-18	BORED PILING METHODOLOGY AND TRAFFIC FLOW (GEBANG FLYOVER)	17-35
FIGURE	17.5.2-19	INSTALLATION OF GIRDER AND TRAFFIC FLOW (GEBANG FLYOVER)	17-36
FIGURE	17.5.2-20	TRAFFIC MANAGEMENT LAYOUT (1/2) (GEBANG FLYOVER)	17-37
FIGURE	17.5.2-21	TRAFFIC MANAGEMENT LAYOUT (2/2) (GEBANG FLYOVER)	17-38
FIGURE	17.5.2-22	CONSTRUCTION STAGE TRAFFIC FLOW (PETERONGAN FLYOVER)	17-39
FIGURE	17.5.2-23	BORED PILING METHODOLOGY AND TRAFFIC FLOW (PETERONGAN FLYOVER)	17-40
FIGURE	17.5.2-24	INSTALLATION OF GIRDER AND TRAFFIC FLOW (PETERONGAN FLYOVER)	17-41
FIGURE	17.5.2-25	TRAFFIC MANAGEMENT LAYOUT (1/2) (PETERONGAN FLYOVER)	17-42
FIGURE	17.5.2-26	TRAFFIC MANAGEMENT LAYOUT (2/2) (PETERONGAN FLYOVER)	17-43
FIGURE	17.5.2-27	CONSTRUCTION STAGE TRAFFIC FLOW (TANGGULANGIN FLYOVER)	17-44
FIGURE	17.5.2-28	BORED PILING METHODOLOGY AND TRAFFIC FLOW (TANGGULANGIN FLYOVER)	17-45
FIGURE	17.5.2-29	INSTALLATION OF GIRDER AND TRAFFIC FLOW (TANGGULANGIN FLYOVER)	17-46
FIGURE	17.5.2-30	TRAFFIC MANAGEMENT LAYOUT (1/2) (TANGGULANGIN FLYOVER)	17-47
FIGURE	17.5.2-31	TRAFFIC MANAGEMENT LAYOUT (2/2) (TANGGULANGIN FLYOVER)	17-48

FIGURE	18.1-1	PROCEDURE FOR COST ESTIMATION	18-1
FIGURE	18.3-1	LOCATION MAP OF BATCHING PLANT. ASPHALT MIXING PLANT AND QUARRY MERAK AND BALARAJA FLYOVER	18-4
FIGURE	18.3-2	LOCATION MAP OF BATCHING PLANT. ASPHALT MIXING PLANT AND QUARRY NAGREG FLYOVER	18-5
FIGURE	18.3-3	LOCATION MAP OF BATCHING PLANT. ASPHALT MIXING PLANT AND QUARRY GEBANG FLYOVER	18-6
FIGURE	18.3-4	LOCATION MAP OF BATCHING PLANT. ASPHALT MIXING PLANT AND QUARRY PETERONGAN AND TANGGULANGIN FLYOVER	18-7
СНАРТЕ	R-21		
FIGURE	21.1-1	ROW ACQUISITION PROCESS	21-2

FIGURE 22.1-1	PROJECT IMPLEMENTATION ORGANIZATION	22-2
---------------	-------------------------------------	------

23.3 MAINTENANCE MANAGEMENT PLAN

CHAPTE	R-1
--------	-----

TABLE	1.5-1	STUDY TABLE	1-3
СНАРТ	ER-3		
TABLE	3.1.1-1	TRAFFIC VOLUME IN 2003	3-1
TABLE	3.1.1-2	FUTURE TRAFFIC GROWTH FACTORS	3-1
TABLE	3.1.1-3	FUTURE PEAK HOUR TRAFFIC VOLUME	3-2
TABLE	3.1.2-1	GEOMETRIC DESIGN STANDARDS RECOMMENDED BY F/S	3-2
TABLE	3.1.3-1	FLYOVER SCHEMES, TYPE OF STRUCTURE, CONSTRUCTION COST AND ECONOMIC VIABILITY	3-4
TABLE	3.2.1-1	PROPOSED FLYOVER SCHEME BY SAPROF STUDY	3-5

CHAPTER-5

TABLE	5.1-1	TRAFFIC SURVEYS UNDERTAKEN	5-1
TABLE	5.2-1	AREA OF SURVEY	5-2
TABLE	5.2-2	TYPES OF SURVEYS UNDERTAKEN	5-2
TABLE	5.3-1	GEO-TECHNICAL SURVEYS UNDERTAKEN	5-3

TABLE	6.1.1-1	SUMMARY OF TRAFFIC SURVEY RESULTS	6-2
TABLE	6.4-1	ESTIMATED FUTURE TRAFFIC VOLUME IN VEH./DAY	6-15
TABLE	6.4-2	ESTIMATED FUTURE TRAFFIC VOLUME IN PCU/DAY	6-16
TABLE	6.5.1-1	TRAFFIC CAPACITY OF EXISTING ROAD	6-17
TABLE	6.5.2-1	VOLUME/CAPACITY RATIO OF THE EXISTING ROAD WITHOUT FLYOVER	6-18
TABLE	6.6.1-1	TRAFFIC CAPACITY OF FLYOVER	6-22
TABLE	6.6.1-2	TRAFFIC CAPACITY OF SERVICE ROAD	6-22
TABLE	6.6.2-1	NUMBER OF LANES REQUIRED AND VOLUME/CAPACITY RATIO	6-24

TABLE	7.1.1-1	GEOMETRIC DESIGN STANDARDS OF FLYOVERS AND SERVICE ROADS	7-
TABLE	7.1.2-1	GEOMETRIC DESIGN STANDARDS FOR INTERSECTIONS	7-
TABLE	7.3.2-1	NUMBER OF DESIGN TRAFFIC LANES	7-
TABLE	7.3.2-2	WHEEL LOAD	7-
TABLE	7.3.2-3	PEDESTRIAN LOADING	7-
TABLE	7.3.2-4	SEISMIC ZONE AND PEAK GROUND ACCELERATION	7-
TABLE	7.3.2-5	SOIL COEFFICIENT (S)	7-
TABLE	7.3.2-6	SOIL CONDITION FOR BRIDGE BASE SHEAR COEFFICIENT	7-
TABLE	7.3.2-7	RESPONSE MODIFICATION FACTOR (R) FOR COLUMN AND CONNECTION WITH THE SUB-STRUCTURE	7-
TABLE	7.3.2-8	LOAD FACTORS	7-
TABLE	7.3.2-9	TYPES OF DESIGN ACTIONS	7-
TABLE	7.3.2-10	EFFECT OF DESIGN LIFE ON ULTIMATE LOAD FACTOR	7.
TABLE	7.3.2-11	LOAD COMBINATION FOR SERVICE ABILITY LIMIT STATE	7.
TABLE	7.3.2-12	LOAD COMBINATION FOR LIMIT STATE	7.
TABLE	7.3.3-1	SEISMIC PERFORMANCE CATEGORY	7
TABLE	7.3.3-2	ANALYSIS PROCEDURE BASED ON SEISMIC PERFORMANCE CATEGORY	7.
TABLE	7.3.3-3	MINIMUM SUPPORT LENGTH CRITERIA	7
TABLE	7.3.4-1	CLASS, DESIGNATION AND STRENGTH OF STRUCTURE STEEL	7
TABLE	7.3.4-2	CLASIFFICATION OF PRE-STRESSING TENDONS	7
TABLE	7.3.4-3	TYPE OF REINFORCEMENT	7
TABLE	7.3.4-4	CLASSIFICATION OF CONCRETE OF PRE-STRESSING TENDONS	7
TABLE	7.3.4-5	ELASTOMER PROPERTIES	7.
TABLE	7.3.5-1	RESISTANCE FACTORS FOR BORED PILES	7
TABLE	7.3.5-2	REDUCTION COEFICIENT OF SOIL BEARING CAPACITY, D_E	7
TABLE	7.4.2-1	DESIGN FREQUENCIES	7.

TABLE	8.2.2-1	CONCEPT OF EACH ALTERNATIVE SCHEME	8-4
TABLE	8.2.3-1	EVALUATION OF ALTERNATIVE SCHEMES	8-9

TABLE	9.3-1	BRIDGE REQUIREMENT	9-3
TABLE	9.3-2	BRIDGE GROUPS	9-4
TABLE	9.4-1	INITIAL SCREENING OF SUPERSTRUCTURE TYPES	9-6
TABLE	9.5.1-1	CLASIFFICARTION OF BRIDGE PERFORMANCE (BMS)	9-7
TABLE	9.5.1-2	COMPARATIVE STUDY ON STRUCTRE TYPE	9-8
TABLE	9.5.1-3	COMPARISON OF PIER TYPE	9-9
TABLE	9.5.1-4	COMPARISON OF COLUMN TYPE	9-10
TABLE	9.5.1-5	COMPARISON STUDY ON SUB-STRUCTURE (TWIN COLUMN PIERS)	9-12
TABLE	9.5.2-1	APPROACH SECTION OF FLYOVER AT STANDARD SOIL CONDITION BALARAJA FLYOVER ; PILE LENGTH = 20 M	9-15
TABLE	9.6.1-1	PLASTIC HINGING EFFECTS – SOFT SOIL LOCATION	9-19
TABLE	9.6.2-1	APPROACH SECTION OF FLYOVER AT SOFT SOIL CONDITION, TANGGULANGIN FLYOVER; PILE LENGTH = 50M	9-21
TABLE	9.7.1-1	RAILWAY CROSSING AT MERAK, NAGREG, PETERONGAN AND TANGGULANGIN FLYOVER	9-23
TABLE	9.8.1-1	OVER EXISTING BRIDGE SECTION AT GEBANGFLYOVER	9-25
CHAPT	ER-10		
TABLE	10.1.2-1	JAPANESE TECHNOLOGY ADOPTED FOR THIS PROJECT	10-3
TABLE	10.1.4-1	CANDIDATES OF JAPAN PORTION	10-6
CHAPT	ER-11		
TABLE	11.1-1	BREAKDOWN OF LOAN AMOUNT	11-1
TABLE	11.1-2	LOAN AMOUNT VS. ESTIMATED PRELIMINARY COST	11-1
CHAPT	ER-12		
TABLE	12.1-1	SUMMARY OF FLYOVER LAYOUT	12-2
TABLE	12.2-1	HORIZONTAL ALIGNMENT	12-11
TABLE	12.3-1	VERTICAL ALIGNMENT	12-12
TABLE	12.5-1	SUMMARY OF PAVEMENT THICKNESS DESIGN	12-13
TABLE	12.6-1(1/2)	FEATURES AND ROLES OF INTERSECTION ROAD (MERAK, BALARAJA, AND NAGREG)	12-27
TABLE	12.6-1(2/2)	FEATURES AND ROLES OF INTERSECTION ROAD (GEBANG, PETERONGAN AND TANGGULANGIN)	12-28

TABLE	13.1.2-1	COMPARISON OF FLYOVER DRAINAGE SYSTEM	13-2
TABLE	13.1.2-2	COMPARISON OF DRAINAGE DECK BASIN	13-5
TABLE	13.1.2-3	COMPARISON OF HORIZONTAL AND VERTICAL DRAIN PIPE	13-6
TABLE	13.1.3-1	SUMMARY OF DECK DRAINAGE SYSTEMS	13-7
TABLE	13.2-1	EXISTING DRAINAGE PROBLEMS	13-8
TABLE	13.2-2	COMPARISON OF DRAINAGE INLET (AT-GRADE)	13-10

CHAPTER-14

TABLE	14.2.2-1	DIMENSION OF MAIN GIRDER	14-4
TABLE	14.2.1-1	DESIGN CONDITIONS GEOMETRICS & STRUCTURE ISSUES FOR EACH FLYOVER	14-5
TABLE	14.2.2-2	DIMENSION OF RIGID COPING FOR T-TYPE	14-7
TABLE	14.2.2-3	DIMENSION OF RIGID COPING FOR PORTAL TYPE	14-7
TABLE	14.3.1-1	DESIGN CONDITIONS (MAIN DIFFERENT ITEMS) FOREACH FLYOVER	14-11
TABLE	14.3.2-1	CHARACTERISTIC OF PARTIAL PRE-STRESSED CONCRETE	14-12
TABLE	14.4.1-1	CONCRETE COVER	14-19
TABLE	14.4.2-1	GRAINSIZE ANALYSIS MERAK FLYOVER	14-32
TABLE	14.4.2-2	GRAINSIZE ANALYSIS GEBANG FLYOVER	14-33
TABLE	14.4.2-3	GRAINSIZE ANALYSIS TANGGULANGIN FLYOVER	14-34
TABLE	14.4.2-4	MERAK FLYOVER REDUCTION COEFFICIENT OF SOIL BEARING CAPACITY, D_E	14-35
TABLE	14.4.2-5	MERAK FLYOVER (SUPPLEMENT INVESTIGATION) REDUCTION COEFFICIENT OF SOIL BEARING CAPACITY, D_E	14-36
TABLE	14.4.2-6	GEBANG FLYOVER REDUCTION COEFFICIENT OF SOIL BEARING CAPACITY, D_E	14-37
TABLE	14.4.2-7	TANGGULANGIN FLYOVER REDUCTION COEFFICIENT OF SOIL	
		BEARING CAPACITY, D _E	14-38

TABLE	17.2-1	NON-WORKING DAY RATIO	17-1
TABLE	17.2-2	RAINFALL RECORD OVER 10MM/DAY (MERAK)	17-2
TABLE	17.2-3	RAINFALL RECORD OVER 10MM/DAY (BALARAJA)	17-3
TABLE	17.2-4	RAINFALL RECORD OVER 10MM/DAY (GEBANG)	17-3
TABLE	17.2-5	RAINFALL RECORD OVER 10MM/DAY (NAGREG)	17-3

TABLE	17.2-6	RAINFALL RECORD OVER 10MM/DAY (PETERONGAN)	17-4
TABLE	17.2-7	RAINFALL RECORD OVER 10MM/DAY (TANGGULANGIN)	17-4
TABLE	17.3.1-1	PRODUCTION RATE	17-7
TABLE	17.3.1-2	PRODUCTION RATING WITH NON-WORKING DAY RATIO ($P = 0.29$).	17-7

TABLE	18.5-1	TOTAL CONSTRUCTION COST AND JAPAN COMPONENT (RUPIAH)	18-9
TABLE	18.5-2	TOTAL CONSTRUCTION COST AND JAPAN COMPONENT (YEN)	18-9

CHAPTER-20

TABLE	20.1.2-1	STATUS OF FAMILY	20-2
TABLE	20.1.3-1	DISTANCE TO WORKPLACE AND TRANSPORTATION	20-3
TABLE	20.1.4-1	STATUS OF HOUSE	20-4
TABLE	20.1.5-1	KNOWLEDGE AND OPINION ON THE PROJECT	20-5
TABLE	20.2.3-1	SUMMARY OF ENVIRONMENTAL MENAGEMENT EFFORT (UKL)	20-7
TABLE	20.2.3-2	SUMMARY OF ENVIRONMENTAL MONITORING EFFORT (UPL)	20-11

CHAPTER-21

TABLE 21.2-1 PRESENT STATUS OF ROW ACQUISITION 21-	1-3
--	-----

CHAPTER-22

TABLE	22.2-1	IMPLEMENTATION SCHEDULE	22-1
TABLE	22.3-1	ANNUAL FUND REQUIREMENT	22-3

TABLE	24.1-1(1/6)	OPERATION AND EFFECT INDICATOR : MERAK FLYOVER	24-1
TABLE	24.1-1(2/6)	OPERATION AND EFFECT INDICATOR : BALARAJA FLYOVER	24-2
TABLE	24.1-1(3/6)	OPERATION AND EFFECT INDICATOR : NAGREG FLYOVER	24-2
TABLE	24.1-1(4/6)	OPERATION AND EFFECT INDICATOR : GEBANG FLYOVER	24-2
TABLE	24.1-1(5/6)	OPERATION AND EFFECT INDICATOR : PETERONGAN FLYOVER	24-3
TABLE	24.1-1(6/6)	OPERATION AND EFFECT INDICATOR : TANGGULANGIN FLYOVER	24-3
TABLE	24.2.2-1	SUMMARY OF COST	24-4
TABLE	24.2.3-1	ECONOMIC FUEL PRICES	24-6

24.2.3-2	ECONOMIC LUBRICANT PRICES	24-6
24.2.3-3	ECONOMIC TIRE PRICES	24-7
24.2.3-4	MAINTENANCE LABOR COST	24-7
24.2.3-5	ECONOMIC VEHICLE PRICES-OCTOBER 2005	24-8
24.2.3-6	CREW COSTS (IN RP. 1,000 PER HOUR)	24-9
24.2.3-7(1/	(3) VEHICLE OPERATING COST-PASSENGER CAR (RP./VEH-KM)	24-11
24.2.3-7(2/	/3) VEHICLE OPERATING COST-BUS (RP./VEH-KM)	24-12
24.2.3-7(3/	/3) VEHICLE OPERATING COST-TRUCK (RP./VEH-KM)	24-13
24.2.3-8	DERIVATION OF GDP PER WORKER (2005 PRICES)	24-14
24.2.3-9	PASSENGER TRAVEL TIME COST BY VEHICLE TYPE (RP/HOUR 2005	
	PRICES)	24-14
24.2.4-1	ESTIMATED ANNUAL BENEFITS (YEAR 2020) 000 RUPIAH/YEAR	24-15
24.2.4-2	SUMMARY OF COST BEENFIT ANALYSIS	24-15
24.3-1	COMPARISSON OF ESTIMATED COST	24-23
	24.2.3-3 24.2.3-4 24.2.3-5 24.2.3-6 24.2.3-7(1) 24.2.3-7(2) 24.2.3-7(3) 24.2.3-8 24.2.3-9 24.2.3-9 24.2.4-1 24.2.4-2	 24.2.3-3 ECONOMIC TIRE PRICES 24.2.3-4 MAINTENANCE LABOR COST 24.2.3-5 ECONOMIC VEHICLE PRICES-OCTOBER 2005 24.2.3-6 CREW COSTS (IN RP. 1,000 PER HOUR) 24.2.3-7(1/3) VEHICLE OPERATING COST-PASSENGER CAR (RP./VEH-KM) 24.2.3-7(2/3) VEHICLE OPERATING COST-BUS (RP./VEH-KM) 24.2.3-7(3/3) VEHICLE OPERATING COST-TRUCK (RP./VEH-KM) 24.2.3-7(3/3) VEHICLE OPERATING COST-TRUCK (RP./VEH-KM) 24.2.3-8 DERIVATION OF GDP PER WORKER (2005 PRICES) 24.2.3-9 PASSENGER TRAVEL TIME COST BY VEHICLE TYPE (RP/HOUR 2005 PRICES) 24.2.4-1 ESTIMATED ANNUAL BENEFITS (YEAR 2020) 000 RUPIAH/YEAR 24.2.4-2 SUMMARY OF COST BEENFIT ANALYSIS

ABBREVIATIONS

AADT	:	Annual Average Daily Traffic		
AASHTO	:	American Association of State Highway and Transportation Officials		
AC	:	Asphalt Concrete		
ADT	:	Average Daily Traffic		
ASDP	:	Port Authority		
B/C	:	Benefit / Cost Ratio		
BAPPEDA	:	Badan Perencanaan Pembangunan Daerah (Regional Planning		
		Agency)		
BAPPENAS	:	Badan Perencanaan Pembangunan Nasional (Indonesia Central		
		Planning Agency)		
BMS	:	Bridge Management System		
BOQ	:	Bill of Quantities		
BPN	:	Badan Pertahanan Nasional (National Land Agency)		
BPS	:	Badan Pusat Statistik (Central bureau of Statistic)		
DGH	:	Directorate General of Highways, Ministry of Public Works		
EAR	:	Economic Accounting Ratio		
EIA	:	Environmental Impact Assessment		
EIRR	:	Economic Internal Rate of Return		
EPS	:	Expanded Polystyrene System Embankment		
ESAL	:	Equivalent Single Axle Loads		
FHWA	:	the American Federal Highway Authority		
FIDIC	:	Federation Internationale des Ingeniurs-Conseils		
FS	:	Feasibility Study		
GDP	:	Gross Domestic Product		
GOI	:	Government of Indonesia		
GOJ	:	Government of Japan		
GPS	:	Global Positioning System		
GRDP	:	Gross Regional Domestic Product		
IEE	:	Initial Environmental Examination		
IHCM	:	Indonesian Highway Capacity Manual		
J.V.	:	Joint Venture		
JBIC	:	Japan Bank for International Cooperation		
JICA	:	Japan International Cooperation Agency		
JRA	:	Japan Road Association		

KEL	:	Knife Edge Load
MOC	:	Ministry of Communication
MPW	:	Ministry of Public Works
MSE	:	Mechanically Stabilized Earth Wall
O-D	:	Origin- Destination
ODA	:	Official Development Assistance
PAFs	:	Project Afected Families
PAPs	:	Project Affected Persons
PCU	:	Passenger Car Unit
PQ	:	Prequalification
ROW	:	Right-of-Way
SAPROF	:	JBIC Special Assistance for Project Formation
SN	:	Structure Number
SPT	:	Standard Penetration Test
STEP	:	Special Term for Economic Partnership Loan
UKL	:	Environmental Management Plan
UPL	:	Environmental Monitoring Plan
VAT	:	Value Added Tax
V/C	:	Volume / Capacity Ratio
VOC	:	Vehicle Operating Cost

PART I

INTRODUCTION

Chapter 1 INTRODUCTION

1.1 BACKGROUND

Although Java Island shares only 6.7% of the country's land area, about 60% of country's populations are residing and about 58% of GDP are produced in the Island. Above facts clearly show that concentration of population and economic activities in the Island. North Java Road runs along the northern coast line of the Island and extends in the east-west direction. North Java Road connects major industrial cities such as Jakarta, Surabaya, Semarang, etc. each other and is vitally supporting the country's socio-economic and industrial activities.

With the increasing traffic volume along North Java Road, transport efficiency is rapidly decreasing due to traffic bottlenecks formed particularly at intersections in urban sections, railway crossings and along urban sections where many street stalls are concentrated along the road sides, which are affecting sound socio-economic and industrial development.

To cope with the above problems, the Government of Indonesia (hereinafter referred to as "GOI") has decided to construct flyovers at six priority locations along North Java Corridor in order to eliminate traffic bottlenecks and to achieve smooth traffic movements. The project is called "North Java Corridor Flyover Project". The project was appraised by the Japan Bank for International Cooperation (hereinafter referred to as "JBIC") and the loan agreement between GOI and JBIC applying the Special Term for Economic Partnership (hereinafter referred to as "STEP") was signed in March 2005.

In connection with the implementation of this STEP Loan,, GOI requested the Government of Japan (hereinafter referred to as "GOJ") to provide the technical assistance for the detailed design of the project.

In response to the request of GOI, GOJ has decided to conduct the Detailed Design Study of North Java Corridor Flyover Project in Indonesia (hereinafter referred to as "the Study"), and exchanged Notes Verbales with GOI concerning implementation of the Study.

Accordingly, the Japan International Cooperation Agency (hereinafter referred to as "JICA"), the official agency responsible for the implementation of the technical cooperation Projects of GOJ decided to undertake the Study in close cooperation with the authorities concerned of GOI.

On the part of GOI, Directorate General of Highways, Ministry of Public Works (hereinafter referred to as "DGH") acted as the counterpart agency to the Japanese study team and as the coordinating body in relation with other concerned governmental and non-governmental organizations for the smooth implementation of the Study.

1.2 OBJECTIVES OF THE STUDY

The objectives of the Study are:

- 1) to review previous studies and plans related to the project, analyze the most effective and efficient roads development of the project,
- 2) to carry out necessary engineering surveys,

- 3) to complete a detailed design for execution of the project
- 4) to carry out construction planning and cost estimate, and
- 5) to prepare draft tender documents for execution of the project

1.3 STUDY AREA

The study area shall cover the following construction sites of flyover along main roads in Java Island (refer to the location map):

- 1) Merak (Banten Province)
- 2) Baralaja (Banten Province)
- 3) Nagreg (West Java Province)
- 4) Gebang (West Java Province)
- 5) Peterongan (East Java Province)
- 6) Tanggulangin (East Java Province)

1.4 SCOPE OF THE STUDY

Scope of the Study shall covers the following:

- 1) Pre-Study in Japan
- 2) Discussion on Inception Report
- 3) Basic Design
 - Data Collection and Analysis and Review of Previous Studies
 - Supplemental Survey
 - Natural Condition Surveys
 - Environmental/Social Consideration Survey
 - Basic Design
 - Preparation of Basic Design Report
- 4) Discussion on Basic Design Report
- 5) Preparation of Definitive Plan and Design Requirements
- 6) Detailed Design
 - Detailed Design
 - Preparation of Detailed Construction Plan and Detailed Cost Estimate
 - Preparation of Draft Tender Documents
 - Preparation of Project Implementation Program
 - Preparation of Maintenance Plan
 - Revision of UKL and UPL
 - Preparation of Draft Land Acquisition and Resettlement Action Plan
 - Overall Evaluation and Recommendations
- 7) Discussion on Draft Final Report
- 8) Preparation of Final Report

1.5 **STUDY SCHEDULE**

The Study shall be carried out in accordance with the schedule shown in Table 1.5-1.

				20	05							20	06					
			9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	1
1)	Pre-	Study in Japan																
2)	Disc	ussion on Inception Report		<u>~</u> ~														
3)	Basio	c Design																
	(1)	Data Collection/Analysis & Review of Previous Studies																
	(2)	Supplemental Survey				-												
	(3)	Natural Condition Survey																
	(4)	Environmental/Social Consideration Survey				•												
	(5)	Basic Design		-														
	(6)	Preparation of Basic Design Report																
)	Disc	ussion on Basic Design Report																
5)		aration of Definitive Plan and Design uirements																
5)	Deta	iled Design							=	= = _								
	(1)	Detailed Design																
	(2)	Preparation of Detailed Construction Plan and Detailed Cost Estimate																
	(3)	Preparation of Draft Tender Documents																
	(4)	Preparation of Project Implementation Program																
	(5)	Preparation of Maintenance Plan																
	(6)	Revision of UKL and UPL																
	(7)	Preparation of Draft Land Acquisition and Resettlement Action Plan																
	(8)	Overall Evaluation and Recommendations													-			
')	Disc	ussion on Draft Final Report																
3)	Prep	aration of Final Report														ſ		
		REPORT		/R			Z BD	<u>א</u> /R	∆ P/R						ک DF/			/

TABLE 1.5-1 STUDY TABLE

Work in Indonesia

BD/R : Basic Design Report F/R : Final Report P/R : Progress Report

1.6 ORGANIZATION FOR THE STUDY

JICA organized a JICA Study Team. DGH will organize a Counterpart Team to collaborate with the JICA Study Team in carrying out the Study, a Technical Committee for periodic discussion with the JICA Study Team and a Steering Committee to ensure smooth conduct of the Study. The Organization Chart is shown in **Figure 1.6-1**.

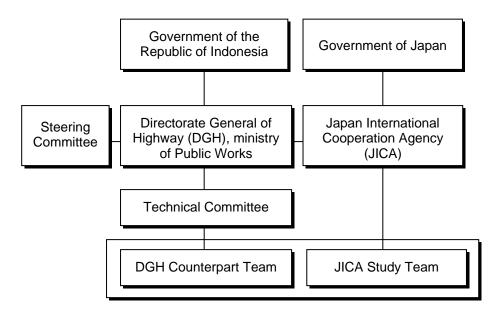


FIGURE 1.6-1 ORGANIZATION CHART FOR THE STUDY

The JICA staff for coordination between JICA Head Office, Indonesian Office, JICA Technical Supervisor, and the JICA Study Team are;

Mr. Akira NAKAMURA	:	Group Director, Group III (Transportation), Social Development Department
Mr. Yoshiro KURASHINA	:	Team Director, Group III (Transportation), Social Development Department
Mr. Shigeo HONZU	:	Transportation Team I, Group III (Transportation), Social Development Department
Mr. Tatsuhiko SUNOUCHI	:	Transportation Team I, Group III (Transportation)
		Social Development Department (from September 2006)
JICA Indonesia Office:		
Mr. Keiichi KATO	:	Resident Representative
Mr. Shinji TOTSUKA	:	Deputy Resident Representative
Mr. Kozo NAGAMI	:	Assistant Resident Representative
Dr. Nobuyuki TSUNEOKA	:	JICA Expert (Road Policy)

The JICA Study Team is composed of the following members:

Mr. Mitsuo KIUCHI	:	Team Leader / Road & Bridge Planner
Mr. Takashi OKUMURA	:	Flyover / Transport Planner
Mr. Ryuichi UENO	:	Highway Engineer
Mr. Shigeru MATSUI	:	Bridge Engineer (Steel Bridge)
Mr. Hiroshi HONDA	:	Bridge Engineer (PC Bridge)
Mr. Anthony GOURLEY	:	Bridge Engineer (Substructure)
Mr. Takao MITSUISHI	:	Environmental Specialist
Mr. SUHARTO	:	Resettlement Specialist (Up to February, 2006)
Mr. Eros PALGUNADI	:	Resettlement Specialist (From May, 2006)
Mr. Chifuyu HORIUCHI	:	Natural Condition Survey Specialist
Mr. Kazufumi MATSUKAWA	:	Construction Planner / Cost Estimator
Ms. Lucila C. PERLADA	:	Document Specialist

The JICA Technical Supervisor is composed of the following members:

Mr. Shunji HATA	:					Department, Up to March, 20	
Mr. Kiyoshi DACHIKU	:					h Department, From April, 2006	
Mr. Hiroo ODA	:	Senior Co Institute	ounse	elor	of	Infrastructure	Development

The Steering Committee is organized under the chairmanship of Director General of DGH and consisting of the following members:

Chairman	:	Mr. Hendrianto Notosoegondo, Director General of Highways, DGH
Vice Chairman	:	Ms. Sri Apriantini Soekardi, Director of Planning
Vice Chairman	:	Mr. Franky Tayu, Director of Technical Affairs
Vice Chairman	:	Mr. Purnarachman Hadipoerwono, Director of Road/Bridge, West Region
Member	:	Mr. R. Bambang Goeritno Sukamto, Head of Planning Bureau, MPW
Member	:	Mr. Herry Vaza, Chief Sub – Directorate of Bridge Engineering
Member	:	Ms. Jany Agustin, Chief Sub – Directorate of Environmental Engineering
Member	:	Mr. A. Gani Ghazaly Akman, Chief Sub – Directorate of West Region I
Member	:	Mr. A. Yusid Toyib, Chief Sub – Directorate of West Region V
Member	:	Mr. Palgunadi, Chief Sub – Directorate of Standard & Guideline
Member	:	Mr. Taufik Widjoyono, Chief Sub – Directorate of Programming & Budgeting
Member	:	Mr. Arif Witjaksono, Chief Sub – Directorate of Urban Road Network

The Technical Committee is composed of the following members:

Chairman	: Mr. Herry Vaza, Chief Sub – Directorate o Bridge Engineering
Member	: Ms. Jany Agustin, Chief Sub – Directorate of Environmental Engineering
Member	: Mr. A. Gani Ghazaly Akman, Chief Sub – Directorate of West Region I
Member	: Mr. A. Yusid Toyib, Chief Sub – Directorate of West Region V
Member	: Mr. Palgunadi, Chief Sub – Directorate of Standard & Guideline
Member	: Mr. Taufik Widjoyono, Chief Sub – Directorate of Programming & Budgeting
Member	: Mr. Arif Witjaksono, Chief Sub – Directorate of Urban Road Network
Member	: Mr. Jawali Marbun, Chief Sub – Directorate of Road Engineering
Member	: Mr. Danis H Sumadilaga, Chief Sub – Directorate of Metropolitan and Big City
Member	: Mr. Sjofva Rosliansjah, Head of Bridge Section for Western Region
Member	: Mr. Djoko Sulistyono, Head of Bridge Section for Eastern Region
Member	: Ms. Nonviani, PMU JBIC

The Counterpart Team members are as follows:

Team Leader	:	Mr. Herry Vaza, Chief Sub – Directorate o Bridge Engineering
Member	:	Mr. Sjofva Rosliansjah, Head of Bridge Section for Western Region
Member	:	Mr. Djoko Sulistyono, Head of Bridge Section for Eastern Region
Member	:	Mr. Dedi Soendjoto, Road Engineering Section
Member	:	Ms. Nurmala Sumanjuntak, Head of Environmental Engineering Section
Member	:	Mr. Wilan Oktavian, Head of Urban Bridge Section
Member	:	Mr. Yudo Muktiarto, Head of Section of Metropolitan I
Member	:	Mr. Tasripin Sartiyono, Head of Section of Banten and West Java
Member	:	Ms. Endang Priyustini, Staff of Section of Banten and West Java
Member	:	Mr. Widayanto, Head of Section of Western Region V

Chapter 2 OBJECTIVE OF THE PROJECT

The objective of the project defined by the Loan Agreement is

"To provide flyovers as the most appropriate countermeasures to achieve sound improvement of road transportation network and substantial enhancement of physical distribution along the North Java Corridor and in the inland areas of Java Island for vitalization of socio – economic activities in the pertinent regions through the establishment of smooth and reliable traffic network".

Chapter 3

REVIEW OF PREVIOUS STUDIES

3.1 FEASIBILTY STUDY OF THE PROJECT

The feasibility study for North Java Corridor flyover project was completed in September, 2003. the feasibility study covered 14 flyovers including 6 flyovers which are subjected to this detailed design study. Major findings of the feasibility study of subject 6 flyovers are summarized hereunder.

3.1.1 Traffic Conditions and Estimated Future Traffic Count Survey results are summarized in Table 3.1.1-1

		Traffic Volume 2003 (Kabupaten/Kota Border)											
No.	Location	Passenger Car	Small Bus	Medium & Large Bus	Small Truck	Medium Truck	Large Truck	TOTAL					
1	Merak	1,813	3,528	270	634	882	226	7,353					
2	Balaraja	4,814	4,119	1,676	1,496	1,573	144	13,822					
3	Nagreg	4,178	1,972	836	1,267	2,393	20	10,666					
4	Gebang	4,119	909	1,639	1,543	4,975	1,205	14,390					
5	Peterongan	8,008	572	1,815	2,960	4,915	1,155	19,425					
6	Tanggulangin	9,112	2,398	62	3,298	5,505	316	20,691					

TABLE 3.1.1-1 TRAFFIC VOLUME IN 2003

Source : Feasibility for North Java Corridor Flyover Project, 2003

Future traffic volume was forecasted by multiplying the existing traffic volume by the corresponding future traffic growth factor for each type of vehicle. Table 3.1.1-2 shows the future traffic growth factors determined based on "Heavy Loaded Road Improvement Project Phase II"

No.	Vehicle Type	Annual Growth (% p.a)										
NO.	venicie rype	2001-2005	2005-2010	2010-2015	2015-2020	2020-2025						
1	Passenger Car	3,71	4,42	3,34	2,21	2,46						
2	Small Bus	3,79	4,91	4,02	4,32	3,33						
3	Medium & Large Bus	4,13	4,95	3,82	3,56	3,17						
4	Small Truck	4,16	4,52	3,12	2,78	2,67						
5	Medium Truck	4,10	5,16	4,28	4,74	3,64						
6	Large Truck	3,44	4,37	3,42	3,24	2,68						

 TABLE 3.1.1-2
 FUTURE TRAFFIC GROWTH FACTORS

Source : Feasibility for North Java Corridor Flyover Project, 2003

Adopting the peak hour traffic ratio (K-factor) of 0.0821, future peak hour traffic volume was estimated as shown in **Table 3.1.1-3**.

						Unit : pcu/hr
No.	Location	2003	2010	2015	2020	2025
1	Merak	612	849	1,028	1,248	1,463
2	Balaraja	1,125	1,561	1,880	2,248	2,622
3	Nagreg	936	1,303	1,573	1,889	2,208
4	Gebang	1,661	2,310	2,812	3,442	4,063
5	Peterongan	1,983	2,746	3,322	4,008	4,700
6	Tanggulangin	1,894	2,629	3,174	3,816	4,464

 TABLE 3.1.1-3
 FUTURE PEAK HOUR TRAFFIC VOLUME

Source : Feasibility for North Java Corridor Flyover Project, 2003

3.1.2 Geometric Design Standards

Recommended geometric design standards for this project is shown in **Table 3.1.2-1**.

TABLE 3.1.2-1 GEOMETRIC DESIGN STANDARDS RECOMMENDED By F/S

		Type II, C	lass I	Recommended
Criteria		Standard	Minimum	for this Project
Design Speed	(kph)	60		60
Lane Width	(m)		3.50	3.50
Median	(m)	2.0 min	1.00	0.50
Marginal strip of median	(m)	0.50	(exceptional)	for bridge 0.50
Right shoulder width	(m)	0.50	0.50	Not required
Left shoulder width	(11)		0.50	with median
(with or without sidewalk)	(m)	0.50		
Sidewalk width	(m)	0.50	1.50	
Stopping distance	(m)		75	Min.75
Passing distance	(m)	350	250	1111170
Curve radius	(m)	200 (desireable)	150	Min.150
Curve radius for	()			
normal cross fall	(m)		220	
Curve length				
(where intersection angle 'a' $<7\%$)	(m)		700/a	
Cross fall	(%)	2	100	Min.100
			(exceptional)	
Curves not requiring transition	(m)		600	2
Curves not requiring				
superelevation	(m)		2000	
Lane widening	(m)			Not required
Max. Gradient	(%)	5		5
Vertical curve radius	(m)			
a. crest		2000 (desireable)	1400	2000
b. sag		1500 (desireable)	1000	1500
Vertical curve length	(m)	50		50
Length of transition section	(m)		50	

Source : Feasibility for North Java Corridor Flyover Project, 2003

Number of lanes for flyovers was 2-way 2-lane.

3.1.3 Flyover Schemes, Type of Bridge, Construction Cost and Economic Viability

Flyover schemes, type of bridges, construction cost and economic viability are summarized in **Table 3.1.3-1**.

TABLE 3.1.3-1 FLYOVER SCHEMES, TYPE OF STRUCTURE, CONSTRUCTION COST AND ECONOMIC VIABILITY

	Flyo	Flyover Length (m)	<u>(</u>			Estimated Construction	Economic
Location	Bridge Section	Approach Section	Total	Typical Cross Section	Structure Type	Cost Billion Rupiah (Million Yen)	Viability EIRR (%)
				Flyover : 2x3.5 + 2x0.25 + 2x0.5	Case 1 : PC Slab + Steel I Girder + Steel Pier + RC Abutment	36.4 (510)	17.7
Merak	330	235	565		Case 2 : PC Slab + Steel I Girder + Steel / RC Piers + RC Abutment	29.5 (413)	19.5
				0.5 + 4.5 + 1.5 = 6.50m Total Width = 21.50m	Case 3 : PC Slab + PC Girder + RC Pier + RC Abutment	22.6 (317)	22.1
					Case 1 : Same as Merak	61.0 (855)	18.9
Balaraja	560	299	859	Same as above	Case 2 : Same as Merak	49.8 (698)	21.1
					Case 3 : Same as Merak	38.6 (541)	23.9
					Case 1 : Same as Merak	39.3 (550)	19.2
Nagreg	360	230	590	Same as above	Case 2 : Same as Merak	32.4 (454)	21.2
					Case 3 : Same as Merak	25.5 (357)	23.9
					Case 1 : Same as Merak	30.0 (420)	19.7
Gebang	280	255	535	Same as above	Case 2 : Same as Merak	24.9 (348)	21.7
					Case 3 : Same as Merak	19.7 (276)	24.2
1					Case 1 : Same as Merak	31.4 (439)	17.5
Peterongan	280	285	565	Same as above	Case 2 : Same as Merak	26.2 (367)	19.3
					Case 3 : Same as Merak	21.0 (295)	21.6
					Case 1 : Same as Merak	37.1 (520)	18.4
Tanggulangin	336	276	612	Same as above	Case 2 : Same as Merak	30.2 (423)	20.5
					Case 3 : Same as Merak	23.3 (327)	23.3
Source: Feasibili	'tyStudy foi	r North Java C	corridor (Source: FeasibilityStudy for North Java Corridor Flyover Project, 2003			

2) Japan Portion

Case 1 43,7% (satisfies STEP Loan Requirement) Case 2 32,3% (satisfies STEP Loan Requirement) Case 3 14.6% (not satisfies STEP Loan Requirement)

Note : 1) Exchange rate 1 Yen = 71.4 Rp 0.014 Yen = 1.0 Rp

3.2 SAPROF STUDY OF THE PROJECT

JBIC Special Assistance for Project Formation (SAPROF) for North Java Corridor Flyover Project was undertaken for 8 flyovers including 6 flyovers subjected to this detailed design study and completed in September 2004. Based on this SAPROF Study, the project was appraised by JBIC and Loan Agreement was signed by and between GOI and GOJ in March 2005. Major findings and recommendations of SAPROF Study for 6 flyovers are summarized hereunder.

3.2.1 Recommended Typical Flyover/Approach Cross Section

Recommended typical cross sections for a flyover and an approach section are shown in Figure 3.2.1-1.

3.2.2 Proposed Flyover Scheme and Estimated Cost

Proposed flyover scheme and estimated cost are summarized in **Table 3.2.1-1**.

	Flyo	ver Scheme	(m)		Structure Type			st for Civil 4) w/o Tax
Flyover	Bridge (Viaduct)	Approach	Total	Super- structure	Substructure	Foundation	Billion	n Rap n Yen)
Merak	340	360	700	PC I Girder	Single Column Pier (RC)	Pile Cap + Multi-Bored Pile (1.5m)	42.86	(514.3)
Balaraja	225	295	520	Steel I Girder	Single Column Pier (Composite)	Large Diameter Single Bored (3m)	37.56	(450.9)
Nagreg	315	425	740	Steel I Girder	Single Column Pier (Composite)	Large Diameter Single Bored (3m)	49.73	(596.8)
Gebang	450	370	820	Steel I Girder	Single Column Pier (Composite)	Large Diameter Single Bored (2.5m)	53.45	(641.5)
Peterongan	275	325	600	PC I Girder	Single Column Pier (RC)	Pile Cap + Multi-Bored Pile (1.5m)	35.25	(423.0)
Tanggulangin	240	330	570	PC I Girder	Single Column Pier (RC)	Pile Cap + Multi-Bored Pile (1.5m)	30.63	(367.6)
Total	1,845	2,105	3,950	-	-	-	249.48	(2,994.1)

TABLE 3.2.1-1 PROPOSED FLYOVER SCHME BY SAPROF STUDY

Exchange Rate : 1Rp = 0.012 Yen

PART II

TRAFFIC AND NATURAL CONDITION OF THE PROJECT AREA

CHAPTER 4

PROJECT SITE SETTING

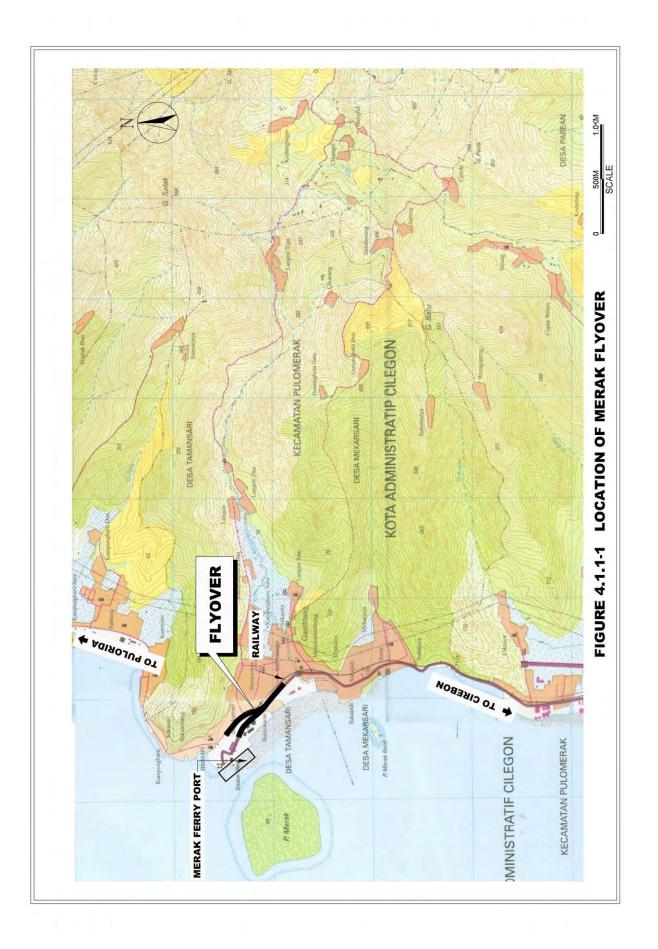
4.1 MERAK FLYOVER

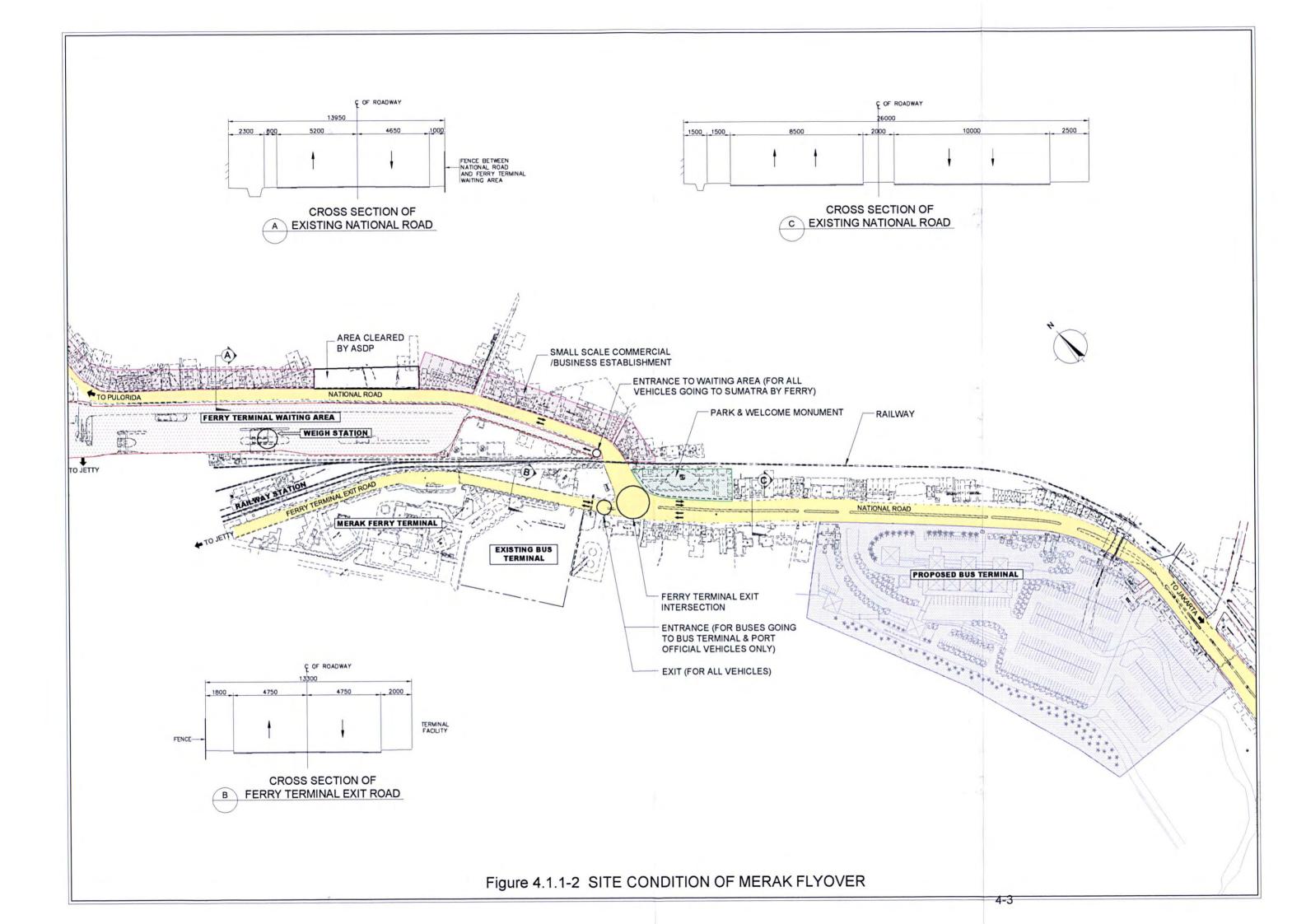
4.1.1 Flyover Location and Topography

The location of Merak Flyover is shown in **Figure 4.1.1-1**. It is located at almost west end of Java Island. Site condition of the flyover is shown in **Figure 4.1.1-2**. Characteristics of the project site are as follows:

- The 4-lane national road at Jakarta side ends before this railway crossing, and branches off into the 2-lane national road going to Pularida and the Merak Ferry Terminal Exit Road.
- Merak Ferry Terminal is quite important and strategic facility providing transport connection between Java Island and Sumatra Island.
- There are two gates related to Merak Ferry Terminal. One gate is located at the end of the 4-lane national road, which is mainly functioning as the exit from the Ferry Terminal and all vehicles from the Ferry Terminal go out from this gate to the national road. Only buses going to the existing Bus Terminal located near this gate and port official's vehicles enter into the Ferry Terminal at this gate.

The other gate is located near the railway crossing. This gate is used only as entrance to the Ferry Terminal. All vehicles going to Sumatra Island enter to the Ferry Terminal at this gate. This gate is connected to the Ferry Terminal Waiting Area.


- The existing bus terminal is planned to be transferred towards the Jakarta side as shown in **Figure 4.1.1-2**. Construction of new bus terminal is scheduled to start in 2007.
- One side of the 2-lane national road is bounded by the fence of the Ferry Terminal Waiting Area. The other side is the built-up area of small scale commercial and business establishments where many cars, taxies, small buses, etc. stop at the road side causing heavy traffic frictions and traffic congestions.
- The railway ends at this location.


Topography of this flyover location is characterized as the narrow coastal plain which is followed by relatively steep mountain slopes.

4.1.2 Soil Condition

Along National Road

First layer up to 10 to 16m depth consists of sand mixed with silts with N-value of 4 to 20 and suspected by liquefaction during the second layer is silts/clay with varying thickness of 6 to 30m and varying N-value of 10 to 30. The third layer consists of cohesive soil with very stiff to hard consistency and found at the depth of 20 to 43m from the ground.

Along Ferry Terminal Exit Road

First layer with thickness of 1~2m consists of sand mixed with silt and clay with N-value of 5 to 6. Second layer consists of fine sand and clayey silt with N-value of 1 to 5 and thickness of 6 to 8m. Third layer is cohesive soil with N-value of 10 to 30 and thickness of 10 to 12m. Fourth layer is the hard layer which consists of clayey silt with N-value of more than 50 and found at 22 to 25m below the ground level.

4.1.3 Land Use

Along the 4-lane national road, sea side is mostly reserved for the proposed Bus Terminal and still vacant. The other side is narrow area bounded by the railway and the national road and occupied by small scale commercial establishments and residential houses.

Along the 2-lane national road, one side is facing with the Ferry Terminal Waiting Area and the other side (mountain side) is the built-up area with small scale commercial/business establishment except the area cleared by ASDP. Ferry Terminal Exit Road passes through the compound of Merak Ferry Terminal.

4.1.4 Road Network

The subject road section is a part of Jakarta – Cirebon – Merak – Pulorida Road. This road is connected with the Merak Ferry Terminal which provides important transport linkage between Java Island and Sumatra Island by Ferry Service.

There is no other major road in the project area.

4.1.5 Existing Road Condition

Typical cross sections of the 4-lane national road, the 2-lane national road and the Ferry Terminal Exit Road are presented in **Figure 4.1.1-2**. The 4-lane national road has standard width of 26m divided by center median with 1.5 to 2.0m sidewalks. Pavement type is AC pavement in fair to good condition.

The 2-lane national road has standard width of 13.95 m with AC pavement of which condition is fair to bad.

The Ferry Terminal Exit Road has standard width of 13.3m with sidewalks on both sides. The carriageway is paved with concrete pavement of which condition is fair to good.

4.1.6 Physical Constraints and Major Control Points

1) Road Right-of-Way (ROW)

Land taking of Ferry Terminal Waiting Area is not allowed by ASDP, since the waiting area is fully occupied by vehicles during Ramadan Holidays or when one of ferry boats stops its operation due to repair/maintenance. Instead, there is ASDP's land along the 2-lane national road and its utilization can be possible.

The park built by the Provincial Government at the end of the 4-lane national road can be affected.

2) Public Utilities

The most critical underground utility is the water pipeline (D=30 cm) which supplies water to the power plant. This water pipeline is located along the fence between the 2-lane national road and the Ferry Terminal Waiting Area.

Another underground utilities are:

Right Side	:	Telecommunication cable (D=4cm)
Left Side	:	Electrical cable (D=5 cm)
		Telecommunication cable (D=4cm)

4.2 BALARAJA FLYOVER

4.2.1 Topography

The location of Balaraja Flyover is shown in **Figure 4.2.1-1**. Serang side (or western side) of the Flyover up to the intersection with the road going to Kresek is flat. From the intersection, the road goes down at about 5% gradient up to the river.

4.2.2 Soil Condition

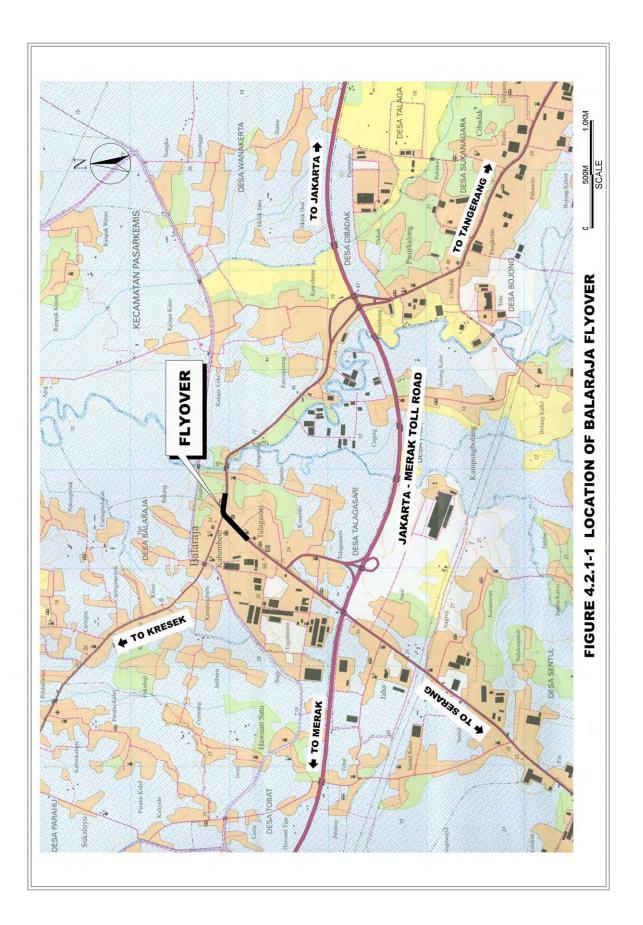
Soil conditions consist of medium stiff sandy and silty clays overlying very stiff to hard clays. The hard layer having N value > 50 at this site is in a relatively horizontal plane occurring between 8m to 14m deep below the existing ground surface. The upper layers between the surface and the hard layer consist predominantly of clays with medium stiff consistency. Soft layers were found at two (2) boreholes with thicknesses ranging from 3m to 5m. Silty sands were also encountered at two (2) boreholes with consistency ranging from loose to dense. Maximum borehole depth at this site was 30m.

4.2.3 Land Use

Industrial area has been developed in the west of the Flyover. Roadsides have been fully developed with commercial establishments and schools. At the western corner of intersection going to Kresek, large scale shopping mall is planned to be built.

4.2.4 Road Network

The Serang – Balaraja – Tangerang section constitutes a part of North Java Corridor. At the Flyover location, the road going to Kresek intersects with the North Java Corridor. Jakarta – Merak Toll Road runs in the southern side of the road.


4.2.5 Existing Road Condition

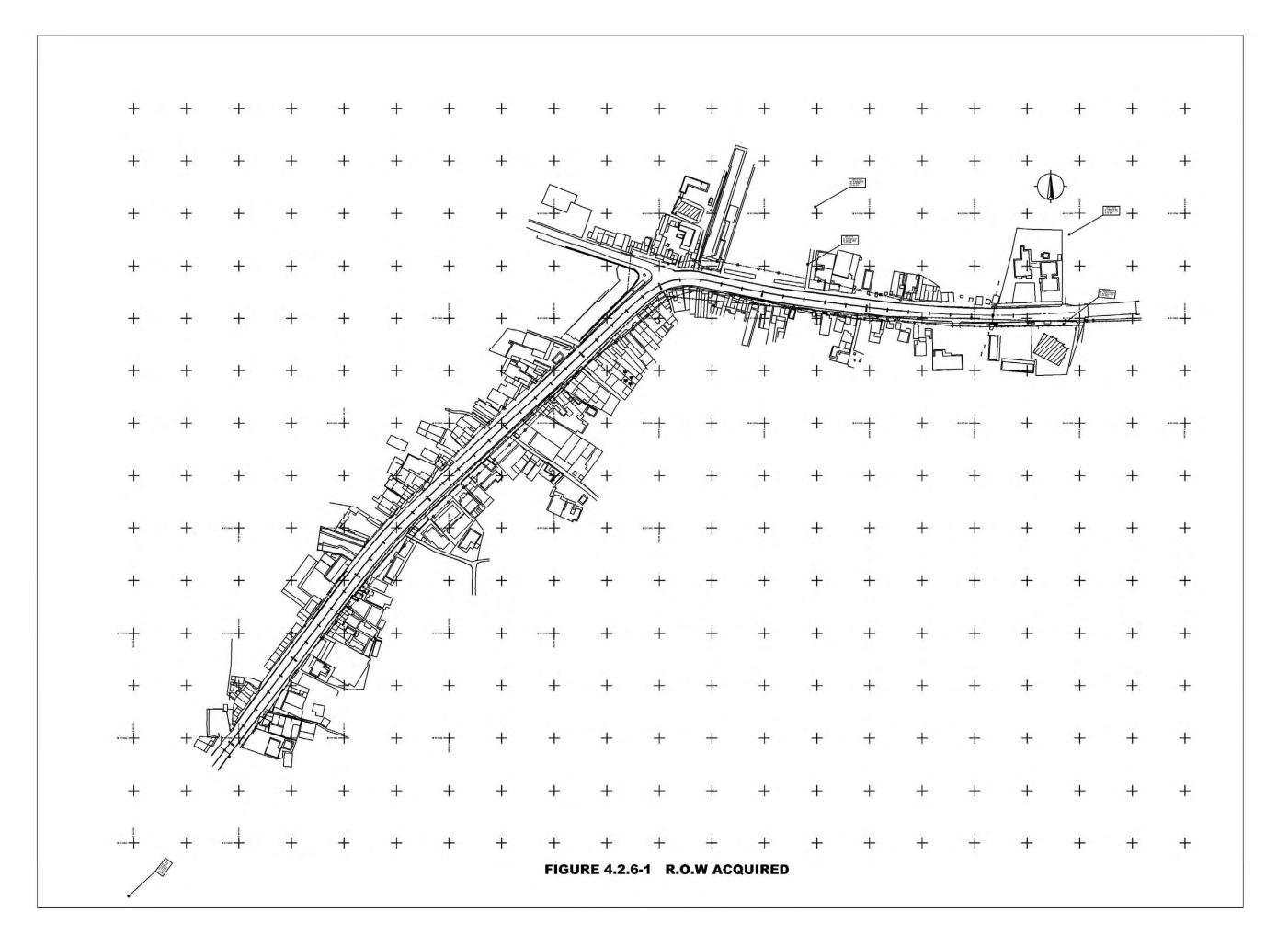
The existing road in the Flyover section is a 4-lane divided road with the asphalt concrete pavement for the carriageway and concrete or earth for shoulders.

TYPICAL CROSS SECTION OF EXISTING ROAD

AC Pavement condition is fair to good. Shoulder and a part of carriageway is used as loading / unloading of mini-buses, trucks and also as sidewalks. Side ditches are mostly covered, but some sections are open.

4.2.6 Physical Constraints and Major Control Points

1) Road Right-of-way (ROW)


Based basically on the SAPROF Study, new ROW to accommodate a flyover has been acquired as shown Figure 4.2.6-1. New ROW width ranges from 29.1 m (standard) to 18.0 m. The flyover had to be designed within the new ROW, thus nose location (or beginning and end points) was more or less determined.

2) Public Utilities

Most critical public utility is the gas pipe line (Diameter 20 cm) which is located at the right side of the road, and supplies gas to nearby industrial estates and residential houses. During the initial discussion with the gas company (Perum Gas), protection was recommended by the company because it is quite difficult to stop supply of gas.

Another underground utilities are:

Right side:Electrical Cable (3 lines, D=4cm), water pipe (D=25cm)Left side:Electrical Cable (1 line), telecommunication cable (1 line)

4.3 NAGREG FLYOVER

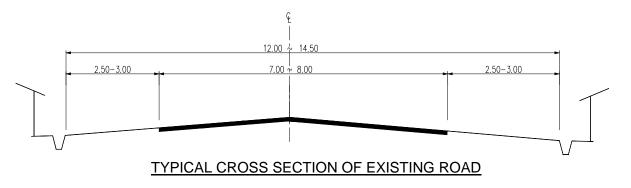
4.3.1 Topography

The location of Nagreg Flyover is shown in Figure 4.3.1-1. The Flyover is located at the elevation of about 850m from the sea level. From the Bandung side, the road goes up with the gradient of about 5% up to the railway. From the railway, flat area continues for about 500m, then goes down with very steep gradient of 10-11% towards Malangbong.

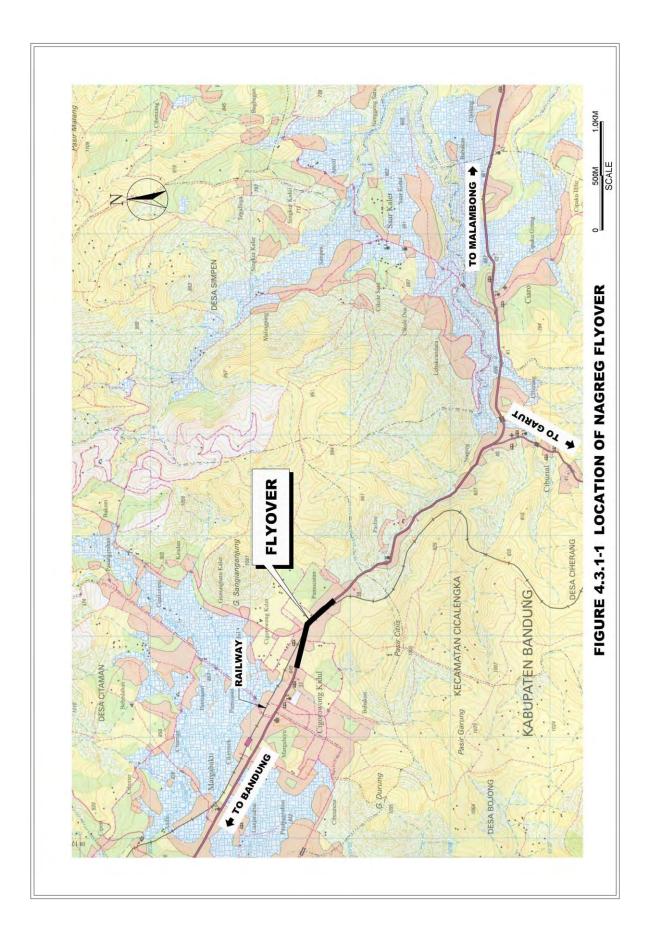
4.3.2 Soil Condition

Soil conditions consist of silty clays with variable consistency overlying hard clays. The hard layer is not occuring in a horizontal plane at this site, with depths at which soil with N > 50 was encountered ranging from 20m to 30m below existing ground level. Dense sands were encountered at depth at four (4) boreholes. The upper clay layers vary in consistency from soft to medium stiff. The soft layers were encountered within 4m of the surface. Maximum borehole depth at this site was 44m.

4.3.3 Land Use


Roadsides are developed with residential areas and commercial establishments which are mostly semi-permanent stores selling vegetables. Some vegetable stalls are built within the road right-of-way.

4.3.4 Road Network


The Bandung – Nagreg – Malangbong section constitutes a part of important inland road network. The road is the only major road providing important access to the inland area.

4.3.5 Existing Road Condition

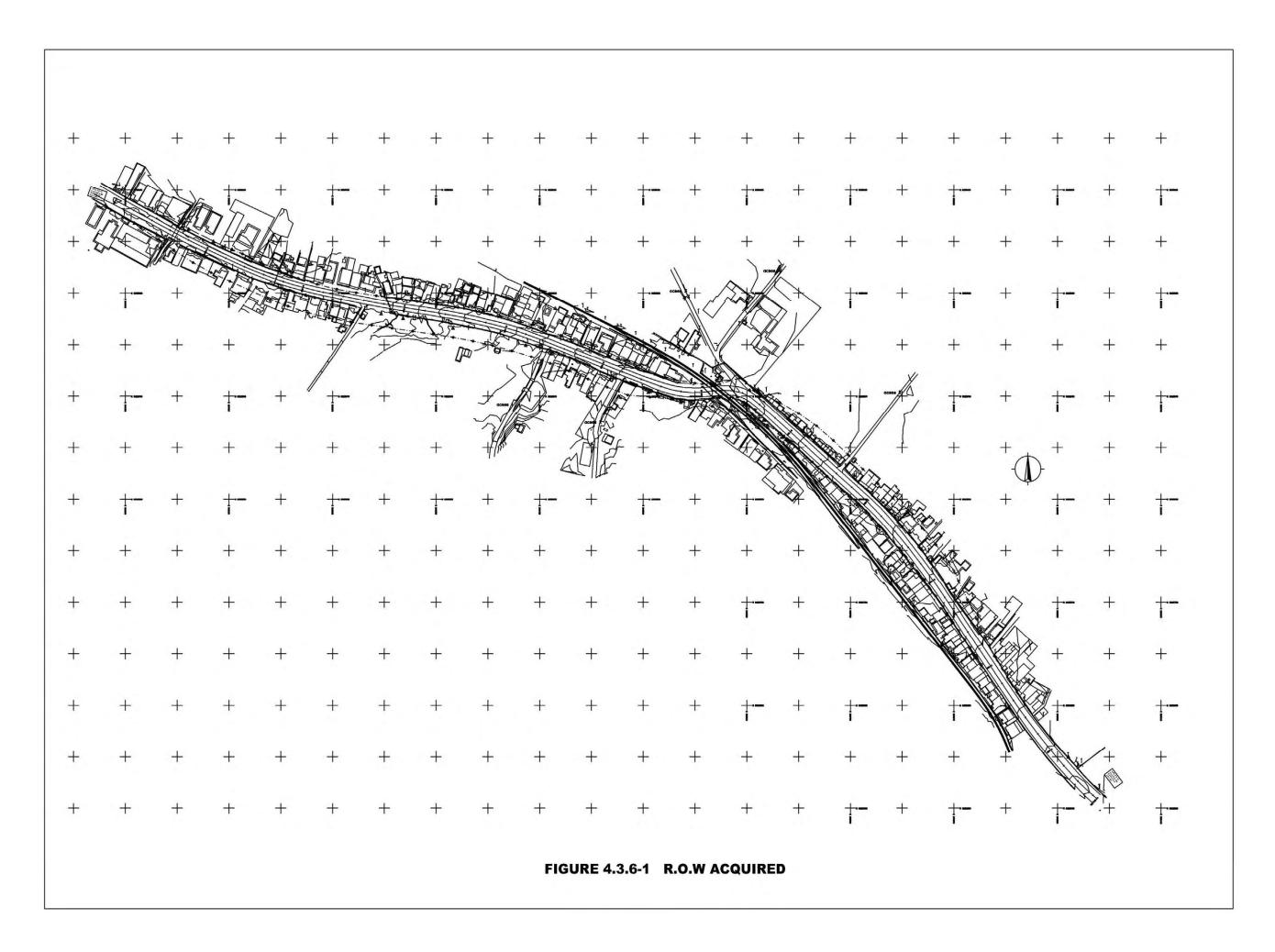
The existing road in the Flyover section is a 2-lane road with the asphalt concrete pavement for the carriageway and gravel for shoulders.

AC Pavement condition is fair. Open channel side ditches are provided at Bandung side. Flat section after the railway is provided with covered channel ditches.

4.3.6 Physical Constraints and Major Control Points

1) Road Right-of-way (ROW)

Based on the SAPROF Study, new ROW to accommodate a flyover was presented to local communities during the public hearing and negotiation with affected people is being undertaken. New ROW limits are shown in Figure 4.3.6-1 and ROW width ranges from 29.1 m (standard) to 18 m. From the beginning of a flyover to the railway, land area of right side of the existing road is planned to be acquired wider than the left side. After the railway, more land area at the left side is to be acquired than the left side.


The flyover had to be designed within the new ROW, thus nose location was more or less determined.

2) Public Utilities

Most critical public utility is the oil pipe line. There are two oil pipe lines, one at the right side (D = 40cm) and the other at the left side (D = 25cm) of the road. These oil pipe lines will be located under the approach embankment section, therefore, relocation or protection of pipe lines will be required.

Initial discussion with PERTAMINA was made whether to protect or relocate the oil pipe lines. PERTAMINA informed that the relocation is technically possible.

Another underground utility is telecommunication cable (1 cable with the diameter of 4cm) at the left side of the road.

4.4 GEBANG FLYOVER

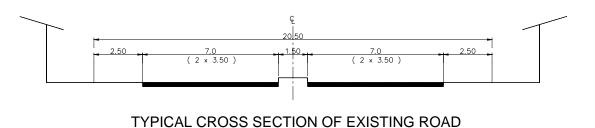
4.4.1 Topography

The location of Gebang Flyover is shown in **Figure 4.4.1-1**. The Flyover is located at the flat area along the coast of Java Sea. Distances from the coast to the Flyover is about 1 km. There is one river crossing the road. The width of the river is about 30m at the Flyover site.

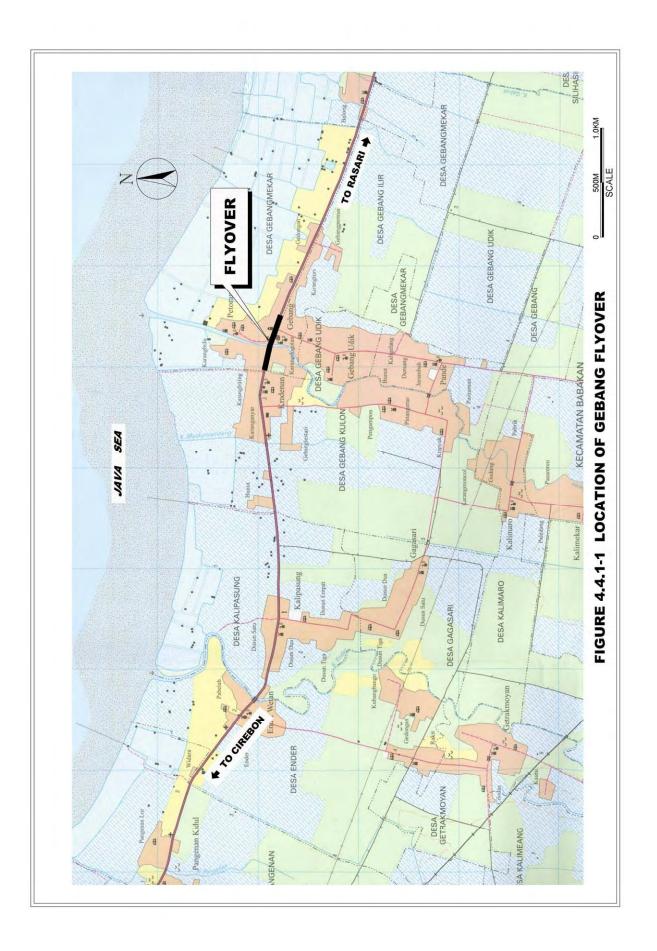
4.4.2 Soil Condition

Soil conditions consist of up to 6m of medium stiff to stiff silty clays and medium dense sands overlying 10m thickness of soft to very soft silty clays. Hard clays and dense sands were encountered at depth. The hard layer having N value > 50 at this site is in a relatively horizontal plane occurring typically 28m below the existing ground surface. Very dense sands predominate at this depth. The very soft clays (N values between 0 and 2) occur in a layer generally 2 to 6m thick at depths below 8m. Maximum borehole depth at this site was 64m

4.4.3 Land Use


The roadsides have been developed with residential houses and commercial establishments. The market is located on the right side at about 140 m from the river. Many fishing boats are moored at the river. So many vendors open temporary stores along the road selling fishes, frits and others things. They usually occupy a part of the carriageway, obstructing traffic.

4.4.4 Road Network


The Cirebon - Nagreg - Losari road is a part of the North Java Corridor. There is no other major road except this road in this area. Traffic to/from Jakarta from/to Cirebon, Semarang and Surabaya is served by this road.

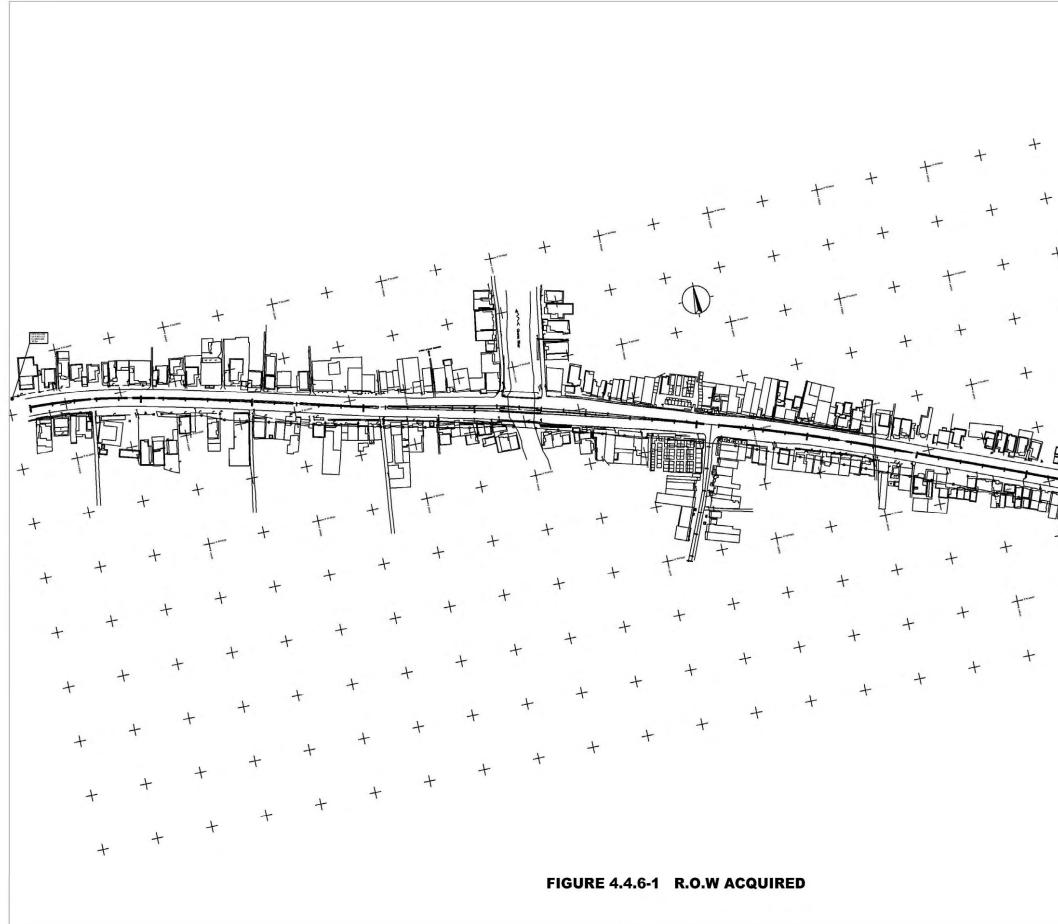
4.4.5 Existing Road Condition

The existing road is a 4-lane divided road with the asphalt concrete pavement. Typical cross section of existing road is shown below.

Existing pavement condition is good to fair.

4.4.6 Physical Constraints and Major Control Points

1) Road Right-of-way (ROW)


Based on the SAPROF Study, new ROW to accommodate a flyover has already been acquired. New ROW limit is shown in Figure 4.4.6-1. Since the flyover is planned to be constructed by stages, 2-way 1-direction flyover is to be built under this project, thus, new ROW has been acquired at the right side of the road (or Cirebon bound direction). New ROW varies from 16.0 m to 13.3 m from the centerline of the existing road.

2) Public Utility

No critical underground public utilities were found.

Existing underground utilities are as follows:

Right side	:	Telecommunication $(1-cable D = 4cm)$
Left side	:	Water pipe line (D = 10cm)
		Telecommunication $(1-cable, D = 4cm)$

+ F

4.5 PETERONGAN FLYOVER

4.5.1 Topography

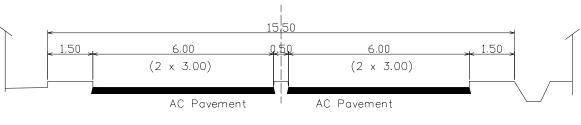
The location of Peterongan Flyover is shown in **Figure 4.5.1-1**. The Flyover is located at the very flat area. There is a small river (about 10m in width) at the end side of the flyover (Mojokerto side).

4.5.2 Soil Condition

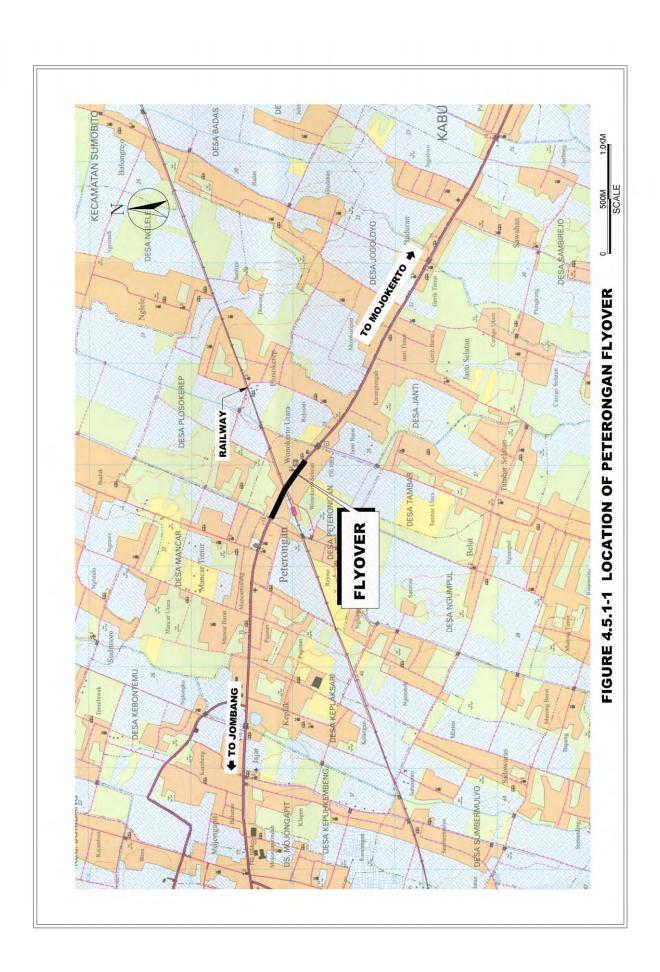
Soil conditions comprise both silty clays and sands of variable consistency overlying hard clays and dense sands. The hard layer having N value > 50 at this site is in a relatively horizontal plane occurring typically between 14m to 16m below the existing ground surface. Very dense sands predominate at this depth inter bedded with hard clays. The upper layers comprise soft clay at the surface with medium stiff and medium dense sands occurring beneath. Loose sands with thickness of about 2m were encountered at depths of 2 to 4m at two (2) adjacent boreholes. Maximum borehole depth at this site was 30m.

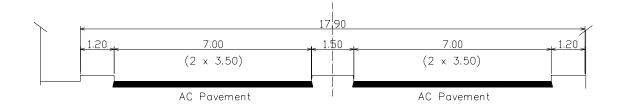
4.5.3 Land Use

Roadsides are mostly residential houses with some small commercial establishments. After the small river, there is a market at the right side of the road.


4.5.4 Road Network

Mojokerto – Peterongan – Jombang Road forms an important inland road network connecting Surabaya with inland cities such as Madiun, Kediri, etc. The road is functioning as a major road serving the inland area.


There is a plan to construct a toll road (Mojokerto – Kertosono Toll Road) which runs almost parallel to this road.


4.5.5 Existing Road Condition

The existing road is a 4-lane divided road with the asphalt concrete pavement for the carriageway. Typical cross section of the existing road is shown below.

TYPICAL CROSS SECTION : JOMBANG SIDE

TYPICAL CROSS SECTION : MOJOKERTO SIDE

AC Pavement condition is fair at Jombang side and good at Mojokerto side. The area is flat, therefore, large side ditches are provided.

4.5.6 Physical Constraints and Major Control Points

1) Road Right-of-way (ROW)

Actions to acquire ROW are not made yet. New ROW is to be determined by this study. Roadside development conditions are almost same throughout the flyover section. Thus, the centerline of the flyover is to be determined following the existing road centerline.

2) Public Utility

Existing underground public utilities are as follows:

Right side	:	Water pipe lines (2 lines, $D = 15$ cm and 30cm)
		Telecommunication (1 cable, $D = 4cm$)
Left side	:	Water pipe line (1 line, D = 10cm)
		Electrical Cable (4 lines, $D = 4cm$)
		Telecommunication (2 lines, $D = 4cm$)

4.6 TANGGULANGIN FLYOVER

4.6.1 Topography

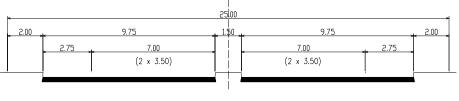
The location of Tanggulangin Flyover is shown in **Figure 4.6.1-1**. The Flyover is located at flat coastal plain.

4.6.2 Soil Condition

Soil conditions comprise medium stiff silty clays at shallow depth overlying soft to very soft clays encountered to a depth of between 30 to 32m. Medium stiff clays were encountered below the soft soil layer with hard bearing strata located at between 44m and 60m depth. The hard layer with N > 50m generally consists of very dense sands interbedded with clay layers. The very soft clay soils in the upper layer typically extend to a depth of approximately 20m. In addition loose to very loose sands of varying thickness were also encountered at four (4) boreholes at depths ranging from 4m to 14m. Maximum borehole depth at this site was 64m.

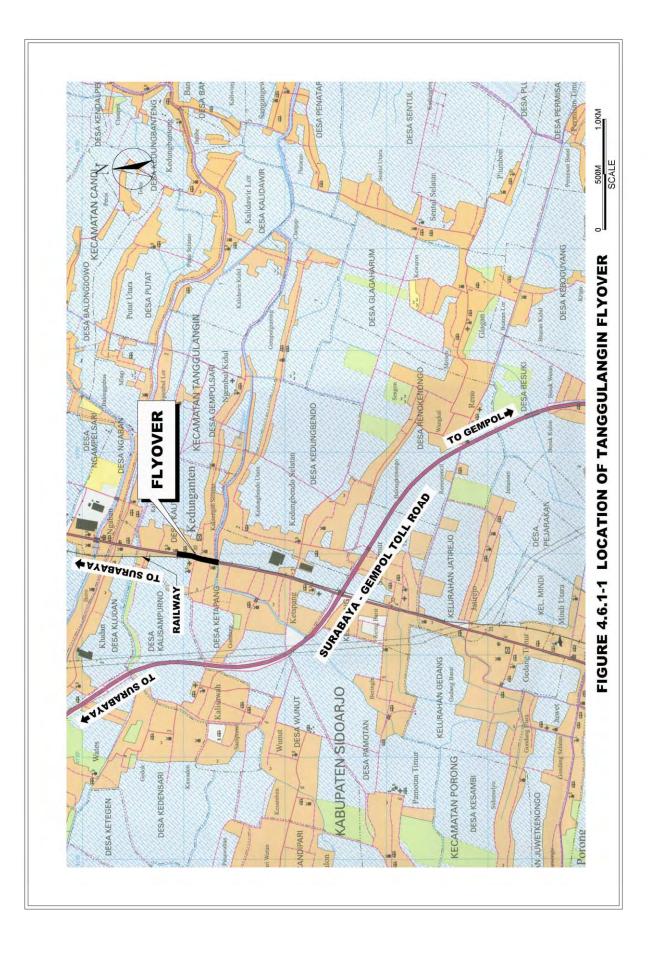
4.6.3 Land Use

Roadsides have been developed with residential area and small sized commercial establishments. At Pasuruan side, the road runs almost parallel to the railway and right side of the road is faced with the railway right-of-way. At Surabaya side, left side of the road is faced with the railway right-of-way.


4.6.4 Road Network

Surabaya – Tanggulangin – Pasuruan road runs along the east coast of Java Island, then it runs along the northern coast up to the eastern end of Java Island.

Surabaya – Gempol Toll Road runs almost parallel to this road and crosses the road at about 1.5 km south of the Flyover location.


4.6.5 Existing Road Condition

The existing road is a 4-lane divided road with the asphalt concrete pavement for the carriageway. Typical cross section of the existing road is shown below.

TYPICAL CROSS SECTION OF EXISTING ROAD

Pavement condition is good to fair. Urban type of drainage facility (or covered side ditches) are provided.

4.6.6 Physical Constraints and Major Control Points

1) Road Right-of-Way (ROW)

Actions to acquire ROW are not made yet. New ROW is to be determined by this study. In determining new ROW, the following are the control points:

Pasuruan Side	:	The railway right-of-way shall not be encroached to maintain 10m horizontal clearance from the existing rail.
Subaraya Side	:	The right-of-way acquisition at the right side of a flyover shall be minimized.

2) Public Utility

Following underground utilities are found:

Right side	:	Water pipe lines D = (45cm and 7.5cm)
-		Telecommunication (1 cable, $D = 4cm$)
Left side	:	Water pipe line ($D = 45$ cm and $D = 5$ cm)

Chapter 5

TRAFFIC SURVEYS AND ENGINEERING SURVEYS UNDERTAKEN

5.1 TRAFFIC SURVEYS

Traffic surveys as shown in **Table 5.1-1** were undertaken at each flyover location. Traffic surveys conducted on typical weekdays during November and December 2005.

		Type of Traff	ic Surveys (2 conse	cutive days)	
Flyover	1) 24-hour Traffic Count	2) 14-hour Roadside OD Survey	3) 14-hour Intersection Traffic Count	4) Travel Speed Survey	5) Vehicle Queue Length Survey
Merak	2 stations	2 stations	2 Intersections	2 Directions	2 Directions
Balaraja	2 stations	2 stations	1 Intersection	2 Directions	-
Nagreg	2 stations	2 stations	1 Intersection	2 Directions	2 Directions
Gebang	2 stations	2 stations	1 Intersection	2 Directions	-
Peterongan	2 stations	2 stations	2 Intersections	2 Directions	2 Directions
Tanggulangin 2 stations		2 stations	1 Intersection	2 Directions	2 Directions
Total	12 stations	12 stations	8 Intersections	12 Directions	8 Directions

TABLE 5.1-1 TRAFFIC SURVEYS UNDERTAKEN

At the Balaraja Flyover location, additional traffic surveys were undertaken as follows:

- U-turn traffic count survey (2 locations for 2 days)
- OD Survey of U-turn traffic (1 day)

5.2 TOPOGRAPHIC SURVEYS AND PUBLIC UTILITY SURVEY

Topographic surveys and public utility survey were undertaken for each flyover location. Area of survey covered for each flyover is shown in **Table 5.2-1**.

Flyover L	Flyover Location		Width (m)	Area (m²)
Topo Surveys & Public Utility Survey	Merak	1,920		107,600
	Balaraja	1,020		61,200
	Nagreg	1,160	Minimum = 50m	69,600
	Gebang	1,140	Average = 60m	68,400
	Peterongan	950		57,000
	Tanggulangin	1,130		67,800
	Total	7,320	-	431,600
River Survey	Gebang	7,000		

TABLE 5.2-1 AREA OF SURVEY

Types of surveys undertaken are shown in **Table 5.2-2**.

	Type of Survey
	Horizontal control station survey (GPS and tra survey)
	 Vertical control survey (establishment of Mark)
Road Survey	• Existing road centerline survey and staking

TABLE 5.2-2 TYPES OF SURVEYS UNDERTAKEN

	 Horizontal control station survey (GPS and traverse survey)
	 Vertical control survey (establishment of Bench Mark)
Road Survey	 Existing road centerline survey and staking out of the centerline
	Profile survey along the centerline
	Cross section survey
	Topographic survey
Structure Survey	Location survey of all structures
Structure Survey	Number of stories and type of material
	Location of overhead utilities
	Trial digging for underground utilities
Public Utility Survey	Collection of as-built drawings
	 Office address, person-in-charge, telephone number of public utility agency

5.3 GEO-TECHNICAL SURVEY

Geo-technical survey is summarized in Table 5.3-1.

				Flyc	over Locat	ion		
Geo-techr	nical Survey	Merak	Balaraja	Nagreg	Gebang	Pete- rongan	Tang- gulangin	Total
Doring	No. of Boreholes	22	14	16	19	14	11	96
Boring	Drilling length	617	280	528	655	314	543	2,937
Sampling	Disturbed	75	32	50	68	48	39	312
Sampling	Undisturbed	14	4	8	9	8	10	53
Standard Per	netration Test	304	137	260	323	154	267	1,445
	Water Content	89	36	58	77	56	49	365
	Specific Gravity	89	36	58	77	56	49	365
	Sieve Analysis	89	36	58	77	56	49	365
Loboratory	Unit Weight	89	36	58	77	56	49	365
Laboratory Test	Consistency	89	36	58	77	56	49	365
	Consolidation Test	32	12	24	27	24	30	149
	Direct Shear Test	32	12	24	27	24	30	149
	Unconfined Compression Test	32	12	24	27	24	30	149
Cone	2,5 t (30 m)	-	-	-	4	-	4	8
Penetration	10 t (60 m)	-	-	-	2	-	2	4
Soil Test for Design incluc Pitting		8	4	4	4	4	4	28

TABLE 5.3-1 GEO-TECHNICAL SURVEY UNDERTAKEN

5.4 METEOROLOGICAL AND HYDROLOGICAL DATA COLLECTION

Following data were collected from the Meteorology and Geophysics Agency:

- Daily rainfall data from 1980
- Monthly rainfall data from 1980
- Duration Rainfall Intensity relation for various return periods

CHAPTER 6

TRAFFIC CONDITIONS AND PROBLEMS

6.1 PRESENT TRAFFIC CONDITION

6.1.1 Daily Traffic Volume

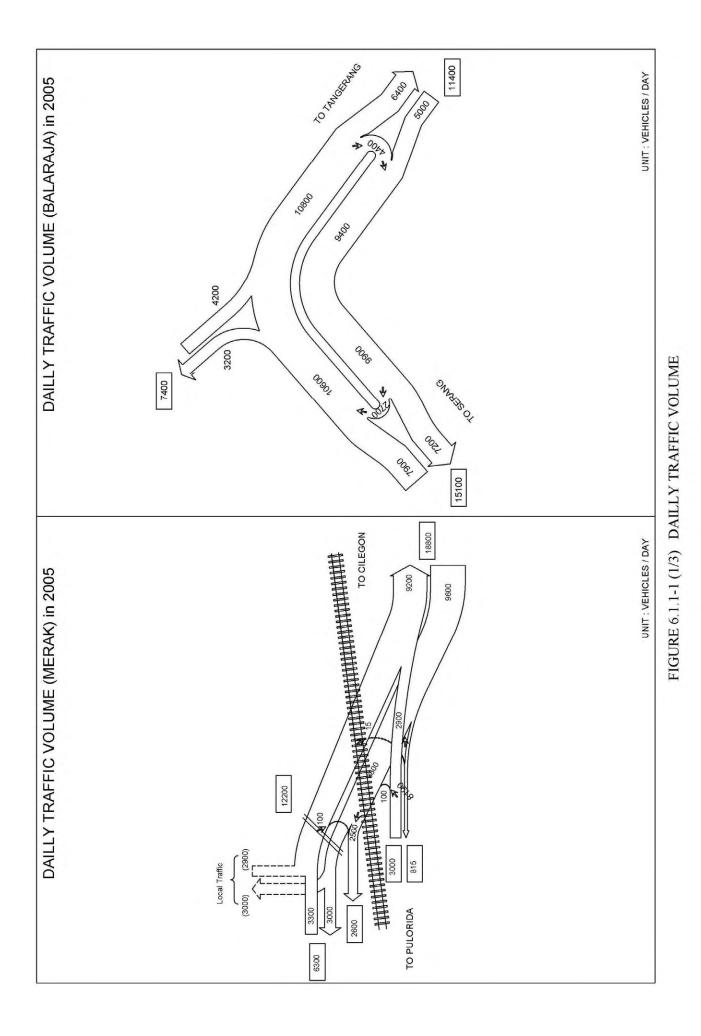
Traffic survey results are summarized in **Table 6.1.1-1**. Daily traffic volume including intersection traffic is graphically shown in **Figure 6.1.1-1**. Hourly variation of traffic volume is shown in **Figure 6.1.1-2**. It is noted that night time traffic at Gebang is quite high. Peak hour ratio ranges 6.1% to 10.5%

6.1.2 Travel Speed

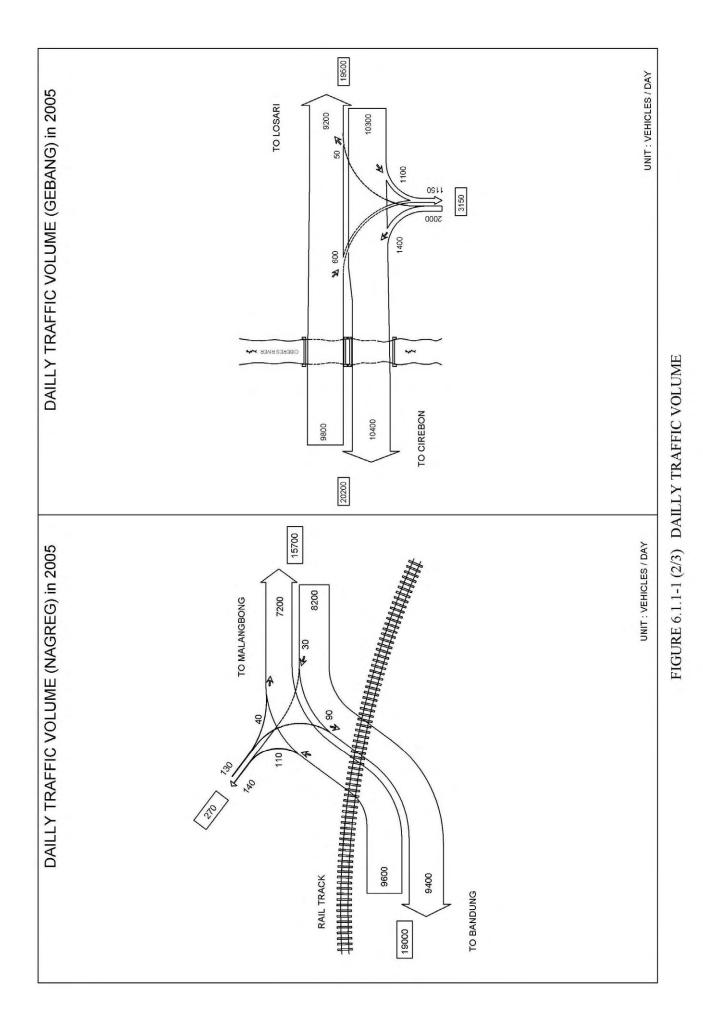
Travel speeds at a flyover section and its adjacent areas are shown in **Table 6.1.1-1**.

6.1.3 Traffic Characteristics (Through and Local Traffic)

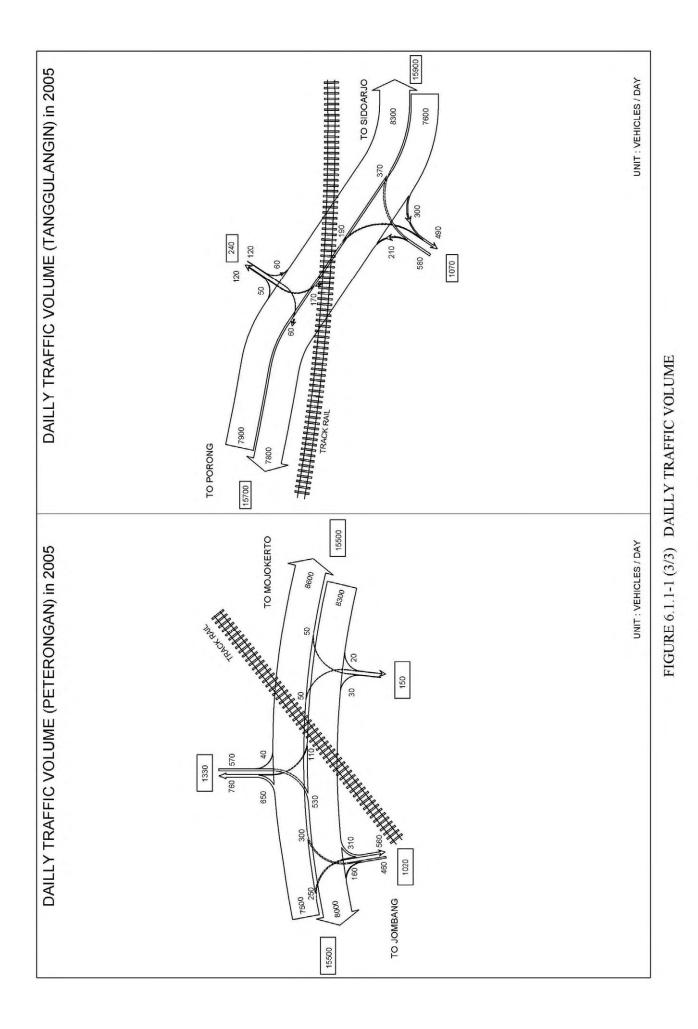
Based on the OD survey results, through traffic and local traffic were segregated and shown in **Table 6.1.1-1**.

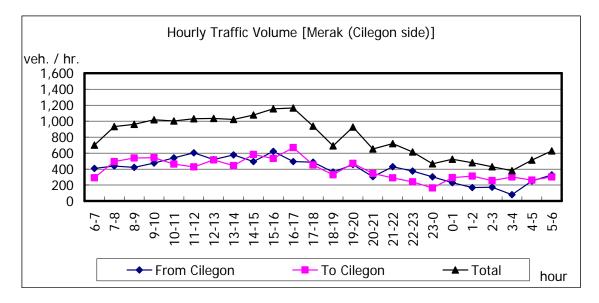

	Merak	Balaraja	Nagreg	Gebang	Peterongan	Tanggulangin
Through Traffic Ration	70%	37~43%	62~64%	68%	69~73%	62~64%

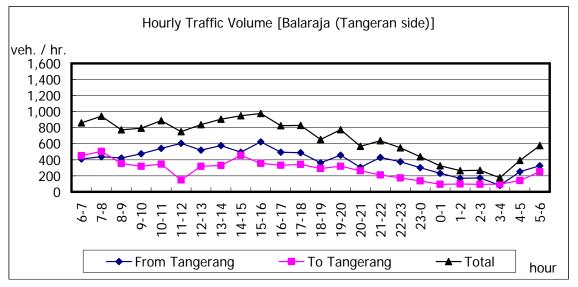
6.1.4 Traffic Queue During Train Passing


Number of train passing, maximum and average traffic queue length are shown in **Table 6.1.1-1**.

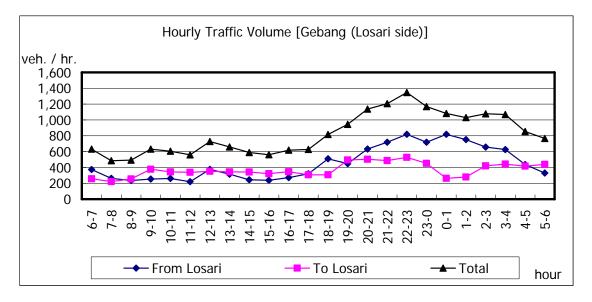
			Daily Traffi	c Volume	(4-wheel c	vr more) (Bc	Daily Traffic Volume (4-wheel or more) (Both Direction)	6	Peak	Daily Traffic	Traffic C	Traffic Characteristics By Direction	s By Direct	ioi			Travel Speed (km/hr)	ed (km/hr)			Rai	Railway Crossing	bu
				Mini						Volume (3	Through	-	Cool Traffic		Morning		Cout time	, omi	Evening		Alo of		
		Car Jeep	Pick-up	Bus (oplet)	Medium Bus	Large Bus	Truck Trailer	Total	(%) (By Direction)	Direction)	Traffic	4-wheels 3	3-wheels or less	Total	Flyover Section F	Dutside F.O. Section	Flyover Section	Dutside F.O. Section	Flyover Section	Dutside F.O. Section	Train Passing	Length (m) Max Ave	h (m) Average
	Pulorida side	1,306	729	2,016	180	101	1,563	5,895	10 6	F 1 63	2,080	878	002 C	7.95.6	0 01	26.0	100	26.4	10.6	3E 0		115	02
Merak	(or from Pulorida)	(22%)	(12%)	(34%)	(3%)	(2%)	(27%)	(100%)	6.01	0,100 0	(%02)	(30%)	2,103	2,007	9.91	50.9	20.1	50.4	0.61	0.00	ę	CI -	00
	Cilegon	4,558	1,633	5,888	581	1,958	4,410	19,028	6.4	1010	2,344	663	2 367	3 350	101	34.4	30 B	3F Q	2.06	7 JE	>	UB	48
	(or from Cilegon)	(24%)	(%6)	(31%)	(3%)	(10%)	(23%)	(100%)	5	1	(%02)	(30%)	2014	2		5	2	2				8	ę
	Selang side	2,083	1,552	8,443	355	523	2,112	15,068	α	22 REQ	3,360	4,490	11 731	16 221	г	7 E E	5.2	0 2	80	с С			
Balaraja	(or from Selang)	(14%)	(10%)	(26%)	(2%)	(%8)	(14%)	(100%)	5	11,000	(43%)	(57%)	5		5	5	2	2	2	2			
	Tangerang side	2,091	1,591	4,527	466	523	2,240	11,438	0.7	18 000	2,100	3,640	11 1 20	14 760	4.8	C VC	4.8	20.4	80	V 66			
	(or from Tangerang)	(18%)	(14%)	(40%)	(4%)	(2%)	(20%)	(100%)	ŝ	200	(37%)	(63%)	24	20 ft	P F	4 F 4	P.	r. 5	5	t			
	Bandung side	7,487	2,879	3,481	88	1,362	3,688	18,985	V 2	8 805	5,920	3,660	1 307	7 067	73 Q	0.01	20.1	56.6	73.0	0.07		130	26.8
Nagreg	(or from Bandung)	(39%)	(15%)	(18%)	(%0)	(%2)	(19%)	(100%)	t	0,030	(62%)	(38%)	100°*	106'1	6.07	0.00 0.00	7 3.1	0.00	6.02	t D	8	004	200
0	Malangbong	5,765	2,752	1,755	839	1,295	3,304	15,710	85	282.6	5,310	2,950	4 588	7 538	28.8	39.5	31.2	50.5	30.9	37.6	2	200	121
	(or from Malangbong)	(37%)	(18%)	(11%)	(2%)	(%8)	(21%)	(100%)	0	0	(64%)	(36%)	2				i			5		2	į
	Cirebon side	4,636	1,619	1,823	62	2,923	9,137	20,200	۳. ۲.	902 0	U	9,840	3 471	13 311	22 Q	0.44	24.8	737	28 G	43 0			
Geband	(or from Cirebon)	(23%)	(%8)	(%6)	(%0)	(14%)	(45%)	(100%)	5	0,10	>	(100%)		2			2		2.24	222			
0	Losari side	3,466	2,992	1,394	108	3,468	8,145	19,573	7.6	4 995	7,240	3,400	3 806	7 206	73.7	44 Q	23.0	43.8	27.1	0.44			
	(or from Losari)	(18%)	(15%)	(%)	(1%)	(18%)	(42%)	(100%)	2	000 ¹ 1	(68%)	(32%)	0000	007			2.24	0.00	:	4			
	Jombang side	5,686	2,213	867	68	1,356	5,339	15,529	7 8	18 533	5,370	2,360	8 827	11 187	29.9	46.5	27.2	50.4	27.4	48.7		270	80
Peterongan	(or from Jombang)	(37%)	(14%)	(%9)	(%0)	(%6)	(34%)	(100%)	2	0	(%69)	(31%)			2	2	!	50			31	2	3
	Mojokerto side	6,568	2,527	1,059	152	1,332	5,270	16,908	7.8	18.433	6,250	2,330	607	11.937	27.2	53.8	21.7	53.0	29.3	50.7		300	162
	(or from Mojokerto)	(39%)	(15%)	(%9)	(1%)	(%8)	(31%)	(100%)			(73%)	(27%)			1								
	Porong side	5,622	2,578	3,724	30	25	3,706	15,685	7.1	50.692	5,060	3,060	34.999	38.059	60.0	62.5	52.5	60.6	54.8	59.0		110	42
Tanggulangin .	(or from Porong)	(36%)	(16%)	(24%)	(%0)	(%0)	(24%)	(1 00%)			(62%)	(38%)									28		!
0	Sidoarjo side	5,679	2,753	3,802	54	25	3,656	15,969	85	55 783	4,900	2,750	28.385	31 135	48 5	573	43.4	60.2	49.4	503		160	56
	(or from Sidoarjo)	(36%)	(17%)	(24%)	(%0)	(%0)	(23%)	(1 00%)			(64%)	(36%)											}

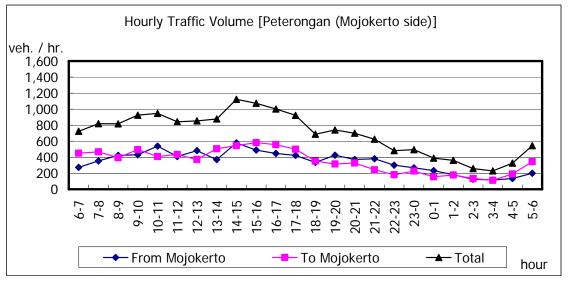

TABLE 6.1.1-1 SUMMARY OF TRAFFIC SURVEY RESULTS


6-3



6-4


6-5



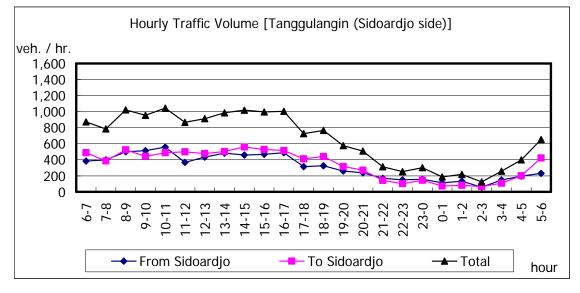


FIGURE 6.1.1-2 (2/2) HOURLY VARIATION OF TRAFFIC

6.2 TRAFFIC PROBLEMS

Existing traffic problems at each flyover location are summarized hereunder.

6.2.1 Merak Flyover

- Heavy roadside friction due to roadside business activities including illegal stalls/vendors within the road right-of-way, particularly at the opposite side of Ferry Terminal Waiting Area, causing traffic congestion and disturbing traffic flow.
- Illegal parking of a lot of mini-taxis waiting for passengers within the carriageway of the national road.
- Traffic congestion at the intersection at the exit of the Ferry Terminal. Traffic from the exit of Ferry Terminal concentrates at the intersection soon after a ferry boat arrives and conflicts with the traffic on the national road. The intersection is not channelized, either signalized, which aggravates traffic congestion.
- Traffic queue is formed at the railway crossing during train passing (maximum queue length is 115m at Pulorida side).
- Due to above conditions, travel speed of this section is reduced to 19.5km/hour from 35km/hour of adjacent section.

6.2.2 Balaraja Flyover

- Heavy local traffic concentrates at this section.
- Heavy roadside friction due to roadside business activities.
- At the intersection between the national road and the intersecting road going to Kresek, right turn from the intersecting road to the national road is prohibited (or closed). Right turn traffic utilizes U-turn slot along the national road where traffic on the national road is heavily disturbed.
- There is another U-turn slot along the national road where a turning radius is small, thus buses and tracks can not make smooth U-turn which is severely affecting traffic on the national road.
- Illegal parking of a lot of mini-buses and mini-taxis waiting for passengers along the national road.
- Due to effects of above problems, travel speed at this section is reduced to 5 to 10 km/hour from 30 to 35 km/hour of the adjacent section.

6.2.3 Nagreg Flyover

- Heavy roadside friction due to vegetable/fruit stands within the road right-ofway.
- Traffic queue is formed at the railway crossing during the train passing (maximum queue length is 430m at Bandung side). Number of train passing is 18 times a day.
- Travel speed of this section is reduced to 24 to 30 km/hour from 40 to 50 km/hour of adjacent section.

6.2.4 Gebang Flyover

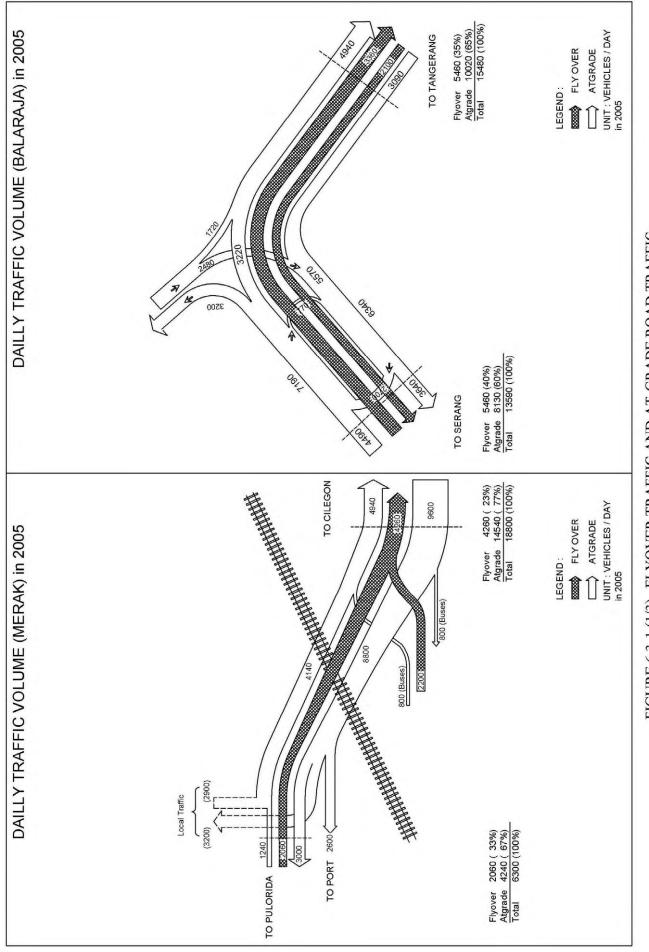
- Fishing port is located near the site. There are many stalls/vendors occupying shoulders and sometimes outer carriageway lane, which drastically reducing traffic capacity and disturbing smooth traffic flow.
- Slow moving vehicles and pedestrians/shoppers are also causing heavy roadside friction.
- There is one T-shaped intersection accessing to the public market. Although traffic going to the public market is still light, this intersection will be a traffic bottleneck in near future.
- Due to effects of above conditions, travel speed of this section is reduced to 23 to 27 km/hour from 44 to 45 km/hour of the adjacent section.

6.2.5 Peterongan Flyover

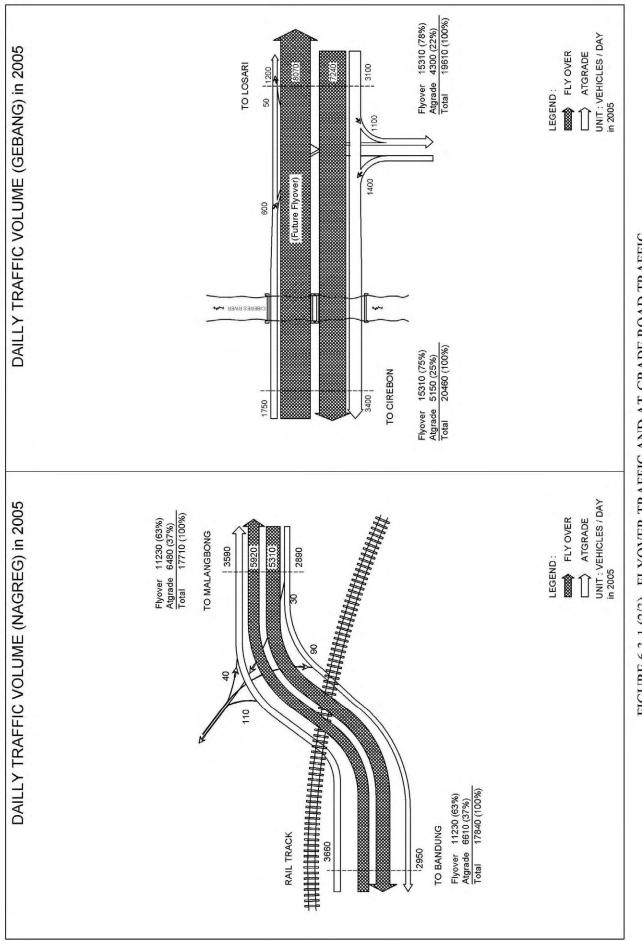
- Due to roadside development and high composition of local traffic, travel speed of this section is reduced to 22 to 30 km/hour from 46 to 54 km/hour of adjacent section.
- Traffic queue is formed at the railway crossing during train passing (maximum queue length is 300m at Mojokerto side). Number of train passing is 31 times per day.

6.2.6 Tanggulangin Flyover

- Due to high composition of local traffic, particularly motor bikes, travel speed is slightly reduced to 43 to 60 km/hour from 57 to 62 km/hour of adjacent section.
- Traffic queue is formed at the railway crossing during train passing (maximum queue length is 160m at the Sidoarjo side). Number of train passing is 28 times per day.


PICTURE 6.2-1 TRAFFIC CONGETION OF EACH LACATION

6.3 FLYOVER TRAFFIC AND AT-GRADE ROAD TRAFFIC


Flyover traffic was estimated on the assumption that through traffic will utilize a flyover and local traffic will utilize at-grade road (or service road) when a flyover construction is completed. Flyover traffic and at-grade traffic are graphically shown in **Figure 6.3-1**.

6.4 FUTURE TRAFFIC VOLUME

Adopting annual traffic growth rate by vehicle type used by the Feasibility Study, future traffic volume was estimated as shown in **Tables 6.4-1** and **2**. Annual traffic growth rate by vehicle type is presented in Chapter 3.

FIGURE 6.3-1 (2/3) FLYOVER TRAFFIC AND AT-GRADE ROAD TRAFFIC

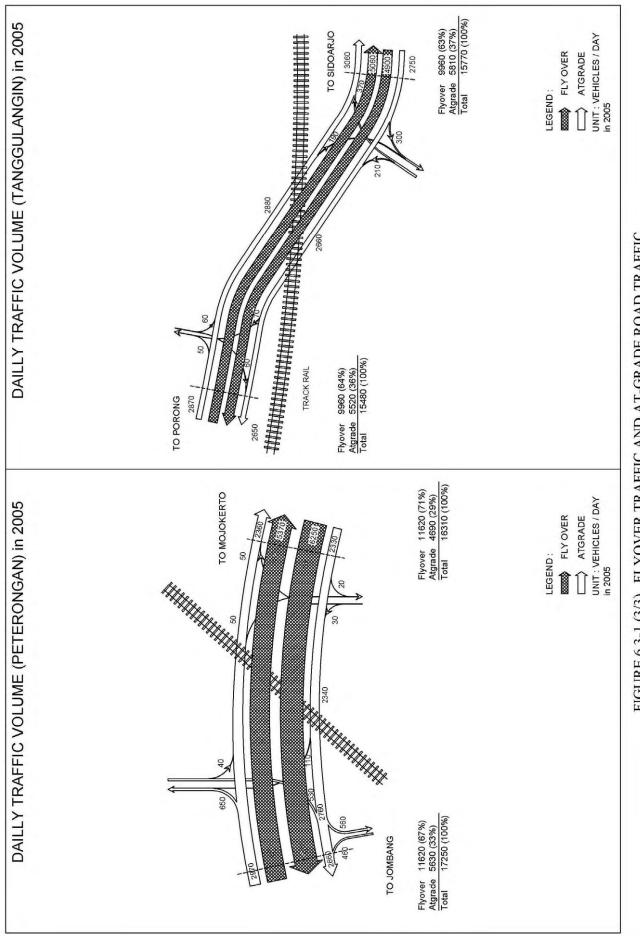


FIGURE 6.3-1 (3/3) FLYOVER TRAFFIC AND AT-GRADE ROAD TRAFFIC

TABLE 6.4-1 ES	STIMATED FUTUR	RAFE	TABLE 6.4-1 ESTIMATED FUTURE TRAFFIC VOLUME IN VEH CHO Div	H./DAY	Traffic Vo	olume(vehic	:les/day)			Peak Trá	affic (vehicl	les/hr)	0	Growth Rate
	from Ciledon	at orade	4-wheel or more	2005 2,958 5,649	2010 3,730 7,005	2015 4,704 8,738	2020 5,652 9 193	2025 6,746 10 379	2005 237 452	2010 298 560	2015 376 659	2020 452 735	2025 540 830	2025/2005 2.28 1 84
		ar di aac	701al 4-wheel or	8,607 1,977	10,734 2,485	<u>12,941</u> 3,123	7, 73 14,846 3,736	17,125 17,125 4,413	432 689 158	858 199	1,035 250	1,187 299	1,370 353	1.99 2.23
	from Pulorida	Flyover	3-wheel or less Total	1,116 3,093	1,384 3,869	4,751	5,553	2,050 6,463	89 247	310 310	<u>380</u>	145	164 517	<u>1.84</u> 2.09
Merak (National Road)		at grade	4-wheel or more 3-wheel or less Total	1,357 1,673 3.030	1,715 2,075 <i>3,790</i>	2,169 2,440 4,609	2,619 2,723 5,341	3,162 3,074 6.236	109 134 243	137 166 303	174 195 369	209 218 427	253 246 499	2.33 1.84 2.06
		Flyover	4-wheel or more 3-wheel or less	1,977 1,116	2,485 1,384	3,123 1,627	3,736 1,816 7,772	4,413 2,050	158 89	111	250 130	299 145	353 164	2.23 1.84
	Total		Total 4-wheel or more 3-wheel or less	<u>3,093</u> 4,315 7,322	<i>3,869</i> 5,445 9,079	4,751 6,873 10,677	5,553 8,271 11,916	<i>6,463</i> 9,908 13,453	247 346 586	310 435 726	<i>380</i> 550 854	444 661 953	517 793 1.076	2.09 2.30 1.84
		Flyover	Total 4-wheel or more 3-wheel or less	<i>11,637</i> 2,153 1,103	<i>14,524</i> 2,690 1,369	<i>17,550</i> 3,189 1,613	<i>20,187</i> 3,691 1,799	<i>23,361</i> 4,231 2,031	<i>932</i> 172 88	<i>1,161</i> 215 110	1,404 255 129	1,614 295 144	<i>1.869</i> 338 162	2.01 1.97 1.84
	Exit Traffic	, +c	Total 4-wheel or more	3,2	4,059 1,075	4,802 1,294	<i>5,490</i> 1,534	6,262 1,788	260 68	325 86 54	384 104 7,4	439 123	500 143	1.92 2.12
Merak	- 197 - F	ar Alanc	7 Total 4-wheel or more	1,392 3,429	1, 754 4, 303	2,095 5,121	2,428 5,944 5,242	2,798 6,839	112 274 200	740 344 344	168 168 410	195 195 476	224 547	2.01 2.01
(Terminal Road)	Enrance Iraffic	at grade	3-wheel or less Total 4-wheel or more	3,528 6,957 2,153	4,380 <i>8,683</i> 2,690	5,162 10,283 3,189	5,758 11,702 3.691	6,502 13,341 4.231	282 556 172	350 <i>694</i> 215	413 823 255	461 937 295	520 1,067 338	1.84 1.92
	Total	Flyover	3-wheel or less Total	1,103 3,256	1,369 4,059	1,613 4,802	5,490	2,031 6,262	88 260	$\frac{110}{325}$	129 384	2,00 144 439	162 500	1.92
	1 014	at grade	4-wheel or more 3-wheel or less	4,274 4,075	5,378 5,059	6,415 5,963 72,270	7,478 6,652	8,627 7,512 12,120	342 326	430 404	514 477	599 533 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	690 601	2.02 1.84
		Flyover	101al 4-wheel or more 3-wheel or less	8,349 2,101 3,420	10,437 2,648 4,241	12,378 3,338 4,987	14, 130 3,999 5,566	10,139 4,751 6,284	204 332	834 257 411	997 324 484	1, 132 388 540	1,291 461 610	1.
	from Tangerang	at grade	1 otal 4-wheel or more 3-wheel or less	5,721 5,130	<i>6,2</i> 18 6,218 6,361	8,325 7,886 7,481	<i>9,557</i> 8,349	11,032 11,658 9,426	476 476 498	603 617	808 765 726	928 927 810	1, <i>U</i> 71 1,131 914	2.00 2.38 1.84
		, ī	Total 4-wheel or more	10,033 3,201	12,579 4,043	<i>15,367</i> 5,108	17,906 6,146	21,084 7,369	974 259	1,220 327	1,491 414	1,737 498	2,045 597	2.10 2.30
Balaraja	from Serang	Flyover	3-wheel or less <i>Total</i> 4-wheel or more	4,692 7,893 4,403	5,542	6,842 11,950 6,977	1,636 13,782 8.357	8,621 <i>15,990</i> 9,859	380 639 357	471 798 449	565 565	018 1,116 1,176	098 1, <i>295</i> 799	1.84 2.03 2.24
		at grade	3-wheel or less Total	7,038	8,727 14,269	10,263 17,240	11,454 <i>19,810</i>	12,931 22,790	570 927	707 1,156	831 1,396	928 1,605	1,047 1,846	1.99
		Flyover	4-wheel or more 3-wheel or less	5,301 8,112 12,112	6,691 10,059 16,750	8,446 11,829 20,276	10,146 13,201 23-347	12,120 14,904 27.024	463 712 775	584 882 1 466	738 1,038 776	886 1,158 2 044	1,058 1,308 2.266	2.29 1.84 2.01
	l otal	at grade	4-wheel or more 3-wheel or less	9,306 12,168	11,760 15,088	14,863 17,744	17,914 19,802	21,517 22,357	, , , , , 833 1,068	1,052 1,324	1,330 1,557	1,604 1,738	1,930 1,961	2.31
			Total 4-wheel or more	21,474 5,867	26,848 7,367	32,607 9,252	<i>37,716</i> 11,042	43,874 12,884	1, 901 434	<i>2,376</i> 545	<i>2,887</i> 685	3,342 817	3,891 953	2.04 2.20
	from Bandung	+ lyover	3-wheel or less Total 1-wheel or more	1,835 7,702 2,714	2,275 9,642 1,600	2,676 11,928 5 033	2,986 14,028 7 1 28	3,372 16,256 8 511	136 570 275	168 713 247	198 883 138	221 1,038 527	249 1,202 630	1.84 2.11 2.20
		at grade	4-writeer or inore 3-wheel or less Total	2,753 2,753 6,467	4,070 3,414 <i>8.104</i>	9,938 9,938	4,480	5,058 5,058	204 204 479	253 253	430 297 735	327 332 859	374 1.004	2.27 1.84 2.10
		Flyover	4-wheel or more 3-wheel or less	5,289 1,373	6,643 1,703	8,346 2,002	9,956 2,234	11,634 2,523 11,157	450 117	565 145 740	709 170	846 190	989 214 7272	2.20 1.84
Nagreg	from Malangbong	at grade	4-wheel or more 3-wheel or less	<i>0,002</i> 2,913 2,060	<i>0,340</i> 3,679 2,554	70, 347 4, 647 3, 004	72,777 5,580 3,352	<i>14, 137</i> 6,626 3,785	248 175	313 217	<i>0/7</i> 395 255	1,030 474 285	1,203 563 322	<u>2.73</u> 2.27 1.84
		,	Total 4-wheel or more	<i>4,973</i> 11,156	<i>6,233</i> 14,010	7,651 17,599	<i>8,933</i> 20,998	<i>10,411</i> 24,519	<i>423</i> 884	<i>530</i> 1,110	<i>650</i> 1,394	<i>759</i> 1,663	<i>885</i> 1,942	<i>2.09</i> 2.20
	Total	Flyover	3-wheel or less Total	3,208 14,364	3,978 17,988	4,678	5,221 26,219	5,894 30,413	253 1, 137	313 1,423	368 1, 762	411 2,074	463 2,405	1.84 2.12
		at grade	4-wheel or more 3-wheel or less Total	6,62/ 4,813 11,440	8,369 5,968 14,337	10,5/0 7,019 17.589	12,108 7,833 20.541	15,138 8,843 23.981	523 379 902	470 1.1.30	833 552 1.385	1,001 617 1.618	1, 193 696 1.889	2.28 1.84 2.10
	from Cilebon	at grade	4-wheel or more 3-wheel or less	9,816 3,470 12,206	12,420 4,303 16,722	15,720 5,060	18,968 5,647 24,645	22,792 6,376 20.160	599 212 011	758 262 1 0 20	959 309 1 260	1,157 344 1,501	1,390 389 1 770	2.32 1.84
		Flyover	4-wheel or more 3-wheel or less	7,211 1,035	9,101 1,283	<i>zu, 700</i> 11,488 1,509	<i>z4,013</i> 13,789 1,684	<i>z 7, 100</i> 16,448 1,902	548 79	1, <i>V2U</i> 692 98	1, <i>200</i> 873 115	1,048 1,048 128	1,250 145	2.28 2.28 1.84
Cehand	from Losari		Total 4-wheel or more 3-wheel or less	8,246 3,127 1 552	10,384 3,961 1 024	12,998 5,020 2,243	15,474 6,051 7,576	18,350 7,267 2 852	627 238 118	<u>790</u> 301	<i>988</i> 382 173	1, 176 460 102	1,395 552 217	2.23 2.32 1 84
200		ar di aac	7-wheel or more	4,679 7.211	5,886 9,101	7,283	8,577 13.789	10,119 10,119 16.448	356 548	447 692	554 873	652 1.048	21/ 769 1.250	2.16 2.28
	Total	Flyover	3-wheel or less Total	1,035 <i>8,246</i>	1,283 10,384	1,509	1,684	1,902 18,350	79 627	98 790	115 988	1,176	145	<u>1.84</u> 2.23
		at grade	4-wheel or more 3-wheel or less Total	12,942 5,022 17,964	16,382 6,227 27 609	20,740 7,323 28,063	25,019 8,173 33,192	30,059 9,227 39,286	837 330 1167	1,059 408 1467	1,341 481 1,822	1,617 536 2,153	1,942 606 2.548	2.32 1.84 2.19
		Flyover	4-wheel or more 3-wheel or less	6,110 3,842 0 05 2	7,676 4,764 12,440	9,647 5,603 15,240	11,526 6,252 17 778	13,528 7,059 20,587	477 300 777	599 372 <i>0</i> 71	752 437 1980	899 488 1 227	1,055 551 1 404	2.21 1.84 2.77
	from Morokerto	at grade	4-wheel or more 3-wheel or less	2,209 5,764	2,778 2,778 7,147	3,494 8,405	4,175 9,380	4,898 10,590	172 450	217 557	273 273 656	326 732	382	2.22 1.84
		Flvover	10tal 4-wheel or more 3-wheel or less	7,973 5,364 3.801	<i>9,926</i> 6,743 4,713	11,899 8,478 5,543	13,225 10,139 6.186	<i>15,488</i> 11,930 6,984	622 418 296	774 526 368	929 661 432	1, <i>U38</i> 791 482	1, <i>208</i> 931 545	1.94 2.22 1.84
Peterongan	from Jombang	, .	Total 4-wheel or more	<i>9,165</i> 2,181	11,456 2,749	<i>14,021</i> 3,467	<i>16,324</i> 4,158	<i>18,913</i> 4,920	714 170	<i>894</i> 214	1,093 270	1,273 324	1,476 384	2.06 2.26
		at grade		5,701 7,882	7,069 9,819	8,313 11,781	9,278 13,436	10,475 15,395 25	445 615	551 765	648 918	724 1,048	817 1,201	1.84 1.95
	Totol	Flyover	4-wrieer or more 3-wheel or less Total	11,4/4 7,643 19,117	14,419 9,477 23,896	11,145 29,270	21,004 12,438 <i>34,102</i>	20,400 14,043 <i>39,500</i>	596 596 1,491	740	1,413 869 2,282	970	1,900 1,096 3,082	2.22 1.84 2.07
	10101	at grade	4-wheel or more 3-wheel or less	4,390 11,465 15,055	5,528 14,217 10,744	6,961 16,719 22 600	8,333 18,658 24,001	9,818 21,065 20,002	342 895 1 227	431 1,108 1,520	543 1,304 1 047	650 1,456 2,106	766 1,643	2.24 1.84 1.05
		Flvover	4-wheel or more 3-wheel or less	4,935	6,212 15.329	7,822 18.027	20, 77 / 9, 365 20, 118	22.713	350 878	441 1.088	1.280	2, 100 665 1.428	784 784 1.613	2.24 1.84
	from Porong	, +c	Total 4-wheel or more	17,297 2,990	21,541 3,775 15 220	25,849 4,767	29,482 5,743 20,110	33,758 6,898 22,712	1,228 212 070	1,529 268 1,000	1, <i>835</i> 338 1,200	2,093 408	2,397 490 1 212	1.95 2.31
		at yrauc	7-wheel or more	15,302 15,352 4.759	19, 104 5, 988	7.537	25,860 9.015	29,611 29,611 10.620	1,090 405	1,356 509	1,618	1,420 1,836 766	2, 103 903	1.04 1.93 2.23
Tandulandin	from Cidoardio	Flyover	3-wheel or less Total	14,193 18,952	23,587	20,697 28,233	23,098 32,112	26,077 36,697	1,206	1,496 2,005	1,759 2,400	1,963 2,729	2,217 3,120	1.94 <u>1.94</u>
		at grade	4-wheel or more 3-wheel or less Total	2,888 14,193 17,081	3,646 17,599 21,245	4,603 20,697 25,300	5,542 23,098 28,640	6,653 26,077 32,731	245 1,206 1 451	310 1,496 1 806	391 1,759 2,150	471 1,963 2,434	566 2,217 2,783	2.30 1.84 1.92
		Flyover	4-wheel or more 3-wheel or less	9,694 26,555	12,201 32,928	15,359 38,724	18,379 43,215	21,665 48,790	755 755 2,084	950 2,584	1,196 3,039	1,431 3,391	1,687 3,830	2.23 1.84
	Total		Total 4-wheel or more	36,249 5,878 24 666	45,129 7,421 27,020	54,082 9,370 20,724	61,595 11,285 43-315	70,456 13,551 49,700	2,839 457 2,004	3,534 578 2,504	4,235 729 2,020	4,822 879 2 201	5,517 1,056 2,020	1.94 2.31 1.04
)		32,433	40,349	48,094	54,500	62,341	2,541	3,162	3,768	4,270	4,886	1.92

TABLE 6.4-2 ES		RAFF	TABLE 6.4-2 ESTIMATED FUTURE TRAFFIC VOLUME IN PCI Cite Dir I	U/DAY	Traffic	Volume(PC	(Vday)			Peak 1	Traffic (PCU	l/hr)		
	from Cilocon	ot arodo	4-wheel or more	2005 4,240	2010 5,352 1 751	2015 6,758	2020 8,141	2025 9,788 2,505	2005 339 112	2010 428 140	2015 541 175	2020 651	2025 783	2025/2005 2.31
		al yraue	3-Wheel OF less Total 4-Wheel or more	1,412 5,652 3,678	1.07,1 7,103 7,703	80,2 8,817 15,821	2,298 10,440 6 990	2,393 12,382 8 359	452 294	140 568 370	90 <u>7</u>	184 <i>835</i> 559	208 991 669	1.84 2.19 2.77
	-	Flyover	3-wheel or less Total	279	346	407	454	513 8.872	22	28 398	33	36 595	41	1.84 7.24
Merak	from Pulorida	at grade	4-wheel or more 3-wheel or less	1,427 418	7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	2,284 610	2,757 2,757 681	3,327	114 33	720 144 41	183 183	221 54	266 266	2.24 2.33 1.84
(National Road)		0	Total 4-wheel or more	1,846 3,678	2,324	2,894 5,821	3,437 6,990	<i>4,095</i> 8 359	147	185 370	232	275 559	327	2.22
	Tatal	Flyover	3-wheel or less Total	3,957	346 4,972	407 6.228	7.444	513 8.872	22 316	28 398 398	33 499	36 595	710	2.24 2.24
	1 01 21	at grade	4-wheel or more 3-wheel or less	5,667 1,831	7,157 2,270	9,042 2,669	10,898 2,979	13,114 3,363	453 146	572 181	724 214	872 238	1,049 269	2.31 1.84
			<i>Total</i> 4-wheel or more	<i>7,498</i> 4,351	<i>9,427</i> 5,440	<i>11,711</i> 6,458	<i>13,877</i> 7,565	<i>16,478</i> 8,700	599 348	753 435	938 517	1,110 605	1,318 696	2.20 2.00
	Exit Traffic	Flyover	3-wheel or less Total	276 4,627	342 5,782	403 6,861	450 <i>8,015</i>	508 9,208	22 370	27 462	32 549	36 641	41 737 2.400	1.84 1.99
		at grade	4-wneel of more 3-wheel or less	1,3/0 137	1/43	2,100 200 2,200	224	43,031 253 42.004	111	139 14	108 104	200 18	3,490 20 2 5 1 0	1.85 1.85 20 12
Merak (Terminal	Entrance Traffic	at grade	4-wheel or more 3-wheel or less	1,207 6,112 882	7,674 1,095	2,300 9,141 1,291	<i>2,718</i> 10,711 1,440	4 <i>3,004</i> 12,357 1.626	/2/ 611 88	767 110	129 129	2/0 1,071 144	<i>3,210</i> 1,236 163	27.72 2.02 1.84
Road)			Total 4-wheel or more	<i>6,994</i> 4,351	<i>8,769</i> 5,440	10,432 6,458	<i>12,151</i> 7,565	<i>13,983</i> 8,700	<i>699</i> 348	<i>877</i> 435	<i>1,043</i> 517	<i>1,215</i> 605	1, <i>399</i> 696	<i>2.00</i> 2.00
	Total	Flyover	3-wheel or less Total	276 4,627	342 5,782	403 <i>6,861</i>	450 <i>8,015</i>	508 <i>9,208</i>	22 370	27 462	32 549	36 641	41 737	1.84 <i>1.99</i>
		at grade	4-wheel or more 3-wheel or less	7,482 1,019	9,417 1,265	11,241 1,491	13,205 1,663	55,988 1,878	721 99	906 124	1,082 145	1,271 162	4,726 183	7.48 1.84
			1 otal 4-wheel or more	8,507 3,117	70,682 3,944	4,993	14,868 6,021	7,260 7,260	302 302	1,030	1,227 484	1,433 584 425	4,909 704	<i>6.81</i> 2.33
	from Tangerang	Flyover	3-wheel or less Total	855 3,972 5,272	1,060 5,004	1,24/ 6,239	7,413	1,5/1 8,830	83 385 777	486 486	121 605	719	152 856	1.84 2.22
		at grade		5,724 1,283	7,264 1,590	9,221 1,870	11,181 2,087	13,644 2,356	555 124	705 154	894 181	1,085 202	1,323 229	2.38 1.84
		ī	<i>I otal</i> 4-wheel or more	7,006	<i>8,855</i> 5,825	71,091 7,383	13,268 8,926	<i>16,000</i> 10,816	679 372	859 472	1,075 598	1,287 723	1,552 876	2.28
Balaraia	from Serand	Flyover	3-wheel or less Total	$\frac{1,173}{5,770}$	1,455 7,280	1,711 9,093	1,909 10,835	2,155 <i>12,971</i>	95 467	<u>590</u>	139 737	155 878	175 1,051	1.84 2.25
	5	at grade	4-wheel or more 3-wheel or less	5,400 1,760	6,818 2,182	8,610 2,566	10,349 2,863	12,306 3,233	437 143	552 177	697 208	838 232	997 262	2.28 1.84
			Total 4-wheel or more	7,7160	9,000 9,769	11,176 12,375	13,213 14,948	15,538 18,075	<i>580</i> 674	855 855	905 1,082	1,070 1,307	1,259 1,580	2.17 2.34
	Total	LIJOVEI	7 Total	9,742 9,742	12,284	15,333	3, 300 18, 248	21,801	852 852	1,076	1,342	1,597	1,907 1,907	2.24
		at grade	4-wheel or more 3-wheel or less	11,124 3,042	14,082 3,772 17 0FF	4,430	4,951	25,949 5,589 21,520	992 267	1,257 331 1 E00	1,591	1,923 434 257	2,320 491	2.33 1.84
		Flynver	4-wheel or more	7,980 75,0	10,030 10,080 540	22,200 12,737 660	20,400 15,327 777	31,337 18,251 843	591 591 34	000C,1 047	943 943	2, 337 1, 134 55	2,01 1,351 62	2.29 2.29 1 84
	from Bandung		J-Wheel OF 1533	437 8,439 4 701	10,649 5 обл	13,406 7538	16,074 9 007	19,094 10,094	525 348	788 788 740	993 558	1, 189 673	1,413 800	2.26 2.26
		at grade	3-wheel or less Total	688 688 5 380	9,732 853 6 805	1,004	1,120	1,265	51 51	63 503	74	83 756	94 94	2:32 1.84 2.26
			4-wheel or more	7,581	9,568 176	12,080 501	14,516 516 550	17,275	644 00	813 26	1,027	1,234	1,468 54	2.28
Nagreg	from Malangbong		4-wheel or more	7,924 4,187	9,994 5,299	12,580 6.708	15,074 8,078	17,905 9,653	<i>673</i> 356	849 450	1,070 570	1,281 687	1,522 820	2.26 2.31
		at grade	3-wheel or less Total	515 4.702	639 5. <i>938</i>	751 7.459	838 8.916	946 10.599	44 400	54 504	64 634	71 758	80 900	1.84 2.25
		Flyover	4-wheel or more 3-wheel or less	15,561 802	19,649 994	24,817 1,170	29,843 1,305	35,526 1,474	1,235 63	1,559 78	1,970 93	2,368 102	2,819 116	2.28 1.84
	Total		Total 4-wheel or more	<i>16,363</i> 8,888	<i>20,643</i> 11,251	<i>25,986</i> 14,246	<i>31,148</i> 17,175	<i>37,000</i> 20,580	1, <i>298</i> 704	<i>1,637</i> 890	<i>2,063</i> 1,128	<i>2,470</i> 1,360	<i>2,935</i> 1,629	<i>2.26</i> 2.32
		at grade	3-wheel or less Total	1,203 10,091	1,492 12,743	1,755 16,000	1,958 19,133	2,211 22,791	95 799	117 1,007	138 1,266	154 1,514	174 1,803	1.84 2.26
	from Cirebon	at grade	4-wheel or more 3-wheel or less	18,498 868 10,222	23,445 1,076	29,722 1,265	35,974 1,412 27,202	43,631 1,594	1,128 53 1 101	1,430 7,402	1,813 77 1 000	2,194 86	2,661 97 2,750	2.36 1.84
			4-wheel or more	14,089 760	17,801	30,987 22,495 277	27,380 27,104 421	42,225 32,649 475	1,071	1,490 1,353	1,890 1,710	2,060	2,738 2,481 2,4	2.32 2.32
	from Losari	riyuver	<u>3-wneel or less</u> <u>Tota/</u>	14,348	321 18,121	377 22,873 0 E E O	421 27,525 10,221	33,124	20 1,091	1,377 513	1,739 250	32 2,092 705	30 2,517 045	2.31
Gebang		at grade	4-wheel of more 3-wheel or less	5,323 388 5,344	6, /49 481 7 720	8,559 566 7.72	10,331 631	12,438 713 12,450	405 29	37	65U 43	(8) 48	945 54	2.34 1.84
			4-wheel or more	5,717 14,089	17,801	9,125 22,495	10,962 27,104	13, 150 32,649	434 1,071	1,353	1,710	833 2,060	999 2,481	2.30 2.32
	Total	riyuvei	<u>3-wneel or less</u> <u>Tota/</u>	14,348	321 18,121 20,104	22,873	421 27,525 44,205	415 33,124 54,040	20 1,091	1,377	1,739	32 2,092 2,070	2,517 2,517	2.31
		at grade	3-wheel or less Total	23,821 1,256 25,077	30, 194 1,557 31 751	30,201 1,831 40.111	40,303 2,043 48,348	20,009 2,307 58,375	1,055 82 1,615	1,943 103 2,046	2,403 120 2,583	2,979 134 3113	3,000 151 3,757	2.30 1.84 2.33
		Flyover	4-wheel or more 3-wheel or less	10,284 961	12,960	16,337 1,401	19,632 1,563	23,433	802 75	1,011 93	1,274 109	1,531	1,828 138	2.28 1.84
	from Morokerto		Total 4-wheel or more	11,244 3,200	14,151 4,034	17,738 5,088	21, 196 6, 105	25, 198 7,242	877 250	1, 104 315	1,383 397	1,653 476	1, 966 565	2.24 2.26
		ar graue	J-Wheel OF 1535	4,441 4,641 9 289	5,821 11 711	7,190	8,451 8,451 17 762	2,040 9,890 21,250	362 725	454 413	561 1 152	659 1 385	772	2.13 2.73
		Flyover	3-wheel or less Total	950	1,178	1,386 16.155	1,546 19,309	1,746 22.996	799	92 1.005	108	121 1.506	1.794	1.84
Peterongan	from Jombang	at grade	4-wheel or more 3-wheel or less	3,563	4,504	5,695 2,078	6,859 2,319	8,207 2,619	278 111	351	444 162	535 181	640 204	2.30
		i	Total 4-wheel or more	<i>4,988</i> 19,572	<i>6,271</i> 24,671	7,774 31,107	<i>9,178</i> 37,395	<i>10,826</i> 44,684	<i>389</i> 1,527	<i>489</i> 1,924	<i>606</i> 2,426	<i>716</i> 2,916	<i>844</i> 3,486	<i>2.17</i> 2.28
	Total	Flyover	3-wheel or less Total	1,911 21,483	2,369 27,040	2,786 33,893	3,110 40,504	3,511 48,194 15,450	149 1,676	185 <i>2,109</i>	217 2,643	243 3,159 1,011	274 3,760 1 205	1.84 2.24
		at grade	4-wheel or more 3-wheel or less Total	6,762 2,866 0,420	8,539 3,554 12,002	10,784 4,180 14,062	12,964 4,665 17,620	15,450 5,266 20,714	528 223 751	000 277 042	841 326 1 167	1,011 364 1 275	1,205 411 1 414	2.28 1.84 2.15
		Flyover	4-wheel or more 3-wheel or less	7,100 3,091	8,992 3,832	11,391 4,507	13,759 5,029	5,678	504 219	638 638 272	809 320	977 357	1,176 403	2. 33 2.33 1.84
	from Porong	,	Total 4-wheel or more	<i>10,191</i> 3,413	<i>12,825</i> 4,317	<i>15,898</i> 5,463	<i>18,788</i> 6,598	<i>22,246</i> 7,971	<i>723</i> 242	<i>910</i> 307	<i>1,129</i> 388	<i>1,334</i> 468	<i>1,579</i> 566	<i>2.18</i> 2.34
		at grade		3,091 <i>6,503</i>	3,832 <i>8,149</i>	4,507 <i>9,969</i>	5,029 11,627	5,678 <i>13,649</i>	219 461	272 579	320 708	357 <i>825</i>	403 <i>969</i>	1.84 2.10
		Flyover	4-wheel or more 3-wheel or less	6,781 3,548	8,583 4,400	10,867 5,174	13,112 5,774	15,766 6,519 22,225	576 302	730 374 4.24	924 440	1,115 491 4 707	1,340 554 7,224	2.32 1.84
Tanggulangin	from Sidoardjo	at arade	4	10,329 3,283 3,548	4,153	5.174	6,342 5,774	7,656 6,519	0/0 279 302	1, 104 353 374	447 447 440	1,000 539 491	1,094 651 554	2.33 2.33 1.84
		200	<i>Total</i> 4-wheel or more	<i>6,832</i> 13,882	<i>8,553</i> 17,576	10,428 22,259	<i>12,116</i> 26,871	<i>14,176</i> 32,334	581 1,080	727 1,368	887 1,733	<i>1,030</i> 2,092	1,205 2,516	2.07 2.33
	Total	Flyover	3-wheel or less Total	6,639 20,520	8,232 <i>25,808</i>	9,681 <i>31,940</i>	10,804 <i>37,675</i>	12,198 <i>44,531</i>	521 1,601	646 2,014	760 2,493	848 2, <i>940</i>	957 3,473	1.84 2.17
		at grade	4-wheel or more 3-wheel or less	6,696	8,470	10,716 9,681	12,940 10,804	15,627 12,198	521 521	660 646	835	1,007 848	1,217 957	2.33
				13,335	16,702	20,397	23,744	27,825	1,042	1,306	1,595	1,855	2,174	2.09

6.5 LEVEL OF SERVICE OF EXISTING ROAD WITHOUT FLYOVER

Based on the IHCM (Indonesian Highway Capacity Manual^{1*}) method, volume / capacity ratio was analyzed for each location in case of without flyover project.

6.5.1 Existing Road Traffic Capacity

Traffic capacity is calculated as follows:

C = Co x FCw x FCsp x FC sf x FCcs

Where:

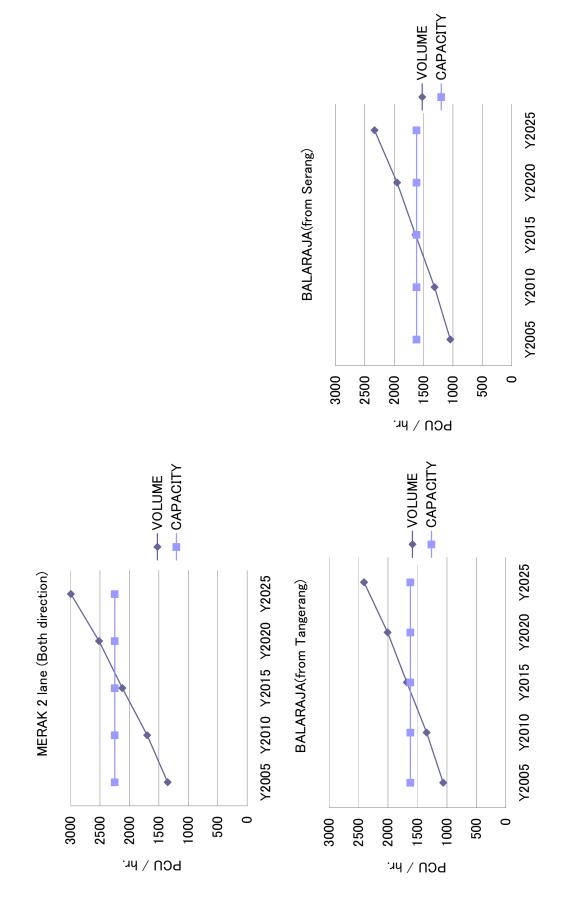
С	=	Capacity (pcu/h)
Со	=	Base Capacity = 1,650 pcu/h per lane or 2,900 pcu/h (2
		lane undivided)
FCw	=	Adjustment factor for carriageway width of 3.5m = 1.00

- FCsp = Adjustment factor for directional split
- FCsf = Adjustment factor for side friction
- FCcs = Adjustment factor for city size of $1.0 \sim 3.0$ Million population = 1.00

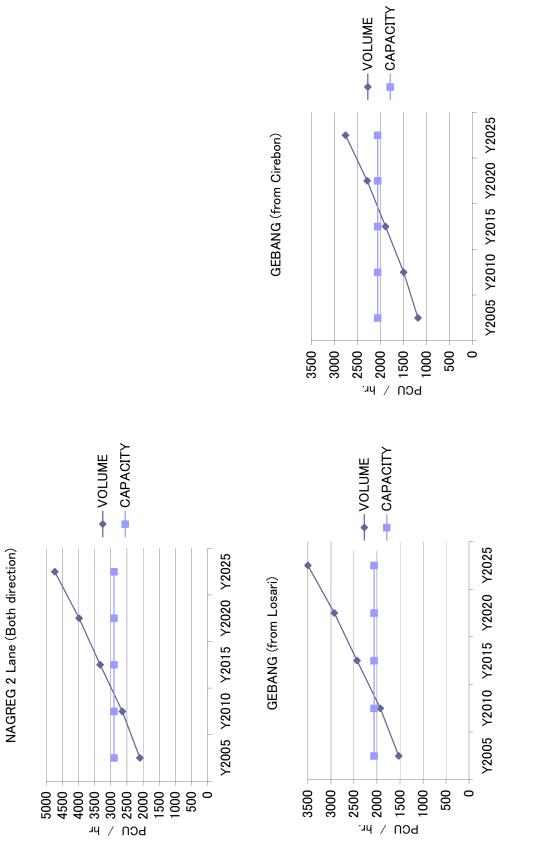
	Time	No. of	Base Capacity		Adjustme	ent Factor		Capacity
Location	Туре	Lane	Co (pcu/hr.)	FCw	FCsp	FCsf*	FCcs	(pcu/hr.)
	2/2 UD	2	2,900	1.14	1.00	0.68	1.00	2,250
Merak	Two-lane undivideo	(both)	(total)	(8. 0 m)		(0.5m [VH])		(Total)
Balaraja	4/2 D	2	1,650	0.82	-	0.60	1.00	1,620
Dalaraja	Four-lane devided	(per dir.)	(per lane)	(<3.0m)		(0m [VH])		(Per dir.)
	2/2 UD	2	2,900	1.00	1.00	1.00	1.00	2,900
Nagreg	Two-lane undivideo	(both)	(total)	(7.0m)		(0m [H]		(Total)
Gebang	4/2 D	2	1,650	0.92	-	0.68	1.00	2,060
Gebang	Four-lane devided	(per dir.)	(per lane)	(3.0m)		(0m [VH])		(Per dir.)
Peterongan	4/2 D	2	1,650	0.92	-	0.65	1.00	1,970
-	Four-lane devided	(per dir.)	(per lane)	(3.0m)		(0m [H])		(Per dir.)
	4/2 D	2	1,650	1.00	-	0.65	1.00	2,150
Tanggulangin	Four-lane devided	(per dir.)	(per lane)	(3.5m)		(0m [H])		(Per dir.)

TABLE 6.5.1-1 TRAFFIC CAPACITY OF EXISTING ROAD

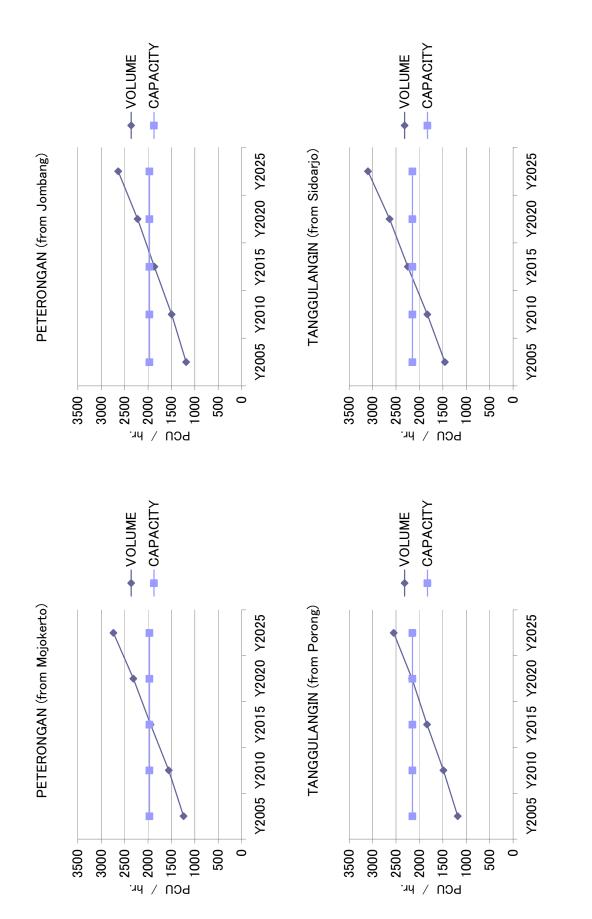
Note: * FCsf. [VH] Very High Side friction, [M] Medium Side friction, [VL] Very Low Side friction


^{*} Indonesian Highway Capacity Manual, Ministry of Public Works Directorate General of Highways, June1997 Chapter 5 Urban Roads p5-1 ~ p5-99

6.5.2 Volume / Capacity Ratio of the Existing Road without Flyover


Table 6.5.2-1 and **Figure 6.5.2-1** and **6.5.2-2** shows traffic capacity, estimated traffic volume and volume/capacity ratio in case without project. It is noted that Nagreg and Gebang will reach more than 1.5 times capacity in 2025.

					LIOVER			
Location	Direction	Capacity		Y2005	Y2010	Y2015	Y2020	2025
Merak	Both Direction	2,250	Volume	1,351	1,699	2,121	2,517	2,994
werak	(2/2 UD)	(Total)	V /C	0.60	0.76	0.94	1.12	1.33
	б Т	1,620	Volume	1,064	1,345	1,680	2,006	2,408
Delevela	from Tangeran _i		V /C	0.66	0.83	1.04	1.24	1.49
Balaraja	6	1,620	Volume	1,047	1,315	1,639	1,950	2,333
	from Serang		V /C	0.65	0.81	1.01	1.20	1.44
Nerver	Both Direction	2,900	Volume	2,097	2,644	3,329	3,984	4,738
Nagreg	(2/2 UD)	(Total)	V /C	0.72	0.91	1.15	1.37	1.63
C abaaa	from Losari	2,060	Volume	1,525	1,927	2,432	2,925	3,500
Gebang			V /C	0.74	0.94	1.18	1.42	1.70
	for a Maintanta	1,970	Volume	1,239	1,558	1,944	2,312	2,738
Peterong	from Mojokerto		V /C	0.63	0.79	0.99	1.17	1.39
an	former laurehaum	1,970	Volume	1,188	1,494	1,866	2,222	2,638
	from Jombang		V /C	0.60	0.76	0.95	1.13	1.34
	(2,150	Volume	1,185	1,489	1,837	2,159	2,549
Tanggulan	from Porong		V /C	0.55	0.69	0.85	1.00	1.19
gin	fuere Cide and is	2,150	Volume	1,458	1,831	2,251	2,636	3,099
	from Sidoardjo		V /C	0.68	0.85	1.05	1.23	1.44


TABLE 6.5.2-1 VOLUME CAPACITY RATIO OF THE EXISTING ROAD WITHOUT FLYOVER

6.6 NUMBER OF LANES REQUIRED FOR FLYOVER

6.6.1 Flyover and Service Road Traffic Capacity

Table 6.6.1-1 and **6.6.1-2** shows the flyover traffic capacity and service road traffic capacity, respectively.

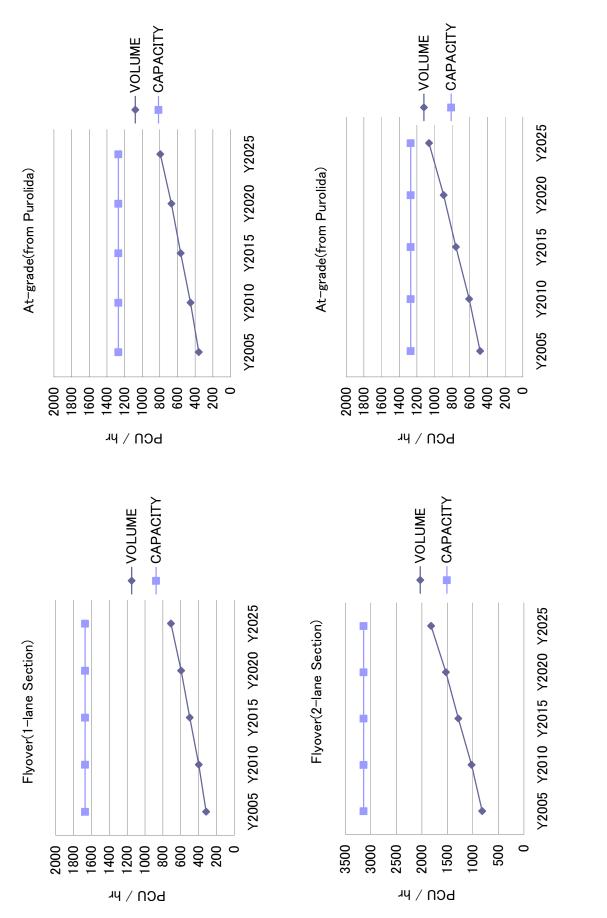
Location	T	No. of	Base Capacity		Adjustme	ent Factor		Capacity
Location	Туре	Lane (per dir.)	Co (pcu/hr.)	FCw	FCsp	FCsf*	FCcs	(pcu/hr.)
	1-lane, 1-way	1	1,650	1.00	-	1.01	1.00	1,670
Merak			(per lane)	(3.5m)		(2.0m) [VL]		(Per dir.)
Werak	2-lane, 1-way	2	1,650	1.00	-	0.95	1.00	3,140
			(per lane)	(3.5m)		(0.5m [VL})		(Per dir.)
Balaraja	2-lane, 2-way	1	1,650	1.00	-	1.01	1.00	1,670
Dalaraja	with centerline		(per lane)	(3.5m)		(2.0m) [VL]		(Per dir.)
Nagreg	2-lane, 2-way	1	1,650	1.00	-	1.01	1.00	1,670
Nagreg	with centerline		(per lane)	(3.5m)		(2.0m) [VL]		(Per dir.)
Gebang	2-lane, 1-way	2	1,650	1.00	-	0.95	1.00	3,140
Gebang	with centerline		(per lane)	(3.5m)		(0.5m [VL})		(Per dir.)
Determine	2-lane, 2-way	1	1,650	1.00	-	1.01	1.00	1,670
Peterongan	with centerline		(per lane)	(3.5m)		(2.0m) [VL]		(Per dir.)
Tanggulangin	2-lane, 2-way	1	1,650	1.00	-	1.01	1.00	1,670
Tanggulangin	with centerline		(per lane)	(3.5m)		(2.0m) [VL]		(Per dir.)

TABLE 6.6.1-1 TRAFFIC CAPACITY OF FLYOVER

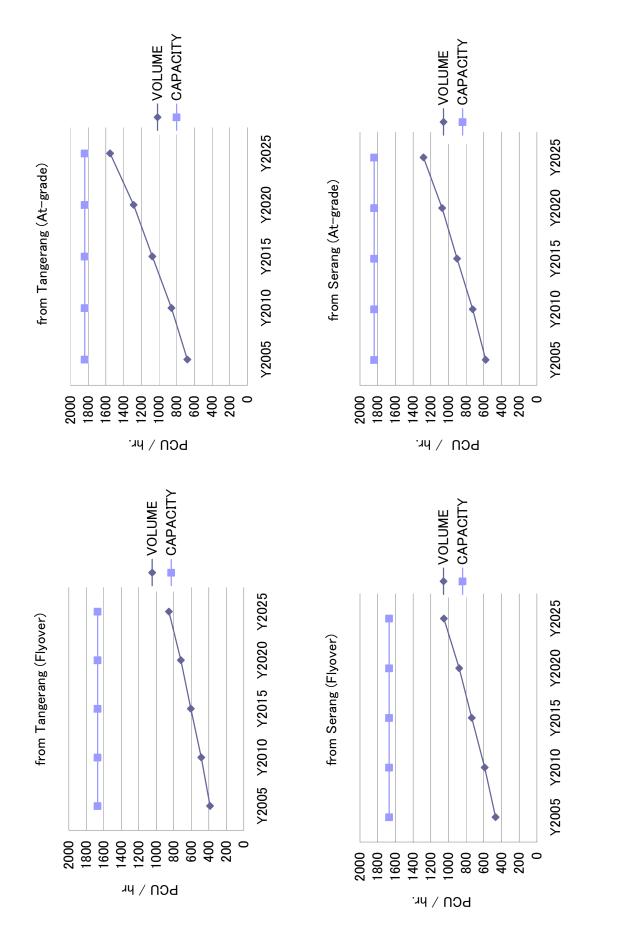
Note: * FCsf: [VH] Very High Side friction, [M] Medium Side friction, [VL] Very Low Side friction

TABLE 6.6.1-2 TRAFFI	C CAPACITY OF	SERVICE ROAD
----------------------	---------------	--------------

Location	No. of Lane	Base Capacity		Adjustme	ent Factor		Capacity
Location	(per dir.)	Co (pcu/hr.)	FCw	FCsp	FCsf*	FCcs	(pcu/hr.)
Merak	1	1,650	1.00	-	0.77	1.00	1,270
Werak		(per lane)	(3.5m)		(1.5m [VH])		(Per dir.)
Balanaia	2	1,650	0.82	-	0.68	1.00	1,840
Balaraja		(per lane)	(<3.0m)		(0m [VH])		(Per dir.)
Namuan	1	1,650	1.00	-	0.84	1.00	1,390
Nagreg		(per lane)	(3.5m)		(1.5m [H])		(Per dir.)
Cabana	1	1,650	1.00	-	0.72	1.00	1,190
Gebang		(per lane)	(3.5m)		(1.0m [VH])		(Per dir.)
Determinen	1	1,650	1.00	-	0.84	1.00	1,390
Peterongan		(per lane)	(3.5m)		(1.5m [H])		(Per dir.)
Tanggulangin	1	1,650	1.00	-	0.84	1.00	1,390
Tanggulangin		(per lane)	(3.5m)		(1.5m [H])		(Per dir.)


Note: * FCsf: [VH] Very High Side friction, [M] Medium Side friction, [VL] Very Low Side friction

6.6.2 Number of Lanes Required and Volume / Capacity Ratio


Table 6.6.2-1 shows number of lanes required and volume / capacity ratio. It is noted that traffic of Peterongan Flyover will reach to its capacity in 2020 and Tanggulangin Flyover exceeds capacity in 2025, thus they should be converted to a 4-lane flyover before year 2020. **Figure 6.6.2-1~6** shows the traffic volume and capacity.

			No.of	Year	2015	Year	2020	Year	2025
			No.of Lane and Capacity (pcu/hr)	Traffic Volume (pcu/ hr)	V/C Ratio	Traffic Volume (pcu/ hr)	V/C Ratio	Traffic Volume (pcu/ hr)	V/C Ratio
	From Pulorida	Flyover	1 1,670	499	0.30	595	0.36	710	0.43
Merak	(near Railway)	At-grade	1 1,270	564	0.44	669	0.53	796	0.63
WCLAK	From Pulorida	Flyover	2 3,140	1,284	0.41	1,527	0.49	1,818	0.58
	(Jakarta side)	At-grade	1 1,270	757	0.60	896	0.71	1,063	0.84
	From	Flyover	1 1,670	605	0.36	719	0.43	856	0.51
Balaraja	Tangerang	At-grade	2 1,840	1,075	0.58	1,287	0.70	1,552	0.84
Dalaraja	From	Flyover	1 1,670	737	0.44	878	0.53	1,051	0.63
	Serang	At-grade	2 1,840	902	0.49	1,072	0.58	1,282	0.70
	From	Flyover	1 1,670	993	0.59	1,189	0.71	1,413	0.85
Nagreg	Bandung	At-grade	1 1,390	632	0.45	756	0.54	903	0.65
Nagreg	From Malangbon	Flyover	1 1,670	1,070	0.64	1,281	0.77	1,522	0.91
	g	At-grade	1 1,390	634	0.46	758	0.55	900	0.65
Gebang	From	Flyover	2 3,140	1,739	0.55	2,092	0.67	2,517	0.80
J J J J	Losari	At-grade	1 1,190	693	0.58	833	0.70	999	0.84
	From	Flyover	1 1,670	1,383	0.83	1,653	0.99	1,966	1.18
Peteronga	Morokerto	At-grade	1 1,390	561	0.40	659	0.47	772	0.56
n	From	Flyover	1 1,670	1,260	0.75	1,506	0.90	1,794	1.07
	Jombang	At-grade	1 1,390	606	0.44	716	0.52	844	0.61
	From	Flyover	1 1,670 1	1,129	0.68	1,334	0.80	1,579	0.95
Tanggula	Porong	At-grade	1 1,390	708	0.51	825	0.59	969	0.70
ngin	From	Flyover	1 1,670	1,364	0.82	1,606	0.96	1,894	1.13
	Sidoardjo	At-grade	1 1,390	887	0.64	1,030	0.74	1,205	0.87

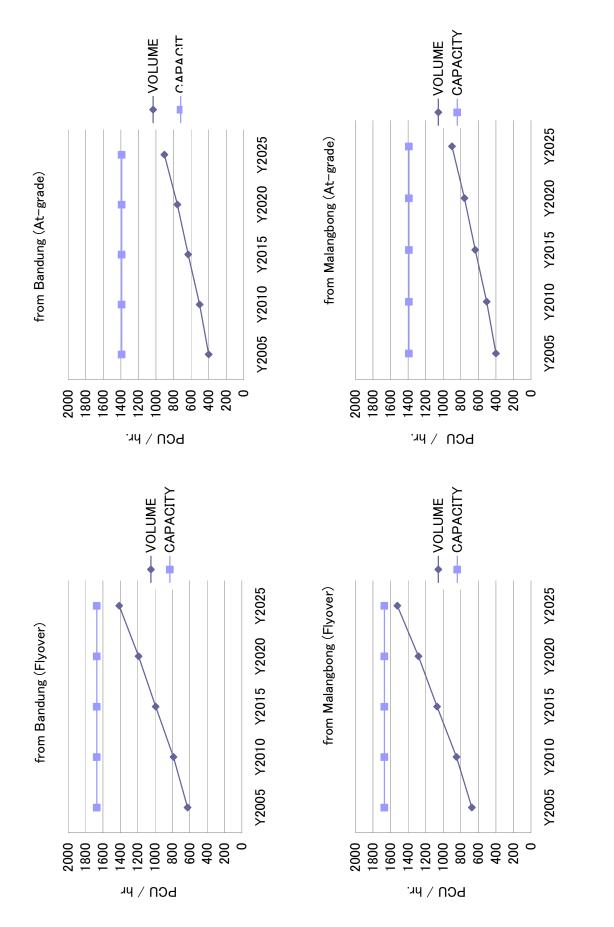

TABLE 6.6.2-1 NUMBER OF LANES REQUIRED AND VOLUME/CAPACITY RATIO

FIGURE 6.6.2-2 FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (BALARAJA)

FIGURE 6.6.2-3 FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (NAGREG)

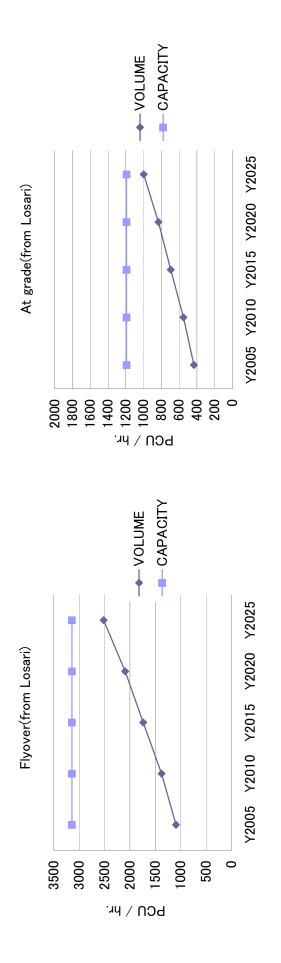
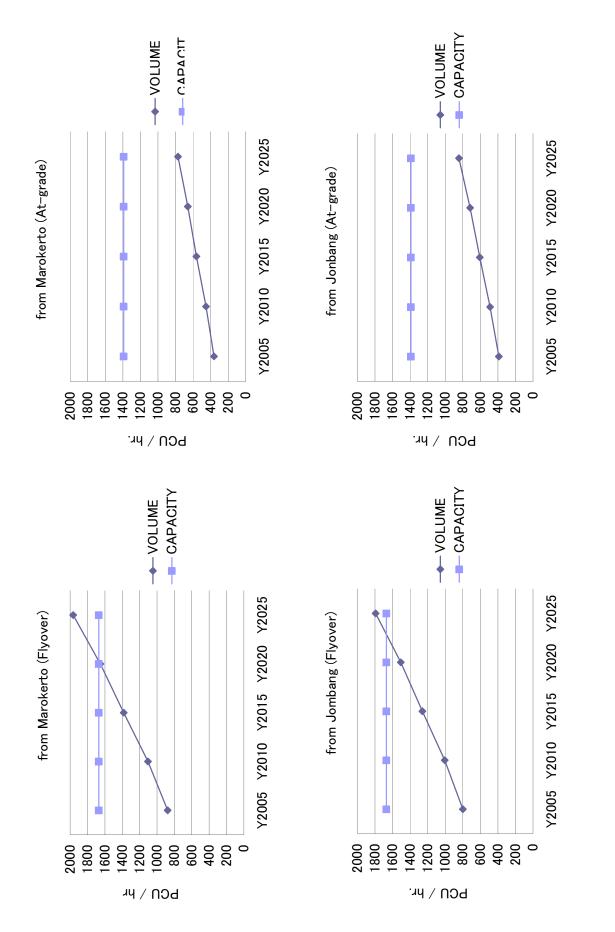
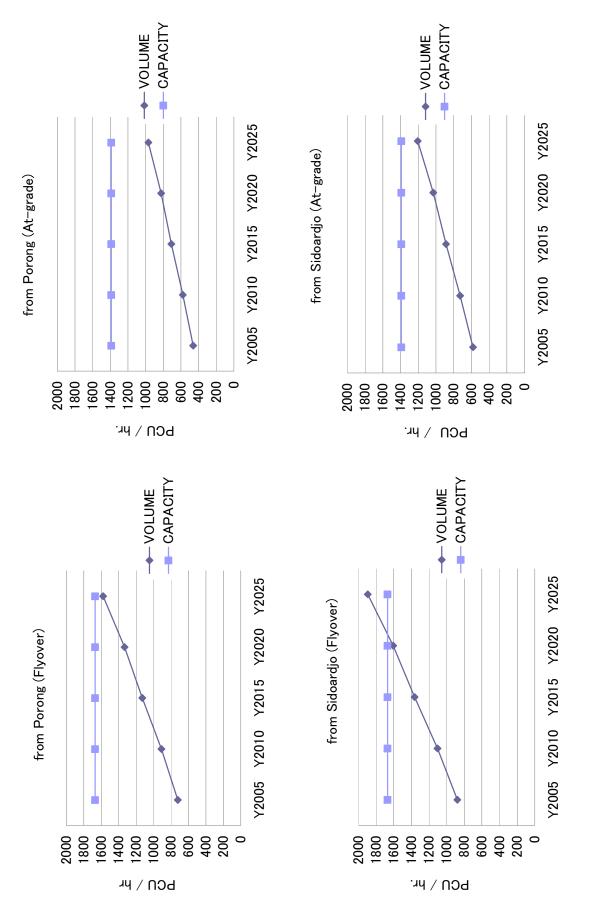




FIGURE 6.6.2-4 FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (GEBANG)

FIGURE 6.6.2-5 FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (PETERONGAN)

FIGURE 6.6.2-6 FUTURE TRAFFIC VOLUME AND CAPACITY WITH PROJECT (TANGGULANGIN)

PART III

DESIGN STANDARDS AND CRITERIA

CHAPTER 7

DESIGN STANDARDS AND CRITERIA

7.1 HIGHWAY DESIGN

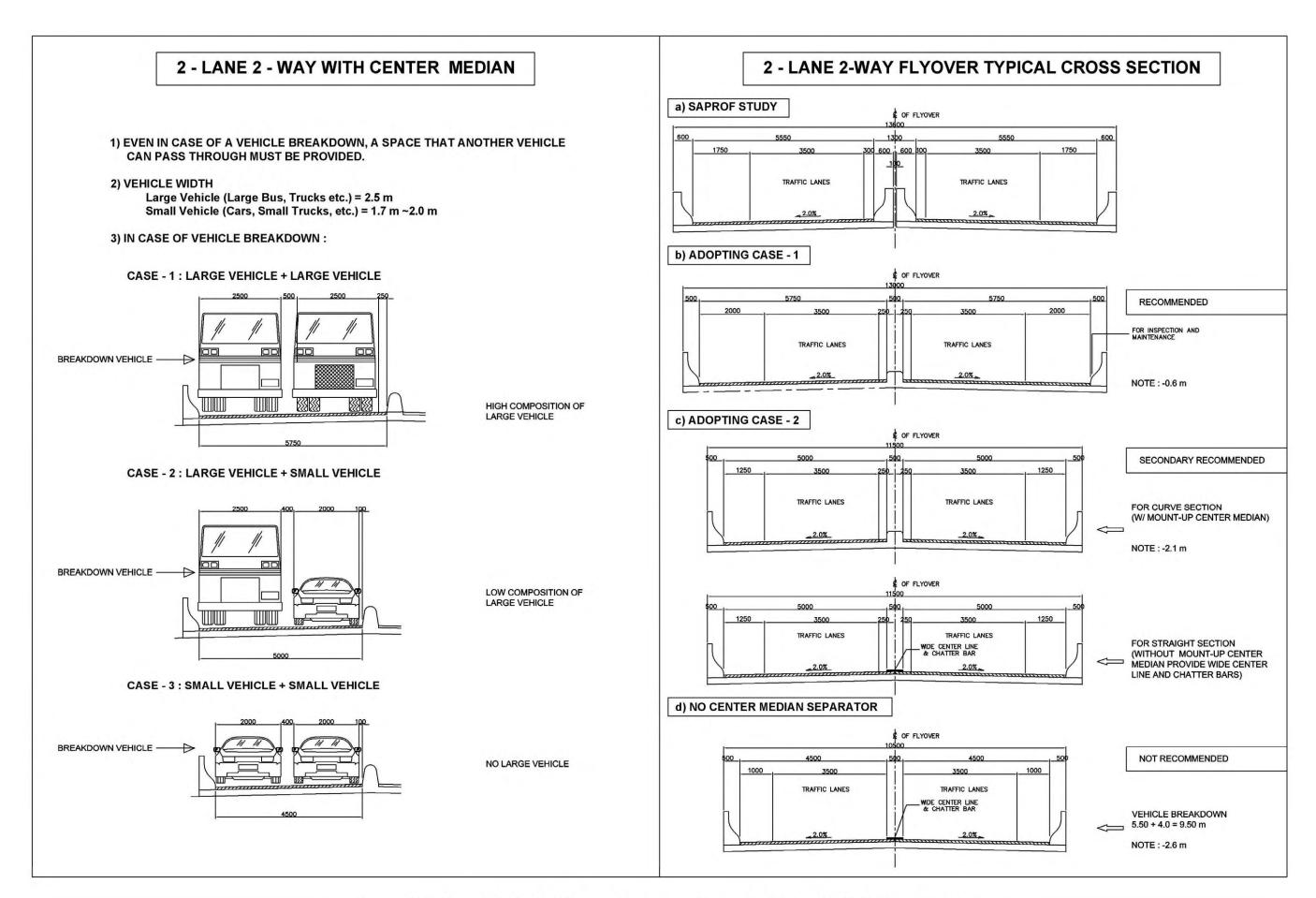
7.1.1 Flyovers and Service Roads

The following Indonesian highway design standards and criteria were adopted:

- Standard Specifications for Geometric Design of Urban Roads, RSWI, T-14-2005
- Standard Specifications for Geometric Design of Urban Roads, 1992

In case that there were some lacking items or from the standpoint of economic consideration, other standards listed below were referred:

- A Policy on Geometric Design of Highways and Streets, 2004 (AASHTO)
- Road Structure Ordinance, Japan Road Association, 2004 (JRA)


Table 7.1-1 shows the geometric design standards of flyovers and service roads. The main points of the design were as follows:

- Flyovers are built over the existing road, therefore, the horizontal alignment was controlled by the existing road alignment.
- Design speed was also controlled by the existing road alignment. (The Feasibility study recommended 60km/hr. for a flyover, however, it was difficult for 3 flyovers to adopt the recommended design speed of 60km/hr.)
- Road right-of-way for Balaraja and Gebang was already acquired based on the SAPROF Study, and ROW acquisition negotiation has been started based on the SAPROF Study, therefore, flyovers were planned within the required or to-be-acquired ROW.
- Number of lanes recommended by the Feasibility Study was a 2-lane, 2way flyover. The SAPROF Study also recommended a 2-lane 2-way flyover except Gebang which was proposed to be a 4-lane flyover with initial construction of a 2-lane 1-way flyover. This study adopted the recommendation of the SAPROF Study.
- Typical cross section of a flyover is shown in **Figure 7.1-1**.
 - > Flyover requires sharp horizontal curve or S-curves
 - From the viewpoint of traffic safety, a mount-up center median is proposed.
 - Even a time of vehicle breakdown, space for another vehicle's passing was considered and carriageway width of 5.75m was proposed.

$ \begin{array}{ $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Dog	ring Home for Coomotric Daci	IABLE /.I.I-I GEUMEIKI	ו-ו פרט	2	Moral		Deleroio			Dotoronom	Tonggilongin
$ \begin{array}{ $	$ \begin{array}{ $		Inhau		<u>g</u> li			IVIELAR		balaraja	INAULEY	Genaliy	relerongan	ı arıggularıgırı
$ \begin{array}{ $	$ \begin{array}{ $			Road Function				Arterial		Arterial	Arterial	Arterial	Arterial	Arterial
$ \begin{array}{ $	$ \begin{array}{ $		Desi	ign Speed based on Existing Alignment		km/hr		40		40	50	80	80	80
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{ $		Minimum	1 Radius of Curvature : Rmin	Existing	E		65		75	55	8	500	270
Image:	$ \begin{array}{ $		(Base	ed on SAPROF Drawing)	Flyover	٤		106		85	150	8	800	250
$ \begin{array}{ $	$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		lb	Design Vehicle Type		=		WB-15		WB-15	WB-15	WB-15	WB-15	WB-15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		Buer	Type of Pavement		П		ACP		ACP	ACP	ACP	ACP	ACP
$ \begin{array}{ $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		99	Design Speed (Vr)		km/hr		40		40	50	09	60	60
Image: Consistency with the manual state of the manual state of the matrix for manual state of the matrix for matrix fo	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Number of Lane		11	1 (One way) From Pulorida	1 (One way) From Harbour	2 (One way) To Jakarta	2 (Two way)	2 (Two way)	2 (One way)	2 (Two way)	2 (Two way)
1 1 1 1 5 5 6 0 5	$ \begin{array}{ $		uo	Total Flyover Width		۳	6.75	7.00	9.00	13.00	13.00	6.00	13.00	13.00
$ \begin{array}{ $	$ \begin{array}{ $		itae	Total Roadway Width			5.75	6.00	8.00	5.75 + 5.75	5.75 + 5.75	8.00	5.75 + 5.75	5.75 + 5.75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \left(\frac{10}{10} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		IS S	Traffic Lane Width		E	3.50	3.50	7.00	3.50	3.50	7.00	3.50	3.50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		102	Shoulder Width		E	2.00	2.25	0.50	2.00	2.00	0.50	2.00	2.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{1}{1000000} = \frac{1}{10000000} = \frac{1}{100000000} = \frac{1}{10000000000000000000000000000000000$	Я) D		idth	æ	-			1.00	1.00		1.00	1.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I I I			One side)	ш	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	١0		Cross Slope		%		2.0		2.0	2.0	2.0	2.0	2.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Y		Minimum Radius of Horizontal Curve	e (Rmin)	E		55		55	06	135	135	135
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	FI	le	Minimum Length of Horizontal Curve	(Lh min)	E		70		70	85	105	105	105
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				emax)	%		6.0		6.0	6.0	6.0	6.0	6.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Runoff	(又)	П		1/143		1/143	1/150	1/167	1/167	1/167
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ $		ΡH	Widening on Curve		æ	3) 0.25	0.00	0.00	3) 0.75	3) 0.5	0.00	0.00	3) 0.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{1}{10000} = \frac{10000}{1000} = \frac{10000}{100} = \frac{10000}{100} = \frac{10000}{100} = \frac{10000}{1000} = \frac{10000}{100} = \frac{10000}{1000} = \frac{10000}{100} = \frac{10000}{1000} = \frac{10000}{100} = \frac{10000}{1000} = \frac{10000}{1000} = \frac{10000}{1$			Minimum Spiral Curve Length (L:	s min)	ш		22		22	28	33	33	33
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ $			Maximum Grade (Gmax)		%		8.0		8.0	8.0	7.0	7.0	7.0
Image: contract length of Grade (Lc) m m 400 (80 %) 400 (7.0 %)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Grade to be adopted for Flyov	ver	%		5.0		5.0	5.0	5.0	5.0	5.0
Image: black of content of conte	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		tica	Critical Length of Grade (Lc	(E		400 (8.0 %)		400 (8.0 %)	400 (8.0 %)	400 (7.0 %)	400 (7.0 %)	400 (7.0 %)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ver	Stopping Sight Distance (Ss		E		50		50	65	85	85	85
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Minimum Radius of Vertical Curve	Crest	٤٤		450 450		450 450	800	1,400	1,400	1,400
Image: Design Speed (Vr) km/hr 40 <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td><td>╢</td><td></td><td>hpc</td><td></td><td></td><td>00-</td><td></td><td>007</td><td>00/</td><td>1,000</td><td>1,000</td><td>000'1</td></t<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		╢		hpc			00-		007	00/	1,000	1,000	000'1
End Type or Pavement = ACP	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		eral	Design Speed (Vr)		km/hr		40		40	40	40	40	40
O Number of Lane = 1 1 2 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D	uəg	Iype or Pavement		11		ALP		ACP	ACP	ACP	ACP	ACP
E Number of Lance = 5.50 2.00	End Number of Land m 5.50 2.50 2.50 2.50 2.00	AO)	Mumber of Lene				£		ç	-	~		Ţ
Ref Notating Value Suid III Under Suid III Under Suid	Image: constraint of the state of	ВЗ	uc	Doadway Width (One side)		II 8		Б 50		7	5 F)		- L	5 50
Construction Train. Later wruit III 0.00	Off Train. Late wrun III 0.3.30 1.50 1.150 1.150 1.150 1.150 1.150 1.150 1.150 1.150 2.00 <td>)IC</td> <td>it:</td> <td>Troffic Land Width (Offe Side</td> <td></td> <td>≣ 8</td> <td></td> <td>0.00</td> <td></td> <td>00.0</td> <td>0.00</td> <td></td> <td>0.00</td> <td>0.00</td>)IC	it:	Troffic Land Width (Offe Side		≣ 8		0.00		00.0	0.00		0.00	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EB'	95 5	Litanic carle width		≣ 8		00.0		00.0		1 E0 2 00		
Decimal m 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 2.00 <th< td=""><td>Decision Decision M 1.50 2.00</td><td>S</td><td>sso</td><td></td><td></td><td>≡</td><td></td><td>2.00</td><td></td><td>, ,</td><td>2.00</td><td>1.3U ~ 2.UU</td><td>2:00</td><td>2.00</td></th<>	Decision Decision M 1.50 2.00	S	sso			≡		2.00		, ,	2.00	1.3U ~ 2.UU	2:00	2.00
Cross Slope % 2.00 2.01 2.00 2.01	Image: Cross Slope % 2.00 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01		Cro	Sidewalk		E		1.50		1.55	2.05	1.50	1.50	1.50
R O W Width m 12.5 ~ 27.6 [1).18.7 ~ 29.1 [2).19.1 ~ 29.1 [1).13.3 ~ 16.0 [20.1 ~ 28.0] 19.5 ~	R O W vidth m 12.5 ~ 27.6 11.18.7 ~ 29.1 11.13.3 ~ 16.0 20.1 ~ 28.0 19.5 ~ 1). R O W acquitted 2). R O W being negotiated 3). Within Shoulder Width 12.5 ~ 27.6 11.18.7 ~ 29.1 11.13.3 ~ 16.0 20.1 ~ 28.0 19.5 ~		┥	Cross Slope		%		2.00		2.00	2.00	2.00	2.00	2.00
	1). R O W acquitted 2). R O W being negotiated 3). Within Shoulder Width					E		12.5 ~ 27.6			1	1). 13.3 ~ 16.0	1	2

TABLE 7.1.1.1. GEOMETRIC DESIGN STANDARDS OF EL VOVEDS AND SEDVICE ROADS

FIGURE 7.1.1-1 (1/3) TYPICAL CROSS SECTION OF FLYOVER



FIGURE 7.1.1-1 (2/3) TYPICAL CROSS SECTION OF FLYOVER

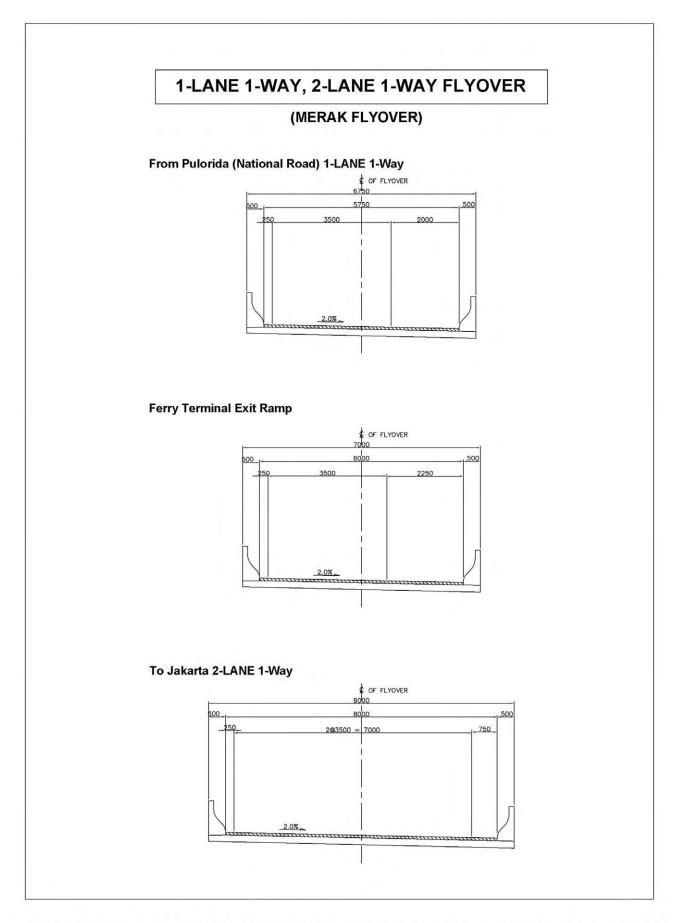


FIGURE 7.1.1-1 (3/3) TYPICAL CROSS SECTION OF FLYOVER

7.1.2 Intersection Design

The same standards described in 7.1.1 were followed. AASHTO and JRA standards were also referenced. Intersection geometric standards are shown in **Table 7.1.2-1**.

DESIGN	ELEMENTS/PARAMETERS	UNIT	INTERSECTION
	Design Speed	kph	40
	Minimum Radius	m	55
	Maximum Superelevation Rate	%	4
	Minimum Visibility Distance for Traffic Signal	m	100
	Minimum Length of Level Section at the Intersection Approach	m	15
MAIN ELEMENTS	Maximum Vertical Grade at Intersection Approach	%	2.5
	Storage Length	m	30
	Minimum Storage Lane Width	m	2.75
	Minimum Transition Length	m	30
	Minimum Taper Length	m	30
	Deceleration Length (including taper)	m	45
	Acceleration Length (including taper)	m	55
	Design Vehicle		SU
TURNING ELEMENTS	Design Turning Speed	kph	20
TURINING ELEMENTS	Minimum Turning Radius (inner edge)	m	15
	Width of Turning Lane	m	4.5

Note; SU (Single Unit Truck)

7.2 PAVEMENT DESIGN

7.2.1 Design Standards

The following pavement design standards in Indonesia for flexible pavement and rigid pavement were adopted:

- Guide for Flexible Pavement Design (Pedoman Penentuan Tebal Perkerasan Jalan Raja, No 01/PD/b/1983) published by Bina Marga.
- Guide for Rigid Pavement Design (Pedoman Perencanaan Perkerasan Kaku, No. 009/T/BNKT/1988) published by Bina Marga.
- Road Design System (RDS) ver.5, one of the software design pavement that developed by Bina Marga. That usually used in the pavement design to National and Provincial road.

7.2.2 Design Procedure

Design Condition

Design Period: 2008 ~ 2017 (10 years) for flexible pavement

Equivalent Singe Axle Loads (ESAL) (W₁₈)

•	Sedan	0.0012
•	Sedan	0.0012

•	Oplet, Minibus	0.2165
---	----------------	--------

- Small Bus 0.2458
- Bus 1.0413
- Truck 2As 2.9918
- Truck 3As 5.3443
- Semi Trailer 4.1269

<u>Reliability</u> :	90% (AASHTO standard fo	r Arterial Road).
	(Standard Normal Deviation $Z_R = -0.84$)	
	(Standard Error	$S_0 = 0.45$)

<u>Resilient Modulus:</u> $M_R = 1500 \text{ x CBR} = 7500 \text{ (CBR Sub-grade 5%)}$

Structural Coefficient

- Structure Number A/C Wearing Course (MS/100kg) per cm = 0.410
- Structure Number A/C Binder Course (MS/100kg) per cm = 0.410
- Structure Number A/C Base (MS 900kg) per cm
- Structure Number A/C Sub-base (class A) per cm = 0.132 (CBR = 80)
- Structure Number A/C Sub-base (class B) per cm = 0.110 (CBR = 30)

= 0.300

Drainage Coefficient

For Base course good condition (assumption) Present of time pavement to moisture level > 25%

Design ESAL

 $W_{18} = D_D x Di x W_{18}$

Where:

D_D	=	a directional distribution factor	
D_L	=	a lane distribution factor	
W_{18}	=	the predicted cumulative two-directional 18-kip ESAL units	
	=	AADT x 365 x Tf x ESALF	
AADT	=	an annual average daily traffic	
Tf	=	a traffic growth factor	
	=	$(1 + i/100)^n - 1$	
		i/100	
i	=	a traffic growth rate (%)	
n	=	analysis period (years)	
ESALF	=	an equivalent single axle load factor	

SN is equal to the structure number indicative of the total pavement thickness required.

$$SN = a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3$$

Where

 $a_i = i \text{ th layer coefficient}$ $D_i = i \text{ th layer thickness (inches), and}$ $m_i = i \text{ th layer drainage coefficient}$

7.3 BRIDGE DESIGN STANDARDS AND CRITERIA

7.3.1 Design Standards and Specifications

The North Java Corridor Flyover Project shall be designed in accordance with the following Design Codes and Standards.

- Bridge Design Code, Draft, Volume 1 and Volume 2 Bridge Management System 1992, Direktorat Jenderal Bina Marga Departemen Pekerjaan Umum.
- Bridge Design Manual, Draft, Volume 1 and Volume 2 Bridge Management System 1992, Direktorat Jenderal Bina Marga Departemen Pekerjaan Umum.
- Pembebanan untuk jembatan, RSNI4.

(Loading for Bridges)

- Standar perencanaan ketahanan gempa untuk jembatan, SNI. (Design Standard of Earthquake Resistance for Bridges)
- Perencanaan struktur beton untuk jembatan, RSNI (*Design of Concrete Structure for Bridge*)
- Perencanaan struktur baja untuk jembatan, ASN14 (Design of Steel Structure for Bridge)
- AASHTO LRFD Bridge Design Specifications, 3rd Edition.

For design requirements not covered by the above Codes and Standards the following references will be used as required:

- Japanese Specifications for Highway Bridges
- AS 5100, Bridge Design, Australian Standard, 2004
- FHWA-IF-99-025, "Drilled Shafts: Construction Procedures and Design Methods", 1999
- FHWA-NHI-00-043, "Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, Design & Construction Guidelines", 2001
- NCHRP Report 529, "Guidelines and Recommended Standard for Geofoam Applications in Highway Embankments", Transport Research Board, 2004

7.3.2 Loads and Load Combinations

1) Live Load

a) General

Traffic load for bridge design consists of "D" lane load and the "T" truck load. The "D" loading applies across the full width of the bridge roadway and produces effects in the bridge equivalent to a queue of real vehicles. The total amount of "D" lane load applied depends on the width of the bridge roadway.

The "T" truck load is equivalent to load of a single heavy vehicle with three axles which is placed in any position in a Design Traffic Lane. Only one "T" truck may be applied per Design Traffic Lane.

In general, "D" lane load will determine medium to long span calculation, whereas T" load is used for short spans and deck systems.

b) Design Traffic Lane

Design traffic lanes shall be 2.75m wide. The maximum number of design traffic lanes to be used is shown in **Table 7.3.2-1**.

Bridge Type (1)	Bridge Roadway Width (m) (2)	No. Design Traffic Lanes
Single Lane	4.0 - 5.0	1
Two-way, no	5-5 – 8.25	2 (3)
median	11.3 – 15.0	4
	8.25 – 11.25	3
Multiple readurat	11.3 – 15.0	4
Multiple-roadway	15.1 – 18.75	5
	18.8 – 22.5	6

TABLE 7.3.2-1 NUMBER OF DESIGN TRAFFIC LANES

Note:

- (1) For other types of bridges the number of design traffic lanes shall be determined by the Authority.
- (2) Roadway width is the minimum distance between kerbs or barriers for a single roadway bridge, or the distance between kerbs/barrier/median and median for a multiple-roadway bridge.
- (3) The minimum safe width for a two-lane bridge is 6.0m.
- c) "D" Lane Loading
 - Uniformly Distributed Load (UDL)

 $\begin{array}{ll} q = 9.0 \ \text{kPa} & \mbox{for } L \leq 30m \\ q = 9.0 \ x \ (0.5 + 15/L) \ \text{kPa} & \mbox{for } L > 30m \end{array}$

where, q = Load Intensity (kPa) L = Total loaded length (m)

The relationship is shown in Figure 7.3.2-1.

The UDL may be applied in broken lengths to maximize its effects on continuous bridges or unusual structures. Refer to **Figure 7.3.2**-**2**.

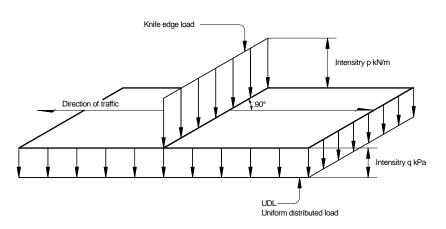
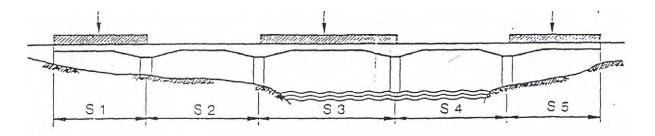
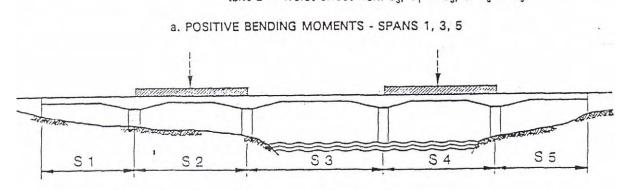


FIGURE 7.3.2-1 "D" LANE LOADING

• Knife Edge Load (KEL)

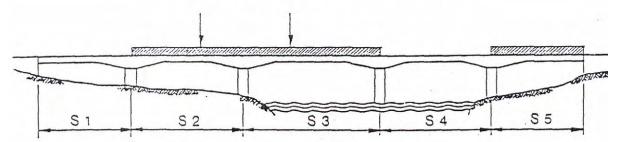

$$p = 49.0 \text{ KN/m}$$

A single KEL perpendicular to the direction of traffic shall be placed in any position along the bridge. For continuous bridges, a second KEL shall be placed in the same lateral position on the bridge but in another span to produce the maximum negative bending moment.


• Lateral distribution of "D" loading

"D" loading shall be applied in transversal direction as such arrangement to produced maximum moment.

100 % "D" loading shall be applied for width of road way 5.5 m or less, then in case of more than 5.5 m for a width of road way, 100 % "D" loading shall be applied for width of road way depend on number of lanes which is $n_i \ge 2.75$ m ($n_i =$ number of lanes), and 50 % on the remaining width of the road way. This arrangement is shown in **Figure 7.3.2-3**.


For maximum bending moment in Span 1: place KEL in Span 1; (Span 5 similar) take L = worst effect from S_1 ; $S_1 + S_3$; or $S_1 + S_3 + S_5$ For maximum bending moment in Span 3: place KEL in Span 3; take L = worst effect from S_3 ; $S_1 + S_3$; or $S_3 + S_5$

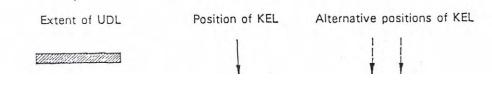
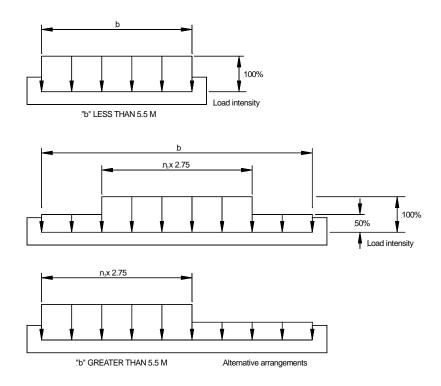
For maximum bending moment in Span 2: place KEL in Span 2;

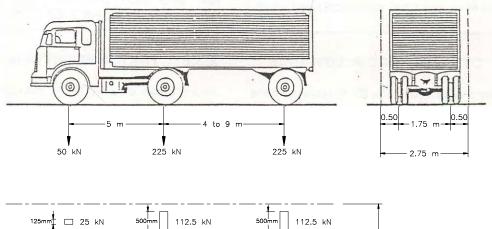
 $\begin{array}{r} \mbox{take L = worst effect from S_2 or S_2 + S_4} \\ \mbox{For maximum bending moment in $Span 4: place KEL in $Span 4; $$take L = worst effect from S_4 or S_2 + S_4} \end{array}$

b. POSITIVE BENDING MOMENTS - SPANS 2,4

For maximum bending moment at Pier 2: place KEL in Spans 2 and 3; take L = worst effect from $S_2 + S_3$ or $S_2 + S_3 + S_5$

c. NEGATIVE BENDING MOMENT AT PIER


FIGURE: 7.3.2-2 "D" LOADING ARRANGEMENT

d) "T" Truck Loading

The "T" truck loading is a single heavy vehicle with three axles shown in **Figure 7.3.2-4** and **Table 7.3.2-2** below, which shall be applied in any position in a design traffic lane.

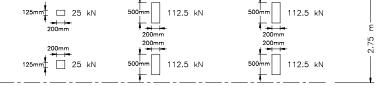


FIGURE 7.3.2-4 "T" TRUCK LOADING

 TABLE 7.3.2-2
 WHEEL LOAD

	Width (mm)	Length (mm)	Load (kN)
A Wheel	125	200	25
B Wheel	500	200	112.5

Only one "T" truck shall be placed in any design traffic lane, irrespective of the length of the bridge or the arrangement of spans.

e) Dynamic Load Allowance

For KEL of "D" loading, I = 0.4 – (LE – 50) / 400 However, $0.3 \le i \le 0.4$

For continuous spans, $L_E = \sqrt{Lav \times L} \max$, with:

- Lav : Average span length of a group of continuously connected spans (m)
- *Lmax*: Maximum span length of a group of continuously connected spans (m)

For "T" truck loading, i = 0.3

For underground structures, i = 0.4 - 0.15 x D

However, $0.1 \le i \le 0.4$

Where, D: Depth from the ground surface (m)

f) Braking Force

Braking force (kN) should be considered as 5 % of "D" loading on each traffic lane, without being multiplied by dynamic allowance. The braking force acting in the horizontal axis direction on the bridge shall be assumed to act at position 1.8 m above the road surface. "D" loading for bridge span length more than 30 m shall not be reduced and shall be used as a value of q = 9 kPa.

g) Centrifugal Force

Bridges on curves shall consider subject to a radial horizontal force assumed act at 1.8 m above road surface in a radial outward direction.

Centrifugal force shall act in the same time with "D" load or "T" load with the same arrangement along the bridge.

Centrifugal force is determined with the formula as follows :

$$T_{TR} = 0.79 \cdot \frac{V^2}{r} \cdot T_T$$

Where,

- T_{TR} : Centrifugal force acting on a section of the bridge
- T_T : Total traffic loading acting on the same section on the bridge $(T_{TR} \text{ and } T_T \text{ shall have same units})$
- / : Design traffic speed (km/h)
- r : Radius of curve (m)

"D" loading for bridge span length more than 30 m shall not be reduced and shall be used as a value of q = 9 kPa.

h) Pedestrian Loading

Pedestrian loading shall be in accordance with Table 7.3.2-3.

	Pedestrian Load (kPa)
• All elements of a sidewalk or pedestrian bridge which directly carry the pedestrian traffic.	W = 5
 For footbridges and sidewalks independent of the road bridge superstructure. 	W = 1/15 x (160 − A) 4 ≤ W ≤ 5
For sidewalks attached to the road bridge superstructure	W = 1/30 x (160 - A) $2 \le W \le 5$

TABLE 7.3.2-3 PEDESTRIAN LOADING

Where, A: Loaded area (m2)

Where it is possible for a vehicle to go atop the sidewalk, or for light vehicles or livestock to use the sidewalk, the sidewalk shall be designed to carry an isolated concentrated load of 20 kN.

2) Seismic Forces

a) Base Shear Coefficient

The peak ground accelerations of bedrock in Indonesia for a 500 year return period are given in **Figure 7.3.2-5**. For the purpose of mapping peak ground acceleration Indonesia is divided into six seismic zones.

The peak ground acceleration of bedrock at each of the Project Flyover sites, obtained from **Figure 7.3.2-5**, is presented in **Table 7.3.2-4**.

TABLE 7.3.2-4 SEISMIC ZONE AND PEAK GROUND ACCELERATION

Name of Flyover	Seismic Zone	Peak Ground Acceleration
MERAK	2	0.46 – 0.50
BALARAJA	3	0.36 – 0.40
NAGREG	3	0.36 – 0.40
GEBANG	3	0.36 – 0.40
PETERONGAN	4	0.26 – 0.30
TANGGULANGIN	4	0.26 – 0.30

The elastic base shear coefficient $C_{elastic}$ can be calculated by the formula:

$$C_{elastic} = \frac{1.2 \cdot A \cdot S}{T^{2/3}}$$

with requirement Celastic ≤ 2.5 A

where:

A = Peak acceleration on the bed rock (gal)

- T = Natural period of the structure (second)
- S = Soil coefficient (refer to Table 7.3.2-5)

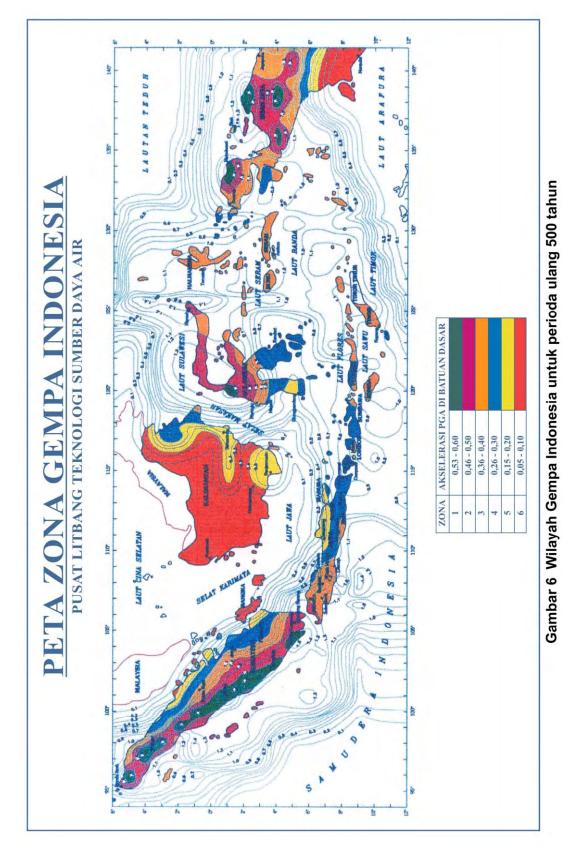


FIGURE 7.3.2-5 MAP OF SEISMIC ZONES FOR INDONESIA WITH A 500 YEAR RETURN PERIOD

TABLE 7.3.2-5SOIL COEFFICIENT (S)

ſ	S	S	S
	(Firm Soil)	(Medium Soil)	(Soft Soil)
	S = 1.0	S = 1.2	S = 1.5

The type of soil is taken from **Table 7.3.2-6**.

TABLE 7.3.2-6 SOIL CONDITION FOR BRIDGE BASE SHEAR COEFFICIENT

Soil Type	Depth to Rock-like Material			
зоптуре	Firm Soil	Medium Soil	Soft Soil	
For all Soils	≤ 3m	> 3m up to 25m	> 25m	
For a cohesive soil with an average undrained shear strength not exceeding 50 kPa	≤ 6m	> 6m up to 25m	> 25m	
Any site where the overlying soils are either cohesive with an average undrained shear strength greater than 100 kPa, or a very dense granular material	≤ 9m	> 9m up to 25m	> 25m	
For a cohesive soil with an average undrained shear strength not exceeding 200 kPa	≤ 12m	> 12m up to 30m	> 30m	
For a very dense cemented granular soil	≤ 20m	> 20m up to 40m	> 40m	

b) Response Modification Factor

The design seismic force shall be obtained by dividing the elastic response by a response modification factor (R) referring to degree of ductility.

Response modification factor for degree of ductility is as shown in **Table 7.3.2-7**.

TABLE 7.3.2-7	RESPONSE MODIFICATION FACTOR (R) FOR
COLUMN AND	CONNECTION WITH THE SUB-STRUCTURE

	Column or	Connection with the sub-structure		
Type of Structures	Pier	Abutment (*2)	Column, Pier and Pile (*3)	Expansion Joint
Wall Pier Type (*1)	2 (Major Axis) 3 (Minor Axis)			
Single Column	3-4	0.8	1.0	0.8
Multiple Column	5-6	0.0	1.0	0.0
Pile Cap Beam Concrete	2-3			

Note:

- (*1) Wall pier type can be designed as single column on the direction of minor axis.
- (*2) Simple span bridge in connection with abutment can use factor (R) as a value of 2.5.
- (*3) As an alternative the column connection can be designed for maximum force produced by column plastic hinge.

For multiple pier column, response modification factor (R=5) shall be adopted for both octagonal axis and (R=0.8) shall be adopted for connection of superstructure with abutment, and also (R=1.0) shall be adopted for connection column on pile cap or superstructure and column on foundation.

For foundation design, one half of factor (R) shall be for seismic zone 5 and 6, but for zone 1 to 4 and for pile bent type, factor (R=1) shall be adopted.

3) Load Factors

The load factors used in the load combinations are in accordance with Indonesian Standard "Loading for Bridges" and AASHTO LRFD as given in **Table 7.3.2-8**.

	Load Factors				
Load	Serviceability Limit State	Ultimate Limit State			tate
		Steel	-	.1 rmal	0.90 relieving
Dead	1.0	Pre cast Concrete	-	.2 rmal	0.85 relieving
		In situ Concrete	-	.3 rmal	0.75 relieving
Superimposed Dead	1.0	2.0 normal 0.7 relieving		relieving	
Shrinkage and Creep	1.0	1.0			
Prestressing Effects	1.0	1.0 (1.15 at transfer)			sfer)
Settlement	1.0	Not applicable		e	
Traffic Load	1.0		1	.8	
Braking	1.0		1	.8	
Centrifugal	1.0		1	.8	
Pedestrian	1.0	1.8			
Collision Loads	1.0	Not applicable		Э	
Temperature	1.0	1.2 normal 0.8 relieving		relieving	
Wind	1.0		1	.2	
Earthquake	Not applicable		1	.0	
Bearing Friction	1.0	1.3 norm	al	0.8	relieving

TABLE 7.3.2-8LOAD FACTORS

4) Load Combinations

a) General

This section is restricted to combination of actions for service ability limit state and the ultimate limit state.

Design actions are classified into permanent and transient actions, as listed in **Table 7.3.2-9**.

The load combinations are generally based on the probabilities of these different types of actions occurring simultaneously. The design actions are determined from the nominal actions by multiplying the nominal actions by the appropriate load factor.

All the effect from a design action must take the same load factor, whether normal or relieving. The worst case should be taken.

Permanent Actions		Transient Actions		
Name	Symbol	Name	Symbol	
Self Weight	P _{MS}	"D" Lane load	T _{TD}	
Superimposed dead load	P _{MA}	"T" Truck Load	T_{TT}	
Shrinkage / creep	P_{SR}	Breaking force	Τ _{тв}	
Prestress	P_PR	Centrifugal force	T_TR	
Permanent Construction Effect	P_PL	Pedestrian load	T_{TP}	
Earth Pressure	P _{TA}	Collision load	T_{TC}	
Settlement	P_{ES}	Wind load	T_{EW}	
		Earthquake	T _{EQ}	
		Vibration	Τ _{VI}	
		Bearing friction	T_{BF}	
		Temperature Effect	T _{ET}	
		Stream/debris/log impact	T_{EF}	
		Hydro/Buoyancy	T_{EU}	
		Construction load	T _{CL}	

TABLE 7.3.2-9 TYPES OF DESIGN ACTIONS

b) Effect of design life

The load factors for the ultimate limit state are based on a bridge design life of 50 years. For bridges with a different design life, the ultimate load factor shall be varied by the factors given in the **Table 7.3.2-10**.

		Multiply K by		
Bridge Classification	Design Life	Permanent Action	Transient Action	
Temporary Bridges	20 years	1.0	0.87	
Normal Bridges	50 years	1.0	1.00	
Special Bridges	100 years	1.0	1.10	

TABLE 7.3.2-10	EFFECT OF DESIGN LIFE ON ULTIMATE
	LOAD FACTOR

c) Combination of Permanent Actions.

All permanent actions appropriate to particular bridge are expected to occur together. However where a permanent action acts to relieve the total effect, the load combination shall be considered with this action removed, if such removal can logically occur.

d) Variation of Permanent Action with Time.

Some permanent actions, such a superimposed dead load PMA, shrinkage and creep PSR, prestress effect PPR and settlement effect PES may change slowly by time. The load combinations considered shall include the maximum and minimum values of these actions to determine the worst total effect.

e) Serviceability Limit State Combinations

The primary serviceability limit state combinations consist of the effect of the permanent actions and one transient action.

At serviceability limit state, more than one transient action may occur simultaneously. A reduced load factor is applied to this occurrence, as given in **Table 7.3.2-11**, the usual load combinations are listed in **Table 7.3.2-12**.

Primary Combination	Permanent Actions + one transient actions
Secondary Combination	Primary Combination + 0.7 x (one other trans actions)
Tertiary Combination	Primary Combination + 0.5 x (two or more trans actions)

TABLE 7.3.2-11LOAD COMBINATION FOR SERVICE ABILITYLIMIT STATE

Notes :

- 1) The "D" lane load T_{TD} or "T" truck load T_{TT} is required to generate the breaking force T_{TB} and the Centrifugal force T_{TR} on the bridge. No reduction factor shall be applied when T_{TB} or T_{TR} occur in combination with T_{TD} or T_{TT} as a primary combination.
- 2) Bearing friction T_{BF} may occur together with temperature effects T_{ET} and shall be treated as a single action for the purposed of load combination.
- f) Ultimate Limit State Combinations

The ultimate limit state combinations shall consist of the sum of the effects of the permanent actions and one transient effect.

Breaking force T_{TB} or centrifugal force T_{TR} may be combined with "D" lane loading T_{TD} , and the combination shall be considered as one action for load combination. Bearing friction T_{BF} and temperature effect T_{ET} may be combined in a similar manner. At the ultimate limit state, no other transient actions shall be combined with earthquake actions.

Some actions can possibly occur at a service ability level at the same time as another action occur at its ultimate level. These possible combinations shall be considered, but only one serviceability level action shall be included in any combination. A summary of the usual load combination is given in **Table 7.3.2-12**.

Items to be considered in determining the usual load combination for serviceability and ultimate limit state are as follows:

- The design engineer shall be responsible for identifying and evaluating any combination not included in this table which may be critical for a particular bridge. For each load combination, all action have been included which can logically occur together. Beside these the design engineer shall evaluate the effect on a load combination of not including any of these contributing actions, provided that such non-inclusion is logical.
- 2) In the serviceability limit state part of this table, an action marked "X" for a particular combination is included in that combination at its full serviceability load factor. An item marked "o" may be included at a reduced serviceability load factor.
- 3) In the ultimate limit state part of the table, an action marked "X" for a particular combination is included in that combination and its full ultimate load factor. An item marked "o" may be included at a reduced value equal to its serviceability load.
- Some permanent actions may be change slowly with time. The load combination shall be evaluated with these actions at both their maximum and minimum design values in determined the worst effects.
- 5) Limit state levels of centrifugal force and breaking force do not occur at the same time.
- 6) Temperature effects include the effects of differential temperature within the bridge, and the effect of temperature change on the whole bridge. Bearing friction is closely associated with temperature effect but the direction of action bearing friction will change, depending on the direction of movement of the bearings or in the other words, whether the temperature is rising or falling. Temperature effects are unlikely to be critical at the ultimate limit state except in association with other actions for this reason they are only considered to contribute at serviceability level.
- 7) Bearing friction must be considered whenever any other actions produce an effect which tends to cause horizontal motion of the bearings.
- 8) All water effect can be considered together
- 9) Earthquake effects are only considered in ultimate limit state.
- 10) Collision load may be serviceability loads or ultimate loads.
- 11) Vibration effect are only used in serviceability limit state

Action							<u>oad Cor</u>	Load Combination	n				
ACTION				Servic	Serviceability					Ultir	Ultimate		
Name	Symbol	٦	2	3	4	5	9	٦	2	3	4	5	6
PERMANENT ACTIONS													
- Self weight	P _{MS}												
- Superimpose dead load	P _{MA}												
- Shrinkage and creep	P _{SR}												
- Prestress	P _{PR}	×	×	×	×	×	×	×	×	×	×	×	×
- Permanent Construction Effects	P_{PL}												
- Earth pressure	P_TA												
- Settlement	P _{ES}												
TRANSIENT ACTIONS													
"D"lane load or "T"truck load	T_{TD} T_{TT}	×	0	0	0	0		×	o	0	0		
Braking force or Centrifugal Force	T_{TB} T_{TR}	×	ο	0	0	0		×	0	0	0		
Pedestrian Load	T_{TP}		×						×				
Bearing Friction	T _{BF}	0	ο	×	0	0	0	0	0				
Temperature Effect	T _{ET}	0	ο	×	0	0	0	0	0	0	0		0
Hydrostatic/Buoyancy	T _{EU}	ο		ο	×	ο	0	0		×	0		ο
Wind Load	P_{EW}			0	0	×	0	0		0	×		0
OTHER ACTIONS													
Seismic effect	T _{EQ}											×	
Collision Load	T_{TC}												
Vibration Effects	T _{VI}	×	×										
Construction Loads	T _{cL}						×						Х
'X' Load always active		Ш	Perman	ent actic	Permanent action 'X' + Load active 'X'	Load ac	tive 'X'	Perma	nent act	- 'X' noi	; pad +	Permanent action 'X' + Load active 'X'	+
'o' Load can combine with single active load or	ive load or	- = - 	(1) + 0	(1) + 0.7 Load 'o' (1) + 0.5 Load 'o'+	-	0 E Load 'o'	È	Load 'o'),		- - 		
			H	.0 2000									

 TABLE 7.3.2-12
 LOAD COMBINATIONS FOR LIMIT STATES

7.3.3 Structural Analysis

1) Seismic Design

a) Analysis Procedure

The procedure for seismic resistance analysis is as follows:

- Static: semi dynamic/simple dynamic Procedure 1: Uniform Load/Seismic Coefficient Procedure 2: Single mode
- Space frame/semi dynamic Procedure 3: Multiple mode spectrum
- Dynamic Procedure 4: Time History

Procedures 1 and 2 are manual calculations for simple bridges, with vibration in the first mode.

Procedure 3 is applied for more complicated bridges with vibration in several modes, and requires a space frame and dynamic analysis (refer to **Table 7.3.3-1** and **7.3.3-2**).

Procedure 4 is required for main/major structures with complex geometry and/or near an active fault.

High Acceleration Coefficient in Bed Rock (A/g)	Important Classification I (Essential Bridge with Important Category 1.25)	Important Classification II (Simple Bridge with Important Category 1.00)
≥0.30	D	С
0.20 – 0.29	С	В
0.11 – 0.19	В	В
≤ 0.10	А	А

TABLE 7.3.3-1 SEISMIC PERFORMANCE CATEGORY

For this project all Flyovers are taken to be Essential Bridges with Importance Category 1.25.

TABLE 7.3.3-2ANALYSIS PROCEDURE BASED ON SEISMIC
PERFORMANCE CATEGORY

Number of Span	Sei	ismic Pe Cate	erformar gory	nce
	D	С	В	Α
Simple single span	1	1	1	-
Two or more spans, continuous	2	1	1	-
Two or more spans, with one hinge	3	2	1	-
Two or more spans, with two or more	3	3	1	-
hinges				
Complicated structure	4	3	2	1

For this project all Flyovers are taken to fall into Seismic Performance Category D requiring Analysis Procedure 3 (Multi-mode spectrum analysis).

b) Minimum Support Length Criteria

Minimum support length requirements are given in Table 7.3.3-3.

Minimum Support Length N (mm)	Seismic Performance Category
$N = (203 + 1.67 \text{ x L} + 6.66 \text{ x H}) \text{ x } (1 + 0.00125 \text{ x S}^2)$ $N = (305 + 2.50 \text{ x L} + 10.0 \text{ x H}) \text{ x } (1 + 0.00125 \text{ x S}^2)$	A and B C and D

Where:

- L = Deck slab length (m)
- H = Average height of column (m)
- S = Skew Angle of Support (degree)

7.3.4 Structural Design

1) Material Properties

a) Structural steel

The type of structure steel shown in **Table 7.3.4-1** shall be used.

	JIS Standard		A	STM Standa	ard
Designation	Yield Point (N/mm²)	Tensile Strength (N/mm²)	Designation	Yield Point (N/mm²)	Tensile Strength (N/mm²)
<u>G 3101</u> SS 400	215 – 245	400 – 510	A 36	250	400-500
<u>G 3106</u> SM 400 SM 490 SM 490 Y SM 520 SM 570	215 – 245 295 – 325 325 – 365 325 – 365 420 – 460	400– 510 490 – 610 490 – 610 520 – 640 570 – 720	A 242 A440 A 441 A 588 A 572	290 - 340 290 - 340 290 - 340 290 - 340 410 - 450	≥ 430 430 - 480 430 - 480 430 - 480 510 - 550
<u>G 3114</u> SMA 400W SMA 490W SMA 570W	215 – 245 325 – 365 420 – 460	400 – 540 490 – 610 570 – 720	A 514	620 – 690	690 – 900

TABLE 7.3.4-1CLASS, DESIGNATION AND STRENGTH OF
STRUCTURE STEEL

JIS G 3101 : Rolled Steel of General Structure

JIS G 3106 : Rolled Steel for Welded Structure

 $\mathsf{JIS}\ \mathsf{G}\ \mathsf{3114}$: Hot-Rolled Atmospheric Corrosion Resisting Steels for Welded Structure

b) Concrete

Concrete Compressive strength:

The 28-days compressive strength and corresponding elastic modulus Ec, shall be as shown in **Table 7.3.4-2**:

Concrete Class	Characteristic Compressive Strength MPa	Application of Structure
A-1	40	Pre-cast Pre-stressed Concrete Structure
A-2	35	Cast-in-situ Pre-stressed Concrete Structure
B-1	30	Deck slab, Pier heads and Columns, Diaphragms of P.C.I-Girder
B-2	30	Integral abutments, Cast-in-situ Reinforced Concrete Piles, Bored Piles
С	20	Massive Abutment, Footing and Retaining Walls
D	15	Gravity type Retaining Walls
E	8	Leveling Concrete

TABLE 7.3.4-2CLASSIFICATION OF CONCRETE CYLINDER
STRENGTH

Characteristic compressive strength of concrete shall be based on standard compression test of cylinder specimens at the stage of 28 days, as specified in JIS or ASTM.

The coefficient of thermal expansion shall be 1.0×10^5 (per deg Celsius).

c) Reinforcing Steel

Reinforcing steel shall consist generally of high yield deformed steel bar of grade SD 40, and mild steel round bar SR 24 whenever bars must be bent / unbent and for special uses (dowels),

The type of reinforcement, yield point, and application standard as shown **Table 7.3.4-3**.

 TABLE 7.3.4-3
 TYPE OF REINFORCEMENT

Туре	Grade	Yield Point	Applic	cation sta	ndard
туре	Graue	(N/mm²)	SII	JIS	BS
Round Bars	SR 24	240	SII 0136	G 3112	BS 4449
Deformed Bars	SD 40	390	SII 0136	G 3112	BS 4449

d) Pre-stressing Tendons

The type of pre-stressing of tendons shown in **Table 7.3.4-4** shall be used.

Notation	Utilization	Nominal Diameter	Yield Strength	Braking Strength	Applic Stan	
		(mm)	(kg/mm²)	(kg/mm2)	JIS	ASTM
PC Wire SWPR 1A	PC Pile	Ø 7	135	155	G 3536	A 421
PC 7 Wire Strand SWPR 7B	PC Hollow Core Slab Unit, PC I-Girder and T- Girder, PC Double Girder Diaphragm of PC I- Girder and T-Girder	T 12.7	160	190	G 3536	A 416
PC 7 Wire Strand SWPR 7B	Transversal Cable for Deck Slab	T 15.2	160	190	G 3536	A 416
PC 19 Wire Strand SWPR 19	Diaphragm of PC I- Girder and T-Girder	T 19.3	160	190	G 3536	A 416

TABLE 7.3.4-4 CLASSIFICATION OF PRE-STRESSING TENDONS

Modulus of elasticity: 2.0×10^5 MPa Coefficient of thermal expansion = 1.2×10^5 (per deg Celsius).

e) Elastomeric Bearing Pads

Bearings shall be manufactured from natural rubber of IHRD 53 \pm 5 hardness, having properties which comply with the Specification of Authority. The values of Shear Modulus and Bulk Modulus, based on the assumed properties as shown in **Table 7.3.4-5**, may be used for natural rubber (using current formulations) for calculating the strain.

TABLE 7.3.4-5 ELASTOMER PROPERTIES

Durometer Hardness IHRD ± 5	Shear Modulus G MPa	Bulk Modulus B MPa
53	0.69	2,000
60	0.90	2,000
70	1.20	2,000

2) Composite Columns

The design of the circular composite columns is in accordance with the design criteria established for the project. The design criteria are based upon the provisions of Australian Standard AS 5100 which itself is closely aligned with the provisions of Eurocode 4.

The steel section shall be symmetrical, be fabricated from steel with a maximum yield stress of 350MPa and have a wall thickness such that the plate element slenderness λ_e is less than the limit given below:

$$\lambda_e = \frac{d_0}{t} \cdot \left(\frac{f_y}{250}\right) < 82$$
 for circular hollow sections

where:

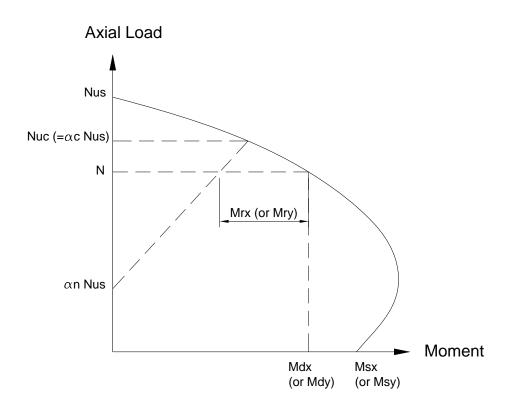
- d_0 = outside diameter of the section
- t = wall thickness of the section
- h = outside depth of the section

Concrete shall be of normal density and strength and have a maximum aggregate size of 20mm.

Positive shear connection shall be provided between the concrete and the steel for that proportion of the shear stress at the strength limit state that exceeds 0.4MPa.

In the design of composite columns, account will be taken of the confining effect of the steel tube, slenderness and imperfections.

In the design of members subject to combined compression and uniaxial bending, the resistance of the cross-section will be determined assuming full plastic stress distribution for both steel and concrete components. Rectangular stress blocks are assumed for both the steel and the concrete. The plastic compressive stress of the confined concrete is taken to be 1.00 x fc. The maximum concrete compressive stress is $^{\circ}$ cfc and the maximum steel stress is $^{\circ}$ fy for the steel section and $^{\circ}$ fyr for the reinforcement.


The section shall satisfy the following criterion:

 $\begin{array}{l} M_x < \ 0.9 M_{rx} \\ M_y < \ 0.9 M_{ry} \end{array}$

where:

 M_{rx} = section moment capacity, reduced by the effects of axial compression, slenderness and imperfections, determined from an interaction curve in the form of Figure 7.3.4-1

 $\frac{M_x}{M_y}$ = design bending moments about the major and minor principal axes, respectively

FIGURE 7.3.4-1 INTERACTION CURVE OF COMPRESSION AND UNIAXIAL BENDING FOR COMPOSITE COMPRESSION MEMBERS

In Figure 7.3.4-1:

=

N_{us}	=	ultimate section capacity
N_{uc}	=	ultimate member capacity
	=	a _c N _{us}
		a_c = compression member slenderness reduction factor

$$M_{dx_{i}}$$
 = total moment capacity of the section when the design axial force N is acting on the section

 M_{dx}

 $a_n = factor for interaction curve$

$$\alpha \left(\frac{1+\beta_m}{4}\right)$$

 β_{m}

=

ratio of the smaller to the larger end bending moments taken as positive when the member is bent in reverse curvature

3) Socket Type Connections

For the connection of composite columns to single large diameter bored pile foundations a socket type connection is proposed in the Basic Design. Socket type connections comprise the insertion of the composite column section into a larger diameter steel pipe pile with concrete filled between them. The arrangement has been tested in Japan and is approved by both JRA and Japan Railway Company.

A typical socket type connection is shown in **Figure 7.3.4-2**.

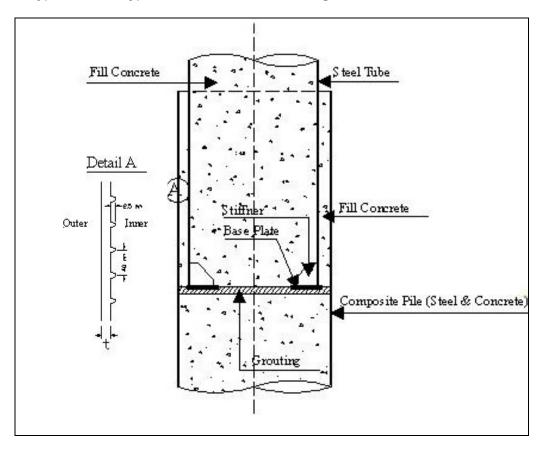


FIGURE 7.3.4-2 TYPICAL SOCKET TYPE CONNECTION

The load carrying model for predicting the ultimate load capacity of the socket type connection is shown in **Figure 7.3.4-3**.

For the calculation of socket capacity the frictional stresses developed between the column pipe and the concrete filled pipe pile are assumed to be subject to Coulomb's friction criteria. That is:

$$\tau_{\max} = c + \sigma_n \cdot \tan \phi$$

where:

 $\tau_{\rm max}$ = maximum frictional stress

c = cohesion of friction

 σ_n = normal stress at interface

 ϕ = friction angle

For the calculations, the cohesion *c* and friction angle ϕ are assumed as follows:

<i>C</i> =	0.7N/mm ²	ϕ	=	20 degree	for ordinary pipe
<i>C</i> =	8.0N/mm ²	ϕ	=	0 degree	for pipes with spiral ribs

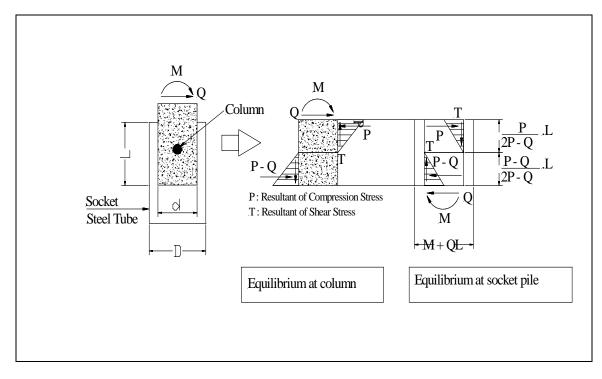


FIGURE 7.3.4-3 LOAD CARRYING MODEL FOR PREDICTING ULTIMATE LOAD CAPACITY

7.3.5 Geotechnical Design Criteria

1) Pile Bearing Capacity

The total ultimate bearing capacity Q_R of a pile shall be in accordance with the following:

$$\mathbf{Q}_{\mathbf{R}} := \eta \cdot \left(\phi p \mathbf{Q}_{p} + \phi s \mathbf{Q}_{s} \right)$$

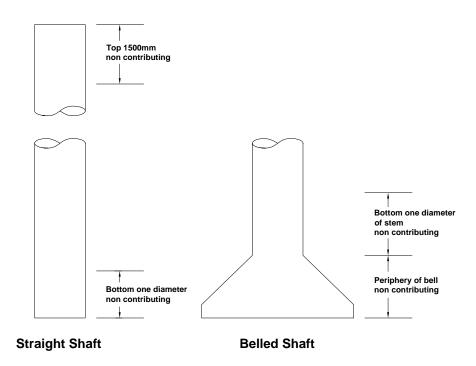
where:

- efficiency of pile group
- ϕ_p = resistance factor for base resistance
- ϕ_s = resistance factor for shaft resistance
- Q_p = ultimate base resistance

$$Q_p = q_p \cdot A_p$$

 q_{ρ} = unit base resistance

- Q_s = ultimate shaft resistance $Q_s = \sum q_s \cdot C_P \cdot L_i$
 - q_s = unit shaft resistance
- A_{ρ} = cross sectional area of pile
- C_{ρ} = perimeter of pile
- L_i = incremental length of pile included in summation


Where the methods to determine base or shaft resistance make reference to undrained shear strength, S_{u_i} of cohesive soils, the following SPT correlations will be used, subject to confirmation through testing of undisturbed samples:

$S_u = 5 \text{ x SPT "N" value}$	for bored piles
$S_u = 10 \text{ x SPT "N" value}$	for driven piles

The following portion of a bored pile, illustrated in **Figure 7.3.5-1**, shall not be taken to contribute to the development of resistance through skin friction:

- At least the top 1500mm of any bored pile;
- For straight bored piles, a bottom length of the shaft taken as the shaft diameter;
- Periphery of belled ends, if used; and
- Distance above a belled end taken as equal to the shaft diameter.

In the case that un-drained shear strength has been determined from correlation the SPT, contributions from soil layers with SPT less than 2 will be ignored and the unit shaft resistance will be limited such that $q_s < 100$ kN/m2.

2) Resistance Factors – Bored Piles

Resistance factors for geotechnical strength limit state for axially loaded bored piles are given in **Table 7.3.5-1**.

Type of Loading	Component of Resistance/ Geo-material	Resistance Evaluation Method	Resistance Factor
	Side / Clay	a method	0.65
	Base / Clay	N _c S _u	0.55
Compressi	Side / Sand	Reese and O'Neill method (β method)	0.65
on for Single	Base / Sand	Reese and O'Neill method	0.50
Bored Pile	Side / Rock	Carter and Kulhawy method	0.55
	SIDE / ROCK	Horvath and Kenny method	0.65
	Base / Rock	Canadian Geotechnical Society Method	0.50
Compressi on on a Bored Pile Group	Clay	Block Failure	0.65
Uplift for	Clay	a method – for straight shafts	0.55
Single Bored Pile	Sand	Reese and O'Neill method (β method)	0.65
Uplift for	Deal	Carter and Kulhawy method	0.45
Single Bored Pile	Rock	Horvath and Kenny method	0.55
Uplift on Bored Pile Group	Sand or Clay	Sum of individual pile uplift resistance or uplift resistance of pile group considered as a block.	0.55

TABLE 7.3.5-1 RESISTANCE FACTORS FOR BORED PILES

3) Lateral Bearing Capacity

a) Coefficient of Lateral Sub-Grade Reaction (Soil Spring)

The coefficient of lateral sub-grade reaction of the pile shall be computed as given below (refer to JRA Specifications for Highway Bridges, Part IV):

$$k_H = k_{H0} \cdot \left(\frac{B_H}{30}\right)^{-\frac{3}{4}}$$

where:

- k_{H} : coefficient of horizontal sub-grade reaction (kgf/cm³)
- k_{HO} : coefficient of horizontal sub-grade reaction (kgf/cm³) equivalent to a value of plate bearing test using a rigid disk of 30cm in diameter, obtained by the following formula:

$$k_{HO} = \frac{1}{30} \cdot \alpha \cdot E_0$$

 E_0 : modulus of deformation (kgf/cm²) of a particular soil layer given by the following relation:

 $E_0 = 28 \cdot N$

where N is SPT value for that soil layer

(Note: The above correlation has been found, following testing of undisturbed samples obtained for the project, to overestimate the modulus of deformation. The result obtained from the above correlation has therefore been reduced to 40% of its value for the detailed design)

- α :coefficient as given below:
normal timeduring earthquake
 $\alpha = 1$ $\alpha = 1$ $\alpha = 2$
- B_{H} : equivalent loading width of a foundation (cm) which intersects orthogonally a load-working direction and for a pile foundation is given by the following formula:

$$B_H = \sqrt{\frac{D}{\beta}}$$

- *D*: loading width (cm) of a foundation intersecting orthogonally a load working direction
- β : characteristic value (cm-1) of the foundation as given by the following formula:

$$\beta = \sqrt[4]{\frac{k_H \cdot D}{4 \cdot EI}}$$

- *EI* : bending rigidity (kgf·cm2) of the pile
- b) Lateral Bearing Capacity

The critical design condition for the bored piles under lateral loading will be the effects of plastic hinging of the columns or full elastic effects, during an earthquake. The horizontal bearing capacity will therefore be calculated considering conditions during an earthquake.

The horizontal bearing capacity of soil layers in front of the pile shall be determined as follows:

$$P_{u} = \left(K_{ep} \cdot \sigma_{v}^{'} \cdot K_{\phi}^{R} + 2 \cdot c \cdot \sqrt{K_{ep}} \cdot K_{c}^{R}\right) \cdot \eta_{p}$$

where:

 K_{ep} = coefficient of passive earth pressure during an earthquake

$$K_{ep} = \frac{\cos(\phi)^2}{\cos(\delta_e) \cdot \left(1 - \sqrt{\frac{\sin(\phi - \delta_e) \cdot \sin(\phi)}{\cos(\delta_e)}}\right)^2} \le 6$$

- σ_{v} = effective overburden pressure
- ϕ = effective internal friction angle

 $\delta_{\!e}\,$ = friction angle between bored pile and soil, during an earthquake $\delta_{\!e}\,$ = - ϕ / 6

c = effective soil cohesion

 $\eta_{\rm p}$ = correction factor for horizontal ground reaction around a single pile $\eta_{\rm p}\,_{\rm p}{=}\,1.5$

 $K_{\phi}^{R} K_{c}^{R}$ = strength reduction factors for soil properties

$$K_{\phi}^{R} = 0.80$$

$$K_{c}^{R} = 0.70$$

4) Liquefaction Potential

Potential for liquefaction exists for saturated alluvial soils having characteristic as follows:

- Ground water level less than 10 m from ground surface, and
- There are saturated soil sand layer on the depth less than 20m from ground surface, and
- With value of average aggregate size in between 0.02 and 2.0 mm, or
- Resistance ratio for liquefaction $F_L \leq 1$

Resistance ratio for liquefaction is determined with the formula as follows :

$$F_{L} = R/L$$

$$R = C_{w}R_{L} \text{ (with } C_{w} = 1\text{)}$$

$$L = r_{d}K_{hc}\sigma_{V}/\sigma'_{V}$$

$$r_{d} = 1.0 - 0.015x$$

$$\sigma_{V} = \{\gamma_{t1}h_{W} + \gamma_{t2}(x - h_{W})\}/10$$

$$\sigma'_{V} = \{\gamma_{t1}h_{W} + \gamma_{t2}(x - h_{W})\}/10$$

where:

- F_L = Resistance ratio for liquefaction
- R = Dynamic shear strength ratio
- *L* = Shear stress ratio during earthquake
- R_L = Triaxial Cyclic ratio based on SPT and size of soil aggregate
- r_d = Reduction coefficient in direction of shear stress depth during earthquake

 K_{hc} = Horizontal seismic static equivalent coefficient

- σ_V = Total pressure on the depth to be checked kgf/cm²
- σ'_{V} = Effective pressure on the depth to be checked kgf/cm²
- x = Depth from ground surface (m)
- γ_{t1} = Weight per unit volume (tf/m³) of soil over the ground water level
- γ_{t2} = Weight per unit volume (tf/m³) of soil under the ground water level

- γ'_{t^2} = Effective weight per unit volume (tf/m³) of soil under the ground water level
- h_w = Depth of ground water level (m)

Bearing capacity of soil layer to be reduced by coefficient D_{E} given in Table 7.3.5-2

	Depth x (m)	R ≤ 0.3	R > 0.3
$F_L \le 1/3$	$0 \le x \le 10$	0	1/6
	10 < x ≤ 20	1/3	1/3
$1/3 < F_L \le 2/3$	$0 \le x \le 10$	1/3	2/3
	10 < x ≤ 20	2/3	2/3
$2/3 \leq F_L \leq 1$	$0 \le x \le 10$	2/3	1
	10 < x ≤ 20	1	1

TABLE 7.3.5-2REDUCTION COEFFICIENT OF SOIL BEARING
CAPACITY, DE

The Triaxial Cyclic ratio, R_L , is determined with the formula (taken from JRA Part V: Seismic Design) as follows:

$$R_L = R_1 + R_2 + R_3$$

where:

$$R_1 = 0.0882 \cdot \sqrt{\frac{N}{\sigma_v} + 0.7}$$

$$R_{2} = \begin{cases} 0.19 & (0.02mm \le D_{50} \le 0.05mm) \\ 0.225log_{10}(0.35/D_{50}) & (0.05mm < D_{50} \le 0.6mm) \\ -0.05 & (0.6mm < D_{50} \le 0.6mm) \\ (0.6mm < D_{50} \le 2.0mm) \end{cases}$$

$$R_{3} = \begin{cases} 0.0 & (0\% < FC \le 40\%) \\ 0.004 \ FC - 0.16 & (40\% < FC \le 100\%) \end{cases}$$

where:

- N = N-value obtained from standard penetration test
- D_{50} = average grain diameter of soil (mm)
- FC = fine grain content (weight percentage of soil less than 74 m in diameter) (%)

7.4 DRAINAGE DESIGN

7.4.1 Design Standards and Guidelines

The following Indonesia drainage design standard and criteria were followed:

- Manual of Design for road surface drainage 1990, Directorate General of Highways, Directorate of Freeway and Urban Road.
- Guideline of Design for Road Surface Drainage, 1994, Council of Indonesian National Standard.
- Design of Road Drainage System, 2005, Department of Settlement and Infrastructure Region.
- Calculation Method of Overflow Debit, 1991, Council of Indonesian National Standard.

In case that there was some lacking information, other standards listed below were referred:

- Highway Engineering Seventh Edition, Paul H. Wright and Karen Dixon, 2003, John Wiley and Sons, Inc
- Hydrology Analysis, Sri Harto Br, 1993, Gramedia Pustaka Utama, Jakarta.
- Hydraulic for Open Channel, Ven Te Chow, 1992, Erlangga, Jakarta.
- Hydrology for Irrigation, Suyono Sosrodarsono, 1993, Pradrya Paramita, Jakarta.

7.4.2 Design Frequency (Return Period)

The design frequencies adopted in this project adhering to the recommendation found in Guidelines of Design for Road Surface Drainage as shown in **Table 7.4.2**-**1**.

Type of Structure	Return Periods
Box Culvert	1 in 25 Years
Drain Pipe and Pipe Culverts	1 in 10Years
Side Ditches	1 in 5 Years
Surface Drainage	1 in 5 Years

 TABLE 7.4.2-1
 DESIGN FREQUENCIES

7.4.3 Side Ditches / RC PC

Side ditches/RC PC are designed for 5 years return period. The maximum longitudinal slope is 4%, while the minimum is 0.3%. Basically side ditches/RC PC located along under sidewalk, in case that public utilities are occupied under whole sidewalk, side ditches/RC PC are located along under curb and gutter.

7.5 MISCELLANEOUS HIGHWAY FACILITIES DESIGN

Miscellaneous highway facilities to be designed for the flyover and service road includes the followings:

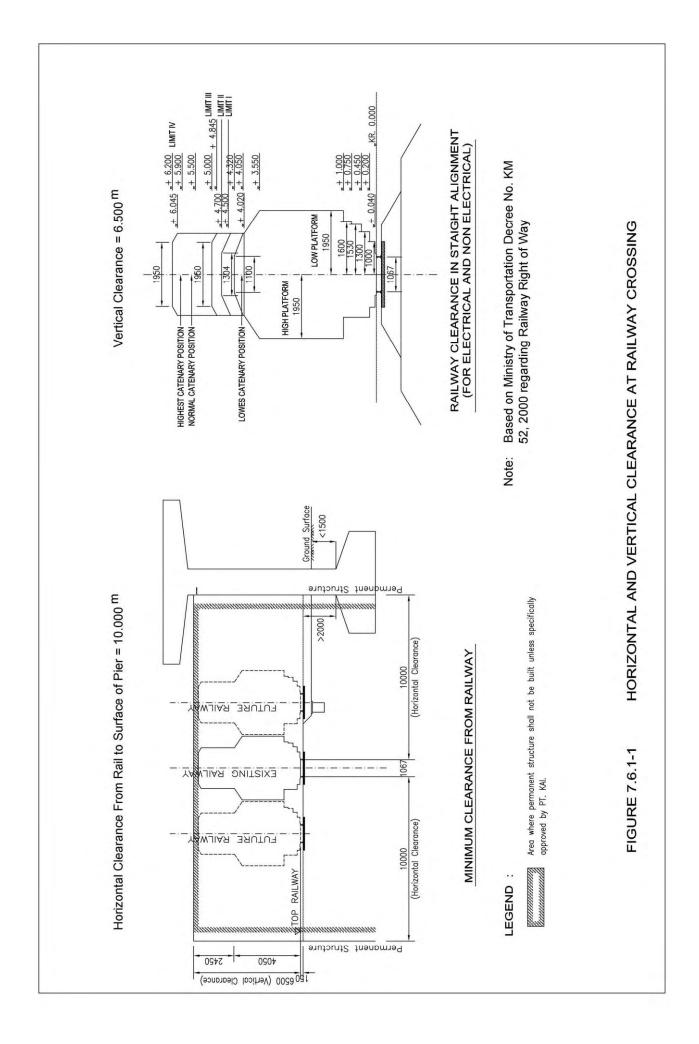
- 1) Guardrails
- 2) Road Signs
- 3) Pavement Marking
- 4) Traffic Signal
- 5) Street Lighting

The following Design Standards, Design Manual, Design Guidelines and specifications are referred for the design.

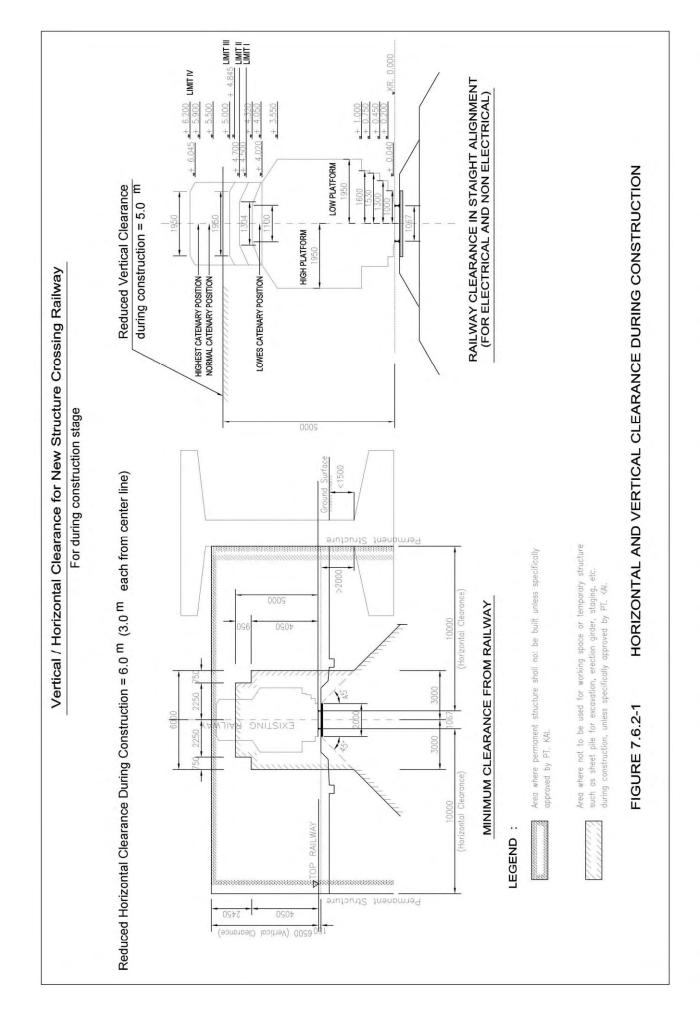
- Ministry of Communication Decree, No. KM 60 Tahun 1993 About Pavement Marking. (Department of Communication Directorate General of Land Transportation)
- Decree no. KM 3 Tahun 1994: Attachment Drawing No. 3 About Guardrail. (Department of Communication Directorate General of Land Transportation)
- Guidance for Location and Standard Specification of Road Side Protection (Guardrail) No. 13. (Department of Public Works Directorate General of Highways Directorate of Freeway and Urban Road)
- Ministry of Communication Decree, No. KM 61 Tahun 1993 About Road Traffic Sign. (Department of Communication Directorate General of Land Transportation)
- Ministry of Communication Decree, No. KM 62 Tahun 1993 About Traffic Signal. (Department of Communication Directorate General of Land Transportation)
- Ministry of Communication Decree, No. KM 65 Tahun 1993 About Traffic Activity Supporting Facility and Road Transportation, Street Lighting. (Department of Communication Directorate General of Land Transportation)

7.6 RAILWAY CROSSING REQUIREMENTS

7.6.1 Horizontal and Vertical Clearance for Permanent Structure


According to the Ministry of Transportation Decree No. KM52,2000, horizontal and vertical clearance for permanent structure is as follows (see **Figure 7.6.1-1**):

Horizontal Clearance - 10.0 m from the rail to surface of pier or permanent structure for each side.
Vertical Clearance - 6.5 m from the top of the rail.


7.6.2 Horizontal and Vertical Clearance During Construction

According to PT. KAI clearance can be reduced to the following (see **Figure 7.6.2-1**):

Horizontal Clearance - 3.0 m from the centerline of the railway for each side. Vertical Clearance - 5.0 m from the top of the rail.

7-37

PART IV

BASIC DESIGN

CHAPTER 8 FLYOVER SCHEME SELECTED

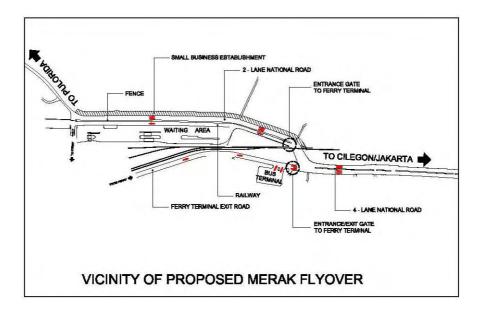
8.1 BACKGROUND

Flyover scheme proposed by the previous study was as follows:

Flyover	Feasibility Study (Year 2003)	SAPROF Study (Year 2004)
Merak	2-lane 2-way flyover over the national road	2-lane 2-way flyover over the national road
Balaraja	2-lane 2-way flyover over the national road	2-lane 2-way flyover over the national road
Nagreg	2-lane 2-way flyover over the national road	2-lane 2-way flyover over the national road
Geban	2-lane 2-way flyover over the national road	2-lane 1 way (Cilebon Bound Direction) over the national road)
Peterongan	2-lane 2-way flyover over the national road	2-lane 2-way flyover over the national road
Tanggulangin	2-lane 2-way flyover over the national road	2-lane 2-way flyover over the national road

In accordance with the recommendations of the SAPROF Study, Directorate General of Highways (DGH) started preparation for the implementation including discussions with the concerned agencies. The flyover scheme of all flyovers except Merak Flyover was accepted by the concerned agencies. Actually, land acquisition activities at three (3) flyover locations (Balaraja, Nagreg and Gebang) have started.

Merak Flyover is strongly related with the Merak Ferry Terminal operated by ASDP under the Ministry of Communication (MOC). MOC and ASDP requested to DGH the following:


- Land taking of the Ferry Terminal Waiting Area is not acceptable.
- Exit ramp from the Ferry Terminal should be a part of Merak Flyover.

In view of above comments of MOC and ASDP, several flyover schemes were studies, which are presented hereunder. Memorandum of understanding on the agreed scheme between DGH and MOC/ASDP was signed in March 2006.

8.2 MERAK FLYOVER SCHEME

8.2.1 Vicinity and Traffic Situation

Merak Flyover recommended by the feasibility study and the SAPROF study is proposed to be constructed over the Cilegon-Pulorida Road where the railway is crossed. Merak Ferry Terminal is located within the project area which provides very important transport linkage between Java Island and Sumatra Island. Access to the Ferry Terminal is provided by this national road.

The road section suffers heavy traffic congestion throughout a day. Travel speed at the flyover section drops to $18 \sim 20$ km/hr from 35 to 37 km/hr of adjacent road sections. Causes to traffic congestion are as follows:

- Very heavy side friction due to mini-buses stopping at road side for loading and unloading of passengers and street vendors.
- Heavy local traffic related to business activities besides the road.
- Train passing (6 times a day, traffic queue extends for about 60m in an average and 115m at maximum).
- Intersection at the exit of Ferry Terminal (intersection is not signalized traffic going to Pulorida side and outgoing traffic from the Ferry Terminal conflict each other)

Daily traffic volume is as follows (see Figure 8.2.2-2);

1) National road (before and after flyover)

Pulorida side	:	6,300 veh/day
Cilegon side	:	18,800 veh/day

- 2) Local traffic along National Road : 6,100 veh/day
- 3) Ferry terminal related traffic volume:

Entrance/Exit gate	To Ferry Terminal	800 veh/day
	Outgoing from Ferry Terminal	3,000 veh/day
Entrance Gate	To Ferry Terminal	2,600 veh/day

8.2.2 Alternative Flyover Schemes

The original scheme proposed by the feasibility study and the SAPROF Study is to construct a flyover along the national road over passing the railway, thus through traffic will utilize a flyover and local traffic and Ferry Terminal related traffic will utilize at-grade service road.

Comments on the original scheme of ASDP were as follows:

- The original scheme requires land acquisition of Ferry Terminal's waiting area.
- The original scheme is not beneficial to the Ferry Terminal

Schemes to minimize land taking of waiting area and provide direct access from the flyover to waiting area (or to provide exclusive lane) were proposed. On February 8, 2006, MOC sent a letter to DGH recommending to accommodate the outgoing exit ramp from the Ferry Terminal to the flyover.

In view of above development, five (5) alternative schemes of Merak Flyover were developed and evaluated.

Table 8.2.2-1 shows concept of each scheme.Figure 8.2.2-1 shows the plan ofeach scheme.Table 8.2.2-2 presents traffic volume of each scheme.

Ferry Terminal Related Traffic	 Utilize at-grade road 	 Traffic to and from Entrace/Exit Gate utilizes at-grade road 	Utilize at-grade road	 Phase 1 & 2 Exit traffic except buses from bus terminal utilizes the ramp Traffic going to waiting area utilizes at-grade road 	 Entrance traffic going to waiting area utilizes at- grade road
Local Traffic	 Utilize at- grade road 	 Local traffic going to Cilegon side will utilize at- grade road 	 Local traffic going to Cilegon side will utilize at- grade road 	Phase 1 • Utilize at- grade road (both directions) Phase 2 • Traffic going to Cilegon side utilizes at- grade road	 Local traffic going to Cilegon side will utilize at- grade road
Grade Separation with the Railway	All through traffic	 All through traffic Local traffic going to Pulorida side Ferry terminal traffic going to the waiting area 	 All through traffic Local traffic going to Pulorida side 	Phase 1 • Through traffic going to Cilegon side Phase 2 • Through traffic going to Pulorida side	 All through traffic Local traffic going to Pulorida side
Flyover Traffic	All through traffic along national road	 All through traffic Local traffic going to Pulorida side Ferry Terminal traffic going to the waiting area 	 All through traffic Local traffic going to Pulorida side 	 Phase 1 Through traffic going to Cilegon side Exit traffic from Ferry Terminal except buses from the bus terminal Phase 2 All traffic going to Pulorida side 	 All through traffic Local traffic going to Pulorida side Exit traffic from Ferry Terminal except buses from bus terminal
Direction of Flyover	 Along national road (2- lane 2 way flyover) 	 Along national road (2- lane 2-way flyover with an exclusive lane) 	 Along national road (2- lane 2-way flyover) 	 One-lane 1-way flyover (Cilegon-bound direction) One-lane 1-way Ferry Terminal Exit Ramp Y-shared Flyover Phase-2 : One-lane 1- way flyover (Pulorida- bound direction at 3rd level) 	 Along National Road 2- lane 2-way flyover at 2nd level Ferry Terminal Exit Ramp at 3rd level
Basic Concept	Scheme recommended by F/S and SAPROF	 Revised scheme of Alternative-1. Flyover with an exclusive lane accessing to the waiting area. 	 Revised scheme of Alternative-1. No land acquisition of Ferry Terminal Waiting Area 	 To provide Ferry Terminal Exit Ramp Stage Construction Phase-1 : Second level flyover Phase-2 : Third level flyover 	 Alternative-1 pules Ferry Terminal Exit Ramp at 3rd level
Alter- native		7	£	4	£

TABLE 8.2.2-1 CONCEPT OF EACH ALTERNATIVE SCHEME

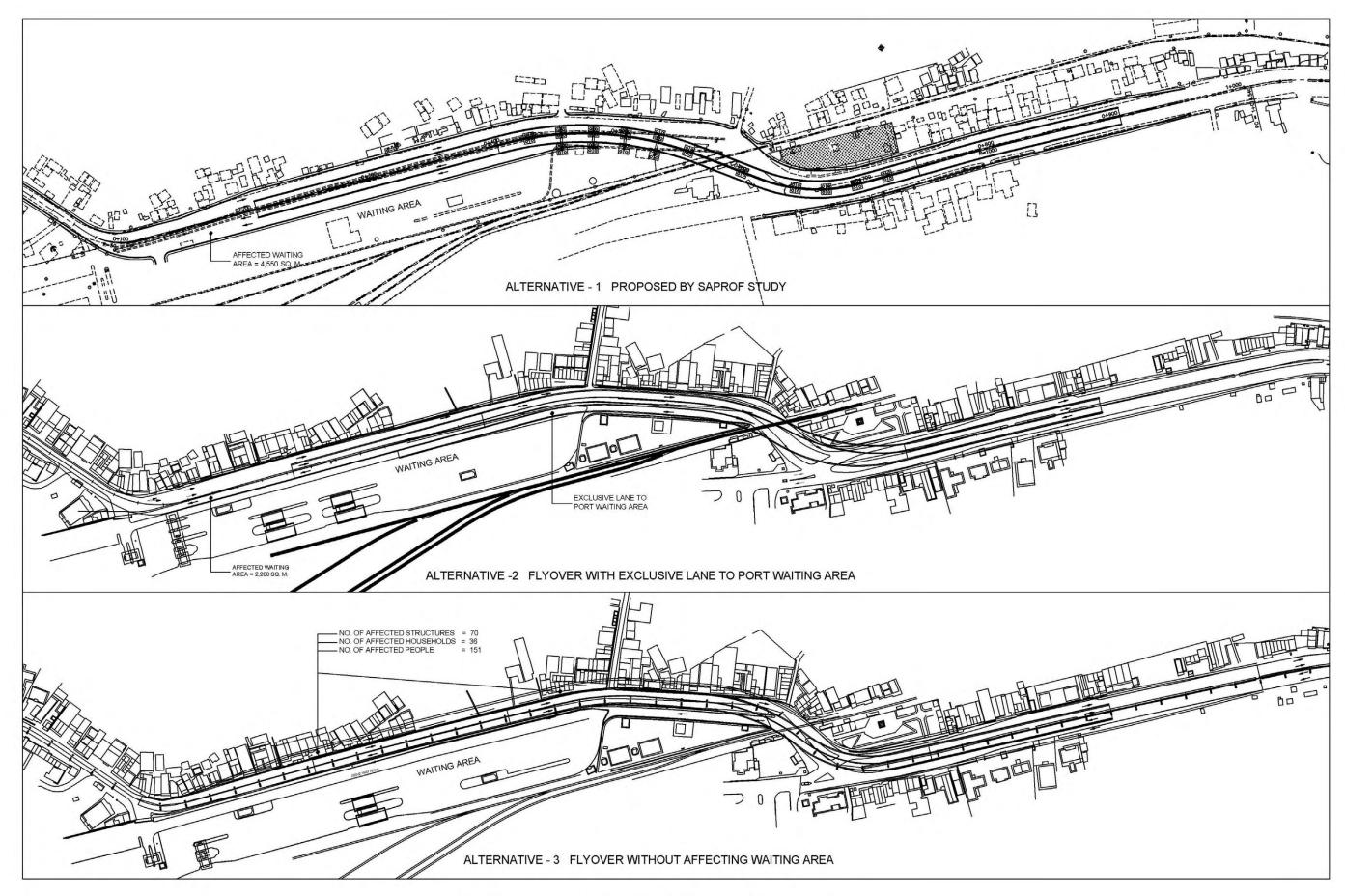


FIGURE - 8.2.2-1 (1/2) ALTERNATIVE FLYOVER SCHEMES

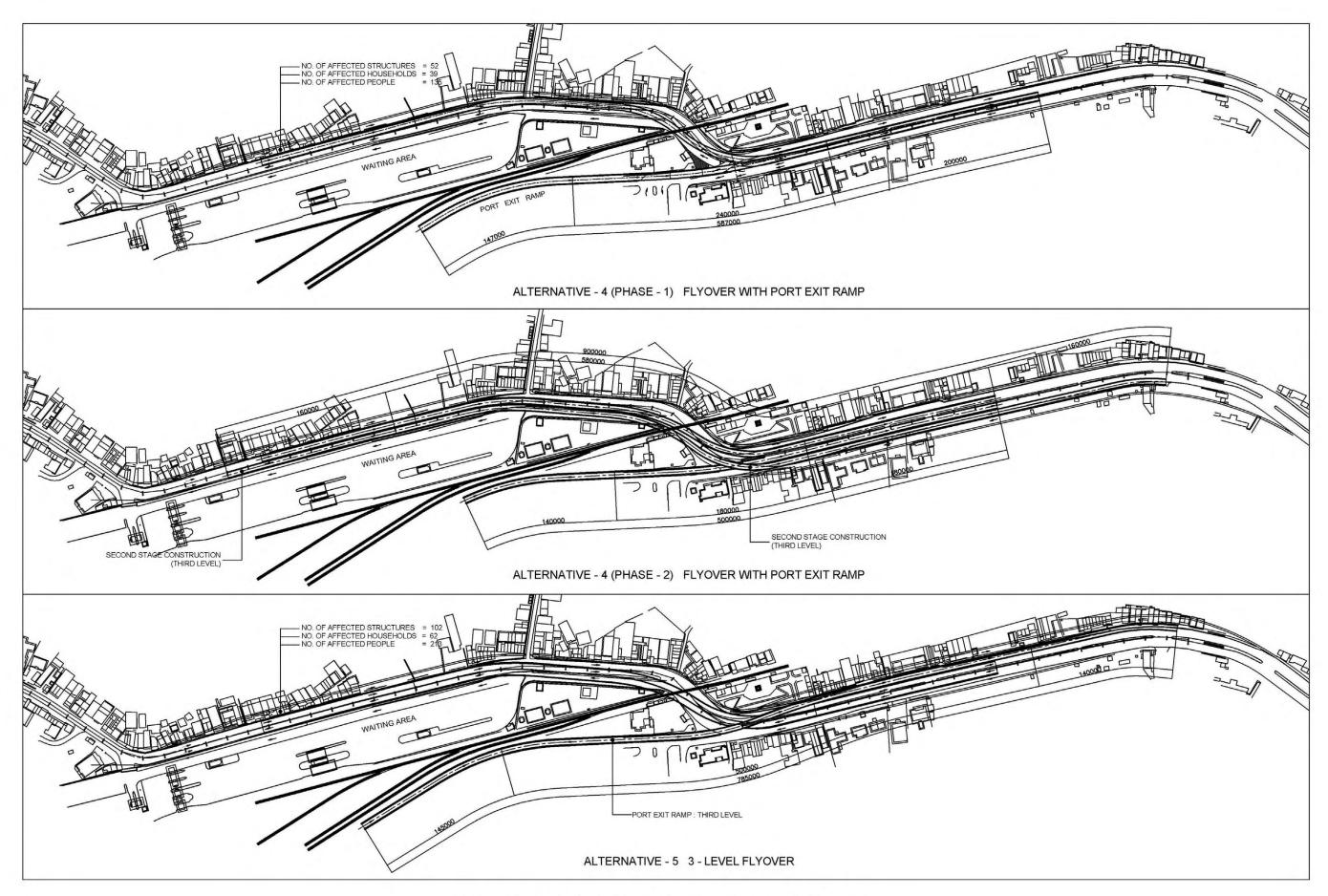


FIGURE - 8.2.2-1 (2/2) ALTERNATIVE FLYOVER SCHEMES

8.2.3 Evaluation of Alternative Schemes

Alternative schemes were evaluated on the following factors:

	Evaluation Factor	Weight (points)
1.	Transport Contribution of Flyover (traffic volume attracted to flyover)	10
2.	Impact to de-congest at-grade road (traffic volume remaining at- grade road)	10
3.	Achievement of grade separation with the railway (% of traffic volume grade-separated)	5
4.	Intersection traffic capacity improvement at Ferry Terminal Exit Gate (Volume Capacity Ratio)	10
5.	Land acquisition of Ferry Terminal Waiting Area	10
6.	Social Impact (No. of household affected)	20
7.	Construction cost	15
8.	Acceptance of MOC/ASDP	15
9.	Flyover Function as National Road	5
		100

Results of evaluation are summarized in Table 8.2.3-1.

TABLE 8.2.3-1 EVALUATION OF ALTERNATIVE SCHEMES

8.2.4 Recommendation and Selected Scheme

All alternative schemes were presented to DGH, MOC and ASDP. Following were determinant factors in selecting the final scheme for Merak Flyover:

- <u>Alternative-1</u> : land acquisition of the waiting area is not acceptable to MOC/ASDP.
- <u>Alternative-2</u> : although this scheme contributes to traffic condition improvement, land acquisition of the waiting is not acceptable to MOC/ASDP. The Ferry Terminal is quite important transport facility to provide continuous national road linkage via sea transport between Java Island and Sumatra Island, however, this scheme does not solve traffic problems at the exit of the ferry terminal.
- <u>Alternative-3</u> : Social impact is high and this scheme has the same problems as alternatives 1 and 2.
- <u>Alternative-4</u> : This scheme is the most preferred one by both DGH and MOC/ASDP, since ferry terminal traffic improvement contributes to overall national transport efficiency.
- <u>Alternative-5</u> : Exist ramp from the Ferry Terminal is located at the 3rd level, requiring long approaches with steep gradient. Most traffic utilizing this ramp is large vehicles such as trucks and buses, therefore, not preferred by MOC/ASDP. Construction cost will be very high and cannot be covered by the loan, thus not acceptable by DGH as well.

The selected scheme for the Merak Flyover is Alternative-4 and the phase 1 is implemented under this project.

8.3 REMAINING FIVE FLYOVER SCHEME

Flyover scheme recommended by the SAPROF Study was adopted for the remaining 5 flyovers as follows:

Flyover	Flyover Scheme
Balaraja	2-lane 2-way flyover over the national road
Nagreg	2-lane 2-way flyover over the national road
Gebang	• 2-lane 1-way flyover (Cilebon bound direction) over the national road
Peterongan	2-lane 2-way flyover over the national road
Tanggulangin	2-lane 2-way flyover over the national road

Recommended bridge length, bridge type, approach embankment type, etc. by the SAPROF Study were reviewed in the Basic Design.

CHAPTER 9

SELECTION OF BRIDGE TYPE

9.1 BRIDGE TYPE SELECTION PROCEDURE

Bridge type selection procedure is shown in **Figure 9.1-1** based on the preliminary planning of bridge spans and geological conditions of 6 flyovers, bridges were grouped into 4 (four) and the optimum type of bridge was selected for each group. Two-step evaluation procedure was adopted, namely initial screening of bridge types and the detailed comparative study of screened bridge types to select the optimum bridge type for each group.

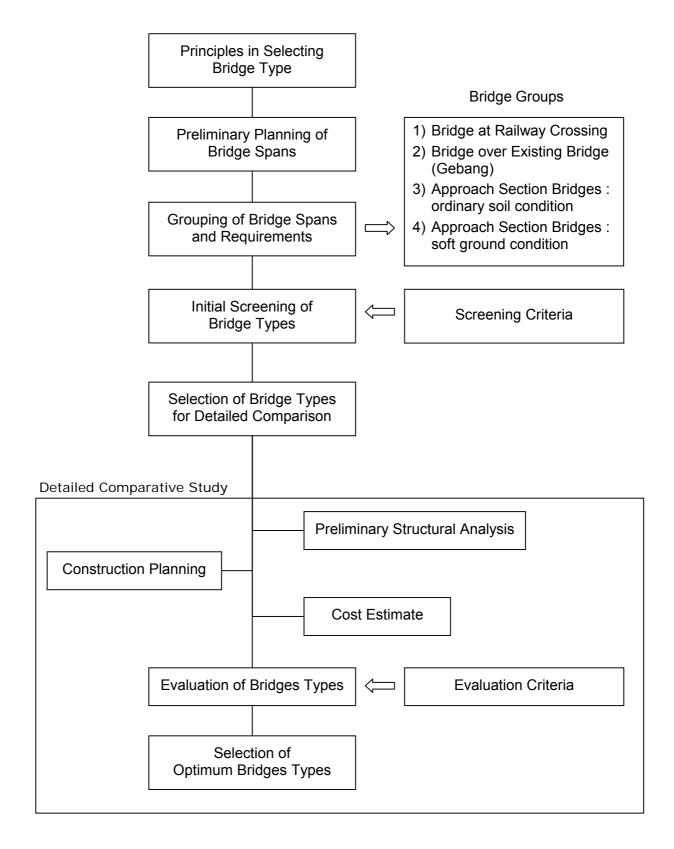
9.2 PRINCIPLES IN SELECTING BRIDGES TYPE

Flyovers will be constructed in the urban areas with high traffic volume and narrow construction sites. Bridge type must be selected in due consideration of such conditions. Principles in selecting bridge type were established as follows :

Principles in Selecting Bridge Type

Primary Principles

- Must be economical.
- Fast construction is possible.
- Traffic disturbance can be minimized.
- Bridge system must be strong against earthquake.


(integration of superstructure and substructure should be achieved as much as possible)

Secondary Principles

- Maintenance is easy and less costly.
- Aesthetic consideration. (match with urban scenery)
- Introduction of new technology.

Special Consideration

• STEP Loan requirement must be satisfied.

FIGURE 9.1-1 BRIDGE TYPE SELECTION PROCEDURE

9.3 PRELIMINARY PLANNING OF BRIDGE SPANS AND GROUPING OF BRIDGES

Preliminary planning of bridge spans was undertaken and bridges were grouped in consideration of requirement of span length, horizontal alignment (straight section or curved section) requirement and soil conditions. **Table 9.3-1** shows such bridge requirements by each flyover.

Flyover	Bridge Location	Horizontal alignment Requirement	Minimum Span Length Requirement	Soil Condition
	Railway Crossing	Curved	25 m ~ 35 m	
Merak	Approach Bridge	Almost Straight	Any length (usually shorter span is more economical)	Ordinary
	Intersection	Curved	20 m ~ 30 m	
Balaraja	Approach Bridge	Almost Straight	Any length (usually shorter span is more economical)	Ordinary
	Railway Crossing	Curved	25 m ~ 30 m	
Nagreg	Approach Bridge	Almost Straight	Any length (usually shorter span is more economical)	Ordinary
	Over Existing Bridge	Almost Straight	35 m ~ 45 m	
	Intersection	Almost Straight	20 m ~ 30 m	
Gebang	Between Existing Bridge and Intersection	Almost Straight	Any length (usually shorter span is more economical)	Soft
	Approach Bridge	Almost Straight	- do -	
	Railway Crossing	Almost Straight	25 m ~ 35 m	
Peterongan	Approach Bridge	Almost Straight	Any length (usually shorter span is more economical)	Ordinary
	Railway Crossing	Curved	25 m ~ 30 m	
Tanggulangin	Approach Bridge	Almost Straight	Any length (usually shorter span is more economical)	Soft

TABLE 9.3-1 BRIDGE REQUIREMENT

Based on the **Table 9.3-1**, bridges were classified into four groups as shown in **Table 9.3-2**.

	Bridge Group	Characteristics	Approximate share in Total Bridge Length
1.	Approach Bridge (Standard Soil Condition)	 Any span length will be applicable, however, shorter span length is usually more economical. Almost straight alignment Economical span length is usually 20 m ~ 30 m. 	35%
2.	Approach Bridge (Soft Soil Condition)	 Any span length will be applicable. Almost straight alignment Economical span length need to be determined. 	25%
3.	Railway Crossing	 Span length = 25m ~ 35m Curved alignment 	35%
4.	Over the Existing Bridge (Gebang Flyover)	 Span length = 35m ~ 45m Almost straight alignment 	5%

TABLE 9.3-2 BRIDGE GROUPS

9.4 INITIAL SCREENING OF BRIDGE TYPES

Table 9.3-2 shows that applicable span length for the Project varies from 15 to 45 m. All applicable types of bridges for the said range of spans were listed and evaluated based on the following criteria :

Screening Criteria	
Not applicable	
 Possible under some conditions 	
Possible	
Appropriate	

Table 9.4-1 shows the initial screening of bridge types for each bridge group, which are summarized as shown below :

Bridge Types for Detailed Comparative Study
Group 1 Approach Bridge (Standard Soil Condition)
PC I-Girder or T-Girder
PC Double Girder
Group 2 Approach Bridge (Soft Soil Condition)
PC I-Girder or T-Girder
PC Double Girder
Steel I Girder (2-3 Girders)
Group 3 Railway Crossing
Steel I Girder (2-3 Girders)
Small Sized Steel Box Girder
Group 4 Over the Existing Bridge (Gebang Flyover)
Steel I Girder (2-3 Girders)
Small Sized Steel Box Girder

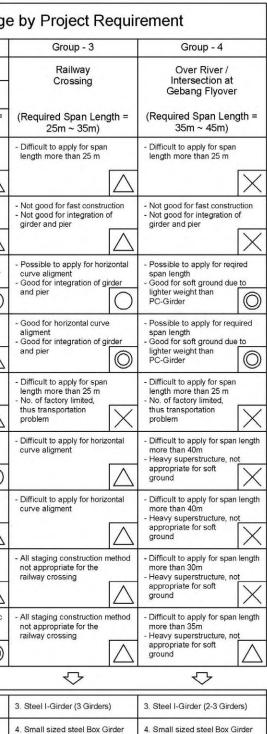
9.5 BRIDGE TYPE SELECTION FOR GROUP 1 (APPROACH BRIDGE, ORDINARY SOIL CONDITION)

9.5.1 Preliminary Structural Analysis

1) General

The type of substructure identified for the flyovers in the SAPROF study was single column piers supported on single large diameter bored piles. The advantages of single large diameter bored piles in providing a fast construction method, as identified by the SAPROF study, and the flexibility afforded to the structure in responding to seismic loading, led the Study Team to retain this foundation type for the Basic Design.

In identifying type of substructure for Basic Design, comparative studies were undertaken of the following:


- a) Overall structure type
- b) Single circular column and double circular column piers
- c) Reinforced concrete and steel/concrete composite columns

Circular column piers were selected as these give the optimum section for providing a ductile response to earthquake loads, both as reinforced concrete and as composite concrete columns.

TABLE 9.4-1

INITIAL SCREENING OF SUPERSTRUCTURE TYPES

						Applica	bility to Va	arious Con	ditions			Applic	able Type of Bridg
												Group - 1	Group - 2
		Type of	Section	Economically Applicable				ty to Curved	-	Integration	STEP Loan	Approac	h Section
13	Sup	erstructure		Span Length (m	n) Girder Depth	Deck Slab	Se	ction	Fast Construction	of Superstructure and	JAFAN	Standard Soil Condition	Soft Soil Condition
				20 30 40 15 25 35	45		Main Girder	Slab		Substructure	Products)	(Applicable Span Length = 20m ~ 30m)	(Applicable Span Length = 20m ~ 30m)
		1. H-Girder	TTTTT		1/30 max. 1.0m	RC	(Straight Girder)	(Adjustable by Cantilevered Slab)	\triangle	\bigtriangleup	0	Difficult to apply for span length more than 25 m Cost is higher than concrete type of bridge	- Difficult to apply for span length more than 25 m - Cost is high
		2. Conventional I-Girder (Multi-Girders)	LITIT		1/22~1/18	RC	(Curved Girder)	(Adjustable by Cantilevered Slab)	\triangle	\triangle	0	Cost is higher than concrete type of bridge	Not good for fast construction Not good for integration of girder and pier Cost is high
51	eel	3. I-Girder (2-3 Girders)			1/20	Steel Composite or PC Slab	(Curved Girder)	(Adjustable by Cantilevered Slab)	0	0	Ø	- Cost is higher than concrete type of bridge	Possible to apply due to lighter weight than concrete bridge for soft ground
		4. Small Sized Box-Girder			1/20 min. 1.2m	Steel Composite or PC Slab	(Curved Box)	O	0	O	O	- Cost is higher than concrete type of bridge	- Cost is high
		5. Pre-tensioned Slab Beam			1/24	No Need	×	×	O	×	0	Difficult to apply for span length more than 25 m - No. of factory limited, thus transportation problem	Difficult to apply for span length more than 25 m No. of factory limited, thus transportation problem
crete	Precast	6. I-Girder			1/16	RC	(Straight Girder)	(Adjustable by Cantilevered Slab)	O		0	- Good for fast construction - Not good for integration of girder and pier	- Good for fast construction - Not good for integration of girder and pier
Presstressed Concrete		7. U-Girder			1/16	PC	(Straight Girder)	(Adjustable by Cantilevered Slab)	\triangle	\triangle	0	- Not good for fast construction - Not good for integration of girder and pier	- Not good for fast construction - Not good for integration of girder and pier
Pres	situ	8. Void Slab	L_00000000		1/22	No Need (RC for canti- levered slab)	O	O	\triangle	O	0	- Not good for fast construction - Heavier structural weight than other types	Not good for fast construction Heavier structural weight than other types
	Cast-in-s	9. Double T-Girder			1/16	PC	O	O	0	O	0	Fast construction by systematic form Good for integration of girder and pier	Fast construction by systematic form Good for integration of girder and pier
			LEGEND :		pplicable							$\overline{\nabla}$	\bigcirc
			LEGEND .		pplicable	a a a a diti a a			More	Detailed		6. PC I-Girder or T-Girder	3. Steel I-Girder (3 Girders)
					ble under some	e condition				parative Study	\sqsubseteq	9. PC Double Girder	6. PC I-Girder
) : Possi									9. PC Double T-Girder
			0	O : Appro	priate				<u> </u>				

2) Overall Structure Type

The Indonesian Bridge Management System (Bridge Design Manual Volume 1) groups bridges into three (3) types, A, B and C, in accordance with their ductile seismic performance. These types and their characteristics are presented in **Table 9.5.1-1**.

The results of a comparative study of these three (3) types for adoption in this Flyover Project are presented in **Table 9.5.1-2**. As a result of this comparative study, the integrated type of structure (Type A) was basically considered for adoption as the bridge type applicable to this Project.

3) Single Column and Twin Column Piers

A comparative study was undertaken on the type of pier to be adopted for the approach sections of the Project Flyovers. The results of a comparative study of single column piers and twin column piers are presented in **Table 7.5.1-3**. As a result of this comparative study twin column piers were basically considered for adoption as the pier type applicable to the approach sections of the Project Flyovers.

4) Reinforced Concrete and Steel/Concrete Composite Columns

A comparative study was undertaken on the type of column to be adopted for the approach sections of the Project Flyovers. The results of a comparative study of reinforced concrete and composite columns are presented in **Table 9.5.1-4**. As a result of the comparative study, reinforced concrete columns were basically considered for twin column piers and composite columns were considered for single column piers as the column types applicable to the approach sections of the Project Flyovers.

BRIDGE TYPE A (Integrated)	BRIDGE TYPE B (Continuous with Bearing Support)	BRIDGE TYPE C (Simple Supports)
 Continuous superstructure All columns framed into superstructure and foundations Lateral forces resisted in flexure of pier columns 	 Joints in the superstructure and between the superstructure and piers are permitted All pier columns are framed into the foundations Lateral forces resisted in flexure of pier columns 	 Usually restricted to small bridges Has no ductility in the post elastic range
Type A bridges have best seismic performance and should be chosen for important bridges in Zone 1.	Type B bridges are suitable for less severe earthquake zones but may suffer unacceptably large permanent deformations if used in Zone 1.	For small bridges where extra strength demanded can be easily provided at little cost, Type C bridges will be the most suitable.
intense shaking than calcul	will generally survive more ated during design because ually greater than the reliable	The lack of ductility in Type C bridges will result in collapse or extensive damage if the design load level is exceeded

TABLE 9.5.1-1	CLASSIFICATION OF BRIDGE PERFORMANCE (BMS)
---------------	--

	Ductile Response	Inspection and Maintenance	Constructability	Foundation Costs	Conclusion
TYPE A (Integrated)	Excellent.	Inspection and maintenance obligation reduced to a minimum.	Requires least number of construction stages.	Lowest foundation cost for a given span length.	Recommended
TYPE B (Continuous)	Moderate	Bearings still required at every support with necessary inspection and maintenance.	Requires construction stage (and space) for pier crosshead.	Foundation costs similar to Type C bridges.	Not recommendable given headroom constraints on pier crosshead construction.
TYPE C (Simple Supports)	Very Poor	Bearings and expansion joints require significant inspection and maintenance obligation	Heavily dependent on access for crane to lift beams. Requires several stages of construction.	Highest foundation cost for a given span length.	Not Recommended

TABLE 9.5.1-2 COMPARATIVE STUDY ON STRUCTURE TYPE

		IABLE 9.5.1-3 COMP	ABLE 9.5.1-3 COMPARISON OF PIER 17PE		
	Ductile Response	Integration with Superstructure	Applicability of Composite Column Construction	Foundation Costs	Conclusion
TWIN COLUMN	Excellent (Highest Response Modification Factor R=5 in reducing elastic seismic demand)	Ideal for concrete double girder deck integration	Not recommended given that twin RC column construction already provides a competitive design.	Lowest foundation cost for a given span length.	Recommended unless construction space unavailable
SINGLE COLUMN	Moderate (R=3)	Most suitable for integration with steel decks as a composite column (with main girders offset from column).	Recommended where steel deck construction is adopted and to reduce foundation costs (plastic hinge demand lower than RC column)	Higher foundation costs than twin column. Still competitive compared to wall type piers.	Recommended where construction space is unavailable for twin columns.

TABLE 9.5.1-3 COMPARISON OF PIER TYPE

	Ductile Response	Applicability to Twin/Single Column Pier	Integration with Superstructure	Foundation Costs	Conclusion
RE INFORCED CONCRETE COLUMN	Requires attention to detailing of confinement reinforcement to achieve ductile behavior.	Most applicable to twin column pier.	Ideal for concrete double girder deck integration	Highly competitive in combination as twin column piers.	Most recommendable for use in twin column piers to support concrete decks
COMPOSITE COLUMN	Excellent. Confining effect on concrete and post yield behavior of steel tube gives highly ductile column.	Most applicable to single column pier	Most suitable for integration with steel decks	Most competitive as a single column pier. The more compact section reduces minimizes plastic hinge demand	Most recommendable for use in single column piers to support steel decks

TABLE 9.5.1-4 COMPARISON OF COLUMN TYPE

5) Detailed Analysis of Substructure for Comparative Study

As part of the comparative study, a detailed analysis was undertaken to identify foundation sizes of three (3) types of structure:

- a) PC Double Girder Deck integrated with reinforced concrete double column piers
- b) 3-I Steel Girder Deck integrated with reinforced concrete double column piers
- c) Pre-stressed concrete T Girder Deck simply supported on reinforced concrete double column piers

The detailed analysis was carried out using a four (4) span frame with 20m, 25m and 30m spans, with 6m high pier columns, subject to seismic loads corresponding to Indonesian Seismic Zone 3. All piers were supported on single large diameter bored piles and average soil conditions were assumed in providing support to the piles in the analysis. The analysis worked to the limits of pier column diameter and pile diameter in each case, in order to fully expose differences in the designs. (Pier column diameters smaller than 900mm, however, were not selected given the substantial moment magnification effects encountered due to column slenderness for this small diameter column.) It is noted that the pier column diameters and pile diameters finally selected for the Basic Design are larger than those identified in this comparative study, given the range of pier column heights, the variable soil conditions and the different seismic zones encountered at each Flyover.

The results of the analysis for 20m spans are shown in **Table 9.5.1-5**.

As can be seen from the results of the detailed analysis, the integrated concrete deck structure requires smaller diameter columns than the simply supported concrete deck structure. This is because of two (2) factors:

- (1) the structure integration results in the column responding to seismic loads with resisting moments at both the top and bottom of the column, whereas the column supporting the simply supported responds with maximum moments only at the base (in the longitudinal direction), and
- (2) the slenderness of the columns supporting simply supported decks is greater for a given column diameter (in the longitudinal direction) than that of columns integrated with the deck, leading to larger moment magnification factors for columns with simple supports.

It is noted that the overall response to seismic loading is less for the simply supported deck (in the longitudinal direction) given that the structure is more flexible and therefore generates less demand during an earthquake. However, the influence of the two (2) factors mentioned above is such that finally the design moments in the columns of simply supported concrete decks are greater than for integrated concrete decks (with dead load for each type of deck not substantially different).

The pile diameters of the simply supported concrete decks are larger than for the integrated concrete decks. The larger demand at the base of the simply supported decks resulting in larger column sizes lead directly to larger plastic hinging effects at the column base and larger piles sizes as a result.

The steel deck case generated the lowest demand of all three types given that the dead load of the deck is comparatively light.

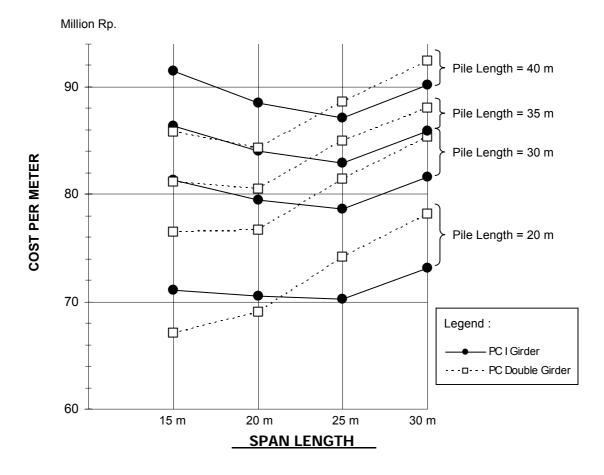

			PIŝ	stic Hingin	Plastic Hinging Effects - 20m Span case	0m Span o	ase				
				Column					Pile		
Dark	Mag.	Dia	Mptop	т	Mpbase	٨p	Dia	Mmax	Rebar	Disp	Rot
2002	Factor	mm	kNm	E	kNm	kN	٤	kNm		сm	rad
PC Double (Integrated)	1.14	006	3300.0	6.0	2300	933	1.3	5000.0	2.5%	12	0.025
Steel 3-I Girder (Integrated)	1.10	006	2720.0	6.0	2140	810	1.3	4130.0	2.0%	6	0.020
PC T Girder (Simply Supported)	1.18	1000	3400.0	6.0	4350	1292	1.5	8500.0	3.0%	15	0.028
NOTE:		astic Mon	Mp = Plastic Moment Capacity of Column	of Column	H = Column Height	ı Height		Mmax = Maximum moment in pile	ximum mon	nent in pile	
	Vp = Pl; Displace	astic Shea aments an	Vp = Plastic Shear Capacity of Column Displacements and rotations are at pile top	Column °e at pile top							
	JRA Par JRA Par (vielding	JRA Part V (Seismic I JRA Part IV (Substru (vielding foundation)	JRA Part V (Seismic Design) re JRA Part IV (Substructures) r (vielding foundation)	ecommendec recommende	l allowable dis d allowable di	splacement isplacement	of pier of pier	JRA Part V (Seismic Design) recommended allowable displacement of pier foundation is 0.02 rad (yielding foundation) JRA Part IV (Substructures) recommended allowable displacement of pier foundation is 40cm and 0.025 rad (vielding foundation)	0.02 rad (yi s 40cm and	elding fou 0.025 rad	indation)
	N ***		(110)								

TABLE 9.5.1-5 COMPARISON STUDY ON SUBSTRUCTURE (TWIN COLUMN PIERS)

6) Cost Comparison by Span Length

Cost comparison by span length for bridge types of PC I Girder and PC Double Girder is shown in **Figure 9.5.1-1**. The cost includes superstructure, substructure and foundation and is shown in cost per meter of bridge.

- PC I Girder : Although costs of 15, 20 and 25 meter-span are almost same, but 25 meter-span is most economical with slight advantage.
- PC Double Girder : Costs of 15 and 20 m span are almost same, but pile length increases, 20 m span becomes most economical.

D'I		Const	ruction Cost	per m (Millio	n Rp.)
Pile Length	Bridge Type		Span L	ength	
		15 m	20 m	25 m	30 m
20 m	PC I Girder	71.1	70.5	70.2	73.1
20111	PC Double Girder	67.1	69.0	74.2	78.2
30 m	PC I Girder	81.3	79.5	78.6	81.6
30 11	PC Double Girder	76.5	76.7	81.4	85.3
35 m	PC I Girder	86.4	84.0	82.9	85.9
35 11	PC Double Girder	81.1	80.5	85.0	88.0
40 m	PC I Girder	91.5	88.5	87.1	90.2
40 11	PC Double Girder	85.8	84.3	88.6	92.4

FIGURE 9.5.1-1 COST COMPARISON BY SPAN LENGTH

9.5.2 Bridge Type Selection

Comparison of bridge types is shown in **Table 9.5.2-1**.

Evaluation was made adopting weighted point method and criteria are shown below :

	Evaluation Criteria	
Fac	tor	Weight
1.	Construction Cost	40
2-1	Construction Difficulty / Effective Traffic Management	10
2-2	Construction Period (Fast Construction)	12
3-1	Structural Aspect (Applicability to Horizontal	5
3-2	Curvature) Structural Aspect (Applicability to Integrated Pier and	10
	Earth-quake Resistance	2
4.	Maintenance	3
5.	Introduction of New Technology	5
6.	Aesthetics	10
7.	STEP Loan Requirement Consideration	5
	(Japanese Contents)	
Tota	1	100
		points

Table 9.5.2-1 shows that

- All types are competitive in terms of construction cost.
- PC Double Girder has advantages in the following factors :
 - Construction period
 - Applicability to horizontal curvature
 - Applicability to integrated pier and earthquake resistance
 - Maintenance
 - Introduction of new technology
 - Aesthetic
 - STEP Loan Requirement

In view of above, <u>PC Double Girder</u> was recommended for Group 1 bridges.

	DE	SCRIPTION				SCHEME 6	PC T-GIRDE	R			SCHEN	IE 6' PC I-GIRE	ER (Indonesia	Standard)			5	CHEME 9 PC	DOUBLE GIRE	DER	
	S	ECTION		₩-27.8 ton/1 27.9 ton/1 29.0 ton/1 n	n-25m Span n-30m Span 750	5500 1750 3500 2 200 3 8 200 3 8 3600 RC COLUMN # 110 2400290200290290290	-	750 1	<u> </u>	₩-25.9 ton A. 28.2 ton A. 30.2 ton A.	n-25m Span n-30m Span 750m Span 750m THICK ASPIALT WEARING COURSE -CAST FORM, t=70mm 750 750 750 750 750 750 750 750	13 1750 5500 2.00 3 2.00 3 2.00 2.00 2 RC COLLIAN # 1000 COLLIANN # 1000 COLLIANN # 1000 COLLIANN # 1000	3300 ~ 1100	720 720 720 (AST-H-FLAC) 0 720 720 720 720 720 720 720	2	W-23.6 ton/1.7 25.4 ton/1.7 27.6 ton/1.7		2500 1750 200 3 200 3 200 3 200 3 8 200 3 8 200 3 8 200 3 8 200 3 8 200 3 8 200 3 8 200 2 200 3 8 200 3 200 3 8 200 3 200 3		750 1750 1750 (CAST-94-PLACE) 8 3000 10 10 10 10 10 10 10 10 10	
iem Io.		Criteria	Max Point			Evaluat	ion	LM : linear meter	Point	1		Evaluatio	on	LM : linear meter	Point			Evaluat	ion	LM : linear meter	Poi
				Span Length	Cost M Rp /span	Cost /LM	LM Cost Ratio	Remarks		Span Length	Cost M Rp /span	Cost /LM	LM Cost Ratio	Remarks		Span Length	Cost M Rp /span	Cost /LM	LM Cost Ratio	Remarks	
		Cost / Economic Aspect	40	20m Span	1,378.5	68.93	1.00	Girder Height = 1.40m	40	20m Span	1,386.8	69.34	1.01	Girder Height = 1.25m	40	20m Span	1,361.9	68.10	0.99	Girder Height = 1.20m	40
1	oundation)			25m Span	1,749.0	68.96	1.00	Girder Height = 1.60m		25m Span	1,794.3	71.77	1.03	Girder Height = 1.60m	4	25m Span	1,839.8	73.59	1.05	Girder Height = 1.60m	_
_			_	30m Span	2,171.3 Erection of Girder	72.38	1.00	Girder Height = 2.00m	_	30m Span	2,130.1	71.00	0.98	Girder Height = 1.70m	-	30m Span	2,439.4	81.31	1.12	Girder Height = 2.00m	_
Construction Drinkdury 7 Effective Traffic Managment 10 Precast PC panel is used as forms for deck slab concreting between girders, which will also constitute a pant of deck slab. Ordinary forms are used for contilevered deck slab. Several steps of concreting for coping, diaphragm and slab are involved. Several steps of concreting construction of substructure.					8		Ordinary forms are Several steps of c	is used as forms used for cantilev oncreting for copir	for deck slab co ered deck slab. ng, diaphragm ar		8	but traffic is disturbed more than other - types - Faster -	(movable type), or Deck slabs is post Traffic will be distu Superstructure wor	by all—staging n —tensioned, girde urbed not only ni	nethod. rs is particial pro ght time but als	systematic form work estressed concrete. o day time. column, since no coping	6				
	(Fast Construction) 12 for coping works - Night time traffic is disturbed during girder erection. - Traffic disturbance during coping construction is expected.				10	similar to - Night time traffic is disturbed during girder erection. 9					1	is required. By using fast setti construction may b	ing concrete and be reduced.	systematic form	work, duration of.	11					
	Structural Aspect	Applicability to Horizontal Curvature	5		- Adjusted by width - Trapezoidal shape			ib. for fitting curvature.	4	difficult for sharp curve	ather – Adjusted by width of cantilever portion of deck slab, however its difficult due to short cantilever. 3 Easy – Curved girders can be possible. any curve and construct exactly with a cons						uct exactly with			5	
	чарест	Applicability to Integrated Pier and Earthquake Resistance	10	-	 Integration of girde Girder falling preve Not ideal system f 	ntion devices nee	eded.	equirement).	6	-	Integration of girde Girder falling preve Not ideal system f	ntion devices need	ded.	lirement)	6					ment "Bridge Type A"	10
4	Maintenanco	9	3	1.4.000	spans.			eck slab of neighbouring ng prevention devices.	1	10-997	Expansion joint car spans. Need maintenance			slab of neighbouring prevention devices.	1	Good - Almost maintenance free. Structurally integrated, therefore after strong earthquake, damage of column will be located top of column where accessible and easy to repair.					
5	ntroduction	of New Technology	5		 Slab with reinforce Composite deck slowerks as a form form 	ab with PC preca	st panel betwee	en girders which also	3	No -	Conventional type. Slab with reinforce Precast panel can	d concrete is not be used as a for	highly durable. m.		3	Yes - New concept of prestressed concrete slab and integrated with slab and girder by Double T-Type Girder System. - This system is also verified in Japan as appropriate seismic system in earthquake					
6	Aesthetics		10	Fair -	Commonly seen at for STEP Loan Pro		ountry, but not	appreciated especially	5	Fair -	Commonly seen at for STEP Loan Pro		untry, but not a	preciated especially	5	country. Good - Looks slender and gives impression of relived. Good view in urban area. - Using high strength concrete, view of concrete will be same as precast girder, solid and clean concrete colour. 8					
7 S		Requirement Consideration anese Contents)	5	Less Japan's Contents	 PC strands/ anchor Difficult to comply Technology application 	with STEP Loan	ling prevention Requirement co	devices will be japanese. Intents on Japanese	3					ces will be Japanese content apanese Technology	3	Contents than -	High strength cond	crete for fast cor stable structural	struction is suit	slab will be Japanese contents able for STEP. the strongest justification	s. 5
		Total Point	100						80						78						9
	E	valuation			N	ot Recom	mended				N	ot Recomn	nended					Recomme	ended		
	F	Remarks		Unless precast	coping and slab are ting girder only is no	e precasted and l ot effective in te	be installed by rms of faster o	segment method, construction concept.		• Unless of precasti	coping and slab are ng girder only is not	precasted and be t effective in term	installed by seg is of faster cons	ment method, truction concept.		As STEP integrate	Loan Project, this d flyover system us	scheme is the b ing Japanese Teo	est option to ap chnology, such as	oly seismically most stable ar a composite column and singl nce concrete will be recomme	nd le ended

TABLE 9.5.2-1 APPROACH SECTION OF FLYOVER AT STANDARD SOIL CONDITION, BALARAJA Flyover ; PILE LENGTH = 20m

9.6 BRIDGE TYPE SELECTION FOR GROUP 2 (APPROACH SECTION: SOFT SOIL CONDITIONS)

9.6.1 Preliminary Structural Analysis

1) General

Soft soil conditions are encountered at both Gebang and Tanggulangin Flyover sites. The very soft soils typically occur to depths of approximately 10m and 20m at Gebang and Tanggulangin, respectively.

The bridge types nominated at these soft soil types is the same as at sites with ordinary soil conditions, with counter measures required as necessary to mitigate the adverse effects of the soft soils.

A study on the response of the approach structures using both double column and single column piers was undertaken. The results of the study showed that the twin column design can be used at the soft soil sites without additional treatment, given that the demand on the pile foundations is reduced to a minimum by this type of substructure for the span lengths selected and the pile diameter is large enough to carry the demand to the lower stiffer soil layers.

However, for single column piers, the demand on the foundations typically is too great to be supported by the underlying soft soils at shallow depth, notwithstanding that larger diameter piles are adopted. Counter measures to mitigate the effects of the soft soils are therefore required at these locations.

It is also noted that bored pile foundations supporting the longer spans of both Gebang and Tanggulangin are also typically larger in diameter than the approach spans and will also require similar soft soil countermeasures.

2) Soft Soil Countermeasures

Three alternative (3) soft soil countermeasures were identified in the Basic Design as follows:

- a) Steel Casing method used with single bored pile foundation
- b) Soil Treatment method used with single bored pile foundation
- c) Pile Cap to replace single bored pile with a pile group

The steel casing method makes use of the composite action of the steel casing and the concrete pile both to carry the demand down the pile to the stiffer layers below and to reduce displacements and rotations at the pile head.

The soil treatment method relies on soil mixing and jetting technology to incorporate cementitious materials into the soft soils at shallow depth surrounding the pile, thereby increasing the ultimate horizontal bearing capacity of the soils and offering increased direct support to the pile head.

The pile cap alternative replaces the flexible single pile with a much stiffer pile cap and group of smaller diameter piles. This type of foundation is substantially less sensitive to soft soil conditions at shallow depth, relying on the "push-pull" action within the pile group to transfer demand to the lower stiffer soils with very reduced bending moments generated in the piles themselves. **Figure 9.6.1-1** illustrates the three soft soil countermeasure methods. The analysis assumed the following characteristics for each alternative investigated:

Soft Soil Countermeasure	Characteristics
a) Steel Casing	 12m long steel casing (Fy =250MPa) Casing thickness 16mm acting compositely with reinforced concrete pile. (spirally wound steel pipe with internal ribs rolled into the section)
b) Soil Treatment	• Treatment achieves an unconfined compressive strength in the soil of 200kN/m ² to a depth of 6m.
c) Pile Cap	• 7m x 7m x 2m pile cap supported on 4 No. 1.4m diameter reinforced concrete piles.

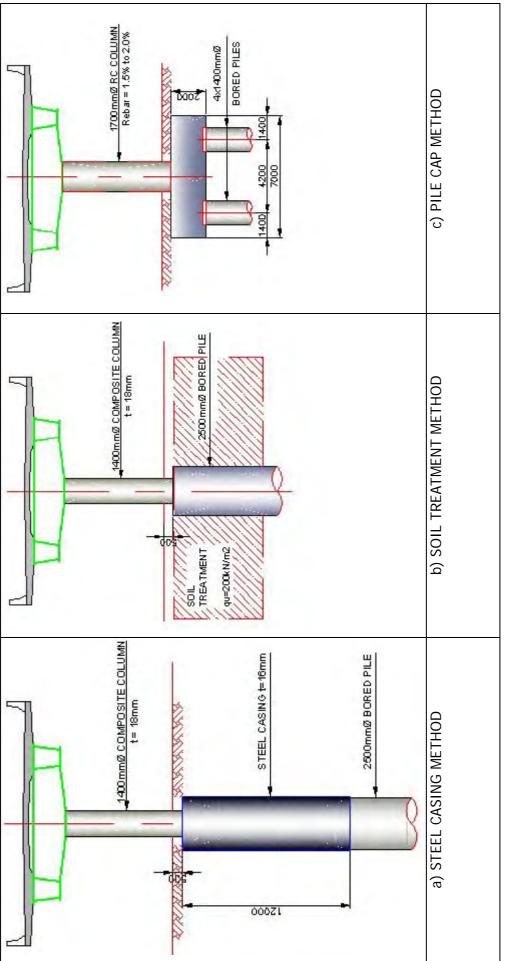

For the pile cap alternative, a reinforced concrete column with a similar plastic hinging capacity to the composite column is shown, given the difficulties of providing a connection for a composite column to a concrete pile cap.

Table 9.6.1-1 shows the results of the analysis of the single bored pile foundation, supporting both double column and single column type piers, without countermeasures against soft soil and also with each type of countermeasure identified above.

For the single column case without soil treatment, the maximum bending moments in the pile are more than double the applied moment at the pile head requiring an excessive amount of reinforcement. In addition the lateral displacement of the pile head is 16cm and the rotation at the pile head exceeds JRSA Part V (Seismic Design) recommendations. Counter measures to mitigate the lack of support provided by the soft soil are therefore considered necessary.

As can be seen from Table 9.6.1-1, each of the countermeasures identified improves the performance of the pile foundation under plastic hinging effects of the pier column to some degree.

The most substantial improvement in the response of the foundation to the plastic hinge demand from the pier column is the pile cap alternative. For this case the pile cap displacements are reduced to such an extent as to no longer be a critical design consideration. Bending moments in the individual piles can also comfortably be carried by the reinforced concrete section.

- SOFT SOIL LOCATION
PLASTIC HINGING EFFECTS -
TABLE 9.6.1-1 PL/

	Liog troj			Column						Pile		
Pier Type	Sout Sou Countermeasure	Dia	Tvne	Mptop	т	Mpbase	۷p	Dia	Mmax	Rebar	Disp	Rot
		E	· JP C	kNm	٤	kNm	kN	E	kNm	%	cm	rad
Double Column	None	1.00	RC	3100	7.5	3000	813	1.5	4900	1.5	7	0.015
Single Column	None	1.40	Comp (t=18)	15900	8.0	15900	3975	2.5	36500	2.5	16	0.021
Single Column	STEEL CASING (length = 12m) (t = 16mm)	1.40	Comp (t=18)	15900	8.0	15900	3975	2.5	36300	1.0 12	12	0.013
Single Column	SOIL TREATMENT	1.40	Comp (t=18)	15900	8.0	15900	3975	2.5	24800	1.5	7	0.012
Single Column	PILE CAP	1.70	RC	15900	8.0	15900	3975	4x1.4	2200	1.25	3	0.003
NOTE:	Mp = Plastic Moment Capacity of Column	Capacity of		H = Column Height	Height		Mmax =	Maximu	Maximum moment in pile	nt in pile		

Vp = Plastic Shear Capacity of Column

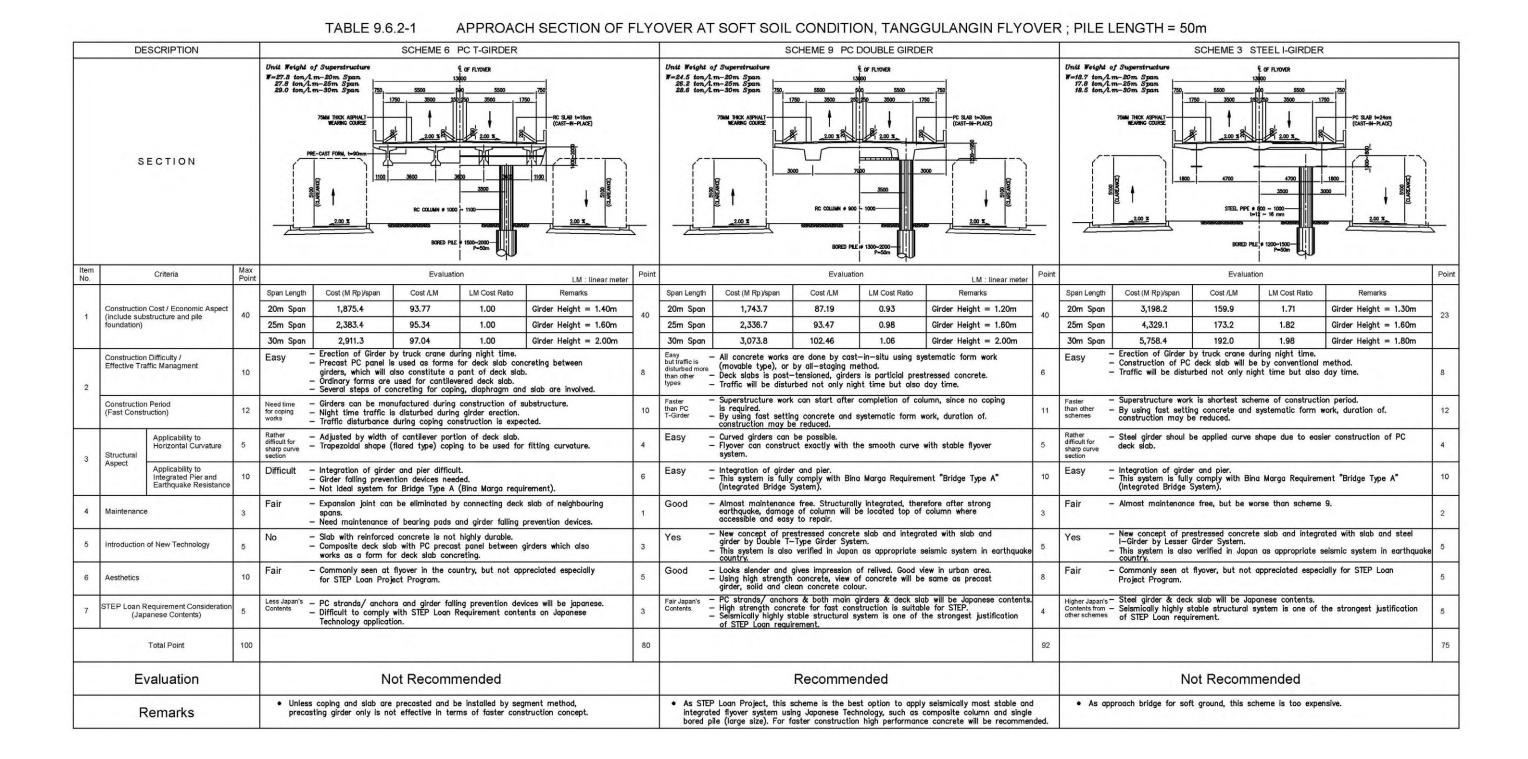
JRA Part IV (Substructures) recommended allowable displacement of pier foundation is 40cm and 0.025 rad JRA Part V (Seismic Design) recommended allowable displacement of pier foundation is 0.02 rad (yielding (yielding foundation) foundation)

Soil conditions are assumed averaged from Tanggulangin site. Displacements and rotations are at pile top. For 1.5m Dia pile : 1 layer of 32mm bars at 120mm c/c is equivalent to 1.5% rebar. For 2.5m Dia pile : 2 layers of 32mm bars at 120mm c/c is equivalent to 1.8% rebar.

9-19

The pile cap alternative, however, is not considered advantageous with regard to speed of construction, requiring several stages to complete, additional cost for pile cap construction, and impact on traffic management with the substantially larger space required for construction.

The soil treatment method has a substantial impact on reducing displacements at the pile head and bending moments in the single large diameter pile. However the extent of the treatment, the required quality control and testing of the treated soil, impact on traffic management during construction and the cost of the treatment all militate against this alternative as a preferred choice.


The steel casing method, although giving the least improvement in lateral displacements at the pile head, provides a similar level of improvement to the soil treatment method with regard to pile rotation. The lateral displacement, at 12cm, is substantial but considered not excessive considering the ultimate condition of the loading case. In addition the contribution of the steel casing to the bending capacity of the pile allows reinforcement levels at the maximum moment location to be reduced to 1%.

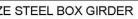
A composite steel casing of at least 6m in length and 9mm in thickness will be required to provide a socket type connection to composite column piers, irrespective of soil conditions. It is therefore recommended that this method is adopted as a soft soil countermeasure with the casing extended and made thicker as required in order to control pile head displacement and carry bending moments down the pile shaft.

9.6.2 Bridge Type Selection

Table 9.6.2-1 shows comparison of bridge types. The same evaluation criteria as shown in 9.5.2 were adopted.

PC Double Girder is more advantageous than other types and was recommended for Group-2 bridges.

9.7 BRIDGE TYPE SELECTION FOR GROUP 3 (RAILWAY CROSSING)


Similar preliminary structural analysis was undertaken. Comparison of bridge types is shown in **Table 9.7.1-1**.

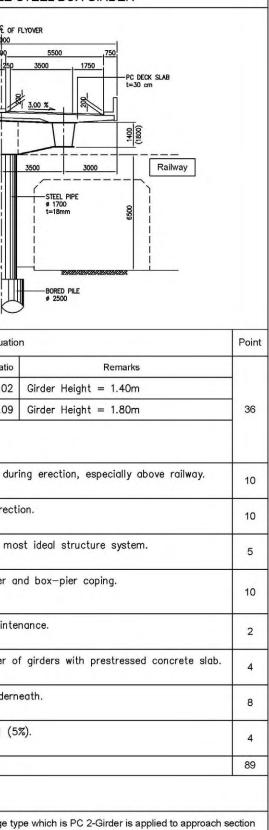
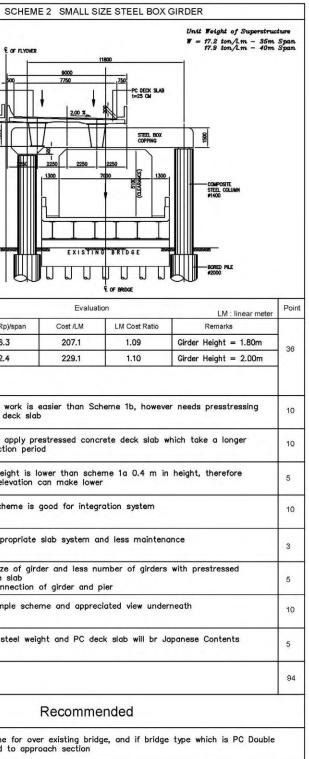

Although construction cost of Small Size Steel Box Girder is slightly higher than Steel I Girder, other factors such as easy construction, construction period, aesthetics, etc., are more advantageous. Since PC Double Girder Type is recommended for approach section bridges, small size steel box girder provides the consistent view throughout the bridge section, thus this type is recommended for Group 3 bridges.

TABLE 9.7.1-1

RAILWAY CROSSING AT MERAK, NAGREG, PETERONGAN AND TANGGULANGIN FLYOVER

	DE	ESCRIPTION				SCHEME	E 1 STEE	EL I-GIRDER	1.1.1		SCHEM	E2 SMA	LL SIZE S
	S	ECTION			75MM THICK ASPHALT WEARING COURSE Init Weight of Superstrict 18.1 ton/t.m - 257 19.7 ton/t.m - 357	ucture n Span m Span		FLYOVER			75MM THICK ASPHALT WEARING COURSE	ucture n Span n Span	
Item No.		Criteria	Max Point				Evaluatio	n	Point				Evaluation
				Span Length	Cost (M Rp)/span	Cost / LM	Cost Ratio	Remarks		Span Length	Cost (M Rp)/span	Cost / LM	Cost Ratio
				25m Span	3,620.9	144.8	1.00	Girder Height = 1.60m		25m Span	3,699.5	148.0	1.02
1	Construction	n Cost / Economic Aspect	40	35m Span	6,390.7	182.6	1.00	Girder Height = 2.00m	40	35m Span	6,937.5	198.2	1.09
0	Construction Effective Tra	n Difficulty / affic Management	10	Fair	Easy				9	Best	Suitable for curved	girder and	stable duri
2	Construction (Fast Const		12	Fair	Needs longer constr steel members.	ruction peri	iod than so	cheme 2 due to increased small	7	Good	Less number of ste	el members	s for erecti
3	Structural	Applicability to Horizontal Curvature	5	Best	Need intermediate of curve section.	cross beam	n and full lo	ower lateral bracing is required for	5	Best	No need intermediat	te diaphrag	m and mos
Ū	Aspect	Applicability to Integrated Pier and Earthquake Resistance	10	Good	Easy to integrate b	etween ste	el I girder	ad box pier coping.	10	Good	Easy to integrate by	eetween bo	x-girder ar
4	Maintenanc	e	3	Good	Presstresed concret	e deck sla	b is durabl	e and less maintenance.	2	Good	Appropriate slab sys	stem and l	ess mainter
5	Introduction	of New Technology	5	Fair	Rigid connection of	girder and	l pier.		3	Good	Small size box girde Rigid connection of	er and less girder and	number of pier.
6	Aesthetics		10	Bad	Not appropriated fo	r urban fly	over.		4	Good	Most simple and ap	preciated v	iew underne
7	STEP Loan F (Jap	Requirement Consideration banese Contents)	5	Fair	Slightly heavier weig tortional moment fo			er for additional bracing member against	3	Good	Slightly heavier weig	ht than sc	heme 1 (59
		Total Point	100						83				
	E	valuation		Not Recom	mend					Recommen	nd		
	F	Remarks		Rather compli	cated erection condition	due to curve	ed I-girder at	pove railway		The best sche	eme for curve bridge ove	r railway, an	d if bridge typ


9.8 BRIDGE TYPE SELECTION FOR GROUP 4 (OVER THE EXISTING BRIDGE AT GEBANG FLYOVER)

Comparison of bridge types is shown in **Table 9.8.1-1**. The same type as Group 3 which is Small Size Steel Box Girder was recommended.

TABLE 9.8.1-1

OVER EXISTING BRIDGE SECTION AT GEBANG FLYOVER

	DE	SCRIPTION			SCHE	ME 1a STEEL	I-GIRDER (2 - C	Sirder)			SCH	EME 1b STEEL	I-GIRDER (3 - 0	Girder)			sc
	S	ECTION			C OF R YOVER	9000 7750 2.00 X 2.00 X		Unit Weight of Superstruc W = 16.6 ion/1 m - 36m 16.9 ion/1 m - 40m Second State			27344 THICK ASTHALT MEANING COURSE 1540			Unit Weight of Superstru W = 18.8 ton/Lm - 35m 18.8 ton/Lm - 40m			73MAI THICK ASPAULT WEARING COURSE
Item No.		Criteria	Max Point			Evaluatio	C OF BRIDGE	LM : linear meter	Point			Evaluati	€ OF BRIDGE	LM : linear meter	Point		
1	Construction (include subs foundation)	Cost / Economic Aspect structure and pile	40	Span Length 35m Span 40m Span	Cost (M Rp)/span 6,627.2 8,323.0 Factor of Construc	Cost/LM 189.4 208.1 tion Cost Due t	LM Cost Ratio 1.00 1.00 o the Higher Gir	Remarks Girder Height = 2.20m Girder Height = 2.40m	40	Span Length 35m Span 40m Span	Cost (M Rp)/span 6,855.1 8,752.8	Cost /LM 195.9 218.9	LM Cost Ratio 1.03 1.05	Remarks Girder Height = 1.80m Girder Height = 2.00m	- 38	Span Length 35m Span 40m Span	Cost (M Rp)/s 7,246.3 9,162.4
	Construction Effective Trai	Difficulty / ffic Managment	10	Fair -	- Erection work is work of deck slat		eme 1b, howeve	r needs presstressing	10	Fair	 Slightly to be we no need due to 			ver prestressing work is ck slab	10	Fair	 Erection wo work of dec
2	Construction (Fast Constru		12	Fair ⁻	- Need to apply pr construction perio		ete deck slab w	hich take a longer	10	Good	- Deck Slab can a construction per		concrete therefo	ore this scheme is sortest	12	Fair	 Need to approximately construction
3	Structural	Effect of Flyover Planning	5	Bad -	- Girder height is f	igest scheme,	especially affecti	ng flyover's elevation	2	Good	- Girder height is elevation can me	lower than sche ake lower	me 1a 0.4 m in	height, therefore flyover	5	Good	 Girder heigh flyover elevo
	Aspect	Applicability to Integrated Pier and Earthquake Resistance	10	Good -	- Every scheme is	good for integr	ation system		10	Good	- Every scheme is	good for integr	ation system		10	Good	- Every schem
4	Maintenance	2	3	Good -	– Most appropriate	slab system an	d less maintena	ince	3	Fair	– RC deck slab is	need maintenan	ce in the future	•	1	Good	– Most approp
5	Introduction of	of New Technology	5		- Less number of q - Rigid connection			e slab	5	Fair	 Rigid connection technology 	of girder and p	ier is applicable	using latest new	4	Good	 Small size of concrete slot Rigid connection
6	Aesthetics		10	Bad -	– Not appropriated	for urban flyov	er		4	Bad	 Not appropriated 	l for urban flyov	er		4	Good	– Most simple
7	STEP Loan Re (Japa	equirement Consideration anese Contents)	5	Fair -	- Lightest steel we	ight and PC dea	ck slab will be J	lapanese Contents	3	Good	 Heavier steel we excluding deck s 	ight than schem lab due to conv	e 1a will be Jap rentional reinford	canese Contents, ced concrete	4	Good	— Heavist stee
		Total Point	100						85						88		
	Ev	valuation			N	ot Recomn	nended				N	lot Recomm	nended				
	R	emarks		• Elevat	ion of flyover is he	igher 0.4 m in	height than oth	er scheme		Need	maintenance of R	C deck slab in t	he future				pest scheme fo is applied to

9.9 APPLICATION OF BRIDGE TYPE

The SAPROF Study recommended to adopt steel type of bridge for Balaraja, Nagreg and Gebang Flyovers due to the following reasons:

- a) The construction site is quite narrow and ROW acquisition would take time. To construct a flyover within the existing narrow roadway space, foundation type which does not require wide space for construction should be selected candidate type of foundation to satisfy this requirement is a single large size bored pile. For this type of foundation, superstructure weight should be as light as possible, thus steel type of bridge was recommended.
- b) Construction site is traffic congested area. To realize minimal traffic disturbance during construction, fast construction method should be pursued. One of the ways of fast construction is steel type of bridge.

During the Basic Design Stage, the following was found:

- 1) Payment of ROW acquisition cost for Balaraja and Gebang Flyovers were completed. ROW acquisition for Nagreg Flyover is progressing. Thus, by the time of start of construction, new ROW area will be cleared and wide space can be used during construction.
- 2) Soft ground exists at Gebang and Tanggulangin Flyovers.
- 3) There are many underground utilities, which need to be relocated or protected.

Under above new conditions, steel bridges are recommended for the following locations:

Recommended Location for Steel

- New ROW width is still narrow and a single bored pile is required for minimal traffic disturbance and fast construction.
- Sections over existing railway and existing bridge, where fast, safe and easy construction is required.

CHAPTER 10 BASIC DESIGN

10.1 BASIC DESIGN CONCEPT

10.1.1 Technical Requirement of STEP Loan

The Government of Japan has decided to introduce a new ODA loan scheme from July 2002, now called the Special Terms for Economic Partnership (STEP), which is expected to raise the visibility of Japan's ODA to the citizens in the recipient countries and Japan through utilizing and transferring excellent technologies and know-how of Japanese firms.

Project eligible for STEP will be limited to those which are in the sectors and fields mentioned below, and at the same time, for which Japanese technologies and equipment are substantially utilized;

Eligible Projects for STEP

- 1) Bridges and Tunnels
- 2) Ports
- 3) Airports
- 4) Urban mass transit system
- 5) Urban flood control projects
- 6) Oil/Gas transmission and distribution lines
- 7) Trunk roads/dams (limited to projects that substantially utilize antiearthquake techniques, ground treatment techniques, first implementation techniques, first implementation techniques of Japan)
- Environmental Projects (limited to projects that substantially utilize airpollution prevention techniques, water-pollution prevention techniques, waste treatment and recycling techniques, and waste heat recycling technique of Japan.

10.1.2 Japanese Technologies to be Utilized for this Project

This project must be implemented under the following conditions:

- The project site is located in the busy urban area with concentration of vehicular traffic as well as pedestrians.
- The project site is narrow and a detour road is not available.
- Commercial and business activities are active along the project site.
- Four flyovers are to be built over the existing railway.
- All project sites are located within the seismic zone.
- Gebang and Tanggulangin Flyovers are located at the deep soft ground area.
- Merak Flyover is located at loose sandy layer which would cause liquefaction during the earthquake.

Following Japanese technologies are utilized for this project:

- Fast construction method to minimize traffic congestion as well as adverse economic impacts during construction.
- Efficient construction method applicable to narrow construction area under urban environment.

- Construction method to realize efficient traffic management during construction.
- Anti-earthquake technology.
- Soft ground treatment technique and treatment against liquefaction.
- Steel bridges for safe, fast and easy construction over the existing railway where the alignment is curved.

Table 10.1.2-1 summarizes Japanese technologies adopted for this project which show eligibility to STEP Loan technical requirements.

TABLE 10.1.2-1 JAPANESE TECHNOLOGY ADOPTED FOR THIS PROJECT

			Japanes	Japanese Technology Adopted	dopted		
Objectives	Large Diameter Single Pile	Steel and Concrete Composite Pier	Integration of Superstructur e and Pier	PC Deck Slab	Curved Steel Bridge	Soft Soil Improvement Around Single Pile	Light Weight Embankment
1. Fast Construction	0	0	Δ	0	0	ı	0
2. Efficient construction at narrow area	0	0	∇	-	0	-	0
3. Efficient traffic management	0	0	∇	I	0	-	0
4. Improved seismic resistance	ı	0	0	I	-	0	0
5. Efficient countermeasure against soft ground in urban area	ı	ı	ı	I	ı	0	0
6. Safe, fast and easy construction over railway	ı	ı		I	0	ı	ı
Applied section	 Section with narrow road ROW Section near railway crossing to satisfy required horizontal clearance 	Pier with large diameter single pile	 All abutments and piers except pier with movable bearing shoe. 	All bridges	• Over the Railway	Soft ground section	Approach section at soft ground

10.1.3 Measures to Cope with External Condition Changes

The loan amount for the Project was determined based on the project appraisal undertaken in October 2004. There were some drastic changes in factors affecting construction cost as follows:

- **Drastic Increase of Domestic Construction Prices** 1)
 - Fuel cost such as gasoline and diesel increased in 2005 by 2.5 times.
 - Fuel cost increase affected labor cost, transport cost, etc. According to BPS statistics, the wholesale price index of public works on road, bridges and ports increased by about 1.4 times.

Year	Wholesale Price Index of Public Works
2004	148
Dec. 2005	209
Increase	1.41

- Increase of Japan's Steel Material Price 2)
 - Japan's steel material price increased by about 1.2 times.

Year	Price Index of Standard Steel Plate 16-25		
2004	149.2		
Dec. 2005	179.0		
Increase	1.20		

- Depreciation of Yen Value 3)
 - Yen value depreciated by about 10%.

Exchange Rate				
Oct. 2004	1 Yen = 83 Rp.			
Jan. 2006 1 Yen = 75 Rp.				
Increase	0.90			

4) Actual Geo-technical Condition

- The geo-technical investigation undertaken by this study revealed existence of soft ground at Gebang and Tanggulangin Flyovers and loose sandy layer which would cause liquefaction during an earthquake at Merak Flyover.
- 5) **Underground Utilities**
 - During the feasibility study and the SAPROF Study, an underground utility survey was not undertaken.
 - Many underground utilities were found during the Basic Design stage.

All above factors indicate increase of construction cost, whereas the loan amount has been fixed. To cope up with such changes as mentioned above, main points of the Basic Design was focused on the cost reduction. Measures taken for cost reduction were as follows:

MEASURES FOR COST REDUCTION

- To reduce bridge length as much as possible (height of abutment was targeted between 6,5 m to 7.0 m)
- To reduce steel bridge length as much as possible (steel bridges are only adopted for limited sections such as railway crossing, and where single column pier with single pile is required due to narrow construction space.)
- To use short span length as much as possible (it was found that the shorter span length is more economical even at soft ground area.)
- To study reduction of bridge width from 13.0 m to 11.5 m

10.1.4 STEP Loan Requirements on Japan Portion

STEP Loan requirements on Japan portion are as follows:

- Total cost of goods procured from Japan shall be not less than 30% of the total amount of contract(s) (except consulting services).
- Goods procured from a manufacturing firm of the recipient country invested in by one or more Japanese companies will be regarded as goods procured from Japan, if they meet the following:
 - (a) Not less than 10% of the shares of the manufacturing firm of the recipient country are held by a Japanese firm; and
 - (b) The proportion of the shares held by the Japanese firm is the same as or greater than that of the shares held by any company of a third country.

(Hereinafter referred to as an "Indonesia-Japan J.V. Company")

Number of Indonesia-Japan J.V. company in Java Island is as follows:

N	<u>lo. o</u>	f Con	<u>npany</u>
		າ	

»	Steel Bridge Fabrication	3
»	PC strand manufacturing company	1

- » Wedge for PC manufacturing company_____1
- » Precast concrete product manufacturing company_____ 3

Candidates for Japan portion are shown in **Table 10.1.4-1**.

	Item Judgement Condition						
Steel Material		Yes	Procured in Japan				
	Shipping (Japan → Indonesia)		Yes				
Steel Bridge		n Japan	Yes	Fabricated in Japan			
		n Indonesia	Yes	Fabricated by Indonesia- Japan J.V. company			
	I	n Indonesia	No	Local company other than above			
	Local Transporta	tion	No				
	Erection		No				
PC Bridge	PC wire/tendon, anchor		Yes	 Procured in Japan Procured from Indonesia- Japan J.V. company 			
	Admixture for co	ncrete	Yes	Same as above			
	Steel coping		Yes	Same as steel bridge			
Pier	Inner ribbed casing for composite column		Yes	Same as steel bridge			
Large Diameter Bored Pile	Inner ribbed casing for pile head		Yes	Same as steel bridge			
Miscellaneous	Bearing shoe		Yes	Same as steel bridge			
Bridge Parts	Fall-down Prever	ntion Devices	Yes	Same as steel bridge			
Drainage	Drainage Precast concrete pipe		Yes	 Procured from Indonesia- Japan J.V. company 			
-	Precast catch basin		Yes	Same as above			
	Mechanically	Strip	Yes	Same as steel bridge			
Approach Embankment	Stabilized Earth Wall Concrete Panel		Yes	 Procured from Indonesia- Japan J.V. company 			
	Light Weight Embankment Wall		Yes	Same as above			

TABLE 10.1.4-1 CANDIDATES OF JAPAN PORTION

10.2 BASIC DESIGN

At the time of the basic design stage, Merak Flyover scheme was not determined yet, thus the basic design was undertaken for the remaining 5 flyovers. The basic design was undertaken for two cases of bridge widths of 13.0m and 11.5m.

10.2.1 Balaraja Flyover

Design concepts are as follows:

- The flyover centerline is selected at the center of acquired new road right-of-way.
- Existing U-turn traffic is disturbing traffic flow. In order to reduce U-turn traffic, right turn from the road going to Kresek to the subject road is allowed at the intersection.
- U-turn under the flyover is planned not to disturb traffic (sufficient radius and width are to be provided).
- Vertical alignment of a flyover is selected to satisfy the pre-determined nose locations.
- Existing road grade at Tangerang side is 5%. Flyover vertical alignment is selected to merge with the existing road grade.
- At-grade traffic lane passes under the flyover at the section of new ROW width of 18.0m, vertical clearance of 5.1m is provided.

 Local traffic volume is high, thus 6.0m service road at each side of flyover is provided.

Bridge components are as follows:

Bridge length = 220 m

Span composition

- 3-span continuous PC Double Girder integrated with two-column pier and two-bored piles

3 span x 20 m = 60 m

- 3-span continuous Steel Box Girder integrated with single-column and single bored pile (narrow road ROW section)

25 m + 30 m + 25 m = 80 m

- 4-span continuous PC Double Girder integrated with two-column pier and two-bored piles

4 span x 20 m = 80 m

10.2.2 Nagreg Flyover

Design concepts are as follows:

- Horizontal alignment of a flyover is selected at the center of new ROW.
- Vertical alignment is selected to satisfy the pre-determined nose locations.
- Existing road grade at Bundung side is about 5%. Vertical grade flyover is planned to be 5% at Bundung side.
- At the railway crossing, vertical clearance of 6.5 m is provided.
- Where at-grade traffic lane passes under the flyover, vertical clearance of 5.1 m is provided.
- Horizontal clearance of 10 m each side from the rail (total 20 m) is provided.

Bridge components are as follows:

• Span composition at the railway crossing was planned in consideration of horizontal clearance requirement of the railway and pier locations which is related at-grade road alignment.

Bridge length = 204 m

Span composition

- 3-span continuous PC Double Girder integrated with two-column pier and two-bored piles

3 span x 20 m = 60 m

- 4-span continuous Small Size Steel Box Girder integrated with two single column pier with single bored pile and one rigid frame type of pier with two bored piles (railway crossing section)

4 spans : 25 m + 27 m + 27 m + 25 m = 104 m

- 2-span continuous PC Double Girder integrated with two-column pier and two-bored piles

2 span x 20 m = 40 m

10.2.3 Gebang Flyover

Design concepts are as follows:

- Centerline of future 4-lane flyover follows more or less the existing centerline of the existing road.
- Since new ROW has already been acquired, nose location (the beginning and the end of a flyover) is intersection near the public market is maintained even after the flyover is constructed. Vertical clearance of 5.1 m is provided.
- Between the existing bridge and the said intersection, traffic lane of at-grade road passes under the flyover, vertical clearance of 5.1 m is provided.

Bridge components are as follows

Bridge length = 346 m

Span composition

- 3-span continuous PC Double Girder integrated with two-column pier and two-bored piles

3 span x 20 m = 60 m

- 3-span continuous Small Size Steel Box Girder with rigid frame type of pier with bored pile (over the existing bridge)
- 5-span continuous Small Size Box Girder integrated with single pier with single bored pile (narrow road ROW section)

5 span x 27 m = 135 m

- 3-span continuous PC Double Girder integrated with two-column pier and two-bored piles

3 span x 20 m = 60 m

Approach embankment type selected was the light weight embankment to cope with soft ground.

10.2.4 Peterongan Flyover

Design concepts are as follows:

- Centerline of flyover is selected to follow the centerline of the existing road.
- At the railway crossing, horizontal clearance of 10 m each from the rail and vertical clearance of 6.5 m are provided.
- Where at-grade traffic lane passes under the flyover, vertical clearance of 5.1 m is provided.

Bridge components are as follows:

Span composition at the railway was planned in consideration of horizontal clearance requirement of the railway and pier locations which are related at-grade road alignment.

Bridge length = 285 m

Span composition

 4-span continuous PC Double Girder integrated with two-column pier and two-bored piles

4 span x 20 m = 80 m

- 3-span continuous Small Size Steel Box Girder with two-column pier and twobored piles (over the railway)

25 m + 35 m + 25 m = 85 m

- 3-span continuous PC Double Girder integrated with two-column pier and two-bored piles

3 span x 20 m = 60 m

- 3-span continuous PC Double Girder integrated with two-column pier and two-bored piles

3 span x 20 m = 60 m

10.2.5 Tanggulangin Flyover

Design concepts are as follows:

- Centerline of flyover is selected to follow the centerline of the existing road.
- At the railway crossing, horizontal clearance of 10 m each side from the rail and vertical clearance of 6.5 m are provided.
- Where at-grade traffic lane passes under the flyover, vertical clearance of 5.1 m is provided.

Bridge components are as follows:

Span composition at the railway was planned in consideration of horizontal clearance requirement of the railway and pier locations which are related at-grade road alignment.

Bridge length = 230 m

Span composition

- 3-span continuous PC Double Girder integrated with two-column pier and two-bored piles

3 span x 20 m = 60 m

- 4-span continuous Small Size Steel Box Girder integrated with one-single column pier and rigid frame type pier with bored piles (over the railway)

20 m + 25 m + 25 m = 25 m = 85 m

- 4-span continuous PC Double Girder integrated with two-column pier and two-bored piles

4 span x 20 m = 80 m

Approach embankment type selected was the light weight embankment to cope with soft ground.

10.2.6 Summary of Basic Design

Basic design results in comparison with the SAPROF Study are summarized below.

				Bridge			
		Total Length (m)	Approach Length (m)	Total Bridge Length (m)	PC Bridge Length (m)	Steel Bridge Length (m)	
Delercie	SAPROF	520	295	225	-	225	
Balaraja	B/D	515	295	220	140	80	
Nagrag	SAPROF	740	425	315	-	315	
Nagreg	B/D	730	526	204	100	104	
Cohang	SAPROF	820	370	450	-	450	
Gebang	B/D	745	394	351	120	231	
Dotorongon	SAPROF	600	325	275	275	-	
Peterongan	B/D	620	335	285	-200	85	
Tanggulangin	SAPROF	570	330	240	240	-	
Tanggulangin	B/D	590	360	230	140	90	
Total for F	SAPROF	3,250	1,745	1,505	515	990	
Total for 5	B/D	3,200	1.910	1,290	700	590	
Flyover	Difference	-50	+165	-215	+185	-400	

In comparison with the SAPROF Study, bridge length was shortened by 215 m, instead approach length became longer by 165 m. Steel bridge length was shortened by 400 m, instead PC bridge length became longer by 185 m. These are the result to reduce construction cost to cope with construction price increase and yen depreciation.

10.3 PRELIMINARY COST ESTIMATE

Based on the basic design, preliminary cost for civil work and utility relocation/protection for five (5) flyovers were estimated as shown below:

	Preliminary Cost in Japanese Yen (Million Yen)			Preliminary Cost In Rupia (Billion Rp)		
	Civil Work	Utility	Total	Civil Work	Utility	Total
Bridge width = 13.0m (A)	3,317	301	3,618	248.8	22.6	271.4
Bridge width = 11.5m (B)	3,141	301	3,442	235.6	22.6	258.2
(A) – (B)	176	-	176	13.2	-	13.2
(B) / (A)	0.95	-	0.95	0.95	-	0.95

Note: (1) VAT is not included

(2) Exchange Rate 1 Yen = 75 Rp.

Japan portion was estimated at 32.4% for the case of bridge width of 13.0m and 32.9% for the case of bridge width of 11.5m, therefore, STEP Loan requirement of 30% is satisfied.

CHAPTER 11 FINDINGS OF BASIC DESIGN

11.1 ESTIMATED COST VS. LOAN AMOUNT

Breakdown of loan amount is shown in Table 11.1-1.

TABLE 11.1-1 B	EAKDOWN OF LOAN AMOUNT
----------------	------------------------

			Unit : Million Yen
	Total	Merak Flyover	Other Five Flyovers
Civil Work (Basic Cost)	2,993	514	2,479
Contingency (19.3%)	578	99	479
Contingency (5%)	178	31	147
Total	3,749	644	3,165

Note: Exchange Rate used was 1 Yen = 83 Rp

 Table 11.1-2 shows comparison between estimated preliminary cost and loan amount.

TABLE 11.1-2 LOAN AMOUNT VS. ESTIMATED PRELIMINARY COST

Unit : Million Yen

		Estimated Preliminary Cost	Loan Amount	Cost Overrun
	Civil work	3,317		212
Bridge width 13.0m	Utilities	301	3,105	301
10.011	Total	3,618		513
	Civil work	3,141		36
Bridge width 11.5m	Utilities	301	3,105	301
	Total	3,442		337

Note : (1) VAT is not included

(2) Exchange rate 1 Yen = 75 Rp

(3) Utility relocation/protection cost not included in the loan

As discussed in Section 10.1.2, above cost over-run is due to the following reasons:

- Domestic construction prices increased by 1.4 times
- Japan's steel material prices increased by 1.2 times.
- Japanese yen value depreciated by 10%.
- Soft ground encountered at Gebang and Tanggulangin Flyovers.

Although efforts were made to reduce construction cost, however, above cost increase impacts are so high that these efforts could not fully absorb such impacts.

11.2 BRIDGE WIDTH

Two cases of bridge width were compared.

- Bridge Width 13.0m : 2-lane 2-way flyover with mount-up center median. Even large vehicle stops due to vehicle breakdown, another large vehicle can pass the flyover (refer to **Figure 7.1.1-1** in Chapter 7)
- Bridge Width 11.5 m : 2-lane 2-way flyover. For straight (or tangent) section, no mount-up center median, but centerline marking is provided. For curved section, mount-up center median is provided. When a large vehicle stops, only small vehicle can pass the flyover. (refer to **Figure 7.1.1-1** in Chapter 7)

As presented in Section 10.3, bridge width of 11.5m can reduce civil work cost by about 5% compared with bridge width of 13.0m.

DGH selected the bridge width of 13.0m due to the following reasons:

- Share of large vehicle is high, and possibility of large vehicle breakdown is also high, thus 13.0m is preferred, which is almost same as recommendation of the SAPROF Study.
- To avoid traffic accident within the flyover section, a mount-up center median even along the straight section should be provided.
- With regard to cost over-run, DGH will study to add local cost financing (GOI) portion) for the project.

11.3 STEP LOAN REQUIREMENT

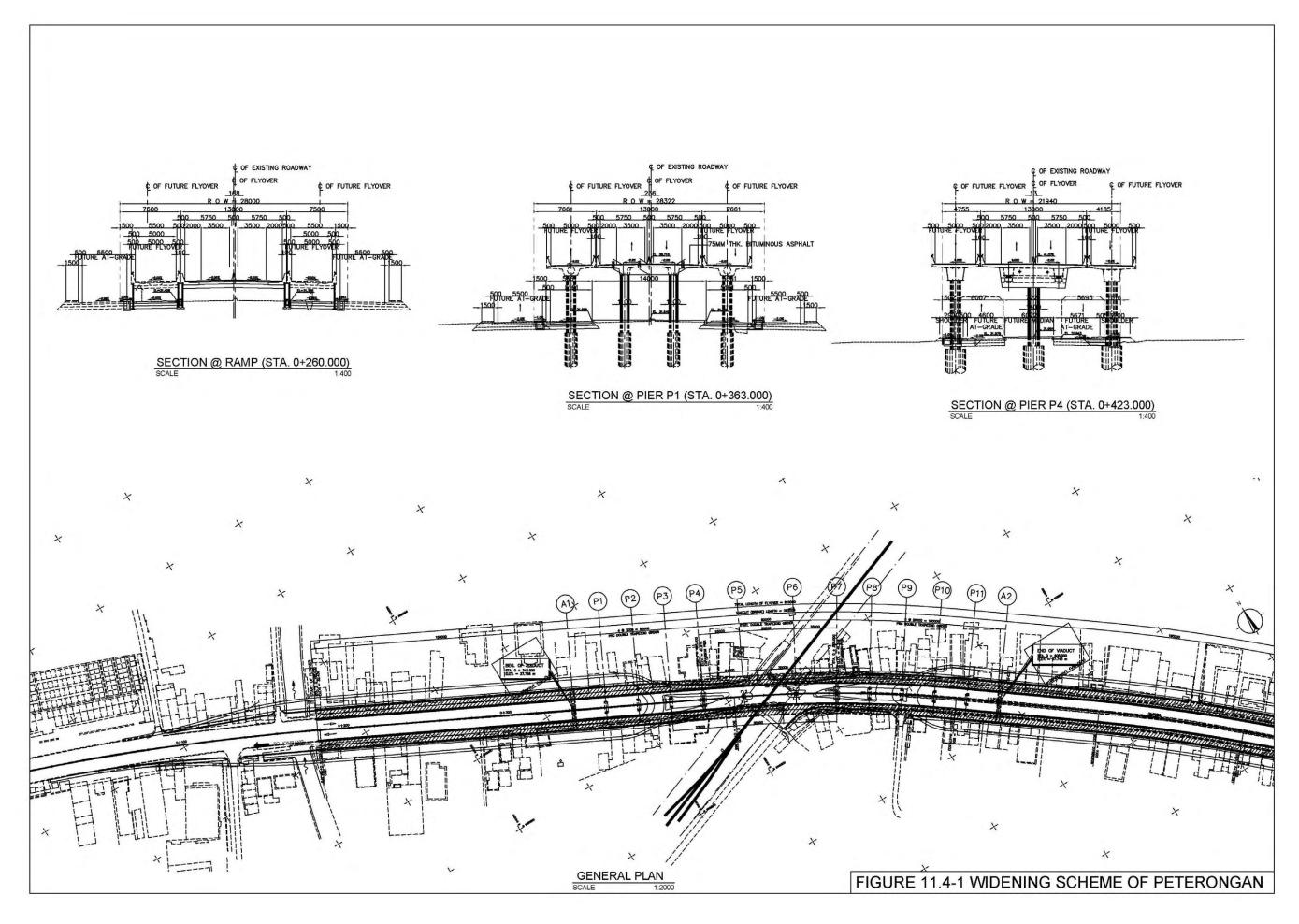
As discussed in Section 10.1.2, Japanese technologies eligible for STEP Loan are fully utilized by this project. By utilizing goods and materials shown in **Table 10.1.3-1**, STEP Loan requirement on Japan portion can be satisfied as shown in Section 10.3.

11.4 FUTURE WIDENING OF FLYOVER

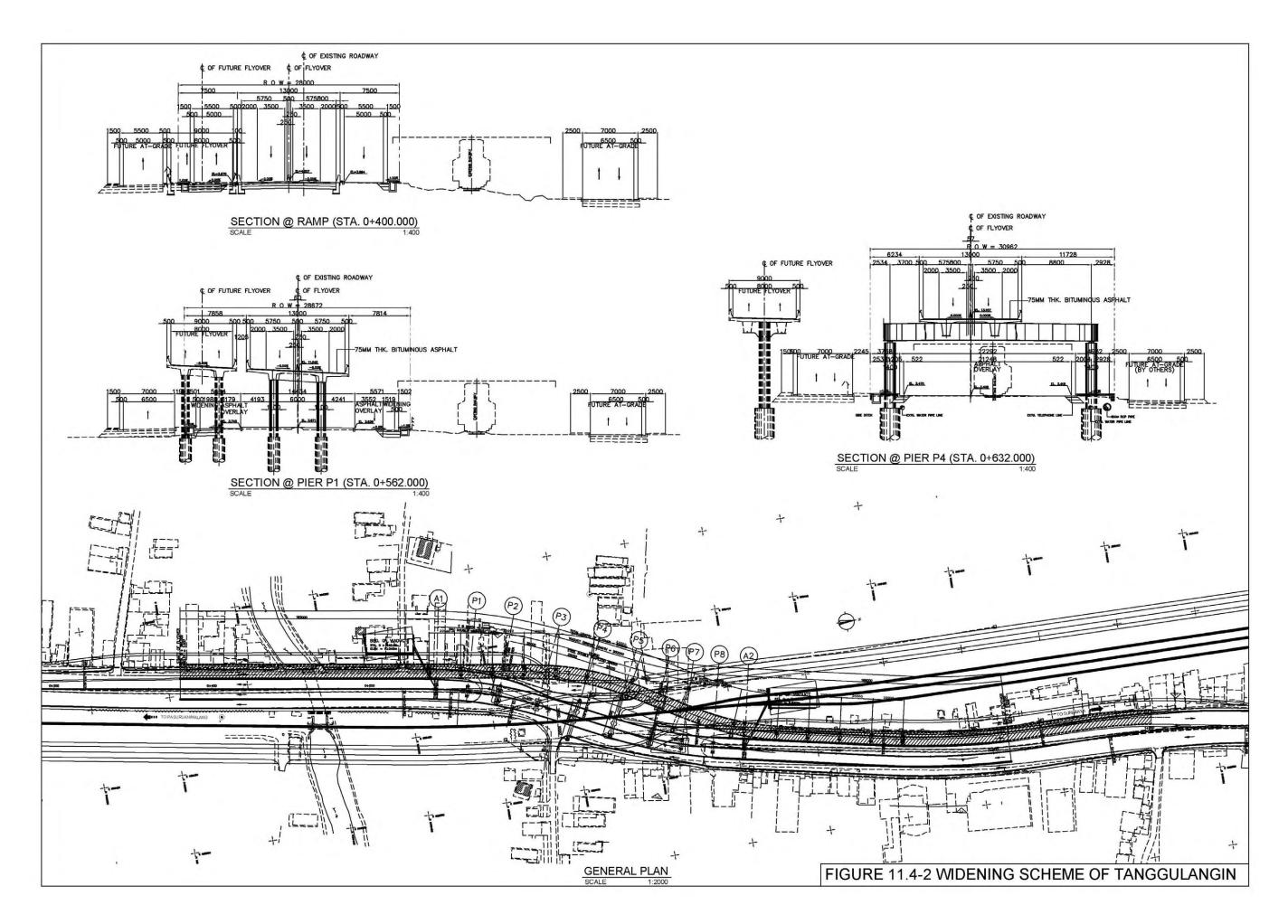
As discussed in Chapter 6, estimated future traffic volume on Peterongan and Tanggulangin Flyovers is expected to reach to the traffic capacity of the flyover around the year 2025, then widening to a 4-lane flyover will be required.

To be noted are as follows:

<u>Peterongan Flyover</u>: Construction of a toll road (Mojokerto – Kertosono) which runs almost parallel to this national road is planned to be implemented with high priority. When this toll road is completed, many vehicles will be diverted from the national road to the toll road. Therefore, timing of widening of this flyover may be deferred. Changes of traffic volume on this national road should be carefully observed.


<u>Tanggulangin Flyover</u>: Surabaya – Gempol Toll Road passes near the flyover. Traffic on the Toll Road is still light and more traffic may be attracted on this toll road. Timing of widening of this flyover should be carefully studied by observing traffic volume along this national road. Widening scheme of two flyovers is shown in **Figure 11.4-1** and **Figure 11.4-2**.

11.5 CLOSURE OF AT-GRADE ROAD AT RAILWAY CROSSING


During the meeting among DGH, PT. Kai and the Study Team, PT. Kai required closure of an at-grade road at the railway crossing.

The concept of PT. Kai to avoid traffic accident at the railway crossing is quite understandable, however, it is recommended that closure of an at-grade road at railway crossing under this project should not be done at this stage:

- Since the beginning of this project, closure of an at-grade road is not planned, therefore, the project was appraised by JBIC without provision for at-grade road closure such as pedestrian bridge over the railway, U-turn provision before and after the flyover, etc.
- Flyovers are located in the urban area and local traffic shares 30 to 40% of total traffic. If an at-grade road is closed without any provision for local traffic, local people will suffer inconvenience.
- Existing road is a 4-lane divided road at Peterongan and Tanggulangin Flyovers. If an at-grade road is closed at the railway, a 4-lane road becomes a 2-lane road at a flyover. Objective of the project to remove traffic bottleneck cannot be achieved.
- At Merak Flyover, an at-grade road is used to access to the Ferry Terminal Waiting Area. Therefore, another facility such as an entrance ramp is required to close an at-grade road, which is financially difficult to implement at this stage.
- It was proposed that closure of an at-grade road should be considered in such future stage when the flyover is widened to a 4-lane flyover in the case of Peterongan and Tanggulangin Flyovers and when the bypass road is constructed in the case of Nagreg Flyover. PT. Kai accepted this proposal.

