

Figure-5.4 Central Water Supply System and Current Condition of planned WTP

<Weir>

The intake construction is suggested in permanent weir type with dam body's height that is possible to lead gravitational flow to the storage tank. The using of pump machine is only implemented if the river topography and water treatment facilities position are impossible to be flowed gravitationally.

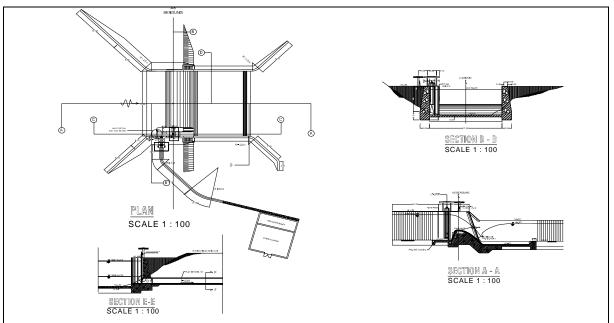


Figure-5.5 Weir of Central Water Supply System in Ayung River

<Water Treatment Plant (WTP)>

The structure of sedimentation tank and pump house position are designed to be built in the south/downstream of the Ayung WTP III's pump house. WTP facilities position for these three units were planned in the east of Ayung Installation III, north of the road, while the Sludge Drying Bed (SBD) was in the south of the road in a row with the WTP.

Nowadays, the land use condition which shall be used for the building of Water Treatment Plant is dry field and rice field owned by the surrounding peoples.

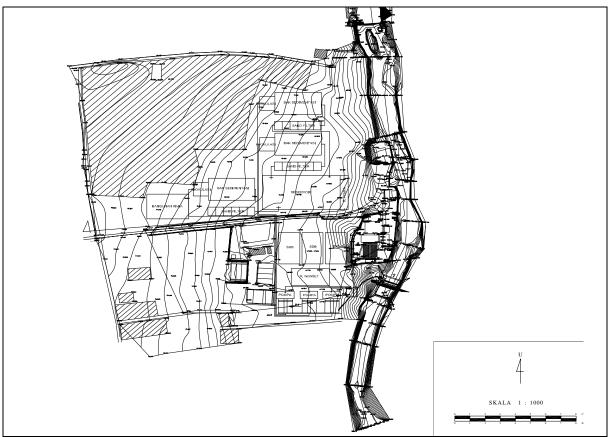


Figure-5.6 General Plan for Ayung Water Treatment in Ayung River

(3) Eastern Water Supply System

The raw water shall be taken at the downstream area of Petanu River, about 1,5 km from the coast line. The WTP location was selected at Glumpang sub-village, Sukawati Sub district, Gianyar Regency by taking into account hydraulic condition such as salinity intrusion as well as magnitude of effect against the existing springs located at upstream from planned weir along Petanu River. The production capacity for eastern system shall be planned to 300 l/sec (25,920 m³/day).

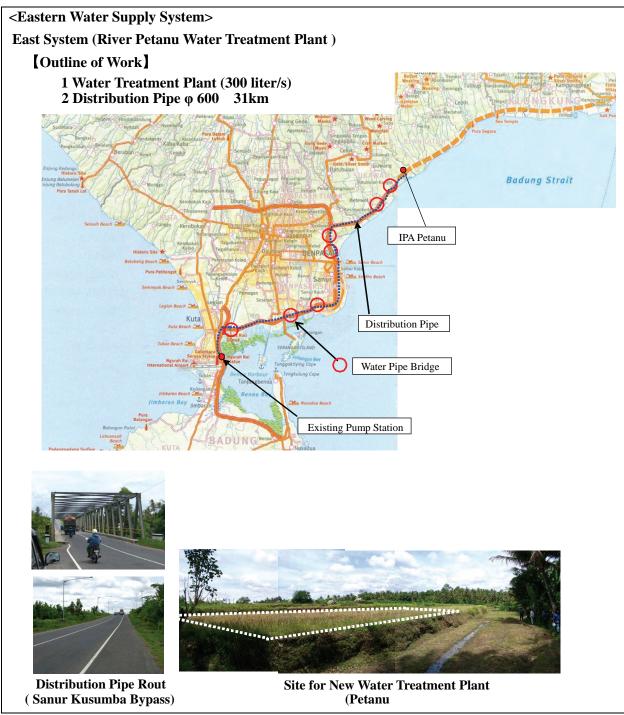


Figure-5.7 Eastern Water Supply System and Current Condition of planned WTP

<Weir>

For the intake type selection, permanent type weir was selected with dam body height that is possible to lead gravitational flow to the storage tank. The using of pump machine shall be only implemented in case of river topography condition and water treatment facilities position shall be impossible for flowing due to gravitation.

<Water Treatment Plant (WTP)>

Layout of WTP building is designed around 300 m in the north of Petanu Bridge, in the west side of the Petanu River. The location choosing was exerted to be far from the side of By Pass Prof. Ida Bagus Mantra and close to the riverside, so that land acquisition cost will be lower. Area planed for WTP buildings is now functioned as rice field owned by surrounding people. Land level is a little bit higher than river course for which gravitation flows is possible to be implemented.

<Transmission Pipe>

The transmission pipe shall be installed along the side of By Pass Prof. Dr. Ida Bagus Mantra runs between Sunur and Kesamba and By Pass Ngurah Rai runs between Kuta and Sunur, and it shall be connected with the reservoir at the IPA Estuary Dam location.

The pipe position shall be planned at the shoulder of the road, in the northern side for By Pass Prof .Dr. Ida Bagus Mantra and in the eastern side for By Pass Ngurah Rai.

General Plan for Petanu Water Treatment in Petanu River Figure-5.8

5.2.3 **Work Quantities**

Works quantities for three systems are shown in Table-5.2-Table-5.4

Table-5.2	Work Quantities for Western Water Supply System	n
-----------	---	---

Works Description	Works Item	Unit	Quantity	Remarks
Common Temporary Work		Ls	1.0	

Works Descrip	tion	Works	s Item	Unit	Quantity	Remarks
Intake & Conduit					· · ·	Height×Wide×Length
		Temporary	Work	Ls	1.0	7.3m×19m×28m
		Earths Wor	ks (Excavation)	m ³	2400.0	
	T . 1 . W. 1 . 0	Earths Wor	ks (Backfill)	m ³	1300.0	
	Intake Weir&	Earths Wor	ks (Bank)	m ³	3400.0	
	Pump Pit	Concrete W	Vorks	m ³	500.0	
		Masonry W	/orks	m ³	1800.0	
		Intake (Pur	np Pit)	m ²	110.0	10m×11m×4.0m
	Waterline Pipe	p600		m	200.0	
		Other (Mee	chanical Equipment)	Ls	1.0	
Treatment Plant Facilities						
		Temporary		Ls	1.0	
		Earths Wor	ks (Excavation)	m ³	4579	
		Earths Wor	ks (Bank • Backfill)	m ³	1585	
		Concrete W	Vorks	m ³	1870	
			Receiving well : 35m ²	m ²	35.0	5m×7m
			Flocculation Tank	m ²	110.0	9m×6m×2sites
	T , ,	Wall	Chemical Reservoir	m ²	200.0	14m×7m×2sites
	Treatment Plant (Civil	Structure	Sand Filter	m ²	445.0	25.5m×17.5m
	Works) Other	Works	Clear Water Reservoir	m ²	495.0	33m×15m
	Building	WORKS	Sludge Drying Bed	m ²	495.0	33m×15m
	Work		Other (Mechanical Equipment)	Ls	1.0	
			Pipes Setting	Ls	1.0	
		Office &		m ²	165.0	15m×11m×7.6m
		Chemical F	Room	m ²	235.0	20m×9m×3.9m
						11m×5m×7.6m
		Mechanica	l & Electric Room	m ²	120.0	11m×11m×5.3m
		Workshop		m ²	50.0	8m×6m
		Guard House		m ²	15.0	3m×4.5m
Transmission Facility						
	Waterline			m	8800.0	
	Pipe\600	L=10m		Site	1.0	
	Water Pipe	L=15m		Site	1.0	
	Bridge	L=20m		Site	3.0	
Electrical & Mechanical	Cost (E & M)			Ls	1.0	

Table-5.3 Work Quantities for Central Water Supply System

Works Descript	ion	Works It	em	Unit	Quantity	Remarks
Common Temporary Work	[Ls	1.0	
Intake & Conduit						Height×Wide×Length
		Temporary	Work	Ls	1.0	11.5×60×30m
		Earths Worl	(Excavation)	m ³	10,800	
	Intake Weir	Earths Worl	(Backfill)	m ³	5,850	
	& Pump	Earths Worl	ks(Bank)	m ³	15,300	
	Pit	Concrete W		m ³	2,250	
		Masonry W	orks	m ³	8,100	
		Intake(Pum	o Pit)	m ²	495	10m×11m×4.0m
	Waterline Pip	e φ600		m	250.0	
		Other (Mec	nanical Equipment)	Ls	1.0	
Treatment Plant Facilities						
		Temporary	Work	Ls	1.0	
		Earths Worl	ks (Excavation)	m ³	4579	
		Earths Worl	ks (Bank • Backfill)	m ³	1585	
		Concrete W	orks	m ³	1870	
			Receiving well : 35m ²	m ²	35.0	5m×7m
	Treatment		Flocculation Tank	m ²	110.0	9m×6m×2sites
	Plant (Civil		Chemical Reservoir	m ²	200.0	14m×7m×2sites
	Works)	Wall	Sand Filter	m ²	445.0	25.5m×17.5m
		Structure	Clear Water Reservoir	m^2	495.0	33m×15m
		Works	Sludge Drying Bed	m ²	495.0	33m×15m
			Other (Mechanical Equipment)	Ls	1.0	
			Pipes Setting	Ls	1.0	
		Office & La		m ²	165.0	15m×11m×7.6m
	Other	Chemical R	oom	m ²	235.0	20m×9m×3.9m
	Building					11m×5m×7.6m
	Work	Mechanical & Electric Room		m ²	120.0	11m×11m×5.3m
	WOIK	Workshop		m ²	50.0	8т×бт
		Guard Hous	e	m ²	15.0	3m×4.5m
Electrical & Mechanical C	ost (E & M)			Ls	1.0	

Works Descript		Works It	em	Unit	Quantity	Remarks
Common Temporary Work		Ls	1.0			
Intake & Conduit						Height×Wide×Lengt h
		Temporary V	Work	Ls	1.0	7.8×20×30m
		Earths Work	s (Excavation)	m ³	3300.0	
	Intake Weir&	Earths Work	s (Backfill)	m ³	2000.0	
	Pump Pit	Earths Work	s (Bank)	m ³	5200.0	
	rumprit	Concrete We	orks	m ³	650.0	
		Masonry We	orks	m ³	2700.0	
		Intake (Pum	p Pit)	m ²	110.0	10m×11m×4.0m
	Waterline Pipe q	600		m	200.0	
		Other (Mech	nanical Equipment)	Ls	1.0	
Treatment Plant Facilities					r	
		Temporary V	Work	Ls	1.0	
		Earths Work	s (Excavation)	m ³	4579	
		Earths Work	s (Bank • Backfill)	m ³	1585	
		Concrete We		m ³	1870	
			Receiving well : 35m ²	m ²	35.0	5m×7m
	Treatment		Flocculation Tank	m ²	110.0	9m×6m×2sites
	Plant (Civil	Wall	Chemical Reservoir	m ²	200.0	14m×7m×2sites
	Works)	Structure	Sand Filter	m ²	445.0	25.5m×17.5m
		Works	Clear Water Reservoir	m ²	495.0	33m×15m
			Sludge Drying Bed	m ²	495.0	33m×15m
			Other (Mechanical Equipment)	Ls	1.0	
			Pipes Setting	Ls	1.0	
		Office & La		m ²	165.0	15m×11m×7.6m
		Chemical R	oom	m ²	235.0	20m×9m×3.9m
	Other Building					11m×5m×7.6m
	Work		& Electric Room	m ²	120.0	11m×11m×5.3m
		Workshop		m ²	50.0	8m×6m
Transmission Facility		Guard Hous	e	m ²	15.0	3m×4.5m
manishini solon 1 achity	Waterline Pipeo	600		m	31,000.0	
		L=10m,50m	.95m.100m	Site	1	
	Water Pipe	L=20m	,- ,	Site	3	
	Bridge	L=25m		Site	5	
	-	L=35m		Site	2	
Electrical & Mechanical C	ost (E&M)			Ls	1.0	

Table-5.4 Work Quantities for Eastern Water Supply System

5.2.4 Construction Plan

Construction method for main facilities is shown in Table-5.5.

Table-5.5 Construction	n Method of Main Facility
------------------------	---------------------------

Facility	Construction Method or Construction Sequence	Remark
1) Intake Weir	 Because it becomes work inside the river, it is done in dry season (in May, - October). Execution is done with method of the half-river deadline. 	Intake weir of the central system should be constructed in the final scale (1.8m ³ /s).
2) Water Treatment Plant	 It is planned by a grade-like execution along water-demand. Western system does for 1 year and eastern system does for 2-3 years next. As for the central system of big capacity (1800 liter/sec), it is divided in the facility of the water ability of 600 liter/sec, and constructed. 	
3) Water Pipe	 Adjustment with the road administrator is necessary before the execution. The construction of water pipe is presumed at the 60m/ day. The execution of the western system is done for six months (8,800m/60m/25day/month). The execution of the eastern system is done for six months (3,100m/60m/25day/month). 	

Construction Schedule for southern Bali area water supply system is shown in Table-5.6. It takes four years for both western system and eastern system. After completion of these systems, central system shall be started at the fifth year.

13	able-5.6	Con	stru	cuon	1 SCI	ieau	ie 10	r 30	uthe	rn B	an F	агеа	vva	ler 5	upp	іу Бу	/ster	n	
System Name and	Works Descriptio	1 y	/ear	2 y	ear	3 y	/ear	4 y	/ear	5 y	ear		-8 ear	9 y	/ear	_	-12 ear	13	year
River Name	n	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet	dry	wet
West System	Intake weir	*																	
Penet River	Treatment Plant	*	*																
Water Supply Capacity 300 liter/s	Waterline Pipe	*	*														•		
Intake weir	Water Pipe Bridge	*	*			-													
East System	Intake weir			*															
Petanu River	Treatment Plant			*	*														
Water Supply Capacity 300 liter/s	Waterline Pipe			*	*	*	*	*	*										
Intake weir	Water Pipe Bridge			*	*	*	*	*	*										
Central System	Intake weir									*				*				*	
Ayung River	Treatment Plant									*	*			*	*			*	*

 Table-5.6
 Construction Schedule for Southern Bali Area Water Supply System

Dry Season May-October, Wet Season November-April

5.3 Ayung Multipurpose Dam

5.3.1 General

Dam site for Ayung multipurpose dam with catchments area of 218km², reservoir volume of 1,000 thousand m³ and dam height of 66m is located at the downstream of meeting points of Ayung River and Siap River, belong to Buangga village Petang District in Badung Regency in right side and Payangan village Payangan District Gianyar Regency in the left bank.

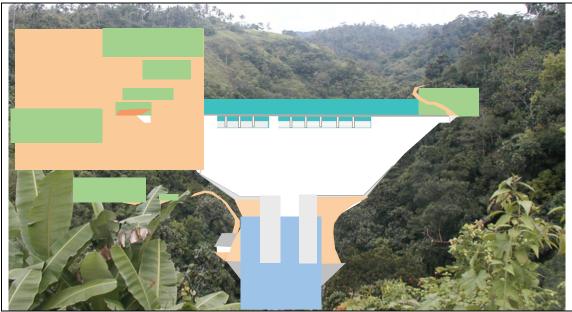


Figure-5.9 Ayung Dam Site from Downstream

The construction purpose of Ayung dam is shown as follows:

Development of Water Supply for Municipal Water

Depend primarily on use of stored water by Ayung Dam, municipal water of 1,800 l/sec (155,500m³/day) shall be developed and taken at the water treatment plant IPA AYUNG. Due to development of water resource, the prospective shortage of water supply for drinking in Southern Bali Area such as Denpasar City, Badung Regency and Gianyar Regency shall be eliminated.

Maintenance and Improvement of River Environment

By outflow discharge stored by Ayung dam, river environment so as to maintain existing habitat for fauna and flora as well as natural landscape shall be conserved or improved.

In the river flowing to Denpasar City, water quality shall be improved due to the water conveyance of purification water developed by dam reservoir.

Hydro-power Generation

By using the differential head of water stored by Ayung dam, electric power of 8,000 Kw shall be generated.

5.3.2 Criteria for Dam Design

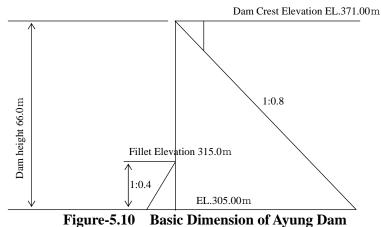
Criteria for dam design are as shown in Table-5.7.

	Table-5.7 Criteria for Dam Design						
Item	Specifications						
Location	Ayung River Buangga village Petang District in Badung Regency in right side, Payangan illage Payangan District Gianyar Regency in left side						
Design standard	Design Standard authorized by International Commission on Large Dams (ICOLD)						
Material values of Dam Foundation	Design shear stresses are as follows. - CH class $\tau = 160 \text{tf/m}^2 + \tan 45^\circ$ - CM class $\tau = 80 \text{tf/m}^2 + \tan 40^\circ$ - CL class $\tau = 40 \text{tf/m}^2 + \tan 30^\circ$						
Design Discharge for Spillway	- Catchment Area: 218.4 km²- Design Discharge: 1,270 m³/s (Return Period: 1,000 years)- Specific Discharge: 5.81 m³/s/km²						
Design Sediment Amount	1,000,000 m ³ (Storage capacity for sedimentation of Dam) 3,600,000 m ³ (controlled sediment volume by 2 Check Dams to be constructed in upstream)						
Storage Capacity - Gross storage capacity : 10,000,000 m ³ - Water use capacity : 9,000,000 m ³ - Storage capacity for sedimentation : 1,000,000 m ³							

Table-5.7	Criteria	for	Dam	Design

5.3.3 Design for Ayung Dam

Design criteria applied for design of Ayung Dam are as follows.

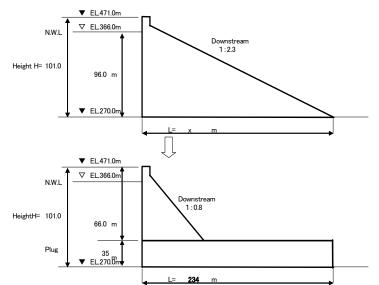

(1) **Design Discharge**

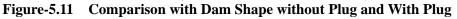
Based on the Indonesian Standard for Dams, Design flood for spillway shall be adopted return period from 500 years to 1,000 years. For Ayung Dam, 1,000 years of return period shall be adopted and $1,270m^3$ /s shall be applied as design discharge.

(2) Result of Stability Analysis

Among the stability analysis, the condition of normal water level showed the most critical situation. Based on the stability analysis, basic dimension of Ayung dam which minimizes dam volume is shown as follows:

- Downstream Slope 1:0.80
- ♦ Height of Fillet 10 m
- Upstream Slope of Fillet 1:0.4


(3) Spillway


Since Ayung Dam does not have flood control function, spillway with capacity of 1,270m³/sec discharge has to be installed in more than normal water level 366m in elevation. Taking into consideration with dam operation and maintenance, type of spillway for Ayung Dam shall be designed as toe guide wall type with no gates. Relations between overflow depth and width of overflow section to discharge 1,270m³/sec are calculated.

Considering the river width and spillway width, overflow depth of spillway shall be adopted as 3.0m. Dam top elevation shall be 371m in elevation by adding normal water level 366m in elevation, overflow depth 3.0m, bridge clearance of 1.5m and bridge beam height of 0.5m.

(4) Artificial Concrete Plug

It is wasteful for adopting this dam shape; artificial concrete plug method was adopted. From the economical point of view for the decreasing of dam concrete volume, the height of 35m above riverbed basement with showing narrow width, artificial concrete plug method was adopted.

(5) Specifications and Drawings

Specifications for dam and Reservoir of Ayung Dam are shown in Table-5.8.

G1 (C)	Table-5.8 Specifications of Ayun	
Classification	Items	Specifications
1. Reservoir		
	1) Location (River)	Ayung River
	2) Catchments Area	219.4 km^2
	3) Lake Area	0.57 km ² (EL370m)
	4) Normal Water Level (NWL)	EL 366 m
	5) Low water Level (LWL)	EL 325 m
	6) Effective Volume	9,000,000 m ³
	7) Sediment Volume	$1,000,000 \text{ m}^3$
	8) Total Reservoir Volume	10,000,000 m ³
2. Dam		
	1) Dam Type	Concrete Gravity Dam
	2) Dam Top	EL 371 m
	3) Top Length	239 m
	4) Dam Basement	EL 305 m
	5) Dam Height	66 m
	6) Artificial Basement (Plug)	EL 270 m~305m (Plug Treatment)
	7) Total Dam Volume (Inclu. Plug)	290,000 m ³
3. Spillway		
	1) Type	Toe guide wall type with no gates
	2) Design Discharge	$1,270 \text{ m}^3/\text{s} (1/1,000)$
	3) Depth	3.0 m
	4) Width	113 m (Net width)

Table-5.8 Specifications of Ayung Dam and Reservoir