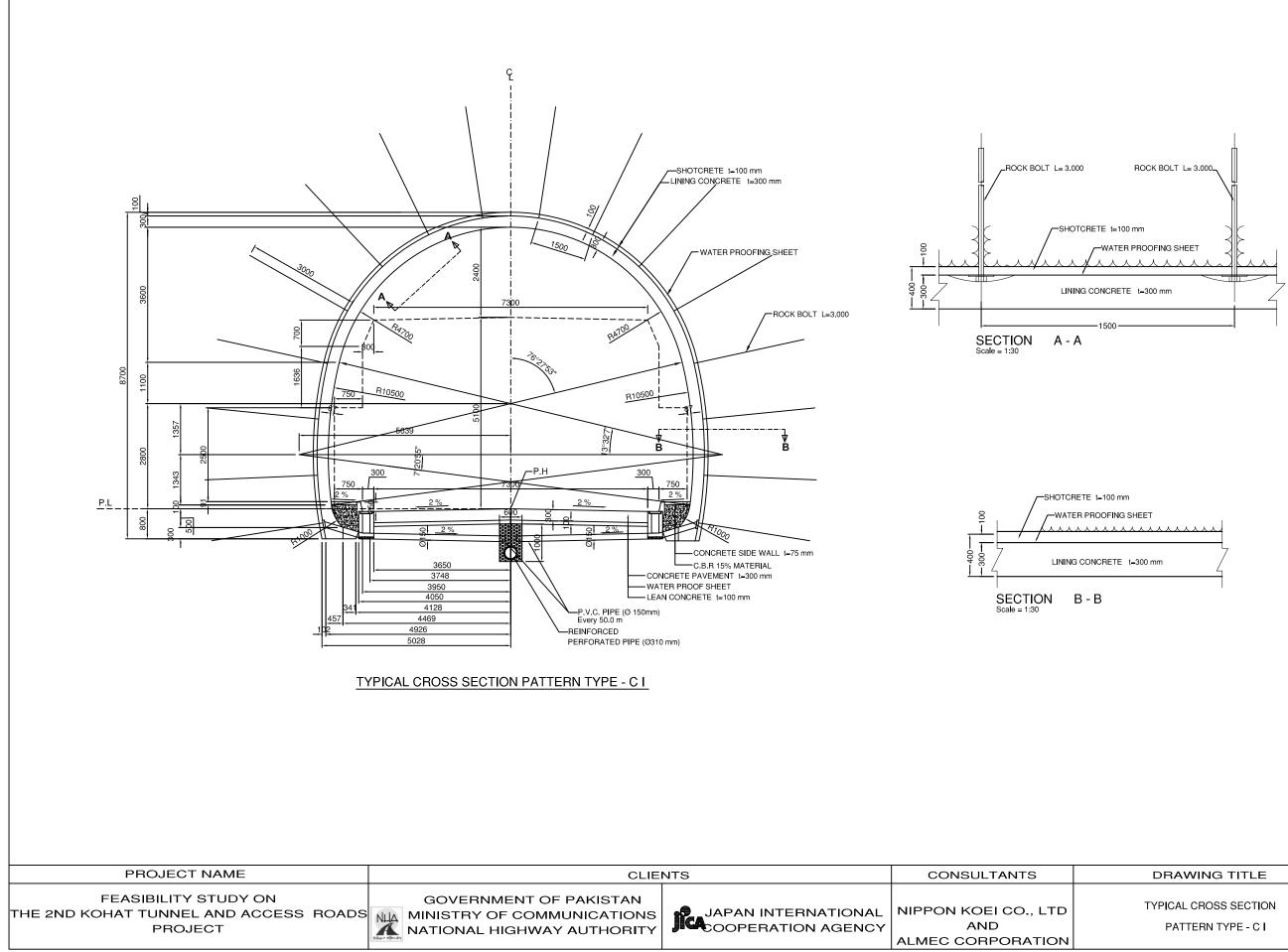


	u.,				- Α ω		
NCRETE		L				CRETE	
۲	YP. SEC	TION	OF D	OUB	LE CELL	CUI	_VERT
						-	
1	\sum	$\overline{}$	l⁼F−	1		1	
<u> </u>		۰		А	^E	Ļ	
æ	m			в	۰ <u>م</u>	٢	
<u> </u>		/		-		-	
					/	4	
		CONCRETE	LEAN CO	NCRETE]		
						-1	
	ION OF	MULI	I CEL		JLVERI		
			SINGL	E CELL			
TYPE	CELL SIZE	A	В	С	D	E	F
1	1.0x1.0 1.5x1.0	1000 1500	1000 1000	200 250	200 250	200 200	150 150
iii	1.5x1.5	1500	1500	250	250	200	150
iv v	2.0x1.5 2.0x2.0	2000 2000	1500 2000	300 300	300	250 250	150 150
vl	2.5x1.5	2500	1500	300	300	250	150
vii viii	2.5x2.0 2.5x2.5	2500 2500	2000 2500	300 300	300	250 300	150 150
lx	3.0x2.0	3000	2000	350	350	300	150
×	3.0x2.5	3000	2500	350	350	350	150
xl	3.0x3.0	3000	3000	350	350	350	150
TYPE		•	DOUBL			F	-
TYPE ×II	CELL SIZE 1.0x1.0	A 1000	B 1000	200	200	E 200	F 150
×iii	1.5x1.0	1500	1000	250	250	200	150
xiv xv	1.5x1.5 2.0x1.5	1500 2000	1500 1500	250 300	250 300	200 250	150 150
xvl	2.0x2.0	2000	2000	300	300	250	150
xvii xviii	2.5x1.5 2.5x2.0	2500 2500	1500 2000	300 300	300	250 250	150 150
xlx	2.5x2.5	2500	2500	300	300	300	150
xx xxl	3.0x2.0 3.0x2.5	3000 3000	2000 2500	350 350	350	300 350	150 150
xxii	3.0x3.0	3000	3000	350	350	350	150
			TRIPPL	E CELL			
TYPE	CELL SIZE	Α	В	С	D	Е	F
xxIII xxIv	1.0x1.0 2.0x1.5	1000 1500	1000 1000	200 250	200	200 200	150 150
xxv	2.0x2.0	1500	1500	250	250	200	150
xxvi xxvii	2.5x1.5 2.5x2.0	2000 2000	1500 2000	300 300	300	250 250	150 150
xxviii	2.5x2.5	2500	1500	300	300	250	150
xxix xxx	3.0x2.0 3.5x2.5	2500 2500	2000 2500	300 300	300	250 300	150 150
xxx	3.0x3.0	3000	2000	350	350	300	150
			FOUR	CELL			
TYPE	CELL SIZE	Α	В	С	D	Е	F
xxxII xxxIII	1.5x1.5 2.0x2.0	1500 2000	1500 2000	250 300	250 300	250 300	150 150
xxxiii	2.0x2.0 2.5x1.5	2000	1500	300	300	300 250	150
XXXV	2.5x2.0	2500	2000	300	300	250	150
xxxvl xxxvl	2.5x2.5 3.0x2.0	2500 3000	2500 2500	300 350	300	300 300	150 150
	3.0x2.5	3000	2500	350	350	350	150
xxxvIII	3.0x3.0	3000	3000	350	350	350	150
			FIVE			-	
xxxvIII xxxix	051.0	Α	B 2500	C 350	D 350	E 350	F 150
xxxvIII	CELL SIZE 3.0x2.5	3000		350	350	350	150
xxxvill xxxix TYPE		3000 3000	3000				
xxxvIII xxxix TYPE xxxx	3.0x2.5		3000 SPECIAL	CULVER	T		
xxxvIII xxxix TYPE xxxx xxxxi TYPE	3.0x2.5 3.0x3.0 CELL SIZE	3000 A	SPECIAL B	С	D	E	F
xxxvIII xxxix TYPE xxxx xxxxi	3.0x2.5 3.0x3.0	3000	SPECIAL			E 400 450	F 150 150
XXXVIII XXXIX TYPE XXXX XXXXI TYPE SP-1	3.0x2.5 3.0x3.0 CELL SIZE 4.0x4.0	3000 A 4000	SPECIAL B 4000	C 400	D 400	400	150
XXXVIII XXXIX TYPE XXXX XXXXI TYPE SP-1 SP-2	3.0x2.5 3.0x3.0 CELL SIZE 4.0x4.0	3000 A 4000 4800	SPECIAL B 4000	C 400	D 400	400 450	150
XXXVIII XXXIX TYPE XXXX XXXXI TYPE SP-1 SP-2	3.0x2.5 3.0x3.0 CELL SIZE 4.0x4.0 4.8x4.5	3000 A 4000 4800	SPECIAL B 4000	C 400	D 400 450	400 450	150 150

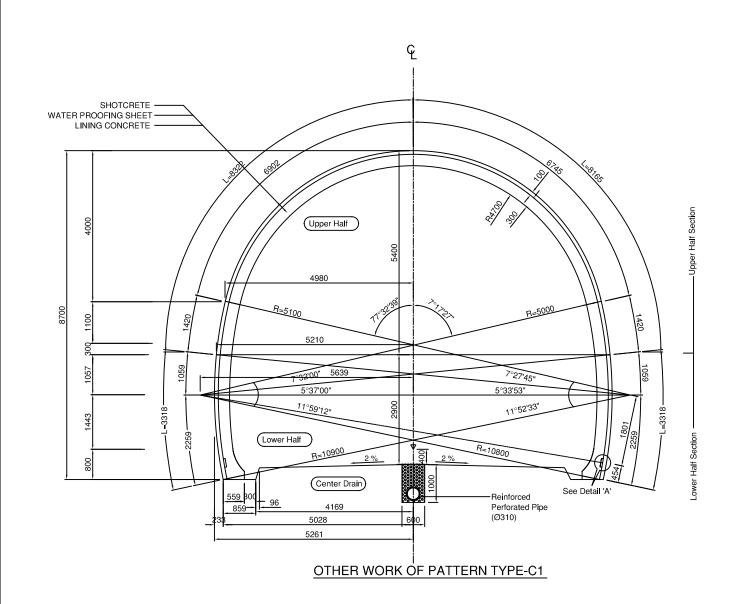
TUNNEL WORKS

 \sim

	NALA NALA
ADDE DRAM	To Peshawee
199 Powerline R Y O	
	STA UTH HOSE STA U
	BHEAM 3.9339.738)


PROJECT N	ME	CLIENTS	CONSULTANTS	DRAWING TITLE	SCALE	DWG NO
FEASIBILITY ST THE 2ND KOHAT TUNNEL A PROJEC			NIPPON KOEI CO., LTD AND ALMEC CORPORATION	TUNNEL SOUTH PORTAL	1:1,500	T-2

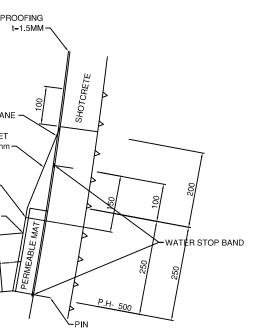
		CP-163 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 10 00 0	000000000000000000000000000000000000	
PROJECT NAME	CLIE	INTS	CONSULTANTS	DR
FEASIBILITY STUDY ON THE 2ND KOHAT TUNNEL AND ACCESS ROADS			NIPPON KOEI CO., LTD	
PROJECT	MINISTRY OF COMMUNICATIONS NATIONAL HIGHWAY AUTHORITY	JAPAN INTERNATIONAL	AND ALMEC CORPORATION	TUNNEI


<u>104740</u>0

DRAWING TITLE	SCALE	DWG NO
PLAN OF NNEL NORTH PORTAL	1:3,000	Т-З

	~	~	7	٨	٨	7		
nm						2	7	
							Τ	

DRAWING TITLE	SCALE	DWG NO
YPICAL CROSS SECTION PATTERN TYPE - C I	1:100	T-4



WATER P
WATER PROOFING SHEET t = 1.5mr
LOWER LIMIT OF MEASUREMENT FOR WATER PROOFING
SOCKET Ø150-
CROSS DRAIN PIPE J
DE

SUPPORTING	OVOTEM
SUFFURING	SISIEN

					i	1	
ITEM	PATTERN	UNIT	CI	CII	DI	PORTAL	EMERGENC
	UPPER HALF	m	1.5	1.2	1.0	1.0	1.5
ONE BLASTING PROGRESS	LOWER HALF	m	3.0	2.4	2.0	2.0	3.0
THOUHLOS							
	LENGTH	m	3.0	3.0	4.0	4.0	4.0
ROCK BOLT	TRANSVERSAL SPACE	m	1.5	1.5	1.2	1.2	1.2
	LONGITUDINAL SPACE	m	1.5	1.2	1.0	1.0	1.5
	UPPER HALF			H-125	H-125	H-200	
STEEL RIB	LOWER HALF				H-125	H-200	
	SPACE	m		1.2	1.0	1.0	
SHOTCRETE	THICKNESS	cm	10	10	15	25	15
CONCRETE							
WIRE MESH	UPPER HALF				PROVIDE	PROVIDE	
LINING	ARCH THICKNESS	cm	30	30	30	35	40
CONCRETE	INVERT THICKNESS	cm			45	50	

PROJECT NAME	CLIE	NTS	CONSULTANTS	DRAWING TITLE	SCALE	DWG NO
FEASIBILITY STUDY ON THE 2ND KOHAT TUNNEL AND ACCESS ROADS PROJECT	GOVERNMENT OF PAKISTAN MINISTRY OF COMMUNICATIONS NATIONAL HIGHWAY AUTHORITY	JAPAN INTERNATIONAL	NIPPON KOEI CO., LTD AND ALMEC CORPORATION	OTHER WORK (CI PATTERN)	1:100	T-5

