1.5 Surface Fault Dislocation

The same method as applied in the Gas research project is used to analyze surface dislocation caused by fault. Gas research project applied "elastic dislocation theory" by Steketee (1958) ²²⁾ to earthquake induced ground displacements, propose analysis equations and perform simulations using the magnitude of fault displacement as a parameter. The outline of the method is briefly described as below referring to the gas research project report²⁻⁹⁾.

1.5.1 Elastic Dislocation Theory

The dislocation model of the fault by Steketee²⁰⁾ is schematically introduced as figure 1.42.

Figure.1.42 Dislocation outline

We call the surface where a discontinuity of the displacements at both sides exists a dislocation.

A dislocation can be explained simply in the following way.

- a) A cut made in the elastic body produces two new internal boundaries. We designate them by Σ^+ and Σ^- .
- b) Displacements along the same line and opposite directions are applied on the boundaries, namely displacement u^+ on Σ^+ and displacement u^- on Σ^-
- c) The boundaries are bonded together. Then due to the discontinuity of the displacements the boundary line is deformed. This configuration is called dislocation, and the surface Σ is called dislocation (fault) surface.

The equation to calculate fault displacements resulting from the dislocation is thereafter derived assuming small stain and linear elastic theory in the case of rectangular fault model. The derived equation is as follows;

1.5.2 Equations of Motion of an Elastic Body

Although the dislocation theory is simply an extension to the treatment of a continuous body subjected to discontinuities, in order to numerically introduce the earthquake motion, we first rewrite the governing partial differential equations under the assumptions of small strain and linear elastic stress-strain relation.

First, we adopt a 3-D Cartesian coordinate system, and divide the force into components along x_1 , x_2 and x_3 directions. Then we denote the external force acting on a unit volume of the body by

 $f(f_1, f_2, f_3)$ (along x_1, x_2 and x_3 directions), and the acceleration by $\ddot{u}(\ddot{u}_1, \ddot{u}_2, \ddot{u}_3)$. Here, \ddot{u} is the second derivative in time of the displacement u.

The equation of motion of an infinitesimal cube in tensor notation becomes,

$$\rho \ddot{u}_i = \sigma_{ji,j} + f_i \tag{3.20}$$

where,

 σ_{ji} : stress tensor,

 $\sigma_{ji,j}$: spatial partial derivative of σ_{ji} in respect to x_j ,

$$\sigma_{ji,j} = \partial \sigma_{ji,j} / \partial x_j$$
 (*i*, *j* =1, 2, 3)

If the external loads excluded the body will return to its original configuration by elastic work; the stress-strain relation in the process is governed by the Hook's law

$$\sigma_{ij} = c_{ijkl} \cdot e_{kl} \tag{3.21}$$

where,

 C_{ijkl} : elastic constants representing the physical properties of the body

If we use the Lame's constants λ and μ , c_{ijkl} can be expressed as,

$$c_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$
(3.22)

where,

- δ_{ij} : Kroneker delta function. If i = j, $\delta_{ij} = 1$. Otherwise, $\delta_{ij} = 0$.
- μ : elastic shear modulus

 λ : Poisson's ratio,

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} = \frac{2\mu\nu}{1-2\nu}$$
(3.23)

We could obtain the equation of motion of the continuous body by substituting Eq. (3.21) into Eq.(3.20). If we substitute Eq. (3.22) instead we arrive at the following equation,

$$(\lambda + \mu)u_{ji,j} + \mu u_{i,jj} + f_i - \rho \ddot{u}_i = 0$$
(3.24)

The above second order partial differential equation can be rewritten as an integral equation

provided an integration mesh of size L is adopted (Betti's theorem). First, we think of two different equilibrium states which are solutions of the governing equations and for which the integration mesh is uniform with size L. Inside the considered domain V the body forces are designated by f^{I} and f^{II} the forces on the boundary surface S having normal vector n under the two states are designated by T^{I} and T^{II} , and the displacements by $u^{I'}$ and $u^{II'}$. When under these assumptions displacements occur at point x inside the domain, the relation between u^{I} and $u^{II'}$ is given by the following equation,

$$\iiint_{V} (f^{\mathrm{I}} - \rho \ddot{u}^{\mathrm{I}}) \cdot u^{\mathrm{II}} dV + \iint_{S} T(u^{\mathrm{I}}, n) \cdot u^{\mathrm{II}} dS$$

$$= \iiint_{V} (f^{\mathrm{II}} - \rho \ddot{u}^{\mathrm{II}}) \cdot u^{\mathrm{I}} dV + \iint_{S} T(u^{\mathrm{II}}, n) \cdot u^{\mathrm{I}} dS$$
(3.25)

In addition, if we integrate in time, $t_{\rm I} = t$, $t_{\rm II} = \tau - t$; t from $-\infty$ to $+\infty$, and consider the static state before τ_0 ($\tau \le \tau_0$, $u^{\rm I} = u^{\rm II} = u^{\rm II}$) the acceleration terms vanish and the following equation is obtained.

$$\int_{-\infty}^{+\infty} dt \iiint_{V} \{ u^{\mathrm{I}}(x,t) \cdot f^{\mathrm{II}}(x,\tau-t) - u^{\mathrm{I}}(x,\tau-t) \cdot f^{\mathrm{II}}(x,t) \} dV$$

$$= \int_{-\infty}^{+\infty} dt \iiint_{S} \{ u^{\mathrm{II}}(x,\tau-t) \cdot T(u^{\mathrm{I}}(x,t),n) - u^{\mathrm{I}}(x,t) \cdot T(u^{\mathrm{II}}(x,\tau-t),n) \} dS$$
(3.26)

When a force is applied along the position vector ξ at its source point (force application point), i.e. when the force is acting at the current time along direction *n*, the displacement vector along the component direction *i* of the position vector *x* can be expressed in terms of the Green's function $G_{in}(x;\xi)$. In this way, the physical properties of the elastic body like density, elastic modulus, and the fault movement boundary conditions can be expressed as functions in space. The Green's function $G_{in}(x;\xi)$ related to Eq. (3.25) has to satisfy the following special differential equation.

By applying Eq. (3.26) to the Betty's theorem written for state II, and substituting in the body force expression $f^{II}(x)$ in $\delta_{in}\delta(x-\xi)$, and $u^{II}(x)$ in $G_{kn}(x;\xi)$ we get,

$$u_{n}(x,t) = \iiint_{V} f_{i}(\xi,\tau) G_{ni}(x;\xi) dV(\xi)$$

+
$$\iint_{S} \left\{ T_{i}(u(\xi),n) G_{ni}(x;\xi) - u_{i}(\xi) c_{ijkl}(\xi) n_{j} \frac{\partial G_{nk}(x;\xi)}{\partial \xi_{l}} \right\} dS(\xi)$$
(3.27)

This equation gives the displacement at point x along direction n when a force is applied at the

source point ξ along direction *i*. Further details are referred to the Gas Research Project.

1.5.3 Analysis Result

The analyzed fault dislocations are shown in Figure 1.43 to 1.46. Figures show the greatest cases caused by vertical fault dislocation.

Figure 1.43 Surface Fault Dislocation North Tehran Fault

Figure 1.44 Surface Fault Dislocation North Ray Fault

Figure 1.45 Surface Fault Dislocation South Ray Fault

Figure 1.46 Surface Fault Dislocation Mosha Fault

1.6 Liquefaction

As mentioned in 3.3.2 (1) Seismic force, the liquefaction potential is confirmed low by the borehole investigation at the suspected area in the Gas research $project^{2-10}$. Therefore the estimated result is not used for subsequent assessment. However, the estimated lateral spread and settlement due to liquefaction are shown in figure 1.47 and 1.48 only for reference,

Figure 1.47 Lateral spread

Figure 1.48 Settlement

1.7 Estimation of Building Damage in Tehran city

1.7.1 Purpose of Buildings Damage Estimation

The purpose of damage estimation of buildings in Tehran city is to estimate damage to service pipeline belonging to buildings and to estimate a number of peoples who lost their houses in order to prepare emergency response.

1.7.2 Damage State of Buildings

The extent and severity of damage to buildings are categorized three damage states Major damage, Moderate damage, and Minor damage according to Gas research project. Definition of the damage state similar to that in Gas research project is as follows:

<u>Major damage</u> : A building has server damage or completely collapsed. In this damage state, water service pipe and other instrument cannot run due to damage to building and facility itself.

<u>Moderate damage</u> : A building has moderate damage, under which water is continuously supplied to buildings without leakage. However, repair for supply pipes should be done after earthquakes. <u>Minor damage</u> : A building has slight damage. No repair for water service pipe is occurred.

1.7.3 Fragility Curves for Buildings

Fragility curves for building damage estimation are same as those of Gas research project shown in figure 1.49. details are referred to the Gas Research Project²⁻¹¹⁾.

Figure 1.49 Fragility curve for buildings

1.7.4 Numerical Results

Estimation of damage to four categories of buildings is implemented based on the above assessment method. Table 1.7 shows the building number in Tehran city as per 1996 census. Figure 1.50 shows building distribution, and the results of damaged estimation for each scenario earthquake are listed in Tables 1.8 and also shown in figure 1.51 as one example of North Tehran Earthquake.

The most significant case is the one in which an earthquake of North Tehran earthquake occurs due to the highly generated acceleration. The case provides 27 % of all buildings in major damage and also same 27 % in moderate damage. In number, 380 thousand buildings would collapse.

		8		v	
Туре	STEEL	RC	Brick & Steel	Others	Total
Number	601,120	166,027	605,108	59,545	1,431,800

Table 1.7 Building Number in Teheran City

	North Tehran	North Ray Fault	South Ray Fault	Mosha Fault
	Fault	rtortin Ruy Fuurt	South Ruy Fuur	Woonu Tuun
Major	384,796	177,807	166,137	62,341
Moderate	387,244	261,940	217,987	129,748
Total	772,040	439,747	384,124	192,089

Table 1.8 Building Damage Estimation Result

Figure 1.50 Distribution of Buildings in Tehran city

Figure 1.51 Major damaged buildings of North Tehran earthquake

References

- 1-1) JICA, "The Study on Seismic Microzonation of the Greater Tehran Area in the Islamic Republic of Iran", March 2000, pp17
- 1-2) JICA, "The Study on Seismic Microzonation of the Greater Tehran Area in the Islamic Republic of Iran", March 2000, pp20-25
- 1-3) JICA, "The Study on Seismic Microzonation of the Greater Tehran Area in the Islamic Republic of Iran", March 2000, pp96-98
- 1-4) JICA, "The Study on Seismic Microzonation of the Greater Tehran Area in the Islamic Republic of Iran", March 2000, pp102-104
- 2-1) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp3-5 to 3-9.
- 2-2) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp3-69, 3-71.
- 2-3) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp3-70.
- 2-4) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp3-51, 3-54..
- 2-5) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp3-55..
- 2-6) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp3-55, 3-56..
- 2-7) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp3-58, 3-60 to 3-64..
- 2-8) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp3-69, 3-71.
- 2-9) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp3-92 to 3-96, 3-102 to 3-103.
- 2-10) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp4-20.
- 2-11) NIGC, GTGC, Osaka Gas Engineering Co. Ltd.: "Research Project for Strengthening and Control of Tehran Gas Network Against Earthquake Phase 2", pp5-2.
- 3) Berberian, M.: Earthquake faulting and bedding thrust associated with the Tabas-e-Golshan (Iran) earthquake of September 16, 1978, Bull. Seism. Soc. of Am. 69(6), 1861-1887, 1979.
- Berberian, M., Qorashi, M., Arzhangravesh B., and Mohajer-Ashjai, A.: Recent tectonics, seismotectonics, and earthquake-fault hazard study of the Greater Tehran region (Contribution to the Seismotectonics of Iran, Part V), Geol. Surv. Iran, Rep. 56, 316p., (in Persian), (2nd ed., 1371/1992.), 1985.
- 5) Berberian, M., and Yeats, R.S.: Patterns of Historical Earthquake Rupture in the Iranian Plateau,

bull. Seism. Soc. Am. 89, pp. 129-139, 1999.

- 6) Tchlenko, J.S., Berberian, M., Iranmanesh, H., Baily, M. and Arsovsky, M.: Tectonic framework of the Tehran region. Geol. Surv. Iran. Rep. 29, 7-46, 1974.
- 7) Melville, C.P.: Arabic and Persian Source material on the historical seismicity of Iran from 7th to the 17th Centuries, Ph.D. Thesis, Cambridge University, 1978.
- 8) Knill, J.L. and Jones, K.S.: Ground water conditions in Greater Tehran", Quqrt. J.Eng. Geol., 1, 181-194, 1968.
- 9) Ambraseys, N.N. and Melville, C.P.: A History of Persian Earthquakes, Cambridge University Press, London, 219 p., 1982.
- 10) Ambraseys, N.N.: Historical Seismicity of North-Central Iran". In: Materials for the study of seismotectonics of Iran; North Central Iran, Geol. Surv. Iran, Rep. 29, pp.47-95, 1974.
- 11) Bozorgnia, H.: Statistics on Earthquakes in Iran from 1944 to 1962, NIOC, Geol, Rep. 235, 1962.
- 12) Berberian, M.: Seismotectonic Map of Iran (Scale 1:2500000), Geol. Surv. Iran, 1976.
- Jackson, J. and McKenzie, D.: The Relationship between Plate motions and seismic moment Tensors, and the Rates of Active Deformation in the Mediterranean and middle-East, Geophys. J. 93, pp.45-73, 1988.
- 14) Jackson, J. and McKenzie, D.: Active Tectonics of the Alpine-Himalayan Belt between Western Turkey and Pakistan, Geophys. J.R. Astr. Soc., 77, 185-264, 1984.
- 15) Pacific Consultants International and OYO Corporation: The study on seismic microzoning of the Greater Tehran Area in the Islamic Republic of Iran, Final report, Japan International Cooperation Agency (JICA), Nov. 2000.
- Takada, S., Fukuda, K. and Mori, K.: Estimating earthquake motion near fault in the light of asperity, Research Report of Construction Engineering Research Institute, No.40-B, pp.23-39, 1998.
- 17) Takada, S., Hassani, N. and Fukuda, K.: Definition of fault near field based on seismic wave energy, (submitted to Journal of Earthquake Spectra), 2000.
- 18) Boore, D.M.: Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seism. Soc. Am, Vol.73, No.6, pp.1865-1894, 1983.
- 19) Takada S., Hassani N., and Rasti R.: Scenario fault and micro-zonation in Tehran City, Research Report of Construction Engineering Research Institute, No.42-B, pp.37-56, 2000.
- 20) Brune, J.N.: Tectonic stress and the spectra of seismic shear waves from earthquake, Journal of Geophysics Res., Vol.75, pp.4997-5009, 1970.
- 21) Akamatsu, J.: Attenuation property of seismic waves and source characteristics of small earthquakes, bull. Disas. Prdv. Res. Inst., Kyoto Univ., Vol. 30, Part 3, No. 271, 1980.
- 22) Keiichi Kasahara: Earthquake mechanics, Kajima Publishing, pp.54-83,1983.

APPENDIX-2

Pipeline Data

- 1. Table of Transmission Main
- 2. Table of distribution trunk main
- 3. Table of distribution sub main
- 4. Table of water demand and allocation to reservoir zones
- 5. Table of present stage condition
- 6. Table of next stage condition
- 7. Table of final stage condition

1. Table of Transmission Main

Diameter	Ductile	Concrete	Steel Pine	Total
(mm)	Iron Pipe	Pipe	Oteer ripe	Total
150	0.20	0.00	0.00	0.20
250	0.00	0.00	8.07	8.07
300	2.73	0.00	8.92	11.65
350	0.20	0.00	0.00	0.20
400	5.85	0.00	0.05	5.90
450	0.00	0.00	0.86	0.86
500	22.27	0.00	4.23	26.49
600	18.34	0.00	1.19	19.53
700	13.70	3.06	6.61	23.38
800	0.00	0.00	24.19	24.19
900	0.00	9.71	60.18	69.89
1000	0.00	0.00	25.23	25.23
1100	0.00	0.00	24.06	24.06
1200	0.00	5.07	63.10	68.17
1250	0.00	10.35	5.64	15.99
1350	0.00	6.23	0.00	6.23
1400	0.00	0.00	26.81	26.81
1600	0.00	0.15	18.31	18.47
1700	0.00	1.20	0.00	1.20
1850	0.00	21.77	0.00	21.77
2000	0.00	0.00	0.07	0.07
2200	0.00	0.00	0.98	0.98
Total	63.30	57.55	278.50	399.35

2. Table of Distribution Trunk Main

ZONE	Total Length	Asbestos	Cast Iron	Ductile	Steel	Line	Segement Number in
	(m)			Iron		Number	Line
1	15,622	0	14,209	984	430	5	10
2	34,108	0	22,042	5,673	5,793	10	10
3	21 287	0	20 515	240	531	6	10
5	18 856	0	16 675	1 510	671	5	10
6	16,000	0	12,794	1,849	1.529	5	10
7	26,281	2,053	177	22,382	1,668	8	10
8	22,312	0	10,359	5,372	6,582	6	10
10	7,777	0	1,494	5,453	830	2	10
11	4,161	0	0	4,089	73	1	10
12	0	0	0	0	0	0	10
13	19,257	0	2,992	12,840	3,425	6	10
14	1,839	0	0	1,064	2 / / 3	2	10
15 - 16 - 53	0,737 91 117	0	2 775	62 250	16 001	2	10
18	3 744	0	2,775	3 744	10,031	1	10
19	6.055	0	0	6.055	0	2	10
20	3,162	0	0	3,162	0	1	10
21	9,915	0	0	9,598	317	3	10
22	7,406	0	0	7,313	94	2	10
23	5,864	0	0	5,864	0	2	10
24	17,792	0	0	17,792	0	5	10
26	4,347	0	0	4,347	0	1	10
27	9,164	0	0	8,423	/41	3	10
20	427	0	0	3 898	404	1	10
30	4,302	0	0	0,000	0	0	10
31	18.385	0	5.871	11.066	1,448	5	10
32	2,317	0	0	2,317	0	1	10
33	0	0	0	0	0	0	10
36	28,159	0	7,691	14,053	6,415	8	10
37	32,790	0	0	31,093	1,697	9	10
38	17,178	0	203	12,719	4,256	5	10
39	0	0	0	0	0	0	10
40	589 15 766	0	0	12 864	2 902	5	4
41	3 911	0	0	1 076	2,302	1	10
43	29,790	0	0	25.886	3.904	9	10
45	113	0	0	113	0	1	1
48	3,480	0	0	3,303	177	1	10
51	47,285	1,836	212	37,788	7,449	14	10
54	16,233	0	1,125	13,302	1,805	5	10
55	16,861	0	0	14,417	2,444	5	10
56	14,278	0	0	9,335	4,942	4	10
58	10,/01	0	0	6 160	4,5/8	C 0	10
59	8 532	0	0	7 144	1 388	2	10
9 - 61	16.315	0	3,495	7.026	5.794	5	10
62	3,243	0	0	2,290	954	1	10
63	19,276	0	0	10,829	8,447	6	10
64	516	0	0	516	0	1	2
65	12,755	0	0	11,691	1,065	4	10
66	12,157	0	0	9,353	2,804	4	10
67	5,237	0	0	5,237	0	2	10
80	8,354	0	Ű	8,354	0	2	10
70	3,045	0	0	3,045 787	0		10
70	2 310	0	0	1 480	829	1	10
72	8 819	0	0	7.059	1.759	3	10
74	2,624	0	0	2,624	0	1	10
75	3,087	0	0	3,087	0	1	10
77	6,322	0	0	5,040	1,282	2	10
80	17,641	0	0	8,526	9,115	5	10
81	22	0	0	0	22	0	10
82	1,442	0	0	639	803	1	10
Total	491 768 170	3 800	134 182	501 532	128 576		4

3. Table of Distribution Sub Main

	-		Cast iron							
	Total	Cast iron	Dia>=200mm	Ductile iron	Ductile iron	Ashesto			Line	Segemen
ZONE	Length	Dia<200mm	&	Dia<200mm	Dia>=200mm &	s	PVC	Polyethylene	Number	t Number
	(m)	214 (2001)	Dia<300mm	210 (2001)	Dia<300mm	J. J			Humbor	in Line
1	85 867	17 760	6 6 3 0	7 271	3 4 8 4	0	26	50 695	8	100
2	187.026	25 249	19518	17 237	2 394	0	0	122 627	17	100
2	107,020	26,245	0,000	6.072	2,004	0	140	142,027	17	100
3	170.007	20,933	9,990	0,973	1 550	0	140	124 401	16	100
4	1/9,88/	33,713	10,785	3,942	1,550	0	406	124,491	10	100
5	207,145	35,664	16,914	14,669	10,423	0	103	129,311	19	100
6	290,105	44,891	22,191	40,129	2,953	0	4/5	1/9,465	27	100
7	264,341	3,303	1,376	216,806	13,087	0	44	29,725	24	100
8	89,988	18,299	7,245	15,909	1,240	0	165	47,131	8	100
10	53,854	102	0	47,455	3,532	0	0	2,764	5	100
11	103,086	0	0	90,149	8,662	0	0	4,275	10	95
12	12,329	0	0	5,019	1,997	0	23	5,290	2	55
13	186,600	5,288	1,831	129,791	7,241	0	170	42,279	17	100
14	36,667	179	0	28,327	5,029	0	0	3,132	4	85
15A	65.000	0	0	53,218	9.327	0	69	2,386	6	100
15 - 16 - 53	650,218	15 526	15 463	440,377	59 647	0	2 7 4 6	116,459	60	100
18	31 631	0	0	27 510	3 046	0	69	1 007	4	72
10	135 204	ő	0	108 651	15 702	18	0	10.803	12	100
20	157.033	0	0	120 775	11 010		0	24 3 30	15	95
20	152 712	0	0	110,775	10 705	0	0	24,000	14	100
21	100,712	0	0	FC 114	12,723	0	200	22,303	14	100
22	66,018	0	0	56,114	6,227	0	298	3,378	0	100
23	46,133	0	0	33,306	7,003	0	0	5,823	5	85
24	57,739	0	0	49,996	5,951	0	0	1,792	6	88
26	73,639	0	0	55,581	8,359	0	0	9,700	7	95
27	65,159	0	0	45,184	8,970	0	0	11,005	6	100
28	37,669	0	0	26,826	6,023	0	0	4,821	4	85
29	6,346	0	0	4,718	1,458	0	0	171	1	58
30	19,592	0	0	14,120	3,235	0	0	2,236	2	85
31	194.151	8.994	5.945	90.914	9.217	0	209	78.871	18	98
32	18,316	0	0	13.223	3.018	0	0	2.074	2	85
33	4 5 1 7	0	0	2 523	709	0	0	1 286	2	20
36	228.099	8 093	4 2 2 8	167.448	16 719	0	993	30,617	21	100
37	64,069	835	-,220	52 183	0.840	0	000	1 202	6	100
20	09,003	000	0	71 001	12 022	0	264	12 005	0	100
20	10 010	0	0	14 569	12,022	0	304	13,003	3	60
39	19,010	0	0	14,000	2,030	0	0	2,412	<u> </u>	100
40	32,104	0	0	25,983	3,203	0	0	2,918	3	100
41	65,770	0	0	48,149	5,616	0	0	12,006	6	100
42	36,949	0	0	32,193	4,584	0	0	172	4	85
43	371,742	0	0	279,407	62,640	0	3,805	25,891	34	100
45	13,783	0	0	3,984	4,443	0	0	5,356	2	60
48	16,863	0	0	8,548	3,748	0	0	4,567	2	75
51	242,434	0	0	203,681	28,956	0	329	9,468	22	100
54	116,678	1,093	78	96,145	9,978	0	695	8,689	11	96
55	130,747	948	0	95,818	20,645	0	332	13,005	12	100
56	32,929	0	0	18,410	4,783	0	329	9,406	3	100
57	102.485	0	0	80.626	12.277	0	1.014	8.568	9	100
58	96 544	n n	<u> </u>	44 303	9.328	n n	3,507	39,406	9	95
59	50 750	n n	<u> </u>	21 336	3 212	n	8 762	17 440	5	90
9 - 61	82 703	2 160	3 4 1 8	56 643	6 671	0	26	13 785	8	95
62	47 422	107	<u>رج ال</u>	30 452	4 322	0	0	3 461	5	88
63	102 207	137	0	80 500	11 5/6	0	226	1 9 2 6	10	00
64	100,007	0	0	A1 A1F	£ 201	0	020	1,030	5	07
65	47,790	0 100	000	41,410	10,321	0	404	11.004	5	0/
00	90,749	2,130	923	00,080	10,418	0	434	11,204	9	93
00	00,510	0	0	20,363	0,953	0	/01	38,493	6	100
6/	89,879	0	0	69,609	5,793	0	59	14,417	8	100
68	87,744	0	0	42,746	11,350	0	0	33,648	8	100
69	39,008	0	0	33,401	4,250	0	0	1,356	4	90
70	3,332	0	0	3,302	0	0	0	30	1	30
71	80,783	0	0	31,654	11,356	0	664	37,108	8	92
72	55,168	0	0	36,567	4,221	0	0	14,379	5	100
74	25,439	0	0	8,455	7,191	0	0	9,792	3	80
75	32.786	0	0	19.915	8.918	0	0	3.953	3	100
77	1.840	0	0	1.691	0	0	0	149	1	17
80	104 583	0	0	56 378	16 649	0	2,885	28 671	10	95
81	8 664	0 0	n 0	3 086	1 516	0	125	3 937	1	79
82	19 070	n 0	n 0	12 891	3 926	0	0	2 2 5 2	2	86
91	13 177	0 0	n 0	8 585	1 769	0	0	2,200	2	60
Tatal	0.005.005	0	101 501	0,000	1,703		00.077	1.000 1.1-	-	00
Iotal	6 385 927	1 251.379	131.534	3 /91 323	572.141	48	30 357	1609145	1	

4. Table of Water Demand and Allocation to Reservoir Z	Lones
--	-------

3,159,076

Reservoir Zone	Allocated Volume (m ³ /dav)		Reservoir Zone	Allocated Volume (m ³ /dav)
	(/ 2.2.3)			(,,,,
1	34,952		39	24,235
2	111,456		40	16,572
3	80,179		41	16,330
4	95,040		42	30,311
5	58,277		43	237,868
6	108,907		45	7,102
7	76,992		48	38,350
8	125,885		51	106,706
10	24,235		54	74,218
11	49,594		55	22,896
12	20,000		56	67,219
13	93,485		57	70,762
14	27,734		58	59,866
15A	42,216		59	6,907
15 - 16 - 53	306,931		9 - 61	43,896
18	11,980		62	6,826
19	138,121		63	45,274
20	61,426		64	16,500
21	43,891		65	28,631
22	10,800		66	28,631
23	98,064		67	42,216
24	14,260		68	560
26	30,413		69	6,600
27	23,921		70	6,600
28	7,171		71	37,078
29	4,879		72	20,909
30	5,120		74	9,139
31	105,235		75	7,340
32	14,571		77	7,340
33	3,800		80	22,253
36	82,512		81	34,590
37	47,760		82	12.000
38	33,869		91	9,677
=		1		
		ļ	Tatal	3,159,076

5. Table of Present Stage Condition

Stage : Pre	sent			Stage : Pre	sent			
Line catego	ory : Tranmission ma	in		Line catego	ory : Distril	oution trur	nk main	
	Scenario	earthquake				Scenario e	earthquake	•
ZONE	North South Ray Ray	North Tehran	Mosha	ZONE	North Ray	South Ray	North Tehran	Mosha
1	13.8	15.6	0	1	1.9	0.0	1.9	0.0
2	0.0	0.0	0	2	2.1	0.0	7.5	0.0
3	5.8	5.8	0	3	8.0	8.2	8.2	0.0
4	7.4	7.4	0	4	6.2	6.0	6.5	1.6
5	1.3	1.3	0	5	4.8	4.5	4.5	1.9
0 7	10.8	12.7	0	0	4.5	4.2	4.0	0.0
8	32.3	66.2	0	8	0.0	0.0	1.0	0.0
10	7.2	72	0	10	0.0	0.0	0.0	0.0
11	10.6	12.3	0	11	0.0	0.0	0.0	0.0
12	25.8	25.8	0	12	0.0	0.0	0.0	0.0
13	2.2	2.2	0	13	0.0	0.0	0.0	0.0
14	6.9	18.5	0	14	0.0	0.0	0.0	0.0
15A	0.0	0.0	0	15A	0.0	0.0	0.0	0.0
<u>15 - 16 - 53</u>	10.6	10.6	0	<u>15 - 16 - 53</u>	6.4	0.0	0.3	0.0
18	7.5	14./	0	18	0.0	0.0	0.0	0.0
19	0.0	0.7	0	19	0.0	0.0	3./	0.0
20	19.3	00	0	20	0.0	0.0	5.7	0.0
22	1.7	12.5	0	22	0.0	0.0	0.0	0.0
23	9.5	20.8	0	23	0.0	0.0	0.0	0.0
24	2.4	14.1	0	24	0.0	0.0	14.5	0.0
26	21.5	70.6	0	26	0.0	0.0	0.0	0.0
27	26.6	44.9	0	27	0.0	0.0	6.2	0.0
28	26.2	86.2	0	28	0.0	0.0	0.0	0.0
29	27.8	72.9	0	29	0.0	0.0	6.8	0.0
30	55.6	71.4	0	30	0.0	0.0	0.0	0.0
31	34.6	34.6	0	31	0.0	0.0	0.0	0.0
32	0.1 26.2	09.4	0	32	0.0	0.0	0.0	0.0
36	20.2	00.2	0	36	5.1	2.5	19.1	0.0
37	4.1	4.1	0	37	0.0	0.0	1.8	0.0
38	5.3	24.7	0	38	0.0	0.0	3.7	0.0
39	7.2	7.2	0	39	0.0	0.0	0.0	0.0
40	0.0	0.0	0	40	0.0	0.0	12.8	0.0
41	13.6	13.6	0	41	0.0	0.0	22.1	0.0
42	36.8	64.4	0	42	0.0	0.0	0.0	0.0
43	13.1	13.1	0	43	0.0	0.0	3.1	0.0
43	6.0	23.2	0	40	0.0	0.0	42.0	0.0
51	28.0	28.0	0	51	0.0	0.0	0.0	0.0
54	5.7	5.7	0	54	0.0	0.0	0.0	0.0
55	19.8	39.8	0	55	0.0	0.0	0.0	0.0
56	2.6	2.6	0	56	0.0	0.0	0.0	0.0
57	0.9	0.9	0	57	0.0	0.0	0.0	0.0
58	1.1	1.1	0	58	0.0	0.0	0.0	0.0
59	1.6	1.6	0	59	0.0	0.0	0.0	0.0
9-01	0.4 10.2	10.2	0	9-01	0.0	0.0	0.0	0.0
63	10.0	10.1	0	63	0.0	0.0	0.0	0.0
64	32.3	32.3	0	64	0.0	0.0	0.0	0.0
65	0.0	0.0	0	65	4.5	1.7	0.0	0.0
66	2.5	2.5	0	66	1.8	0.0	0.0	0.0
67	14.5	14.5	0	67	3.5	0.0	0.0	0.0
68	0.0	0.0	0	68	0.0	0.0	0.0	0.0
69	0.0	0.0	0	69	0.0	0.0	0.0	0.0
70	0.0	0.0	0	/0	0.0	0.0	0.0	0.0
/1	U.U 10 7	0.0	0	/1	0.0	0.0	0.0	0.0
74	10./	39.0	0	74	0.0	0.0	5./ 0.0	0.0
75	19.6	19.6	0	75	0.0	0.0	7.3	0.0
77	19.6	19.6	0	77	0.0	0.0	3.5	0.0
80	1.6	1.6	0	80	0.0	0.0	0.0	0.0
81	1.6	1.6	0	81	0.0	0.0	0.0	0.0
82	14.2	48.9	0	82	0.0	0.0	0.0	0.0
91	2.9	37.3	0	91	0.0	0.0	12.4	0.0

Table of Present Stage Condition (continued)

Stage : Pre	sent				Stage : Pres	sent			
Line catego	ory : Distr	ibution su	ıb main		Line catego	ry : Comb	ined		
	S	Scenario e	earthquak	е		S	cenario e	earthquak	е
ZONE	North	South	North	Mosha	ZONE	North	South	North	Mosha
1	Ray	Ray	Tehran	0.0	1	Ray 15.5	Ray	Tehran 172	0.0
2	0.0	0.0	4.3	0.0	2	2.8	0.5	11.5	0.0
3	0.1	0.0	0.0	0.0	3	13.4	13.5	13.5	0.0
4	0.2	0.0	0.0	0.0	4	13.4	13.0	13.4	1.6
6	0.0	0.0	0.0	0.0	6	14.9	14.5	16.6	0.0
7	0.0	0.0	0.0	0.0	7	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0	8	32.3	32.3	66.6	0.0
10	0.0	0.0	16.2	0.0	10	10.6	10.6	22.3	0.0
12	0.0	0.0	0.0	0.0	12	25.8	25.8	25.8	0.0
13	0.0	0.0	0.0	0.0	13	2.2	2.2	2.2	0.0
14	0.0	0.0	10.8	0.0	14	6.9	6.9	27.3	0.0
15A 15 - 16 - 53	4.3	0.0	0.0	0.0	15A 15 - 16 - 53	19.8	10.6	11.0	0.0
18	0.0	0.0	0.0	0.0	18	7.5	7.5	14.7	0.0
19	0.0	0.0	1.4	0.0	19	0.5	0.5	5.8	0.0
20	0.0	0.0	53.1	1.9	20	19.3	19.3	73.4	1.9
21	0.0	0.0	10.4 54.4	0.1	21	0.0	0.0	60.1	0.1
23	0.0	0.0	54.3	3.1	23	9.5	9.5	63.9	3.1
24	0.0	0.0	14.7	0.0	24	2.4	2.4	37.3	0.0
26	0.0	0.0	58.1	6.3	26	21.5	21.5	87.7	6.3
27	0.0	0.0	54.1	0.8	27	26.6	26.6	/6.3	0.8
29	0.0	0.0	51.5	0.0	29	20.2	20.2	87.8	0.0
30	0.0	0.0	33.1	0.0	30	55.6	55.6	80.9	0.0
31	0.0	0.0	0.0	0.0	31	34.6	34.6	34.6	0.0
32	0.0	0.0	43.9	0.0	32	5.1	5.1	84.0	0.0
36	11.0	7.8	27.0	0.1	33	<u>20.2</u> 15.5	10.0	41.0	0.1
37	0.0	0.0	46.0	0.0	37	4.1	4.1	49.1	0.0
38	0.0	0.0	1.9	0.0	38	5.3	5.3	28.8	0.0
39	0.0	0.0	12.5	0.0	39	7.2	7.2	18.8	0.0
40 41	0.0	0.0	<u>40.7</u> 53.2	3.7	40	13.6	13.6	68.5	3.7
42	0.0	0.0	1.4	0.0	42	36.8	36.8	64.9	0.0
43	0.0	0.0	8.0	0.0	43	13.1	13.1	22.5	0.0
45	0.0	0.0	54.4	0.0	45	0.0	0.0	73.9	0.0
<u>48</u> 51	0.0	0.0	28.3	0.5	<u>48</u> 51	28.0	28.0	28.0	0.5
54	0.0	0.0	0.0	0.0	54	5.7	5.7	5.7	0.0
55	0.0	0.0	13.6	0.0	55	19.8	19.8	48.0	0.0
56	0.0	0.0	0.0	0.0	56	2.6	2.6	2.6	0.0
57 58	0.0	0.0	4.0	0.0	57 58	0.9	0.9	<u> </u>	0.0
59	0.0	0.0	0.2	0.0	59	1.6	1.6	1.7	0.0
9 - 61	0.0	0.0	0.0	0.0	9 - 61	8.4	8.4	10.2	0.0
62	0.0	0.0	21.3	0.0	62	19.3	19.3	36.5	0.0
64	0.1	0.0	0.0	0.0	64	32.3	32.3	32.3	0.0
65	6.4	0.0	0.0	0.0	65	10.6	1.8	0.0	0.0
66	4.6	0.0	0.0	0.0	66	8.6	2.5	2.5	0.0
67	3.5	0.0	0.0	0.0	67	20.4	14.5	14.5	0.0
69 69	0.6	0.0	0.0	0.0	69 69	0.6	0.0	0.0	0.0
70	0.0	0.0	0.0	0.0	70	0.0	0.0	0.0	0.0
71	0.0	0.0	0.1	0.0	71	0.0	0.0	0.1	0.0
72	0.0	0.0	40.1	0.0	72	18.7	18.7	65.5	0.0
75	0.0	0.0	12.0	0.0	/4 75	13.0	13.0	24.5	0.0
77	0.0	0.0	3.9	0.0	77	19.6	19.6	25.4	0.0
80	0.0	0.0	0.1	0.0	80	1.6	1.6	1.6	0.0
81	0.0	0.0	0.0	0.0	81	1.6	1.6	1.6	0.0
82 91	0.0	0.0	44.8	0.0	<u>82</u> 91	2.9	2.9	70.6	0.0

6. Table of Next Stage Condition

Stage : Ne>	ĸt				Stage : Nex	t			
Line catego	ory : Tran	mission m	ain		Line catego	ory : Distri	bution tru	unk main	
	÷	Scenario e	earthquak	e		S	Scenario e	earthquak	е
ZONE	North Ray	South Ray	North Tehran	Mosha	ZONE	North Ray	South Ray	North Tehran	Mosha
1		13.8		0	1	0.5	0.0	0.5	0.0
3		5.8		0	3	2.0	2.0	2.0	0.0
4		7.4		0	4	1.5	1.5	1.6	0.4
5		1.3		0	5	1.1	1.1	1.1	0.4
0 7		0.0		0	0 7	0.0	0.9	0.0	0.0
8		32.3		0	8	0.0	0.0	0.2	0.0
10		7.2		0	10	0.0	0.0	0.0	0.0
12		25.8		0	12	0.0	0.0	0.0	0.0
13		2.2		0	13	0.0	0.0	0.0	0.0
14		6.9		0	14	0.0	0.0	0.0	0.0
15 - 16 - 53		10.6		0	15 - 16 - 53	0.0	0.0	0.0	0.0
18		7.5		0	18	0.0	0.0	0.0	0.0
19		0.5		0	19	0.0	0.0	0.2	0.0
20		0.0		0	20	0.0	0.0	0.4	0.0
22		1.7		0	22	0.0	0.0	0.0	0.0
23		9.5		0	23	0.0	0.0	0.0	0.0
26		21.5		0	26	0.0	0.0	0.0	0.0
27		26.6		0	27	0.0	0.0	0.4	0.0
28		26.2		0	28	0.0	0.0	0.0	0.0
30		11.2		0	30	0.0	0.0	0.5	0.0
31		34.2		0	31	0.0	0.0	0.0	0.0
32		5.1		0	32	0.0	0.0	0.5	0.0
36		0.0		0	36	0.0	0.0	2.4	0.0
37		4.1		0	37	0.0	0.0	0.1	0.0
38		5.3		0	38	0.0	0.0	0.3	0.0
40		0.0		0	40	0.0	0.0	0.0	0.0
41		13.6		0	41	0.0	0.0	1.5	0.0
42		36.8		0	42	0.0	0.0	0.0	0.0
45		0.0		0	45	0.0	0.0	2.9	0.0
48		6.2		0	48	0.0	0.0	0.0	0.0
51		28.0		0	51	0.0	0.0	0.0	0.0
55		19.8		0	55	0.0	0.0	0.0	0.0
56		2.6		0	56	0.0	0.0	0.0	0.0
<u> </u>		0.9		0	<u> </u>	0.0	0.0	0.0	0.0
59		1.6		0	59	0.0	0.0	0.0	0.0
9 - 61		8.4		0	9 - 61	0.0	0.0	0.0	0.0
62		19.3		0	62	0.0	0.0	0.0	0.0
64		32.3		0	64	0.0	0.0	0.0	0.0
65		0.0		0	65	0.3	0.1	0.0	0.0
67		2.5		0	67	0.1	0.0	0.0	0.0
68		0.0		0	68	0.0	0.0	0.0	0.0
69		0.0		0	69	0.0	0.0	0.0	0.0
70		0.0		0	70	0.0	0.0	0.0	0.0
72		18.7		0	72	0.0	0.0	0.4	0.0
74		13.6		0	74	0.0	0.0	0.0	0.0
77		19.0		0	75 77	0.0	0.0	0.5	0.0
80		1.6		0	80	0.0	0.0	0.0	0.0
81		1.6		0	81	0.0	0.0	0.0	0.0
91		2.9		0	<u>82</u> 91	0.0	0.0	0.0	0.0

Table of Nevt	Stage	Condition (continued	١
Table of Next	Stage	Containion (continueu	J

Stage : Nex	t					Stage : Nex	Stage : Next	Stage : Next	Stage : Next
Line catego	ory : Distr	ibution su	ıb main			Line catego	Line category : Comb	Line category : Combined	Line category : Combined
	5	Scenario e	earthquak	e			S	Scenario e	Scenario earthquak
ZONE	North Ray	South Ray	North Tehran	Mosha		ZONE	ZONE North Ray	ZONE North South Ray Ray	ZONE North South North Ray Ray Tehran
1	0.0	0.0	0.0	0.0		1	1 14.2	1 14.2 13.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3	0.0	0.4	0.0	0.0	-	3	3 7.7	$\frac{2}{3}$ $\frac{1.0}{7.7}$ $\frac{0.4}{7.7}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
4	0.2	0.0	0.0	0.0		4	4 9.0	4 9.0 8.8	4 9.0 8.8 8.9
5	0.0	0.0	0.0	0.0		5	5 2.4	5 2.4 2.3	5 2.4 2.3 2.3
7	0.0	0.0	0.0	0.0	-	7	7 0.0	7 0.0 0.0	7 0.0 0.0 0.0
8	0.0	0.0	0.0	0.0	l	8	8 32.3	8 32.3 32.3	8 32.3 32.3 32.5
10	0.0	0.0	15.2	0.0		10	10 7.2	10 7.2 7.2	10 7.2 7.2 21.3
11	0.0	0.0	0.1	0.0	l	11	11 10.6		
13	0.0	0.0	0.0	0.0		13	13 2.2	12 23.8 23.8 13 13 2.2 2.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
14	0.0	0.0	9.3	0.0	1	14	14 6.9	14 6.9 6.9	14 6.9 6.9 15.5
15A	0.0	0.0	0.0	0.0	D	0 15A	0 15A 0.0	0 15A 0.0 0.0	0 15A 0.0 0.0 0.0
5 - 16 - 53	3.7	0.0	0.1	0.0		15 - 16 - 53	15 - 16 - 53 14.2	15 - 16 - 53 14.2 10.6	<u>15 - 16 - 53</u> <u>14.2</u> <u>10.6</u> <u>10.7</u>
18	0.0	0.0	0.0	0.0	-	18	18 7.5		
20	0.0	0.0	49.3	1.7		20	20 19.3	20 19.3 19.3	20 19.3 19.3 59.3
21	0.0	0.0	15.1	0.0		21	21 0.0	21 0.0 0.0	21 0.0 0.0 15.4
22	0.0	0.0	49.3	0.0		22	22 1.7	22 1.7 1.7	22 1.7 1.7 50.1
23	0.0	0.0	40.0	2.7		23	23 9.5	23 9.5 9.524 24 24	23 9.5 9.5 51.724 24 24 162
26	0.0	0.0	52.0	5.6		26	26 21.5	26 21.5 21.5	26 21.5 21.5 62.3
27	0.0	0.0	47.1	0.7	l	27	27 26.6	27 26.6 26.6	27 26.6 26.6 61.4
28	0.0	0.0	55.7	13.1		28	28 26.2	28 26.2 26.2	28 26.2 26.2 67.3
30	0.0	0.0	28.0	0.0	-	30	30 11.2	$\frac{29}{30}$ $\frac{27.0}{11.2}$ $\frac{27.0}{11.2}$	$\frac{29}{30}$ $\frac{27.0}{11.2}$ $\frac{27.0}{11.2}$ $\frac{36.1}{30.1}$
31	0.0	0.0	0.0	0.0	-	31	31 34.2	31 34.2 34.2	31 34.2 34.2 34.2
32	0.0	0.0	37.2	0.0		32	32 5.1	32 5.1 5.1	32 5.1 5.1 40.7
33	0.0	0.0	29.5	1.6	-	33	33 26.2	33 26.2 26.2	33 26.2 26.2 48.0
30	9.5	0.7	38.6	0.1	•	30	36 10.1	36 10.1 7.0 37 41 41	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
38	0.0	0.0	1.7	0.0		38	38 5.3	38 5.3 5.3	38 5.3 5.3 7.1
39	0.0	0.0	10.8	0.0		39	39 7.2	39 7.2 7.2	39 7.2 7.2 17.3
40	0.0	0.0	44.2	0.0		40	40 0.0	40 0.0 0.0	40 0.0 0.0 44.7
41	0.0	0.0	49.0	3.4		41	41 13.6	41 13.6 13.6 13.6 13.6 13.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
42	0.0	0.0	6.6	0.0	l	42	42 30.0	43 13.1 13.1	42 <u>30.8</u> 30.8 37.5 43 13.1 13.1 19.0
45	0.0	0.0	38.0	0.0		45	45 0.0	45 0.0 0.0	45 0.0 0.0 39.8
48	0.0	0.0	22.4	0.4		48	48 6.2	48 6.2 6.2	48 6.2 6.2 27.2
51	0.0	0.0	0.1	0.0		51	51 28.0	51 28.0 28.0	51 28.0 28.0 28.0
55	0.0	0.0	11.4	0.0		55	55 19.8	55 19.8 19.8	<u>54</u> <u>55</u> <u>19.8</u> <u>19.8</u> <u>28.9</u>
56	0.0	0.0	0.0	0.0		56	56 2.6	56 2.6 2.6	56 2.6 2.6 2.6
57	0.0	0.0	0.0	0.0		57	57 0.9	57 0.9 0.9	57 0.9 0.9 0.9
58	0.0	0.0	3.4	0.0		58	58 1.1	58 1.1 1.1	<u>58</u> <u>1.1</u> <u>1.1</u> <u>4.5</u> 50 <u>16</u> <u>16</u> <u>17</u>
<u> </u>	0.0	0.0	0.1	0.0		<u> </u>	9-61 8.4	9-61 8.4 8.4	9-61 84 84 84
62	0.0	0.0	19.4	0.0	l	62	62 19.3	62 19.3 19.3	62 19.3 19.3 35.0
63	0.1	0.0	0.0	0.0		63	63 10.2	63 10.2 10.1	63 10.2 10.1 10.1
64	0.0	0.0	0.0	0.0		64	64 32.3	64 32.3 32.3	<u>64</u> <u>32.3</u> <u>32.3</u> <u>32.3</u>
65	5.4	0.1	0.0	0.0		65	65 5.7	65 5.7 0.2	<u>65</u> <u>5.7</u> <u>0.2</u> <u>0.0</u> 66 <u>66</u> <u>25</u> <u>25</u>
67	4.1	0.0	0.0	0.0		67	67 17.5	67 17.5 14.5	67 17.5 14.5 14.5
68	0.6	0.0	0.0	0.0		68	68 0.6	68 0.6 0.0	68 0.6 0.0 0.0
69	0.0	0.0	0.0	0.0		69	69 0.0	69 0.0 0.0	69 0.0 0.0 0.0
70	0.0	0.0	0.0	0.0		70	70 0.0	70 0.0 0.0	70 0.0 0.0 0.0
71	0.0	0.0	0.1	0.0		71	71 0.0	71 0.0 0.0	71 0.0 0.0 0.1
72	0.0	0.0	<u>37.2</u> 93	0.0		74	72 18.7	74 136 136	74 136 136 216
75	0.0	0.0	9.9	0.0		75	75 19.6	75 19.6 19.6	75 19.6 19.6 27.9
77	0.0	0.0	3.9	0.0	l	77	77 19.6	77 19.6 19.6	77 19.6 19.6 22.9
80	0.0	0.0	0.1	0.0		80	80 1.6	80 1.6 1.6	80 1.6 1.6 1.6
81	0.0	0.0	0.0	0.0		81	81 1.6	81 1.6 1.6	81 1.6 1.6 1.6
91	0.0	0.0	36.2	0.0		<u>82</u> 91	82 14.2 91 2.9	82 14.2 14.2 01 2.9 2.9	82 14.2 14.2 45.3 01 2.9 2.9 42.8
a 1	. 0.0	. 0.0		. 0.0	1	- MI	9 6.9	9 6.9 6.9	MI (31) (31)

 $\begin{array}{c} 0.0 \\ 2.7 \\ 0.0 \\ 5.6 \\ 0.7 \\ 13.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 1.6 \\ 0.0$

7. Table of Final Stage Condition

Stage : Fina	al] [Stage : Fina	al								
Line catego	ory : Tranr	mission m	ain		Line category : Distribution trunk main										
	5	Scenario e	earthquak	e			S	Scenario earthquake							
ZONE	North Ray	South Ray	North Tehran	Mosha		ZONE	North Ray	South Ray	North Tehran						
1		1.1		0] [1	0.02	0.00	0.02						
2		0.0		0	-	2	0.02	0.00	0.08	Ļ					
3		5.8		0		3	0.08	0.08	0.08	┝					
5		1.4		0	1	<u>4</u> 5	0.00	0.00	0.07	┢					
6		8.5		0		6	0.05	0.04	0.05	t					
7		0.0		0	1 [7	0.00	0.00	0.00						
8		2.4		0		8	0.00	0.00	0.02						
10		10.2		0		10	0.00	0.00	0.00						
12		20.8		0		12	0.00	0.00	0.00	┢					
13		2.2		0	1	13	0.00	0.00	0.00	t					
14		4.6		0		14	0.00	0.00	0.00						
15A		0.0		0		15A	0.00	0.00	0.00						
$\frac{15 - 16 - 53}{10}$		3.0		0	-	$\frac{15 - 16 - 53}{10}$	0.08	0.00	0.00	╞					
18		0.5		0	-	18	0.00	0.00	0.00	┢					
20		19.3		0		20	0.00	0.00	0.08	t					
21		0.0		0	1	21	0.00	0.00	0.08	T					
22		1.2		0		22	0.00	0.00	0.00						
23		9.5		0		23	0.00	0.00	0.00						
24		2.4		0	-	24	0.00	0.00	0.19	┝					
20		21.5		0		20	0.00	0.00	0.00	┝					
28		26.2		0	-	28	0.00	0.00	0.00	t					
29		27.8		0	1	29	0.00	0.00	0.09						
30		11.2		0		30	0.00	0.00	0.00						
31		2.6		0	-	31	0.00	0.00	0.00	┞					
32		26.2		0	-	32	0.00	0.00	0.09	┝					
36		0.0		0		36	0.00	0.03	0.00	t					
37		4.1		0		37	0.00	0.00	0.02	t					
38		5.3		0		38	0.00	0.00	0.05						
39		7.2		0	-	39	0.00	0.00	0.00	╞					
40		13.6		0		40	0.00	0.00	0.17	┢					
42		36.8		0		42	0.00	0.00	0.00	t					
43		6.6		0		43	0.00	0.00	0.04	T					
45		0.0		0		45	0.00	0.00	0.57						
48		6.2		0	-	48	0.00	0.00	0.00	Ļ					
54		27.0			1	54	0.00	0.00	0.00	┝					
55		19.8		0	1	55	0.00	0.00	0.00	t					
56		2.6		0] [56	0.00	0.00	0.00						
57		0.9		0	11	57	0.00	0.00	0.00	L					
<u>58</u>		1.1			╡╞	50	0.00	0.00	0.00	╞					
<u>9 - 61</u>		4.9			1	9 - 61	0.00	0.00	0.00	┢					
62		19.3		0	1	62	0.00	0.00	0.00	t					
63		10.0		0	11	63	0.00	0.00	0.00						
64		32.0		0	1	64	0.00	0.00	0.00	ſ					
65				┥╽	65	0.06	0.02	0.00	╞						
67		2.5			+	67	0.02	0.00	0.00	┢					
68		0.0		0	1	68	0.00	0.00	0.00	┢					
69		0.0		0	1 [69	0.00	0.00	0.00	t					
70		0.0		0	11	70	0.00	0.00	0.00						
71		0.0		0	╡╏	71	0.00	0.00	0.00	L					
/2		18.7			╡╏	/2	0.00	0.00	0.08	\vdash					
<u></u> 75		13.0			╡┠	75	0.00	0.00	0.00	┝					
77		19.6		0	1	77	0.00	0.00	0.05	t					
80		1.6		0	11	80	0.00	0.00	0.00						
81		1.6		0] [81	0.00	0.00	0.00						
82		14.2		0	╡╏	82	0.00	0.00	0.00	1					
91	l	2.9		0	JL	91	0.00	0.00	0.1/	1					

Mosha

0.00

0.00

0.00

0.02

0.02

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

Line category : Distribution sub main Line category : Combined Line category : Distribution sub main Line category : Combined ZONE North Scenario earthquake ZONE North North Mosha Tehran Mosha 1 0.00 0.00 0.00 0.00 1 1.1 1.1 2 0.49 0.34 2.72 0.49 3 5.9 5.9 3 0.10 0.00 0.00 0.00 0.00 4 7.7 7.5 5 0.00 0.00 0.00 0.00 0.00 5 1.2 1.2	earthquak North Tehran 1.1 2.8 5.9 7.5 1.2 9.5	e Mosha 0.0 0.5 0.0
Scenario earthquake Scenario earthquake Scenario e ZONE North Ray South Ray North Tehran Mosha ZONE North Ray South Ray North Tehran 1 0.00 0.00 0.00 0.00 1 1.1 1.1 2 0.49 0.34 2.72 0.49 2 0.5 0.3 3 0.10 0.00 0.00 0.00 3 5.9 5.9 4 0.16 0.00 0.00 0.00 5 1.2 1.2	earthquak North Tehran 1.1 2.8 5.9 7.5 1.2 9.5	e Mosha 0.0 0.5 0.0
ZONE North Ray South Ray North Tehran Mosha ZONE North Ray South Ray North Tehran 1 0.00 0.00 0.00 0.00 1 1.1 1.1 2 0.49 0.34 2.72 0.49 2 0.5 0.3 3 0.10 0.00 0.00 0.00 3 5.9 5.9 4 0.16 0.00 0.00 0.00 5 1.2 1.2 0 0.00 0.00 0.00 0.00 5 1.2 1.2	North Tehran 1.1 2.8 5.9 7.5 1.2	Mosha 0.0 0.5 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1 2.8 5.9 7.5 1.2	0.0 0.5 0.0
2 0.49 0.34 2.72 0.49 2 0.5 0.3 3 0.10 0.00 0.00 0.00 3 5.9 5.9 4 0.16 0.00 0.00 0.00 4 7.7 7.5 5 0.00 0.00 0.00 5 1.2 1.2	2.8 5.9 7.5 1.2	0.5
3 0.10 0.00 0.00 0.00 3 5.9 5.9 4 0.16 0.00 0.00 0.00 4 7.7 7.5 5 0.00 0.00 0.00 5 1.2 1.2	5.9 7.5 1.2	0.0
4 0.16 0.00 0.00 0.00 4 7.7 7.3 5 0.00 0.00 0.00 5 1.2 1.2	7.5 1.2	0.0
	0.5	0.0
6 0.02 0.00 0.00 6 8.5 8.5	0.0	0.0
7 0.00 0.00 0.01 0.00 7 0.0 0.0	0.0	0.0
8 0.00 0.00 0.00 8 2.4 2.4	2.4	0.0
<u>10</u> 0.00 0.00 1.86 0.00 10 7.2 7.2	9.0	0.0
	20.8	0.0
12 0.00 0.00 0.00 0.00 12 20.0 20.0 13 0.00 0.00 0.00 0.00 13 2.2 2.2	2.2	0.0
14 0.00 0.00 1.57 0.00 14 4.6 4.6	6.1	0.0
15A 0.00 0.00 0.00 15A 0.0 0.0	0.0	0.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.1	0.0
	1.8	0.0
10 0.00 0.00 0.00 0.00 19 0.00 0.01 20 0.00 0.00 11.22 0.40 20 19.3 19.3	28.4	0.0
21 0.00 0.00 3.32 0.01 21 0.0 0.0	3.4	0.0
<u>22</u> 0.00 0.00 6.21 0.00 22 1.2 1.2	7.4	0.0
<u>23</u> 0.00 0.00 10.02 0.58 23 9.5 9.5	18.6	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.2	0.0
<u>27</u> 0.00 0.00 12.13 0.18 27 26.6 26.6	35.5	0.2
28 0.00 0.00 12.19 2.86 28 26.2 26.2	35.2	2.9
<u>29 0.00 0.00 4.73 0.00 29 27.8 27.8</u>	31.3	0.0
<u>30</u> 0.00 0.00 5.74 0.00 30 11.2 11.2	16.3	0.0
<u>31</u> 0.00 0.00 0.00 31 2.6 2.6 32 0.00 0.00 7.57 0.00 32 51 51	2.0	0.0
<u>33</u> 0.00 0.00 11.48 0.60 33 26.2 26.2	34.7	0.0
36 2.08 1.46 5.08 0.03 36 2.1 1.5	5.3	0.0
<u>37</u> 0.00 0.00 3.85 0.00 37 4.1 4.1	7.8	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.7	0.0
39 0.00 0.00 2.23 0.00 39 7.2 7.2 40 0.00 0.00 7.38 0.00 40 0.0 00	9.3	0.0
41 0.00 0.00 12.62 0.89 41 13.6 13.6	24.7	0.9
42 0.00 0.00 0.10 0.00 42 36.8 36.8	36.8	0.0
43 0.00 0.00 1.05 0.00 43 6.6 6.6	7.6	0.0
<u>45</u> 0.00 0.00 23.36 0.00 45 0.0 0.0	23.8	0.0
<u>48</u> 0.00 0.00 9.04 0.16 48 0.2 0.2 51 0.00 0.00 0.01 0.00 51 27.6 27.6	27.6	0.2
54 0.00 0.00 0.00 0.00 54 0.5 0.5	0.5	0.0
55 0.00 0.00 2.16 0.00 55 19.8 19.8	21.5	0.0
<u>56</u> 0.00 0.00 0.00 <u>56</u> 2.6 2.6	2.6	0.0
57 0.00 0.00 0.00 57 0.9 0.9 58 0.00 0.00 1.76 0.00 58 1.1 1.1	0.9	0.0
50 0.00 0.00 1.70 0.00 50 1.1 1.1 59 0.00 0.00 0.06 0.00 59 1.6 1.6	2.0	0.0
9 - 61 0.00 0.00 0.00 0.00 9 - 61 4.9 4.9	4.9	0.0
62 0.00 0.00 2.87 0.00 62 19.3 19.3	21.7	0.0
<u>63</u> 0.01 0.00 0.00 63 10.0 10.0	10.0	0.0
<u>64</u> 0.00 0.00 0.00 0.00 64 32.0 32.0	32.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0	0.0
67 0.76 0.00 0.00 0.00 67 15.2 14.5	14.5	0.0
68 0.27 0.00 0.00 0.00 68 0.3 0.0	0.0	0.0
<u>69</u> 0.00 0.00 0.00 69 0.0 0.0	0.0	0.0
<u>70</u> 0.00 0.00 0.00 70 0.0 0.0 0.0	0.0	0.0
71 0.00 0.00 0.00 71 0.00 0.0 72 0.00 0.00 12.42 0.00 72 18.7 18.7	28.8	0.0
74 0.00 0.00 5.37 0.00 74 13.6 13.6	18.2	0.0
75 0.00 0.00 2.37 0.00 75 19.6 19.6	21.6	0.0
<u>77</u> 0.00 0.00 0.55 0.00 77 19.6 19.6	20.1	0.0
<u>80</u> 0.00 0.00 0.03 0.00 80 1.6 1.6 1.6	1.6	0.0
<u> 01 0.00 0.00 0.00 0.00 81 1.6 1.6 1.6 1.6 </u>	21.0	0.0
91 0.00 0.00 12.39 0.00 91 2.9 2.9	15.0	0.0

Table of Final Stage Condition (continued)

APPENDIX-3

Modelling of Fault Crossing

and

Underground Beam Structure

- 1. Model of Fault
- 2. Details of Underground Beam Structure Model
- 3. Analysis Examples

1. Model of Fault

Followings are basic fault dislocation model.

- Vertical dislocation caused by reverse or thrust fault
- Horizontal dislocation caused by slip fault
- Tensile displacement caused by reverse fault
- Compressive displacement caused by thrust fault

Actual displacement is a combination of these mechanisms. Pipelines are suffered pure shear deformation by dislocation and fractured with shear mode and/or bending mode as a model of beam. Each region divided by fault line has a same movement inside the regions. Under this condition relative displacement of points which are located in each region is considered. Relative dislocation component is not influenced the location of the selected points. Considering pipeline as beam, outer force or forced displacement can be divided into axial components and lateral ones. Therefore neither of these two elements are not influenced by the position of selected points. *Figure 1* shows example of these conditions. Relative displacement between point A and C is same as of between B and D. Displacement of point A is same as point B, for both point A and B are on the same ground region.

As described above the relative displacement is independent of selection of points. On the other hand strain caused at pipeline differs with selection of points. Selection of two points

with long length becomes small compared to that of with short length. Strain caused between points A and D in the figure becomes smaller than that of between points B and C. Therefore to avoid excess concentration of strain, which might be hazardous to pipeline, countermeasures with selected two points shall be set based on these considerations.

Figure 1 Fault Model

In case of selecting near points across the fault line like B and C like on the figure, both longitudinal and lateral strain become large and pipe joints detach easily. Even detach-resistant joints in case of ductile iron pipe, strain might exceed allowable limit because of concentration of the strain. Reduction of such concentration is necessary even when flexible joints are used, for basic purpose of such flexible is to avoid damage caused by ground

settlement which value is small compared to that of fault dislocation effects. Therefore to use flexible joints is not always best way to avoid damage by earthquake, especially fault crossing. When setting flexible joints at places of ground settlement, it is easy to specify the possible points. On the other hand in case of fault crossing, to specify the precise fault location is rather difficult considering the ground covered fault. Therefore allowance of such uncertainty should be in consideration and many of flexible joints might be set at intervals. However this tactic has a fear of having weak structure points.

There are several methods to avoid excessive concentration of strain other than use of expansion joints. Using of casing pipe or reinforced concrete culvert is other alternative. These structures are modeled as beam structure and displacement becomes gradually even near fault line and main pipe inside does not suffer abrupt deformation. However surrounding soil restraints are considered properly to attain the purpose. If surrounding soil conditions are good enough, in other words soil is relatively soft case, welded steel pipeline satisfy the condition without any special measures.

Typical methods of absorbing such relative displacement are shown below. First avoiding method of axial deformation is described. If there is no possibility of joint deform concentration use of pipe with detach-resistant joints are adequate. However this case in only as ideal one and it is difficult to find such case. Therefore additional measure is necessary considering actual conditions. *Figure 2* shows schematic illustration of the case. Certain length of concrete culvert is installed perpendicular to fault line and direction of fault movement is modeled only detaching. Offset of ground is distributed along culvert and every joint displacement becomes small.

Figure 3 Deformation Absorbing Mechanism

Another method is absorbing dislocation with bending of such box culvert itself. *Figure 4* shows the example. Same dislocation mentioned above occurs and such dislocation can be absorbed by two vertical elements shown in the figure. If weld steel pipes are used as main pipes and enough length of culvert can not be secured this type of measures can be applied.

Second lateral displacement along pipeline is considered. Such culvert or casing pipes are considered as beam structure and this beam is suffered both forced displacement and soil restraint. Soil restraint acts as supporting spring and after large deformation soil acts as pressure load because of soil failure. Schematic illustrations are shown in *Figure 4* and *Figure 5*.

Main pipe inside such culvert is bended gradually and can avoid occurrence of excessive strain conditions.

Figure 5 Beam Model

Combined situation is common during fault dislocation. Therefore measures of combined shape can be applied such as type shown in *Figure 3*. Surround soil condition is essential for these models. In case of no surrounding restraint culvert remains straight shape and deformation is concentrated to both ends, small slope deflection or kink occurs at those points. Therefore some measures are necessary to avoid damage caused by such conditions. One of the samples of this condition is above ground bridge structure. There is no surrounding restraint and pipeline kink occurs at bride support. The magnitude of these kinks becomes small as

bridge span increase. Therefore long span bridge is one of the best solutions to avoid the influence of fault dislocation, however construction cost becomes huge especially in case of long span structure.

2. Details of Underground Beam Structure Model

Figure 6 shows example of underground beam model. In this figure, δ means half of fault dislocation and w is soil reaction load as a result of forced displacement of beam. Actually beam is supported with surrounding soil modeled as spring like shown in *Figure 5*. However as a result of even little displacement of the beam, spring reactions reach to soil fracture level, which is passive earth pressure. Therefore even applying these soil fracture load on whole length of beam, error is relatively small and is considered as practical. Left end of the beam is considered as fix points. However radius of curvature of beam is considered as infinite and bending moment becomes zero at this point. Length L is derived from these δ , w and flexural rigidity of beam EI. This method is easy to estimate possibility of such measures.

Figure 6 Simple Method

3. Analysis Examples

(1) Example of analysis result using simple method

Design conditions are as follows.

Outer diameter of pipe=100cm thickness of pipe=1.5cm Material of pipe is steel and young's modulus E=2,100,000 kgf/cm² Half of fault dislocation δ =20cm Passive load along beam width w=125 kgf/cm Passive load is assumed based on soil condition c=0 and ϕ =35° and earth cover of 200cm

Therefore moment inertia of pipe I=562,000 cm⁴

Length L is derived from following formula.

$$L = \sqrt[4]{\frac{24EI\,\delta}{W}}$$

L=1,459 cm= 14.59 m

And maximum axial stress=2,950 kgf/cm² at location 7.3 m from fault line.

(2) Finite Beam Method

To investigate more details, finite beam method can be applied. Effect of surrounding soil condition can be included by modeling the effect as spring and effect of soil fracture can be also included.

Same model results using finite beam method are shown to compare with simplified method. Spring constant K is derived from soil data. In this case surrounding ground is assumed to be replaced to sand and spring constant K is about 150kgf/cm².

Result from finite beam method.

L=11m

Maximum axial stress=2,873 kgf/cm² at location 7.0 m from fault line.

Shape of beam after forced displacement is shown in Figure 7.

From these results simplified analytical method is enough satisfactory to estimate the condition.

(3) Concrete Box Culvert

Examples similar to steel casing described before are shown next. Assuming height and width

of concrete culvert is approximately 100 cm and thickness is 20 cm. Ratio of steel reinforcing bar is 5 %.

Soil conditions are as follows.

Kp=1,500 kgf/cm for Stiff soil Passive load along beam width w=300 kgf/cm for Stiff soil

Kp=150 kgf/cm for Loose Sand

Figure 8 Box Culvert Model

Passive load along beam width w=125 kgf/cm for Loose Sand

Figure 8 shows resultant bending moment. Bending moment is reduced in case of loose sand is used as backfill materials. *Figure 9* shows bending moment distribution to compare the difference of surrounding conditions.

Figure 9 Bending Moment Distribution

APPENDIX 4

DTSC: Diagnosis Table for Seismic Capacity

DTSC represents a degree of seismic resistance, and also has a function of a record of site survey.

These DTSC, which compile here, are record of present situations of facility up to the point of Aug 2005, when some facilities were plan or not start, we marked accordingly on these DTSC, see the note of table.

Moreover, we made a DTSC tentatively for Pump House based on Reservoir because the number of pump house is so many, but we did not apply to general building. So the description on DTSC of such Generator House was on the basis of structural analysis. Generally in Japan, these buildings are evaluated by area of RC wall, this method is mentioned for reference on attached document named Diagnostic Manual. On the other hand, Iranian brick wall must have spring effect on structural fram, so if Japanese wall area evaluation method would be modified somehow, it could be applied.

In the future Iranian earthquake research of damage might be made progress, these examples of DTSC would help Iranian Engineer to add new evaluation items or modify the fragility point, also wall area evaluation method for building might be useful on the basis of making some reductions of wall area for brick wall.

Followings are shown in the Appendix

- 1. DTSC for Reservoir (A-4.2 \sim 4.10)
- 2. DTSC for Pumping Station (A-4.11~4.15)
- **3.** DTSC for WTP tank (A-4.16~4.17)

1. Diagnosis sheet (Reservior) 1/9

Name of Facility			Reservoir No.1	Reservoir No.2	Reservoir No.3	Reservoir No.4	Reservoir No.5	Reservoir No.6	Reservoir No.7	Reservoir No.8	Reservoir No.9	Reservoir No.10	Reservoir No.11	Reservoir No.12	Reservoir No.13	Reservoir No.14
Risk Factor	Соре	Fragility Point	Point	Point	Point	Point	Point									
	Ground	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Ground	Type-2	1.0													No. 12 Reservoir No. 13 Res nt Point	
	Type-3	1.8														
	not occur	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1. (1.0	1.0
Liquefaction	possible	2.0													Reservoir No. 13 Res Point 5 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.3 4 1.4 2 1.2 5 1.5 0 2.0 0 1.0 8 4.9 3 10.8 6 17.7 5 5 6 7 7 231 6 125	
	occur	3.0														
	Cutting ground	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1. (1.0	1.0
land features	sloping ground	1.2														
	Top of mountain	1.3													rvoir No. 12 Reservoir No. 13 Reservoir Point Point Point Pc 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.1 1.5 1.5 1.2 1.2 1.2 1.2 1.3 1.3 1.3	
	landfill	1.5														
	On the ground	1.2														
Elevation	Semi-buried	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.0		1.0	1.1
	Underground	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10. 12 Reservoir No. 13 Reservit t Point F 0. 5 0. 5 - 1. 0 1. 0 - 1. 0 1. 0 - 1. 0 1. 0 - 1. 0 1. 0 - 1. 0 1. 0 - 1. 0 1. 0 - 1. 0 1. 0 - 1. 1. 0 1. 0 - 1. 1. 1. 0 - - 1. 2 1. 2 - 1. 4 1. 4 - 1. 5 1. 5 - 1. 5 1. 5 - 1. 0 1. 0 - 1. 1. 0 1. 0 - 1. 1. 0 1. 0 - 1. 1. 0 1. 0 - 1. 1. 0 1. 0 - 1. 1. 0 1. 0 - 1. 3 - - 1. 4 1. 4 - 1. 5 1. 5 - 1. 1. 0 1. 0 - <td< td=""><td>1.0</td></td<>	1.0
Material	RC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1. (1.0	1.0
	Brick	3.0														
Wall area of X-axis and Y-axis	0.05<	1.0	4.5	4.5		4.5	4.5			4.5	1.5	4 5			4.5	4.5
∕tank area	0.05>	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Water depth	5m≧	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Reservoir No. 13 Reservoir Point F 5 0. 5 0 1.0 0	1.0
	5m<	1.3									۱. ۵	I. 3	۱. ۵			
Structural formation		1.0														
	Column & Beam	1. Z	1.4	1.4	1.4	1.4	1.4		1.4	1.4	1.4	1.4	1.4	1.	1.4	1.4
Soil cover	Flat slub	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Soil cover	$0.4m \leq$	1.0	1.0	1.0	1.0	1.0	1.0	1 0	1.0	1.0	1.0	1.0	1.0	1 (1 0	1.0
Soll cover	0.4m<	1. Z	1. Z	Ι. Ζ	Ι. Ζ	Ι. Ζ	I. Z	1. Z	1. Z	I. Z	Ι. Ζ	I. Z	1. Z	1.4	I. Z	Ι. Ζ
Construction year	Trolli 1995 oriward	1.0														
Construction year	before 1004	1. Z	1 5	1 5	1 5	1 5	1 5	1 5	1 5	1 5	1 5	1 5	1 5	1.0	1.2 1.2	1 5
	perore 1994	1.0	1. 0	1. 0	1. 0	1. 0	1. 0	1. 0	1.0	1. 0	1. 0	1. 0	1.0	1.3	Point 5 0.5 0 1.0 0	1. 0
Flexible pipe	existing	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	Point 5 0.5 0 1.0 0	2.0
	good condition	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	Reservoir No. 13 R Point 0 5 0.5 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 2.0 0 2.0 0 1.0 0 2.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0 0 1.0	2.0
Ex. j	bad condition	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1. 0	1.0	1.0
		2.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	Reservoir No. 13 F Point D 0. 5 D 1. 0 D 1. 0 D 1. 0 D 1. 0 D 1.	1.0
Degraded degree	middle rank	1.0	1.0	1.0	1. 0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1. ($\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 0
	intense	2.0						2.0								
	F	1 0	3.8	3.8	3.8	3.8	3.8	7.6	3.8	3.8	4 9	54	4 9	3.8	4 9	4 2
Seismic intensity scale	f	2 2	8.3	8.3	8.3	8.3	8.3	16 6	8.3	8.3	10.8	11.9	10.8	8.3	10.8	9 1
		3.6	13.6	13.6	13.6	13.6	13.6	27.2	13.6	13.6	17.7	19.5	17.7	13.6	17.7	1.5 1.0 1.4 1.2 1.5 2.0 1.0 1.0 1.0 1.0 5.6 7 331 107
	high-level	10>	5.6	5.6	5.6	5.6	5.6	5	5.6	5.6	5	5	5	5.6	5	5.6
Aseismicity	middle-level	10~17	7	7	7	7	7	6	7	7	6	6	6	7	6	7
	low-level	17<						7			7	7	7		7	
Senario Surface Acceleration	North Teheran Fau	lt	228	258	226	271	293	306	285	267	245	316	441	318	231	331
(gal) Mosha Fault		94	133	104	113	120	125	149	119	98	119	187	136	125	107	
South Ray Fault		87	124	127	147	154	157	107	125	87	73	121	104	127	77	
	North Ray Fault		81	134	134	116	126	142	152	110	77	92	131	69	145	88
Code 2800		350	350	350	350	350	350	350	350	350	350	350	350	350	350	
													on the Faul	t		on the Fault
														•		
note				Facility fo	or Plan			Aseismicit	y is high-l	level						
				Facility pe	erformed su	vey		Aseismicit	y is middle	e-level						
				Data assume	 he	-		Aseismicit	vis low-le	vel						

1. Diagnosis sheet (Reservior) 2/9

Name of Facility			Reservoir No.15	Reservoir No.16	Reservoir No.17	Reservoir No.18	Reservoir No.19	Reservoir No.20	Reservoir No.21	Reservoir No.22	Reservoir No.23	Reservoir No.24	Reservoir No.25	Reservoir No.26	Reservoir No.27	Reservoir No.28
Risk Factor	Соре	Fragility Point	Point	Point												
	Ground	0. 5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Ground	Type-2	1.0														
	Type-3	1.8														
	not occur	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Liquefaction	possible	2.0														
	occur	3.0														
	Cutting ground	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0
Land features	sloping ground	1.2						1. Z					1. Z	1.2	I. 2	1. Z
	lop of mountain	1.3														
		1.0													Reservoir No. 27 Reservoir Point Point Point Point 1.0	
Flovetion	On the ground	I. Z		1 1		1 1		1 1		1 1	1 1	1 1	1 1	1 1		1 1
Elevation	Jenn-Dur red	1.1	1.0	1.1		1.1	1.0	1.1	1.0	1.1	1.1	1.1	1.1	1.1	1.0	1.1
		1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1 0	1.0	1.0	1.0	1.0
Material	Brick	3.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Wall area of X-axis and Y-axis	0.05<	1.0														
Ztank area	0.05>	1.0	15	1.5	1 5	1 5	15	15	1 5	1.5	1.5	1 5	1 5	1 5	1 5	15
	5m≥	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Water depth	5m<	1 3	1 3	1 3				1 3			1 3	1 3	1 3	1.3	1 3	1 3
Structural formation G	Wall	1.0														
	Column & Beam	1.2														
	Flat slub	1.4	1.4	1.4		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Ca i I	0.4m≧	1.0														
Soll cover	0.4m<	1.2	1.2	1.2		1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	from 1995 onward	1.0														
Construction year		1.2														
	before 1994	1.5	1.5	1.5		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Elevible nine	existing	1.0														
	nothing	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2. 0	2.0	2.0	2.0	2. 0
Fx i	good condition	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Point 5 0.5 0 1.0 2 1.2 1 .0 2 1.2 1 .0 2 1.2 1 .0 2 1.2 1 .0 2 1.2 3 .0 4 .0 5 1.5 33 4 .0 55 33 4 .0 55 55 0 2.0 0 1.0 55 1.5 0 2.0 0 1.0 55 1.5 1.5 0 2.0 0 1.0 55 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.0
Ex. J	bad condition	2.0														
	small	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0 1.0 2 1.2 1 5 1.5 3 1.3 4 1.4 2 1.2 5 1.5 0 2.0 0 1.0 5 1.5 0 2.0 0 1.0 5 1.5 0 2.0 0 1.0 0 1.0 5 5.9 3 13.0 0 1.0 0 1.0 1 5 5.9 3 13.0 0 1.0 1 5 5.9 3 13.0 1 5 5.9 3 1 5 5.9 3 5.0 1 5 5.0 5 5.0 5 5.0 1 5 5.0 5 5.0	1.0
Construction year Flexible pipe Ex.j Degraded degree Seismic intensity scale	middle rank	1.5														
	Intense	2.0	1.0			1.0		0.5	0.0	4.0	5.4	5.4	0.5			<u>с г</u>
	5	1.0	4.9	5.4		4.2	3.8	6.5	3.8	4.2	5.4	5.4	0.5	0.5	5.9	0.5
Selsmic intensity scale	6	2.2	10.8	10.5		9.1	8.3	14.3	8.3	9.1	11.9	11.9	14.3	14. 3	13.0	14.3
	high laval	3.0	I/./	19.0		15.0		Z3. 4	13.0	10.0	I9. 5	19.5	Z3. 4	Z3.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Z3. 4
Asaismicity		10>	0	5		3,0 7	5,0	0	3,0 7	3,0 7	0	0 6	0	6	6	0
Ascrainercy		17/	7	7		'	· ·	7	<i>'</i>	· · · · · ·	7	7	7	7	7	7
Sonario Surface Accoloration	North Teberan Fau		, 175	, 223	621	2/1	558	511	650	108	, 601	/ //0	, 671	511	583	/
(mail) Mosha Fault		111	115	187	96	235	177	198	111	216	126	222	177	187	156	
South Ray Fault		158	212	112	73	100	67	108	65	117	58	110	67	72	65	
North Ray Fault		174	208	99	73	100	63	91	85	88	67	88	63	61	58	
Code 2800	ine. en nuy rudit		350	350	350	350	350	350	350	350	350	350	350	350	350	350
			ŧ		Booster P						modify			on the Faul	t	
											based on				•	
note											structural					
											analysis					
			1								-					

1. Diagnosis sheet (Reservior) 3/9

Name of Facility		Reservoir No.29	oir No.29 Reservoir No.30 Reservoir No.31 Reservoir No.32				Reservoir No.34	Reservoir No.35	Reservoir No.36	Reservoir No. 37 Reservoir No. 38 Reservoir No. 39) Reservoir No.4(Reservoir No.41	Reservoir No.42	
Risk Factor	Cope	Fragility Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point
	Ground	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	ir No. 37 Reservoir No. 38 Reservoir No. 39 Reservoir No. 40 Reservoir No. 41 pint Point Point Point Point Point 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.2 1.2	0. 5			
Ground	Type-2	1.0														
	Type-3	1.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Reservoir No. 41 Ref Point	1.0
Liquefaction	not occur	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	possible	2.0														
	Cutting ground	3.0			1.0			1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0
	sloping ground	1.0	1.2	1 2	1.0	1 2		1.0	1.0	1.0	1.0	1 2	1.0	1.0	1.0	1. 0
Land features	Top of mountain	1.3					1.3									
	landfill	1.5														
	On the ground	1.2														
Elevation	Semi-buried	1.1		1.1		1.1	1.1			1.1		1.1				
	Underground	1.0	1.0		1.0			1.0	1.0		1.0		1.0	1.0	1.0	1.0
Material	RC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Brick	3.0														
Wall area of X-axis and Y-axis	0.05<	1.0	1 5	1 5	1.5	1 5	1 5	1 5	1 5	1 5	1.5	1.5	1 5	1.5	1 5	1.5
Z Lank area	0.00> 5m>	1.0	1.0	1.0	1.5	1.0	1.5	1.5	1. 0	1.5	1. 0	1. 5	1.0	1.0	1.0	1. 0
Water depth	5m	1.0	1 3	1.0	1.0	1.0	1.0	1.0		1.0	1 3	1 3	1 3	1 9	1 3	1 3
	Wall	1.0	1.0						1		1.0	1.0	1.0	1.0	1.0	1.0
Structural formation	Column & Beam	1.0														
	Flat slub	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Sail aguar	0.4m≧	1.0														
3011 COVER	0.4m<	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	from 1995 onward	1.0							1.0				1.0			1.0
Construction year		1.2														
	before 1994	1.5	1.5	1.5	1.5	1.5	1.5	1.5		1.5	1.5	1.5		1.5	1.5	
Flexible pipe	existing	1.0	0.0	0.0		0.0	0.0			0.0	0.0	0.0	0.0	0.0		0.0
	notning	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Ex. j	bad condition	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	small	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Degraded degree	middle rank	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1. 0
	intense	2.0														
	5	1.0	5.9	5.0	3.8	5.0	5.4	3.8	0.0	4.2	4.9	6.5	3.3	4. 9	4.9	3. 3
Seismic intensity scale	6	2. 2	13.0	11.0	8.3	11.0	11.9	8.3	0.0	9.1	10.8	14. 3	7.2	10.8	10.8	7. 2
	7	3.6	21.2	18.0	13.6	18.0	19.5	13.6	0.0	15.0	17.7	23. 4	11.8	17.7	17.7	11.8
	high-level	10>	5	5	5,6	5	5	5,6	5,6,7	5,6	5	5	5,6	5	5	5,6
Aseismicity	middle-level	10~1/	6	6	1	6	6	/		/	6	6	/	6	6	/
	Nexth Teheron Fou	1/<	/	/	250	1	/		101	110	/	/	441	/	1 652	EE A
(gol)	Mocha Fault	ΙL	197	430	250	126	402		101	112	200	102	441	203	207	212
(gal)	South Ray Fault		72	50	130	53	65		158	250	67	63	50	12/	115	62
	North Ray Fault		61	64	155	63	58		250	296	68	63	93	93	91	72
Code 2800	ine. en hay radit		350	350	350	350	350	350	350	350	350	350	350	350	350	350
note																
1. Diagnosis sheet (Reservior) 4/9

Name of Facility	ef Facility		Reservoir No.43	Reservoir No.44	Reservoir No.45	Reservoir No.46	Reservoir No.47	Reservoir No.48	Reservoir No.49	Reservoir No.50	Reservoir No.51	Reservoir No.52	Reservoir No.53	Reservoir No.54	Reservoir No.55	Reservoir No.56
Risk Factor	Соре	Fragility Point	Point													
	Ground	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0. 5
Ground	Type-2	1.0														
	Type-3	1.8														
1 tons for at the	not occur	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
LIQUETACTION	possible	2.0														
	Occur Cutting ground	3.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	sloping ground	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1. 0
Land features	Top of mountain	1.2														
	landfill	1.5														
	On the ground	1.2														
Elevation	Semi-buried	1.1	1.1										1.1	1.1		
	Underground	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			1.0	1.0
Material	RC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Brick	3.0														
Wall area of X-axis and Y-axis	0.05<	1.0														
∕tank area	0.05>	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Water depth	5m≦ Fm ∠	1.0	1.0	1.0	1 0	1 0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1 0	1.0	1.0
		1.3	1.3		I. პ	I. პ	۱. ۵	I. ۵	۱. J	I. 3	1.3		1.3	I. J	۱. ۵	1. 3
Structural formation	Colump & Boom	1.0														
	Flat slub	1.2	14	1 4	1 4	1 4	1 4	1 4	1 4	14	1 4	1 4	1 4	1 4	1 4	1 4
0.11	0 4m≥	1.4	1. 4	1. 4	1. 4	1. 4	1. 4	1. 4	1. 4	1. 4	1. 4	1. 4	1. 4	1. 7	1.4	1. 4
Soil cover	0.4m<	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	from 1995 onward	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0				1.0	1.0	1.0
Construction year		1.2														
	before 1994	1.5									1.5	1.5	1.5			
Elexible nine	existing	1.0														
	nothing	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Ex. j	good condition	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
-		2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Degraded degree	siliari middle rank	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Degi aded degi ee	intense	1.5														
	5	1 0	36	2 5	3 3	3 3	3 3	3 3	3 3	3 3	4 9	38	54	3 6	3 3	3 3
Seismic intensity scale	6	2.2	7.9	5.5	7.2	7.2	7.2	7.2	7.2	7.2	10, 8	8.3	11.9	7.9	7.2	7.2
-	7	3.6	13.0	9.1	11.8	11.8	11.8	11.8	11.8	11.8	17.7	13.6	19.5	13. 0	11.8	11.8
	high-level	10>	5,6	5,6,7	5,6	5,6	5,6	5,6	5,6	5,6	5	5,6	5	5,6	5,6	5,6
Aseismicity	middle-level	10~17	7		7	7	7	7	7	7	6	7	6	7	7	7
	low-level	17<									7		7			
Senario Surface Acceleration	North Teheran Fau	lt	336			604					174	218	218	262	270	
(gal)	Mosha Fault		131			203					104	117	113	125	177	
	South Kay Fault		101			100					103	207	205	104	100	
Cada 2800	north Kay Fault		82	350	320	100	250	250	250	350	155	229	205	350	106	350
Code 2800				300	300	500	300							300		300
note																

1. Diagnosis sheet (Reservior) 5/9

Name of Facility	e of Facility			Reservoir No.58	Reservoir No.59	Reservoir No.60	Reservoir No.61	Reservoir No.62	Reservoir No.63	Reservoir No.64	Reservoir No.65	Reservoir No.66	Reservoir No.67	Reservoir No.68	Reservoir No.69	Reservoir No.70
Risk Factor	Соре	Fragility Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point
	Ground	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0. 5
Ground	Type-2	1.0												1.0)	
	Type-3	1.8														
	not occur	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Liquefaction	possible	2.0														
	occur	3.0														
	Cutting ground	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Land features	sloping ground	1.2														
	lop of mountain	1.3				-			1.3				-			
	landfill	1.5														
	On the ground	1.2														
Elevation	Semi-buried	.	1.0	1.0	1.0	1.0	I. I	1.0	1.1	1.1	1.0	1.0	1.0	1.0	1.0	1.0
	Underground	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Material	RC Do to b	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Brick	3.0								-						
wall area of X-axis and Y-axis	0.05<	1.0	1 5	1.5	1.5	1.5	1.5	1 5	1.5	1.5	1 5	1 5	1 5	1.5	1.5	1 5
Ziank area	0.05>	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Water depth	≥mc	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1 0	1 0	1.0	1.0
		1.3	1.3	1. 3	1.3	I. 3	1.3	1.3	۱. ۵				1. 3	1.3	1.3	1. 3
Structural formation		1.0														
Structural formation		I. Z	1.4	1.4	1.4	1 4	1.4	1.4	1.4	1.4	1 4	1 4	1 4	1.4	1.4	1.4
	Flat Slup	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Soil cover	$0.411 \leq 0.4m \leq 100$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1 0	1.0	1.0	1 0	1.2
	from 1005 opword	1.2	1. 2	1. 2	1.2	1.2	1.2	1.2	1. 2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Construction year	Trolli 1995 Oriwaru	1.0			1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Construction year	boforo 1004	1.2	1.5	1 5					1 5						-	
	evicting	1.5	1. 5	1. 5					1. 5							
Flexible pipe	nothing	1.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2 (2.0	2.0
	good condition	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1 0	1.0
Ex. j	had condition	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1. 0
	small	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1 0	1.0
Degraded degree	middle rank	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1. 0
	intense	2 0				-						2.0				
	5	1 0	49	4 9	3 3	3 3	3 6	3 3	7 0	2.8	2 5	5.0	3 3	6.6	3 3	3 3
Seismic intensity scale	6	2 2	10.8	10.8	7 2	7 2	79	7 2	15 5	6 1	5 5	11 1	7 2	14 4	7 2	7 2
	7	3.6	17.7	17.7	11.8	11.8	13.0	11.8	25.3	10.0	9.1	18.1	11.8	23.6	11.8	11.8
	high-level	10>	5	5	5.6	5.6	5.6	5.6	5	5.6	5.6.7	5	5.6	5	5.6	5.6
Aseismicity	middle-level	10~17	6	6	7	7	7	7	6	7	- , - , -	6	7	6	7	7
	low-level	17<	7	7					7			7		7		
Senario Surface Acceleration	North Teheran Fau	lt	288	255	287		255	435	109	210	128	140	151	240	184	172
(gal)	Mosha Fault		98	78	96		100	200	85	120	85	81	164	152	2 96	93
· · · · ·	South Ray Fault		104	61	110		85	105	147	206	276	233	303	201	156	151
	North Ray Fault		129	75	137		76	131	172	284	292	256	224	291	219	244
Code 2800			350	350	350	350	350	350	350	350	350	350	350	350	350	350
												operation from 200	01	operation from 2	000	
												deterioration				
note																
			1													

1. Diagnosis sheet (Reservior) 6/9

Name of Facility	of Facility		Reservoir No.71	Reservoir No.72	Reservoir No.73	Reservoir No.74	Reservoir No.75	Reservoir No.76	Reservoir No.77	Reservoir No.78	Reservoir No.79	Reservoir No.80	Reservoir No.81	Reservoir No.82	Reservoir No.83	Reservoir No.84
Risk Factor	Соре	Fragility Point	Point													
	Ground	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0. 5	0.5	0. 5
Ground	Type-2	1.0														
	Type-3	1.8														
	not occur	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Liquefaction	possible	2.0														
	occur	3.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Cutting ground	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Land features	Top of mountain	1. Z					1.2									
	londfill	1.3														
	On the ground	1.0													ł	
Elevation	Semi-buried	1.2		1 1			1 1					1 1				
	Underground	1.1	1.0	1.1	1.0	1.0	1.1	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1.0	1.0
	RC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Material	Brick	3.0														
Wall area of X-axis and Y-axis	0.05<	1.0														
∕tank area	0.05>	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Water denth	5m≧	1.0			1.0			1.0	1.0				1.0	1.0		
water depth	5m<	1.3	1.3	1.3		1.3	1.3			1.3	1.3	1.3			1.3	1.3
	Wall	1.0														
Structural formation	Column & Beam	1.2														
	Flat slub	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Soil cover	0. 4m≧	1.0														
	0.4m<	1.2	1.2	1.2	1. 2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
0	from 1995 onward	1.0				1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
construction year	h . f 1004	1. Z	1 5	1 5	1 5											
	before 1994	1.0	1.0	1. 5	1. 0											
Flexible pipe	nothing	1.0	2.0	2.0	2 0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
	good condition	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Ex.j	had condition	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1. 0
	small	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1 0	1.0	1.0	1.0	1.0	1.0	1.0
Degraded degree	middle rank	1.5	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1. 0	1.0	1.0	1. •	1. 0
5 5	intense	2.0														
	5	1.0	4.9	5.4	3.8	3.3	4.3	2.5	2.5	3.3	3.3	3.6	2.5	2.5	3.3	3. 3
Seismic intensity scale	6	2. 2	10. 8	11.9	8.3	7.2	9.5	5.5	5.5	7.2	7.2	7.9	5.5	5.5	7.2	7. 2
	7	3.6	17.7	19.5	13.6	11.8	15.6	9.1	9.1	11.8	11.8	13.0	9.1	9.1	11.8	11.8
	high-level	10>	5	5	5,6	5,6	5,6	5,6,7	5, 6, 7	5,6	5,6	5,6	5,6,7	5,6,7	5,6	5,6
Aseismicity	middle-level	10~17	6	6	7	7	7			7	7	7			7	7
	low-level	1/<	/	/		510	500		505							
Senario Surface Acceleration	North leheran Fau	lt	248	399	181	513	522		505			262	2/2	299		
(gal)	Mosha Fault		164	120	91	166	169		170			/5	/4	108		
	South Ray Fault		82	108	108	60	01		50			<u> </u>	49	01		
Codo 2800	INUTLII RAY FAUIT		350	350	259	350	350	350	350	350	350	78	350	350	350	350
Code 2000			WTP No 3				on the Faul	- 330	on the Fault	- 330	550			on the Faul	- 330	550
note			on the Faul	ŧ				F	on the raut	F				un the raut	F	

1. Diagnosis sheet (Reservior) 7/9

Name of Facility	e of Facility		Reservoir No.85	Reservoir No.86	Reservoir No.87	Reservoir No.88	Reservoir No.89	Reservoir No.90	Reservoir No.91	Reservoir No.92	Reservoir No.93	Reservoir No.94	Reservoir No.95	Reservoir No.96	Reservoir No.97	Reservoir No.98
Risk Factor	Соре	Fragility Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point
	Ground	0. 5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0. 5
Ground	Type-2	1.0					1.0									
	Type-3	1.8														
	not occur	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Liquefaction	possible	2.0														
	occur	3.0														
	Cutting ground	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Land features	sloping ground	1.2														
	TOP OT MOUNTAIN	1.3														
		1.5														
Flowetion	On the ground	I. Z							1 1				1 1			
Elevation	Sell1-Dur Ted	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.0	1.0	1.0	1.1	1.0	1.0	1.0
		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Material	Brick	3.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1. 0	1.0	1.0	1.0	1.0	1. 0
Wall area of X-axis and Y-axis	0.05	1.0														
/tank area	0.05>	1.0	15	1 5	15	1.5	1 5	1 5	15	1.5	1.5	1.5	1 5	1 5	15	1.5
	5m≥	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Water depth	5m<	1.3	1 3	1 3	1 3	1 3	1 3	1 3	1. •	1 3	1 3	1 3	1 3	1. 0	1 3	1. 0
	Wall	1.0														
Structural formation	Column & Beam	1.2														
	Flat slub	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Soil aguar	0.4m≧	1.0														
Soll cover	0.4m<	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	from 1995 onward	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0				1.0
Construction year		1.2														
	before 1994	1.5							1.5				1.5	1.5	1.5	
Elevible nine	existing	1.0														
	nothing	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Fx i	good condition	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
EX. J	bad condition	2.0														
	small	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Degraded degree	middle rank	1.5														
	Intense	2.0		0.0	0.0				4.0		0.0	0.0	F 4		4.0	0.5
Saismin intensity analo	5	1.0	3.3	3.3	3.3	3.3	0.0	3.3	4.2	3.3	3.3	3.3	0.4	3.8	4.9	Z. 5 E. F
Sersing Thensity scare	7	2.2	/. Z	/. Z	/. Z	1. 2	14.4	/. Z	9.1	/. Z	1. Z	1. Z	11.9	0. 3	10.0	0.0 0.1
	high-lovel	3.0	<u> </u>	11.0 5 6	11.0 5 6	11.0 5 6	23.0	<u> </u>	10.0	<u> </u>	11.0 5 6	11.0 5 6	19.0	13.0	5	9.1
Aseismicity		10~17	3,0 7	5,0	5,0	5,0	5	5,0	5,0	5,0	5,0 7	5,0	5	5,0	6	5,0,7
Ascrainferty		17<	/	/	/	1	7	/	/	/	/	7	7	/	7	
Senario Surface Acceleration	North Teheran Fau	17 <					, 115		386	241	281	248	, 248	253	248	
(gal)	Mosha Fault						82		126	104	92	164	164	168	164	
10041	South Ray Fault		l				378		53	134	94	82	82	131	82	
	North Ray Fault		1				371		63	121	127	83	83	130	83	
Code 2800			350	350	350	350	350	350	350	350	350	350	350	350	350	350
			1				operation from 20	04					on the Faul	t	on the Faul	t
														•		•
note																
			1													

1. Diagnosis sheet (Reservior) 8/9

Name of Facility	e of Facility			Reservoir No.100	Reservoir No.101	Reservoir No.102	Reservoir No.103	Reservoir No.104	Reservoir No.105	Reservoir No.106	Reservoir No.107	Reservoir No.108	Reservoir No.109	Reservoir No.110	Reservoir No.111	Reservoir No.112
Risk Factor	Соре	Fragility Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point
	Ground	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Ground	Type-2	1.0														
	Type-3	1.8														
	not occur	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Liquefaction	possible	2.0					-						-			-
	OCCUP	3.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	sloping ground	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Land features	Top of mountain	1.2														
	landfill	1.0														
	On the ground	1.2														
Elevation	Semi-buried	1.1														
	Underground	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Natorial	RC	1.0	1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0	1.0	1. 0
	Brick	3. 0														
Wall area of X-axis and Y-axis	0.05<	1.0														
∕tank area	0.05>	1.5	1.5	1.5	1.5	1.5	1.5			1.5	1.5	1.5	1.5	1.5	1.5	1.5
Water depth	5m≧	1.0	1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0	1.0	1.0
		1.3														
Structural formation	Wall Column & Room	1.0					-									
	Flat slub	1.2	1 /	1 /	1.4	1 /	1.4			1 /	1 /	1 /	1.4	1 /	1 /	1 /
		1.4	1. 4	1. 4	1. 4	1. 7	1.7			1. 4	1. 4	1. 7	1. 4	1. 4	1. 7	1. 4
Soil cover	0. 4m≤	1.2	1.2	1.2	1.2	1.2	1.2			1.2	1.2	1.2	1.2	1.2	1.2	1.2
	from 1995 onward	1.0	1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Construction year		1.2														
	before 1994	1.5														
Elevible nine	existing	1.0														
	nothing	2.0	2.0	2.0	2.0	2.0	2.0			2.0	2.0	2.0	2.0	2.0	2.0	2.0
Ex. i	good condition	1.0	1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0	1.0	1.0
	bad condition	2.0	1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Degraded degree	small middle renk	1.0	1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0	1.0	1. 0
Degraded degree	intense	1.5					-									
	5	1.0	2.5	2.5	2.5	2.5	2.5			2.5	2.5	2.5	2.5	2.5	2.5	2.5
Seismic intensity scale	6	2.2	5.5	5.5	5.5	5.5	5.5			5.5	5.5	5.5	5.5	5.5	5.5	5.5
	7	3.6	9.1	9.1	9.1	9.1	9.1			9.1	9.1	9.1	9.1	9.1	9.1	9.1
	high-level	10>	5,6,7	5, 6, 7	5,6,7	5, 6, 7	5, 6, 7			5,6,7	5,6,7	5,6,7	5, 6, 7	5,6,7	5,6,7	5,6,7
Aseismicity	middle-level	10~17														
	low-level	17<														
Senario Surface Acceleration	North Teheran Fau	lt						275	330							
(gal)	Mosha Fault							121	144							
	South Ray Fault							119	103							
C-1- 2200	North Ray Fault		350	350	350	350	350	105	80 350	350	350	350	350	350	350	350
Code 2800			300	300	500	300	300		500	300	300	300	300	300	500	330
note																

1. Diagnosis sheet (Reservior) 9/9

Name of Facility			Reservoir No.113	Reservoir No.114				
Risk Factor	Соре	Fragility Point	Point	Point				
	Ground	0.5	0.5	0.5				
Ground	Type-2	1.0						
	Type-3	1.8						
	not occur	1.0	1.0	1.0			-	
Liquefaction	possible	2.0						
	occur	3.0						
	Cutting ground	1.0	1.0	1.0				
Land fasturas	sloping ground	1.2						
Land Teatures	Top of mountain	1.3						
	landfill	1.5						
	On the ground	1.2						
Elevation	Semi-buried	1.1						
	Underground	1.0	1.0	1.0				
Matarial	RC	1.0	1.0	1.0				
Material	Brick	3.0						
Wall area of X-axis and Y-axis	0.05<	1.0						
∕tank area	0.05>	1.5	1.5	1.5				
Watan dante	5m≧	1.0	1.0	1.0				
water depth	5m<	1.3						
	Wall	1.0						
Structural formation	Column & Beam	1.2						
	Flat slub	1.4	1.4	1.4				
0.11	0.4m≥	1.0						
Soil cover	0.4m<	1.2	1.2	1.2				
	from 1995 onward	1 0	1 0	1 0		1		
Construction year	in one root onnul u	1.2						
	before 1994	1 5						
	existing	1 0						
Flexible pipe	nothing	2 0	2.0	2.0			-	
- ·	good condition	1 0	1 0	1 0		1		
Ex. j	had condition	2.0	1. 0	1.0			-	
	small	1.0	1.0	1.0				
Degraded degree	middle rank	1.5	1. 0	1.0				
508. aasa as8. so	intense	2.0						
	5	1 0	25	25		1		
Seismic intensity scale	6	2 2	5.5	5.5				
	7	3.6	9.1	9 1			-	
	, high-level	10>	5 6 7	5 6 7			-	
Aseismicity	middle-level	10~17	0,0,7	0,0,1			-	
	low-level	17<					-	
Senario Surface Acceleration	North Teheran Fau	1				1	-	
(gal)	Mosha Fault	10						
(gai)	South Ray Fault							
	North Ray Fault							
Codo 2800	Nor chi hay ruure		350	350		1	-	
Couc 2000			500	500	1			1
note								
			I					

2. Diagnosis sheet (Pumping Station) 1/5

Type of Structure	of Structure				Structure with Slab										
Name of Facility			Reservoir No.1	Reservoir No.2	Reservoir No.8	Reservoir No.12	Reservoir No.13	Reservoir No.14	Reservoir No.15	Reservoir No.16	Reservoir No.17	Reservoir No.18	Reservoir No.19	Reservoir No.20	Reservoir No.21
Risk Factor	Соре	Fragility Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point
	Type-1	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0. 5
Ground	Type-2	1.0													
	Type-3	1.8													
	not occur	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Liquefaction	possible	2.0													
	occur	3.0													
	Cutting ground	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.1	1.0
Land features	sloping ground	1.2												1.1	
	lop of mountain	1.3													
		1.5	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Flovetion	Un the ground	1. Z	1. Z	1. Z		I. Z	1. Z	1. Z	. I. Z	I. Z	1. 2	1. 2	I. Z	1. Z	1. Z
Elevation	Semisublerranean	1.1													
	Draerground	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Material	Brick	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Wall area of X-axis and X-axis		3.0													
	0.05	1.0													
/tank area	0.03>	1.5	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	5m>	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Water depth	5m<	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Wall	1.0						<u> </u>	1	1			1		
Structural formation	Column & Beam	1.0	1 2	1 2		1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2
	Flat slub	1 4	1.2	1.2		1.2	1.2	1.2					1.2		
	0. 4m≧	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Soil cover	0.4m<	1.2													
	from 1995 onward	1.0													
Construction year		1.2													
	before 1994	1.5	1.5	1.5		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Flexible nine	existing	1.0													
	nothing	2.0	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2. 0
Fy i	good condition	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Ex. J	bad condition	2.0													
	small	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Degraded degree	middle rank	1.5				-									
	Intense	2.0	0.5	0.5		0.5	0.5	0.5			0.5	0.5	0.5	7.1	
Solomia intensity apola	5	1.0	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	/.	0.5
Sersinic intensity scare	0	Z. Z 2. 6	14.3	14.3		14.3	14.3	14.3	14.3	14.3	14.3	14.3	14.3	15.7	14.3
	high-loval	3.0	Z3. 3	23.3	5 6 7	23.3	23. 3	23.3	5	5	Z3. 3	Z3. 3	Z3. 3	ZU. 7	Z3. 3
Aseismicity		10~17	5	6	5,0,7	6	6	6	6	6	5	5	6	5	5
Ascrainercy		17<	7	7		7	7	7	7	7	7	7	7	7	7
Sonario Surface Accoloration	North Teheran Fau	+	, 228	258	267	7 318	, 231	, 231	, 175	, 223	, 621	, 2/1	, 558	, 511	, 650
(gal)	Mosha Fault		94	133	110	136	125	107	111	115	187	96	235	177	198
(841)	South Rav Fault		87	124	125	100	123	77	158	212	112	73	100	67	108
	North Ray Fault		81	134	110) 69	145	88	174	208	.12	73	101	63	.30
Code 2800			350	350	350	350	350	350	350	350	350	350	350	350	350
					No Pump			on the Fault							
									-						
note				Planning				Aseismicit	y is high-l	evel					
				Facility p	erformed su	ivey		Aseismicit	y is middle	-level					
								Aseismicit	y is low-le	vel					

2. Diagnosis sheet (Pumping Station) 2/5

Name of Facility Bower M.B. B	Type of Structure	of Structure				Structure with Slab										
Risk Factor Cope Fragility Point Point Point </th <th>Name of Facility</th> <th></th> <th></th> <th>Reservoir No.22</th> <th>Reservoir No.24</th> <th>Reservoir No.25</th> <th>Reservoir No.26</th> <th>Reservoir No.27</th> <th>Reservoir No.28</th> <th>Reservoir No.32</th> <th>Reservoir No.34</th> <th>Reservoir No.36</th> <th>Reservoir No.37</th> <th>Reservoir No.38</th> <th>Reservoir No.40</th> <th>Reservoir No.43</th>	Name of Facility			Reservoir No.22	Reservoir No.24	Reservoir No.25	Reservoir No.26	Reservoir No.27	Reservoir No.28	Reservoir No.32	Reservoir No.34	Reservoir No.36	Reservoir No.37	Reservoir No.38	Reservoir No.40	Reservoir No.43
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Risk Factor	Соре	Fragility Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Type-1	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ground	Type-2	1.0													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Type-3	1.8													
Liqueraction occur 3.0		not occur	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
Occurr 3.0 0 1<	Liquefaction	possible	2.0													
Land features Siloping round inport in an integration individual integration 1.0 <th1< td=""><td></td><td>occur</td><td>3.0</td><td>1.0</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td>1.0</td><td>1.0</td><td>1.0</td><td></td><td>1.0</td><td>1.0</td></th1<>		occur	3.0	1.0	1.0						1.0	1.0	1.0		1.0	1.0
Land features Solid Ing ground Top of mountain Isord 1.1<		Cutting ground	1.0	1.0	1.0	1 1	1 1	1 1	1 1	-	1.0	1.0	1.0	1 1	1.0	1.0
Import in and it is in the ground 1.5 1.2 <	Land features	Sloping ground	1. Z			1.1	1.1	1.1	1.1					1.1		
Initial III 1.2 <th1.2< th=""> 1.2 <th1.2< th=""> <th1< td=""><td></td><td>lop of mountain</td><td>1.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<></th1.2<></th1.2<>		lop of mountain	1.3													
Elevation Index ground I		Dn the ground	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
Literation Joint solution mean 1.1 Image of the solution mean 1.0 1.	Elevation	Somi subtorrongen	1.2	1. 2	1.2	1.2	1.2	1. 2	1. 2		1.2	1. 2	1.2	1.2	1. 2	1.2
Material Note rubin 1.0		Underground	1.1													
Material Brick 1.0		RC	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
Wall area of X-axis and Y-axis 0.05 0.05 1.5 0.02 3.0<	Material	Brick	3.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Wall area of X-axis and Y-axis	0.05<	1.0			1	1	<u> </u>	<u> </u>	<u> </u>			<u> </u>	1		
4 tank area 0.02^{-} 3.0		0.05 >	1.5													
Sm2 1.0 <td>∕tank area</td> <td>0.02></td> <td>3 0</td> <td></td> <td>3 0</td> <td>3 0</td> <td>3 0</td> <td>3 0</td> <td>3 0</td> <td>3 0</td>	∕tank area	0.02>	3 0	3 0	3 0	3 0	3 0	3 0	3 0		3 0	3 0	3 0	3 0	3 0	3 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5m≧	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	water depth	5m<	1.3													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Wall	1.0													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Structural formation	Column & Beam	1.2	1.2	1.2	1.2	1.2	1.2	1.2		1.2	1.2	1.2	1.2	1.2	1.2
Soil cover 0. m≥ 1.0		Flat slub	1.4													
October 0.4m 1.2 0.4m <	Soil cover	0.4m≧	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.4m<	1.2													
Construction year 1.2		from 1995 onward	1.0													1.0
before 1994 1.5 <th< td=""><td>Construction year</td><td>1 6 1001</td><td>1.2</td><td></td><td>1.5</td><td></td><td>1.5</td><td></td><td>1.5</td><td></td><td></td><td>1.5</td><td></td><td>1.5</td><td></td><td></td></th<>	Construction year	1 6 1001	1.2		1.5		1.5		1.5			1.5		1.5		
Flexible pipe existing nothing 1.0 2.0 <		before 1994	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
Inclusion Inclusion <thinclusion< th=""> <thinclusion< th=""> <thi< td=""><td>Flexible pipe</td><td>existing</td><td>1.0</td><td>0.0</td><td>2.0</td><td>0.0</td><td>2.0</td><td></td><td></td><td></td><td></td><td>2.0</td><td>0.0</td><td>2.0</td><td>0.0</td><td>2.0</td></thi<></thinclusion<></thinclusion<>	Flexible pipe	existing	1.0	0.0	2.0	0.0	2.0					2.0	0.0	2.0	0.0	2.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		notning good condition	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
bdd contribin 2.0 0	Ex. j	bod condition	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Degraded degree Sind I I.0 I.0 <thi.0< th=""> I.0 I.0</thi.0<>			2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Seismic intensity scale 5 1.0 6.5 6.5 7.1 7.1 7.1 7.1 0.0 6.5 6.5 7.1 6.5 4 Seismic intensity scale 6 2.2 14.3 14.3 15.7 15.7 15.7 0.0 14.3 14.3 15.7 14.3 9 7 3.6 23.3 23.3 25.7 25.7 25.7 0.0 23.3 23.3 25.7 25.7 25.7 25.7 5	Degraded degree	middle rank	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
bit control		intense	2.0													
Seismic intensity scale 6 2.2 14.3 14.3 15.7 15.7 15.7 15.7 0.0 14.3 14.3 15.7 14.3 9 7 3.6 23.3 23.3 25.7 25.7 25.7 0.0 14.3 14.3 15.7 14.3 15.7 15.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 5		5	1 0	65	6 5	7 1	7 1	7 1	7 1	0.0	6 5	65	6 5	7 1	6 5	4 3
nigh-level 10> 5 <t< td=""><td>Seismic intensity scale</td><td>6</td><td>2.2</td><td>14.3</td><td>14.3</td><td>15.7</td><td>15.7</td><td>15.7</td><td>15.7</td><td>0.0</td><td>14.3</td><td>14.3</td><td>14.3</td><td>15.7</td><td>14.3</td><td>9.5</td></t<>	Seismic intensity scale	6	2.2	14.3	14.3	15.7	15.7	15.7	15.7	0.0	14.3	14.3	14.3	15.7	14.3	9.5
high-level 10> 5 6 7 7 <t< td=""><td>5</td><td>7</td><td>3.6</td><td>23.3</td><td>23.3</td><td>25.7</td><td>25.7</td><td>25. 7</td><td>25.7</td><td>0.0</td><td>23.3</td><td>23.3</td><td>23.3</td><td>25.7</td><td>23.3</td><td>15.6</td></t<>	5	7	3.6	23.3	23.3	25.7	25.7	25. 7	25.7	0.0	23.3	23.3	23.3	25.7	23.3	15.6
Aseismicity <u>middle-level</u> 10~17 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7		high-level	10>	5	5	5	5	5	5	5,6,7	5	5	5	5	5	5,6
	Aseismicity	middle-level	10~17	6	6	6	6	6	6		6	6	6	6	6	7
low-level 17< 7 17 17 17 7 17 17 17 17 17 17 17 17 17		low-level	17<	7	7	7	7	7	7		7	7	7	7	7	
Senario Surface Acceleration North Teheran Fault 408 449 671 511 583 483 386 112 258 324 617 3	Senario Surface Acceleration	North Teheran Fau	lt	408	449	671	511	583	483	386		112	258	324	617	336
(gal) Mosha Fault 111 126 222 177 187 156 126 103 85 102 203 1	(gal)	Mosha Fault		111	126	222	177	187	156	126		103	85	102	203	131
South Ray Fault 65 58 110 67 72 65 53 259 67 63 124 1		South Ray Fault		65	58	110	67	72	65	53		259	67	63	124	101
North Ray Fault 85 67 88 63 61 58 63 296 68 63 93		North Ray Fault		85	67	88	63	61	58	63	050	296	68	63	93	82
Code 2800 350 3	Code 2800			350	350	350	350	350	350	350	350	350	350	350	350	350
In the Fault No Pump H No Pump H. No Pump H. No Pump H.							on the Faul	ţ.		No Pump H			No Pump H.			No Pump H.
note	note															

2. Diagnosis sheet (Pumping Station) 3/5

Type of Structure	of Structure				Structure with Slab										
Name of Facility			Reservoir No.52	Reservoir No.56	Reservoir No.57	Reservoir No.58	Reservoir No.59	Reservoir No.65	Reservoir No.66	Reservoir No.68	Reservoir No.69	Reservoir No.71	Reservoir No.72	Reservoir No.73	Reservoir No.74
Risk Factor	Соре	Fragility Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point
	Type-1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			0.5	0.5	0.5	0.5
Ground	Type-2	1.0													
	Type-3	1.8													
	not occur	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0)		1.0	1.0	1.0	1.0
Liquefaction	possible	2.0													
	occur	3.0													
	Cutting ground	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0)		1.0	1.0	1.0	1.0
Land features	sloping ground	I. 2				-			-					-	
	lop of mountain	1.3				-			-					-	
		1.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0
Flovation	On the ground	I. Z	Ι. Ζ	I. Z	Ι. Ζ	1. Z	I. Z	I. Z	I. 2			I. Z	. I. Z	1. Z	I. Z
	Jundow gwound	1.1													
		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		-	1.0	1.0	1.0	1.0
Material	Brick	3.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	, 		1.0	1.0	1.0	1.0
Wall area of X-axis and Y-axis	0.05	1.0													
	0.05>	1.0													
∕tank area	0.00>	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0
	5m≥	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0)		1 0	1 0	1 0	1 0
Water depth	5m<	1 3													
	Wall	1.0													
Structural formation	Column & Beam	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	2		1.2	1.2	1.2	1.2
	Flat slub	1.4													
Soil cover	0.4m≧	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0)		1.0	1.0	1.0	1.0
Soll cover	0.4m<	1.2													
	from 1995 onward	1.0					1.0	1.0	1.0)					1.0
Construction year		1.2													
	before 1994	1.5	1.5	1.5	1.5	1.5						1.5	1.5	1.5	
Flexible pipe	existing	1.0													
	nothing	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0)		2.0	2.0	2.0	2.0
Ex. i	good condition	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0)		1.0	1.0	1.0	1.0
5	bad condition	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		-	1.0	1.0	1.0	1.0
Demueded demue	small middle newly	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0)		1.0	1.0	1.0	1.0
Degraded degree	interes	1.0													
	F	2.0	6 5	6 5	6 5	6.5	1.2	1.2	1.2	,	0.0	6 5	6.5	6 5	1.2
Seismic intensity scale	5	1.0	1/1 3	14.3	14 3	14.3	4.3	4.3	4.3		0.0	0.J	1/1 3	14.3	4.5
Serame meenarcy source	7	3.6	23.3	23.3	23.3	23.3	15.6	15.6	15.6	/	0.0	23.3	23.3	23.3	15.6
	high-level	10>	5	5	5	5	5 6	5 6	5 6	5 6 7	5 6 7	5	5	5	5 6
Aseismicity	middle-level	10~17	6	6	6	6	7	7	7	0,0,7	•,•,,,	6	6	6	7
	low-level	17<	Ž	7	Ž	7			i .			Ž	Ž	7	·
Senario Surface Acceleration	North Teheran Fau	lt	218		288	255	287	128	140	240	184	248	399	181	513
(gal)	Mosha Fault		117		98	78	96	85	81	152	96	164	120	91	166
	South Ray Fault		207		104	61	110	276	233	201	156	82	108	158	60
	North Ray Fault		229		129	75	137	292	256	291	219	83	96	259	65
Code 2800			350	350	350	350	350	350	350	350	350	350	350	350	350
	1000						No Pump House			No Pump H.	No Pump	No Pump	No Pump H.		
							under constru	ction				on the fault			
note															

2. Diagnosis sheet (Pumping Station) 4/5

Type of Structure	of Structure				Structure with Slab										
Name of Facility			Reservoir No.75	Reservoir No.80	Reservoir No.81	Reservoir No.82	Reservoir No.90	Reservoir No.92	Reservoir No.93	Reservoir No.94	Reservoir No.95	Reservoir No.96	Reservoir No.97	Reservoir No.99	Reservoir No.100
Risk Factor	Соре	Fragility Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point
	Type-1	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5
Ground	Type-2	1.0													
	Type-3	1.8													
	not occur	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0
Liquefaction	possible	2.0													
	occur	3.0													
	Cutting ground	1.0		1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0
Land features	sloping ground	1.2	1.1												
	lop of mountain	1.3													
		1.5	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0		1.0	1.0
E Laurat i an	Un the ground	I. Z	1. Z	1. Z	1. Z		1. Z	1. Z	1. Z	1. Z		1. Z		1. Z	1. Z
Elevation	Semisublerranean	I. I 1. 0													
	Draerground	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0		1.0	1.0
Material	Rrick	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0		1.0	1.0
Wall area of X-axis and X-axis		3.0													
	0.05	1.0													
∕tank area	0.002>	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0		3.0		3.0	3.0
	5m≥	1 0	<u> </u>	1.0	1 0		1 0	1 0	1 0	1.0		1.0		1.0	1.0
Water depth	5m<	1 3	1.0	1. 0	1.0		1.0	1. 0	1. 0	1.0		1.0		1. 0	1. 0
	Wall	1.0													
Structural formation	Column & Beam	1.2	1.2	1.2	1.2		1.2	1.2	1.2	1.2		1.2		1.2	1.2
	Flat slub	1.4													
Sail annan	0.4m≧	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0		1.0	1.0
Soll cover	0.4m<	1.2													
	from 1995 onward	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0				1.0	1.0
Construction year		1.2													
	before 1994	1.5										1.5			
Flexible nine	existing	1.0													
	nothing	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.0		2.0		2.0	2.0
Fx i	good condition	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0		1.0	1.0
	bad condition	2.0													
	small	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0		1.0	1.0
Degraded degree	middle rank	1.5													
	Intense	2.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	0.0	6 F	0.0	4.2	4.0
Solomia intensity souls	5	1.0	4.8	4.3	4.3		4.3	4.3	4.3	4.3	0.0	0.0	0.0	4.3	4.3
Sersing Thensity scare	7	2.2	10.3	9.0	9.0		9.0	9.0	9.0	9.0	0.0	14. 3	0.0	9.0	9.0
	high-level	10 >	5	5 6	5 6	5 6 7	5 6	5 6	5 6	5 6	5 6 7	5	5 6 7	5 6	5 6
Aseismicity		10~17	6	3,0 7	3,0 7	5,0,7	3,0 7	3,0 7	3,0 7	3,0 7	5,0,7	6	5, 0, 7	3,0 7	3,0 7
Nooromrorey		17<	7	/	'		'	'	'	/		7		'	'
Senario Surface Acceleration	North Teheran Fau	17	522	262	272	299		241	281	248	248	253	248		
(gal)	Mosha Fault		169	75	74	108		104	92	164	164	168	164		
\Q/	South Rav Fault		61	59	49	61		134	94	82	82	131	82		
	North Ray Fault		62	78	69	61		121	127	83	83	130	83		
Code 2800	, ,		350	350	350	350	350	350	350	350	350	350	350	350	350
			on the Faul			on the Fault					No Pump	New Steel	No Pump H.		
			operation from 2003	-		No Pump	-				on the fault		under constru	ction	
note													on the fault		
			1												

2. Diagnosis sheet (Pumping Station) 5/5

Type of Structure			Structure with Slab						
Name of Facility			Reservoir No.101	Reservoir No.102	Reservoir No.104	Reservoir No.105	Reservoir No.114		
Risk Factor	Соре	Fragility Point	Point	Point	Point	Point	Point		
	Type-1	0.5	0.5	0.5	0.5	0.5	0.5		
Ground	Type-2	1.0							
	Туре-3	1.8							
	not occur	1.0	1.0	1.0	1.0	1.0	1.0		
Liquefaction	possible	2.0							
	occur	3.0	1.0	1.0	1.0	1.0	1.0		
	Cutting ground	1.0	1.0	1.0	1.0	1.0	1.0		
Land features	Top of mountain	1. Z							
	landfill	1.5							
	On the ground	1.3	1 2	1 2	1 2	1.2	1.2		
Flevation	Semisubterranean	1.2	1.2	1.2	1.2	1.2	1.2		
	Underground	1 0							
M. +	RC	1.0	1.0	1.0	1.0	1.0	1.0		
material	Brick	3.0							
Wall area of X-axis and Y-axis	0.05<	1.0							
	0.05>	1.5							
∕tank area	0.02>	3. 0	3.0	3.0	3.0	3.0	3.0		
Water denth	5m≧	1.0	1.0	1.0	1.0	1.0	1.0		
	5m<	1.3							
	Wall	1.0							
Structural formation	Column & Beam	1.2	1.2	1.2	1.2	1.2	1.2		
	Flat slub	1.4	1.0	1.0	1.0	1.0	1.0		
Soil cover	0.4m≦ 0.4m≤	1.0	1.0	1.0	1.0	1.0	1.0		
	U. 4III from 1005 opword	1.2	1.0	1.0			1.0		
Construction year	Trolli 1995 Oriwaru	1.0	1.0	1.0			1.0		
oonstruction year	before 1994	1.2			1.5	1.5			
	existing	1.0			1.0	1.0			
Flexible pipe	nothing	2.0	2.0	2.0	2.0	2.0	2.0		
E. I	good condition	1.0	1.0	1.0	1.0	1.0	1.0		
EX. J	bad condition	2.0							
	small	1.0	1.0	1.0	1.0	1.0	1.0		
Degraded degree	middle rank	1.5							
	intense	2.0							
	5	1.0	4.3	4.3	6.5	6.5	4.3		
Seismic intensity scale	6	2.2	9.5	9.5	14.3	14.3	9.5		
	/	3.6	15.6	15.6	23.3	23.3	15.6		
Aseismicity	middle_level	10>	5, 0 7	5, 6 7	0	0	5, 0 7		
Asersmitting		10~17	/	1	0	0	1		
Sonaria Surface Acceleration	North Teberan Fau	+			275	, 330			
(gal)	Mosha Fault	L	1		121	1//			
(8ατ)	South Ray Fault				119	103			
	North Ray Fault				105	86			
Code 2800			350	350	350	350	350	1	
			1						
note									

3. Diagnosis sheet (WTP tank) 1/2

Type of Structure	be of Structure														
Name of Facility			WTP No.1	WTP No. 1	WTP No.2	WTP No.2	WTP No.3	WTP No.3	WTP No.4	WTP No.4	WTP No. 5	WTP No.5		WTP No.1	WTP No. 2
			Clarifier	Filtor	Pulsator	Filter	Pulsator	Filter	Pulsator	Filtor	Pulsator	Filter		Generator House	Generator House
	1	1	Glarifier	FILLER	FUISALUI	FILE	FUISALUI	FILE	FUISALUI	FILLER	FUISALUI	FILER		denerator nouse	denerator nouse
	_	Fragility													
Risk Factor	Соре	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point	Point			
	_														
	lype-1	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0 .6	0.6	0.6	0.6	i		
Ground	Type-2	1.0													
	not occur	2.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6			
liquefaction	nossible	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
	occur	2.0													
	Cutting ground	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0					1
Land frations	sloping ground	1.2									1.2	1.2			
Land Tealures	Top of mountain	1.3													
	landfill	1.5													
	On the ground	1.2													
Elevation	Semisubterranean	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1			
	Underground	1.0													
Material	RC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0)		
	Brick	3.0	1.0		1.0		1.0		1.0		1.0				
Wall area of X-axis and Y-axis	0.2<	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1 0			
Charle and	0. 2~0. 12	1. Z		I. Z		I. Z		1. 2		I. 2		1. Z			
Z Larik area	0. 12> 5m>	1.0	1.0	1.0		1.0		1.0	1	1.0		1.0	1		
Water depth	5m∠	1.0	1.0	1.0	3.0	1.0	3.0	1.0	3.0	1.0	3.0	1.0			
	Wall	1.0	1.0	1.0	<u> </u>	1.0	3.0	1.0	1.0	1.0	3.0	1.0	1		1
Structural formation	Column & Ream	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			
	Flat slub	1.2													
0.11	0.4m≥	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0			1
Soll cover	0.4m<	1.2													
	from 1995 onward	1.0									1.0	1.0			
Construction year		1.5													
	before 1994	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8					
Elexible nine	existing	1.0													
	nothing	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8			
Ex. i	good condition	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1		
	bad condition	2.0				1.0	1.0	1.0	1.0	2.0	1.0	1.0			
Degraded degrae	silia i i middlo, ropk	1.0	1.5	1.5	1.5	1.0	1.0	1.0	1.0	1.5	1.0	1.0	·		
Degraded degree	intense	1.5	1.0	1.0	1. 0					1.0					
	5	1.0	1 9	2.3	5.8	1.5	3.8	1.5	3.8	4 6	2.6	1 0			
Seismic intensity scale	6	2.2	4 2	5 1	12 7	3 4	8.5	3.4	8.5	10.2	5.6	2 3			
	7	3 6	6.9	8.3	20.8	5.5	13.9	5.5	13 9	16.6	9.2	3 7			
	high-level	10>	5,6,7	5,6,7	5	5,6,7	5,6	5,6,7	5,6	5	5, 6, 7	5, 6, 7			
Aseismicity	middle-level	10~30			6		7		7	6,7					
	low-level	30<			7										
Senario Surface Acceleration	North Teheran Fau	lt	242	242	283	283	224	224	260	260	618	618		242	283
(gal)	Mosha Fault		104	104	92	92	167	167	167	167	208	208		104	92
	South Ray Fault		134	134	97	97	77	77	81	81	96	96		134	97
0 1 0000	North Kay Fault		121	121	129	129	78	78	78	78	97	97		121	129
Code 2800			350	350	350	350	350	350	350	350	350	350	4	350	350
							Deleter Ch	004 1001	on the Fault	on the Fault	on the Fault			by Structu	rai analysi
noto				Planning			ruisator of N	ο. 364 IS Obse	rved the crack	, therefore (legraded degre	e is middle ra	arık, Dut Wall	is thick, and	aseismicity is
nore	te			Facility n	erformed su	Vev			v is middle						
					ed	,		Aseismicit	y is low-le	vel					

3. Diagnosis sheet (WTP tank) 2/2

Type of Structure							1		
Name of Facility			WTP No.4	WTP No. 5	WTP No. 5	Chemical Factry			
			Chomical House	Chloring House	Chamical House				
			Gilellin can nouse	GITOTTIE House	Griellin can nouse				
		Fragility							
Risk Factor	Cope	Point							
		1 onne							
Ground	Type-1	0.6							
	Type-2	1.0							
	Type-3	2.0							
Liquefaction	not occur	0.6							
	possible	1.0			-	-	-		
	OCCUr	2.0					-	-	
Land features	outting ground	1.0						-	
	Top of mountain	1.2						-	
	landfill	1.5						-	
	On the ground	1.3							
Elevation Material	Semisubterranean	1 1						-	
	Underground	1.0						-	
	RC	1.0					1		
	Brick	3.0						-	
Wall area of X-axis and Y-axis	0.2<	1.0							
	0. 2~0. 12	1.2							
∕tank area	0. 12>	1.5							
Water depth	5m≧	1.0							
	5m<	3.0							
Structural formation	Wall	1.0							
	<u>Column & Beam</u>	1.2							
	Flat slub	1.4							
Soil cover	0.4m≧	1.0							
	0.4m<	1.2			-	-			
Construction year	Trom 1995 onward	1.0					-	-	
	before 100/	1.0						-	
Flexible pipe	evisting	1.0			1	1		+	
	nothing	1.0						-	
	good condition	1.0			1	1		-	
Ex.j Degraded degree	bad condition	2 0						-	
	small	1.0							
	middle rank	1.5							
	intense	2.0							
Seismic intensity scale	5	1.0							
	6	2. 2							
	7	3.6							
Aseismicity	high-level	10>							
	middle-level	$10 \sim 30$							
	Tow-Tever	30<	0.00	010	010				
Senario Surface Acceleration	North leheran Fault Mosha Fault South Ray Fault		260	618	618		-	-	
(gal)			16/	208	208				
North Ray Fault		01	90	90					
Code 2800			350	350	350		+	+	
0000 2000			500	on the Fault	on the Fault		<u>.</u>	<u>.</u>	
note				high so degraded degrae is changed to small					
			1						

APPENDIX 5

Drawings

We proposed reinforcement for structural member or refurbishment for facility and submit example of outline design in terms of drawing based on structural analysis on bellow facilities.

- Generator House on WTP No.1: Fig.5.1 to 5.8
- Pulsator on WTP No.2: Fig.5.9 to 5.11
- Pump House on Reservoir No.2: Fig.5.12 to 5.16
- Reservoir No.6: Fig.5.17 to 5.20

On the other hand, though structural analysis is not carried out, some proposals are represented on drawing on bellow facilities/standard, in addition bar arrangement was made up based on experience or Japanese practice due to covering the difficulties of setting design conditions.

- Bilagan Intake shelter: Fig.5.21
- Breezway: Fig.5.22
- Reinforcement on Brick Wall: Fig.5.23
- Earthquake Resistant Wall (Shear Wall): Fig.5.24 to 5.25
- Reinforcement of Tile and Marble Sheet: Fig.5.26
- Reinforcement of Steel Building: Fig.5.27

A-5.3

A-5.11

