4.2 Damage Estimation for Facilities and Equipment

This section for seismic diagnosis of facilities and equipment consists of preliminary seismic diagnosis and detailed diagnosis. Main findings of preliminary seismic diagnosis are pointing of defects based on the visual investigation. In detail diagnosis, earthquake-resistant evaluation and damage estimation is carried out for surveyed structures and equipment on the basis of using a diagnostic table and some structure analysis.

4.2.1 Preliminary Seismic Diagnosis

This section of preliminary seismic diagnosis for facilities and equipment consists of the following items.

- Review of the existing report of earthquake resistant design prepared by TWWC
- Description of preliminary seismic diagnosis method Arrangement of whole study works including data collection, classification of facilities based on their importance, key points to visual investigation, consideration of design year, etc. Diagnosis method will be described based on the existing structural analysis and diagnostic reports.
- Results of preliminary seismic diagnosis Summary of seismic diagnosis results is based on visual investigation.

(1) Review of Related Study Report

The review of "The Study on Water Supply System Resistant to Earthquake in Tehran municipality" (hereinafter referred to as "Earthquake-resistant study by TWWC") has been carried out. Mainly, diagnosis related to facilities has been made, and some points of issue became clear from the reports.

Since no structural calculation documents were available for an old structure, TWWC carried out structural analysis again and confirmed earthquake resistant capabilities.

Vulnerability models of the Reservoir and the Pump House are based on the structural calculation, and therefore these results can be used in this Study. These vulnerability models are targeted to construction year of 1970's. However, additional models are necessary to represent the old structures before these periods. These old structures are constructed based on English standards in 1950's.

(2) Preliminary Seismic Diagnosis

The preliminary diagnosis for facilities consists of data collection including construction year, classification of facilities importance, the visual inspection and plan of the whole diagnosis work which is followed by safety assessment. The outlines of the study are described below.

1) Whole Plan of Facility Diagnostic Work

Definition of work range is important in the preliminary stages. Work range is divided into work items (work package), and attention shall be paid so that those items cover all necessary points related to Seismic Diagnosis. This is called Work Breakdown Structure (hereafter referred as WBS)

Technical management and follow-up are performed as described in the following table.

Upper Object	Direct Object	Work Package
Category I	Category II	
Confirmation	Arrangement of general matter	Confirmation of design year and construction year
of	Importance and	Selection of the matter with regard to the importance
common	ambient environment of facilities	of facilities
matter		Environment condition and geographical features of
		the site surroundings
		Hysteresis of land
	Checking of the Past disaster	The date of occurrence, a disaster situation, the
	events	details on repairs carried out
	Existing status of maintenance	Visual investigation of function
	Earthquake resistance of	Availability of network planning
	a water supply system	Availability of alternative channel or alternative
		facility
Diagnosis of	Collection and	Geographical feature data
Ground	Compilation of data	Soil investigation data
conditions	I	Availability of insufficient data
	Soil values	Sorting out of soil characteristic values
	Sorting out of ground analysis	
		Consolidation calculation
	Visual investigation	Investigation of excavation work
	visual myesugaton	Investigation of a differential settlement
	Review of results of investigation	Reduction of soil characteristic value on account of
	Review of results of investigation	liquefaction
		Calculation of the amount of cavities which sank
		Study of ground lateral shift probability
		accompanying liquefaction
Earthquake	Collection and compilation of	Collection and sorting out of As-built drawing and
resistance	data	design calculation
of Structure		Availability of insufficient data
	Visual investigation	The information on arrangement of buildings
	C	The settlement situation of building
		The degradation situation of structure, set up of the
		reduction coefficient of material strength
		Location and specification of Expansion Joint
	Confirmation of	Design year
	original design condition	The list of design-criteria at the time of design
		Ground condition
		The situation of pile
		Conditions of Foundation calculation
	Oualitative	Existence of aseismatic design
	seismic resistance evaluation	Aseismatic-design criteria considered at the time of
		design
		Existence of load increase
		Condition of Pile crown
	Evaluation of the existing data	Evaluation of existing structural calculation
	······································	The review of the existing diagnostic data
	Evaluation	Calculation and evaluation of extension of shear wall
	by simple calculation	
	Evaluation by	The necessity for detailed diagnosis
	Detailed seismic diagnosis	Physical test

Table 4.2.1 WBS of Seismic Diagnosis

		Structural analysis
		Seismic resistance Evaluation of joint piping or
		connecting pipes with tank
		Assessment of damage
		Emergency repair plan
	Study of earthquake-resistant	Study of the reinforcement
	countermeasure	Creation of design drawing
	Preparation of	Determination of the priority of construction
	Earthquake-resistant plan	The confirmation of the annual budget of TWWC
		Rough estimation of construction cost
		The construction plan proposed
		The structural detail for aseismatic design proposed
Earthquake	Visual investigation	Confirmation of fixed situations, such as finishing
resistance of		material and handrail
Non-Structural	Study of earthquake-resistant	Study of the reinforcement
Member	countermeasure	
	Preparation of	Calculation of approximate construction cost
	Earthquake-resistant plan	The construction plan proposed
		The structural detail for aseismatic design proposed
Earthquake	Collection and sorting out of data	Collection and sorting out of As-built drawing
resistance		Collection and sorting out of structural calculation
of Mechanical		for foundation-bolt
and Electrical		Confirmation of alternative equipment
Equipment	Visual investigation	Installation situation of pumps
		Installation situation of surge tanks
		Chlorine dosing equipments
		Existence of Emergency shut-off valve
		Installation situation of Self-standing panel
		Installation situation of Battery
		Installation situation of UPS
		Installation situation of Flexible pipe
		Sufficient or insufficient length of spare cable
		Existence of Emergency generator
		Existence of Anti-flowout fence under the oil tank
		Installation situation of Electric post
	Evaluation by Serious seismic	The necessity for detailed diagnosis
	Diagnosis	Calculation of toppling and sideslip risk
	Study of earthquake-resistant	Study of the reinforcement
	countermeasure	The outline of proposed design
	Preparation of	Calculation of approximate construction cost
	Earthquake-resistant plan	The construction plan proposed
		The aseismatic design guideline proposed

2) Data Collection

Data collection including drawings is one of the main purposes of the preliminary work. Collected data are arranged and adjusted so that they can be used properly in the detailed diagnosis. Some of the seismic diagnosis in the preliminary stage is limited to qualitative analysis but quantitative analysis is indispensable in the stage of detailed diagnosis, therefore these basic data are quite necessary and should be well arranged to get a better outcome from collected information.

However, volume of such facilities data is large. Therefore, very important and relevant data are selected and considered to represent the structure type.

3) Facilities Classification by Importance

In order to attain the final objective, namely Earthquake-resistant plan, and to determine the priority of each facility in Earthquake-resistant plan, classification of importance of these facilities is essential.

It is the master plan of extensive earthquake-resistant plan, the implementation of which has not been experienced even in Japan and it is desired to determine the priority of the structures to be supplied with necessary countermeasures including enough consideration and site investigation.

In case of earthquake-resistant project, the final plan includes both proposed method for earthquake-resistant procedures such as rehabilitation of existing structures and/or construction of alternative facilities, if necessary.

Therefore, knowledge or consideration from section 2.3 is integrated. They are listed for emergency repair convenience, allowance of supply capacities, location of facilities in the upstream of system, necessity of information office such as disaster control office, etc.

Considering these matters, a level of importance is assigned to each facility.

- a) Water intake and WTP are important infrastructures which do not have alternatives. Once disaster occurs, these facilities are considered as the most important ones, for these facilities have functions of both emergency water supply bases during water supply suspension and they serve as the most important points to resume daily water supply service to people after recovery. Therefore, detailed investigations of those structures are quite necessary.
- b) Reservoirs and pump stations which are located in the upstream in supply system and large water supply facilities (with distribution capacity of more than 1.0m³/seconds of average water supply) should be considered important.
- c) Locations of information centers at the time of emergency.
- d) Buildings or tanks where emergency repair is difficult and possibility of secondary disaster caused by structural collapse is high.
- e) Reservoir and pump stations located in the areas with the following geomorphologic conditions have the high risk of earthquake damage.
 - On the fault and near the fault, the earthquake acceleration in these areas is considered to be quite large, once these faults move.
 - In the areas where liquefaction may occur.

- Structures on the cliff.
- Structures on the artificial embankment.

The importance classification of the facilities considered in presenting this Study is shown in *Table 4.2.2*.

In addition, it was observed that the ground water level is low and that the ground mainly consists of adhesive soil and sandy gravel at the location of water supply facilities, therefore the possibility of liquefaction is considered to be low. Ground condition is stiff and no location with loose soil was found during the survey. Furthermore, there is no building or tank located on the artificial landfill.

Table 4.2.2 Importance classification by social / natural environmental condition on which the facility is arranged

(the existing operation facility)

Rank of importance	Facility of the high priority of countermeasue			Facility of the low priority countermeasue		
Geographical feature conditions where an earthquake damage risk is high	① Facility which is important infrastructure and does not have an alternative one	②Reservoir and Pumping station located in upstream and the amount of water supply is large (more than amount of average water supply 1.0m3/s) which also could supply other water-supply districts at the time of emergency water supply	③ Facility which collects information at the time of a disaster	Institution where emergency repair is difficult and there is fear of a secondary disaster by structural collapse	other reservoir	Well where earthquake resistance is high
On fault	WTP No3-4 WTP No5	No.14, No.71, No.95, No.97	WTP No1		No.11,No.26,No.75, No.77, No.82	W21002,24002
Near fault		No.20,No.32,No.72,No.5 4, No.51			No.23,No.25,No.27,No.30 , No.46, No.41, Estakhr, No.74, No.12, No.10,	W21001,21003,22001,22002,22 003,22004,22005,22006, 22007,24001,24003,41001, 40701,40702,11001,11002
liquefaction may			None			
cliff	Bilaghan Intake, Lar Dam Intake, LatianDam	N 90		Bilaghan Intake, Lar Dam Intake, LatianDam	N 05 N 55 N 00	
near Slope		N0.38			No.25, No.55, No.23	
On soft ground			None			
others	WTP No1 WTP No2	No.1,No.2,No.7,No.62,No .22,No.93,No.57,No.58,N o.37,No.59,No.80,No.43, No.19,No.40, No.21,No.99, No.3, No.4, No.5,No.6, No.96, No.13, No.15, No.31,No.53,No.16,No.3 6,No.39,No.92,Yaft Aabad Pumping Station,No.65,No.89, No.73			No.66,No.67, No.68,No.69 etc	

4) Visual Investigation

The diagnosis by Visual investigation is the main approach for the preliminary seismic diagnosis. Earthquake resistance is evaluated from past experience. Damage examples are classified by category of facilities, structural or non-structural members, mechanical and/or electrical equipments. Followings are the list of structural members/equipments which are easy to be damaged in general.

- a) Structures connecting two different structural types such as breezeway, inlet and/or outlet pipes connected to the reservoir or pump station building etc.
- b) A structure located on different foundations
 Connection member between mat foundation and pile foundation is one of the examples. A pipe installed on a sand foundation and connected to the RC tank which is on the pile foundation, is another example.
- c) Pipes in the soil with high liquefaction tendency
- d) The equipments whose support conditions change
 - Parts for the connection linked to structure, such as pipe and cable
 - Distributor shaft which act as a coupling of a reducer and a Diesel engine etc.
 - Distributor shaft which act as a coupling of a main pump (center gap)
 - Fall of the baffle plate thickener of a sedimentation basin
- e) The bolts used for equipments anchoring to their base
- f) Non-structural member
 Interior or external finishing material, fittings, curtain walls, etc.
- g) Fixtures Cupboards, chemicals, tools etc.

Furthermore degree of deterioration for every structure shall be considered.

5) Diagnosis with Design Year

Structures are classified into two categories, constructions undertaken after the year of earthquake resistant criteria code application and the constructions implemented before it.

Code of Practice (Standard 2800) was issued in 1987, and a duty of observance was legally implemented by Roodbar-Manjil earthquake in 1990. The code was revised in 1999 and this revised code is the latest one available. ("BHRC Publication No.S 374, 2003" is used for the study.)

Therefore, the year 1990 is the year when earthquake-resistant criteria were applied. Considering the time lag of design and construction, it is expected that the earthquake-resistance code was commonly applied for buildings with its operation year after 1995. The relatively new structures which were built around 1970 are designed on the basis of Iranian code, even though cross sections of structural members are large compared to those of 1950's designed by English code. Both of these codes did not include seismic criteria. TWWC carried out the structural calculation of existing relatively new buildings, and confirmed that the earthquake resistance of the structure is high.

The following points could be considered in the priority on implementation program.

For the relatively new structure constructed during the year from around 1970 to 1995, earthquake resistance ranking is assumed as average. The earthquake resistance of new structure constructed in 1995 and afterwards is ranked high.

6) Diagnosis with Existing Structural Calculation Results and Data

Diagnosis based on structural calculation will be done both as preliminary and as detailed seismic diagnosis. In preliminary seismic diagnosis, earthquake resistance is surveyed/observed in terms of allowable on existing structural calculation documents and past experience. In case where structural calculation documents are not available, necessary structural calculation is performed in the detailed seismic diagnosis stage.

Simultaneously, the existing diagnostic data are reviewed and checked to see whether they include any useful information for the Study. And the study might be changed based on the results.

(3) Summary of Visual Investigation

1) Ground Condition

When we carried out visual investigation of facilities, we could observe the soil condition on extension field of Reservoir, Construction site of manhole, excavation for piping and so on. Ground showed us vertical excavated face, and all that, we understood was that the earthquake resistance propensity of facilities in Tehran would be really goood because of little active earth pressure during earthquakes. Picture 4.2.1 shows the good ground conditions. Ground condition looks like symbol of earthquake resistant plan in Tehran.

Picture 4.2.1 Ground Condition on Reservoir Sites

- Reservoir No.11 in northeast: Exposure of inlet pipe
- Reservoir No.21 in north: Underground-pipe works and construction of chamber and sewage pit
- Reservoir No.16 in southeast: Construction site of manhole
- Reservoir No.38 in northwest: Ground wall
- Reservoir No.51 in west: Extension field of Reservoir
- Reservoir No.57 in northwest: Extension field of Reservoir
- Reservoir No.58 in northwest: Extension field of Reservoir
- Reservoir No.80 in northwest: Foundation works of telemetry house

Moreover, it is observed that soil is cohesive and that there is no ground water from the construction situations of reservoir No.16 in southern alluvial fan. RC manhole was made without formwork, concreting using excavated ground face, only by inside formwork. Probability of liquefaction is low.

Beyond the foundation of facilities, we have to mention the circumference risks. Since the surface soil of northern cliff/slope has weathered, it tends to collapse. For risk avoidance, we propose to study renovation method of building on cliff/slope where collapse might occur in the future.

2) Structure

a) Well

There are many examples of wells performing important roles as sources of emergency water supply at the time of seismic hazards in Japan, situation on Iran must be same. Generally, it is thought that earthquake resistance tendency of wells is high. That is concluded from the reason that horizontal force is small due to small pit weight.

b) Water Treatment Plant (WTP)

The principal structures such as water tanks or low stories buildings have high earthquake resistance in case if they are built on stable foundations. Based on this assumption, soil condition in Tehran is stiff enough for bearing capacity against earthquake. Some other structural problems were detected through the survey. The following is the fact and measures proposed.

WTP No.1

Since the slab burden area supported by each column is large in the generator house, the seismic resistance capacity would be very small, so structural calculation should be performed, and the frame of generator house has to be reinforced by the seismic resistant wall such as shear wall.

WTP No.2

Concreting work, which is under the condition of month-long average temperature exceeding 20 degrees, is so called "Hot weather concrete" in Japan. Considering concreting condition, aggregates are protected from direct sunshine and water cement ratio is reduced and admixtures are added. During summer, the temperature in Tehran is high and construction

becomes more difficult compared to that in Japan. Nevertheless, works performed in Tehran are in good condition, generally. However, shrinkage (cracks by shrinkage of concrete on construction) is observed. Compared to the degradation with cracks existing in Japan, that in Tehran must be slow because of dry conditions. On the other hand seasonal temperature difference is large and stress caused by temperature change occurs on a concrete surface and degradation continues gradually and slowly, therefore in present conditions, repair and finish work is required on the beam of Lime & Iron chloride Dosing device house, Generator & Transformer house, and Pulsator.

WTP No.3

The conditions of principal structure of water tanks and buildings look good, which is because of good ground, so they are highly resistant to earthquake. But as the cracks on Pulsator's piping duct are observed, repair of the cracks is needed.

WTP No.4

- The conditions of principal structure of water tanks and buildings look good because of good foundation, so they have high earthquake resistance.
- Although it is not directly related to the dependability of structure, water has leaked at Filter and it is necessary to repair expansion joint.
- Breezeway exists from Chemical House to Dosing Point. End support of Breezeway is a structure, which might be damaged at the time of earthquake due to twisting moment. Detailed study is required.

Picture 4-2-2 chemical House

WTP No.5

- Earthquake design was applied to this WTP; therefore the principal structure has high earthquake resistance. But what the structures is located on the fault, had to be considered.
- Settlement of the backfilling around Chemical House was observed (Picture 4-1-3). The influence was indicated by the existence of crack at external staircase or retaining wall, the cave-in of the ground, etc. But the settlement has not affected beams or columns. It is thought that there is no problem in a frame because the deformation was or negligible. Since the small backfilling ground is not stable yet, there is high possibility of affecting the surrounding retaining wall. Therefore,

Picture 4-2-3 Chemical House

a certain countermeasure is possibly required in the future.

- This WTP has used new construction material which is not used in other WTP(s). This might cause new issues for earthquake-resistant design. There is the possibility of curtain wall falling or detaching marble veneer used for the wall outer finishing or columns of the building. The probability is high that these non-structural members including windowpane might get broken in case of earthquake, or might get separated, and fall off and may harm the human being present nearby.
- c) Pump House

The cross section of the design by subsequent Iranians is larger than the early design by the English. Old structure is classified into two categories (early design and subsequent Iranian design), and detailed earthquake-resistant diagnosis shall be performed based on structural analysis.

TWWC has not analyzed the early design. Structural analysis is performed for pump house No.2 as a typical model of early design in this Study.

Picture 4-2-4 Early design of No.2 Pump House Designed by English (1955)

Picture 4-2-5 Subsequent design of No.16 Pump House Designed by Iranian (1970)

d) Reservoir

Since there is a top slab and seismic force is transmitted to the wall by the slab, seismic resistance of Reservoir is high. Since it has a closed circumference, corrosion becomes a problem.

We could not observe the inside of the tank in many cases, but inside deterioration becomes apparent at ventilations. Therefore, the level of degradation was observed through concrete of manhole or the ventilation opening of the manhole cover.

When manhole cover was opened at Reservoir No.6, humid steam came out from inside. Further, when the inside wall of the manhole was inspected, sign of deterioration was observed. Finally, when the inside tank was inspected, the concrete cover of wall, column and ceiling was observed to be coming off. It became clear that degradation at No.6 and No.66 was remarkable. As for these reservoirs, it was evident that they had an inadequate ventilation opening. Therefore setting of adequate ventilation opening is proposed.

Much dew condensation was seen on the inner surface of the manhole cover at Reservoir No.30. Though, no internal corrosion was observed, there may be internal corrosion in the future, so setting of adequate ventilation opening is proposed.

e) Administration House

The janitor always resides inside the area of reservoir and pump station. This means safety of administration house might be an issue of human life protection. Since many houses are small, their loads are also small. If structure has not decayed, it is considered that there will be few earthquake damages concluded from the earthquake experience in BAM earthquake.

f) The Reduction Coefficient of Material Strength

Since a structure deteriorates, it takes into consideration the reduction coefficient of the material strength to structural analysis. The reduction coefficient was estimated in *Table 2.5.3* as a result of visual observation.

		The reduction coefficient of material strength
Intake	All facilities	1.0
WTP	Pulsator of WTP No.2 and No.3	0.9
	Filter of WTP No.4	
	Others	1.0
Pump House	All facilities	1.0
Reservoir	Reservoir No.6 and No.66	0.8
	Others	1.0

Table 4.2.3 The Reduction Coefficient

3) Nonstructural Member of House and Tank

Nonstructural member such as mortar finish, a windowpane or marble veneer with heavy finish could produce earthquake damages. Therefore, reinforcement should be applied to the parts with the degraded member or poor workmanship, immediately.

a) Entrance (WTP No.5)

The danger of curtain wall has come to be pointed out according to the earthquake damages in Japan in recent years. Nevertheless curtain wall is used as the outer wall of the entrance, the condition of attachment and allowance for deformation should be checked.

b) Chlorine House (WTP No.5)

Installation of large marble veneer to columns is not stable in chlorine house. Since marble veneer has already fallen down, and installation position is high, it is dangerous in case of earthquake. It is recommended to strip off all of them and re-install or fix them by anchor bolts. In the case of stone-finish, metal strap anchor is used for the slates to fix them to the wall. Being attached only with mortar without metal strap anchor as observed in Tehran, slate panels may easily detach in case of an earthquake.

Since a slate is heavy and easy to fall from concrete in case of occurrence of earthquake, there is a fear of accident that might cause injury or death as a result of falling down as it is attached at relative heights. Needless to say even though the height of buildings is low, there is the necessity for reinforcement of this building.

Fixation of marble veneer finish of chlorine house at WTP No.5 is proposed.

Picture 4.2.6 Chlorine House

4) Mechanical and Electrical Equipment

Based on the observation of site survey, the following issues should be considered in earthquake-resistant plan. In addition, strength calculations of the foundation bolt of typical pump, surge tank, and electrical panel are shown in the Appendix-.

- Pump: Fixation of pump
- Surge tank: Fixation of surge tank
- Chlorine dosing equipment: Fortification of pedestal of chlorine cylinder
- Chlorine dosing equipment: Introduction of sodium hypochlorite system
- Piping: Installation of emergency shut-off Valve
- Self-standing panel: Fixation of self-standing panel
- Transformer: Fixation of the transformer wheel
- Battery: Fixation of battery
- UPS: Fixation of UPS (Uninterruptible Power Supply)
- Piping: Installation of flexible pipe around the expansion joints
- Cable: Length allowance of cable
- Oil tank: Construction of anti-flowout fence under oil tank
- Electric post: Installation of stay of electric post
- Others: Equipment fixed on brick wall
- a) Pump: Fixation of Pump

Almost all the pumps are fixed to the foundation with foundation bolt firmly and seem to be in good condition. To confirm whether pump is earthquake-resistant or not, strength calculations of the foundation bolt were carried out using some as-built drawings. The result of calculation turned out to be "earthquake resistant". (See Appendix)

b) Surge Tank: Fixation of Surge tank

Except for pump station No.2, 22, 96, many surge tanks are fixed firmly to the foundation with foundation bolts and seem to be in good condition.

Surge tank at pump station No.2 was not installed in the in-between stage of the support of tanks based on the design. Therefore, supports should be installed immediately.

Foundation of surge tank at pump station No.22 has cracks. It should be reinforced immediately.

As for the RC foundation of the installing tanks at pump station No.96, since the size of foundation is smaller than the leg of tank, this means legs are not on the concrete. Improvement is required in thismatter.

c) Chlorine Dosing Equipment: Improvement of Pedestal of Chlorine Cylinder

Some cylinders seem to be in danger of movement or sideslip by earthquake and neutralization equipment is not prepared in that respect. Construction of chlorine cylinder storage like WTP No.5 and installation of neutralization equipment will be proposed.

d) Chlorine Dosing Equipment: Introduction of Sodium Hypochlorite System

Study team will propose the countermeasure, which changes the chlorine dosing system into safer sodium hypo-chlorite system.

e) Piping: Installation of Emergency Shut-off Valve

Emergency shut-off valve is necessary for the reservoirs to prevent secondary disaster and wasting water through leakages. Therefore installation of emergency shut-off valve at the outlet of reservoir is proposed.

Figure 4.2.1 Emergency Shut-off Valve

f) Self-standing Panel: Fixation of Self-standing panel

In Tehran, mainly 3 types of electrical self-standing panels are used. The summary of information on each panel is as follows:

Type A High Tension Cubicle	Type B Low Tension Cubicle	Type C Other type
Fixed with foundation bolt	Fixed with foundation bolt	Fixed with welding, or not fixed at all

To confirm whether those panels are earthquake resistant or not, strength calculations of the foundation bolt were carried out. The result of calculations of Type A and Type B turned out to be "earthquake resistant". (See Appendix-) As to Type C, it is difficult to consider them as earthquake resistant, because they are not fixed with foundation bolt.

g) Transformer: Fixation of the Transformer Wheels

The wheels of transformer are on the rail and restrained by a stopper, but it does not seem to be earthquake resistant, Because they are not fixed with foundation bolt. Therefore fixing of the transformer with foundation bolts is proposed.

h) Battery: Fixation of Batteries

Except for the battery at Reservoir No.1, the stopper or foundation bolts are not installed in most of the facilities. Therefore, stoppers for battery restraint should be installed.

i) UPS: Fixation of UPS (Uninterruptible Power Supply)

UPS is not fixed with stopper or foundation in any of the facilities. Installation of foundation bolts for UPS is required.

j) Piping: Installation of Flexible Pipe around the Expansion Joints

Except for No.5 WTP, flexible pipe is not installed around the expansion joint in most of WTPs. Installation of a flexible pipe and dividing the cable tray around the expansion joint are proposed.

k) Cable: Length Allowance of Cable

It seems that there is not enough spare length of cable at most of the facilities. If possible, rewiring with enough spare length of the cable would be proposed for the important equipments. Otherwise right-angled trench might be changed as shown in the following figure, and length of cable needs to have enough allowance.

Figure 4.2.2 Plan of Cable Trench

1) Oil tank: Construction of Anti-Flowout Fence under Oil Tank

Construction of the anti-flowout fence under the oil tank is necessary to prevent a secondary disaster. Therefore, construction of anti-flowout fence is proposed

n) Electric Post: Installation of Stay of Electric post

The electric post at Reservoir No.22 (Vanak) is inclined a little; thereby it is in danger of toppling by an earthquake. That may cause failure of facility. Hence, installment of stay is proposed.

m) Others: Equipment fixed on Brick Wall

Since the large oil tanks or equipments are supported by weak brick wall, additional supports are required for these walls.

4.2.2 Selection of Detailed Diagnosis Method

(1) Benchmark and Selection of Detailed Diagnosis Method

Various information, related to earthquake analysis including soil data have also been collected and compiled to carry out detailed diagnosis. Detail diagnosis includes damage estimation, and the earthquake-resistant countermeasures. In this section, damage estimations, which is one of the highlights of detailed diagnosis has been performed.

Since there are several complicated factors involved in the damages threatening facilities and equipments, there is no definition of the damage and no proper, appropriate approach to damage estimation in Iran.

In addition to diversity of damage factors, there are also individual perception gaps in facilities and equipments. Individual perception is subject to great change with each experience, and alteration of position and their technical background.

The approach to Risk Management is appropriate to evaluate the risks and formulate measures systematically for such cases of complicated conditions. Risk Management aims risk control as the ultimate goal. The procedure comprises <u>three steps</u> as follows.

Figure 4.2.3 Flowchart of Risk Management

- 1. To start with, the Risk Factor Analysis is performed. It is the most important step and it clarifies what and where the possible risks are. It is resolved through fact finding survey, Japanese experience and brainstorming to be performed to find out risks Iranians might have to face when the earthquake occurs.
- 2. Risk Assessment viz. damage estimation is performed with a concern for major damage risk factors. Evaluation of major damage risks can be performed by Japanese Diagnostic Table for Seismic Capacity (hereafter refers to as DTSC). Although Damage estimation uses DTSC, it could be modified according to situation and needs. The DTSC categorizes the risk factor into 14 items consisting of Ground, Liquefaction, Land features, Elevation, Material, RC Wall area, Water depth, Structural formation, Soil cover, Construction year, Flexible pipe, Expansion Joint, and Seismic intensity scale, and it is required to set up Fragility point for all aspects of each factor, being described in details later.

3. Risk Control viz. earthquake-resistant plan will be proposed for every damage risk, and the risk control which must be carried out as high-priority measures, is determined.

Risk Assessment on this section is directly related to Risk Control, so it is necessary to know the idea of Risk Control, anticipated goal beforehand. Generally Risk Control is categorized based on the following five viewpoints.

- 1. Avoidance of risk
- 2. Mitigation of loss
- 3. Diversification of risk
- 4. Emergency-repair response
- 5. Transfer of a risk to insurance

For example, these are applied <u>corresponding to the above number 1 to 5</u> as follows.

- 1. From the viewpoint of Avoidance of risk: The risk with serious damage should be avoided beforehand. For example, the facility on a fault should be moved according to a relocating plan. (There is also another method, which could be applied as countermeasure for the facility on the fault, like the back up by the water supply system which is the viewpoint of the Diversification of risk)
- 2. From the viewpoint of Mitigation of loss: Though it is difficult to mitigate all risks completely, it shall be done to reinforce the fragile main structure members and an economical/effective measures such as fixation of nonstructural members and equipments.
- 3. From the viewpoint of Diversification of a risk: If the anticipated damage of the Tehran water supply facilities were dispersed sufficiently, the correspondence by the back up of the water supply system would be possible for anticipated damage, or the physical measures against the anticipated damages could be postponed/ carried out one by one, so public investment must be implemented on Long-term planning as follows.

	Table 4.2.0 Thabea Trejeot Hamming			
Planning	anning Program			
Short-term	The programs for protection of human life from disaster			
\uparrow	The programs for maintaining the water supply system, prior to the important facilities and equipment			
	The programs for maintaining the water supply system			
	Reinforcement of the old structures constructed before 1970.			
\vee	(The programs for maintaining the water supply system)			
Long-term	Reinforcement of the old structures constructed before 1995.			
Future Plan	Relocation of the facilities on fault			

Table 4.2.3 Fliaseu Flueul Flaiilliu	Table 4.2.5	Phased Pro	iect Planning
--------------------------------------	-------------	------------	---------------

4. From the viewpoint of Emergency-repair correspondence: to get to know the risks appropriately, and to make a plan of the emergency-repair correspondence is also one of the proper earthquake-resistant countermeasures to the earthquake that rarely happens. For

example, in the case of a 500-year probability earthquake, exceeding conditions of code 2800 viz. the acceleration 350G of a 100-year probability.

5. From the viewpoint of Transfer of a risk to insurance: For the accomplishment of the public service responsibility against the situations of such disastrous risks, the Transfer of a risk to insurance could not be mentioned.

As mentioned above if we look through the whole considerations, evaluation viewpoint would be:

- to confirm the facility on fault precisely: the damage of this kind of facility should be evaluated as they have a very low seismic resistance.
- to evaluate the fragility: as the code for building has been enforced for years, structural analysis should be performed in accordance with a 100-year earthquake occurrence probability condition on Code 2800, and the obtained fragile tendency could be used as feedback to the DTSC for damage estimations.
- to judge the situation of fixation of non-structural members and equipments: these are carried out through survey on site, and also the damage estimations of the involved conditions of DTSC(ground, land features, elevation, material, RC wall area, structural formation, construction year, seismic intensity)
- to mention the emergency-repair correspondence on the situation of damaged facilities dispersion in the case of the various earthquakes scenarios of rare earthquake occurrence probability: Though the earthquake occurrence probability is not certain and well defined, damage estimations could be performed considering four scenarios.

Detailed Diagnosis Method is summarized as follows.

Figure 4.2.4 Flowchart of Detailed Diagnosis Method based on the idea of Risk Management

Considerations about the conditions of the structural analysis and the benchmark for structural study are outlined as follows:

1) Criteria of structure analysis

A seismic design Level 1 of Japan makes the structural designs according to the condition of an earthquake of approx. 50 years return, the middle ranked earthquake in which the structure encounters the earthquake once or twice in the life-time. This is the design by the elastic range of a structural material. The standard seismic acceleration is set to 0.2g in Japan. Tehran city sets a standard seismic acceleration of 0.35g, and is designing in the elastic range the same as in Japan.

Level 2 design includes plastic deformation in Japan, considering approx. a 100-year return earthquake which exceeds the life-time of the structure with 50-years, and it aims at protection of a) human life, and b) the maintaining of minimum functions. In this case, after an earthquake, if a foundation inclines, it might be rebuilt.

According to acceleration map (*Figure 4.2.6*) of "Geological Survey of Iran" (1983 Ministry of Mine & Metal), which is the original idea of Code2800, acceleration of a probability is set to 0.31g, the value of 100-year probability in the northern area of Tehran. In addition, this value must be referred to the condition of Code 2800 for building on the basis of 0.35g acceleration.

From the above viewpoint, the acceleration of Code 2800 is approx. a 100-year probability and is designed in the elastic range. In fact, as this earthquake occurrence probability benchmark in Iran was set as a rare situation, design criteria have sufficient allowances.

Source: "Geological Survey of Iran" (1983 Ministry of Mine & Metal)

Figure 4.2.6 Acceleration Map

2) Benchmark for structural study

When the above Japanese design criteria is applied to this study, the probability of earthquake occurrence is important.

At first, as we have to confirm the seismic resistance by the condition of code 2800 for building, then we would perform some structural calculations.

Next, we consider the earthquake scenario for performing damage estimation, in the case of biggest North Tehran Fault scenario, the acceleration is calculated with 746gals on a north slope, which is more than twice energy considered in Code2800, so the probability of a scenario earthquake is obviously more than 100 years. If probability of occurrence was presumed to be 500 years, the idea that a risk might happen without the structural reinforcement at such low probability, would be accepted.

Consequently, the reinforcement of a structure might be based on Code2800. And it is appropriate that the assessment of damage by scenario earthquake is for study of the measure of backup/bypass, and for the determination of priority on implementation program.

3) The situation of concrete

We surveyed the situation of concrete neutralization, and confirmed that the tank's concrete was in a very good condition. It was a very good watertight concrete, which reduced the water cement ratio.

Usually, concrete presents alkalinity (pH 12-13) due to presence of calcium hydroxide.

Therefore, under this alkaline environment in concrete, a protection barrier is formed around a reinforcing bar and this is protecting iron from corrosion. The calcium hydroxide changes to carbonic acid calcium with passage of time through the action of the carbon dioxide in the air, which is called neutralization. Although Carbonic acid calcium formed on concrete is rigid but fragile, it has no strength. Therefore if neutralization is advancing, the non-destructive test by a Schmidt

Picture 4.2.7 Phenol-Phthalein Test on the wall of utility conduit of Pulsator at WTP No.2

rebound hammer couldn't be applied.

If neutralization advances, a protection barrier for iron would no longer be formed around a reinforcing bar and iron corrosion will start.

Neutralization would be measured chemically using the nature in which the face of alkaline (pH 9-10 or more) concrete changes into purplish red color if phenol-phthalein liquid is sprayed upon the concrete.

As a result of survey, neutralization is not advancing, it is concluded that advance of neutralization is slow in Tehran, because of the weather and good construction technology/workmanship of concreting.

Though there were some cracks in the tanks, they are not serious because the rust of a reinforcing bar was not observed. There were two serious examples of Reservoir No.6 and No.66 in which concrete came off and fell owing to the insufficient concrete cover.

As neutralization is not advancing, compressive strength of concrete by non-destructive test might be applied to the confirmation of design conditions, viz. 300 kg/cm^2 for water tank and 250 kg/cm^2 for building on the ground.

We performed the non-destructive test by a Schmidt rebound hammer, and confirmed the compressive strength of several concretes on the site and the result is presented in the following table. It shows that if deterioration was considered, the design conditions would be applied.

Testing member	Compressive strength (kg/cm ²)
A Column of Lime storage at WTP No2	380
Top Slab of Pulsator at WTP No2	462
Wall of Duct of Filter at WTP No2	506
Wall of Duct of Pulsator at WTP No2	503
Wall of Duct of Pulsator at WTP No3	481
Column of Duct of Pulsator at WTP No4	343
Wall of Duct of Pulsator at WTP No4	497
Wall of substructure at Generator of WTP No.1	362
Pump Chamber at Pump house No.2	369
Column of Ground Floor at Pump house No.2	312
Pump Chamber at Pump house No.1	335
Manhole Wall at Reservoir No.1	460
Wall of substructure at Latiyan Intake	475

 Table 4.2.6
 Result of the Non-destructive Test by a Schmidt Rebound Hammer

(2) Method of Damage Estimation

1) Risk Factor Analysis

This procedure is important to perform the assessment of damages and to plan the earthquake-resistant measure. The background of the importance of this procedure is shown below.

When we consider the earthquake-resistant measures for facilities and equipments, we should know the reasons and effects of each measure.

We have to extract the earthquake-resistant measures for next steps. As for the reason and effect of measure, it is based on the risk of anticipated earthquake damages. That risk is the same as our fear. The risk factors of the earthquake damages can be defined from Japanese experience and Iranian concerns- the fears disclosed through Brainstorming. As the anticipated risk and the reason behind proposing a countermeasure would be needed for implementation of the earthquake-resistant plan, it is clear that Risk Factor Analysis is important.

We extracted the risk factors that are required for planning the measures for the facilities and equipments to make it earthquake-resistant, the risk factors are set up on *Table 4.2.7* from the Japanese experience and the result of Brainstorming.

Genre	Breakdown	Risk Factor	Risk
S	S-1	S-1-1	S-1-1-1 Fault shifts cause great damage to structures and
Structure	Ground	Ground condition	subsequently accidents resulting in injury or death
			S-1-1-2 A soft-ground soil slides and differential settlement
			occurs and the structure inclines, or crack in concrete leading
			to water leakage
			S-1-1-3 Liquefaction occurs and differential settlement occurs
			and structure inclines,
			or crack of concrete causes water leakage
			S-1-1-4 A cliff collapses and damages the building.
			S-1-1-5 Landfill collapses or exposed foundation causes
			differential settlement.
			S-1-1-6 A slope collapses and damages the facilities, private
			residence, or road
	S-2	S-2-1	S-2-1-1 Column collapses, and beam and roof deform or fall.
	Structure	Capacity of	S-2-1-2 Crack occurs at the tank, causes water leakage.
	Member	Member	S-2-1-3 When whole structure deforms, a deformation
			becomes the maximum by Expansion Joint, so water stop is
			cut and water leaks.
		S-2-2	S-2-2-1 As the structure is complicated, when structural model
		Structural	is not optimal, the inestimable force acts, which causes the
		System	increase of load on some members, and deformation.
		-	S-2-2-2 If the foundation is bad; toppling of Over Head
			Reservoir causes a second disaster on the outskirts.
		S-2-3	S-2-3-1 When there is large degradation which the bar has
		Deterioration	exposed, as the structural function is lost and earthquake
			resistance cannot be expected, buckling, deformation, crack,
			leakage of water, etc. occur.
	S-3	S-3-1 Accessories	S-3-1-1 The trough of Pulsator gets separated or breaks down
	Non-	for treatment	and water quality deteriorates.
	structural	S-3-2	S-3-2-1 The brick wall collapses and causes an accident

Table4.2.7 Designated Risk Factors and Risks

	Member	Brick wall	resulting in injury or death, or damaged equipment.
		S-3-3	S-3-3 -1 Windowpane breaks because of caulking material
		Windowpane	degradation which can cause an accident resulting in injury or
		/door	death.
			S-3-3 –2 Broken door prevents a man to escape
		S-3-4	S-3-4 -1 The outer Marble Veneer falls, which cause an
		Wall material	accident resulting in injury or death.
		S-3-5 Water stop	S-3-5-1 same as S-2-1-3
		S-3-6	S-3-6-1 A Retaining Wall topples and a building slides, and
		Retaining wall	this causes an accident resulting in injury or death.
		S-3-7	S-3-7-1 A man may fall over handrail resulting in injury or
		Handrail	death.
E	E-1	E-1-1	E-1-1-1 Overturn of surge tank leads to failure of pumping.
Equipment	Main Equipment	Fixation of Main Equipment	E-1-1-2 Gas leakage from chlorine cylinder causes an accident resulting in injury or death.
			E-1-1-3 Overturn or sideslip of transformer causes failure of
			the water supply.
			E-1-1-4 Overturn of electrical panel causes operating failure of
			the water supply.
			E-1-1-5 Overturn of pump causes operating failure of the
			water supply.
		E-1-2	E-1-2-1 Damage to pipe causes leakage of water, failure of
		Piping	water supply, and failure of emergency water supply.
		and Cabling	E-1-2-2 Damage to cable causes operating failure of the water supply
			E-1-2-3 Leakage of fuel from emergency generator causes
			secondary disaster like fire
			E-1-2-4 Toppling of electric post causes power failure.
			E-1-2-5 A man between huge piping would not be able to
			escape and fall a victim in the pump room.
		E-1-3	E-1-3-1 Failure of water supply system, or deterioration of
		Blackout	water quality
		E-1-4	E-1-4-1 Equipment breaks down and does not work or a glitch
		Reliability of	occurs.
		equipment	
		E-1-5	E-1-5-1 As broadcast does not inform the earthquake intensity
		Information	for every area, workers cannot concentrate on emergency work due to being anxious about their family's safety.
			E-1-5-2 As the whole damage cannot be grasped, suitable
			directions cannot be taken from the disaster countermeasure's
			headquarters. No idea of the action for workers before
			directions come from headquarters, workers might go home.
	E-2	E-2-1	E-2-1-1 Overturn or sideslip of battery causes failure in
	Sub	Battery	operation of radio equipment, monitoring equipment, display
	equipment	F a a	lamp of electrical panel, and operation of circuit breaker
		E-2-2	E-2-2-1 Overturn of UPS causes operating failure of
		Urs	monitoring equipment until emergency generator starts when blackout takes place
Р		P-1-1	P-1-1-1 Pining gets senarated from the tank which leads to
Piping		Connecting	water leakage. so emergency water supply becomes
		piping	impossible.
			P-1-1-2 Valve is not working which causes water leakage or
			failure of the water supply.
			P-1-1-3 A person well versed of the piping system in the

		headquarters might be absent, and instructions of valve operation cannot be executed.
EC	EC-1-1	EC-1-1-1 A repair task force does not arrive due to the traffic
Emergency	Access	jam or debris
correspondence		EC-1-1-2 When a repair task force cannot do anything due to no
		access road
	EC-1-2	EC-1-2-1 Equipments and material for emergency repair might
	Stock of Material	be insufficient.
	EC-1-3	EC-1-3-1 Key-persons are absent or suffer a disaster, and
	Organization	appropriate correspondence cannot be performed.

2) Risk Assessment (Damage Estimation)

While carrying out the assessment of earthquake damage on a building or equipment, the individual perception gaps are different depending on individual experience, position, and their technical backgrounds.

So, in order to perform the generalized assessment of damage without prejudice, it is better to evaluate for major risks defined previously, and to give objectivity.

Evaluation in terms of major risk factors can be performed by the Japanese Diagnostic Table for Seismic Capacity (hereafter referred to as DTSC).

The method of DTSC is the most objective evaluation method for assessment of damage. This DTSC is the method to evaluate the fourteen risk factors by the fragility point. The table was prepared by Health and Welfare Ministry in 1981, and the fragility point has been modified in 2000, based on the latest earthquake damage statistics in Japan, by Japan Water Research Center under a subsidy of Health, Labor and Welfare Ministry.

The DTSC in this report will apply two tables, the tables for non-slab tank and for the tank with slab. Though there is no table for the Pump station, we tentatively made it by arranging the table of the tank with slab, and using it in this Report. In this Study, structural calculation of pump house has been performed. Further, this DTSC would be modified and be given more objectivity.

The fragility value is calculated in the following procedures and seismic resistance is evaluated. We show the sample explanation of the use of DTSC for Reservoir.

a) Sample explanation of a DTSC for Reservoir

The DTSC categorizes risk-factor into 14 items, Ground, Liquefaction, Land features, Elevation, Material, Earthquake-resistance Wall area, Water depth, Structural formation, Soil cover, Construction year, Flexible pipe, Expansion Joint, Seismic intensity, and it is required to set up Fragility point for every scope of each factor.

On each scope of risk factor, higher value of fragility point implies that it is more fragile. For instance, type-3 ground(soft ground) is more fragile than the type-1ground (firm ground), shown in *Table 4.2.8*.

Study team modified construction year of the Japanese scope on the following bases to be applied to the case of Iran. Code 2800 was issued in 1987, and a duty of application went into effect legally after Roodbar-Manjil earthquake in 1990. Therefore, 1990 is the year earthquake-resistant criteria would be applied commonly. Considering 5 years of time lag for design and construction, we assumed that the buildings built after 1995 are highly earthquake resistant.

			amouton		
	Japanese DTSC]	modified DTSC	C for Iran
	Scope	Fragility point	modification	Scope	Fragility point
	From 1975			from 1995 onward	1.0
Construction	onward	1.0			
year	$1926 \le \le 1974$	1.2			
	Before 1925	1.5		before 1995	1.5

 Table 4.2.8
 Some Modification of the DTSC

	Table 4.2.9	Modified DTSC for the Structure with Slat
--	-------------	---

Risk factor	Scope	Fragility point
	Type-1 (firm ground)	0.5
Ground	Type-2 (middle firm ground)	1.0
	Type-3 (soft ground)	1.8
	not occur	1.0
Liquefaction	possible	2.0
	occur	3.0
	plane land/terrace	1.0
I and features	Sloping ground	1.2
	Top of mountain	1.3
	Landfill	1.5
	On the ground	1.2
Elevation	Semi subterranean	1.1
	Underground	1.0
Material	RC	1.0
Wateria	Brick	3.0
Wall area of	0.05 <	1.0
X-axis& Y-axis	0.05 \	15
/ tank area	0.03 ×	1.3
Water depth	om≧ 5 m ∠	1.0
		1.3
Structural formation	Wall	1.0
round Ty Ty Ty quefaction por occ pla and features Slo Ind features To La Do evation Set un RC aterial Brit all area of 0.0 axis& Y-axis 0.0 tank area 0.0 ater depth 5m formation Co Flater Flater Flater Flater Structural formation Co Flater Flater Structural formation Co	Column & Beam	1.2
	Flat slab	1.4

Seil eeren	0.4m≧	1.0
Soll cover	0.4m<	1.2
Construction was	from 1995 onward	1.0
Construction year	before 1995	1.5
Elavibla pipa	existing	1.0
riexible pipe	nothing	2.0
	good condition	1.0
Ex.j	bad condition	2.0
	small	1.0
Degraded degree	middle rank	1.5
	intense	2.0
	5:(approx.100~250gals)	1.0
Seismic intensity	6:(approx.250~800gals)	2.2
	7:(approx. over 800gals)	3.6

Note: Shaded part indicates typical condition in Tehran

Procedure of calculation of total fragility point is as follows.

- Each fragility point, corresponding to the scope of risk factor is selected
- All selected fragility points are multiplied. For example, the point marked blue color in the above table, are multiplied and presented as the total point in the following table. This is the typical case of Reservoir in Tehran,

|--|

Seismic intensity	Total fragility point
5:(approx.100~250gals)	0.5*1.0*1.0*1.0*1.0*1.5*1.0*1.4*1.2*1.5*2.0*1.0*1.0*1.0=3.8
6:(approx.250~800gals)	0.5*1.0*1.0*1.0*1.0*1.5*1.0*1.4*1.2*1.5*2.0*1.0*1.0*2.2=8.3
7:(approx. over 800gals)	0.5*1.0*1.0*1.0*1.0*1.5*1.0*1.4*1.2*1.5*2.0*1.0*1.0*3.6=13.6

- Seismic resistance is determined compared with total fragile point and definition of a seismic resistance level in the *Table 4-2-11*.

Table 4 2 11	Convort of Fragility	· Doint to S	oismis E	Posistanca
Table 4.2.11	Convert of Fragility	/ Point to 3	eismic F	Resistance

Seismic intensity Determination of Seismic Resistance				
5:(approx.100~250gals)	3.8<10		High-level	
6:(approx.250~800gals)	8.3<10		Middle -level	
7:(approx. over 800gals)	13.6=10~17		Low-level	

- Seismic resistance is evaluated from the relation between total fragility point and a seismic resistance level as shown below.

Table 4.2.12	Definition of	Seismic	Resistance	and Damage
--------------	---------------	---------	------------	------------

The total	Seismic	The definition of damage
fragility point	resistance	
<10	High -level	As seismic resistance of structure is of high-level, countermeasure would not be required in advance. Although the bigger force beyond prediction may act and some minor damages may be generated, The remedy could be in the form of emergency repairs.
10~17	Middle -level	In this case, seismic resistance of structure is of middle-level, therefore some damages may occur therefore countermeasure would be required in advance. It is not urgent.
>17	Low -level	As seismic resistance of structure is of low-level, serious damages may occur therefore countermeasure would be required in advance. It is urgent.

b) Ex) Evaluation of Reservoir No.6

Procedure is as follows;

- i. The fragility point appropriate for the conditions of each risk-factor is determined. For example, since advance of degradation is intense, degree of degradation may be 2 points.
- ii. Each score is multiplied, and the total point is computed.
- iii. It is estimated that Seismic resistance is in high-level for the seismic intensity scale 5, in middle level for the scale 6, and in low-level for the scale 7.
- iv. Surface acceleration in the earthquake scenario of North Tehran Fault, is the largest, 309gals. The surface acceleration, 309 gals is equivalent to Seismic intensity scale 6, so it is considered that the structure has middle-level seismic resistance at Seismic intensity scale 6.
- v. It was found out that the degradation affects seismic resistance. So degradation repair is needed.
- c) Ex.) Evaluation of Reservoir No.25

Similarly, analysis is performed on the reservoir No. 25 (as mentioned above for evaluation of Reservoir No. 6).

- i. The point appropriate for the conditions of each risk-factor is determined. In the case of Reservoir No.25, four different points are observed compared with Reservoir No.6 that degradation is not advancing, water is deeper, located at sloping land, and acceleration is bigger of 671 gals in the earthquake scenario of North Tehran Fault.
- ii. Surface acceleration 671 gals is equivalent to Seismic intensity scale 6, so according to the table, seismic resistance is middle-level. When evaluated by the code 2800, it would be high-level.
- iii. Reservoir No.25 is located in a sloping ground, and seismic resistance is estimated as high-level based on the condition of code 2800, the acceleration condition of a 100-year probability, because of the good foundation. Moreover, in the earthquake scenario of North Tehran Fault, seismic resistance is evaluated as middle-level, but there is no urgency to take the countermeasure of structure because the probability of earthquake occurrence is very small.

Type of Structure	Structure with	h Slab		
Name of Facility			Reservoir No.6	Reservoir No.25
Factor of Risk	Scope	Fragility point	Selected fragility point	Selected fragility point
	Type-1	0.5	0.5	0.5
Ground	Type-2	1.0		
	Туре-3	1.8		
	not occur	1.0	1.0	1.0
Liquefaction	possible	2.0		
	occur	3.0		
	plane land or terrace	1.0	1.0	
Land features	sloping ground	1.2		1.2
	Top of mountain	1.3		
	landfill	1.5		
	On the ground	1.2		
Elevation	Semi subterranean	1.1		
	Underground	1.0	1.0	1.0
	RC	1.0	1.0	1.0
Material	Brick	3.0		
Wall area of X-axi	s0.05<	1.0		
and Y-axis / tank area	10.05 >	1.0	1 5	15
	5m≥	1.0	1.0	110
Water depth	5m<	13	110	13
	Wall	1.0		110
Structural formation	Column & Beam	1.2		
	Flat slab	1.2	14	14
	$0.4m \ge$	1.0		
Soil cover	0.4m<	1.0	12	12
	from 1995 onward	1.2		1.2
Construction year		1.0		
	before 1995	1.5	1.5	1.5
	existing	1.0	110	110
Flexible pipe	nothing	2.0	2.0	2.0
	good condition	1.0	1.0	1.0
Ex.j	bad condition	2.0		
	small	1.0		1.0
Degraded degree	middle rank	1.5		
	intense	2.0	2.0	
	5(approx, 100 to 250gal)	1.0	7.6	5.9
Seismic intensity	6(approx, 250 to 800 gal)	2.2	16.6	13.0
	7(approx, over 800gal)	3.6	27.2	21.2
	high-level(Code2800	5.0		
	350gals)	10>	5	5
Seismic resistance	middle-level(North Tehran		-	-
	Fault 671gal at No.25)	10~17	6	6
	low-level	17<	7	7
			-	-

Table 4.2.13 DTSC for Reservoir No.6 and No.25

4.2.3 Detailed Diagnosis for Damage Estimation

(1) Geological Condition of Structure Foundation

1) Liquefaction

Liquefaction of sand is generated under two conditions, one is the existence of the ground water and the other is the existence of fine sand. Liquefaction is the phenomenon in which the absorption force of the particles of sand is cut off by shaking and it liquefies as a result.

The ground water level of Tehran is deep.

The object area where the water supply facility is located is the northern part from South Ray Fault. The depth of a ground water level increases toward north; it is GL-15m to more than GL-125m.

According to Seismic Microzoning, the possibility of liquefaction is pointed out in the area of a shallow ground water level. However, since the ground water level is deep at the reservoirs or pump stations, possibility of liquefaction is low at the concerned facilities.

Source: The JICA Study on Seismic Microzoning

Figure 4.2.7 Groundwater

2) Foundation for structure

The foundation of tanks and buildings are shallow- maximum 10m. Ground condition is as follows.

- Boring G-13 (northern area) : sandy gravel / N value= 50
- Boring K-13 (central area): sandy gravel clayish cohesive soil / N value= 25 50
- Boring N-13 (southern part): clayish cohesive soil / average N value=approx.25

It can be observed that it is very hard foundation even at a surface, except the ground of Reservoir No.68 and No.89.

In Japan the good-quality foundation is defined in terms of N values which is 30 for sandy soil and

20 for clayish cohesive soil. So the bearing capacity is satisfied.

Except the structure located on fault and Reservoir No.68 and No.89 assumed to be on soft ground, ground conditions of tanks and buildings are extremely well, so it may be expected that large-scale damages do not occur.

Senario Surface Acceleration (Gal)							
	Reservoir No.24 WTP No.1 Reservoir No.66 Reservoir No.89						
North Tehran Fault	449	242	140	115			
Mosha Fault	126	104	81	82			
South Ray Fault	58	134	233	378			
North Ray Fault	67	121	256	371			

 Table 4.2.14
 Scenario Surface Acceleration

(reference from "The JICA Study on Seismic Microzoning")

Figure 4.2.8 Soil Property Chart on Geological Cross Section

(2) Outcome of Damage Estimation

1) Consideration from Structural Analysis

As the structural analysis for several models were accomplished, the Seismic resistance thus obtained are shown below.

- Oldest Reservoir (Reservoir No.6, repaired) is middle.
- Long beam one storey Structure above ground (Generator House of WTP No.1) is low.
- Pumping house (Reservoir No.2) is middle.
- Deep tank with thin wall such Pulsator at WTP No.2 is middle.
- Ordinary tank such Filter at WTP No.2 is high.
- Chemical House at WTP No.4 is high. (Supporting point of Breezeway should be reinforced though)

2) Outcome of Damage Estimations by DTSC

Conditions on damage estimations are described below.

- DTSC is evaluated according to what we have done in the site survey of WTP and sixty seven Reservoirs, only on the surveyed facilities.
- As structural analysis was accomplished, DTSC was modified a little.
- Damage estimation has been carried out considering four earthquake scenarios; North Tehran Fault, Mosha Fault, South Ray Fault, and North Ray Fault, and reflected on Damage Estimation Map.
- Facilities on fault are located only in northern Tehran, and displacement of some faults are approximately 30cm to 100cm on these facilities in the case of North Tehran Fault, but it is small in the case of other scenarios. So, DTSC was considered that the damages of these facilities are estimated seriously on the North Tehran fault scenario.
- The case of DTSC on the condition of Code 2800 would show present potential earthquake resistance. It must be recognized that this case is different with Damage Estimation Map. But we will submit for Earthquake Resistant Map in section 6.3.
- New Structure designed by code 2800 is also evaluated by fragility point and on the basis of construction year, It's seismic resistance must be high-level, but seismic resistance of some new facilities on DTSC are evaluated middle-level contrary to our intention, so evaluations on these facilities were modified making a note on DTSC.
- Seismic resistance of Reservoir No.23 is estimated middle-level by DTSC, but by structure analysis, it is high-level, so DTSC changed.
- Regarding the earthquake resistance of Reservoir No.6; one of the oldest Reservoir, it is evaluated as middle-level on DTSC due to evaluation on degradation of compartment, moreover we carried out the structural analysis, and found out that earthquake resistance was also on middle-level because the bar arrangement of a partial wall of No.6 is abnormally small in number, this was rare case. On the other hand the earthquake resistance of the oldest Reservoirs- No.1 to No.5 are evaluated to be high-level on the basis of DTSC, but these Reservoirs must be of the same design as Reservoir No.6 assumed by the fact that these are of the same construction age. If so earthquake resistance should be middle-level, but since we could not confirm bar arrangement on all reservoirs, therefore we could not modify the DTSC of Reservoir No.1 to No.5 easily, only from the reason of construction age assumed to be the same. But still it's remained suspicious that the reinforcing bar of Reservoirs are nominated as candidate for further study issue.

Therefore we modified the evaluation as of middle-level earthquake resistance of Reservoirs No.1 to No.5 on Earthquake resistance Map.

At damage estimations, anticipated damages of four scenario earthquakes have been performed by the DTSC, shown in *Table 4.2.16* to *4.2.18*.

As the result of estimations, the damages are remarkable only in the case of North Tehran Fault shown in Fig.4.2.9.

[Seismic resistance	Purple of	color; Facility on Plar	¹ Green color; Facility performed survey
		No.42	No.11 on the fault	Seismic resistance is the middle level on the condition of seismic intensity 6 viz. approx250 to 800 gal (surface
(')	high-level	5,6	5	acceleration)
	middle-level /	7 4	تر آ	
	low-tevel			Red color; Seismic resistance is low-level because this reservoir
	North Teheran		441	is on the fault. Facility on a fault would be evaluated low
/	Fault	554		
/	Mosha Fault	213	187	Blue color; Seismic resistance is high-level because of the Surface
	South Ray Fault	62	121	Acceleration is small.
	North Ray Fault	/ 72	131	
	Code 2800	(35)	350	Yellow color; Seismic resistance is middle-level because of the Surface Acceleration is equivalent to seismic intensity 6
	Scenario earthquake	Ţ	Surface acceler	ation

Table 4.2.15 Explanatory Note

Table 4.2.16 Outcome of Damage Estimation of Reservoir

	No.1	No.2	No.3	No.4	No.5	No.6	No.7	No.8	No.9	No.10
high-level	5,6	5,6	5,6	5,6	5,6	5	5,6	5,6	5	5
middle-level	7	7	7	7	7	6	7	7	6	6
low-level						7			7	7
North Tehran Fault	228	258	226	271	293	306	285	267	245	316
Mosha Fault	94	133	104	113	120	125	149	119	98	119
South Ray Fault	87	124	127	147	154	157	107	125	87	73
North Ray Fault	81	134	134	116	126	142	152	110	77	92
Code 2800	350	350	350	350	350	350	350	350	350	350
	No.11	No.12	No.13	No.14	No.15	No.16	No.17	No.18	No.19	No.20
	on Fault			on Fault						
high-level	5		5	5,6	5	5		5,6	5,6	5
middle-level	6		6	7	6	6		7	7	6
low-level	7		7		7	7				7
North Tehran Fault	441	318	231	331	175	223	621	241	558	511
Mosha Fault	187	136	125	107	111	115	187	96	235	177
South Ray Fault	121	104	127	77	158	212	112	73	100	67
North Ray Fault	131	69	145	88	174	208	99	73	101	63
Code 2800	350	350	350	350	350	350	350	350	350	350

	No.21	No.22	No.23	No.24	No.25	No.26	No.27	No.28	No.29	No.30
			by calculation			on NTF				
high-level	5.6	5.6	5	5	5	5	5	5	5	5
middle-level	7	7	6	6	6	6	6	6	6	6
low-level		·	7	7	7	7	7	7	7	7
North Tehran Fault	659	408	. 691	. 449	. 671	511	583	483	583	435
Mosha Fault	198	111	216	126	222	177	187	156	187	134
South Ray Fault	108	65	117	58	110	67	72	65	72	59
North Ray Fault	91	85	88	67	88	63	61	58	61	64
Code 2800	350	350	350	350	350	350	350	350	350	350
2000	No.31	No.32	No.33	No.34	No.35	No.36	No.37	No.38	No.39	No.40
high-level	5,6	5	5			5,6	5	5		5
middle-level	7	6	6			7	6	6		6
low-level		7	7				7	7		7
North Tehran Fault	250	386	462		181	112	258	324	441	617
Mosha Fault	150	126	148		91	103	85	102	129	203
South Ray Fault	175	53	65		158	259	67	63	59	124
North Ray Fault	155	63	58		250	296	68	63	93	93
Code 2800	350	350	350	350	350	350	350	350	350	350
2000	No.41	No.42	No.43	No.44	No.45	No.46	No.47	No.48	No.49	No.50
high-level	5		5,6							
middle-level	6		7							
low-level	7									
North Tehran Fault	653	554	336			604				
Mosha Fault	207	213	131			203				
South Ray Fault	115	62	101			100				
North Ray Fault	91	72	82			100				
Code 2800	350	350	350	350	350	350	350	350	350	350
	No.51	No.52	No.53	No.54	No.55	No.56	No.57	No.58	No.59	No.60
high-level	5	5,6	5	5,6	5,6		5	5	5,6	
middle-level	6	7	6	7	7		6	6	7	
low-level	7		7				7	7		
North Tehran Fault	174	218	218	262	270		288	255	287	
Mosha Fault	104	117	113	125	177		98	78	96	
South Ray Fault	103	207	205	104	100		104	61	110	
North Ray Fault	155	229	205	112	106		129	75	137	
Code 2800	350	350	350	350	350	350	350	350	350	350
	No.61	No.62	No.63	No.64	No.65	No.66	No.67	No.68	No.69	No.70
high-level	5,6		5	5,6	5,6,7	5		5	5,6	
middle-level	7		6	7		6		6	7	
low-level			7			7		7		
North Tehran Fault	255	435	109	210	128	140	151	240	184	172
Mosha Fault	100	200	85	120	85	81	164	152	96	93
South Ray Fault	85	105	147	206	276	233	303	201	156	151
North Ray Fault	76	131	172	284	292	256	224	New 291	219	244
Code 2800	350	350	350	350	350	350	350	New 350	350	350

	No.71	No.72	No.73	No.74	No.75	No.76	No.77	No.78	No.79	No.80
	on Fault			-	on NTF		on NTF			
high-level	5	5	5,6	5,6	5,6	5,6,7	5,6,7			5,6
middle-level	6	6	7	7	7					7
low-level	7	7								
North Tehran Fault	248	399	181	513	522		505			262
Mosha Fault	164	120	91	166	169		170			75
South Ray Fault	82	108	158	60	61		56			59
North Ray Fault	83	96	259	65	62		60			78
Code 2800	350	350	350	350	350	350	350	350	350	350
	No.81	No.82	No.83	No.84	No.85	No.86	No.87	No.88	No.89	No.90
		on NTF								
high-level		567							5	
middle-level		5,0,7							6	
low-level									7	
North Tehran Fault	272	299							, 115	
Mosha Fault	74	108							82	
South Ray Fault	49	61							New 378	
North Ray Fault	69	61							New 371	
Code 2800	350	350	350	350	350	350	350	350	New 350	350
Code 2800	350 N. 01	330 NL 02	350 NL 02	350 NL 04	NL 05	350 N. OC	350 N. 07	NL 00		350 N. 100
	N0.91	NO.92	N0.93	NO.94	No.95 on Fault	N0.96	No.97 on Fault	N0.98	N0.99	NO.100
high-level	5,6				5	5,6	5			
middle-level	7				6	7	6			
low-level					7		7			
North Tehran Fault	386	241	281	248	248	253	248			
Mosha Fault	126	104	92	164	164	168	164			
South Ray Fault	53	134	94	82	82	131	82			
North Ray Fault	63	121	127	83	83	130	83			
Code 2800	350	350	350	350	350	350	350	350	350	350
	No.101	No.102	No.103	No.104	No.105	No.106	No.107	No.108	No.109	No.110
high-level				0	0					
middle-level				0	0					
low-level					~					
North Tehran Fault				275	330					
Mosha Fault				121	144					
South Ray Fault				119	103					
North Ray Fault				105	86					
Code 2800	350	350	350	350	350	350	350	350	350	350
	No.111	No.112	No.113	No.114						
high-level										
middle-level										
low-level										
North Tehran Fault										
Mosha Fault										
South Ray Fault										
North Ray Fault										
Code 2800	350	350	350	350						

	Table	<u>4.2.17</u> O			age Loi	mation		p nous	-	
	No.1	No.2	No.8	No.12	No.13	No.14	No.15	No.16	No.17	No.18
			No Pump		No House	on Fault				
high-level	5	5				5	5	5	5	
middle-level	6	6				6	6	6	6	
low-level	7	7				7	7	7	7	
North Tehran Fault	228	258	267	318	231	331	175	223	621	241
Mosha Fault	94	133	119	136	125	107	111	115	187	96
South Ray Fault	87	124	125	104	127	77	158	212	112	73
North Ray Fault	81	134	110	69	145	88	174	208	99	73
Code 2800	350	350	350	350	350	350	350	350	350	350
	No.19	No.20	No.21	No.22	No.24	No.25	No.26 on NTF	No.27	No.28	No.32 No House
high-level	5	5	5	5	5	5	5	5	5	
middle-level	6	6	6	6	6	6	6	6	6	
low-level	7	7	7	7	7	7	7	7	7	
North Tehran Fault	558	511	659	408	449	671	511	583	483	386
Mosha Fault	235	177	198	111	126	222	177	187	156	126
South Ray Fault	100	67	108	65	58	110	67	72	65	53
North Ray Fault	101	63	91	85	67	88	63	61	58	63
Code 2800	350	350	350	350	350	350	350	350	350	350
	No.34	No.36	No.37 No House	No.38	No.40	No.43 No House	No.52	No.56	No.57	No.58
high-level	5	5		5	5		5	5	5	5
middle-level	6	6		6	6		6	6	6	6
low-level	7	7		7	7		7	7	7	7
North Tehran Fault		112	258	324	617	336	218		288	New255
Mosha Fault		103	85	102	203	131	117		98	78
South Ray Fault		259	67	63	124	101	207		104	61
North Ray Fault		296	68	63	93	82	229		129	75
Code 2800	350	350	350	350	350	350	350	350	350	New350
	No.59	No.65	No.66	No.68	No.69	No.71	No.72	No.73	No.74	No.75
	No House			No House	No Pump	No Pump	No House			on NTF
high-level	5,6,7	5,6	5,6					5	5,6	5
middle-level		7	7					6	7	6
low-level								7		7
North Tehran Fault	287	128	140	240	184	248	399	181	513	522
Mosha Fault						1		0.1	1.00	160
	96	85	81	152	96	164	120	91	166	109
South Ray Fault	96 110	85 276	81 233	152 201	96 156	164 82	120 108	91 158	166 60	61
South Ray Fault North Ray Fault	96 110 137	85 276 292	81 233 256	152 201 291	96 156 219	164 82 83	120 108 96	91 158 259	60 65	61 62

Table 4.2.17 Outcome of Damage Estimation of Pump House

	No.80	No.81	No.82 on NTF /No Pump	No.90	No.92	No.93	No.94	No.95 No Pump	No.96 Steel	No.97 Under constructio n
high-level	5,6								5	5,6,7
middle-level	7								6	
low-level									7	
North Tehran Fault	262	272	299		241	281	248	248	253	248
Mosha Fault	75	74	108		104	92	164	164	168	164
South Ray Fault	59	49	61		134	94	82	82	131	82
North Ray Fault	78	69	61		121	127	83	83	130	83
Code 2800	350	350	350	350	350	350	350	350	350	350
	No.99	No.100	No.101	No.102	No.104	No.105	No.114			
high-level					5	5				
middle-level					6	6				
low-level					7	7				
North Tehran Fault					275	330				
Mosha Fault					121	144				
South Ray Fault					119	103				
North Ray Fault					105	86				
Code 2800	350	350	350	350	350	350	350			

Table 4.2.18 Outcome of Damage Estimation of WTP

	WTP No.1	WTP No.1	WTP No.2	WTP No.2	WTP No.3	WTP No.3	WTP No.4	WTP No.4	WTP No.5	WTP No.5
	Clarifier	Filter	Pulsator	Filter	Pulsator	Filter	Pulsator on NTE	Filter on NTE	Pulsator	Filter
high-level	5,6,7	5,6,7	5	5,6,7	5,6,7	5,6,7	5,6,7	5	5,6,7	5,6,7
middle-level			6					6,7		
low-level			7							
North Tehran Fault	242	242	283	283	224	224	260	260	618	618
Mosha Fault	104	104	92	92	167	167	167	167	208	208
South Ray Fault	134	134	97	97	77	77	81	81	96	96
North Ray Fault	121	121	129	129	78	78	78	78	97	97
Code 2800	350	350	350	350	350	350	350	350	350	350
	WTP No.1 Generator House	WTP No.2 Generator House	WTP No.4 Chemical House	WTP No.5 Chlorine House on the NTF	WTP No.5 Chemical House on the NTF	Chemical Factory				
North Tehran Fault	242	283	260	618	618	207				
Mosha Fault	104	92	167	208	208	162				
South Ray Fault	134	97	81	96	96	77				
North Ray Fault	121	129	78	97	97	82				
Code 2800	350	350	350	350	350	350				

Figure 4.2.9 Damage Estimation Map (North Tehran Fault)

Figure 4.2.10 Damage Estimation Map (Mosha Fault)

Figure 4.2.11 Damage Estimation Map (South Ray Fault)

Figure 4.2.12 Damage Estimation Map (North Ray Fault)

4.3 Hydraulic Analysis of Pipe Network of Tehran Water Supply System

Altitude of the served area of Tehran water supply system ranges so widely from 1,100m to 1,800m, that it is not easy to distribute water evenly throughout the served area. The served area is divided into many distribution zones each of which principally has a distribution reservoir for its water source. At present, five water treatment plants transmit the clear water to 72 reservoir zones through a complicated water transmission network including pumping stations, pressure reducing valves, etc. as their components.

Water supply from distribution reservoirs to Tehran citizen is principally done by gravity flow. Water supply system in each reservoir zone is different from one another. Some zones have rather small areas but big difference in elevation and some others cover large areas with rather flat conditions on the contrary.

Water flow in the transmission networks is examined by a hydraulic analysis in order to grasp possible problems in an earthquake disaster and to find solution thereof. As for distribution networks, hydraulic analysis of the networks in a few typical reservoir zones is executed for giving idea on improvement of their water supply conditions.

4.3.1 Criteria for Hydraulic Analysis of Transmission Networks

(1) Modeling of Transmission Networks

Model of the transmission networks for a hydraulic analysis consists of a great numbers of nodes, pipes, tanks, pumps, valves, etc. and is prepared as shown in *Figure 4.3.1*. Such components of the model as deep wells, well pumps, transmission pumps, distribution reservoirs are listed both in Section 2.3 "Survey of the Existing Water Supply System" and in Section 1 of Appendix xx.

The network model consists of 209 nodes and 550 pipe components. Numbers of the pipe components are far bigger than those of nodes. It is a characteristic of the transmission networks of Tehran water supply system that two or more pipe components are connected to one node.

(2) Transmission Flow Rate

The day maximum water supply in 2005 is $3,172,996 \text{ m}^3/\text{day}$, which is applied for the hydraulic analysis. As total production of $3,134,970 \text{m}^3/\text{day}$ recorded for the same day is slightly smaller than the above day maximum supply, it is adjusted accordingly to the maximum supply for analysis. Adjusted production and production of each water treatment plant are summarized as shown in *Table 4.3.1*.

(3) Zonal Distribution of Transmission Flow

Transmission flow rate to each reservoir zone is set on the basis of the water consumption values of the year 2002 by Lar consultants as shown in *Table 2.2.7* in Section 2.3. The flow rate to the newly established reservoir zones is defined considering population thereof.

(4) Transmission Flow Rate after Earthquake Disaster

As for analysis of transmission flow rate after an earthquake disaster, several cases thereof including interruption of treatment plants, interruption of pumping stations and damage of transmission mains are considered.

The total transmission flow when a water treatment plant becomes out of operation is regarded as the total production of the other plants as listed in *Table 4.3.1*. This is because the production of all the plants except the newly built No.5 is operated nearly up to the designed capacity. It is also assumed that abstraction of groundwater will not change. Ratio of transmission flow are the smallest in case 2 and 3, i.e. they are approximately 60% respectively.

In case of damages of water transmission mains and pump stations, total flow rate is employed considering that all of the water treatment plants will be in operation in this case.

	Supply	Production	Ajusted	Case-1	Case-2	Case-3	Case-4
Plant No.1		232,600	232,600	0	232,600	232,600	232,600
Plant No.2		769,000	787,026	787,026	0	787,026	787,026
Plant No.3		391,200	401,200	401,200	401,200	0	401,200
Plant No.4		387,700	397,700	397,700	397,700	0	397,700
Plant No.5		279,900	279,900	279,900	279,900	279,900	0
Subtotal		2,060,400	2,098,426	1,865,826	1,311,400	1,299,526	1,818,526
Ratio(%)		98.2	100	88.9	62.5	61.9	86.7
Groundwater		1,074,570	1,074,570	1,074,570	1,074,570	1,074,570	1,074,570
Total	3,172,996	3,134,970	3,172,996	2,940,396	2,385,970	2,374,096	2,893,096

 Table 4.3.1 Transmission Flow Rate for Hydraulic Analysis

4.3.2 Verification of Network Analysis

(1) Verification of Model

Based on the above mentioned criteria, hydraulic analysis of the transmission networks are executed with the water CAD program.

It is concluded that the model of the networks is practicable considering the following results of the analysis;

- Analyzed flow rate around distribution reservoir No.27 is similar compared to the flow rate actually measured.
- It is the same as the actual flow condition that is designated amount of flow can be satisfactorily conveyed to all of the distribution reservoirs according to the analysis.
- Extent of analyzed velocity in the transmission mains ranges within the normal values.
- Analyzed velocities in the transmission mains from plant No.3 to reservoir No.19 and from plant No.3 to reservoir No.51 are considerably large. However, this phenomenon corresponds to opinion of the operation staff of TWWC.

The network model is as of July 2005, and production of plant No.5 is approximately 1/3 of its designed capacity. There is information that new distribution reservoirs have been put into operation and some transmission mains have been installed. It is suggested to execute hydraulic analysis of the transmission networks with the up-dated model to suite the present conditions.

Collection of data for the network analysis was started from the beginning of the study. However, some data was not up-dated, some included inaccurate values and others were not available. Thus, it took about one year for hydraulic analysis to be fulfilled. Even in the present model, some estimated data on issues such as reservoir water level, pump lift and elevation of nodes are included. In case more accurate results are necessary, these data should be examined.

Accuracy of analysis results would be greatly improved, if they are verified by measured flow rates in some strategic pipelines, on which flow meters should be installed in the future.

(2) Outcome of Hydraulic Analysis

Outcome of the hydraulic analysis generally shows that transmission pumps have sufficient capacity, while gravity pipelines are operated almost with designed capacity. As for capacity of individual facilities, all of the transmission mains from plant No.3 are operated with nearly full capacity. It is also considered that the existing transmission mains from plant No.5 to the central part or southern part of the city are insufficient comparing with the plant capacity.

4.3.3 Hydraulic Analysis in Earthquake Disaster

By using the network model, hydraulic analysis in earthquake disaster is undertaken. At first, cases to be analyzed are selected considering estimated damages of the water supply facilities studied in the previous sections. Basically, cases are selected considering that the facilities on or across the faults tend to be damaged by an earthquake.

(1) Case Setting

1) Cases of Facility Damages

The following eight (8) representing cases are employed for hydraulic analysis:

- Case1 to Case4, each treatment plant becomes out of operation as shown in *Table 4.3.1*.
- Case5 to 7, large diameter concrete transmission mains become damaged.
- Case8, large scale pump station No.14 becomes out of operation.

Regarding treatment plants, No.3·4 and No.5 are located on the faults but the others are not. However, considering possible damages of upper facilities including water intake stations and raw water mains, cases of plant No.1 or No.2 to be damaged are also employed for the analysis.

Among the estimated 22 locations of transmission mains to be damaged, large diameter concrete pipelines crossing the faults are thought to be damaged most easily and affect the citizens greatly.

Hydraulic analysis is done for three cases of the pipeline damages, which includes damage of a twin 1,850mm pipelines located downstream of plant No.2, damage of a 1,350mm pipeline above reservoir No.7 and damage of both pipelines.

There are three pump stations located on the faults. Among them, station No.14 is the biggest and is employed for the analysis. There are several distribution reservoirs which are located on the faults. But these are not included in the cases for analysis because these reservoirs would be equipped with a by-pass pipeline between inlet and outlet pipelines. By using the by-pass line, water flow would not be cut even in case the reservoir structure gets damaged.

2) Cases of Change in Operating Conditions

There are a great number of pumps and valves installed in the transmission mains. Direction and amount of flow for ordinary operation is controlled by on/off of pumps, units of running pumps and open/close of valves. Without change in operation of these equipments, it is difficult to transmit water to different areas. Cases of changes in the operating conditions are also analyzed hereunder. The following three cases are applied for the study:

- No change in operating conditions: As direction and amount of flow for ordinary operation is already controlled, it is difficult to transmit water to different areas, in case when operating conditions of the equipment would not be changed. Thus, interruption in operation of the above facilities for each case would cause water supply interruption in wide areas.
- Maximum change in operation: In order to minimize damage effect, many of pump on/off, operating pump unit, pump running hour, valve open/close, valve opening and pipeline in use are changed accordingly. Results are obtained by hydraulic analysis.
- Realistic Change in Operation: In order to reduce damage effect realistically, only pump on/off and valve open/close are changed and the results are obtained by hydraulic analysis.

(2) Results of Hydraulic analysis

1) No Change in Operation

Figure 4.3.2 shows service area of each water treatment plant as of July 2005. Speculation of water suspension area is shown in the figure, in case of no operation change in pumps, valves and pipes. Thus, wide area would suffer from water shortage by stoppage of each one of the five treatment plants.

2) Maximum Change in Operation

In order to minimize disaster effect, operation of many pipes, pumps and valves have to be changed as shown in Section 3 of Appendix-8. Results of the analysis of each case are shown in *Figure 4.3.3* and the damage level is described in *Table 4.3.3*.

As shown in the figure and table, damage level (represented in number of reservoirs with insufficient inflow) in each case diminishes except for Case 2 and 5, both of which have several reservoirs of insufficient flow. However, a lot of changes in operation must be made in these cases. It is ideal but not realistic to alter so many operating conditions manually in a short period after earthquake disaster.

By these analyses, it is recognized that 2,000mm concrete raw water mains to plant No.2 and 1,850 mm concrete pipelines are very important and need proper earthquake resistant measures.

Figure 4.3.2 Approximate Service Area of Treatment Plants

3) Realistic Change in Operation

Within a realistic change in operation, the extent of damage level that could be reduced is examined. In this case, only on/off of pump and open/close of valve are changed from the original case mentioned in 4.3.2. Number of operation change is shown in *Table 4.3.3*. Except for the case 2 and 3, the number ranges from 10 to 20.

				U				
Status	Case1	Case2	Case3	Case4	Case5	Case6	Case7	Case8
Pump On/off	2	10	6	4	6	2	6	3
Valve Open/Close	8	18	26	12	12	9	13	7
Total	10	28	32	16	18	11	19	10

Table 4.3.3 Number of Change in Operation

Results of hydraulic analysis after the realistic changes made are shown in the right column in *Table 4.3.2.* Level of damage increases in all cases compared with the case of the maximum change. Minimization of damage occurrence (by retrofitting of facilities) or minimization of damage effect (by installation of by-pass pipelines) should be done.

		•
Cases	Maximum Change in Operation	Realistic Change in Operation
Interruption of	of treatment plant operation	
Case1	Plant No.1interruption doesn't affect much	Transmission to some reservoirs becomes
	because water transmission from No.2 and	insufficient comparing with the left.
	No.3 • 4 is possible.	
Case2	As plant No.2 has bigger production capacity	More than 10 reservoirs with insufficient
	and located in higher land than No.1, complete	inflow in addition to several reservoirs with
	coverage by other plants could not be made.	no inflow would appear.
	Several reservoirs with no inflow and others	Interruption of plant No.2 operation widely
	with insufficient inflow would appear.	affects citizen's water use.
Case3	As capacity of plant No3&4 is also large,	Several reservoirs with no inflow and others
	neighboring several reservoirs with no inflow	with insufficient inflow would appear.
	would appear. Other areas could almost be	Effective measures including water supply
	covered by plants No.2 and No.5.	by tankers are necessary.
Case4	No.5 plant interruption doesn't affect much	Transmission to some reservoirs becomes
	because water transmission from No.3·4 plant	insufficien.
	is possible at present.	
Damage of w	ater Transmission Mains	
Case5	In case of Damage of a twin 1,850mm concrete	Several reservoirs connecting from the main
	pipelines from plant No.2, several reservoirs	with no inflow and more than 10 reservoirs
	connecting from the main would be empty and	with insufficient inflow would appear.
	inflow of several others becomes insufficient.	These pipelines are very important, and
		reinforcement should be made.
Case6	This 1,350mm pipeline is located downstream	Transmission to several reservoirs becomes
	of case 5 pipelines, and damage is limited to	insufficient, but conditions are not much
	the south east area of the city. Transmission to	different comparing with the left.
	some reservoirs becomes insufficient.	
Case7	This is a combination of case5 and case6. As	More than 15 reservoirs with insufficient
	pipe size is far bigger and the pipe is locate	transmission flow will appear. These
	upstream, influence of this case is similar to	pipelines are very important, and
	case 5.	reinforcement should be made.
Interruption of	of pump station	
Case8	Pump station No.14 is large. But, service area	Damage influence would be larger than the
	by this station could be covered through pump	left case. But, number of reservoirs
	station No.21 transmitted from plant No3&4.	influenced remains in some locations.
	Influence of the station is small.	

Table 4.3.2 Estimated Damage Level

4.3.4 Preliminary Analysis of Distribution Network

In some reservoir zones, map of distribution network is already prepared. The zones for hydraulic analysis are selected from these zones:

- Zone No.27 shows big difference in ground elevation in the northern area,
- Zone No15 \sim 53 has a vast land area in the southern area,
- Zone No.12 has a middle condition between the above two zones.

Hydraulic analysis of distribution networks in the above reservoir zones is executed using Auto CAD program. On the basis of the analysis, improvement of the water supply conditions in each zone is suggested. Area, elevation and its difference are listed in the *Table 4.3.4*. Hourly peak factor was measured as 1.21 on July 15, 2006 at distribution reservoir No.27 and the figure was used for hydraulic analysis.

Reservoir Zones	Area	Elevation	Difference
No.27	3.03 km2	1,586 - 1,749 m	163 m
No.12	2.15 km2	1,446 - 1,528 m	82 m
No.15~53	61.39 km2	1,045 - 1160 m	115 m

 Table 4.3.4
 Outline of Distribution Zones to Be Examined

Data of hydraulic model is obtained from TWWC and up-dated through discussion among TWWC and JICA team. Water demand allocation to each node is estimated based on area size of each node to supply water. Level of pressure reducing is estimated considering the elevation difference. Thus, result of the hydraulic analysis is thought as preliminary one. It is necessary to improve the accuracy before implementation.

(1) Reservoir Zone No.27

Reservoir zone No.27 is located in an area with a big elevation difference of 163m. Because of such difference, pressure is controlled by pressure reducing valves. By the hydraulic analysis with the above model (original model), it is found that some distribution pipelines would experience insufficient capacity. It is also found that No.27 zone can be divided into five (5) sub-zones without much effort.

Hydraulic analysis is also made with the improved model (basic model) considering the findings by the original model. By the analysis, important distribution trunk mains which should be earthquake resistant, location of valves for sub-zones and location of flow meters for appropriate monitoring and control are identified as shown in *Figure 4.3.4*.

By implementation of the above outcomes, the following merits are expected:

- Improvement of normal/routine flow conditions,
- More improvement of pressure control by establishment of sub-zones,
- More improved replacement of deteriorated pipelines,
- Localization of pipeline damage in earthquake disaster,
- Prioritization of emergency supply and restoration works in earthquake disaster.

(2) Reservoir Zone No.12

Reservoir zone No.12 is also controlled by pressure reducing valves. By the original hydraulic analysis, it is found that some distribution pipelines have insufficient capacity. It is also found that zone No.27 can be divided into two (2) sub-zones easily.

Hydraulic analysis with the basic model is executed considering the findings by the original model. By the analysis, important distribution trunk mains which should be earthquake resistant, location of valves for sub-zones and location of flow meters for appropriate monitoring and control are identified as shown in *Figure 4.3.5*.

By implementation of the above outcomes, such improvement in supply conditions as described in the preceding item (1) is also expected in zone No.12.

(3) Reservoir Zone No.15~53

Reservoir zone No.15 \sim 53 has vast land area of 60km2 located in the southern part of the city. The zone consists of water sources from distribution reservoirs No15, 16, 36, 53 and contact tanks No.65, 66, 68. Distribution network has approximately 24,000 pipeline elements. Water is transmitted from a transmission/feeder main connecting reservoirs No.15 and No.16 through many distribution trunk mains.

Because of the large size of area and complicated system, it is difficult to control inlet flow rate, to execute leakage investigation and to prioritize replacement of deteriorated pipelines or prioritize restoration works.

Since a twin pipeline is arranged in both sides of the rather wide road, it is easy to form a lot of distribution sub-zones. By installing valves in strategic locations, 25 distribution sub zones can be created, and all of the above weak points are solved by the sub zone creation.

Important pipelines in earthquake disasters are identified and wait for replacement with earthquake resistant pipelines. These are shown in *Figure 4.3.6*.

Since a twin pipeline is arranged in both sides of the rather wide road, it is easy to form a lot of distribution sub-zones. By installing valves in strategic locations, 25 distribution sub zones can be created, and all of the above weak points are solved by the sub zone creation. By the analysis, some sub

zones should work together (group of sub zones) to have enough pressure.15 main sub zones are made from these 25 distribution sub zones.

Hydraulic analysis is also made with the improved model (basic model) considering the findings by the original model. Important pipelines in earthquake disasters are identified and wait for replacement with earthquake resistant pipelines. These are shown in *Figure 4.3.6*.

Location of valves for sub-zones and location of flow meters for appropriate monitoring and control are identified as shown in *Figure 4.3.6*.

Figure 4.3.1 Basic Flow Diagram of Transmission System