THE STUDY ON FLOOD AND DEBRIS FLOW IN THE CASPIAN COASTAL AREA FOCUSING ON THE FLOOD-HIT REGION IN GOLESTAN PROVINCE IN THE ISLAMIC REPUBLIC OF IRAN

FINAL REPORT

VOLUME III-2 SUPPORTING REPORT II FEASIBILITY STUDY

OCTOBER 2006

Japan International Cooperation Agency

GE JR 06-062

No.

MINISTRY OF JIHAD-E-AGRICULTURE THE ISLAMIC REPUBLIC OF IRAN

THE STUDY ON FLOOD AND DEBRIS FLOW IN THE CASPIAN COASTAL AREA FOCUSING ON THE FLOOD-HIT REGION IN GOLESTAN PROVINCE

FINAL REPORT

VOLUME III-2 SUPPORTING REPORT I (FEASIBILITY STUDY)

OCTOBER 2006

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

Composition of Final Report

Volume I	Main Report
Volume II	Summary
Volume III-1	Supporting Report 1: Master Plan
Volume III-2	Supporting Report 2: Feasibility Study
Volume IV	Data Book

PROJECT COST ESTIMATE

Price Level	: Average Prevailing Market Price in August 2005
Currency Exchange Rate	: USD 1 = 8,996 Rials and JPY 100 = 8,025 Rials

THE STUDY ON FLOOD AND DEBRIS FLOW IN THE CASPIAN COASTAL AREA FOCUSING ON THE FLOOD-HIT REGION IN GOLESTAN PROVINCE

SUPPORTING REPORT II (FEASIBILITY STUDY)

- PAPER I GEOLOGY
- PAPER II STRUCTURAL DESIGN
- PAPER III FLOOD WARNING AND FORECASTING SYSTEM
- PAPER IV DISASTER MANAGEMENT
- PAPER V INSTITUTIONAL AND REGAL STUDY
- PAPER VI HYDRAULIC MODELING
- PAPER VII HAZARD MAP PREPARATION
- PAPER VIII INITIAL ENVIRONMENTAL EVALUATION FOR PRIORITY PROJECT
- PAPER IX ECONOMIC EVALUATION

SUPPORTING REPORT II (FEASIBILITY STUDY)

<u>PAPER I</u>

Geology

THE STUDY ON FLOOD AND DEBRIS FLOW IN THE CASPIAN COASTAL AREA FOCUSING ON THE FLOOD-HIT REGION IN GOLESTAN PROVINCE

SUPPORTING REPORT II (FEASIBILITY STUDY)

PAPER I GEOLOGY

TABLE OF CONTENTS

Page

CHAPTER	1	OBJECTIVES	I-1
CHAPTER	2	LOCATION AND QUANTITY	I-1
CHAPTER	3	METHODOLOGY	I-4
	3.1	Drilling	I-4
	3.2	Electric Prospecting	I-4
CHAPTER	4	GEOLOGY OF THE PROPOSED FACILITIES	I-4
	4.1	Sediment Control Dam in Ghyz Ghaleh River	I-4
	4.2	Flood Control Dam in Ghyz Ghaleh River	I-6
	4.3	Confluent of Madarsoo River and Cheshmeh-Khan River	I-7
APPENDIX	1	BOREHOLE LOG	I-9
APPENDIX	2	RESULT OF VERTICAL ELECTRIC SOUNDING	I-13

LIST OF TABLES

Table 2.1	The Location and Quantity of the Geological Investigation	I-1
Table A2.1	Cordinates of Electric Prospecting Point	I-13

LIST OF FIGURES

Lithological Map in the Lower Ghiz Ghaleh River	I-2
Geological Map on the Sediment Control Dam	I-2
Geological Map around the Confluence with the Cheshmeh	
Khan River	I-3
Geological Cross-sectional Profile of the Proposed Structure Sites	I-3
	Lithological Map in the Lower Ghiz Ghaleh River Geological Map on the Sediment Control Dam Geological Map around the Confluence with the Cheshmeh Khan River Geological Cross-sectional Profile of the Proposed Structure Sites

Figure 4.1	Schematic Geological Condition at Drilling Point of SB-1	I-5
Figure A2.1	Geoelectrical Point and Boring Locations	I-14
Figure A2.2	Geoelectrical Cross-section A	I-15
Figure A2.3	Geoelectrical Cross-section B	I-16
Figure A2.4	Geoelectrical Cross-section C	I-17
Figure A2.5	Geoelectrical Cross-section D	I-18
Figure A2.6	Geoelectrical Cross-section E	I-19
Figure A2.7	Geoelectrical Cross-section F	I-20

CHAPTER 1 OBJECTIVES

Objectives of geological investigation are to investigate the geological condition of foundation for proposed structures such as sediment control dam, flood control dam, and revetment. The electric prospecting aims to mainly investigate the depth of basement rocks.

CHAPTER 2 LOCATION AND QUANTITY

The location and quantity of the geological investigation is summarized in the following table.

Iubi	/ H •1	The Location		y or the	Geologica	mesug	ation
Site	Drilling	Location	Coordinates	Ele-	Drilled	S.P.T*	Electric
	No.			vation	depth	(times)	Prospecting
				(m)	(m)		
Sediment	SB-1	River center,	N=4128268.83	1080.80	25	12	3 lines:
Control		Riverbed	E=408047.25				300m,
Dam	SB-2	Left bank,	N=4128356.70	1096.10	25	25	150m, 150m
		dam crest	E=407986.20				(14 points)
Flood	FB-1	River center,	N=4128613.13	1069.18	25	25	3 lines:
Control		Riverbed	E=408560.56				300m,
Dam	FB-2	Left bank	N=4128677.56	1075.99	20	10	150m, 150m
			E=408497.06				(14 points)
Confluence	CB-1	Riverbed	N=4131711.96	957.29	25	25	-
			E=413412.00				
Total	5 drillings				120m	97	6 lines,
						times	1200 meters

Table 2.1The Location and Quantity of the Geological Investigation

*: Standard Penetration Test; No SPT is required for foundation rocks.

The lithological map along the lower Ghiz Ghaleh River is presented in Figure 2.1. The locations of drilling and electric prospecting are shown in Figure 2.2 and 2.3. Furthermore Figure 2.4 shows geological cross-section profile of the project sites.

Figure 2.1 Lithological Map in the Lower Ghiz Ghaleh River

Figure 2.2 Geological Map on the Sediment Control Dam

Figure 2.3 Geological Map around the Confluence with the Cheshmeh Khan River

Figure 2.4 Geological Cross-sectional Profile of the Proposed Structure Sites

CHAPTER 3 METHODOLOGY

3.1 Drilling

The rotary drilling method and large bit diameter of 100 mm are applied for taking core sample. Core samples are kept in core box with 5 meters in each core box and they are stored in the warehouse of the Guest House of MOJA Golestan Office at Dasht Village.

Standard Penetration Test (SPT) was conducted to investigate the strength of soil. Cone Penetration Test (CPT) is applied only for gravel layer and its results were converted to Nvalue. Empirical conversion formula for gravel layer is as follows:

N=1.0Nd - 1.3Nd (N is N-value, Nd is CPT-value)

N=Nd is applied in this report.

The result is compiled in "Borehole Log" shown in Appendix 1.

3.2 Electric Prospecting

The Vertical Electric Sounding (VES) is applied for the electric prospecting. Total 28 points of VES were conducted to clear the geological condition for 6 lines and 1200 meters in total.

The result is compiled in Appendix 2.

CHAPTER 4 GEOLOGY OF THE PROPOSED FACILITIES

4.1 Sediment Control Dam in Ghyz Ghaleh River

The fan deposit is widely distributed in the left bank and basement rocks are distributed here and there in the right bank. The foundation of dam will be fan deposit in the left bank, recent riverbed deposit in the river bed, and basement rocks of Sandstone and Slate Alternation in the right bank. Sandstone and Shale Alternation will come into NIUR Formation in Silurian period of Paleozoic Era.

The Result of Electric Prospecting

The resistivity layers are divided into three as follows:

- 1st layer: 30 to 1100 ohm-m; it may be mainly composed of dried gravel, point of E10 and E11 may indicate clayey embankment materials having low resistivity of 30 to 70,
- 2^{nd} layer: 30 to 200 ohm-m; it may be composed of gravel with clay, and
- 3rd layer: 40 to 60 ohm-m; it may be mainly composed of basement rocks.

The depth of 3^{rd} layer coincides approximately with the depth of basement rocks. It is also supposed that low resistivity of 40 to 60 will hint the distribution of sedimentary rocks such as sandstone, shale, and slate.

(1) Fan deposit

The fan deposit is composed of loose sand, gravel, and clay/silt with comparatively high permeability. Gravel is well sorted and mixed with rounded to sub-angular that

are almost composed of limestone falling down from left mountains. The gravel size varies from a few centimeters to 2 meters. The thickness is estimated more than 10 meters.

(2) Recent River Deposit and Flood plain Deposit

It is composed of loose sand and rounded gravel with fine materials and organic matters. Sand and silt layers are also distributed. These sand and gravel layer are covered by layered fine materials that is deposited in the reservoir of breached sediment control dam with the thickness of about 2 to 3 meters. Before "2001 Flooding", these fine materials might be deposited approximately 5 meters.

The thickness of the recent river deposit totals up to 11 meters in a maximum based on the drilling of SB-1 located in the recent riverbed and the field reconnaissance.

Sand and Gravel layers are well sorted and rounded that composed of mainly limestone with a few other rocks. The gravel size will be a few centimeters in an average with 1 to 1.5 meters in maximum. These layers contain comparatively high fine materials in general, but some layers contain a few fine materials. The basal gravel layer is also distributed on the basement rocks with a thickness of about one meter. These gravel layers will have high permeability, and seepage and piping should be considered for the design of structures.

(3) Basement Rocks

The basement rocks are composed of the alternation of Sandstone and Shale. Andesite is also distributed in the right bank as dyke. Sandstone will be sound rock with a few weathering, but shale is a slightly crashed and its surface has been slaked.

The strike and dip of them are N45-51°E and 42-65°N running parallel to the river and dipping to the left bank. The stratum is faulted with the strike and dip of N80°E and 80°N that is crushed and heavily weathered at the just downward of right bank. These rocks have the sufficient soundness for the basement rocks of Sabo dam and other river structures of small scaled.

According to the drilling SB-1, surface part of rocks from 11.5 to 13.6 meters are weathered and softened, and they are loosened with clay between the joints up to 15.4 meters. The rocks in deeper part from 15.4 meters, they will be fresh and sound.

Figure 4.1Schematic Geological Condition at Drilling Point of SB-1

(4) Embankment Materials

The drilling SB-2 aims to investigate the characteristics of embankment materials and the contact condition with the basement rocks. The embankment materials are distributed up to 15.7 meters in depth and deeper part is the natural ground of the riverbed deposit.

The result is as follows:

- The upper part of embankment materials up to 5.7 meters: mainly composed of sand and gravel with clay that might be taken from fan deposit distributed in the left bank.
- \succ 5.7-6.6m: clay and sand
- ▶ 6.6-8.0m: sand, gravel, and clay (gravel; rounded mixed with angular)
- ▶ 8.0-10.3m: clay with gravel (gravel; rounded & angular)
- ▶ 10.3-11.0m: clay and sand
- > 11.0-11.2m: sand, gravel, and clay (gravel; rounded mixed with angular)
- 11.2-15.7m: clay and sand with gravel (gravel; rounded mixed with angular). The boundary between embankment materials and basement contacts well. No seepage and piping are found.
- ➤ 15.7-20.8m: riverbed deposit of sand and gravel with clay (gravel; rounded and sub-rounded)
- ➢ 20.8-23.2m: riverbed deposit of silt
- ➤ 23.2-25.0m: riverbed deposit of sand and gravel with clay (gravel; rounded and sub-rounded)
- (5) Engineering Geology

N-Value of Standard Penetration Test (SPT) is more than 50 for the riverbed deposit mainly composed of sand and gravel. The angle of internal friction will be estimated more than 44.5 degrees on the basis of Dunham's conversion formula ($\phi = (12N)^{1/2} + 20$).

4.2 Flood Control Dam in Ghyz Ghaleh River

The geological setting of this proposed dam will be almost same for the Sediment Control Dam located in upstream.

The fan deposit is widely distributed in the left bank and basement rocks are distributed here and there in the right bank. The foundation of dam will be fan deposit in the left bank, recent riverbed deposit in the river bed, and basement rocks of Sandstone and Slate Alternation in the right bank. Sandstone and Slate Alternation will come into NIUR Formation in Silurian period of Paleozoic Era. Intrusive rock of andesite is distributed at the river center covered by riverbed deposits.

The Result of Electric Prospecting

The resistivity layers are divided into three as follows:

1st layer: 150 to 500 ohm-m; it may be mainly composed of dried gravel,

2nd layer: 120 to 380 ohm-m; it may be composed of gravel, and

3rd layer: 40 to 60 ohm-m; it may be mainly composed of basement rocks.

The depth of 3rd layer coincides approximately with the depth of basement rocks.

(1) Fan deposit

The fan deposit is composed of loose sand, gravel, and clay/silt with comparatively high permeability. Gravel is well sorted and mixed with rounded to sub-angular that are almost composed of limestone. The thickness is estimated more than 10 meters.

(2) Recent River Deposit and Flood Plain Deposit

It is composed of loose sand and rounded gravel with a few fine materials and organic matters. Gravel is well sorted and rounded that composed of mainly limestone with other rocks. The gravel size will be a few centimeters to 20cm in an average with 1.5 meters in maximum.

It will be supposed to be high permeability, and seepage and piping should be considered for the design of structures. The thickness is estimated about 21 meters in maximum.

(3) Basement Rocks

The basement rocks are composed of the alternation of Sandstone and Shale with slightly crashed. Sandstone will be sound rock with a few weathering, but shale is a slightly crashed and its surface has been slaked. The strike and dip of strata is N14- 20° E and 45- 55° S. These rocks have the sufficient soundness for the basement rocks of Sabo dam and other river structures of small scaled.

Andesite dyke is distributed under the riverbed deposit at the river center. It will be creep zone with heavily weathered rocks and clay at the upper part up to 24 meters. It is heavily weathered andesite below 24 meters.

(4) Engineering Geology

N-Value of Standard Penetration Test (SPT) is more than 50 for the riverbed deposit composed of sand and gravel. The angle of internal friction will be estimated more than 44.5 degrees on the basis of Dunham's conversion formula ($\phi = (12N)^{1/2} + 20$).

Clay layer of riverbed deposit is hard with a N-value of 42 to more than 50. The bearing capacity (qa) will be estimated 42 to $50tf/m^2$ (qa=(1.0-1.3)N).

4.3 Confluent of Madarsoo River and Cheshmeh-Khan River

(1) Soil Condition

Dolomite of MILA Formation in Cambrian Period is distributed in the left bank and Jurassic limestone is distributed in the right bank. Riverbed and flood plain deposits are distributed in the riverbed with a thickness of about 19 meters. Old debris flow deposit or old talus deposit is distributed with a thickness of more than 5 meters under the riverbed deposit.

The horizontal layered silt with granule to pebble layers is distributed on the flood plain of Madarsoo River at the confluence with Cheshmeh-Khan River with the thickness of more than 5 meters. These fine materials might have been deposited in a lake that might be naturally formed by damming-up by debris flows of Cheshmeh-Khan River in past.

The lower part of the riverbed deposit, cohesive clay layer with a few granules is distributed from the depth of 13 meters to 19 meters. This might be also lake deposit.

Under the riverbed deposit, there is some deposit including rounded and angular granule to pebble of limestone, sandstone, and shale. This layer may be talus

deposit or debris flow deposit in past on the consideration for mixing rock type and various forms of rounded and angular.

(2) Engineering geology

N-Value of Standard Penetration Test (SPT) is more than 50 for the riverbed deposit composed of sand and gravel. The angle of internal friction will be estimated more than 44.5 degrees on the basis of Dunham's conversion formula ($\phi = (12N)^{1/2} + 20$).

Clay layer of riverbed deposit distributed from 8.2 to 13.3m of borehole CB-1 is categorized "hard" with a N-value of 29 to 41. The bearing capacity (qa) will be estimated 29 to 41tf/m² (qa=(1.0-1.3)N). But, clay layer of lake deposit distributed from 13.3 to 19.2m of borehole CB-1 is categorized " Stiff to Very stiff" with a N-value of 14 to 24. The bearing capacity (qa) will be estimated 14 to 24tf/m² (qa=(1.0-1.3)N).

Old talus deposit or old debris flow distributed under the lake deposit is also categorized "hard" with a N-value of more than 50.

It is supposed that the bearing capacity of the horizontal layered silt with granule to pebble layers on the flood plain will be almost same as lake deposit from the result of SPT.

APPENDIX 1 BOREHOLE LOG

Project:	The Stu	dy on Flo	ood a	nd E	Debris Flow in the	Caspian	Coastal Area Focusing on the Flood-Hit Region in Golestan Pro	ovince	
Hole No	. SB-1		_			Coordin	nates: N=4128268.83, E=408047.25	Date: Dec. 6	, 2005
Depth:	25m					Locatio	n: Riverbed Center of Breached Dam in Ghyz Ghaleh River		
Elevatio	Elevation: 1080.80m Water Level: below -25n Surveyed by: VINEHS/								ing Engineer
Scale	Depth		1				Lithology	Standard Per	netration Test
~~~~~	(m)	Name			Soil Class.	Color	Observation*	N-value	Penetration
1			0	0	GC		Bad sorted riverbed gravel layer. Loose deposit	61	(cm/30cm)
2			0	0	Sand and gravel with clay	grey/	Gravel: granule to pebble with cobble mainly composed of limestone, rounded with sub-rounded	51	
3	3.0		0	0		brown	Silt with galanur to pebble layer: 0.55-0.75m, 2.0-2.3m,	59	
4			0	0	GC		3.0-3.2m: silt rich layer	63	5
		~	0	Q	Clay, sand,	brown	Fine materials of clay and silt is increasing comparing with		
5	5.25	posits	0	0	gravel		uper part. Permeability will be lower than upper gravel layer	63	14
6		d de	0	0	GC			63	11
7	7.1	verbe	0	0	with clay	grey	Gravel: granule to pebble mainly composed of limestone, rounded with sub-rounded	63	9
8		Ri	0	0	GC		Gravel: granule to pebble, mainly composed of limestone, rounded with sub-rounded	63	6
9			0	0	Sand and gravel with clay	grey/	These deposit will be deposited under the condition of unsatable flow like flooding with debris flow materials.	63	10
10	10.0		0	0		brown		63	7
11	11.4		0000	000	G Gravel		Basal gravel layer of river deposit. Rounded pebble to cobble	63	6
12	11.4		$\prod$	Ť			11.4-11.55m: heavily weathered. brown	63	4
13	12.5				weatherd rocks	green	Weathed shale and shaly sandstone. Rocks are Softened and loosened. Clay is bearing in joints. (D-class)		/
14	15.5								/
15		ion			loosened sandstone	greenish grey	Shaly sandstone: slightly weathered with secondary clay in joints. (CL-class)		
16	15.4	altena							
17		Shale							
18		e and			Sound sandstone	greenish grey	Fresh and hard shaly sandstone. Joints are slightly weathered. (CM-class)		/
19	10.4	ndston						/	/
20	17.4	cs: Sai					19.4-19.8m: Shale, bearing secondary clay in joints	/	
21	21.1	ıt rock					Sandstone. Fresh and hard a few joint (CM-class)		
22	21.6	men			Sandstone	greenish	Shale: crashed (CL-class)		
22	22.3	Base			Shale	with brown	Sandstone (CM-class)	-/	
23	23.75				Alternation	biowfi	Crashed shale (CL-class) 23.65-23.75m: fault clay	-/	
24	24.15						Sandstone (CM-class)	<i> </i>	
25	25.0				Fine alternation	grey	Shale: crashed, fragment 25.0m: bottom of drillhole	V	

Standard Penetration Test (N): Cone Penetration Test (Nd) was conducted for gravel layer. Nd is almost same value of N for gravel layer Observation*: (A, B, CM, CL, D; Rock Soundness Classification)

line height: 31.5=1cm

<b>Borehole Log</b>	
---------------------	--

Project:	The Stu	dy on Flo	od and D	bebris Flow in the	Caspian	Coastal Area Focusing on the Flood-Hit Region in Golestan Pro	ovince	
Hole No	. FB-1				Coordin	ates: N=4128613.13, E=408560.56	Date: Dec. 1	0, 2005
Depth:	25m				Locatio	n: Riverbed Center of Proposed Flood Control Dam in Ghyz G		
Elevatio	n: 1069	9.18m		Water Level: be	low -25n	Surveyed by: VINEHS	AAR Consult	ing Engineer
Scale	Depth					Lithology	Standard Per	netration Test
Scale	(m)	Name		Soil Class.	Color	Observation*	N-value	Penetration
1			00	GC			60	(cm/30cm) 10
2			000			Bad sorted riverbed gravel layer, very loose deposit (GP)	60	11
3				Sand and gravel with clay	grey	Gravel: granule to pebble with cobble mainly composed of limestone, rounded with sub-rounded, fresh and hard	60	11
			00			These deposit will be deposited under the condition of unsatable flow like flooding with debris flow materials.	63	13
	5.0		00			0	05	15
5	5.0		0.0	Clay with gravel	brown	clay rich laver	63	12
6	5.5		00	GC	biown		63	14
7	7.1		00	Sand and gravel with clay	grey	Gravel: granule to pebble	63	13
8				CL			63	4
9	9.0			Clay with gravel	brown	Gravel: granule, mainly composed of limestone, rounded with sub-rounded	63	12
10		posits	00	GC	grey	Gravel: granule, mainly composed of limestone, rounded with sub-rounded	63	9
11	11.1	bed de	00	Sand and gravel with clay			63	4
12	11.6 12.0	River	0 0	Clav S/G with clay	brow grey	Silt and clay with sand, cohesive Sand and gravel with clay layer	49	
13	13.2			CL Clay	brown	Cohesive soil of silt and clay with sand.	25	5
14			00	GC			60	7
15	15.4		000	Sand, gravel, clay	grey/ brown	Mixed with sand, glanule to pebble, and fine materials of silt and clay.	60	3
16	1011			CL			49	
17				clay	brown	It is composed of cohesive soil of silt and clay with sand.	50	14
18	10.6						60	12
19	18.6		00	GC Sand graval	grou/	Mixed with and, glapple to pable, and fine metarials of silt.	105	29
20	19.9		00	clay	brown	and clay.	42	
21	21.4			CL Clay	brown	Silt and clay layer with sand	58	
22	21.4	Old	v ∆			Pebble: 21.2-21.4m, limestone rounded. Basal conglomerate?	72	
23		talus deposit	$\begin{array}{cc} \bigtriangleup & v \\ v & \bigtriangleup \end{array}$	Sand, gravel, clay		This layer may be talus deposit or creep zone of andesite. It is composed of heavily weathered andesite angular and clayey andesite with a few hard andesite granule.	83	
24	24.25	or Creep	$\begin{array}{c} \bigtriangleup & v \\ v & \bigtriangleup \end{array}$		readish purple	, ,	75	
25	25.0	Andesite	vvv	Rock		Heavily weathered andesite (D) 25.0m: bottom of drillhole	83	

Standard Penetration Test (N): Cone Penetration Test (Nd) was conducted for gravel layer. Nd is almost same value of N for gravel layer Observation*: (A, B, CM, CL, D; Rock Soundness Classification)

#### **Borehole Log**

Project:	The Study on Flood and	Debris Flow in the Caspian Coastal Area Focusing on the Flood-Hit Region in Go	lestan Province
IL.I. N.	ED 2		D ( D 16 0005

			-		coorun	ates: 11-4120077.50, E-400477.00	Dute: Dec. 1	0, 2005
Depth:	Location:         Riverbed Center of Proposed Flood Control Dam in Ghyz G							
Elevatio	levation: 1075.99m Water Level: below -20n Surveyed by: VINEHSAAR Consulting Enginee					ing Engineer		
Scale	Depth		-			Lithology	Standard Per	etration Test
Jeane	(m)	Name		Soil Class.	Color	Observation*	N-value	Penetration
1			00	GC (GP)			73	(cm/30cm)
2			00			Mixed of sand, gravel, and clay. No sediment horizental laminae	63	14
3			00			fresh and hard limestone.	87	
4		sit	00	Sand gravel	brown	I hey are sub-angular and sub-rounded. Granular: sub-rounded, Pebble with cobble: mainly sub-angular	77	
5		Depos	00	clay	bio mi	These denosit will be denosited under the condition of	63	13
6		Fan	00			debris flow.	102	
7							63	4
8			00	-			109	
9			00	-			33	
10	10.0		ΟÖ				73	
11		'er				There are not distributed talus deposit between upper fan deposit and this basement rocks.		
13 14		ale thin lay			cen	All fragments are composed of shaley sandstone and shale angular. Greenish clay are distributed here and there that may be sheared shale. Joint faces are slightly weathered.		
15		with sh			greysh gı	(CL)	/	/
16		undstone			Light			
17		aley se						
19		0						
20	20.0					20.0m: bottom of drillhole		

Standard Penetration Test (N): Cone Penetration Test (Nd) was conducted for gravel layer. Nd is almost same value of N for gravel layer Observation*: (A, B, CM, CL, D; Rock Soundness Classification)

#### Borehole Log

Project: T	The Study on Flo	d and Debris Flow in the Caspian Coastal Area Focusing on the Flood-Hit Region in Goles	stan Province
Hole No.	CB-1	Coordinates: N=4131711.96, E=413412.00	Date: Dec. 1 Date: Dec. 1

Depth:	25m		-		Locatio	n: On Dam Crest at Left Bank of Breached Dam in Ghyz Ghale		
Elevatio	on: 957.2	9m		Water Level: -9.0m Surveyed by: VINEHS.			AAR Consul	ting Engineer
Scale	Depth (m)	Nama	1	Cail Class	Calar	Lithology	Standard Per	netration Test
1	(11)	Name	00	GC	Color	Observation	N-value	(cm/30cm)
2						This is a recent riverbed deposit. It is loose and composed of	83	11
3			00	San and gravel with clay	grey/ brown	rounded limestone, sandstone, dolomite, and a few other rocks.	63	10
4			00			Gravel size: mainly granule to pebble. Rounded cobble are distributed as follows: 1.0, 1.5, 1.8, 2.6, 3.3, 4.3, 6.4, 7.3, and	63	13
5			00			8m.	74	
6			00				63	
7		osits	00				?	
8	8.2	ed dep	00	CL			95	
9	GWL	Riverb	0			GWL: Groundwater level= 9.30m	29	
10	—			Clay with gravel	brown	Clay and silt layer with a rounded gravel of granule to pebble	29	
11			0				35	
12			0			These deposit will be deposited under the condition of	41	
13	13.3			CI		unsatable now like nooding with debris now materials.	102	
14				CL.			19	
16		osit		Clay	brown	Cohesive soil of clay and silt with a few granule.	16	
17		ce depo				Lake deposit: this will be accumulated in the lake or reservoir where some point of down stream dammed.	14	
18		Lał					14	
19	19 <u>.</u> 2						23	
20				GC			49	
21		it		Sand, gravel	brown	This layer is composed of sand . gravel, and clay. Gravel is	65	
22		depos		clay		mixed with angular and rounded of limestone, sandstone, and shale. Its size is granule to pebble.	72	
23		1 talus				This layer will be talus deposit or debris flow in past.	80	
24		Oľ					64	
25	25.0		ΔΟ			25.0m: bottom of drillhole	50	

Standard Penetration Test (N): Cone Penetration Test (Nd) was conducted for gravel layer. Nd is almost same value of N for gravel layer

# APPENDIX 2 RESULT OF VERTICAL ELECTRIC SOUNDING

Table	A2.1 Cordinates o	Cordinates of Electric Prospecting Point					
Point	X	Y	<b>Z</b> ( <b>m</b> )				
1	408496	4128677	1075				
2	408556	4128625	1071				
3	408604	4128571	1071				
4	408621	4128632	1068				
5	408537	4128580	1071				
6	408562	4128679	1071				
7	408489	4128616	1070				
8	408118	4128250	1079				
9	408040	4128263	1081				
10	407983	4128348	1089				
11	407995	4128278	1086				
12	408053	4128234	1080				
13	408144	4128304	1077				
14	408041	4128368	1084				
15	407883	4128305	1089				
16	407883	4128445	1100				
17	407825	4128275	1090				
18	408113	4128395	1082				
19	407983	4128155	1087				
20	408090	4128218	1080				
21	408193	4128350	1076				
22	408456	4128730	1085				
23	408407	4128560	1071				
24	408628	4128728	1069				
25	408683	4128680	1067				
26	408505	4128505	1073				
27	408533	4128595	1069				
28	408580	4128648	1071				

Location of Electric Prospecting Point













щŽ



# SUPPORTING REPORT II (FEASIBILITY STUDY)

PAPER II

Structural Design

## THE STUDY ON FLOOD AND DEBRIS FLOW IN THE CASPIAN COASTAL AREA FOCUSING ON THE FLOOD-HIT REGION IN GOLESTAN PROVINCE

#### SUPPORTING REPORT II (FEASIBILITY STUDY)

#### PAPER II STRUCTURAL DESIGN

#### **TABLE OF CONTENTS**

CHAPTER	1	GENERALITIES	II-1
CHAPTER	2	OBJECTIVES	II-1
CHAPTER	3	DESIGN CONDITIONS	
	3.1	Design Scale	II-3
	3.2	Design Discharge	II-3
	3.3	Design Water Level	II-3
	3.4	Freeboard	II-4
	3.5	Geological Condition Based on the Geological Investigation	II-5
CHAPTER	4	PRELIMINARY DESIGN	II-7
	4.1	Consideration of Proposed Channel Section	II-7
		4.1.1 Channel Stretch between Dasht Bridge and Nick Point.	II-7
		4.1.2 Channel Stretch Upstream of Nick Point	II-8
	4.2	Consideration of Optimum Structural Type	
		for the Countermeasures	II-9
CHAPTER	5	CONCLUSION	II-13
	5.1	Optimum Structural Type	II-13
	5.2	Preliminary Project Cost	II-13
CHAPTER	6	RECOMMENDATIONS	II-15
	6.1	Necessity of Detailed Design Stage Execution	II-15
	6.2	Utilization of the Site-Generated Soil	II-15
	6.3	Early Implementation of the River Restoration	
		in the Gelman Darreh River	II-15

ANNEX	1	CONSIDERATION OF ALTERNATIVE-A	II-20
ANNEX	2	CONSIDERATION OF ALTERNATIVE-B	II-27
ANNEX	3	CONSIDERATION OF ALTERNATIVE-C	II-38

#### **LIST OF TABLES**

Table 3.1	Design Discharge under 25-Year Return Period	II-3
Table 3.2	Relation Between Design Discharge and Required Freeboard	II-4
Table 3.3	Relation Between Channel Bed Gradient and Required Freeboard	II-5
Table 3.4	Summary of the Borehole Log at the Confluence Point	II-5
Table 4.1	Topographic Relation between Dasht Bridge and Nick Point	II-7
Table 4.2	Hydraulic Calculation Results in the Downstream Reaches	II-7
Table 4.3	Hydraulic Calculation Results of the Upstream Section	II-8
Table 4.4	Salient Features of the Alternative Dimensions	II-10
Table 5.1	Essential Dimensions for the Riverbank Stabilization Works	II-13
Table 5.2	Preliminary Project Cost Estimate	II-14

## LIST OF FIGURES

Figure 2.1	Valley Head Erosion Downstream of Dasht Village	II-1
Figure 2.2	Image of the Proposed Riverbed Stabilization Works	II-2
Figure 4.1	Typical Cross Section of the Downstream Section	II-8
Figure 4.2	Typical Cross Section of the Upstream Section	II-9
Figure 4.3	Schematic Drawings of Structural Alternatives for Riverbank	
	Stabilization Works	II-12
Figure 6.1	Example of Proposed Applicable Sections	
	in the Proposed Countermeasures	II-15
Figure 6.2	Plan of Proposed Riverbank Stabilization Works	II-17
Figure 6.3	Typical Sections of Proposed Riverbank Stabilization Works	II-18
Figure 6.4	Typical Cross Section of Proposed Channel Works	II-19

## CHAPTER 1 GENERALITIES

Based on the respective structural and non-structural measures proposed in the master plan, the following three projects have been selected as the priority projects from the viewpoints of a project usefulness to the previous flood damage area, an economic viability and suitable and essential themes on technology transfer to the MOJA personnel.

Three projects are:

- (1) Rehabilitation of a sediment control dam in the Ghyz Ghale River and riverbank stabilization works in the Madarsoo River nearby the Dasht village
- (2) Strengthening of a disaster management with flood forecasting, warning and evacuating system in the Golestan Forest National Park
- (3) Publication of probable flood and debris flow hazard map

The main aim of this chapter is to prepare an appropriate preliminary structural design for the said riverbank stabilization works in consideration of 1) structural recommendations in the master plan and 2) results of relevant research and investigation such as the topographic survey, the geological investigation, the hydrological study review.

## CHAPTER 2 OBJECTIVES

Under the current situation in the flood period, the existing river on the Dasht basin is prone to overflow the neighboring farmlands immediately since the river has insufficient flow capacity against the middle-small size flood. The floodwater spreading out on the farmlands is going down to the Madarsoo River and the floodwater, which is falling at the riverbed difference point, causes the unstable riverbank erosion at the nick point with the heavy flood flow.

The following photos show the flood state at the nick point in the Madarsoo River in the 2005 Flood.





Overall the Unstable Riverbank Area The floodwater is going down to the Madarsoo River, turbulently.

 le Riverbank Area
 Nick (Riverbed Difference) Point

 own to the Madarsoo
 The floodwater spreading out on the farmland is falling down like a large scale waterfall.

 Source: taken by MOJA-North Khorasan on August 9, 2005

Figure 2.1 Valley Head Erosion Downstream of Dasht Village

In the case of without structural measures, the collapse at the unstable riverbanks is accelerated further and the valley head of unstable riverbank, which is in accordance with the nick point, might gradually go forward to the upstream area nearby Dasht village whenever the flood occurs.

Consequently, the riverbank stabilization works shall be planned to protect the farmlands and residential area in the Dasht village.

The objectives of its works are:

- **D** To stabilize the existing unstable riverbanks of the Madarsoo River nearby Dasht village;
- □ To prevent the farmland from losing further caused by flood, and
- □ To reduce an exceeding sediment conveyance into the downstream of the Madarsoo River.

Additionally, this proposed structure is one of the essential structures for the River Restoration Plan under the Master Plan. This structure shall be set at the most downstream of the Gelman Darreh River improvement since it is expected that its function is not to stabilize the existing riverbanks but also to maintain the river course in the upstream as same function as the groundsill.

This riverbank stabilization works can bring the further function to prevent the flood damage from appearing in and around the Dasht village under the proposed design scale when the river improvement works of the Madarsoo River and the Gelman Darreh River nearby Dasht village will be executed in accordance with the Master Plan scheme and their improved river systems will be connected to the riverbank stabilization works.

The image photos before and after construction of the proposed riverbank stabilization works are shown in the following figure.



Figure 2.2 Image of the Proposed Riverbed Stabilization Works

## CHAPTER 3 DESIGN CONDITIONS

#### 3.1 Design Scale

The design scale applied to the proposed structures is set for a 25-year return period since MOE, which conducts the planning and construction of infrastructure nationwide in Iran, adopts that the flood scale in a rural area is adopted with 25-year flood, while the flood scale in an urban area is in accordance with 50- to 100-year flood on the flood control planning.

In conformity with standard of Iran and MOE planning, the following design scales have been adopted in the master plan.

- □ Protecting a farmland and a rural village: 25-year flood
- □ Protecting an important structure (main road and bridges) and a town area: 100-year flood

#### **3.2** Design Discharge

The design discharge applied to the proposed structures is set for flood discharge under 25-year return period.

The hydrological study results have provided that the main river and the tributaries of the Madarsoo River Basin in and around Dasht Village have the following probable peak discharge:

I UDIC CII I		
Location	Design Discharge	Remarks
Madarsoo River (Upstream)	660 m ³ /s	After confluence of Dasht-e-Sheikh River
Gelman Darreh River (Downstream)	430 m ³ /s	
Dasht-e-Sheikh River	90 m ³ /s	
Ghyz Ghale River	$160 \text{ m}^{3}/\text{s}$	

 Table 3.1
 Design Discharge under 25-Year Return Period

Additionally, design discharge in the above table includes the effect, which is to reduce the flood runoff with watershed management plan conducted by MOJA-Golestan and it is assumed that sediment volume of bed load is included in the respective design discharges since these discharge analyses are based on the large recorded floods in 2001 and 2005, of which recorded floodwater contained sediment runoff.

#### 3.3 Design Water Level

Design water level for proposed channel sections is provided with the Manning Formula, which calculates an hydraulic state under the uniform flow condition, since the existing riverbed slope gradient of the Madarsoo River basin is steep as same as torrential stream riverbed slope gradient and supercritical flow is usually appeared.

The equation of the Manning Formula is shown as follows:

$\mathbf{Q} = \mathbf{V} \mathbf{A}$	where:
1 - 2/3 - 1/2	Q : Design Discharge $(m^3/s)$
$V = -R^{2/3}I^{1/2}$	V : Design Flow Velocity (m/s)
n	n : Roughness Coefficient
$R = A_{\mathbf{p}}$	I : Design Riverbed Gradient
$V = \frac{1}{n} R^{2/3} I^{1/2}$ $R = A / P$ $A = h (B + m h)$ $P = B + 2h \sqrt{1 + m^2}$	A : Required Flow Section (m ² )
$\mathbf{A} = \mathbf{II} \left( \mathbf{D} + \mathbf{III} \mathbf{II} \right)$	P: Wetted Perimeter (m)
$n$ $R = \frac{A}{P}$ $A = h (B + m h)$ $P = B + 2h \sqrt{1 + m^{2}}$	h : Design Water Depth (m)
	B : Design Invert Width (m)
	M : Riverbank Slope Gradient (1: m)

Source: River Works in Japan complied under River Bureau in the Ministry of Land, Infrastructure and Transport, Japan River Association, 1997

On the other hand, design water level of the spillway section on the proposed dam or hydraulic drop structure is provided with the weir formula taking into account a critical water depth appearance.

The weir formula is shown as follows:

$$Q = \frac{2}{15}C\sqrt{2g}(3B_1 + 2B_2)h^{3/2}$$
where:  

$$Q : Design Discharge (m^3/s)$$
C : Discharge Coefficient  
(useable between 0.60 and 0.66)  

$$g : Gravitational Acceleration (9.8 m/s^2)$$
B₁ : Design Bottom Width of Spillway (m)  
B₂ : Design Water Surface Width (m)  
h : Overflow Water Depth (m)  
m : Spillway Bank Slope Gradient (1: m)

Source: River Works in Japan complied under River Bureau in the Ministry of Land, Infrastructure and Transport, Japan River Association, 1997

#### 3.4 Freeboard

Freeboard height shall be determined based on the design discharge since it has the margin against unexpected wave height and overtopping.

Design dike crest or spillway section height is made from the sum of the design water depth and the freeboard height to be required.

The freeboard height in the torrential stream is required higher than the river course on an alluvium plain since, in the torrential stream, the riverbed change and/or sediment discharge are occurred frequently and water surface is prone to become turbulent in the flood period.

Consequently, determination of the required freeboard height in the torrential stream shall not be considered with design discharge but also with channel bed gradient.

For instance, relation between design discharge and required freeboard height, which the Japanese Technical Guideline for river works recommends, is tabulated as follows:

 Table 3.2
 Relation Between Design Discharge and Required Freeboard

	n Discharge and Required Freeso							
Design Discharge	Freeboard Height (minimum)							
Less than 200 m ³ /s	0.6 m							
$200 \text{ to } 500 \text{ m}^3/\text{s}$	0.8 m							
More than 500 $m^3/s$	1.0 m							
BedMore than $1/10$ to $1/30$ to $1/50$ to $1/70$ toLess than								
---------------------------------------------------------------	----------------	--------------	-------------	---------------	-------------	-------	--	--
Gradient	1/10	1/30	1/50	1/70	1/100	1/100		
h/H 0.50 0.40 0.30 0.25 0.20 0.10								
Sources: Riv	or Works in Ia	nan complied	under River	Burgau in the	Ministry of	Land		

<b>Fable 3.3</b>	<b>Relation Between</b>	<b>Channel Bed</b>	Gradient and I	<b>Required Freeboard</b>

Sources: River Works in Japan complied under River Bureau in the Ministry of Land, Infrastructure and Transport, Japan River Association, 1997

In the above table, symbols of "h " and " H" indicate the freeboard height based on the design discharge and the design water depth, respectively. Value of h/H shall be required for more than value shown in Table 3.3.

# 3.5 Geological Condition Based on the Geological Investigation

According to the geological investigation results, the following comments for the confluence of the Madarsoo River and the Cheshmeh Khan River are described:

- □ N-value of Standard Penetration Test (SPT) is more than 50 in the layer of the riverbed deposit composed of sand and gravel. The allowable bearing capacity is estimated at about 28 tf/m² (274 kN/m²) under the ordinary condition with bearing capacity equation when it is assumed that a submerged unit weight of the soil is 1.0 tf/m³ and internal friction angle of the soil is 40 degrees.
- □ Clay layer of riverbed deposit is distributed from 8.2 m to 13.3 m below the ground surface and it is categorized as "hard" with a N-value of 29 to 41. The allowable bearing capacity (qa) will be estimated as the range from 29 to 41 tf/m² (290 to 410 kN/m²) under the ordinary condition with the equation of qa = 1.0N.
- □ But, clay layer of lake deposit distributed from 13.3 m to 19.2 m below the ground surface is classified as "stiff or very stiff" with a N-value of 14 to 24. The allowable bearing capacity will be estimated at the range from 14 to 24 tf/m² (140 to 240 kN/m²) under the ordinary condition with the equation of qa = 1.0N.

The summary of the borehole drilling result at the confluence of the Madarsoo River and the Cheshmeh Khan River is shown as follows:

Depth (m)	Geological Name	Soil Class.	N-Value (Averaged)	Allowable Bearing Capacity
-8.2m	Riverbed Deposit	Sand and Gravel with Clay	More than 50	28 ft/m ²
-13.3m	Riverbed Deposit	Clay with Gravel	33	$29 \text{ tf/m}^2$
-19.2m	Lake Deposit	Clay	18	$14 \text{ tf/m}^2$
-25.0m	Old Talus Deposit	Sand, Gravel, Clay	More than 50	

 Table 3.4
 Summary of the Borehole Log at the Confluence Point

One borehole drilling including SPT has been carried out for the preliminary design of the proposed riverbank stabilization works, so that it is insufficient to implement the detailed design and construction stage. Before its detail design stage, the additional detailed geological investigation shall be executed including laboratory tests to ensure the more reliable results of the geological characteristics.

The additional geological investigation is proposed as follows:

- □ Unconfined Compression Test
- □ Field Permeability Test

- □ Field Density Test
- □ Particle Size Analysis
- **D** Borehole Drilling at several points (with Standard Penetration Test)

# CHAPTER 4 PRELIMINARY DESIGN

## 4.1 Consideration of Proposed Channel Section

## 4.1.1 Channel Stretch between Dasht Bridge and Nick Point

According to the topographical survey in the F/S study, the existing river stretch from Dasht Bridge to the nick point has the riverbed width for about 55 m in minimum and its distance is about 640 m with a map measurement of scale 1:25,000.

The riverbed elevation nearby Dasht Bridge is obtained with EL+954.0 m by the field reconnaissance, while the riverbed elevation of EL+956.6 m nearby the nick point is provided from the topographical survey results.

Based on the above information, the existing waterway hydraulic characteristics between the bridge and the nick point are assumed as follows:

	Topographic Relation between Dasht Druge and Men				
Location	Riverbed EL.	Distance	Assuming Riverbed Gradient		
Riverbed Difference Point	EL+956.5m	640 m	I = 1/260		
Dasht Bridge (Existing) EL+954.0m 640 n		040 III	I = 1/260		

Table 4.1Topographic Relation between Dasht Bridge and Nick Point

The channel section accommodating the design discharge of  $Q_{25} = 660 \text{ m}^3/\text{s}$  in accordance with a 25-year return period is designed with the uniform flow calculation of the Manning's Formula. The hydraulic calculation results are shown as follows:

Conditions	Value	Remarks
Riverbed Width	55.0 m	
Water Depth	3.3 m	
Side Slope Gradient	1:0.5	
Roughness Coefficient	0.035	Sand & Gravel
Riverbed Gradient	1/260	Same as existing riverbed gradient
Sectional Area (A)	186.95 m ²	
Wetted Perimeter (P)	62.38 m	
Hydraulic Radius (R)	2.997 m	
Flow Velocity (V)	3.68 m/s	
Flow Capacity (Q)	688.6 m ³ /s	Design Discharge: 660 m ³ /s

Table 4.2Hydraulic Calculation Results in the Downstream Reaches

Required freeboard height is 1.0m high based on the design discharge and the value of h/H is 1.0m/3.3m = 0.303 with riverbed gradient I=1/260. The value satisfies the standards shown in Table 4.3. Therefore, the freeboard height of 1.0m is adopted.



Figure 4.1 Typical Cross Section of the Downstream Section

# 4.1.2 Channel Stretch Upstream of Nick Point

According to the field reconnaissance and a map measurement on scale of 1:25,000, the ground surface slope gradient of the Dasht basin is about 1/100 between the nick point to the confluence of the Madarsoo River and the Dasht-e-Sheikh River.

In terms of economic and social environmental aspects on the channel improvement, the proposed channel bed gradient is adopted as same as the existing surface gradient to reduce the excavation volume and to avoid setting the proposed design water level higher than the existing ground surface.

Proposed channel width follows the immediate downstream river width of 55.0 m as well as the downstream stretch between Dasht Bridge and the nick point.

The channel section accommodating the design discharge of  $660 \text{ m}^3/\text{s}$  is designed with the uniform flow calculation of the Manning's Formula. The hydraulic calculation results are shown as follows:

	•	1
Conditions	Value	Remarks
Riverbed Width	55.0 m	
Water Depth	2.5 m	
Side Slope Gradient	1:0.5	
Roughness Coefficient	0.035	Sand & Gravel
Riverbed Gradient	1/100	Same as existing ground surface gradient
Sectional Area (A)	140.63 m ²	
Wetted Perimeter (P)	60.59 m	
Hydraulic Radius (R)	2.321 m	
Flow Velocity (V)	5.01 m/s	
Flow Capacity (Q)	$704.3 \text{ m}^3/\text{s}$	Design Discharge: 660 m ³ /s

Table 4.3Hydraulic Calculation Results of the Upstream Section

Required freeboard height is 1.0 m high based on the design discharge and the value of h/H is 1.0 m/2.5 m = 0.40 with riverbed gradient I=1/100. The value is satisfies the standards shown in Table 4.3. Therefore, the freeboard height of 1.0 m is adopted.



Figure 4.2Typical Cross Section of the Upstream Section

# 4.2 Consideration of Optimum Structural Type for the Countermeasures

Three types are elaborated as alternative schemes based on the topographical and hydraulic conditions in the nick point. These alternative features are described as follows:

Alternative-A is composed of concrete main dam, secondary dam, concrete apron with stilling basin and concrete block.

Alternative-B is composed of concrete main dam, secondary dam, concrete apron with stilling basin, hydraulic drop structure and concrete blocks for the riverbed protection.

Alternative-C consists of three (3) hydraulic drop structures and concrete blocks for the riverbed protection.

The following criteria are prepared to compare the respective alternatives:

- □ The downstream design riverbed is set at the existing riverbed.
- □ The upstream design channel bed is set at the proposed channel bed in consideration of the proposed river channel improvement of the Gelman Darreh River.
- □ Proposed concrete apron surface is set based on the difference between the conjugate depth of the hydraulic jump and downstream water depth.
- □ Proposed drop height are considered based on the condition that the conjugate depth of the hydraulic jump is about the same as the design water depth on the channel.
- □ Proposed spillway invert width of the main dam and/or hydraulic drop structure is 55.0 m wide as same as the width immediately downstream of spillway in the Madarsoo River.
- □ The bottom of main dam is set at the concrete apron surface below 2.0 m deep to prevent the unexpected scouring caused by the water falling down from the spillway section.
- □ The bottom of sub dam is set at the bottom of concrete apron below 2.0 m deep.

Salient features of the three alternatives are tabulated as follows:

	Structural Scale					
	Downstream	Conc. Apron	Main Dam	Hydrau Stru	lic Drop cture	Upstream
	Riverbed	Surface	Height	Nos.	Drop Height	Channel Bed
Alternative-A		EL+954.0 m	9.0 m	N/A	N/A	
Alternative-B	EL+956.5 m	EL+954.6 m	5.8 m	1	2.0 m	EL+963.0 m
Alternative-C		N/A	N/A	3	2.0 m	

#### Table 4.4 Salient Features of the Alternative Dimensions

These alternatives are compared based on the respective structural characteristics, required land area, economical viability because of the optimum structural type selection.

Comparison of the three structural countermeasures as the riverbank stabilization works is tabulated in Table 4.5 and the schematic drawings are shown in Figure 4.3.

	Table To The purpose of the table of	ICHT AL COMPTMANNI INT TATAI DAILY DAAN	
	Alternative- A	Alternative-B	Alternative-C
	(Concrete Dam Type)	(Concrete Dam + Hydraulic Drop Type)	(Hydraulic Drop Structure Type)
General View	Refer to Figure 4.3	Refer to Figure 4.3	Refer to Figure 4.3
Structural Characteristic s	<ul> <li>The countermeasure is composed of concrete main dam, sub-dam, concrete apron (with stilling basin), concrete blocks and revetment as riverbank protection.</li> <li>Dam height of 9.0m is required to retain the existing riverbed difference by itself.</li> <li>The entering flow as kinetic energy created by flood flow fallen down is the strongest among other alternatives.</li> <li>The entering flow has high velocity flow of more than 15m/s on the concrete apron, so that there is a possibility to appear a heavy turbulent flow on the riverbed protection and to affect an immediate riverbed condition.</li> <li>Soil improvement works shall be required in implementation stage since subgrade reaction of the main dam exceeds an allowable bearing capacity.</li> </ul>	<ul> <li>The countermeasure is composed of concrete main dam, sub-dam, concrete apron (with stilling basin), hydraulic drop structure, concrete blocks and revetment as riverbank protection.</li> <li>Dam height of 5.8m and drop structure difference of 2.0m are required to retain the existing riverbed difference.</li> <li>The entering flow as kinetic energy created by flood flow fallen down is smaller than Alternative-A because the installation of hydraulic drop structure can reduce the proposed dam height.</li> </ul>	<ul> <li>The countermeasure is composed of three (3) hydraulic drop structures, concrete blocks and revetment as riverbank protection.</li> <li>Proposed drop structure height of 2.0m is required individually.</li> <li>It is required to keep the interval of 76.5m between the drop structures since hydraulic profile is set smoothly.</li> <li>The potential energy created by flood flow is the smallest among the three alternatives.</li> <li>It is expected to reduce the effect on riverbed change in the downstream section of the Madarsoo River.</li> </ul>
Kequired I and Area	$A1 = 84.5m \text{ X } 94.0 \text{ m} = 7,950 \text{ m}^2$	$A2 = 110.6m \text{ X } 92.0m = 10,180 \text{ m}^2$	$A3 = 228.2m X 84.4 m = 19,260 m^2$
Construction Cost	8.05 billion Rials (direct cost only)	7.83 billion Rials (direct cost only)	11.94 billion Rials (direct cost only)
Evaluation	Advantageous with regard to required area to be constructed, however, problem is left in possibility of turbulent flow effect and the countermeasure against the exceeding allowable bearing capacity. (Inadequate)	Cost performance is the best among the others. It is expected to reduce the effect of downstream stretch against a turbulent flow more than Alternative-A. (Adequate)	This type is more costly than other alternatives and the largest area is required by the construction. (Inadequate)

The Study on Flood and Debris Flow in the Caspian Coastal Area focusing on

the Flood-hit Region in Golestan Province



Figure 4.3 Schematic Drawings of Structural Alternatives for Riverbank Stabilization Works

# CHAPTER 5 CONCLUSION

# 5.1 **Optimum Structural Type**

Based on the comparison for the structural type selection, Alternative-B (Concrete Dam + Hydraulic Drop Structure Type) is selected for the following reasons.

- (1) The potential energy at the proposed main dam crest can be reduced comparatively because the installation of proposed hydraulic drop structure in the upstream side of the main dam could reduce the design dam height.
- (2) The reduction of the potential energy is expected to bring the mitigation of the downstream riverbed scouring caused by the entering flow from the spillway and to contribute stabilizing the existing riverbed.
- (3) Cost performance to be estimated is the best among the three alternatives and it is expected that the required area to place the proposed structures can be set in the current devastated area without the land acquisition of the farmland.

The salient structural dimensions of the concrete dam and hydraulic drop structure are tabulated as follow:

Structural Features	Value	Remarks
(Main Dam)		
Design Dam Crest Width	B = 3.5 m	Required by dam stability
Design Dam Height	H = 7.8 m	
Design Downstream Slope Gradient	1: 0.2	Required by dam stability
Design Upstream Slope Gradient	1:1.0	Ditto
Seepage Blockage Wall for Concrete Dam	L = 5.0 m	Required by dam stability Against uplift
Design Upstream Concrete Block Weight	1.9 ton/piece	
Design Downstream Concrete Block Weight	1.2 ton/piece	
(Hydraulic Drop Structure)		
Design Drop Height	H = 2.0 m	
Design Drop Crest Width	B = 2.3 m	Required by drop structure stability
Design Footing Length	L = 5.0 m	
Design Footing Thickness	T = 1.5 m	Required by drop structure stability
Design Cutoff Height	H = 1.5 m	

 Table 5.1
 Essential Dimensions for the Riverbank Stabilization Works

In addition, additional foot section is required to secure the dam stability against tiling and the structural stability results shall be reviewed with the updating information in the detail design stage.

Drawings of plan and typical sections for the proposed riverbank stabilization works are shown in Figures. 6.2 to 6.4, respectively.

# 5.2 Preliminary Project Cost

The preliminary project cost estimate for the Alternative-2 as the optimum structural scheme is shown in the following table.

The components of indirect cost mentioned below the table is referred to the estimate manner as same as the previous JICA study report on "the Integrated Management for Ecosystem Conservation of The Anzali Wetland in the Islamic Republic of Iran, March 2005".

Baseline of the unit price for project cost estimate is adopted as of August 2005. The exchange rate is shown as follows:

USD 1 = 8,996 Rials and JPY 100 = 8,025 Rials (as of August 1, 2005)

In addition, basis of unit price in the below table refers to the document of index of expenses for projects related with irrigation, drainage and engineering of water in Islamic year 1383 (European year of 2004) issued by Deputy of Technical Affairs, Technical Affairs Bureau, Management and Planning Organization (MPO), Islamic Republic of Iran.

Work Item         Quantity         Unit         Unit (Rials)         Amount (Right)           I. Construction Base Cost         8,611,000         1         Is         783,000           1. Preparatory Works         1         1.s.         783,000         783,000           2. Riverbank Stabilization Work for Madarsoo River at Dasht Village         7,828,000         a Excavation         -           - Sand & Gravel         72,300         m ³ 7,000         66,920           c. Backfilling with Compaction         1,940         m ³ 9,000         17,460           d. Embankment         m ³ 11,000         0         e.         Removal of the Surplus Soil         61,000         m ³ 1,000         1,159,000           g. Sodding         1,730         m ³ 1,000         1,730         1,000         1,730           n. Concrete         1         1,270         m ³ 327,000         2,308,500           - Plain Concrete         1,270         m ³ 240,000         105,780           - Viet Stone Masonry         2,880         m ³ 227,000         653,760           - 1.2ton/piece         1,285         nos.         642,000         653,760           - 1.2ton/pie	Alterna	tive-2			
I Construction Base Cost       8,611,000         1. Preparatory Works       1       1s.         (10% of Sub-total of Item 2 to 3)       783,000         2. Riverbank Stabilization Work for Madarsoo River at Dasht Village       7,828,000         a Excavation       72,300       m ³ 7,000       506,100         b Random Backfilling       9,560       m ³ 7,000       66,920         c Backfilling with Compaction       1,940       m ³ 9,000       17,460         d Embankment       m ³ 11,000       0         e. Removal of the Surplus Soil       61,000       m ³ 19,000       1,730,000         g Sodding       1,730       m ² 1,000       1,730         n Concrete       0       1,000       1,730       1,000       1,730         n Plain Concrete       8,550       m ³ 270,000       2,308,500         i Gabion Mattness       710       m ³ 149,000       105,790         i Gabion Mattness       710       m ³ 149,000       105,790         i Gabion Mattness       710       m ³ 149,000       573,685         .       .       .       1,305,155       (20% of "a" to "f')       I	Work Item	Quantity	Unit	Unit Price (Rials)	Amount (1,000 Rials)
1. Preparatory Works       1       Ls.       783,000         (10% of Sub-total of Item 2 to 3)       2. Riverthank Stabilization Work for Madarsoo River at Dasht Village       7,828,000         a. Excavation       - Sand & Gravel       72,300       m ³ 7,000       506,100         b. Random Backfilling       9,560       m ³ 7,000       66,920         c. Backfilling with Compaction       1,940       m ³ 9,000       1,7460         d. Embankment       m ³ 11,000       0       0         e. Removal of the Surplus Soil       61,000       m ³ 19,000       1,750,000         f. Gareel Bedding       3,210       m ³ 9,000       1,730,000         f. Concrete       -       -       1,000       1,730,000       2,308,500         r. Bain Concrete (including 20kg rebar)       1,270       m ³ 355,000       450,850         r. Bain Concrete       1,080       nos.       602,000       650,160         r. J Ston / piece       1,080       nos.       602,000       650,160         r. J Ston / piece       1,080       nos.       602,000       650,160         r. J Ston / piece       1,080       nos.       602,000       60,000       0 <td>I. Construction Base Cost</td> <td></td> <td></td> <td></td> <td>8,611,000</td>	I. Construction Base Cost				8,611,000
(10% of Sub-total of Item 2 to 3)       7,828,000         a. Excavation       7,23,00       m ³ 7,000       506,100         b. Random Backfilling       9,560       m ³ 7,000       66,920         c. Backfilling with Compaction       1,940       m ³ 9,000       17,460         d. Embankment       m ³ 11,000       0       0         e. Removal of the Surplus Soil       61,000       m ³ 19,000       1,730         f. Gravel Bedding       3,210       m ³ 9,000       28,880         g. Sodding       1,730       m ² 1,000       1,730         h. Concrete       8,550       m ³ 270,000       2,308,500         - Plain Concrete (including 20kg rebar)       1,270       m ³ 355,000       450,850         - Wet Stone Masonry       2,880       m ³ 227,000       653,760         j. Concrete Block       -       -       149,000       105,750         j. Concrete Block       -       1,080       nos.       602,000       650,160         - 1.2 ton/piece       1,080       nos.       602,000       653,760         i. Land Acquisition Cost       0       m ² 42,00 <td< td=""><td>1. Preparatory Works</td><td>1</td><td>l.s.</td><td></td><td>783,000</td></td<>	1. Preparatory Works	1	l.s.		783,000
2. Riverbank Stabilization Work for Madarsoo River at Dasht Village       7,828,000         a. Excavation       - Sand & Gravel       72,300       m³       7,000       506,100         b. Random Backfilling       9,560       m³       7,000       66,920         c. Backfilling with Compaction       1,940       m³       9,000       17,460         d. Embankment       m³       11,000       0         e. Removal of the Surplus Soil       61,000       m³       19,000       1,730,000         f. Gravel Badding       3,210       m³       9,000       28,890         g. Sodding       1,730       m²       1,000       1,730         h. Concrete       8,550       m³       270,000       2,308,500         - Plain Concrete (including 20kg rebar)       1,270       m³       355,000       450,850         - Wet Stone Masonry       2,880       m³       227,000       653,760         i Gabion Mattress       710       m³       149,000       105,780         j Concrete Block       -       1,980       0       652,000         - 1.9 ton/piece       1,080       nos.       602,000       653,160         - 1.2 ton/piece       1,285       nos.       443,000	(10% of Sub-total of Item 2 to 3)				
a Excavation - Sand & Gravel 72,300 m ³ 7,000 506,100 b Random Backfilling 9,560 m ³ 7,000 66,920 c. Backfilling with Compaction 1,940 m ³ 9,000 17,460 d. Embankment m ³ 11,000 0 e. Removal of the Surplus Soil 61,000 m ³ 19,000 1,159,000 g. Sodding 3,210 m ³ 9,000 28,890 g. Sodding 1,730 m ² 1,000 1,730 h. Concrete - Plain Concrete 8,550 m ³ 270,000 2,308,500 - Reinforced Concrete (including 20kg rebar) 1,270 m ³ 355,000 450,850 - Wet Stone Masonry 2,880 m ³ 227,000 653,760 i Gabion Mattress 710 m ³ 149,000 105,790 j. Concrete Block - 1.9ton/piece 1,080 nos. 602,000 650,160 - 1.9ton/piece 1,295 nos. 443,000 573,685 k. Miscellaneous 1 Ls 1,305,155 (20% of "a" to "f") II. Land Acquisition Cost 0 a. Dry Farming Land 0 m ² 4,000 0 b. Irrigated Land 0 m ² 4,000 0 d. Residential Area m ³ 60,000 0 II. Administration Cost 1 Ls 431,000 (5% of Item D) V. Physical Contingency 1 Ls 1,981,000 (10% of Item I) V. Physical Contingency 1 LB 1,885,000 Round Total 11,880,000	2. Riverbank Stabilization Work for Madarsoo Riv	er at Dasht Vil	lage		7,828,000
- Sand & Gravel     72,300     m³     7,000     506,100       b. Random Backfilling     9,560     m³     7,000     66,820       c. Backfilling with Compaction     1,940     m³     9,000     17,460       d. Embankment     m³     11,000     0       e. Removal of the Surplus Soil     61,000     m³     19,000     1,159,000       f. Gravel Bedding     3,210     m³     9,000     28,880       g. Sodding     1,730     m²     1,000     1,730       h. Concrete     8,550     m³     270,000     2,308,500       - Plain Concrete (including 20kg rebar)     1,270     m³     355,000     450,850       - Wet Stone Masonry     2,880     m³     270,000     2,308,500       i Gabion Mattress     710     m³     149,000     105,780       j. Concrete     Block     1     1,305,155       (20% of "a" to "f")     1     Is.     1,305,155       i (20% of "a" to "f")     1     Is.     1,305,155       II. Land Acquisition Cost     0     m²     4,200     0       a. Dry Farming Land     0     m²     4,200     0       a. Dry Farming Land     0     m²     4,200     0       d. Corchard     0	a. Excavation				
b Random Backfilling       9,560       m³       7,000       66,920         c. Backfilling with Compaction       1,940       m³       9,000       17,460         d. Embankment       m³       11,000       0         e. Removal of the Surplus Soil       61,000       m³       19,000       1,159,000         f. Gravel Bedding       3,210       m³       9,000       28,890         g Sodding       1,730       m²       1,000       1,730         h. Concrete       8,550       m³       270,000       2,308,500         – Plain Concrete (including 20kg rebar)       1,270       m³       355,000       450,850         – Wet Stone Masonry       2,880       m³       227,000       653,760         i Gabion Mattress       710       m³       149,000       105,780         j Concrete Block       -       1,285       nos.       602,000       650,160         – 1.9ton/piece       1,080       nos.       602,000       650,160         – 1.2ton/piece       1,285       nos.       442,000       00         k Miscellaneous       1       Is.       1,305,155         (20% of "a" to "j")       1       Is.       431,000         II	– Sand & Gravel	72,300	m ³	7,000	506,100
c. Backfilling with Compaction       1,940       m ³ 9,000       17,460         d. Embankment       m ³ 11,000       0         e. Removal of the Surplus Soil       61,000       m ³ 19,000       2,8,800         g. Sodding       1,730       m ² 1,000       1,730         h. Concrete       1,730       m ² 1,000       1,730         - Plain Concrete       8,550       m ³ 270,000       2,308,500         - Reinforced Concrete (including 20kg rebar)       1,270       m ³ 355,000       450,850         - Wet Stone Masonry       2,880       m ³ 227,000       653,760         i. Gabion Mattress       710       m ³ 149,000       105,790         j. Concrete Elock       -       -       1,285       nos.       443,000       573,685         k. Miscellaneous       1       I.s.       1,305,155       (20% of "a" to "f")       1       I.s.       1,305,155         II. Land Acquisition Cost       0       m ² 4,200       0       0         a. Dry Farming Land       0       m ² 4,200       0       0         d. Residential Area       m ² 60,000       0	b. Random Backfilling	9,560	m ³	7,000	66,920
d. Embankment       m³       11,000       0         e. Removal of the Surplus Soil       61,000       m³       19,000       1,159,000         f. Gravel Bedding       3,210       m³       9,000       28,890         g. Sodding       1,730       m²       1,000       1,730         h. Concrete       1,730       m²       1,000       1,730         - Plain Concrete       8,550       m³       270,000       2,308,500         - Reinforced Concrete (including 20kg rebar)       1,270       m³       355,000       450,850         - Wet Stone Masonry       2,880       m³       227,000       653,760         i Gabion Mattress       710       m³       149,000       105,790         j Concrete Block       -       -       1,900       105,790         - 1.9ton/piece       1,080       nos.       602,000       650,160         - 1.2ton/piece       1,295       nos.       443,000       573,685         k Miscellaneous       1       I.s.       1,305,155       (20% of f a'' to "f')         II. Land Acquisition Cost       0       m²       4,000       0         a Dry Farming Land       0       m²       4,200       0      <	c. Backfilling with Compaction	1,940	m ³	9,000	17,460
e. Removal of the Surplus Soil 61,000 m ³ 19,000 1,159,000 f. Gravel Bedding 3,210 m ³ 9,000 28,880 g Sodding 1,730 m ² 1,000 1,730 h. Concrete - Plain Concrete (including 20kg rebar) 1,270 m ³ 355,000 450,850 - Reinforced Concrete (including 20kg rebar) 1,270 m ³ 355,000 450,850 - Wet Stone Masonry 2,880 m ³ 227,000 653,760 i. Gabion Mattress 710 m ³ 149,000 105,790 j. Concrete Block - 1.9 ton/piece 1,080 nos. 602,000 650,160 - 1.2 ton/piece 1,295 nos. 443,000 573,685 k. Miscellaneous 1 ls. 1,305,155 (20% of "a" to "j") II. Land Acquisition Cost 0 m ² 400 00 b. Irrigated Land 0 m ² 4,200 00 c. Orchard 0 m ² 4,200 00 d. Residential Area m ² 60,000 0 III. Administration Cost 1 ls. 431,000 (5% of Item I) V. Engineering Cost 1 ls. 431,000 (10% of Item I) V. Physical Contingency 1 ls. 1,981,000 Round Total 11,880,000	d. Embankment		m ³	11,000	0
f. Gravel Bedding       3,210       m³       9,000       28,890         g Sodding       1,730       m²       1,000       1,730         h. Concrete         1,730       m²       1,000       1,730         - Plain Concrete       8,550       m³       270,000       2,388,500       450,850         - Wet Stone Masonry       2,880       m³       227,000       653,760         i. Gabion Mattress       710       m³       149,000       105,790         j. Concrete Block        -       1,980       nos.       602,000       650,160         - 1.9ton/piece       1,080       nos.       602,000       650,160       -       1,305,155         (20% of "a" to "f")       1       Is.       1,305,155       (20% of "a" to "f")       1       Is.       1,305,155         II. Land Acquisition Cost       0       m²       4,200       0       0         a. Dry Farming Land       0       m²       4,200       0       0         b. Irrigated Land       0       m²       60,000       0       0         II. Administration Cost       1       Is.       431,000       (5% of Item I)       1       862,000	e. Removal of the Surplus Soil	61,000	m ³	19,000	1,159,000
g Sodding       1,730       m²       1,000       1,730         h. Concrete       - Plain Concrete       8,550       m³       270,000       2,308,500         - Reinforced Concrete (including 20kg rebar)       1,270       m³       355,000       450,850         - Wet Stone Masonry       2,808       m³       227,000       653,760         i Gabion Mattress       710       m³       149,000       105,790         j Concrete Block       -       -       1,295       nos.       602,000       650,160         - 1.9ton/piece       1,080       nos.       602,000       650,160       -       1,305,155         (20% of "a" to "f")       1       Is.       1,305,155       (20% of "a" to "f")       1       Is.       1,305,155         II. Land Acquisition Cost       0       m²       400       0       0         a. Dry Farming Land       0       m²       60,000       0       0         d. Residential Area       m²       60,000       0       0         III. Administration Cost       1       Is.       431,000       0         (5% of Item I)       0       m²       60,000       0       0         IV. Engineering Cost	f. Gravel Bedding	3,210	m ³	9,000	28,890
h. Concrete       8,550       m³       270,000       2,308,500         - Reinforced Concrete (including 20kg rebar)       1,270       m³       355,000       450,850         - Wet Stone Masonry       2,880       m³       227,000       653,760         - Wet Stone Masonry       2,880       m³       227,000       653,760         i Gabion Mattress       710       m³       149,000       105,790         j Concrete Block       -       -       -       1.9ton/piece       1,080       nos.       602,000       650,160         - 1.2ton/piece       1,295       nos.       443,000       573,685       k       Miscellaneous       1       I.s.       1,305,155       (20% of "a" to "j")       V         II. Land Acquisition Cost       0       m²       400       0       0       a"       443,000       573,685         k Miscellaneous       1       I.s.       1,305,155       (20% of "a" to "j")       0       0       m²       400       0       0         II. Land Acquisition Cost       0       m²       4,200       0       0       0       0       1,900       0       0       0       1,900       0       0       0       11,900	g. Sodding	1,730	m²	1,000	1,730
- Plain Concrete         8,550         m³         270,000         2,308,500           - Reinforced Concrete (including 20kg rebar)         1,270         m³         355,000         450,850           - Wet Stone Masonry         2,880         m³         227,000         653,760           i Gabion Mattress         710         m³         149,000         105,790           j Concrete Block         -1.9ton/piece         1,080         nos.         602,000         650,160           - 1.9ton/piece         1,080         nos.         602,000         650,160           - 1.9ton/piece         1,080         nos.         602,000         650,160           - 1.2ton/piece         1,295         nos.         443,000         573,685           k Miscellaneous         1         I.s.         1,305,155           (20% of "a" to "f")         1         I.s.         1,305,155           (20% of "a" to "f")         0         m²         4,000         0           b Irrigated Land         0         m²         4,000         0           c. Orchard         0         m²         60,000         0           III. Administration Cost         1         I.s.         431,000           (5% of Item I) <td>h. Concrete</td> <td></td> <td></td> <td></td> <td></td>	h. Concrete				
- Reinforced Concrete (including 20kg rebar)       1,270       m³       355,000       450,850         - Wet Stone Masonry       2,880       m³       227,000       653,760         i Gabion Mattress       710       m³       149,000       105,790         j Concrete Block       -1.9ton/piece       1,080       nos.       602,000       650,160         - 1.9ton/piece       1,295       nos.       443,000       573,685         k Miscellaneous       1       Is.       1,305,155       (20% of "a" to "f")         II. Land Acquisition Cost       0       m²       400       0         a Dry Farming Land       0       m²       4,200       0         b Irrigated Land       0       m²       4,000       0         d Residential Area       0       m²       60,000       0         III. Administration Cost       1       Is.       431,000         (5% of Item I)       1       Is.       1,981,000         V. Engineering Cost       1       Is.       1,981,000         (10% of Item I)       1       Is.       1,981,000         V. Physical Contingency       1       Is.       1,981,000         (20% of Item I + II + III + IV)	– Plain Concrete	8,550	m ³	270,000	2,308,500
- Wet Stone Masonry         2,880         m³         227,000         653,760           i Gabion Mattress         710         m³         149,000         105,790           j Concrete Block         -         1,080         nos.         602,000         650,160           - 1.9ton/piece         1,080         nos.         602,000         650,160           - 1.2ton/piece         1,295         nos.         443,000         573,685           k Miscellaneous         1         I.s.         1,305,155         (20% of "a" to "f")         1         Is.         1,305,155           II. Land Acquisition Cost         0         m²         400         0         0           a. Dry Farming Land         0         m²         4,200         0         0           b. Irrigated Land         0         m²         11,000         0         0           c. Orchard         0         m²         60,000         0         0           III. Administration Cost         1         I.s.         431,000         (5% of Item I)           IV. Engineering Cost         1         1         Is.         1,981,000           (10% of Item I)         V         Physical Contingency         1         Is.	– Reinforced Concrete (including 20kg rebar)	1,270	m ³	355,000	450,850
i Gabion Mattress       710       m ³ 149,000       105,790         j Concrete Block       - 1.9ton/piece       1,080       nos.       602,000       650,160         - 1.2ton/piece       1,295       nos.       443,000       573,685         k Miscellaneous       1       I.s.       1,305,155       (20% of "a" to "f")         II. Land Acquisition Cost       0       m ² 400       0         a. Dry Farming Land       0       m ² 4,200       0         b. Irrigated Land       0       m ² 4,200       0         c. Orchard       0       m ² 4,000       0         d. Residential Area       m ² 60,000       0         III. Administration Cost       1       I.s.       431,000         (5% of Item I)       0       1       I.s.       1431,000         V. Engineering Cost       1       I.s.       1,981,000         (20% of Item I + II + III + IV)       1       11,885,000         VI. Total       11,885,000       11,890,000	– Wet Stone Masonry	2,880	m ³	227,000	653,760
j Concrete Block - 1.9ton/piece 1,080 nos. 602,000 650,160 - 1.2ton/piece 1,295 nos. 443,000 573,685 k Miscellaneous 1 l.s. 1,305,155 (20% of "a" to "j") II. Land Acquisition Cost 0 a. Dry Farming Land 0 m ² 400 0 b. Irrigated Land 0 m ² 4,200 0 c. Orchard 0 m ² 111,000 0 d. Residential Area m ² 60,000 0 III. Administration Cost 1 l.s. 431,000 (5% of Item I) IV. Engineering Cost 1 l.s. 862,000 (10% of Item I) V. Physical Contingency 1 l.s. 1,981,000 (20% of Item I + II + III + IV) VI. Total 11,885,000	i. Gabion Mattress	710	m ³	1 49,000	105,790
- 1.9 ton/piece       1,080       nos.       602,000       650,160         - 1.2 ton/piece       1,295       nos.       443,000       573,685         k. Miscellaneous       1       l.s.       1,305,155         (20% of "a" to "f")       1       l.s.       1,305,155         II. Land Acquisition Cost       0       m ² 400       0         a. Dry Farming Land       0       m ² 4,200       0         b. Irrigated Land       0       m ² 4,200       0         c. Orchard       0       m ² 60,000       0         d. Residential Area       m ² 60,000       0         III. Administration Cost       1       l.s.       431,000         (5% of Item I)       0       1       l.s.       1,981,000         V. Physical Contingency       1       l.s.       1,981,000         (20% of Item I)       1       l.s.       1,981,000         V. Physical Contingency       1       l.s.       1,981,000         (20% of Item I) + II + III + IV)       11,885,000       11,885,000	j Concrete Block				
- 1.2ton/piece       1,295       nos.       443,000       573,685         k Miscellaneous       1       l.s.       1,305,155         (20% of "a" to "f")       1       l.s.       1,305,155         II. Land Acquisition Cost       0       m²       400       0         a. Dry Farming Land       0       m²       400       0         b. Irrigated Land       0       m²       4,200       0         c. Orchard       0       m²       11,000       0         d. Residential Area       m²       60,000       0         III. Administration Cost       1       l.s.       431,000         (5% of Item I)       1       l.s.       1,981,000         V. Engineering Cost       1       l.s.       1,981,000         (10% of Item I)       1       l.s.       1,981,000         V. Physical Contingency       1       l.s.       1,981,000         VI. Total       11,885,000       11,885,000	- 1.9ton/piece	1,080	nos.	602,000	650,160
k Miscellaneous       1       I.s.       1,305,155         (20% of "a" to "j")       0       1       I.s.       1,305,155         II. Land Acquisition Cost       0       m ² 400       0         a. Dry Farming Land       0       m ² 4,200       0         b. Irrigated Land       0       m ² 4,200       0         c. Orchard       0       m ² 11,000       0         d. Residential Area       m ² 60,000       0         III. Administration Cost       1       I.s.       431,000         (5% of Item I)       1       I.s.       862,000         V. Physical Contingency       1       I.s.       1,981,000         (20% of Item I + II + III + IV)       11,885,000       11,885,000	- 1.2ton/piece	1,295	nos.	443,000	573,685
(20% of "a" to "j")         II. Land Acquisition Cost       0         a. Dry Farming Land       0       m ² 400       0         b. Irrigated Land       0       m ² 4,200       0         c. Orchard       0       m ² 11,000       0         d. Residential Area       m ² 60,000       0         III. Administration Cost       1       1.s.       431,000         (5% of Item I)       1       1.s.       862,000         V. Engineering Cost       1       1.s.       1,981,000         (20% of Item I)       1       1.s.       1,981,000         V. Physical Contingency       1       1.s.       1,981,000         VI. Total       11,885,000       11,885,000	k. Miscellaneous	1	l.s.		1,305,155
II. Land Acquisition Cost       0       m ² 400       0         a. Dry Farming Land       0       m ² 400       0         b. Irrigated Land       0       m ² 4,200       0         c. Orchard       0       m ² 11,000       0         d. Residential Area       m ² 60,000       0         III. Administration Cost       1       I.s.       431,000         (5% of Item I)       1       I.s.       862,000         V. Engineering Cost       1       I.s.       1,981,000         (10% of Item I)       1       I.s.       1,981,000         V. Physical Contingency       1       I.s.       1,981,000         VI. Total       11,885,000       11,885,000	(20% of "a" to "j")				
a. Dry Farming Land       0       m²       400       0         b. Irrigated Land       0       m²       4,200       0         c. Orchard       0       m²       11,000       0         d. Residential Area       m²       60,000       0         III. Administration Cost       1       1.s.       431,000         (5% of Item I)       1       1.s.       862,000         (10% of Item I)       1       1.s.       1,981,000         V. Physical Contingency       1       1.s.       1,981,000         (20% of Item I + II + III + IV)       11,885,000       11,885,000	II. Land Acquisition Cost				0
b Irrigated Land       0       m ² 4,200       0         c. Orchard       0       m ² 11,000       0         d. Residential Area       m ² 60,000       0         III. Administration Cost       1       I.s.       431,000         (5% of Item I)       1       I.s.       862,000         V. Engineering Cost       1       I.s.       1,981,000         (10% of Item I)       1       I.s.       1,981,000         V. Physical Contingency       1       I.s.       1,981,000         V. Physical Contingency       1       I.s.       1,981,000         VI. Total       11,885,000       11,885,000	a. Dry Farming Land	0	m²	400	0
c. Orchard       0       m ² 11,000       0         d. Residential Area       m ² 60,000       0         III. Administration Cost       1       1s.       431,000         (5% of Item I)       1       1s.       431,000         IV. Engineering Cost       1       1s.       862,000         (10% of Item I)       1       1s.       1,981,000         V. Physical Contingency       1       1s.       1,981,000         (20% of Item I + II + III + IV)       11,885,000       11,885,000         Round Total       11,890,000       11,890,000	b. Irrigated Land	0	m²	4,200	0
d. Residential Area     m ² 60,000     0       III. Administration Cost     1     I.s.     431,000       (5% of Item I)     1     I.s.     432,000       IV. Engineering Cost     1     I.s.     862,000       (10% of Item I)     1     I.s.     1,981,000       V. Physical Contingency     1     I.s.     1,981,000       (20% of Item I + II + III + IV)     11,885,000     11,885,000	c. Orchard	0	m²	11,000	0
III. Administration Cost       1       1.s.       431,000         (5% of Item I)       1       1.s.       862,000         (10% of Item I)       1       1.s.       1,981,000         V. Physical Contingency       1       1.s.       1,981,000         (20% of Item I + II + III + IV)       1       1.s.       11,885,000         Round Total       11.890,000       11.890,000	d. Residential Area		m²	60,000	0
(5% of Item I)         IV. Engineering Cost       1       I.s.       862,000         (10% of Item I)       1       I.s.       1,981,000         V. Physical Contingency       1       I.s.       1,981,000         (20% of Item I + II + III + IV)       1       I.s.       11,885,000         VI. Total       11,885,000       11,885,000	III. Administration Cost	1	l.s.		431,000
IV. Engineering Cost       1       I.s.       862,000         (10% of Item I)       1       I.s.       1,981,000         (20% of Item I + II + III + IV)       1       I.s.       1,981,000         VI. Total       11,885,000       11,885,000         Round Total       11,890,000       11,890,000	(5% of Item I)				
(10% of Item I)         1         I.s.         1,981,000           V. Physical Contingency         1         I.s.         1,981,000           (20% of Item I + II + III + IV)         11,885,000         11,885,000           Round Total         11,890,000         11,890,000	IV. Engineering Cost	1	l.s.		862,000
V. Physical Contingency         1         I.s.         1,981,000           (20% of Item I + II + III + IV)         11,885,000         11,885,000           Round Total         11,890,000         11,890,000	(10% of Item I)				
(20% of Item I + II + III + IV)           VI. Total         11,885,000           Round Total         11,890,000	V. Physical Contingency	1	l.s.		1 ,981 ,000
VI. Total 11,885,000 Round Total 11.890,000	(20% of Item I + II + III + IV)				
Round Total 11.890.000	VI. Total				11,885,000
	Round Total				11 890 000

Note:

□ Unit price is as of 2004 (in accordance with the Islamic Year of 1383)

□ Number of respective ratios for indirect cost is referred with the previous JICA study adopting.

# CHAPTER 6 RECOMMENDATIONS

# 6.1 Necessity of Detailed Design Stage Execution

This study is limited to carry out the preliminary design and it shall be conducted to further elaborate the implementation plan with the additional detail in survey, geological investigation, planning and design for the proposed structures in order to prepare the necessary documents such as detail design drawings, more precise construction quantity, tender documents including technical specifications and so on.

# 6.2 Utilization of the Site-Generated Soil

According to the geological field reconnaissance, the riverbeds in the upper reaches of the Madarsoo River and the Ghyz Ghaleh River are thick covered with coarse sand, which is relatively good quality for concrete materials in terms of an uniform particle, an aggregate size and a useful amount.

It is recommended to conduct the detail applicable study including the design of mix proportion for the site-generated soil utilization on the detail design stage.

If the coarse sand of the site-generated soil might be applied to the aggregate material of the appropriate concrete, the surplus soil generated by the excavation is utilized as the useful construction materials and it is expected to reduce the construction cost of the hauling and removal of surplus soil expenses.

In the proposed countermeasures, the proposed applicable section with the concrete mixing site-generation soil is shown with the following examples.



### 6.3 Early Implementation of the River Restoration in the Gelman Darreh River

The riverbank stabilization works is one of the essential structural measures for river restoration plan, which is proposed in the Master Plan. In viewpoints of the Dasht village protection against the probable flood, it is insufficient to protect the Dasht village with the proposed riverbank stabilization works independently unless the channel improvement will be executed to control the flood and the channel is completely connected to the proposed riverbank stabilization works.

After the riverbank stabilization works completion to be proposed, it is desirable to execute the channel improvement as soon as possible to reduce the flood damage occurrence in and around the Dasht village. Furthermore MOE-North Khorasan is planning the flood control dam located at the entrance of Dasht basin in the Gelman Darreh River. Such large-scale reservoir is one of the alternatives to the said river improvement. Thus it is also recommended that MOE-North Khorasan shall conduct careful and technical-sound investigation for the dam planning.



Figure 6.2 Plan of Proposed Riverbank Stabilization Works





Figure 6.4

Typical Cross Section of Proposed Channel Works

# ANNEX 1 CONSIDERATION OF ALTERNATIVE-A

(1) Hydraulic Characteristics of the Spillway

The hydraulic characteristics of the spillway section is provided with the weir formula as follows:

$$Q = \frac{2}{15} C \sqrt{2g} \left( 3B_1 + 2B_2 \right) h_3^{3/2}$$

Conditions	Value	Remarks
Design Discharge (Q)	$660.0 \text{ m}^3/\text{s}$	A 25-year return period
Discharge Coefficient (C)	0.6	
Gravitational Acceleration (g)	9.8 $m/s^2$	
Spillway Invert Width (B1)	55.0 m	
Water Surface Width (B2)	58.52 m	
Design Water Donth (h2)	3.52 m	Applied to dam stability
Design water Depth (113)	(3.60m to be rounded up)	calc.

(2) Downstream Water Depth

The immediate downstream water depth falling down from the spillway is provided with the energy conservation equation based on the upstream and downstream hydraulic conditions.

$$\frac{V_c^2}{2g} + H + hc = \frac{V_{1a}^2}{2g} + h_{1a}$$

Conditions	Value	Remarks
Critical Flow Velocity on the Spillway (Vc)	4.00  m/s	A 25-year return
	4.90 11/8	period
Critical Water Depth on the Spillway (hc)	2.45 m	
Gravitational Acceleration (g)	9.8 $m/s^2$	
Dam Height (H)	9.0 m	
Water Depth fallen down immediately from	0.8m	Applied to dam
the Spillway (h1a)	0.8111	stability calc.
Flow Velocity fallen down immediately from	$15.26 \mathrm{m/s}$	$F_{10} = 5.50$
the Spillway (V1a)	15.20 11/8	$\Gamma 1a = 3.30$

(3) Conjugational Water Depth of Hydraulic Jump

The conjugational water depth of hydraulic jump on the concrete apron is provided with the following equation:

$$h_j = \frac{h_{1a}}{2} (\sqrt{1 + 8 F_{1a}^2} - 1)$$

Conditions	Value	Remarks
Immediate downstream Water Depth (h1a)	0.79 m	
Froude Number of the Immediate downstream Flow (F1a)	5.50	
Conjugation Depth of the Hydraulic Jump	5.76 m	(hj)
Required Stilling Basin Depth (ds)	2.46 m	hj - 3.30 m (water depth)

### (4) Stability Calculation for the Main Dam

The stability calculation is composed of the resistance against tilting, sliding and subgrade reaction. The following methods are shown as the stability analysis for the main dam.

The bottom of main dam is set on the concrete apron surface below 2.0m deep to prevent the unexpected scouring caused by the water fallen down from the spillway section.

#### Flooding Case

Dam Height Unit Weight							
	Wall Height		9.000 m		Conc.	22.54	kN/m ³
	Footing Height		2.000 m		Water	9.80	kN/m ³
					Sadimant	17.64	$kN/m^3$
Dow	vnetreom Foce Gra	adient	1.020		Seament	17.04	IN WITH
Lins	tream Face Gradie	adienc	1:110	Friction Coef	ficient	0.6	
οpo							
Botto	m Width		18.900 m	Safety Factor	against Sli	ding	
	Footing Width		1.000 m		n	1.5	
	Downstream Wall	Width	1.800 m				
	Crest Width		4.000 m	Friction Angle	e of Sedime	nt	
	Upstream Wall Wi	dth	12.100 m		φ	35	Degree
				Coefficient o	f Sediment	Pressure	
Desig	n Water Depth (	Upstream)	3.600 m		Ce	0.28	
Design Water Depth (Downstream) [			2.800 m				
Cut O	ff Wall						
	Height		5.000 m				
	Width	c	1.000 m				
	Position	from C/P to	2.000 m				
Vert	ical Force (V)						
	Member	Section Area	Unit Weight	V. Force	Arm Length	V-Moment	
		(m ² )	(kN/m³)	(kN/m)	(m)	(kN-m/m)	
	C-V1	13.600	22.54	306.55	15.50	4751.53	
	C-V2	8.100	22.54	182.58	16.70	3049.09	
	C-V3	36.000	22.54	811.44	14.10	11441.31	
	C-V4	66.550	22.54	1500.04	8.07	12105.33	
	S-V1	66.550	7.84	521.76	4.04	2107.92	
	W-V1	66.550	9.80	652.19	4.04	2634.85	
	W-V2	57.960	9.80	568.01	8.05	4572.49	
	Sub-Total			4542.57		40,662.52	

Uplift	Pressure	B. Width	Uplift	Arm Length	U-Moment
	(kN/m²)	(m)	(kN/m)	(m)	(kN-m/m)
U-P1(Up)	1 43.080				
U-P2-1	135.077	2.000 m	278.16	1	278.16
U-P2-2	115.071				
U-P3-1	111.069	1.000 m	113.07	2.50	282.68
U-P3-2	91.062				
U-P4(Down)	27.440	15.900 m	942.10	9.53	8978.22
Sub-Total		18.900 m	1055.17		9,260.90

#### Horizontal Force (H)

	Pressure	Height	H. Force	Arm Length	Moment
	(kN/m²)	(m)	(kN/m)	(m)	(kN-m/m)
W-P1	35.280				
W-P2	143.080	11.000 m	980.98	4.4	4316.32
S-P1	0.000				
S-P2	24.147	11.000 m	132.81	3.67	487.42
Total			1113.79		4,803.74

#### Consideration for Tilting



Schematic Drawing of Dam

According to the stability analysis for the Alternative-A, the subgrade reaction in the case of without uplift pressure (283.06 kN/m²) exceeds an allowable bearing capacity (274 kN/m²) having the foundation soil.

If the Alternative-A will be adopted as the structural countermeasure, the soil improvement works shall be required based on the additional detailed geological investigation during the detail design stage.

#### Earthquake Case

	_						
Dam H	leight		<u>11.000 m</u>	Unit Weight			
	Wall Height		9.000 m		Conc.	22.54	«N/m ³
	Footing Height		2.000 m		Water	9.80	⟨N/m ³
	1 ooting height		2.000 m		Sadimant	1764	AL/m ³
Deu	instruction Face Crit	adio at	1.020		Seumeni	17.04	aw m
Dow	Anstream Face Gra Anstream Face Cradia	adient	1:0.20	<b>E-i-ti</b> 06	<u> </u>	0.0	
Obe	tream Face Gradie	ent	[ 1:1.10]	Friction Coer	ricient	0.0	
D-++-	\#/:Jab		10,000	Cofety Conto			
Βυττυ			10.900 m	Salety Factor	against Sil		
	Pooting Width	LA S-IA IA	1.000 mj		n	[]	
	Downstream Wall	wiath	1.800 m	<b>F</b> -1-11- <b>A</b> 1			
	Crest Wath	-14.1-	4.000 mj	Friction Angle	e or Sealme	nt	<b>-</b>
	Opstream Wall Wi	ath	12.100 m	0	φ	30	Jegree
D!-	- W-1 D11 /	· · · · · · · · · · · · · · · · · · ·	0.000	Coefficient o	r Seaiment	Pressure	
Desig	n water Depth (	Upstream/	U.UUU mj		Ce	0.342	
Deele	n Watar Danth (	Downotroom	m	Harizontal Ca	iomio Ocoff	lalant	
Desig	n water Depth (	Downstream	2.000 mj	nunzuntai se	ISMIC COET		
0+ 0					KI	0.15	
out o	Uniekt		E 000 m				
	Height Milete		5.000 m				
	Wildern De sittere	formers O /D to	1.000 m				
	Position	from C/P to	2.000 mj				
Vod	tical Farca (\A						
ven	Member	Section Area	Linit Weight	V Force	Arm Length	V-Moment	
	mennuer	2000011 Alea					
	0.14	(m ⁻ )			(m)	(KIN-m/m)	
	0-VI	13.000	22.54	300.00	10.00	4751.53	
	0-v2	0.100	22.04	102.00	10.70	3049.09	
	0-14	30.000	22.04	011.44	14.10	10105.00	
	0-74	00.000	22.04	504.76	8.07	12105.33	
	5-VI	00.000	7.84	521.70	4.04	2107.92	
	W-V1	00.000	9.80	052.19	4.04	2034.85	
	WTV2	0.000	0.00	0.00	0.00	0.00	
	Sub-Total			3974.56		36,090.03	
	Linkft	Draceure		Linlift	Arm Longth	L -Mamart	
	Opint	Pressure		Opint	Arm Length		
		(kN/m ⁻ )	(m)	(kN/m)	(m)	(kN-m/m)	
	U-P1(Up)	107.800					
	<u>U-P2-1</u>	101.696	2.000 m	209.50	1.00	209.5	
	U-P2-2	86.437	4 000				
	<u>U-P3-1</u>	83.385	1.000 m	84.92	2.50	212.30	
		68.125	45.000	007.40	0.40	001050	
	U-P4(Down)	19.600	15.900 m	697.42	9.49	6618.52	
	Sub-lotal		18.900 m	/82.34		6,830.82	
1.1							
Hor	Izontal Force (H)	Discours	Lin i mint		Arms I are at la	Mamant	
		Pressure	Height	H. Force	Arm Length	woment	
		(kN/m ⁻ )	(m)	(kN/m)	(m)	(kN-m/m)	
	W-P1	0.000					
	W-P2	107.800	11.000 m	592.90	3.67	21 75.95	
	<u>S-P1</u>	0.000					
	S-P2	29.494	11.000 m	162.22	3.67	595.35	
	Total			755.12		2,771.30	

#### Seismic Forece (Hs)

Member	Section Area	Unit Weight	S. Force	Arm Length	H-Moment
	(m²)	(kN/m³)	(kN/m)	(m)	(kN-m/m)
C-V1	13.600	22.54	45.98	1.00	45.98
C-V2	8.100	22.54	27.39	5.00	136.94
C-V3	36.000	22.54	121.72	6.50	791.16
C-V4	66.550	22.54	225.01	3.67	825.03
S-V1	66.550	7.84	78.26	7.33	573.93
Hydrodynamic P.	10.588	9.80	15.56	4.40	68.48
Sub-Total			513.92		2,441.52



Schematic Drawing of Dam

(5) Consideration of Distance between the Main Dam and Secondary Dam

To ensure the function of energy dissipation with stilling basin, the required distance between the main dam and sub dam is provided with the following equation:



Schematic Drawing of the Distance between Main Dam and Sub Dam

$L \ge L_w + X + b_2, \ L_w = V_c$	$\left\{\frac{2(H_1 + \frac{1}{2}h_c)}{g}\right\}^{1/2}, V_0 = \frac{q_0}{h_3}, X = 4.5 hj$
------------------------------------	---------------------------------------------------------------------------------------------

Conditions	Value	Remarks
Dam Height (H1)	9.0 m	
Critical Water Depth at the	2.45 m	A 25-year return period
Spillway (hc)	2.10	1120 year retain period
Critical Flow Velocity at the	$1.90  {\rm m/s}$	
Spillway (Vc)	4.70 m/s	
Gravitational Acceleration (g)	9.8 $m/s^2$	
Distance to the point where the	7.08 m	
flow is fallen down (Lw)	7.08 III	
Conjugational Depth of the	576 m	
Hydraulic Jump (hj)	5.70 III	
Distance of Hydraulic Jump (X)	25.92 m	
Lw + X	33.00 m	Required Distance

### (6) Consideration of Concrete Apron Thickness

Proposed thickness of concrete apron with stilling basin function is provided with the following conventional equation:

$$t = 0.1 (0.6 H1 + 3 h_3 - 1.0)$$

Conditions	Value	Remarks
Dam Height (H1)	9.0 m	
Water Depth at the Spillway (h3)	3.6 m	A 25-year return period
Proposed Thickness	1.52 m (1.60 to be rounded up)	

## (7) Consideration of Riverbed Protection Length

The length of the proposed riverbed protection is provided with the equation created by Blight as follows:

$$L = 0.67 C_0 \sqrt{H_b q_0}$$

The foundation soil underneath the proposed structure is classified into a coarse sand, which is applied to  $C_0 = 12$ .

Conditions	Value	Remarks
Bligh's Coefficient ( $C_0$ )	12	Coarse sand
Difference between downstream riverbed and upstream riverbed	6.50 m	EL+963.0m- EL+956.5m
Unit Design Discharge (q0)	$12.00 \text{ m}^3/\text{s/m}$	B=55.0m
Overall Length of Proposed Structure (L)	71.01 m	Including riverbed protection length
Required Apron Length (La)	33.00 m	Refer to sub section 0
Crest Width of Sub Dam (B)	2.0 m	
Proposed Riverbed Protection	36.01 m	
Length	(more than)	

#### (8) Consideration of Concrete Block

The structural scale for the concrete block utilized in the riverbed protection is provided with the following method:

### Design Velocity

It is assumed that the design velocity is provided with the average between the flow velocity in the downstream channel and the flow velocity fallen down immediately from the dam spillway.

Conditions	Value	Remarks
Flow Velocity fallen down immediately from the Spillway (V1a)	15.26 m/s	
Flow Velocity at the Downstream Channel	3.68 m/s	
Design Velocity (Vd)	9.47 m/s	

Proposed Structural Scale of the Concrete Block

The proposed structural scale of the concrete block is estimated with the following equation:

$$W = a \left(\frac{\rho w}{\rho b - \rho w}\right)^3 \frac{\rho b}{g^2} \left(\frac{V d}{b}\right)^6$$

Conditions	Value	Remarks
Shape Coefficient (a)	0.79 x 10 ⁻³	Rectangle Shape
Shape Coefficient (b)	2.8	Ditto
Density of Water ( $\rho w$ )	$102 \text{ kgf s}^2/\text{m}^4$	
Density of Block ( $\rho b$ )	2.09 <i>pw</i>	Empirical number
Gravitational Acceleration (g)	$9.8 \text{ m/s}^2$	
Design Velocity (Vd)	9.47 m/s	
Minimum Block Weight (W)	2.03 tf/piece	Nominal Weight: 2.3 ton/piece

# ANNEX 2 CONSIDERATION OF ALTERNATIVE-B

(1) Hydraulic Characteristics of the Spillway

The hydraulic characteristics of the spillway section at the main dam is provided with the weir formula as follows:

$$Q = \frac{2}{15} C \sqrt{2g} \left( 3B_1 + 2B_2 \right) h_3^{3/2}$$

Conditions	Value	Remarks
Design Discharge (Q)	660.0 m ³ /s	A 25-year return period
Discharge Coefficient (C)	0.6	
Gravitational Acceleration (g)	9.8 $m/s^2$	
Spillway Invert Width (B1)	55.0 m	
Water Surface Width (B2)	58.52 m	
Design Water Depth (h2)	3.52 m	Applied to dam
Design water Depth (115)	(3.60m to be rounded up)	stability calc.

(2) Hydraulic Characteristics of the Connecting Channel

The hydraulic characteristics of the upstream connecting channel is provided with the uniform flow calculation created by Manning as follows:

$$V = \frac{1}{n} R^{2/3} I^{1/2}, R = \frac{A}{P}, Q = AV$$

Conditions	Value	Remarks
Design Discharge (Q)	660.0 m ³ /s	A 25-year return period
Channel Bed Width (B)	55.0 m	
Side Slope Gradient	1:0.5	
Roughness Coefficient (n)	0.035	Coarse sand
Channel Bed Gradient (I)	1/100	Same as existing ground surface gradient
Sectional Area (A)	$140.63 \text{ m}^2$	
Wetted Perimeter (P)	60.59 m	
Hydraulic Radius (R)	2.32 m	
Flow Velocity (V)	5.01 m/s	
Water Depth (h)	2.50 m	Applied to drop structure stability calc.

# (3) Downstream Water Depth

The Main Dam Section

The immediate downstream water depth falling down from the spillway at the main dam is provided with the energy conservation equation based on the upstream and downstream hydraulic conditions.

$$\frac{V_c^2}{2g} + H + hc = \frac{V_{1a}^2}{2g} + h_{1a}$$

Conditions	Value	Remarks
Critical Flow Velocity on the Spillway	1.00  m/s	A 25-year return
(Vc)	4.90 111/8	period
Critical Water Depth on the Spillway (hc)	2.45 m	
Gravitational Acceleration (g)	$9.8 \text{ m/s}^2$	
Dam Height (H)	5.8 m	
Water Depth fallen down immediately	0.93 m	Applied to dem
from the Spillway (h1a)	(0.90 m to be	Applied to dall
	rounded)	stability calc.
Flow Velocity fallen down immediately	12.04  m/s	$F_{10} = 4.20$
from the Spillway (V1a)	12.94 111/8	$\Gamma_{1a} = 4.29$

## The Hydraulic Drop Structure Section

The immediate downstream water depth falling down from the drop section at the hydraulic drop structure is provided with the energy conservation equation based on the upstream and downstream hydraulic conditions.

$$\frac{V_c^2}{2g} + H + hc = \frac{V_{1a}^2}{2g} + h_{1a}$$

Conditions	Value	Remarks
Critical Flow Velocity on the Drop Section (Vc)	4.90 m/s	A 25-year return period
Critical Water Depth on the Drop Section (hc)	2.45 m	
Gravitational Acceleration (g)	9.8 m/s ²	
Drop Height (H)	2.0 m	
Water Depth fallen down immediately from the Drop Section (h1a)	1.30 m	Applied to drop structure stability calc.
Flow Velocity fallen down immediately from the Drop Section (V1a)	9.26 m/s	F1a = 2.60

### (4) Conjugational Depth of Hydraulic Jump in the Main Dam Section

The conjugation depth of hydraulic jump on the concrete apron is provided with the following equation:

$$h_j = \frac{h_{1a}}{2} (\sqrt{1 + 8 F_{1a}^2} - 1)$$

Conditions	Value	Remarks
Immediate downstream Water Depth (h1a)	0.93 m	
Froude Number of the Immediate downstream Flow (F1a)	4.29	
Conjugation Depth of the Hydraulic Jump(hj)	5.20 m	
Required Stilling Basin Depth (ds)	1.90 m	hj – 3.30 m (water depth)

(5) Consideration of Distance between the Main Dam and Secondary Dam

To ensure the function of energy dissipation with stilling basin, the required distance between the main dam and sub dam is provided with the following equation:



Schematic Drawing of the Distance between Main Dam and Sub Dam

$L \ge L_w + X + b_2, \ L_w = V_c$	$\begin{cases} \frac{2(H_1 + \frac{1}{2}h_c)}{g} \end{cases}$	$\begin{cases} 1/2 \\ 0 = \frac{q_0}{h_3}, \ X = 4.5 \ hj \end{cases}$
------------------------------------	---------------------------------------------------------------	------------------------------------------------------------------------

Conditions	Value	Remarks
Dam Height (H1)	5.8 m	
Critical Water Depth at the Spillway (hc)	2.45 m	A 25-year return period
Critical Flow Velocity at the Spillway (Vc)	4.90 m/s	
Gravitational Acceleration (g)	9.8 $m/s^2$	
Distance to the point where the flow is fallen down (Lw)	5.87 m	
Conjugational Depth of the Hydraulic Jump (hj)	5.20 m	
Distance of Hydraulic Jump (X)	23.40 m	
Lw + X	29.27 m	Required Distance

(6) Stability Calculation of the Main Dam

The stability calculation is composed of the resistance against tilting, sliding and subgrade reaction. The following methods are shown as the stability analysis for the main dam.

The bottom of main dam is set on the concrete apron surface below 2.0m deep to prevent the unexpected scouring caused by the water fallen down from the spillway section.

## Flooding Case

Dam H	<b>leight</b> Wall Height Footing Height		7.800 m 5.800 m 2.000 m	Unit Weight	Conc. Water Sodimont	22.54 9.80	kN/m ³ kN/m ³
Dow Ups	vnstream Face Gra tream Face Gradie	adient ent	1:0.20 1:1.00	Friction Coef	ficient	0.6	KINZ III
Botto	<b>m Width</b> Footing Width Downstream Wall Crest Width Upstream Wall Wid	Width dth	13.460 m 1.000 m 1.160 m 3.500 m 7.800 m	Safety Factor Friction Angle Coefficient o	r against Slid n e of Sedime o f Sediment	ding 1.5 nt 35 Pressure	Degree
Desig	n Water Depth (	Upstream)	3.600 m		Ce	0.28	
Desig	n Water Depth (	Downstream)	2.900 m				
Cut O	ff Wall						
	Height		5.000 m				
	Width		1.000 m				
	Position	from C/P to	2.000 m				
Vort	ical Farca (\A						
ven	Member	Section Area	Linit Weight	V Force	Arm Length	V–Moment	1
	mernuer	Jection Alea	(LNL(3)		Ann Length		
	0-14	11 220	22.5.4	255.16	10.62	274.0.25	
	0-1/2	2.264	22.04	200.10	11.69	2712.33	
	C-V2	20,300	22.54	457.57	9.55	4369.8	
	C-V4	30.420	22.54	685.67	5.00	3565.49	
	S-V1	30.420	7.84	238.50	2.60	62010	
	W-V1	30.420	9.80	29812	2.00	77512	
	W-V2	40.680	9.80	398.67	5.65	2252.49	
	Sub-Total			2409.52		15,181.81	
	Uplift	Pressure	B. Width	Uplift	Arm Length	U-Moment	
		(kN/m²)	(m)	(kN/m)	(m)	(kN-m/m)	
	U-P1 (Up)	111.720					
	U-P2-1	104.619	2.000 m	216.34	0.99	214.1766	
	U-P2-2	86.865					
	U-P3-1	83.314	1.000 m	85.09	2.50	212.73	
	U-P3-2	65.561					
	U-P4(Down)	28.420	10.460 m	491.52	7.55	3710.98	
	Sub-Total		13.460 m	576.61		3,923.71	1

#### Horizontal Force (H)

	Pressure	Height	H. Force	Arm Length	Moment
	(kN/m²)	(m)	(kN/m)	(m)	(kN-m/m)
W-P1	35.280				
W-P2	111.720	7.800 m	573.30	3.23	1851.76
S-P1	0.000				
S-P2	17.123	7.800 m	66.78	2.60	173.63
Total			640.08		2,025.39

#### Consideration for Tilting

Distance between control point and acting point of resultant force  $\langle X\rangle$ 



Schematic Drawing of Dam

#### Earthquake Case

Dam H	leight		7.800 m	Unit Weight			
	Wall Height		5.800 m		Conc.	22.54 kN	√m ³
	Easting Holght		2.000 m		Wotor	9.90 44	$1/m^3$
	r ooting neight	I	2.000 m		valei	3.00 KI	17 III 3
_					Sediment	17.64 KN	√mĭ
Dow	vnstream Face Gra	adient	1:0.20				
Upsi	tream Face Gradie	nt	1:1.00	Friction Coef	ficient	0.6	
Botto	m Width		13.460 m	Safety Factor	against Sli	ding	
	Footing Width		1.000 m		n	1.5	
	Downstream Wall	Width	1.160 m				
	Crest Width		3.500 m	Friction Angle	of Sedime	nt	
	Upstream Wall Wid	dth	7.800 m		φ	35 De	gree
				Coefficient o	fSediment	Pressure	-
Desig	n Water Depth (	Upstream)	0.000 m		Ce	0.342	
-					·		
Desig	n Water Depth (	Downstream)	2.000 m	Horizontal Se	ismic Coeff	icient	
0					kh	0.15	
Cut O	)ff Wall						
	Height		5.000 m				
	Width		1.000 m				
	Position	fmm C/B to	2.000 m				
	FUSICION		2.000 m				
Vod	tical Farce (\A						
ven	Momber	Section Ame	Linit Weight	V Force	Armlocath	V-Mamont	
	wernuer	2 Section Area		V. LUIGE			
		(m*)	(kN/m)	(kN/m)	(m)	(kN-m/m)	
	C-V1	11.320	22.54	255.16	10.63	2712.35	
	C-V2	3.364	22.54	75.83	11.69	886.46	
	C-V3	20.300	22.54	457.57	9.55	4369.8	
	C-V4	30.420	22.54	685.67	5.20	3565.49	
	S-V1	30.420	7.84	238.50	2.60	620.10	
	W-V1	30.420	9.80	298.12	2.60	775.12	
	W-V2	0.000	0.00	0.00	0.00	0.00	
	Sub-Total			201 0.85		12.929.32	
						· · · · ·	
	Uplift	Pressure	B. Width	Uplift	Arm Length	U-Moment	
		$(kN/m^2)$	(m)	(kNL/m)	(m)	(kN = m/m)	
		76.440	NII/	(KIN/ III/	NII/	ANN IN IN	
		70.440		4 4 9 0 4		4.40 5500	
	U-P2-1	/1.594	2.000 m	148.04	0.99	146.5596	
	U-P2-2	59.481					
	U-P3-1	57.057	1.000 m	58.27	2.50	1 45.68	
	U-P3-2	44.943					
	U-P4(Down)	19.600	10.460 m	337.56	7.55	2548.58	
	Sub-Total		13.460 m	395.83		2,694.26	
Hori	izontal Force (H)						
		Pressure	Height	H. Force	Arm Length	Moment	
		(kN/m ² )	(m)	(kN/m)	(m)	(kN-m/m)	
	W-P1	0.000					
	W-P2	76.440	7 800 m	29812	2.60	77512	
	S-P1	0.000	7.000 III	200.12	2.00	770.12	
	S-D2	20.91.4	7.800 m	81.57	2.60	21.2.09	
	J FZ Total	20.014	7.000 m	20.07	2.00	212.03	
	TUtai			373.03		307.21	
	mia Eamon (U-)						
2619		0	1 1.4.14 1.6.2. 1.4.1	O Ec	Auna I	Li_bd= +	
	iviember	Section Area	Unit Weight	S. ⊢orce	Arm Length	HINOMent	
		(m²)	(kN/m³)	(kN/m)	(m)	(kN-m/m)	
	C-V1	11.320	22.54	38.27	1.00	38.27	
	0-V2	3.364	22.54	11.37	3.93	44.74	
	C-V3	20.300	22.54	68.63	4.90	336.31	
	C-V4	30.420	22.54	1 02.85	2.60	267.42	
	S-V1	30.420	7.84	35.77	5.20	186.03	
	Hydrodynamic P.	5.324	9.80	7.83	3.12	24.42	
	Sub-Total			264.73		897.19	

#### <u>Consideration for Tilting</u>

Distance between control point and acting point of resultant force  $\otimes$ 



Schematic Drawing of Dam

## (7) Consideration of Concrete Apron Thickness

Proposed thickness of concrete apron with stilling basin function is provided with the following conventional equation:

$$t = 0.1 (0.6 H1 + 3 h_3 - 1.0)$$

Conditions	Value	Remarks
Dam Height (H1)	5.80 m	
Water Depth at the Spillway (h3)	3.6 m	A 25-year return period
Dreg and Thisler and	1.33 m	
Proposed Thickness	(1.40 to be rounded up)	

(8) Consideration of Riverbed Protection Length in the Main Dam Section

The length of the proposed downstream riverbed protection is provided with the equation created by Blight as follows:

$$L = 0.67 C_0 \sqrt{H_b q_0}$$

The foundation soil underneath the proposed structure is classified into a coarse sand, which is applied to  $C_0 = 12$ .

Conditions	Value	Remarks
Bligh's Coefficient ( $C_0$ )	12	Coarse sand
Difference between downstream riverbed and upstream riverbed	3.90 m	EL+960.4m- EL+956.5m
Unit Design Discharge (q0)	$12.00 \text{ m}^3/\text{s/m}$	B=55.0m
Overall Length of Proposed Structure (L)	55.00 m	Including riverbed protection length
Required Apron Length (La)	29.27 m	
Crest Width of Sub Dam (B)	2.0 m	
Proposed Riverbed Protection Length	23.73 m	Minimum requirement

(9) Consideration of Concrete Block in the Main Dam Section

The structural scale for the concrete block utilized in the riverbed protection is provided with the following method:

### Design Velocity

It is assumed that the design velocity is provided with the average between the flow velocity in the downstream channel and the flow velocity fallen down immediately from the dam spillway.

Conditions	Value	Remarks
Flow Velocity fallen down immediately	12 94 m/s	
from the Spillway (V1a)	12.74 11/3	
Flow Velocity at the Downstream	2 69 m/s	
Channel	5.08 11/8	
Design Velocity (Vd)	8.31 m/s	

Proposed Structural Scale of the Concrete Block

The proposed structural scale of the concrete block is estimated with the following equation:

$$W = a \left(\frac{\rho w}{\rho b - \rho w}\right)^3 \frac{\rho b}{g^2} \left(\frac{Vd}{b}\right)^6$$

Conditions	Value	Remarks
Shape Coefficient (a)	0.79 x 10 ⁻³	Rectangle Shape
Shape Coefficient (b)	2.8	Ditto
Density of Water ( $\rho w$ )	$102 \text{ kgf s}^2/\text{m}^4$	
Density of Block ( $\rho b$ )	2.09 <i>p</i> w	Empirical number
Gravitational Acceleration (g)	9.8 $m/s^2$	
Design Velocity (Vd)	8.31 m/s	
Minimum Block Weight (W)	0.93 tf/piece	Nominal Weight: 1.2ton/piece

(10) Consideration of Concrete Block in the Hydraulic Drop Structure

The structural scale for the concrete block utilized in the riverbed protection is provided with the following method:

### Design Velocity

It is assumed that the design velocity is much the same as the flow velocity fallen down immediately from the drop section.

Conditions	Value	Remarks
Flow Velocity fallen down immediately from the Drop Section	9.26 m/s	

### Proposed structural Scale of the Concrete Block

The proposed structural scale of the concrete block is estimated with the following equation:

$$W = a \left(\frac{\rho w}{\rho b - \rho w}\right)^3 \frac{\rho b}{g^2} \left(\frac{Vd}{b}\right)^6$$

Conditions	Value	Remarks
Shape Coefficient (a)	0.79 x 10 ⁻³	Rectangle Shape
Shape Coefficient (b)	2.8	Ditto
Density of Water ( $\rho w$ )	$102 \text{ kgf s}^2/\text{m}^4$	
Density of Block ( $\rho b$ )	2.09 <i>pw</i>	Empirical number
Gravitational Acceleration (g)	9.8 m/s ²	
Design Velocity (Vd)	9.26 m/s	
Minimum Block Weight (W)	1.77 tf/piece	Nominal Weight:
Minimum Block Weight (W)	9.26 m/s 1.77 tf/piece	Nominal Weight: 1.9ton/piece

# (11) Stability Calculation for the Hydraulic Drop Structure

The stability calculation is composed of the resistance against tilting, sliding and subgrade reaction. The following methods are shown as the stability analysis for the hydraulic drop structure.

Drop Height	<u>3.500 m</u> Uni	t Weight	
Wall Height	2.000 m	Conc.	24.5 kN/m ³
Footing Height	1.500 m	Water	9.80 kN/m ³
		Sediment	17.64 kN/m ³
Downstream Slope Gradient	1:1.20		
	Fric	tion Coefficient	0.6
Bottom Width	9.700 m Safe	ety Factor against Sli	ding
Footing Length	5.000 m	n	1.5
Downstream Wall Width	2.400 m		
Crest Width	2.300 m Fric	tion Angle of Sedime	nt
Upstream Wall Width	0.000 m	φ	30 Degree
	Coe	efficient of Active Ear	th Pressure
Design Water Depth (Upstream)	2.500 m	Ka	0.308
Design Water Depth (Downstream)	1.300 m		

#### Cut Off Height

Vertical	Force	$\langle \rangle \rangle$

Width

Member	Section Area	Unit Weight	V. Force	Arm Length	V-Moment
	(m ² )	(kN/m³)	(kN/m)	(m)	(kN-m/m)
C-V1	14.550	24.5	356.48	4.85	1728.93
C-V2	2.400	24.5	58.80	6.60	388.08
C-V3	4.600	24.5	112.70	8.55	963.59
C-V4	0.750	24.5	18.38	9.45	173.70
C-V5	0.750	24.5	18.38	0.25	4.60
W-V1	5.750	9.80	56.35	8.55	481.80
W-V2	4.560	9.80	44.69	6.20	277.08
W-V3	6.500	9.80	63.70	2.50	159.25
Sub-Total			729.48	(5.73)	4177.03

1.500 m

0.500 m

Uplift	Pressure	B. Width	Uplift	Arm Length	U-Moment
	(kN/m²)	(m)	(kN/m)	(m)	(kN-m/m)
U-P1	51.226	0.500 m	25.62	9.45	242.11
U-P2	48.953				
U-P3	34.258	8.700 m	361.97	5.11	1848.25
U-P4	31.985	0.500 m	16.00	0.25	4.00
Sub-Total		9.700 m	403.59		2094.36

Horizontal Force (H)

	Pressure	Height	H. Force	Arm Length	Moment
	(kN/m²)	(m)	(kN/m)	(m)	(kN-m/m)
W-A1	24.500				
W-A2	58.800	3.500 m	1 45.78	1.51	220.13
S-A1	0.000				
S-A2	8.452	3.500 m	14.80	1.17	17.32
W-P1	12.740				
W-P2	27.440	1.500 m	-30.14	0.66	-19.9
Total			130.44	(1.67)	217.55



Schematic Drawing of Hydraulic Drop Structure

# ANNEX 3 CONSIDERATION OF ALTERNATIVE-C

(1) Hydraulic Characteristics of the Upstream Proposed Channel

The hydraulic characteristics of the proposed channel section are provided with the uniform flow formula as follows:

	п	1
Conditions	Value	Remarks
Design Discharge (Q)	$660.0 \text{ m}^3/\text{s}$	A 25-year return period
Channel Bed Width (B)	55.0 m	
Side Slope Gradient	1:0.5	
Roughness Coefficient (n)	0.035	Coarse sand
Channel Bed Gradient (I)	1/100	Same as existing ground surface gradient
Sectional Area (A)	$140.63 \text{ m}^2$	
Wetted Perimeter (P)	60.59 m	
Hydraulic Radius (R)	2.32 m	
Flow Velocity (V)	5.01 m/s	
Water Depth (h)	2.50 m	Applied to drop structure stability calc.

$$V = \frac{1}{n} R^{2/3} I^{1/2}, \ R = \frac{A}{P}, \ Q = AV$$

(2) Hydraulic Characteristics of the Downstream Existing Channel

The hydraulic characteristics of the downstream existing channel section are estimated with the uniform flow formula as follows:

$$V = \frac{1}{n} R^{2/3} I^{1/2}, \ R = \frac{A}{P}, \ Q = AV$$

Conditions	Value	Remarks
Design Discharge (Q)	$660.0 \text{ m}^3/\text{s}$	A 25-year return period
Channel Bed Width (B)	55.0 m	
Side Slope Gradient	1:0.5	
Roughness Coefficient (n)	0.035	Coarse sand
Channel Bed Gradient (I)	1/260	
Sectional Area (A)	$186.95 \text{ m}^2$	
Wetted Perimeter (P)	62.38 m	
Hydraulic Radius (R)	2.997	
Flow Velocity (V)	3.68 m/s	
Water Depth (h)	3.30 m	Applied to drop structure stability calc.

(3) Hydraulic Characteristics of the Drop Section

During flood, the completed overflow is appeared on the crest of the drop section if the sum of critical water depth, which is created by overflow, on the drop crest and drop height is higher than the downstream water depth after the hydraulic jump flow.

The critical water depth is estimated with the following equations.

$$hc = (\frac{Q_d^2}{g B^2})^{1/3}$$

Conditions	Value	Remarks
Design Discharge (Qd)	$660.0 \text{ m}^3/\text{s}$	A 25-year return
		period
Gravitational Acceleration (g)	9.8 m/s ²	
Design Invert Width (B)	55.0 m	
Critical Water Depth on the Drop Section	2.45 m	
(hc)		

### (4) Consideration of the Required Apron Length

The required apron length, which is the same as distance between the point the flow fallen down contacting on the apron and the crest of drop section, is provided with the following equation created by Rand.

$$W/_{D} = 4.3 (hc/_{D})^{0.81}$$

Conditions	Value	Remarks
Critical Water Depth on the Drop Section (hc)	2.45 m	
Proposed Drop Height (D)	2.0 m	
Required Apron Length (W)	10.14 m	Minimum requirement

(5) Consideration of the Required Riverbed Protection Length

The required riverbed protection length shall be in accordance with the length influencing the high flow velocity caused by hydraulic jump flow to prevent the local scouring on the riverbed.

The required riverbed protection is composed of Protection-A and Protection-B, which are shown as follows.



Schematic Drawing of the Hydraulic Jump Flow

Based on the hydraulic characteristics during the flood, the protection-A section deals with the hydraulic jump flow and the other hand, the protection-B section prepares to resist against the unexpected turbulent flow.

These required lengths are estimated with the following manner.

# Protection-A

The immediate downstream water depth falling down from the drop section is provided with the energy conservation equation based on the upstream and downstream hydraulic conditions.

$$\frac{V_c^2}{2g} + H + hc = \frac{V_{1a}^2}{2g} + h_{1a}$$

Conditions	Value	Remarks
Critical Flow Velocity on the Drop	4.00 m/s	A 25-year return period
Section (Vc)	4.90 11/8	
Critical Water Depth on the Drop	2.45	
Section (hc)	2.43 III	
Gravitational Acceleration (g)	$9.8 \text{ m/s}^2$	
Drop Height (H)	2.0 m	
Water Depth fallen down immediately	1.20	Applied to drop structure
from the Drop Section (h1a)	1.50 m	stability calc.
Flow Velocity fallen down immediately	0.26 m/a	F1a = 2.60
from the Drop Section (V1a)	9.20 III/S	

The conjugational water depth in commencement of hydraulic jump flow is provided with the following equation.

$$\frac{h_{1b}}{h_2} = \frac{1}{2} \left( \sqrt{1 + 8 F_2^2} - 1 \right), \ F_2 = \frac{V_2}{\sqrt{g h_2}}$$

Conditions	Value	Remarks
Downstream Water Depth (h2)	3.30 m	A 25-year return period
Downstream Flow Velocity (V2)	3.68 m/s	
Gravitational Acceleration (g)	$9.8 \text{ m/s}^2$	
Froude Number of the Downstream (F2)	0.647	
Conjugational Water Depth (h1b)	1.79 m	

If water depth (h1b) is deeper than water depth (h1a), the required length (L1) of the protection-A is estimated with the following equation created by Chezy.

$$-\frac{q^2}{C^2}x + a = \frac{1}{4}h^4 - hc^3 h, \ C = \frac{h^{1/6}}{n}$$
: (Chezy's Coefficient)

Conditions	Value	Remarks
Unit Design Discharge (q)	$12.00 \text{ m}^3/\text{s/m}$	B=55.0 m
Estimated Roughness Coefficient (n)	0.035	
Chezy's Coefficient (C)	31.48	H = h1b
Constant (a)	-18.40	H = h1a
Required Length $(L1 = x)$	36.88 m	Minimum requirement

The required length (L2) of the protection-A is estimated with the following equation.

 $L_2 = 4.5 h_2$ 

Conditions	Value	Remarks
Downstream Water Depth (h2)	3.30 m	
Required Length (L2)	14.85 m	Minimum requirement

Consequently, the required length of the protection-A is the sum of L1 and L2.

Length of Protection-A = L1 + L2 = 36.88 m + 14.85 m = more than 51.73 m
# Protection-B

The required protection-B length is estimated with the conventional equation as follows:

Length of Protection-B =  $3 \times h_2 = 9.90$  m = 10.0 m to be rounded

(6) Stability Calculation for the Hydraulic Drop Structure

The stability calculation is composed of the resistance against tilting, sliding and subgrade reaction. The following methods are shown as the stability analysis for the hydraulic drop structure.

#### Flooding Case

Dro	n Hoight		3500 m	Linit Woight			
DIU			3.000 m		0	045	1.61 /3
	wali Height		2.000 m		Conc.	24.5	KIN/ M
	Footing Height		1.500 m		Water	9.80	kN/m [×]
				1	Sediment	17.64	kN/m³
	Downstream Slop	e Gradient	1:1.20				
				Friction Coef	ficient	0.6	
_							
Bot	tom Width		9.700 m	Safety Factor	r against Sli	ding	1
	Footing Length		<u>5.000 m</u>		n	1.5	
	Downstream Wall Width		2.400 m				
	Crest Width		2.300 m	Friction Angle	e of Sedime	nt	-
	Upstream Wall Wi	dth	0.000 m	o	φ	30	Degree
-			0.500	Coefficiento	f Active Ear	th Pressure	
Des	sign Water Dept	h (Opstream)	2.500 m		Ка	0.308	
D	·	L (D)	1.000	1			
Des	sign Water Dept	h (Downstream)	1.300 m	J			
o+	Off						
Gui	Holdet		1 500 m	1			
	meight Width		1.500 m				
	Wath		0.000 m	l			
Vert	ical Force (V)						
	Member	Section Area	Unit Weight	V Force	Arm Length	V-Moment	
	1010111001	(m ² )	$(kN/m^3)$	(kN/m)	(m)	(kN-m/m)	
	0-14	14.550	24.5	256.49	1.95	1728.93	
	C=V2	2400	24.5	58.80	6.60	388.08	
	C-V3	4 600	24.5	112.70	8.55	963.59	
	C-V4	0.750	24.5	18.38	9.45	173.70	
	0-V5	0.750	24.5	18.38	0.15	4.60	
	W-V1	5 750	9.80	56.35	8.55	481.80	
	W-V2	4 560	9.80	44.69	6.00	277.08	
	W-V3	6 5 0 0	9.80	63.70	2.50	159.25	
	Sub-Total			729.48	(5.73)	4177.03	
		1					
	Uplift	Pressure	B. Width	Uplift	Arm Length	U-Moment	
		(kN/m ² )	(m)	(kN/m)	(m)	(kN-m/m)	
	U-P1	51.226	0.500 m	25.62	9.45	242.11	
	U-P2	48.953					
	U-P3	34.258	8.700 m	361.97	5.11	1848.25	
	U-P4	31.985	0.500 m	16.00	0.25	4.00	
	Sub-Total		9.700 m	403.59		2094.36	
Hori	zontal Force (H)						
		Pressure	Height	H. Force	Arm Length	Moment	
		(kN/m ² )	(m)	(kN/m)	(m)	(kN-m/m)	
	W-A1	24.500					
	W-A2	58.800	3.500 m	1 45.78	1.51	220.13	
	S-A1	0.000					

S-A2

W-P1

W-P2

Total

8.452

<u>12.7</u>40

27.440

3.500 m

1.500 m

14.80

-30.14

130.44

1.17

0.66

(1.67)

17.32

-19.9

217.55



Schematic Drawing of Hydraulic Drop Structure

### (7) Consideration of the Drop Structure Interval

The drop structure interval shall be provided based on the appearance of the sufficient energy dissipation effect with an individual proposed drop structure.

The hydraulic characteristics on the drop structure are shown as follows.

The conjugational water depth is estimated with the following equation:

$$\frac{h_{1b}}{h_2} = \frac{1}{2} \left( \sqrt{1 + 8 F_2^2} - 1 \right), \ F_2 = \frac{V_2}{\sqrt{g h_2}}$$

Conditions	Value	Remarks
Downstream Water Depth (h2)	2.50 m	A 25-year return period
	2.30 III	in the proposed connecting channel
Downstream Flow Velocity (V2)	5.01 m/s	
Gravitational Acceleration (g)	$9.8 \text{ m/s}^2$	
Froude Number of the	1.012	
Downstream (F2)	1.012	
Conjugational Water Depth (h1b)	2.53 m	

The immediate downstream water depth fallen down from the drop crest is provided with the following equation:

$$\frac{V_c^2}{2g} + H + hc = \frac{V_{1a}^2}{2g} + h_{1a}$$

Conditions	Value	Remarks
Critical Flow Velocity on the Drop Section (Vc)	4.90 m/s	A 25-year return period
Critical Water Depth on the Drop Section (hc)	2.45 m	
Gravitational Acceleration (g)	$9.8 \text{ m/s}^2$	
Drop Height (H)	2.0 m	
Water Depth fallen down immediately from the Drop Section (h1a)	1.30 m	Applied to drop structure stability calc.
Flow Velocity fallen down immediately from the Drop Section (V1a)	9.26 m/s	F1a = 2.60

According to the above calculation results, the conjugational water depth (h1b) is much the same as the downstream water depth (h2).

Consequently, it is assumed that the drop structure interval is much the same as the distance between the conjugational water depth appearance and the critical water depth appearance on the drop structure crest.



Schematic Drawing of the Proposed Drop Structure Interval

Since the conjugational water depth (h1b) is deeper than the water depth fallen down from the drop section (h1a), the distance is provided with the Chezy's Formula as follows.

$$-\frac{q^2}{C^2}x + a = \frac{1}{4}h^4 - hc^3 h, \ C = \frac{h^{1/6}}{n}: \text{ (Chezy's Coefficient)}$$

Conditions	Value	Remarks
Unit Design Discharge (q)	$12.00 \text{ m}^3/\text{s/m}$	B=55.0 m
Estimated Roughness Coefficient (n)	0.035	
Chezy's Coefficient (C)	33.35	H = h1b
Constant (a)	-18.40	H = h1a
Required Length $(L1 = x)$	66.08 m	At least

Required apron length of 10.5m is estimated. The proposed drop structure interval is the sum of the required apron length (W) and the length (L1) calculated with the Chezy's Formula.

Proposed Drop Structure Interval = 10.5 m(W) + 66.0 m(L1) = 76.5 m(at least)

(8) Consideration of the Concrete Block in the Upstream Section

The structural scale for the concrete block utilized in the riverbed protection is provided with the following method:

Design Velocity

It is assumed that the design velocity is much the same as the flow velocity fallen down immediately from the drop section.

Conditions	Value	Remarks
Flow Velocity fallen down immediately from the Drop Section	9.26 m/s	

# Proposed structural Scale of the Concrete Block

The proposed structural scale of the concrete block is estimated with the following equation:

$$W = a \left(\frac{\rho w}{\rho b - \rho w}\right)^3 \frac{\rho b}{g^2} \left(\frac{V d}{b}\right)^6$$

Conditions	Value	Remarks
Shape Coefficient (a)	0.79 x 10 ⁻³	Rectangle Shape
Shape Coefficient (b)	2.8	Ditto
Density of Water ( $\rho w$ )	$102 \text{ kgf s}^2/\text{m}^4$	
Density of Block ( $\rho b$ )	2.09 <i>p</i> w	Empirical number
Gravitational Acceleration (g)	9.8 m/s ²	
Design Velocity (Vd)	9.26 m/s	
Minimum Block Weight (W)	1.77 tf/piece	Nominal Weight:
		1.9ton/piece

(9) Consideration of the Concrete Block in the Downstream Section

The structural scale for the concrete block utilized in the riverbed protection is provided with the following method:

### Design Velocity

It is assumed that the design velocity is provided with the average between the flow velocity in the downstream channel and the flow velocity fallen down immediately from the dam spillway.

Conditions	Value	Remarks
Flow Velocity fallen down immediately from the Drop Section (V1a)	9.26 m/s	
Flow Velocity at the Downstream Channel	3.68 m/s	
Design Velocity (Vd)	6.47 m/s	

Proposed Structural Scale of the Concrete Block

The proposed structural scale of the concrete block is estimated with the following equation:

$$W = a \left(\frac{\rho w}{\rho b - \rho w}\right)^3 \frac{\rho b}{g^2} \left(\frac{Vd}{b}\right)^6$$

Conditions	Value	Remarks
Shape Coefficient (a)	0.79 x 10 ⁻³	Rectangle Shape
Shape Coefficient (b)	2.8	Ditto
Density of Water ( $\rho w$ )	$102 \text{ kgf s}^2/\text{m}^4$	
Density of Block ( $\rho b$ )	2.09 <i>pw</i>	Empirical number
Gravitational Acceleration (g)	$9.8 \text{ m/s}^2$	
Design Velocity (Vd)	6.47 m/s	
Minimum Block Weight (W)	0.21 tf/piece	Nominal Weight: 0.5ton/piece