Appendix M62:

Design Criteria for Sewerage Facilities

Contents for Appendix M62

M62.1	Design Criteria for Sewer Network
M62.2	Design Criteria for Pumping Station M62-2
M62.3	Selection of Sewage Treatment Method
M62.4	Required Land Area of STP (SP & OD) M62-9
M62.5	Detailed Comparison of Four Treatment Methods
M62.6	Selection of Sludge Treatment Method ······ M62-28
M62.7	Study on STP Cost for Comparison of Treatment Methods M62-29

Appendix M62.1 Design Criteria for Sewer Network

Items	Manual on Sewerage and Sewage Treatment in India *1		Japanese Standards	Adoption
1. Design flow	Peak flow Contributory population Peak factor Up to 20,000 persons 3.00 20,000 - 50,000 persons 2.50 50,000 - 750,000 persons 2.25 Above 750,000 persons 2.00	(p.45) (p.39)	Hourly maximum flow (= Peak flow) Example on middle size city Daily maximum flow : Daily average flow = 1 : 0.75 Hourly maximum flow : Daily maximum flow = 1.5 : 2 Hourly maximum flow : Daily average flow = 2 : 1	Peak flow Contributory population Peak factor Up to 20,000 persons 3.00 20,000 - 50,000 persons 2.50 50,000 - 750,000 persons 2.25 Above 750,000 persons 2.00
2. Flow formula	1. Gravity flow Manning formula $V=(1/n) \times (3.968 \times 10^3) \times D^{2/3} \times S^{1/2}$ $Q=(1/n) \times 3.118 \times D^{2/3} \times S^{1/2}$ Where Q : Flow Capacity (litter/sec) S : Slope of hydraulic gradient D : Internal diameter (mm) V : Flow velocity (m/sec) n : Manning's coefficient of roughness Cement concrete pipe (good) : 0.013 Cement concrete pipe (fair) : 0.015 2. Pressure flow Hazen-Williams formula $V=4.567 \times 10^{-3} \times C \times D^{0.63} \times S^{0.54}$ $Q=1.292 \times 10^{-5} \times C \times D^{2.63} \times S^{0.54}$ Where Q : Flow capacity (m ² /hr) D : Internal diameter (mm) V : Flow velocity (m/sec) S : Slope of hydraulic gradient C : Hazen-Williams coefficient Cast iron : 100	(p.47)	Cement concrete pipe: 0.013 2. Pressure flow Hazen-Williams formula $V=0.84935 \times C \times R^{0.63} \times S^{0.54}$ $Q=A \times V$ Where Q : Flow capacity (m ³ /hr) R : Hydraulic radius (m) V : Flow velocity (m/sec) S : Slope of hydraulic gradient A : Internal area (m ²)	1. Gravity flow Manning formula $V=(1/n) \times (3.968 \times 10^{-3}) \times D^{2/3} \times S^{1/2}$ $Q=(1/n) \times 3.118 \times D^{2/3} \times S^{1/2}$ Where Q : Flow Capacity (litter/sec) S : Slope of hydraulic gradient D : Internal diameter (mm) V : Flow velocity (m/sec) n : Manning's coefficient of roughnes Cement concrete pipe (fair) : 0.0 2. Pressure flow Hazen-Williams formula $V=4.567 \times 10^{-3} \times C \times D^{0.63} \times S^{0.54}$ $Q=1.292 \times 10^{-5} \times C \times D^{2.63} \times S^{0.54}$ $Q=1.292 \times 10^{-5} \times C \times D^{2.63} \times S^{0.54}$ Where Q : Flow capacity (m ³ /hr) D : Internal diameter (mm) V : Flow velocity (m/sec) S : Slope of hydraulic gradient C : Hazen-Williams coefficient Cast iron : 100
3. Depth of flow	0.8 of full at ultimate peak flow (for ventilation in wastewater flow)		Full depth flow	0.8 of full at ultimate peak flow
4. Minimum velocity	V = 0.80 m/sec at design peak flow V = 0.60 m/sec for early years	(p.52) (p.53)	V = 0.60 m/sec	V = 0.80 m/sec
5. Maximum velocity	V = 3.00 m/sec	(p.53)	V = 3.00 m/sec (same as left)	V = 3.00 m/sec
6. Minimum diameter of sewer	D = 150 mm	(p.53)	Depend of the scale of sewerage project Small scale : 150 mm Normal and large scale : 200 mm	D = 150 mm
7. Minimum depth of earth cover	H = 1.0 m	(p.460)	H = 1.0 m (same as left)	H = 1.0 m (Branch sewers) H = 1.5 m (Trunk sewers, diameter 200 mm or larger)
8. Pipe materials	Concrete, Clay, Asbestos Cement, Iron and Steel, PVC, High density polyethylene (HDPE), Glass fiber reinforced Plastic (GRP)	(p.87)	Concrete, Clay, Iron and Steel, PVC, High density polyethylene (HDPE) Glass fiber reinforced Plastic (GRP)	1.Gravity flow Concrete pipe (n=0.015) 2.Pressure flow Cast Iron pipe (C=100)
9. Manhole spacing	Diameter of pipe Manhole spacing Up to 900 mm < 30 m	(p.74)	Diameter of pipe Manhole spacing Up to 300 mm maximum 50 m 350 - 600 mm maximum 75 m 700 - 1,000 mm maximum 100 m 1,100 - 1,500 mm maximum 150 m Above 1,650 mm maximum 200 m	Diameter of pipe Manhole spacing Up to 900 mm < 30 m
10. Manhole size (diameter)	 For depths above 0.90m and up to 1.65m = 900 mm dia. For depths above 1.65m and up to 2.30m = 1,200 mm dia. For depths above 2.30m and up to 9.00m = 1,500 mm dia. For depths above 9.00m and up to 14.00m = 1,800 mm dia. and Width/diameter of the manhole should not be less than internal diameter of (the sewer + 150mm on both sides) 	(p.77)	For at the starting point of sewers 900 mm dia. intermediate point (less than 600mm sewer) junction point (less than 450mm sewer) For intermediate point (less than 900mm sewer) 1,200 mm dia. junction point (less than 600mm sewer) 1,200 mm dia. For intermediate point (less than 1,200mm sewer) 1,500 mm dia. For intermediate point (less than 1,200mm sewer) 1,500 mm dia. For intermediate point (less than 1,500mm sewer) 1,800 mm dia. junction point (less than 1,500mm sewer) 1,800 mm dia.	For depths above 0.90m and up to 1.65m = 900 mm dia For depths above 1.65m and up to 2.30m = 1,200 mm d For depths above 2.30m and up to 9.00m = 1,500 mm d For depths above 9.00m and up to 14.00m = 1,800 mm d and • Width/diameter of the manhole should not be less than in diameter of (the sewer + 150mm on both sides)

hness 0.015

n dia. um dia. um dia. um dia. in internal

Items	Manual on Sewerage and Sewage Treatment in India *1		Japanese Standards	Adoption
1. Design flow	Peak flow with 50% standby	(p.158)	Hourly maximum flow (= Peak flow)	Peak flow with 50% standby
2. Type of pumping station	 Two wells type Wet well for storing sewage + dry well for setting pumps One well type Use of wet-pit pump (submersible pump) 	(p.154)	 (1) Manhole pump type Flow less than 3.0 m³/min (2) Conventional type Flow more than 3.0 m³/min 	 (1) Manhole pump type Flow less than 3.0 m³/min (2) Conventional type (with submergible pump) Flow more than 3.0 m³/min
3. Screen facility	 (1) Bar spacing Less than 20 mm (in case of the fine screen) (2) Quantity of screenings 0.0015 - 0.015 m³/ML (ML=1,000m³) 	a ,	 (1) Bar spacing 15 - 25 mm (in case of the fine screen) (2) Quantity of screenings 0.001 - 0.015 m³/1,000m³ inflow 	 Bar spacing Less than 20 mm (in case of the fine screen) Quantity of screenings 0.0015 - 0.015 m³/ML (ML=1,000m³)
4. Type of pump equipment	- Centrifugal type of pump, including the submersible pump	(p.158)	 Centrifugal type of pump, including the submersible pump Diagonal flow pump 	- Centrifugal type of pump, including the submersible pump
5. Composition of pump equipment			 Manhole type pumping station units (including 1 standby pump) Conventional type pumping station - 6 units (including 1 standby pump) Case of 3 units 1/2Q×3units (1) Case of 4 units (1/4Q×2units) + (2/4Q×2units(1)) Case of 5 units (1/8Q×2units) + (2/8Q×1unit) + (4/8Q×2(1)units) Case of 6 units (1/10Q×2units) + (2/10Q×2units) + (4/10Q×2(1)units) 	 (1) Manhole type pumping station 2 units (including 1 stand-by pump) (2) Conventional type pumping station 3 - 6 m3/min 3 units 1/2Q×3 units (1) 6 - 12 m3/min 4 units (1/4Q×2 units) + (2/4Q×2 units(1)) 12 - 24 m3/min 5 units (1/8Q×2 units) + (2/8Q×1 unit) + ('4/8Q×2(1) units)
6. Specification of pump equipment	$ \begin{array}{rcl} \text{Specific speed} \\ n_s &= \frac{3.65 \times n \times (Q)^{0.5}}{H^{0.75}} \\ \text{where} & n_s &: \text{Specific speed} \\ n &: \text{Speed of the pump (rpm)} \\ Q &: \text{Flow-rate (m}^3/\text{sec}) \\ H &: \text{Pump head (m)} \end{array} $	_	(1) Pump diameter $D = 146 \times (Q/V)^{0.5}$ Where D : Pump inlet/outlet diameter $Q : Flow-rate (m^3/min)$ V : Velocity (=1.5 - 3.0 m/sec) (2) Motor power of pumps $P = (0.163 \times Q \times H/n) \times (1+a)$ Where P : Motor power (kW) $Q : Discharging flow (m^3/min)$ H : Pump head (m) n : Pump efficiency (60 - 85%) a : Allowance of motor power (= 0.15)	(1) Pump diameter $D = 146 \times (Q/V)^{0.5}$ Where D : Pump inlet/outlet diameter Q : Flow-rate (m ³ /min) V : Velocity (=1.5 - 3.0 m/sec) (2) Motor power of pumps P = (0.163 \times Q \times H/n) \times (1+\alpha) Where P : Motor power (kw) Q : Discharging flow (m ³ /min) H : Pump head (m) n : Pump efficiency (60 - 85%) \alpha : Allowance of motor power (= 0.15)
7. Minimum size of pump	100 mm	(p.158)	80 mm	100 mm
8. Essential Accessories	 Flow measuring devices Ventilation Hoisting equipment, etc. 	(p.155)	 Flow measuring devices Ventilation Hoisting equipment, etc. 	 Flow measuring devices Ventilation Hoisting equipment, etc.

Appendix M62.2 Design Criteria for Pumping Station

*1 : Published by "Central Public Health and Environmental Engineering Organization"

Appendix M62.3 Selection of Sewage Treatment Methods

(1) First Stage Selection of Sewage Treatment Methods

Among the seven treatment methods shown in Volume II Table 62.7, Conventional Activated Sludge, Stabilization Ponds and Trickling Filter processes are regarded not suitable for this project due to the reasons below.

a) Conventional Activated Sludge

- This method is suitable for larger-scale treatment plant because of stable effluent quality and small footprint of the plant.
- > Construction costs and O&M costs are higher than the other treatment methods.
- Many experienced operators are required for constant control of sludge concentration and dissolved oxygen levels in reactors and daily inspection of equipment
- > Sludge discharge from both primary and final clarifiers is required.

b) Trickling Filter

High Rate Filter

BOD removal rate in the high rate filter is too low that an additional treatment is necessary to meet the effluent quality standard. The following Table shows the treatment efficiency of the high rate trickling filter.

Item	Raw sewage (mg/l)	Removal rate (%)	Treated water (mg/l)	Effluent Standard (mg/l)
BOD	300	75 - 80	60 - 75	30

Low Rate Filter

BOD removal rate in the low rate filter process is 75 - 90% and its effluent will be able to meet the effluent quality standard. However, it requires ten (10) times larger land area than high rate filter. It is difficult to adopt the low rate filter process because of the limitation of available land area.

(Water Surface Loading):

Low rate filter process = $1 - 4 \text{ m}^3/\text{m}^2/\text{day}$ High rate filter process = $10 - 40 \text{ m}^3/\text{m}^2/\text{day}$

c) Stabilization Ponds

- Anaerobic ponds, which are commonly included in this process, may provide bleeding ground for mosquitoes and flies, and also emit odor. They shall not share boundary with residents and tourist facilities.
- > Stabilization ponds require large area, which is not available in the study area. The

required area is almost twenty (20) times larger than oxidation ditch. Required land area is calculated in Volume IV Appendix M62.4 Required Land Area of STP (SP & OD).

(2) General Description of Treatment Method for Detailed Comparison Study Detailed comparison study is conducted on the following four treatment methods.

- > Oxidation Ditch (OD method)
- Aerated Lagoon (AL method)
- Sequencing Batch Reactor (SBR method)
- > UASB + Aerobic Process (UASB+A)

a) Oxidation Ditch

The oxidation ditch consists of a ring or oval shaped channel and is equipped with mechanical aeration devices. Screened wastewater enters the ditch, is aerated, and circulates at about 0.25 to 0.35 m/sec flow velocity. The BOD removal efficiency is high (75 - 95%). Oxidation ditches typically operate in an extended aeration mode with hydraulic retention time (12-36 hrs) and solids retention time. Secondary sedimentation tanks are used for most applications. The sample of the schematic flow diagram and illustration are presented in the Figures M62.3.1 and M62.3.2.

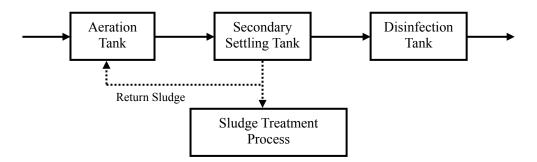


Figure M62.3,1 Schematic Flow Diagram for Oxidation Ditch Process

Figure M62.3.2 Illustration of Oxidation Ditch Process

b) Aerated Lagoons

Aerated lagoons evolved from facultative stabilization ponds when surface aerators were installed to suppress odor release from organically overloaded ponds. The aerated lagoon process is essentially the same as the activated sludge process, except that an earthen basin is used for the reactor, and this process does not depend on algae and sunlight to furnish oxygen for bacterial respiration, but instead uses diffusers or other mechanical aeration devices to transfer the major portion of oxygen and to create some degree of mixing.

Aerated lagoons are of two principal types named complete mixed lagoon and partially mixed lagoon. Complete mixed lagoon is fully aerobic from top to bottom as the aeration power input is sufficiently high to keep all the solids in suspension besides meeting the oxygenation needs of the system. On the other hand in partially mixed lagoons, some solids may leave with the effluent stream and some settle down in the lagoon since aeration power input is just enough for oxygenation and not enough for keeping all solids in suspension. The lower part of such lagoon may be anoxic or anaerobic while the upper layer is aerobic. The sample of the schematic flow diagram is presented in the Figure M62.3.3.



Figure M62.3.3 Schematic Flow Diagram for Aerated Lagoon Process

c) Sequencing Batch Reactor

A sequencing batch reactor is a fill and draw activated sludge treatment system. The unit processes in the SBR and conventional activated sludge systems are identical. Aeration and sedimentation /clarification are carried out in both systems. The BOD removal efficiency is high (75 - 95%). There is one important difference. In conventional plants, the processes are carried out simultaneously in separate tanks, whereas in SBR the processes are carried out

sequentially in the same tank as shown below. The operation of step by step is presented in the Table M62.3.1.

In the SBR operation, sludge discharge usually occurs during the draw and idle steps. A unique feature of the SBR system is that there is no need for a return activated sludge system. Because both aeration and settling occur in the same chamber, no sludge is lost in these steps, and none has to be returned from the clarifier to maintain the sludge content in the aeration tank. The typical operating sequence is shown in Figure M62.3.4.

Operation	Description
1 st step:	The purpose of the fill operation is to add substrate (raw sewage or primary effluent) to the
Fill	reactor. The fill process typically allows the liquid level in the reactor to rise from 25% of
	capacity to 100%. If controlled by time, the fill process normally lasts approximately 25% of
	the full cycle time.
2 nd step:	The purpose of aeration is to complete the reactions that were initiated during fill. Typically,
Aeration	aeration takes up 35% of the total cycle time.
3 rd step:	The purpose of settling is to allow solids separation to occur, providing a clarified supernatant to
Settling	be discharged as effluent. In a SBR, this process is normally much more efficient than in a
	continuous flow system because in the settling mode the reactor contents are completely
	quiescent.
4 th step:	The purpose of draw is to remove clarified treated water from the reactor. Many types of decant
Draw and Idle	mechanisms are in current use, with the most popular being floating of adjustable weirs. The
	time dedicated to draw can range from 5 to 30% of the total cycle time with 45 minutes being a
	typical draw period.

 Table M62.3.1
 Operational Description for SBR Process

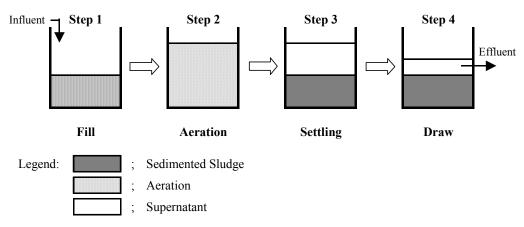


Figure M62.3.4 Typical Operating Sequence for SBR

d) UASB Process

In the upflow anaerobic sludge blanket (UASB) process, sewage to be treated is introduced in the bottom of the reactor. The sewage flow upward through a sludge blanket composed of biologically formed granules or particles. Treatment occurs as sewage comes in contact with the granules. The gases produced under anaerobic conditions (principally methane and carbon dioxide) cause internal circulation, which helps in the formation and maintenance of the Some of the gas produced in the sludge blanket becomes attached to the biological granules. biological granules. Free gas and particles with attached gas rise to the top of the reactor. The particles that rise to the surface strike the bottom of the degassing baffles, which causes the attached gas bubbles to be released. The degassed granules typically drop back to the surface of the sludge blanket. The free gas and the gas released from the granules are captured in gas collection domes located on top of the reactor. Liquid containing some residual solids and biological granules passes into a settling chamber, where the residual solids are separated from the liquid. The separated solids fall back through the baffle system to the top of the sludge blanket. To keep the sludge blanket in suspension, upflow velocity is maintained in the range of 0.6 to 0.9 m/h. Typical section of UASB is shown in Figure M62.3.5.

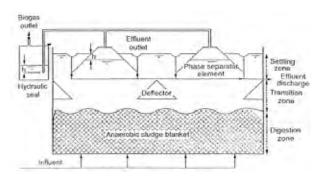
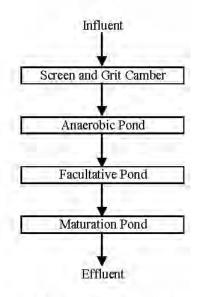


Figure M62.3.5 Upflow Anaerobic Sludge Blanket Process (UASB)

Requirement for Additional Treatment Process for UASB

BOD removal efficiency of typical UASB is around 60%. When it is applied to the projected sewage of BOD 300 mg/l, effluent from UASB will have 120 mg/l BOD. Additional treatment is required to achieve the effluent BOD standard of 30 mg/l. Table M62.3.2 shows the design sewage quality and efficiency of UASB method.

Design sewage BOD	Typical removal rate of	Expected Effluent BOD from	Effluent discharge
quality	UASB	UASB	standard (BOD)
300 mg/l	60 %	120 mg/l	30 mg/l


Additional treatment shall achieve BOD removal of 75%, or effluent BOD of 30 mg/l. In selecting an appropriate treatment method, the following factors are considered.

- It is preferable to use aerobic treatment method in order to minimize impact on mainly aerobic aquatic life in the receiving public waters.
- In the study area, it is difficult to secure large area required for aerated lagoons and oxidation ponds. It is ideal to use suspended or fixed media activated sludge systems in this application.

Relatively low requirement of treatment efficiency for the additional treatment to UASB enable us to choose **trickling filter method** rather than higher efficiency and energy intensive treatment, such as OD and SBR.

Appendix M62.4 Required Land Area of STP (SP & OD)

(1) Stabilization Pond

Flow Chart of Stabilization Pond

Design Flow	(m3/day)	1,000	2,500	5,000	10,000
Required Area	(m2)	20,128	50,319	80,494	160,986

1. Design Flow = 1,000 m3/day (Daily average flow)

(1)Basic conditions	•Daily average flow •Peak flow = •Design water qualit		1,000 3,000	m3/day m3/day	(Daily average×3.0)
	Item	Influen	Effluent	Removal Rate(%)	
	BOD(mg/l)	250	30	88.0	
	SS(mg/l)	350	100	71.4	1.1
(2)Outline of	① Grit Chamber				
major facilities	Туре	: P	arallel flow 1	ectangular	
	Surface load	: 2	160	m3/m2/day	7
	Required area	- 1	.39	m2	
	Unit number	: 2		unit(s) , in	cluding 1 Bypass
	Width	: 0	4	m/unit	
	Length	: 3	.5	m	
	Depth	: 0	.3	m	
	② Anaerobic Pond				
	Туре		imbanked rec	tangular por	nd
	Retention day		.0	day(s)	
	Required volume	e : 5	,000	m3	
	Unit number	: 2		basin(s)	
	Depth	: 4	.0	m	
	Inlet BOD load	: 2	50.0	kgBOD/da	у
	Areal BOD load	: 2	,000	kgBOD/ha	/day
	Surface area	: 0	.06	ha/basin	

(4)Required area	Required area = Require	ed	surfaces	rea × 2.5	(for maintenance space)
	1			8,051,0	m2
	(4) Maturation Pond		÷	4,166.7	
	3 Facultative Pond			2,631.6	
(3)Required surface area	 Grit Chamber Anaerobic Pond 		:	2.8 1,250.0	m2 m2
1		ľ			
	Surface area	10.00			asin(s) a/basin
	Depth Unit number	1	2	m	
	Required volume	1	5,000		13
	Retention day	**	5.0		ays
	Type	÷			gular pond
	④ Maturation Pond		The start of		
	Retention day	1	3.9	da	ay(s)
	Surface area	1			a/basin
	Depth	3	1.5	m	
	Unit number	1	2		asin(s)
	Required area	1	0.26	h	
	B. Chicken I		380.0		gBOD/ha/day
	Areal BOD load	:			
	Minimum temp.	÷	25.0	°C	
	Inlet BOD load		100.0		gBOD/day
	BOD remaval ratio at anaerobic pond	-	60.0	%	
	Туре	-	Emban	ced rectan	gular pond
	③ Facultative Pond				

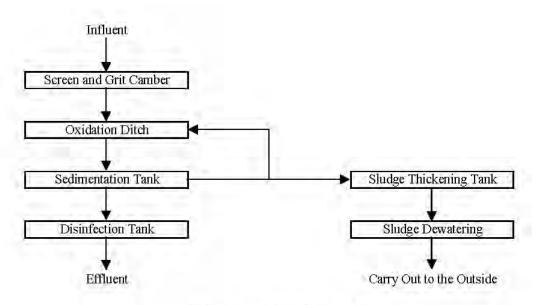
2. Design Flow = 2,500 m3/day (Daily average flow)

(1)Basic conditions	•Daily average flow •Peak flow =		2,500 7,500	m3/d m3/d (Daily	average×3.0)
	 Design water qual 				
	Item	Influent	Effluent	Removal Rate(%)	
	BOD(mg/l)	250	30	88.0	
	SS(mg/l) 350		100	71.4	
(2)Outline of major facilities	 Grit Chamber Type Surface load Required area 	: Par : 2,1 : 3,4		m3/m2/day	
	Required area Unit number	. 3.4	/	m2 unit(s), inclu	ding 1 Bunges
	Width	: 0.4		m/unit	ung i Dypass

	Approximately		; 50	0, <u>319 m2</u>
(4)Required area	Required area = Requir	ed	surface a	rea $\times 2.5$ (for maintenance space)
				20,127.6 m2
	④ Maturation Pond		:	10,416.7 m2
u vu	③ Facultative Pond			6,578.9 m2
3)Required surface area	 Grit Chamber Anaerobic Pond 		Č.	6.9 m2 3,125.0 m2
	Surface area	1.00	0.52	ha/basin
	Unit number	ż	2	basin(s)
	Depth		1.2	m
	Required volume	-	12,500	m3
	Retention day		5.0	days
	Type	÷.	Emban	ked rectangular pond
	④ Maturation Pond			
	Retention day	÷	3.9	day(s)
	Surface area	ž	0.33	ha/basin
	Depth	÷	1.5	m
	Unit number	-	2	basin(s)
	Required area	ż	0.66	ha
	and the set of the set of the		380.0	kgBOD/ha/day
	Areal BOD load		20×T-	
	Minimum temp.		25.0	°C
	Inlet BOD load		250.0	kgBOD/day
	at anaerobic pond		60.0	%
	BOD remaval ratio	*	Larioan	rear branden a brand
	③ Facultative Pond Type	ļ	Emban	ced rectangular pond
	Surface area	-	0.16	ha/basin
	Areal BOD load		2,000	
	Inlet BOD load		1.	
	Depth		4.0	m
	Unit number	:	2	basin(s)
	Required volume	÷	12,500	m3
	Retention day	-	5.0	day(s)
	Туре	÷	Emban	ked rectangular pond
	(2) Anaerobic Pond			
	Depth	Ż	0.3	m

3. Design Flow = 5,0	00 m3/day (Daily average f	low)	_		-
(1)Basic conditions	•Daily average flow =	5,000	m3/d		
	•Peak flow =	12,500	m3/d	(Daily average×2.5)	1.1

	•Design water qualit	Influent	Effluent	Removal Rate(%)					
	BOD(mg/l)	250	30	88.0					
	SS(mg/l)	350	100	71.4					
(2)Outline of	① Grit Chamber								
major facilities	Туре	: Pa	rallel flow r	ectangular					
94. 9 7 N 25 N 26 N	Surface load		160	m3/m2/day					
	Required area	; 5.	79	m2					
	Unit number	: 2		unit(s)					
	Width	: 0.	4	m/unit					
	Length	: 7.	2	m					
	Depth	: 0.		m					
	2 Anaerobic Pond								
	Type	E	nbanked ree	tangular pond					
	Retention day	; 5.		day(s)					
	Required volume		5,000	m3					
	Unit number	: 2		basin(s)					
	Depth	: 4.		m					
	Inlet BOD load		250.0	kgBOD/day					
	Areal BOD load		000	kgBOD/ha/day					
	Surface area	: 0.		ha/basin					
	Surface area	. 0.	51	na/basin					
	③ Facultative Pond		a series incom						
	Type : Embanked rectangular pond								
	BOD remaval rat								
	at anaerobic pond			%					
	Inlet BOD load	: 50	11 S.M.	kgBOD/day					
	Minimum temp.	: 25		°C					
	Areal BOD load		\times T-120						
	1.0.0		\$0.0	kgBOD/ha/day					
	Required area	: 1.	32	ha					
	Unit number	; 2		basin(s)					
	Depth	; 1.	5	m					
	Surface area	: 0.	66	ha/basin					
	Retention day	: 3.	9	day(s)					
	④ Maturation Pond								
	Туре	: Er	nbanked rec	tangular pond					
	Retention day	: 5.		days					
	Required volume	: 25	5,000	m3					
	Depth		2	m					
	Unit number	: 2		basin(s)					
	Surface area		04	ha/basin					
(3)Required surface	① Grit Chamber		: 5.8	m2					
area	2 Anaerobic Pond		: 6,250	0.0 m2					
1.1.1	③ Facultative Pond		: 13,15	7.9 m2					


	(4) Maturation Pond : 20,833.	3 m2
	40,247.0	0 m2
(4)Required area	Required area = Required surface area $\times 2.0$) (for maintenance space)
	Approximately : 80,494 n	n2

4. Design Flow = 10,000 m3/day (Daily average flow)

(1)Basic conditions	•Daily average flow = •Peak flow = •Design water quality		10,000 22,500	m3/d m3/d (Daily average×2.25)					
	Item I	the second secon		Removal Rate(%)					
	BOD(mg/l)	250	30	88.0					
	SS(mg/l)	350	100	71.4					
(2)Outline of	① Grit Chamber								
major facilities	Туре		rallel flow rectangular						
	Surface load	: 2,1	60	m3/m2/day					
	Required area	: 10	.42	m2					
	Unit number	; 2		unit(s)					
	Width	; 0.4	6. I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I	m/unit					
	Length	: 13	.0	m					
	Depth	: 0.3		m					
	② Anaerobic Pond								
	Туре			tangular pond					
	Retention day	: 5.0		day(s)					
	Required volume		,000	m3					
	Unit number	: 4		basin(s)					
	Depth	: 4.0)	m					
	Inlet BOD load	: 2,5	00.0	kgBOD/day					
	Areal BOD load	; 2,0	000	kgBOD/ha/day					
	Surface area	: 0.3	1	ha/basin					
	③ Facultative Pond								
	Type BOD remaval rati	0		tangular pond					
	at anaerobic pond			%					
	Inlet BOD load		00.0	kgBOD/day					
	Minimum temp.			°C					
	Areal BOD load	: 20	× T-120						
		38	0.0	kgBOD/ha/day					
	Required area	: 2.6	53	ha					
	Unit number	: 4		basin(s)					
	Depth	: 1.5	5	m					
	Surface area	: 0.6	6	ha/basin					
	Retention day	: 3.9		day(s)					

area 2 Anaerobic Pond : 12,500.0 m2 3 Facultative Pond : 26,315.8 m2		Туре		Embanl	ced rectang	gular pond
Depth: 1.2mUnit number: 4basin(s)Surface area: 1.04ha/basin(3)Required surface area① Grit Chamber: 10.4m2② Anaerobic Pond: 12,500.0m2③ Facultative Pond: 26,315.8m2		Retention day	1	5.0	da	ys
Unit number:4basin(s)Surface area:1.04ha/basin(3)Required surface area① Grit Chamber:10.4m2② Anaerobic Pond:12,500.0m2③ Facultative Pond:26,315.8m2		Required volume	\$	50,000	m.	3
Surface area: 1.04ha/basin(3)Required surface area① Grit Chamber ② Anaerobic Pond: 10.4m2③ Facultative Pond: 12,500.0m2③ Facultative Pond: 26,315.8m2		Depth	1	1.2	m	
(3)Required surface area① Grit Chamber: 10.4m2② Anaerobic Pond: 12,500.0m2③ Facultative Pond: 26,315.8m2		Unit number	1	4	ba	sin(s)
area 2 Anaerobic Pond : 12,500.0 m2 3 Facultative Pond : 26,315.8 m2		Surface area	-	1.04	ha	/basin
③ Facultative Pond : 26,315.8 m2	3)Required surface	① Grit Chamber		1	10.4	m2
	area	2 Anaerobic Pond		:	12,500.0	m2
(4) Maturation Pond : $41.666.7$ m ²		③ Facultative Pond		2	26,315.8	m2
		(4) Maturation Pond		:	41,666.7	m2
80,492.9 m2		No. of the local division of the local divis			80,492.9	m2
(4)Required area Required area = Required surface area $\times 2.0$ (for maintenance space)	A)Required area	Required area = Pequi	red	surfaces	area × 2 0 /	for maintenance space)

(2) Oxidation Ditch

Flow Chart of Oxidation Ditch

					T
Required	l and l	Area i	OF (widation	Ditch
1 count ou	THERE T	M CH I	11	Anderon	DITON

Design Flow (m3/day)		1,000	2,500	5,000	10,000	
Required Area	(m2)	1,140	2,399	4,448	8,592	

1. Design Flow = 1,000 m3/day (Daily average flow)

(1)Basic conditions	·Daily average flow	=	1,000	m3/day				
	•Peak flow =		3,000	m3/day	(Daily average×3.0)			
	•Design water quality							
	Item	Influen	t Effluent	Removal Rate(%)				
	BOD(mg/l) 25		30	88.0				
	SS(mg/l)	350	100	71.4	1.0			
(2)Outline of	① Grit Chamber	-						
major facilities	Туре	: I	arallel flow 1	ectangular				
	Surface load	2,160	m3/m2/day	7				
	Required area	- 31	.39	m2				
	Unit number	5 2		unit(s) , ir	cluding 1 Bypass			
	Width	: ().4	m/unit				
	Length	: 3	.5	m				
	Depth	: ().3	m				
	② Oxidation Ditch							
	Туре	Endless ditch	flow type					
	Hydraulic retent	ion		10 m				
	time	: 1	5.0	hours				
	Required volume	: : 6	625	m3/day				
	Depth	1.3	5.0	m				
	Unit number	+ 3		basin(s)				
	Width	: 4	.0	m				
	Length		26.0	m				

4)Required area	Required area = Requir	ed	surface at	rea×3.0	(for ma	intenance space)
				379.9	m2	
	6 Sludge Dewatering	1	:	100.0	_m2	(as building)
	⑤ Sludge Thickening		nk :	8.3	m2	
	④ Disinfection Tank		2	10.4	m2	
	③ Sedimentation Basi	n	÷.	50.0	m2	
	② Oxidation ditch		35	208.3	m2	
area	① Grit Chamber		::	2.8	m2	
3)Required surface	A PA COMPANY AND AND AND					
	Required capacity		. 1.0	п	1.5/111	
	Required capacity		: 1.0		17day 13/hr	
	Operation time	1 1	8.0		r/day	(including 1 stand-by)
	Unit number	1	2		nit(s)	(including 1 stand-by)
	Sludge volume		8.33		o (13/day	turcened studge)
	rate		97.0	0,	6 (°	Thickened sludge)
	Sludge moisture	÷	250.0	к	gDD/da	y
	Sludge content	•	250.0		gDS/day	U.
	Type		Centrifu	oglime		
	⑥ Sludge Dewatering					
	LTameter	1	4.9	- 11	, ,	
	Diameter	1	2.3	n		
	Depth	•	4.17	n	and a second second	
	Required area	* *	4.17		12/basin	
	Sludge content		250.0		gDS/da	v
	Unit number	÷	2		asin(s)	a cury
	Dry solid load		30.0		gDS/m2	
	Type			tank wit	h shượn	c collector
	⑤ Sludge Thickening	Ta	nk			
	Deligui	1	10.7	-11		
	Length	1	10.4	п		
	Depth	1	1.0	n		
	Width	-	1.0	n		
	Required volume		10.4		13	
	Retention time		15.0		nin	
	Type	Å	Chloring	tion type	a'	
	④ Disinfection Tank					
	Diameter	1	5.0	п	1/0a5III	
	Depth Diameter	1	5.6	n	ı ı/basin	
	Required area	3	4.0			2
		-	25.0		asin(s) 12/basin	
	Sueface load Unit number	3	20.0 2		13/m2/d	ау
	Type	:				e collector
			 Other states and states 	And the second se	1	sale bill albabala

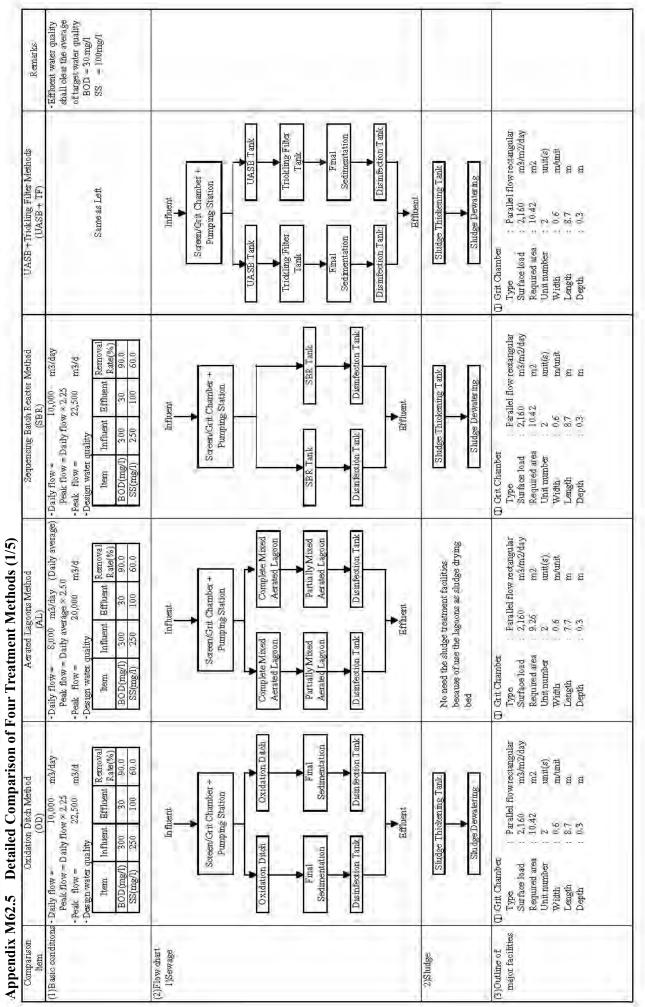
(1)Basic conditions	•Daily average flow •Peak flow = •Design water quali			2,500 7,500	m3/day m3/day	(Daily average×3.0)			
	Item Influent BOD(mg/l) 250		ent	Effluent	Removal Rate(%)				
)	30	88.0				
	SS(mg/l)	35()	100	71.4]			
(2)Outline of	① Grit Chamber		-						
major facilities	Туре	:	Para	allel flow r	ectangular				
and a second second	Surface load	\$	2,10	60	m3/m2/da	У			
	Required area		3.4	7	m2	a service and a service			
	Unit number	2	2		unit(s) , in	cluding 1 Bypass			
	Width				m/unit	0 1			
	Length				m				
	Depth	;	0.3		m				
	② Oxidation Ditch								
	Туре	-	End	lless ditch i	flow type				
	Hydraulic retent			and another a					
	time		15 0	0	hours				
	Required volum		1,5		m3/day				
	Depth		3.0		m				
	Unit number		2		basin(s)				
	Width	÷							
	Length		65.		m m				
	③ Sedimentation Basin								
	Type : Circular tank with sludge collector								
		*			and the second se				
	Sueface load	1	20.0	U.	m3/m2/da	У			
	Unit number		2	-	basin(s)				
	Required area	÷	62.:		m2/basin				
	Depth Diameter	÷	4.0 8.9		m m/basin				
	Diameter	1	0.9		m/oasm				
	Disinfection Tag	nk	C1.1						
	Type			orination ty	and the second se				
	Retention time	8	15.0		min				
	Required volum	e :	26.0	0	m3				
	Width	\$	1.0		m				
	Depth	÷	1.0		m				
	Length	1	26.0	0	m				
	⑤ Sludge Thicken	ing Ta							
	Туре	-			with sludge				
	Dry solid load	-	30,0	0	kgDS/m2/	day			
	Unit number	:	2		basin(s)				
	Sludge content	2	625	.0	kgDS/day				

2. Design Flow = 2,500 m3/day (Daily average flow)

	Required area :	10.42	m	2/basin	
	Depth :	4.0	m		
	Diameter :	3.6	m		
	⑥ Sludge Dewatering				
	Type :	Centrifu	galtype		
	Sludge content : Sludge moisture			DS/day	ý
	rate :	97.0	%	()	Thickened sludge)
	Sludge volume :	20.83	m	3/day	
	Unit number :	2	un	iit(s)	(including 1 stand-by)
	Operation time :	8.0	hr	/day	
	Required capacity	: 2.6	m	3/hr	
(3)Required surface				1	
area	① Grit Chamber	1	6.9	m2	
	② Oxidation ditch	2	520.8	m2	
	③ Sedimentation Basin		125.0	m2	
	④ Disinfection Tank	*	26.0	m2	
	⑤ Sludge Thickening Ta	nk :	20.8	m2	
	6 Sludge Dewatering	2	100.0	m2	(as building)
	the second se		799.7	m2	And the second second second
	a start a start		_		
(4)Required area	Required area = Required	surface a	ea×3.0	(for ma	intenance space)
	A service state and the		00.0		
	Approximately	_: 2,3	99.0 m	2	

3. Design Flow = 5,000 m3/day (Daily average flow)

(1)Basic conditions	•Daily average flow •Peak flow = •Design water quali	5,000 12,500	m3/day m3/day	(Daily average×2.5)	
	Item Influen		Effluent	Removal Rate(%)	
	BOD(mg/l)	250	30	88.0	Î l
	SS(mg/l)	350	100	71.4	1
(2)Outline of major facilities	 Grit Chamber Type Surface load Required area Unit number Width Length 	: 2,1 : 5.7 : 2 : 0.4 : 7,2	9	ectangular m3/m2/day m2 unit(s) m/unit m	ŕ
	Depth ② Oxidation Ditch Type Hydraulic retent time 	: En tion	dless ditch	m flow type hours	


	I Part I want			1,482.5	m2	
	6 Sludge Dewatering		*	100.0	_m2	(as building)
	⑤ Sludge Thickening		ık :	41.7	m2	
	④ Disinfection Tank		0	43.4	m2	
	③ Sedimentation Basi	in	*	250.0	in2	
	2 Oxidation ditch		3	1041.7	m2	
area	① Grit Chamber		1	5.8	m2	
3)Required surface	1			-	-	
	Required capacity		: 5.2	m	13/hr	
	Operation time	÷	8.0		/day	
	Unit number	3	2		nit(s)	(including 1 stand-by)
	Sludge volume	3	41.67		3/day	
	rate	1	97.0	%		Thickened sludge)
	Sludge moisture	4	157 K	<i>R</i> .		PL: Jacobia Jack
	Sludge content	êné-	1,250.0	Kį	gDS/day	6
	Type Sludge content	-	Centrifu	gartype	-D9/1	
	⑤ Sludge Dewatering Ture	ŝ.,	Contale	mltom		
	(6) Shudaa Damatani					
	Diameter	1	3.2	m		
				m		
			4.0			
	Required area				2/basin	
	Sludge content				gDS/day	i
	Unit number				asin(s)	a rue y
	Dry solid load	1	30.0	taus with	gDS/m2	/day
	Type	1 al	Circulor	tonk with	i sludos	collector
	5 Sludge Thickening	Тя	nk			
	LAIGUI	-	30.2			
	Length	-	36.2	m		
	Depth		1.2	m		
	Width			m		
	Required volume			m	100	
	Retention time			m m		
	Type	÷	Chlorina	tion type	1	
	(4) Disinfection Tank					
	Lonanotor	1		-10	. oudin	
			12.6		/basin	
	Depth		4.0	m		
	Required area	-	125.0		2/basin	
	Unit number	-			asin(s)	1
	Type Sueface load		20.0		3/m2/d	
	the first in the state of the		Circular	tank with	ı sludge	collector
	③ Sedimentation Basi	in				
	Length	÷.	130.2	m		
	Width Length	-	4.0	m		
	Depth Unit number Width	-	4.0		asin(s)	
	Depth	1	3.0	m		
	Deeth		2.0			

(4)Required area	Required area = Required	ed surfa	ace area ×	3.0 (for maintenance space)
	Approximately	- 4	4,447.6	<u>m2</u>

4. Design Flow = 10,000 m3/day (Daily average flow)

(1)Basic conditions	•Daily average flow •Peak flow =	=	10,000 22,500	m3/day m3/day	(Daily average×2.25)
	·Design water quali	tv			(and a second second
	Item	Influent	Effluent	Removal Rate(%)]
	BOD(mg/l)	250	30	88.0	
	SS(mg/l)	350	100	71.4	
(2)Outline of	① Grit Chamber				
major facilities	Туре	: Par	allel flow r	ectangular	
A March 1 and 1	Surface load	; 2,1		m3/m2/day	1
	Required area	: 10.		m2	
	Unit number	: 2		unit(s)	
	Width	; 0.6		m/unit	
	Length	: 8.7		m	
	Depth	; 0.3		m	
	② Oxidation Ditch				
	Туре		dless ditch i	flow type	
	Hydraulic retent				
	time		0	hours	
	Required volum			m3/day	
	Depth	: 3.0		m	
	Unit number	: 4		basin(s)	
	Width	: 4.0		m	
	Length	: 130).2	m	
	③ Sedimentation E				
	Туре			with sludge of	collector
	Sueface load	: 20.	Q	m3/m2/day	1
	Unit number	: 4		basin(s)	
	Required area		5.0	m2/basin	
	Depth	: 4.0		m	
	Diameter	: 12.	6	m/basin	
	(4) Disinfection Tai				
	Туре		lorination t		
	Retention time	: 15.		min	
	Required volum			m3	
	Width	: 1.5		m	
	Depth	: 1.2		m	
	Length	: 57.	9	m	

(4)Required area	Required area = Require	ed	surface a	rea×3.	0 (for n	naintenance space)
				2,863.	9 m2	
	6 Sludge Dewatering	<u>d</u>	1	100.0	_	S
	⑤ Sludge Thickening	Tar		83.3		
	④ Disinfection Tank			86.8	ALCORE P	
	③ Sedimentation Basin	à		500.0	N MIC-1	
	② Oxidation ditch		3	2,083.	3 m2	
3)Required surface area	① Grit Chamber		÷.	10.4	m2	
	required capacity		. 10.1		1113/111	-
	Required capacity	100	: 10.4		m3/hr	
	Operation time	ĵ.	8.0		hr/day	(menuang i stand-by)
	Unit number		2		unit(s)	
	Sludge volume	1	83.33		m3/day	
	rate		97.0		%	(Thickened sludge)
	Sludge moisture	T.	2,000.0		ngup/c	u y
	Sludge content		2,500.0		kgDS/d	av
	Type		Centrifu	patityn	A	
	6 Sludge Dewatering					
	Diameter	÷	7.3		m	
	Depth	\$	4.0		m	
	Required area	2	41.67		m2/bas	in
	Sludge content	-	2,500.0		kgDS/c	
	Unit number	3	2		basin(s	
	Dry solid load	\$	30.0		kgDS/n	
	Туре	÷				ge collector

M62 - 22

Remarks		let et																																(UASB)		Organic so lid rate		$(1/10\times c_1)^{+2}$	- 1500×0.65	= 975 heDS/day	Int. 12-194			
er Methods 7)	C Dalle G	i Upflow Anserobic Sludge Blanket	lcg/m3/day	lkg/day	m3	basin(s)	B	B			- Trites	C FILLEL	Valuation (a)	(a)moon	min series	m/haein		ļ	: Circular tank with sludge		m3/m2/day	Dasm(s)	mu/umi	III molecular	TTI SIDIA /TTT		1	Chlumation Type	10111	500 E	E	8			: Circular tank with sludge		lkgDS/m2/day	Dasm(s)	m?/hasin	i in the second	1 8			m3/hr
UASB + TrickIng Filter Methods (UASB + TF)	Ē	dow Anaero	: 1.5	: 3,000	= 2,000	4	. 10.0	. 5,0	: 10.0	- mite	and.	nign-rate Filter	- 4	- 100.0	0.0	11.3		ion Tank	: Circular	collector	: 20/0	4	n'c7.1	19.6				: Chlorina			: 1.2	57.9	1	ng Tank	: Circular	collector	: 30,0	0. Z	- 16.75	4.0	4.5		30	9 : 4.I
UASB + II)	© UASB Tank	Type ! Upf	volu	Inlet BOD	E	mber			Length	[5] Triddline Eilter Tamle	C ILLIGUING FUIGT 1	Type i Ten i Ten	Alcal Huch Joan			5		(2) Final Sedimentation Tank	Type				d area.	napu		4 4	A DISTRICTION LANK	Type Platention time	Distant and an house	Width Wolum	Denth			(6) Sludge Thickening Tank	Type		Dry solid load		Remited area		15		D Sludge Dewatering	Required capacity
Sequencing Batch Reactor Method (SBR.)	000	Rectangle Tank	Itg/ItgSS/day	mg/l	cycle/day	a	hr/cycle.	basm(s)	ht/cycle			=	₫ \$	1							Chlorimation Type	un ,	SI I	8 1	3 8		and the second second	: Circular tank with sludge	In Det In The	basin(s)	ItoDS/dav	m2/basin	ш	ш			Centrifugal type	Kgu/day	50	malday	unit(s)	(including l stand-by)	hu/day	m3/hr
g Batch Kea (SBR)	2	Redang	0.30	: 1,750	ম -	100	: 6.0	64	: 4.6	010 7 0/10		14.0	275	- 214M							Chlorina			11	57.9	1	ng Lank	: Circular	20.0	2010	1.500	25,00	4.0	5.6				nnc(1 :	0.7.0	50.00	5		: 8.0	W = 6.3
nouenper	SBR. Tank	Type	BOD-SS load	MLSS quality	Cycle	Pull-out ratio	Cycle time	Basin number	Aeration time	Demined million - 7 500	Parts vuluits	nebru	T anoth	The Street			0	2		Disinfection Tank	Type	Ketention time	Kequired volum	Treath	Length	1	D Plugge I mercaning 1 and	Type	There and id land	Unit number	Sludse content	Required area	Depth	Diameter		(6) Sludge Dewatering	Type	allage content	audge moisuure	Shidoe wohime	Unit number		Operation time	Required capacity
1emoa	con	e Tank	day				ш	ш			The second se	T LATIC	uay	(s)mm	in the	1 8	: 8				Chlormation Type	um	m3	81	1 8																			
Actated Lagoons Mennod (AL)	Aerated La	Redangl	2.5		; 20,000	3,0	30.0	: 27.8		eroted Laco	Dan Lagu	Reconded Lank	2 \$ - t		8 F	30.0	29.6				Chlorma				46.3	ł	ng tanuc			0						ŝu								
Actato	② Complete Mixed	Type Rectangle Tank	Retention time	Unit number	Required volum	Depth	Width	Length		(3) Boutilly Adved A metad I access	E L'AUMILY INITAGUA	1ype	I lot someher	Damined molenn	Danth Town	Turter	Length)		Disinfection Tank	Type	Ketention time	Kequired volum	UIDIW	Length	i i	andge intereming tante		1						and a second	6 Sludge Dewatering								
Idunoa		Circulation Channel	hr(s)	m3/day	g	basin(s)	EI.	B			as un Att an house that have been a	ante wurt studge	and long line	hacinfel	timuy	m	m/basin				Chlormation Type	um.	E S	8 1	18		N 400 2 2	 Creatar tank with sludge 	In Diction of Man	basin(s)	Ice/DS/dav	m2/basin	m	n			altype	Kgus/aay	24	m2/dav	unit(s)	(including I stand-by)	hr/day	m3/hr
Oxidation Ditch Method (OD)		Croulati	15.0	: 6,250	: 3.0	4	: 4,0	130,2		air.	ant and a	- LUCULAI	00000	A	195.0	4.0	12.6				Chlorman	10.01	104.2	n	57.9		18 Lank	Croulart	· 20 0	. 2	1.500	25,00	4.0	\$ 5.6		5	Centrifugal type	. 1,200	07.0	50.00	. 0)	(includin)	ŝ	9 : 6.3
UXIDAT	C Oxidation Ditch	Type	Retention time	Required volum	Depth	Unitnumber	Width	Length		(7) Cadimontation Daris	T	1 Abc	Criefinge land	I finit mumber			er			(Disinfection Tank	Type	Ketention time	umioy pa		Length		= 1 III CICEN III	Type	Dure as list land	Unit number	Sludge content.	Required area	Depth	Diameter		(6) Sludge Dewatering			audge mousture	Shidoe mulime	Unit number		Operation time	Required capacity
Comparison Item																																												

(2/5)

Comparison Item	(4)Required site Surface area Required site area	(5)Retention time (6)Required load
1 Ozidation Ditch Method (OD)	 Crit Chamber Crit Chamber Coxidation Ditch Soldmentation Basi Solo 0 Sedmentation Tank Solo 0 Disinfection Tank Solo 0 Shidge Dewatering 100.0 M2 Shidge Dewatering 100.0 M2 Shidge Dewatering Solo 6 Shidge Dewatering Solo 733.6 Surface area × 4.5 12,738 M2 Approximately 12,800 M2 	The Considerion Direction 15,0 hrs Considerentation 14,8 hrs Considerentation 14,8 hrs Considerentation 14,8 hrs Considerent 14,8 hrs Considerent 25,0 key \times 3 units = 75,0 key Sewage lift pump 25,0 key \times 3 units = 75,0 key Considerent Direction Direction 15,0 key Acrator Considerent Direction 15,0 key Considerent Studge Pump Considerent Studge Pump Co
Acrated Lagoons Method (AL)	0. Grit Chamber 9.3 m2 2. Complete Mixed Lagoon 6,666.7 m2 3. Partially Mixed Lagoon 10,666.7 m2 3. Partially Mixed Lagoon 10,666.7 m2 4. Disinfection Tank 69.4 m2 6. Thickening Tank 1 - m2 m2 6. Shidse Dewatering 1 - m2 m2 7. Total) 17,412.0 m2 Surface area × 4.5 78,354 m2 Approximately 78,400 m2	
Sequencing Batch Reactor Method (SBR)	 D. Grit Chamber 10.4 m2 S. S.R. Tank 1.875.0 m2 S. S. m2 Disinfection Tank 86.8 m2 Thickening Tank 86.8 m2 Thickening Tank 1.900.0 m2 S. Sludge Dewatering 100.0 m2 (Total) 2.122.2 m2 Surface area × 4.5 9,550 m2 Approximately 9,600 m2 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
UASB + Trickling Filter Methods (UASB + TF)	① Grit Chamber 10.4 m2 ② UASB Tank 400.0 m2 ③ Trickling Filter 400.0 m2 ④ Final Sedimentation 500.0 m2 ④ Thickling Tank 500.0 m2 ⑥ Thicklening Tank 32.5 m2 ⑥ Sindge Dewatering 100.0 m2 ⑧ Sindge Dewatering 1.529.7 m2 ⑧ Surface area × 4.5 6.884 m2 Åpproximately 6,900 m2	$ \begin{array}{c} \hline \label{eq:constraint} \hline \end{tabular} tabu$
Remarks		 Major equipment only Loade values are assumed based on the experience Pump speafination 200mm×5.2m3/mm y5mx25[wv4(1))

M62 - 24

(3/5)

Comparison Item (7) Treatment	Oxidation Ditch Method (OD)	AeratedLagoons Method (AL)	Sequencing Batch Reactor Method (SBR)	UASB +TricklingFuter Methods (UASB + TF)	
characteristics • BOD removal rate	 Target treatment water quality can be easily cleared by this high level method 	· Same as Left	· Same as Left	 It is possible to clear the effluent quality standard by combining the UASB with TF methods 	
	 BOD removal rate = 90 - 95 % 	 BOD removal rate = 70 - 90 % 	 BOD removal rate = 90 - 95 % 	 BOD rem oval rate = 80 - 90 % 	
Stability and flexibility of treatment	 Stable for load flactuations by long retention time 	 Stable for load flactuations by long retention time 	 Unstable for load flactuations by shorter retention time 	 Unstable for load flactuations by shorter retention time 	
 Sludge treatment 	 Excess sludge at sedimentation tank must be treated Sedimented sludge must be removed after by thickening tank and dew atering facility discharging the lagoon water 		 Setämented äluige at SBR must be drawn and treated by thickening tank and dew atering facility 	 Excess sludge at sedimentation tank must be treated by sludge treatment processes 	
 (8) Operation and maintenance Laborer for 0 & M 	 Moderate numbers of staff and fewer numbers than the Conventional Activated Sludge Method 	• Fewer numbers than other two alternatives	 Moderate numbers of staff and fewer numbers than the Conventional Activated Sludge Method 	 More numbers of stuffs than other three alternatives 	
Technical level	 Mean level in the Activated Sludge Process 	 Low level in the Activated Sludge Process 	 Meanlevel in the Activated Sludge Process 	 Mean level in the Activated Sludge Process 	
· Biochemical	· Biochemical management is necessary	· Same as Left	· Same as Left	 Biochemical management is necessary 	
• Maintenance work	 Moderate numbers of equipment and maintenance work items 	- $F \operatorname{ew}$ ruumbers of equipment and maintenance work items	 Moderate numbers of eauipment and maintenance work items 	 Many numbers of equipment and maintenance work items 	
 Operation of equipment 	 Every equipment should be operated properly 	• Same asLeft	 Every equipment, especially decarter, should be operated properly 	 Every equipment should be operated properly 	
 (9) Environmental Impact Odor Odor Injurious insect None 	 O dor at screen&grit chamber, studge thickening tank and studge from dewatering facility N one 	 Odor at screen&git chamber Same as Left 	 Odor at screen&grit chamber, sludge thickening tank and sludge from dewatering facility Same as Left 	Odor at screen&grit chamber, studge thickening tank and studge from dew atering facility facility Same as Left , Many files and mosquitoes are generated frequently	
(10) Initial Cost (1) Construction cost	12.00 Rs croce	5.62 Rs arae	10.70 Rscrote	14.50 Rs at ate	• refer to Appendix
l acquisitio	 Land acquisition Unit price of lanc 26,662,400 Rs Acquisition cost 26,662,400 Rs Total cost 1467 Rs crose (100 %) 	 Unit price of lanc : 2,083 Rs/m² Acquisition cost : 163,307,200 Rs Total cost : 21.95 Rs crore (150 %) 	 Unit price of lanc : 2,033 Rs/m² Acquisition cost : 19,996,800 Rs Total cost : 12.70 Rs crore (87 %) 	 Unit price of land : 2,083 Rs/m² Acquisition cost : 14,372,700 Rs Total cost : 15.94 Rs crore (109 %) 	

(4/5)

Remarks	• Unit paice of chlorine 18.50 Rang	 Unit price of polymer 500.0 RsAg 	 Unit cost of electric charge = 3.0 Raftwh 	 Labor cost (Rasmorth) Chief = 15,000 Technitan = 10,000 Operator = 7,500 Laborer = 4,000 	 For minor equipment repaining drop of oil and exchange of spare parts 	
UASB +InckingFilter Methods (UASB + TF)	Same as Left = 202,575 Raiyear	: Polymer : 5.0 kg/DS ton : x 10 ⁻³ = 4.9 kg/day × 500.00 = 889,688 Rs/year	365 = 1,182,600 kwh/year 3.0 = <u>3</u> ,547,800 Rafyear	 × 12 = 180,000 Rafyear × 12 = 360,000 Rafyear × 12 = 720,000 Rafyear × 12 = 960,000 Rafyear 2,220,000 Rafyear 	998,623 Rafyear	202,575 Rafywar 889,688 Rafywar 3,547,800 Rafywar 2,220,000 Rafywar 9,98,623 Rafywar 7,858,686 Rafywar (65 %)
+ 90%n		Type Dosage rate Required volume 975 × 50	, 135 × 24 × , 1,182,600 ×	 Chief 1 × 15,000 Technikan Technikan 3 × 10,000 Operator 8 × 7,500 Laborer 20 × 4,000 	(ZO-@)×15%	 Chemical cost Polymer cost Electric charge Labor cost Repair cost others
Sequencing Batch Keactor Method (SBR)	Same as Left = 202,575 Rs/year	: Polymer 5.0 kg/DS ton 5.0 × 10 ³ = 7.5 kg/day × 500.00 = 1,368,750 Rø/year	365 = 2,452,800 kwhýreat . 10 = 7,338,400 Rayreat .	 × 12 = 180,000 Rs/year × 12 = 240,000 Rs/year × 12 = 450,000 Rs/year × 12 = 720,000 Rs/year 1,590,000 Rs/year 	1,547,573 Raiyear	202,575 Rafyeat 1,363,50 Rafyeat 7,338,400 Rafyeat 1,590,000 Rafyeat 1,547,573 Rafyeat 1,2,067,298 Rafyeat (100 %)
Brumanbac	72	Type Dosege rate Required volume 1,500 × 5	• 280 × 24 × • 2,452,800 × 3	 Chief 1 × 15,000 T = 15,000 T = 10,000 Operator S × 7,500 Laborer Laborer 	(200-④)×15%	 Chentical cost Polym er cost Polym er cost Electric charge Labor cost Repair cost others
AR ART AGOUD MELLON	Same as Left = 202,575 Rayyear		365 = 2,365,200 kwhlyeæ 8.0 = 7,095,600 Rølveæ	 × 12 = 130,000 Rs/year × 12 = 120,000 Rs/year × 12 = 270,000 Rs/year × 12 = 238,000 Rs/year × 12 = 238,000 Rs/year 	835,128 Rayear	202,575 Rafyear 0 Rafyear 7,095600 Rafyear 858,0000 Rafyear 835,128 Rafyear 8,991,303 Rafyear (75 %)
500 BC	10		61	 Chief Chief 1 × 15,000 Technitian 1 × 10,000 Operator 3 × 7,500 Laborer 6 × 4,000 	(ZD-@)*10%	 Chemical cost Polymer cost Elettir charge Labor cost Labor cost Repair cost, others
(OD)	Chlorine 3.0 mg/ 3.0 × 10 ³ = 30.0 kg/day × 18.50 = 202.575 Rs/year	e :: Polymer 	$. 280 \times 24 \times 365 = 2,452,800 \text{ kwblyear} , 270 \times 24 \times \\ . 2,452,800 \times 30 = 7,358,400 \text{ Rsivest} $. 2,365,200 ×	 × 12 = 180,000 Rshreat × 12 = 240,000 Rshreat × 12 = 450,000 Rshreat × 12 = 720,000 Rshreat 1,590,000 Rshreat 	1,547,573 Rshea	202,575 Rafyear 1,368,750 Rafyear 7,358,400 Rafyear 1,590,000 Rafyear 1,547,573 Rafyear 1,547,593 Rafyear (100 %)
CALUM	Type Dosage rate Required volume : 10,000 × 3.0 • 30.0 × 365 ×	Type Dosage tate Required volume 1,500 × 5	• 280 × 24 × • 2,452,800 × 3	 Chief Technitian Technitian X 15,000 Technitian X 10,000 Operator S × 7,500 Laborer 15 × 4,000 	(20-@)×15%	Chenical cost Polymer cost Electric charge Labor cost Repair cost, others
Item	(11) O&M Cost (1) O&M Cost (1) Chlarine cost Expense fa (1) Chlarine	2 Polymer cost Expense for Chlorine	 ③ Electric charge Consumed electricity Electric charge 	(f) Labor cost	G Repair cost, others (ZO-Q)×15%	© Total cost

(5/5)

M62 - 26

Note: Design Sewage Flow of AL Method

AL method is usually designed less sewage flow than OD or SBR, such as daily average flow for AL and daily maximum flow for OD/SBR, because AL's longer hydraulic retention time mitigates sewage inflow fluctuation. In this project, sewage treatment plants are designed by daily average flow for any treatment method though, AL was calculated by smaller flow such as 8,000 m³/day as usual comparison with OD/SBR. Consequently construction cost of AL in this comparison becomes smaller than necessary capacity, however, AL was not evaluated advantageous considering with other factors.

Appendix M62.6 Selection of Sludge Treatment Method

The commonly used methods to treat and to dispose sludge are listed in Table 62.6.1.

Table Moz.o.1 Sludge Treatment and Disposal M	ethous
Unit process	Function
1. Thickening process	
(1) Gravity thickening	Volume reduction
(2) Flotation thickening	Volume reduction
(3) Centrifugal thickening	Volume reduction
(4) Rotary drum thickening	Volume reduction
2. Stabilization process	
(1) Digestion	
- Anaerobic digestion	Stabilization, mass reduction
- Aerobic digestion	Stabilization, mass reduction
(2) Composting	Stabilization
3. Dewatering	
(1) Mechanical Dewatering	
Vacuum filter	Volume reduction
Centrifuge	Volume reduction
Belt press	Volume reduction
(2) Sludge drying beds	Volume reduction
4. Sludge disposal	
(1) Landfill	Final disposal
(2) Land reclamation	Final disposal
(3) Reuse as land application	
Agriculture, Green space, Forest, etc.	Final disposal
(4) Chemical fixation	Final disposal, beneficial use

 Table M62.6.1
 Sludge Treatment and Disposal Methods

Sludge treatment method shall be suitable for the proposed sludge disposal methods. Table M62.6.2 shows the relationships between disposal methods and possible sludge conditions.

Table Moz.0.2 Slud	ge Conditions and 1 035	sibie Disposal Methods	
Item	Digested sludge	Dewatered sludge	Composted sludge
Land fill		0	0
Land reclamation		0	0
Agriculture reuse	0	0	0
Green space reuse	0	0	0

 Table M62.6.2
 Sludge Conditions and Possible Disposal Methods

Appendix M62.7 Study on STP Cost for Comparison of Treatment Methods

(1) Study on Preliminary Cost Estimates for the Proposed STPs

1 References for Cost Estimation

- ① Final Report on Water Quality Management Plan for Ganga River, 2005
- 2 Study reports conducted by the Goa State
- ③ Others (photographs, etc.)

2 Applicable Sewage Treatment Processes

- Oxidation Ditch (OD) Process
- Aerated Lagoon (AL) Process
- · Sequencing Batch Reactor (SBR) Process
- Upflow Anaerobic Sludge Blanket (UASB) Process + Trickling Filter (TF) Process

3 Comparison of the Unit Construction Cost of Sewage Treatment Plant in the Ganga Project and the Goa Project

The unit construction cost of STP per sewage flow (MLD) is compared for the same treatment process.

 Compared process
 : Stabilization Ponds Process

 Unit construction cost in Ganga Project (refer to the Ganga Report page 5-22)

 :
 1.6 million Rs/MLD

 Unit construction cost in Goa Project (refer to the Mapusa F/S Report)

 :
 4.5 million Rs/MLD

Unit cost comparison : 4.5/1.6 = 2.81Therefore, the unit cost in the Goa Project is 2.81 times higher than that of the Ganga Project.

4 Unit Construction Cost of the Oxidation Ditch Process

The unit construction cost will be based on the "F/S Report for Sewage System at North Coastal Belt".

Design Flow	3	5,300	m3	/day				
Cost Estimates	3	635	Rs	lakhs	. =		63,500,000 Rs	
Unit cost	3	63,500,	000	1	5,300	=	12.0 million Rs/MLD	

The above unit cost is based on the cost of the extended aeration process, and it could be applied for OD process based on the following reasons.

- The reactor tanks of both processes have the same volume because the calculated retention time of the extended aeration is the same as the time of the OD process.
- · Both processes are composed of the similar unit process

5 Unit Construction Cost of the Aerated lagoon Process

The unit construction cost per sewage flow (MLD) is calculated based on the Ganga Report and the above Section 3.

Unit cost in the Ganga Project	:	2.5	million	n Rs/M	1 LD		
Price deference between Ganga	and (Goa			2.81	tir	nes
Unit cost in the Goa Project	4	2.5	×	2.81	=	7.03	million Rs/MLD

6 Unit Construction Cost of the SBR Process

The unit construction cost per sewage flow (MLD) is calculated based on the price which was shown on the signboard at the construction period at the Panaji STP.

Construction cost : 133,252,100 Rs

	3,252,100 / UASB + TF) UASB Proce 2.5 Rs m based on the Ganga Projec) Process ss per sewage : illion/MLD construction co	(refer) ost of the DHS	s calculated ba to the Ganga R S (Downflow F	Report) Hanging	
ion Cost of the (U ction cost of the U ss : TF is calculated b proposed in the (: er :	UASB + TF) UASB Proce 2.5 Rs m based on the Ganga Projec 1,000 m) Process ss per sewage : illion/MLD construction co ct, taking into a	flow (MLD) is (refer t ost of the DHS	s calculated ba to the Ganga R S (Downflow F	Report) Hanging	
ction cost of the U ss : TF is calculated b proposed in the (er : :	UASB Proce 2.5 Rs m based on the Ganga Projec 1,000 m	illion/MLD construction co ct, taking into a	(refer) ost of the DHS	to the Ganga R S (Downflow F	Report) Hanging	
ction cost of the U ss : TF is calculated b proposed in the (er : :	UASB Proce 2.5 Rs m based on the Ganga Projec 1,000 m	illion/MLD construction co ct, taking into a	(refer) ost of the DHS	to the Ganga R S (Downflow F	Report) Hanging	
ss : TF is calculated b proposed in the (: er : :	2.5 Rs m based on the Ganga Projec 1,000 m	illion/MLD construction co ct, taking into a	(refer) ost of the DHS	to the Ganga R S (Downflow F	Report) Hanging	
TF is calculated b proposed in the (er : :	oased on the Ganga Projec 1,000 m	construction co ct, taking into a	ost of the DHS	S (Downflow F	Hanging	
TF is calculated b proposed in the (er : :	oased on the Ganga Projec 1,000 m	construction co ct, taking into a	ost of the DHS	S (Downflow F	Hanging	
proposed in the (er : :	Ganga Projec 1,000 m	ct, taking into a		and the second se	~ ~	
proposed in the (er : :	Ganga Projec 1,000 m	ct, taking into a		and the second se	~ ~	
4		3/day			ading.	
4						
; , the water surfac						
, the water surfac	23.75 m	2				
A DAME AND ADDRESS OF A DAME AND A						
1		23.75 =	42.11 m3	/m2/day		
e area in TF	1 million and the second	1	25.0 m3/m2			
1727017 10				A		
ction cost of TF F	Process is pre	esented as show	wn below.			
	Charles Shakes of Constants					
FF Process	: 4.	5×(25.0/42.11)) = 2.6	67 million Rs.	/MLD	
				d.		
	5.17×2.81	= 14.5 mm	llion Rs/MLD	£		
		2	1.050 0)	and the second		
			nated based of	n the Ganga Ke	eport.	
t in c			200X	2001		
				20%		
In c			·	T al And		
			60% :	40%		
				The same surgers		
		1 141	NEW CONTRACT	(UASB+TF) Process		
40%	20%	F.	40%	35%	1	
	iction cost of TF F DHS Process TF Process n cost of the UAS n cost of the UAS Civil Works Cost etween civil works rt in c	action cost of TF Process : 4DHS Process : 4TF Process : 4n cost of the UASB and TF Pr $2.5 + 2.67$ n cost of the UASB and TF Pr 5.17×2.81 Civil Works Costs to Mechan etween civil works and M&E of tt in case of the A $= 0$ In case of the A $= 0$ ost composition of STP is show OD Process AL Proc 60%	action cost of TF Process is presented as showDHS Process:4.5million RTF Process:4.5×(25.0/42.11)n cost of the UASB and TF Processes in the $2.5 \pm 2.67 = 5.17$ millionn cost of the UASB and TF Processes in the $5.17 \times 2.81 = 14.5$ millionCivil Works Costs to Mechanical and Elect etween civil works and M&E works are estimentin case of the AL process $= C: M&E =$ In case of the activated sludge $= C: M&E =$ ost composition of STP is shown below.OD ProcessAL Process60%80%	action cost of TF Process is presented as shown below.DHS Process: 4.5 million Rs/MLDTF Process: 4.5×(25.0/42.11)TF Process: 4.5×(25.0/42.11)n cost of the UASB and TF Processes in the Ganga Prc : $2.5 + 2.67$ = 5.17 million Rs/MLDn cost of the UASB and TF Processes in the Goa Proje : 5.17×2.81 = 14.5 million Rs/MLDCivil Works Costs to Mechanical and Electrical (M&E)etween civil works and M&E works are estimated based orrtin case of the AL process=C: M&E= 80%:In case of the activated sludge process=C: M&E= 60%::ost composition of STP is shown below.:OD ProcessAL Process60%80%	action cost of TF Process is presented as shown below. DHS Process : 4.5 million Rs/MLD TF Process : 4.5 \times (25.0/42.11) = 2.67 million Rs n cost of the UASB and TF Processes in the Ganga Pr : 2.5 + 2.67 = 5.17 million Rs/MLD n cost of the UASB and TF Processes in the Goa Proje : 5.17 \times 2.81 = <u>14.5 million Rs/MLD</u> Civil Works Costs to Mechanical and Electrical (M&E) Works Costs etween civil works and M&E works are estimated based on the Ganga Ro rt in case of the AL process = C : M&E = 80% : 20% In case of the activated sludge process = C : M&E = 60% : 40% ost composition of STP is shown below. <u>OD Process AL Process SBR Process (UASB+TF)</u> <u>60% 80% 60% 65%</u>	

10,000

5.80

8.70

14.50

14.50

(UASB+TF) Process

10 Land Acquisition Cost

Unit price for land acquisition cost is presented below based on the information provided by the PWD about the proposed six STP sites.

St. Crus	Porvorim	Ponda	Mapusa	Colva	Baga
2.500	2.000	1.500	2,000	1.500	3,000

Average Unit Price of Land : 2,083 Rs/m2

Land acquisition Cost for Proposed Treatment Processes

Treatment Process	Required Land Area (m2)	Unit cost Rs/m2	Land acquisition Cost (Rs)			
OD Process	12,800	1 P	26,666,667 163,333,333			
AL Process	78,400	0.002				
SBR Process	9,600	2,083	20,000,000 14,375,000			
UASB+TF) Process	6,900					

(2) Study on the Unit Cost of the Construction Cost for the New STP Facilities in Goa

1 Study Report for the Mapusa Proposed STP

12,000 m3/day Design Flow - 31 Treatment Process: Oxidation Ponds (Stabilization Pond) $: 51,000,000 \times (1.05+1.02)$ 54,570,000 Cost Rs -Unit Cost : 54,570,000/12,000 = 4,548 Rs/m3 "Consultancy Services for Preparation of Feasibility Report on Sewerage System for Mapusa Town, Feasibility Study, April 2002"

2 Study Report for the Porvorim Proposed STP

Design Flow:4,500m3/dayTreatment Process:Activated sludgeCost:965,000euro=53,075,000Rs(1euro = 55Rs)Unit Cost::53,075,000/4,500=11,794Rs/m3

"Prefeasibility Study, Goa/Porvorim, Wastewater Treatment Plant / Sewer System"

3 North Coastal Belt Proposed STP

Design Fl	ow		:	5,300	m3/day	t			
Treatment	Pro	cess:	Ext	ended.	Aeration				
Cost	2	63	,500,00)0 F	ζs				
Unit Cost			: 63,	500,00	0/5,300	-	11,981	Rs/m3	

"Feasibility Report for Sewage System at Calangute and Candolim of North Goa"

4 Panaji STP (SBR Method)

Construction Cost		1	1,332	Lal	chs				
Design Flow		\$	12,50	00	m3/day	7			
Unit Cost	1	1323	200000/2	12,50	00 =	-	10,656	Rs/m3	

"Construction cost is referred to the picture which was standing near the SBR Plant."

(3) Study on the Required Electricity in the Aerated Lagoon Process

Fully Aerobic Tank	1	12-14	=> 13.0	kwh/persor	n/year			
Facultative Aerobic Tank	¢.	12-15	=> 14.0	kwh/perso	n/year			
Required Electricity Accordin	ıg to	the CPH	EEO Mar	iual				
Design flow	:	8,000	m3/day					
Unit sewage flow	:	150	1/person/	day				
Design population	1	8,000/0.1	15 =	53,333	persons			
Required electricity for the	compl	lete mixe	d lagoon	: 53,300	<13.0/(365×24)	12	79.1	kw
	-	mixed l	-	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	14.0/(365×24)	-	85.2	

3 Required Electricity for the Aerator Equipment

Complete Mixed Lagoon	: unit number = 32 units	79.1/32 = 2.5 kw	
	2.5 $ ightarrow$ 3.0 kw st	32 units = 96 kw	
Partial Mixed Lagoon	: unit number = 48 units	85.2 / 48 = 1.8 kw	
	$1.8 \rightarrow 2.2$ kw $ imes$	48 units = 105.6 kw	

(4) Chemical (Polymer Coagulant) Cost for the Sludge Treatment Process

1 Chemical Dosage										
Polymer dosage for the centrif	'ugal dewate	ering		¢	Dosage 1	atio	=	5.0 k	g/DS	ton
2 Sludge Generation										
Incoming and effluent quality process	in the OD a	nd S	BR	:	Inlet SS Treated S					mg/l mg/l
Sludge volume : 10),000 × (2	250-	100)	*	10^{-3}	=	1,50)0 kgD	S/day	ł
Sludge volume in the (UASB-	+TF) proces	s	3		Inlet SS Treated S					mg/l mg/l
In the UASB process, anae	robic digest	tion	lecreas	les s	sludge vol	ume	i.			
Organic matter percent	s in the sew:	age		:	70 %					
Digestion (volume redu	ction) ratio			:	50 %					
Sludge volume :	1									
10,000 ×	(250-100)	×	(0.3+	(0.7	(×0.5))	×	10-3	=975	i kg	DS/day
3 Required Chemical Volume			12.0							
OD and SBR processes	: 1,500	×	5.0	1	1,000	=	7.5	kg/day		
(UASB+TF) process	: 975	×	5.0	1	1,000	-	4.9	kg/day		
4 Chemical (Polymer) Cost										
Unit chemical cost : 50	0 Rs/kg	(P	olymer	pri	ce in Indi	a)				
Chemical cost	5		1	2						
OD and SBR processes	: 7.5×	500>	365	=	1,368,7	50	Rs/ye	ar		
(UASB+TF) process	: 4.9×	500>	365	-	000 00		Rs/ye			