Appendix M33

Water Quality Analysis for Water Supply System

Contents for Appendix M33

M33.1	General ······M33-1
M33.2	Evaluation of Water Quality for Water SupplyM33-3
M33.3	Results of Water Quality AnalysisM33-9

Appendix M33.1 General

Water quality analysis was undertaken to confirm the safety of the water supply. Salaulim Dam and 15 other wells were investigated as part of this study.

There are many iron and manganese mines throughout Goa. Spoil from these mining operations is sometimes discharged onto riverbanks. During the rainy season these deposits can be washed into the water sources when the water level in the rivers rises. Although iron and manganese do not present a significant problem for water purification, other chemicals such as arsenic associated with the mine spoil could cause health problems. The raw water quality was therefore analyzed on 34 chemicals including arsenic, iron and manganese etc. during both the dry and rainy seasons.

It was also important to confirm the safety of the supplied water (e.g. tap water). Residual chlorine was used as the indicator of tap water quality. The investigation was completed using simple water quality analysis kits.

Table M33.1.1 shows the number of samples. The sample locations are shown on Figures M33.1.1 and M33.1.2.

The planned intake site for Salaulim Dam was previously a mine, meaning the dam water was expected to be deep and possibly stratified. Therefore, the dam water quality investigation included two sets of water samples at each test location (one from the surface and another from the bottom of the dam).

	······································	······ ·······························
Sampling Point	Number of Samples	Parameter
Salaulim Dam	2 dry season samples. 1 from the surface and 1 from the bottom layer.	34 parameters required by Indian Dinking Water guidelines ²⁾
	2 rainy season samples. 1 from the surface and 1 from the bottom layer :	34 parameters required by Indian Dinking Water guidelines ²⁾
Water Supply Wells	1 dry season sample from each water supply well (i.e. 15 samples in total).	34 parameters required by Indian Dinking Water guidelines ²⁾
	1 rainy season sample from each water supply well (i.e. 15 samples in total).	34 parameters required by Indian Dinking Water guidelines ²⁾
Tap Water (seven schemes)	11 ¹⁾ dry season samples :	Residual chlorine, standard plate count bacteria, coliform ³⁾
	11 ¹⁾ rainy season :	Residual chlorine, standard plate count bacteria, coliform ³⁾
1) Tan Watan Onalit	- Commis Dainta	

 Table M33.1.1
 Water Quality Analysis for the Water Supply System

 Tap Water Quality Sample Points Chandel Scheme: Permem Assonora Scheme: Mapusa Sanquelim Scheme: Bicholim Dabose Scheme: Valpoi Opa Scheme: Orgao, Panaji, Ponda (3 points) Salaulim Scheme: Vasco, Margao, Quepem (3 points) Canacona Scheme: Nagorcem

2) Source: The Government of India, Manual on Water Supply and Treatment Third Edition, 1999 May

3) When residual chlorine was detected the tests for standard plate count bacteria and coliform were not conducted.

Figure M33.1.1 Locations of Dam and Well Sampling Points

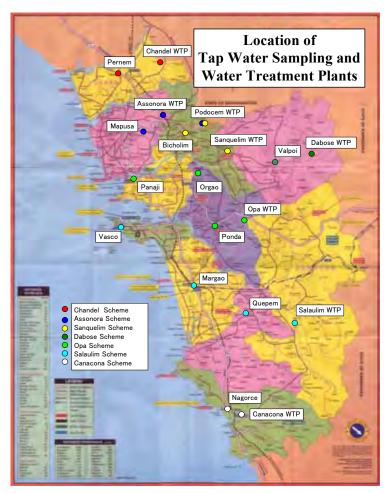


Figure M33.1.2 Locations of Tap water Sampling Points

M33.2 Evaluation of Water Quality for Water Supply

The water quality for water supply was evaluated on 'Acceptable' values of 12 parameters in 'Recommended Guidelines' presented on 'Manual on Water Supply and Treatment Third Edition, The Government of India, 1999 May'.

The Indian 'Recommended Guidelines' propose 34 parameters for drinking water quality and for each parameter, two values such as 'Acceptable' value and 'The cause of rejection' value are defined. According to 'Guidelines for Drinking-water Quality, Third Edition, WHO 2004' (hereinafter 'WHO Guidelines'), these Indian 34 parameters are categorized as 'health significance' aspects and 'acceptability' aspects. The 'health significance' aspects mean that parameters cause adverse health effects in humans. 'Acceptability' aspects mean that the appearance, taste and odor and these threshold concentrations of drinking water should be acceptance to consumer.

Among the Indian 'Recommended Guidelines', 12 parameters, such as E.coli, arsenic, chromium, fluoride, manganese, selenium, cadmium, cynide, mercury, nitrate, copper and lead, are categorized as health significance aspects. Since the purpose of water quality analysis is to confirm the safety of water, the water quality of water supply was evaluated on these 12 parameters categorized as 'health significance' aspects.

There are two values in 'Recommended Guidelines'. One is 'Acceptable' values and the other is 'the cause for rejection' values. 'Acceptable' values mean that the figures are the limits upto which water is generally acceptable to the consumers. 'The cause for rejection' values mean that water should be rejected if chemical concentrations are exceed the figures. 'Acceptable' figures are stricter than 'the cause for Rejection' figures. Acceptable values in 'Recommended Guidelines' therefore were used in the evaluation to confirm the safety of water.

Table M33.2.1 shows the Indian 'Recommended Guidelines', 'WHO Guidelines' and 'Analized Parameters'. A ' \bigcirc ' mark shows an evaluation parameter.

Taking account of situation surrounding the sampling points, the most of parameters concerning chemicals from industry and agriculture were excluded from analysis.

Cadmium and lead on 'WHO Guidelines' have stricter values than Indian 'Recommended Guidelines'. The parameters also were referred to WHO guidelines.

Table M33.2.1Indian 'Recommended Guidelines', 'WHO Guidelines' and 'Evaluation
Parameters' (1/4)

		Recommende			
Parameter		(mg		WHO Guidelines****	Analyzed
		Acceptable**	Cause for Rejection***	(mg/L)	Parameter
	1. Microbial aspects				
	E.coli or Thermotolerant coliform	0 : 100	1 1	Must not be detectable	0
	bacteria	0 in 100n	ni sample	in any 100ml sample	0
	2. Naturally occurring chemicals			у <u>т</u>	
	Arsenic (As)	0.01	0.05	0.01	0
	Barium (Ba)	-	-	0.7	
	Boron (B)	-	-	0.5	
	Chromium (Cr ⁶⁺)	0.05	0.05	0.05	0
	Fluoride (F)	1	1.5	1.5	Ö
	Manganese (Mn)	0.05	0.5	0.4	Ö
	Molybdenum (Mo)	-	-	0.07	-
	Selenium (Se)	0.01	0.01	0.01	0
	Uranium (U)	-	-	0.009	
ts	3. Chemicals from industrial sources a	nd human dwell	ings		
Health Significance Aspects	Inorganics		-		
Asj	Cadmium (Cd)	0.01	0.05	0.003	0
e	Cyanide (CN)	0.05	0.05	0.07	Ō
can	Mercury (Hg)	0.001	0.001	0.001	0
ļij	Organics				
lig.	Benzene	-	-	0.01	
ЧS	Carbon tetrachloride	-	-	0.004	
alt	Di(2-ethylhexyl)phthalate	-	-	0.008	
He		-	-	1	
	Dichlorobenzene, 1,4-	-	-	0.3	
	Dichloroethane, 1,2-	-	-	0.03	
	Dichloroethene, 1,1-	-	-	0.03	
	Dichloroethene, 1,2-	-	-	0.05	
	Dichloromethane	-	-	0.02	
	Edetic acid (EDTA)	-	-	0.6	
	Ethylbenzene	-	-	0.3	
	Hexachlorobutadiene	-	-	0.0006	
	Nitrilotriacetic acid (NTA)	-	-	0.2	
	Pentachlorophenol	-	-	0.009	
	Styrene	-	-	0.02	
	Tetrachloroethene	-	-	0.04	
	Toluene	-	-	0.7	
	Trichloroethene	-	-	0.07 0.5	
.	Xylenes	-	-		

* Source: The Government of India, Manual on Water Supply and Treatment Third Edition, 1999 May

**The figures indicated under the colum 'Acceptable' are the limits upto which water is generally acceptable to the consumers.

**The figures which are above 'Acceptable' but below 'Cause for Rejection' still may be tolerated in the absence of an alternative and better source.

Table M33.2.1Indian 'Recommended Guidelines', 'WHO Guidelines' and 'Evaluation
Parameters' (2/4)

			d Guidelines* g/L)	WHO Guidelines****	Analyzed
	Parameter	Acceptable**	Cause for Rejection***	(mg/L)	Parameter
	4. Chemicals from agricultural activiti	es			
	Non-pesticides				
	Nitrate (NO3)	45	45	50	0
	Nitrite (NO2) (long term)	-	-	3	
	Nitrite (NO2) (short term)	-	-	0.2	
	Pesticides used in agriculture				
	Alachlor	-	-	0.02	
	Aldicarb	-	-	0.01	
	Aldrin and dieldrin	-	-	0.00003	
	Atrazine	-	-	0.002	
	Carbofuran	-	-	0.007	
	Chlordane	-	-	0.0002	
	Chlorotoluron	-	-	0.03	
	Cyanazine	-	-	0.0006	
Aspects	2,4-D (2,4-dichlorophenoxyacetic acid)	-	-	0.03	
spe	2,4-DB	_	_	0.09	
ce A	1,2-Dibromo-3-chloropropane	-	_	0.001	
Significance	1,2-Dibromoethane	_	_	0.0004	
lific	1,2-Dichloropropane (1,2-DCP)	_	_	0.04	
Sig.	1,3-Dichloropropene	_	_	0.02	
	Dichlorprop	-	_	0.1	
Health	Dimethoate	-	_	0.006	
Η	Endrin	-	_	0.0006	
	Fenoprop	-	_	0.000	
	Isoproturon		_	0.009	
	Lindane	-	-	0.009	
	MCPA	-	-	0.002	
	Месоргор	-	-	0.002	
	Methoxychlor	-	-	0.01	
	Metolachlor	_	-	0.02	
		-			
	Molinate	-	-	0.006	
	Pendimethalin	-	-	0.02	
	Simazine	-	-	0.002	
	2,4,5-T	-	-	0.009	
	Terbuthylazine	-	-	0.007	
	Trifluralin	-	-	0.02	

* Source: The Government of India, Manual on Water Supply and Treatment Third Edition, 1999 May

**The figures indicated under the colum 'Acceptable' are the limits upto which water is generally acceptable to the consumers.

^{**}The figures which are above 'Acceptable' but below 'Cause for Rejection' still may be tolerated in the absence of an alternative and better source.

Table M33.2.1Indian 'Recommended Guidelines', 'WHO Guidelines' and 'Evaluation
Parameters' (3/4)

Demonstration		Recommende (mg	d Guidelines* g/L)	WHO Guidelines****	Analyzed		
	Parameter	Acceptable**	Cause for Rejection***	(mg/L)	Parameter		
	5. Chemicals used in water treatment or materials in contact with drinking-water						
	Disinfectants						
	Chlorine (as OCL ⁻)	-	-	5			
	Monochloramine	-	-	3			
	Disinfection by-products		-				
	Bromate	-	-	0.01			
	Bromodichloromethane	-	-	0.06			
	Bromoform	-	-	0.1			
	Chloral hydrate (trichloroacetaldehyde)	-	-	0.01			
	Chlorate	-	-	0.7			
	Chlorite	-	-	0.7			
	Chloroform	-	-	0.2			
	Cyanogen chloride	-	-	0.07			
ects	Dibromoacetonitrile	-	-	0.07			
Significance Aspects	Dibromochloromethane	-	-	0.1			
ce /	Dichloroacetate	-	-	0.05			
can	Dichloroacetonitrile	-	-	0.02			
nifi	Formaldehyde	-	-	0.9			
Sig	Monochloroacetate	-	-	0.02			
lth	Trichloroacetate	-	-	0.2			
Health	Trichlorophenol, 2,4,6-	-	-	0.2			
	Trihalomethanes	-	-	0.001			
	Contaminants from treatment chemica	ıls					
	Acrylamide	-	-	0.0005			
	Epichlorohydrin	-	-	0.0004			
	Contaminants from pipes and fittings						
	Antimony (Sb)	-	-	0.02			
	Benzo[a]pyrene	-	-	0.0007			
	Copper (Cu)	0.05	1.5	2	0		
	Lead (Pb)	0.05	0.05	0.01	0		
	Nickel (Ni)	-	-	0.02			
	Vinyl chloride	-	-	0.0003			
	6. Cyanotoxins	-	-	-	•		
		-	-	0.001			
	-		-	0.001			

* Source: The Government of India, Manual on Water Supply and Treatment Third Edition, 1999 May

**The figures indicated under the colum 'Acceptable' are the limits upto which water is generally acceptable to the consumers.

**The figures which are above 'Acceptable' but below 'Cause for Rejection' still may be tolerated in the absence of an alternative and better source.

Table M33.2.1Indian 'Recommended Guidelines', 'WHO Guidelines' and 'Evaluation
Parameters' (4/4)

Parameter			d Guidelines*		
		(mg Acceptable**	g/L) Cause for Rejection***	WHO Guidelines**** (mg/L)	Analyzed Parameter
	7. Acceptability aspects				
	Alkalinity	200	600		0
	Aluminium (Al)	0.03	0.2	0.1	
	Ammonia	-	-	1.5	
	Anionic detergent	0.2	1	-	0
	Calcium (Ca)	75	200	-	0
	Chloride (Cl)	200	1000	200-300	0
	Chlorine (as OCL)	-	-	0.6 - 1.0	
	Chlorophenols	-	-	0.0001-0.002	
	Color	5 Pt/Co Scale	25 Pt/Co Scale	15 TCU	0
	Copper (Cu)	0.05	1.5	5	Ō
	Dichlorobenzenes	-	-	0.002-0.03	-
	Ethylbenzene	-	-	0.002-0.13	
	Gross Alpha activity (Bq/L)	0.1	0.1	-	
	Gross Beta activity (Bq/L)	1	1	-	
ts.	Hardness	200	600	100-300	0
)ec	Hydrogen sulfide (H2S)	200	400	0.05-0.1	
Ast	Iron (Fe)	0.1	1	0.3	0
ž	Magnesium (Mg)	30	150	-	
ij	Manganese (Mn)	0.5	0.05	0.1	0
tal	Mineral Oil	0.01	0.03		0
Acceptability Aspects	Monochloramine	-	-	0.3	
Ac	Monochlorobenzene	-	-	0.01-0.02	
	Odor	Objectable	Objectable	acceptable	0
	Petroleum oils	-	-	-	
	pH	7.0 to 8.5	<6.5 or >9.2	6.5 - 8.5	0
	Phenol	0.001	0.002	-	
	Polynuclear aromatic hydrocarbon	0.0002	0.0002	-	
	Sodium (Na)	-	-	200	
	Styrene	-	-	0.004-2.6	
	Sulfate (SO4)	200	400	250	0
	Synthetic detergents	-	-	-	
	Taste	Objectable	Objectable	acceptable	0
	Toluene	-	-	0.04-0.17	
	Total dissolved solid (TDS)	500	2000	600-1000	0
	Trichlorobenzenes	-	-	0.005-0.05	
	Turbidity	1NTU	10NTU	5 NTU	0
	Xylenes	-	-	0.3	
	Zinc (Zn)	5	15	3-5	0

* Source: The Government of India, Manual on Water Supply and Treatment Third Edition, 1999 May

**The figures indicated under the colum 'Acceptable' are the limits upto which water is generally acceptable to the consumers. **The figures which are above 'Acceptable' but below 'Cause for Rejection' still may be tolerated in the absence of an alternative and better source.

M33.3 Results of Water Quality Analysis

(1) Salaulim Dam (refer to attachments)

Water quality of Salaulim dam was investigated. All parameters were satisfied with 'Recommended Guidelines' values during both seasons. Cadmium and Lead was also satisfied with 'WHO Guidelines'. Because E.coli was found in Salaulim dam, disinfection should be necessary for drinking water supply.

(2) Water Supply Wells and Springs (refer to attachments)

Fifteen samples were investigated. Two samples collected from Curca and Siroda were satisfied with 'Recommended Guidelines'. Other thirteen samples were satisfied with 'Recommended Guidelines' except for E.coli. Cadmium and lead were also investigated and these were also satisfied with 'WHO Guidelines'.

(3) Tap Water

Tap water was tested for residual chlorine at 11 locations, across 7 schemes. Two points in each place were selected as sampling sites.

It is reported that iron and manganese were found in raw water but treated water in WTPs was satisfied with 'Recommended Guidelines'. Then, only residual chlorine of tap water was investigated.

Residual chlorine was detected in all the tap water samples during both the dry and rainy seasons (see Table M33.3.1). The average chlorine concentration was approximately 0.3 mg/L in both the dry and rainy seasons. Tap water in Bicholim (which is in the Sanquelim scheme) had the highest average chlorine concentration during both the dry and rainy seasons. Tap water in Nagorecem (which is in the Canacona scheme) had the lowest average chlorine concentration.

Seas	Dry			Rainy			
Water Scheme	Places	Point 1 (mg/L)	Point 2 (mg/L)	Average (mg/L)	Point 1 (mg/L)	Point 2 (mg/L)	Average (mg/L)
Chandel	Pernem	0.4	0.4	0.40	1.0	1.0	1.00
Assonora	Mapusa	0.4	0.4	0.40	0.4	0.4	0.40
Sanquelim	Bicholim	0.4	1.0	0.70	1.0	0.4	0.70
Dabose	Valpoi	0.2	0.2	0.20	0.1	0.2	0.15
	Orgao	0.4	0.2	0.30	0.2	0.2	0.20
Ора	Panaji	0.1	0.2	0.15	0.1	0.4	0.25
	Ponda	0.1	0.4	0.25	0.2	0.4	0.30
	Vasco	0.1	0.2	0.15	0.1	0.2	0.15
Salaulim	Margao	0.1	0.2	0.15	0.1	0.2	0.15
	Quepem	0.2	0.2	0.20	0.2	0.2	0.20
Canacona	Nagorcem	0.1	0.1	0.10	0.1	0.1	0.10
Total Average				0.27			0.33

Table M33.3.1Residual Chlorine in Tap Water

Attachments

PHE-LABORATORY P.W.D., TONCA-CARANZALEM WATER ANALYSIS

Source of Sample	-	Salaulim	Dam	
Place of Collection	-	Surface	(near the Dam)	
Date of Collection	-	9/06/05		(Dry Season)

TEST PARAMETERS Results Guidelines Unit of Remark Sr. No Measurement Temperature celsius 32 1 2 3 7.4 pH. 7.0 to 8.5 Nil Colour (Unit on Pt.Co.scale) 5 Unobjectionable 4 Unobjectionable Taste 5 Unobjectionable Unobjectionable Odour 6 7 Turbidity (NTU) 2.6 0 1 Specific Conductivity (m mhos/cm) 117 8 Total Dissolved Solids (mg/l) 75 500 9 Total Hardness 20 200 (mg/l) 10 Total Alkalinity as CaCO3 20 200 (mg/l) Calcium as Ca (mg/l) 4.8 75 11 (mg/l) 12 Magnesium as Mg 2 <30 13 Chlorides as Cl 25 200 (mg/l) 14 Sulphate as SO4 (mg/l) Nil 200 15 Iron as Fe (mg/l) 0.52 Ο 0.1 16 Phosphate as PO4 * (mg/l) 0.9 17 Arsenic as As (mg/l) < 0.01 0.01 Nil 0.05 18 Managanese as Mn (mg/l) 19 Hexavalent chromium as Cr6+ * (mg/l) < 0.0520 Fluorides as F (mg/l) Nil 1 21 Cadmium as Cd < 0.01 0.01 (mg/l) 22 Zinc as Zn (mg/l) 0.01 5 Copper as Cu 23 * (mg/l) < 0.01 0.05 24 Lead as Pb * < 0.01 0.05 (mg/l) 25 Mercury as Hg (mg/l) < 0.001 0.001 26 Selenium as Se * (mg/l) < 0.01 0.01 27 Total Suspended Solids (mg/l) 0.5 28 Nitrate-N (mg/l) 0.3 45 Nitrite as NO2 * (mg/l) < 0.01 -29 Ammonia-N (mg/l) 0.85 30 Dissolved Oxygen (mg/l) 7 B.O.D. 5 days at 200C 31 (mg/l) 2.6 B.O.D. 3 days at 200C 32 (mg/l) 2.1 _ 33 C.O.D(Cr)(mg/l) 3.2 Sodium as Na 7.9 34 (mg/l) _ Oxygen absorbed from KMnO4 35 (mg/l) 0.6 36 Cyanide as CN (mg/l) < 0.02 0.05 Phenolic compound as C6 H5OH * 37 (mg/l) < 0.001 0.001 Mineral Oil 0.01 38 (mg/l) < 0.01 39 Coliforms MPN/100ml 95 Ο Not be Detectable Fecal Coliform MPN/100ml 40 21 Not be Detectable Ο

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

		WATER ANALISIC)		
	ce of Sample - Salaulim Dam				
	of Collection - Bottom (Intake				
Date	of Collection - 30/04/05 (JICA)	(Dry Season)			
Date	of submission 13/06/05 (JICA)				
Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement			
1	Temperature	celsius	30.0 (Lab)		-
2	pH.		6.9	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil		5
4	Taste		Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	1.6	0	1
7	Specific Conductivity	(m mhos/cm)	72.1	_	-
8	Total Dissolved Solids	(mg/l)	46		500
9	Total Hardness	(mg/l)	17		200
10	Total Alkalinity as CaCO3	(mg/l)	19		200
11	Calcium as Ca	(mg/l)	4.8		75
12	Magnesium as Mg	(mg/l)	1.25		<30
13	Chlorides as Cl	(mg/l)	6		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.12	0	0.1
16	Phosphate as PO4 *	(mg/l)	3.1	Ŭ	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.01		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	< 0.01		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	Nil		-
28	Nitrate-N	(mg/l)	0.1		45
20	Nitrite as NO2 *	(mg/l)	< 0.01		-
29	Ammonia-N	(mg/l)	1.1		_
30	Dissolved Oxygen	(mg/l)	6.3		_
31	B.O.D. 5 days at 200C	(mg/l)	1.2		_
32	B.O.D. 3 days at 200C	(mg/l)	1.2		-
33	C.O.D (Cr)	(mg/l)	2.2		
33	Sodium as Na *	(mg/l)	2.2		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.5		-
36	Cyanide as CN *	(mg/l)	<0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	<0.02		0.001
38	Mineral Oil *	(mg/l)	<0.001		0.01
38 39	Coliforms	(mg/l) MPN/100ml	~0.01		Not be Detectable
	Fecal Coliform	MPN/100ml	-		Not be Detectable
	remeters, tested by an external Laborato		-		not be Detectable

Percar Contonn
 Parameters tested by an external Laboratory. Reports enclosed.
 Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..
 Remark means that a chemical consentration is over the recommended guidelines on "Manual on Water Supply and Treatment".

Source of Sample -Place of Collection -Date of Collection -Salaulim Dam

Surface (near the Dam) 20/07/05 (1

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement			
1	Temperature	celsius	29.5		-
2	pH.		7.3		7.0 to 8.5
2 3	Colour	(Unit on Pt.Co.scale)	Nil		5
4	Taste		Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	1.43	0	1
7	Specific Conductivity	(m mhos/cm)	49.8		-
8	Total Dissolved Solids	(mg/l)	32		500
9	Total Hardness	(mg/l)	12.5		200
10	Total Alkalinity as CaCO3	(mg/l)	15		200
11	Calcium as Ca	(mg/l)	3.6		75
12	Magnesium as Mg	(mg/l)	0.88		<30
13	Chlorides as Cl	(mg/l)	6		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.08		0.1
16	Phosphate as PO4 *	(mg/l)	< 0.1		-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	< 0.0015		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	0.5		-
28	Nitrate-N	(mg/l)	0.2		45
	Nitrite as NO2 *	(mg/l)	0.09		-
29	Ammonia-N	(mg/l)	0.25		-
30	Dissolved Oxygen	(mg/l)	8.1		-
31	B.O.D. 5 days at 200C	(mg/l)	0.5		-
32	B.O.D. 3 days at 200C	(mg/l)	0.4		-
33	C.O.D (Cr)	(mg/l)	1.2		-
34	Sodium as Na *	(mg/l)	4.6		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	240	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	93	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed. Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Salaulim Dam Bottom Date of Collection -20/07/05 Date of submission 20/07/05

(Intake)

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement			
1	Temperature	OC	29		-
2	pH.		6.9	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	•	5
4	Taste	(Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	5.8	0	1
7	Specific Conductivity	(mmhos/cm)	47.3	-	-
8	Total Dissolved Solids	(mg/l)	30		500
9	Total Hardness	(mg/l)	12		200
10	Total Alkalinity as CaCO3	(mg/l)	14.5		200
11	Calcium as Ca	(mg/l)	3.4		75
12	Magnesium as Mg	(mg/l)	0.88		<30
13	Chlorides as Cl	(mg/l)	6		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.3	0	0.1
16	Phosphate as PO4 *	(mg/l)	< 0.1	-	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	< 0.0015		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	1		-
28	Nitrate-N	(mg/l)	0.1		45
	Nitrite as NO2 *	(mg/l)	0.05		-
29	Ammonia-N	(mg/l)	0.33		-
30	Dissolved Oxygen	(mg/l)	6.85		-
31	B.O.D. 5 days at 200C	(mg/l)	0.6		-
32	B.O.D. 3 days at 200C	(mg/l)	0.4		-
33	C.O.D (Cr)	(mg/l)	1.4		-
34	Sodium as Na *	(mg/l)	8.4		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	93	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	43	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

1 Std 2 E. 3 Ca 4 Me 5 See 6 Le 7 Arr 8 Ch 9 Cyy ch 10 Nii 11 F1 12 Bcc 13 Ca 14 1, 15 1, 16 ci	Commisio Classific: Sample na Sampling Pl Sampling D Air Tempera Sampling Pe Analysis Tempera Sampling Pe Analysis Tempera coription of analysis andard plate bunt bacteria coli dmium ercury elenium rad csenic csenic anide, Cyanogen loride (as CN) trate nitrogen(Nog-N) trite nitrogen(Nog-N)	ation ne ace ate ture rson	Goa , India Raw water Tap reserved water Salaulim Intake 2005/4/30 37.0°C Takehiko Oga 30/4/2005~17/5/20 Results 130 /mL not detected < 0.001 mg/L < 0.0005 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L		ter Others Weather Weather Water Temperature Description of analysis Geosmin 2-Methylisoborneol non-ionic surfactant Phenols Total organic carbons	Clea 32.0°C Criteria	ar weather Results 0.01 mg/L未満 0.02 mg/L未満 < 0.005 mg/L < 0.0005 mg/L
1 Std 2 E. 3 Ca 4 Me 5 See 6 Le 7 Arr 8 Ch 9 Cyy ch 10 Nii 11 F1 12 Bcc 13 Ca 14 1, 15 1, 16 ci	Sample na Sampling Pl Sampling D Air Tempera Sampling Pe Analysis Tr cription of analysis andard plate unut bacteria coli coli dmium ercury clenium erad rsenic rsenic coli andie (Vanogen loride (cas CN) trate nitrogen(N05-N)	ne ace ate ture rson erm	reserved water Salaulim Intake 2005/4/30 37.0°C Takehiko Oga 30/4/2005~17/5/20 Results 130 /mL not detected < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L	05 31 32 33 33 34 35 36	Weather Water Temperature Description of analysis Geosmin 2-Methylisoborneol non-ionic surfactant Phenols	32. 0°C	Results 0.01 mg/L未満 0.02 mg/L未満 < 0.005 mg/L
1 Std 2 E. 3 Ca 4 Me 5 See 6 Le 7 Arr 8 Ch 9 Cyy ch 10 Nii 11 F1 12 Bcc 13 Ca 14 1, 15 1, 16 ci	Sampling D Air Tempera Sampling Pe Analysis Tempera andard plate unt bacteria coli dmium ercury elenium erad ersenic uromium (VI) anide (vanogen loride (as CN) trate nitrogen(N0g-N)	ate ture rson erm	Salaulim Intake 2005/4/30 37.0°C Takehiko Oga 30/4/2005~17/5/20 Results 130 /mL not detected < 0.001 mg/L	31 32 33 34 35 36	Water Temperature Description of analysis Geosmin 2-Methylisoborneol non-ionic surfactant Phenols	32. 0°C	Results 0.01 mg/L未満 0.02 mg/L未満 < 0.005 mg/L
1 Std 2 E. 3 Ca 4 Me 5 See 6 Le 7 Arr 8 Ch 9 Cyy ch 10 Nii 11 F1 12 Bcc 13 Ca 14 1, 15 1, 16 ci	Sampling D Air Tempera Sampling Pe Analysis Tempera andard plate unt bacteria coli dmium ercury elenium erad ersenic uromium (VI) anide (vanogen loride (as CN) trate nitrogen(N0g-N)	ate ture rson erm	2005/4/30 37.0°C Takehiko Oga 30/4/2005~17/5/20 Results 130 /mL not detected < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L	31 32 33 34 35 36	Water Temperature Description of analysis Geosmin 2-Methylisoborneol non-ionic surfactant Phenols	32. 0°C	Results 0.01 mg/L未満 0.02 mg/L未満 < 0.005 mg/L
1 Std 2 E. 3 Ca 4 Me 5 See 6 Le 7 Arr 8 Ch 9 Cyy ch 10 Nii 11 F1 12 Bcc 13 Ca 14 1, 15 1, 16 ci	Sampling Pe Analysis T cription of analysis candard plate ount bacteria coli dmium baccury elenium ead resenic aromium(VI) andie, cyanogen loride (as CN) trate nitrogen(N05-N)	rson erm	Takehiko Oga 30/4/2005~17/5/20 Results 130 /mL not detected < 0.001 mg/L	31 32 33 34 35 36	Description of analysis Geosmin 2-Methylisoborneol non-ionic surfactant Phenols		0.01 mg/L未満 0.02 mg/L未満 < 0.005 mg/L
1 Std 2 E. 3 Ca 4 Me 5 See 6 Le 7 Arr 8 Ch 9 Cyy ch 10 Nii 11 F1 12 Bcc 13 Ca 14 1, 15 1, 16 ci	Analysis T cription of analysis andard plate ount bacteria coli admium baccury elenium ead resenic aromium(VI) anide, Cyanogen loride (as CN) trate nitrogen(N05-N)	erm	30/4/2005~17/5/20 Results 130 /mL not detected < 0.001 mg/L	31 32 33 34 35 36	Geosmin 2-Methylisoborneol non-ionic surfactant Phenols	Criteria	0.01 mg/L未満 0.02 mg/L未満 < 0.005 mg/L
1 Std 2 E. 3 Ca 4 Me 5 See 6 Le 7 Arr 8 Ch 9 Cyy ch 10 Nii 11 F1 12 Bcc 13 Ca 14 1, 15 1, 16 ci	eription of analysis andard plate ount bacteria coli admium bercury elenium ead esenic aromium(VI) anide, Cyanogen loride (as CN) trate nitrogen(N05-N)	1	Results 130 /mL not detected < 0.001 mg/L < 0.00005 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L	31 32 33 34 35 36	Geosmin 2-Methylisoborneol non-ionic surfactant Phenols	Criteria	0.01 mg/L未満 0.02 mg/L未満 < 0.005 mg/L
1 Std 2 E. 3 Ca 4 Me 5 See 6 Le 7 Arr 8 Ch 9 Cyy ch 10 Nii 11 F1 12 Bcc 13 Ca 14 1, 15 1, 16 ci	andard plate unt bacteria coli dmium proury elenium ead resenic ande, Cyanogen loride (as CN) trate nitrogen(N0g-N)	Criteria	130 /mL not detected < 0.001 mg/L < 0.0005 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L	32 33 34 35 36	Geosmin 2-Methylisoborneol non-ionic surfactant Phenols	Criteria	0.01 mg/L未満 0.02 mg/L未満 < 0.005 mg/L
1 ccc 2 E. 3 Ca 4 Me 5 Se 6 Le 7 Ar 8 Ch 9 Cy ch 10 Ni 11 F1 12 Bcc 13 Ca 14 1, 15 1, 16 ci	unt bacteria coli admium percury elenium ead esenic aromium(VI) anide.(yanogen loride (as CN) trate nitrogen(N05-N)		not detected < 0.001 mg/L < 0.0005 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L	32 33 34 35 36	2-Methylisoborneol non-ionic surfactant Phenols		0.02 mg/L未満 < 0.005 mg/L
2 E. 3 Ca 4 Me 5 Se 6 Le 7 Ar 8 Ch 9 Cy ch 10 Nii 11 F1 12 Bcc 13 Ca 14 1, 15 1, 16 ci	coli dmium ercury elenium ead esenic eromium (VI) anide (yanogen loride (as CN) trate nitrogen (N0 ₅ -N)		< 0.001 mg/L < 0.00005 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L	33 34 35 36	non-ionic surfactant Phenols		< 0.005 mg/L
4 Με 5 Se 6 Le 7 Ar 8 Ch 9 Cy ch 10 Ni 11 F1 12 Bcc 13 Ca te 14 1, 15 1, 16 ci	ercury elenium ead csenic ande, Cyanogen loride (as CN) trate nitrogen(N0g-N)		< 0.00005 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L < 0.001 mg/L	34 35 36	Phenols		~
5 Se 6 Le 7 Ar 8 Ch 9 Cy ch 10 Ni 11 F1 12 Bc 13 Ca 14 1, 15 1, 16 ci	elenium ead senic ande, Cyanogen loride (as CN) trate nitrogen(NOg-N)		< 0.001 mg/L < 0.001 mg/L < 0.001 mg/L	35 36			< 0.0005 mg/L
6 Le 7 Ar 8 Ch 9 Cy ch 10 Ni 11 F1 12 Bc 13 Ca 14 1, 15 1, 16 ci	ead rsenic aromium(VI) anide, Cyanogen loride (as CN) trate nitrogen(NO ₃ -N)		< 0.001 mg/L < 0.001 mg/L	36	Total organic carbons		
7 Ar 8 Ch 9 Cy ch 10 Ni Ni 11 F1 12 Bcc 13 Ca te 14 1, 15 1, 16 ci	rsenic mromium(VI) anide, Cyanogen loride (as CN) trate nitrogen(NO ₃ -N)		< 0.001 mg/L	-			1.0 mg/L
8 Ch 9 Cy 10 Ni 11 F1 12 Bc 13 Ca 14 1, 15 1, 16 ci	aromium(VI) anide, Cyanogen loride (as CN) trate nitrogen(NO ₃ -N)			37	pН		6.7
9 Cy ch 10 Ni 11 F1 12 Bc 13 Ca 14 1, 15 1, 16 Ci	anide, Cyanogen loride (as CN) trate nitrogen(NO ₃ -N)		< 0.005 mg/L		Taste		Unobjectionable
9 ch 10 Ni 11 F1 12 Bc 13 Ca 14 1, 15 1, 16 ci	loride (as CN) trate nitrogen(NO ₃ -N)			38	0dor		Argal odour,Musty odour
10 Ni 11 F1 12 Bc 13 Ca 14 1, 15 1, 16 ci			< 0.001 mg/L	39	Color		34.0
12 Bo 13 Ca 14 1, 15 1, 16 ci			< 0.02 mg/L	40	Turbidity		0.02
13 Ca te 14 1, 15 1, 16 ci	uoride		< 0.05 mg/L	41	Dissolbed Iron		< 0.03 mg/L
13 te 14 1, 15 1, 16 ci	oron		< 0.1 mg/L	42	Dissolved Manganese		< 0.005 mg/L
15 1, 16 ci	arbon etrachloride		< 0.0002 mg/L				
16 ci	4-Dioxane		< 0.005 mg/L				
	1-Dichloroethylene		< 0.001 mg/L				
D1	s-1,2- .chloroethylene		< 0.001 mg/L				
17 Di	chloromethane		< 0.001 mg/L				
18 Te	etrachloroethylen		< 0.001 mg/L				
	richloroethylene		< 0.001 mg/L				
	enzene		< 0.001 mg/L				
	nc		< 0.01 mg/L				
	uminium		< 0.02 mg/L				
	on		0.04 mg/L				
	opper		< 0.01 mg/L				
	nganese		3.3 mg/L 0.064 mg/L				
	nloride (Cl ⁻)		4.6 mg/L				
			17.5 mg/L				
29 To	rdness		34 mg/L		Judgiment		
30 An				-			

Results of Water quality analysis in Japan (Salaulim Dam)

Commision			Goa , India		,				
	Classifica	ition	Raw water Tap wa	te	r Others				
	Sample nam		Groundwater						
	Sampling Pl								
	Sampling Da		2005/4/30		Weather		weather		
_	Air Temperat		35.0°C		Water Temperature	30. 5℃			
_	Sampling Per		Takehiko Oga						
	Analysis Te		30/4/2005~17/5/2005			a 1			
L	Description of analysis Standard plate	Criteria	Results	1	Description of analysis	Criteria	Results		
1	count bacteria		4500 /mL	31	Geosmin		< 0.000001 mg/L		
2	E.coli		not detected	32	2-Methylisoborneol		< 0.000001 mg/L		
3	Cadmium		< 0.001 mg/L	33	Non-ionic surfactant		< 0.005 mg/L		
4	Mercury		< 0.00005 mg/L	34	Phenols		< 0.0005 mg/L		
5	Selenium		< 0.001 mg/L	35	Total organic carbons		< 0.2 mg/L		
6	Lead		< 0.001 mg/L	36	pH		6. 1		
7	Arsenic		< 0.001 mg/L	37	Taste		Unobjectionable		
8	Chromium(VI)		< 0.005 mg/L	38	0dor		Hydrogen sulfide odour		
9	Cyanide, Cyanogen chloride (as CN)		< 0.001 mg/L	39	Color		2. 8		
10	Nitrate nitrogen(NO ₃ -N) Nitrite nitrogen(NO ₂ -N)		0.04 mg/L	40	Turbidity		0.5		
11	Fluoride		0.05 mg/L						
12	Boron		< 0.1 mg/L						
13	Carbon tetrachloride		< 0.0002 mg/L						
14	1,4-Dioxane		< 0.005 mg/L						
15	1,1-Dichloroethylene		< 0.001 mg/L						
16	cis-1,2- Dichloroethylene		< 0.001 mg/L						
17	Dichloromethane		< 0.001 mg/L						
18	Tetrachloroethylen		< 0.001 mg/L						
19	Trichloroethylene		< 0.001 mg/L						
20	Benzene		< 0.001 mg/L						
21	Zinc		< 0.01 mg/L						
22	Aluminium		0.02 mg/L						
23	Iron		0.06 mg/L						
24	Copper		< 0.01 mg/L						
25	Sodium		10.4 mg/L						
26	Manganese		0.021 mg/L						
27	Chloride (Cl ⁻)		14.5 mg/L						
28	Hardness		18.0 mg/L						
29	Total residue		63 mg/L		Judgiment				
30	Anionic surfactant		< 0.02 mg/L						

Results of Water quality analysis in Japan (Well in Shiroda)

	e of Sample - Vazangal – Shirod	a Well	-		
	of Collection - Well (JICA) of Collection - 30/04/05 (JICA)	(Dry Season)			
	of submission 13/06/05 (JICA)				
	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement			
1	Temperature	celsius	30.0 (Lab)		-
2 3	pH.		6.1	0	7.0 to 8.5
	Colour	(Unit on Pt.Co.scale)	Nil		5
4	Taste		Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	0.85		1
7	Specific Conductivity	(m mhos/cm)	125.4		-
8	Total Dissolved Solids	(mg/l)	80		500
9	Total Hardness	(mg/l)	17		200
10	Total Alkalinity as CaCO3	(mg/l)	24		200
11	Calcium as Ca	(mg/l)	4		75
12	Magnesium as Mg	(mg/l)	1.75		<30
13	Chlorides as Cl	(mg/l)	14		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.5	0	0.1
16	Phosphate as PO4 *	(mg/l)	1.6		-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.01		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.06		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	Nil		-
28	Nitrate-N	(mg/l)	Nil		45
	Nitrite as NO2 *	(mg/l)	< 0.01		-
29	Ammonia-N	(mg/l)	Nil		-
30	Dissolved Oxygen	(mg/l)	6.4		_
31	B.O.D. 5 days at 200C	(mg/l)	0.7		_
32	B.O.D. 3 days at 200C	(mg/l)	0.5		_
33	C.O.D (Cr)	(mg/l)	1.5		-
34	Sodium as Na *	(mg/l)	10.8		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml			Not be Detectable
	Fecal Coliform	MPN/100ml	_	1	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.
 Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..
 Remark means that a chemical consentration is over the recommended guidelines on "Manual on Water Supply and Treatment".

Source of Sample -Place of Collection -Date of Collection -

Curca, Tiswadi Open Well 14/06/05 (Chlorinated water)

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.	1201 17 HOUSE LERO	Measurement	Results	Itemark	Guidennes
1 1	Temperature	celsius	30		_
2	pH.	constas	6.3	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	<5.0	Ŭ	5
4	Taste	(Chint on T t. Co.searc)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	4.9	0	1
7	Specific Conductivity	(m mhos/cm)	668	Ŭ	-
8	Total Dissolved Solids	(mg/l)	428		500
9	Total Hardness	(mg/l)	140		200
10	Total Alkalinity as CaCO3	(mg/l)	40		200
11	Calcium as Ca	(mg/l)	25.2		75
12	Magnesium as Mg	(mg/l)	19.25		<30
13	Chlorides as Cl	(mg/l)	156		200
14	Sulphate as SO4	(mg/l)	87		200
15	Iron as Fe	(mg/l)	0.7	0	0.1
16	Phosphate as PO4 *	(mg/l)	1.6	Ŭ	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.01		-
20	Fluorides as F	(mg/l)	0.14		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.03		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	1		-
28	Nitrate-N	(mg/l)	Nil		45
	Nitrite as NO2 *	(mg/l)	< 0.01		-
29	Ammonia-N	(mg/l)	Nil		-
30	Dissolved Oxygen	(mg/l)	6.1		-
31	B.O.D. 5 days at 200C	(mg/l)	Nil		-
32	B.O.D. 3 days at 200C	(mg/l)	Nil		-
33	C.O.D (Cr)	(mg/l)	Nil		-
34	Sodium as Na *	(mg/l)	57.2		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	Nil		Not be Detectable
40	Fecal Coliform	MPN/100ml	Nil		Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection -Mopa, Pernem Tube well 14/06/05

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement			
1	Temperature	celsius	28.5		-
2	pH.		6.4	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	Ŭ	5
4	Taste	(0	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	8.7	0	1
7	Specific Conductivity	(m mhos/cm)	150	Ŭ	-
8	Total Dissolved Solids	(mg/l)	97		500
9	Total Hardness	(mg/l)	81		200
10	Total Alkalinity as CaCO3	(mg/l)	77		200
11	Calcium as Ca	(mg/l)	16		75
12	Magnesium as Mg	(mg/l)	10.25		<30
13	Chlorides as Cl	(mg/l)	7		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.2	0	0.1
16	Phosphate as PO4 *	(mg/l)	1.7	Ŭ	-
17	Arsenic as As *	(mg/l)	<0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.01		0.05
20	Fluorides as F	(mg/l)	0.08		- 1
20	Cadmium as Cd *	(mg/l)	< 0.01		0.01
21	Zinc as Zn *	(mg/l)	0.03		5
23	Copper as Cu *	(mg/l)	0.03		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	2.5		-
28	Nitrate-N	(mg/l)	0.7		45
20	Nitrite as NO2 *	(mg/l)	< 0.01		-
29	Ammonia-N	(mg/l)	2.5		_
30	Dissolved Oxygen	(mg/l)	4.7		-
31	B.O.D. 5 days at 200C	(mg/l)	1.6		_
32	B.O.D. 3 days at 200C	(mg/l)	1.0		_
33	C.O.D (Cr)	(mg/l)	3.5		_
34	Sodium as Na *	(mg/l)	12.2		_
35	Oxygen absorbed from KMnO4	(mg/l)	0.4		_
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.02		0.001
38	Mineral Oil *	(mg/l)	< 0.001		0.001
39	Coliforms	MPN/100ml	23	0	Not be Detectable
	Fecal Coliform	MPN/100ml	Nil	Ŭ	Not be Detectable
	remeters, tested by an external Laborato		1111		The belocuble

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed.. Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection -15/06/05

Nirancal, Ponda Tube Well

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement			
1	Temperature	celsius	30.5		-
2	pH.		6.8	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	•	5
4	Taste	()	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	5.8	0	1
7	Specific Conductivity	(m mhos/cm)	159.2	Ŭ	-
8	Total Dissolved Solids	(mg/l)	102		500
9	Total Hardness	(mg/l)	78		200
10	Total Alkalinity as CaCO3	(mg/l)	87		200
11	Calcium as Ca	(mg/l)	12.8		75
12	Magnesium as Mg	(mg/l)	11.5		<30
13	Chlorides as Cl	(mg/l)	7		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	1	0	0.1
16	Phosphate as PO4 *	(mg/l)	0.1	Ŭ	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		_
20	Fluorides as F	(mg/l)	0.12		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.01		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	2		-
28	Nitrate-N	(mg/l)	Nil		45
	Nitrite as NO2 *	(mg/l)	0.02		-
29	Ammonia-N	(mg/l)	1.2		-
30	Dissolved Oxygen	(mg/l)	7.2		-
31	B.O.D. 5 days at 200C	(mg/l)	Nil		-
32	B.O.D. 3 days at 200C	(mg/l)	Nil		-
33	C.O.D (Cr)	(mg/l)	Nil		-
34	Sodium as Na *	(mg/l)	6.7		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
- 39	Coliforms	MPN/100ml	Nil		Not be Detectable
40	Fecal Coliform	MPN/100ml	Nil		Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.
 Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..
 Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection - Dharbandora, Sanguem Tube Well 15/06/05

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	Results	Remark	Guidennes
1	Temperature	celsius	29		-
2	pH.		7.1		7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	5 unit		5
4	Taste	(0	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	12.3	0	1
7	Specific Conductivity	(m mhos/cm)	211	Ŭ	-
8	Total Dissolved Solids	(mg/l)	138.5		500
9	Total Hardness	(mg/l)	107		200
10	Total Alkalinity as CaCO3	(mg/l)	117		200
11	Calcium as Ca	(mg/l)	30		75
12	Magnesium as Mg	(mg/l)	8		<30
13	Chlorides as Cl	(mg/l)	7		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	2.25	0	0.1
16	Phosphate as PO4 *	(mg/l)	0.1	Ŭ	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		-
20	Fluorides as F	(mg/l)	0.06		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.02		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	3.5		-
28	Nitrate-N	(mg/l)	0.9		45
	Nitrite as NO2 *	(mg/l)	0.01		-
29	Ammonia-N	(mg/l)	1.15		-
30	Dissolved Oxygen	(mg/l)	7.45		-
31	B.O.D. 5 days at 200C	(mg/l)	1.1		-
32	B.O.D. 3 days at 200C	(mg/l)	0.9		-
33	C.O.D (Cr)	(mg/l)	2.3		-
34	Sodium as Na *	(mg/l)	30.1		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.4		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	240	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	Nil		Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample - Mo Place of Collection - Tu Date of Collection - 15

Mollem, Sanguem Tube Well 15/06/05

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	rtemark	Guidennes
1	Temperature	celsius	30.5		-
2	pH.		5.6	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	Ŭ	5
4	Taste	()	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	1.8	0	1
7	Specific Conductivity	(m mhos/cm)	27.9	•	-
8	Total Dissolved Solids	(mg/l)	18		500
9	Total Hardness	(mg/l)	6		200
10	Total Alkalinity as CaCO3	(mg/l)	7		200
11	Calcium as Ca	(mg/l)	1.2		75
12	Magnesium as Mg	(mg/l)	0.75		<30
13	Chlorides as Cl	(mg/l)	6		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.14	0	0.1
16	Phosphate as PO4 *	(mg/l)	0.3	Ŭ	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.02		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	Nil		-
28	Nitrate-N	(mg/l)	0.8		45
	Nitrite as NO2 *	(mg/l)	< 0.01		-
29	Ammonia-N	(mg/l)	1.1		-
30	Dissolved Oxygen	(mg/l)	7.15		-
31	B.O.D. 5 days at 200C	(mg/l)	0.6		-
32	B.O.D. 3 days at 200C	(mg/l)	0.5		-
33	C.O.D (Cr)	(mg/l)	1.4		-
34	Sodium as Na *	(mg/l)	< 0.1		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.2		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	Nil		Not be Detectable
40	Fecal Coliform	MPN/100ml	Nil		Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection - Govanem -Malpona, Sattari Open Well 17/06/05 (D

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	rteman	Guidennies
1	Temperature	celsius	28		-
2	pH.	Constant	6.3	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	Ŭ	5
4	Taste	(01111 0111 1.00.50010)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	4.6	0	1
7	Specific Conductivity	(m mhos/cm)	71.1	Ŭ	-
8	Total Dissolved Solids	(mg/l)	45.5		500
9	Total Hardness	(mg/l)	28		200
10	Total Alkalinity as CaCO3	(mg/l)	33		200
11	Calcium as Ca	(mg/l)	6		75
12	Magnesium as Mg	(mg/l)	3.25		<30
13	Chlorides as Cl	(mg/l)	7		200
13	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.7	0	0.1
16	Phosphate as PO4 *	(mg/l)	0.1	Ŭ	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		-
20	Fluorides as F	(mg/l)	0.1		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.01		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	1.5		-
28	Nitrate-N	(mg/l)	0.2		45
	Nitrite as NO2 *	(mg/l)	< 0.01		-
29	Ammonia-N	(mg/l)	0.8		-
30	Dissolved Oxygen	(mg/l)	4.7		-
31	B.O.D. 5 days at 200C	(mg/l)	2		-
32	B.O.D. 3 days at 200C	(mg/l)	1.5		-
33	C.O.D (Cr)	(mg/l)	3.7		-
34	Sodium as Na *	(mg/l)	2.2		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.3		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	1100	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	230	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection -17/06/05

Caranzol, Sattari Tube Well

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	rteman	Guidelines
1	Temperature	celsius	29.0 (Lab)		-
2	pH.		6.4	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	Ŭ	5
4	Taste	(0	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	2.12	0	1
7	Specific Conductivity	(m mhos/cm)	298	•	-
8	Total Dissolved Solids	(mg/l)	190.5		500
9	Total Hardness	(mg/l)	106		200
10	Total Alkalinity as CaCO3	(mg/l)	90		200
11	Calcium as Ca	(mg/l)	28.4		75
12	Magnesium as Mg	(mg/l)	8.75		<30
13	Chlorides as Cl	(mg/l)	20		200
14	Sulphate as SO4	(mg/l)	25		200
15	Iron as Fe	(mg/l)	0.34	0	0.1
16	Phosphate as PO4 *	(mg/l)	0.1	_	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		-
20	Fluorides as F	(mg/l)	0.11		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.02		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	0.5		-
28	Nitrate-N	(mg/l)	0.8		45
	Nitrite as NO2 *	(mg/l)	< 0.01		-
29	Ammonia-N	(mg/l)	1.58		-
30	Dissolved Oxygen	(mg/l)	6		-
31	B.O.D. 5 days at 200C	(mg/l)	1.2		-
32	B.O.D. 3 days at 200C	(mg/l)	0.9		-
33	C.O.D (Cr)	(mg/l)	2.8		-
34	Sodium as Na *	(mg/l)	12.3		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.4		-
36		(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01	_	0.01
39	Coliforms	MPN/100ml	4600	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	30	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection -Gonteli, Sattari Open Well 17/06/05

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	rteman	Guidennes
1	Temperature	celsius	29.0 (lab)		-
2	pH.		6.2	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	Ŭ	5
4	Taste	(0	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	2.3	0	1
7	Specific Conductivity	(m mhos/cm)	77	Ŭ	-
8	Total Dissolved Solids	(mg/l)	49		500
9	Total Hardness	(mg/l)	28		200
10	Total Alkalinity as CaCO3	(mg/l)	28		200
11	Calcium as Ca	(mg/l)	6		75
12	Magnesium as Mg	(mg/l)	3.25		<30
13	Chlorides as Cl	(mg/l)	8		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.58	0	0.1
16	Phosphate as PO4 *	(mg/l)	0.1	Ŭ	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		-
20	Fluorides as F	(mg/l)	0.11		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	< 0.01		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	0.5		-
28	Nitrate-N	(mg/l)	0.7		45
	Nitrite as NO2 *	(mg/l)	0.01		-
29	Ammonia-N	(mg/l)	0.8		-
30	Dissolved Oxygen	(mg/l)	6.4		-
31	B.O.D. 5 days at 200C	(mg/l)	1		-
32	B.O.D. 3 days at 200C	(mg/l)	0.7		-
33	C.O.D (Cr)	(mg/l)	2.5		-
34	Sodium as Na *	(mg/l)	1.4		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.2		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	11000	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	150	Ō	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed. Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection - Netravalim,Sanguem Tube Well 20/06/05

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	rteman	Guidennies
1	Temperature	celsius	29		-
2	pH.	Constab	7.5		7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil		5
4	Taste	(Chint on T t. Co.searc)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	2.15	0	1
7	Specific Conductivity	(m mhos/cm)	303	Ŭ	-
8	Total Dissolved Solids	(mg/l)	194		500
9	Total Hardness	(mg/l)	183		200
10	Total Alkalinity as CaCO3	(mg/l)	180		200
11	Calcium as Ca	(mg/l)	36.6		75
12	Magnesium as Mg	(mg/l)	22.7		<30
13	Chlorides as Cl	(mg/l)	5		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.08		0.1
16	Phosphate as PO4 *	(mg/l)	0.1		-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		-
20	Fluorides as F	(mg/l)	0.14		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	< 0.01		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	Nil		-
28	Nitrate-N	(mg/l)	0.5		45
	Nitrite as NO2 *	(mg/l)	0.01		-
29	Ammonia-N	(mg/l)	1		-
30	Dissolved Oxygen	(mg/l)	6.2		-
31	B.O.D. 5 days at 200C	(mg/l)	0.9		-
32	B.O.D. 3 days at 200C	(mg/l)	0.6		-
33	C.O.D (Cr)	(mg/l)	Nil		-
34	Sodium as Na *	(mg/l)	3.5		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.2		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	7	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	Nil	Ŭ	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection -Loliem, Canacona Open Well 20/06/05

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement			
1	Temperature	celsius	28		-
	pH.		5.3	0	7.0 to 8.5
2 3	Colour	(Unit on Pt.Co.scale)	Nil	Ŭ	5
4	Taste	(enne on reconstance)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	9.1	0	1
7	Specific Conductivity	(m mhos/cm)	58.7	Ŭ	-
8	Total Dissolved Solids	(mg/l)	37.5		500
9	Total Hardness	(mg/l)	11		200
10	Total Alkalinity as CaCO3	(mg/l)	9		200
11	Calcium as Ca	(mg/l)	2.6		75
12	Magnesium as Mg	(mg/l)	2.0		<30
12	Chlorides as Cl	(mg/l)	10		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.05		0.1
16	Phosphate as PO4 *	(mg/l)	0.03		-
17	Arsenic as As *	(mg/l)	<0.2		0.01
18	Managanese as Mn	(mg/l)	Nil		0.01
19	Hexavalent chromium as Cr6+ *		<0.05		0.05
20	Fluorides as F	(mg/l)	<0.03 Nil		-
20	Cadmium as Cd *	(mg/l)			-
21	Caulifiulit as Cu	(mg/l)	< 0.01		0.01 5
22		(mg/l)	0.01		
	copper as cu	(mg/l)	< 0.01		0.05
24	Ladu do 10	(mg/l)	< 0.01		0.05
25	Mercury as Hg * Selenium as Se *	(mg/l)	< 0.001		0.001 0.01
26	beremum as be	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	0.5		-
28	Nitrate-N Nitrite as NO2 *	(mg/l)	0.9		45
20		(mg/l)	0.02		-
29	Ammonia-N	(mg/l)	0.85		-
30	Dissolved Oxygen	(mg/l)	7		-
31	B.O.D. 5 days at 200C	(mg/l)	2.6		-
32	B.O.D. 3 days at 200C	(mg/l)	2.1		-
33	C.O.D (Cr)	(mg/l)	3.2		-
34	Sodium as Na *	(mg/l)	6.8		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.6		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	95	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	21	0	Not be Detectable

Parameters tested by an external Laboratory. Reports enclosed.
 Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..
 Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection -

Kazur, Quepem. -- Tube Well Public tap 9/06/05 (Dry

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	rteman	Guidennes
1	Temperature	celsius	28		-
2	pH.		6.6	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	•	5
4	Taste	()	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	12.2	0	1
7	Specific Conductivity	(m mhos/cm)	223	•	-
8	Total Dissolved Solids	(mg/l)	142		500
9	Total Hardness	(mg/l)	115		200
10	Total Alkalinity as CaCO3	(mg/l)	122		200
11	Calcium as Ca	(mg/l)	29.2		75
12	Magnesium as Mg	(mg/l)	10.5		<30
13	Chlorides as Cl	(mg/l)	7		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	3	0	0.1
16	Phosphate as PO4 *	(mg/l)	0.2	•	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		-
20	Fluorides as F	(mg/l)	0.13		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.73		5
23	Copper as Cu *	(mg/l)	0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	3.5		-
28	Nitrate-N	(mg/l)	0.7		45
	Nitrite as NO2 *	(mg/l)	0.04		-
29	Ammonia-N	(mg/l)	0.55		-
30	Dissolved Oxygen	(mg/l)	5.8		-
31	B.O.D. 5 days at 200C	(mg/l)	1.3		-
32	B.O.D. 3 days at 200C	(mg/l)	0.8		-
33	C.O.D (Cr)	(mg/l)	3.2		-
34	Sodium as Na *	(mg/l)	5.5		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.8		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	75	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	43	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection -

Cordem ,Balli ,Quepem - Spring Water Spring 21/06/05

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	rteman	Guidennes
1	Temperature	celsius	26.5		-
2	pH.	Constant	6.7	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	Ŭ	5
4	Taste	(01111 0111 1.00.50010)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	6.8	0	1
7	Specific Conductivity	(m mhos/cm)	75.2	Ŭ	-
8	Total Dissolved Solids	(mg/l)	48		500
9	Total Hardness	(mg/l)	27		200
10	Total Alkalinity as CaCO3	(mg/l)	26		200
11	Calcium as Ca	(mg/l)	4.8		75
12	Magnesium as Mg	(mg/l)	3.75		<30
13	Chlorides as Cl	(mg/l)	9		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.58	0	0.1
16	Phosphate as PO4 *	(mg/l)	<0.1	Ŭ	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.07		5
23	Copper as Cu *	(mg/l)	0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	2		-
28	Nitrate-N	(mg/l)	0.1		45
	Nitrite as NO2 *	(mg/l)	0.01		-
29	Ammonia-N	(mg/l)	0.46		-
30	Dissolved Oxygen	(mg/l)	7.9		-
31	B.O.D. 5 days at 200C	(mg/l)	0.65		-
32	B.O.D. 3 days at 200C	(mg/l)	0.5		-
33	C.O.D (Cr)	(mg/l)	1.6		-
34	Sodium as Na *	(mg/l)	3.9		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.2		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	4600	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	150	Ō	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection -

Morpilla ,Quepem ---- Spring Water Spring 21/06/05

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.	1201 17 HOUSE LERO	Measurement	Results	Itemark	Guidennes
1	Temperature	celsius	26		_
2	pH.	constas	6.5	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	Ŭ	5
4	Taste	(Clint on Tt.Co.seale)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	6.8	0	1
7	Specific Conductivity	(m mhos/cm)	63.5	Ŭ	-
8	Total Dissolved Solids	(mg/l)	40.5		500
9	Total Hardness	(mg/l)	20		200
10	Total Alkalinity as CaCO3	(mg/l)	20		200
11	Calcium as Ca	(mg/l)	4		75
12	Magnesium as Mg	(mg/l)	2.5		<30
13	Chlorides as Cl	(mg/l)	9		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.4	0	0.1
16	Phosphate as PO4 *	(mg/l)	0.2	Ŭ	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.04		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	2.5		-
28	Nitrate-N	(mg/l)	0.1		45
	Nitrite as NO2 *	(mg/l)	0.01		-
29	Ammonia-N	(mg/l)	0.46		-
30	Dissolved Oxygen	(mg/l)	7.35		-
31	B.O.D. 5 days at 200C	(mg/l)	0.7		-
32	B.O.D. 3 days at 200C	(mg/l)	0.46		-
33	C.O.D (Cr)	(mg/l)	1.8		-
34	Sodium as Na *	(mg/l)	2.8		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.3		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	4600	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	230	Õ	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection -

23/06/05

Ziltawadi, Gaondongrim , Canacona ---- Tubewell House Tap in Reservoir Complex.

(Dry Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	rteman	Guidelines
1	Temperature	celsius	25.5		_
2	pH.	constas	7.9		7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil		5
4	Taste	(0	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	2.4	0	1
7	Specific Conductivity	(m mhos/cm)	226	Ŭ	-
8	Total Dissolved Solids	(mg/l)	144		500
9	Total Hardness	(mg/l)	117		200
10	Total Alkalinity as CaCO3	(mg/l)	126		200
11	Calcium as Ca	(mg/l)	24		75
12	Magnesium as Mg	(mg/l)	14.25		<30
13	Chlorides as Cl	(mg/l)	7		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.4	0	0.1
16	Phosphate as PO4 *	(mg/l)	0.1	_	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.05		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.01		0.01
22	Zinc as Zn *	(mg/l)	0.01		5
23	Copper as Cu *	(mg/l)	< 0.01		0.05
24	Lead as Pb *	(mg/l)	< 0.01		0.05
25	Mercury as Hg *	(mg/l)	< 0.001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	Nil		-
28	Nitrate-N	(mg/l)	Nil		45
	Nitrite as NO2 *	(mg/l)	< 0.01		-
29	Ammonia-N	(mg/l)	0.16		-
30	Dissolved Oxygen	(mg/l)	7.8		-
31	B.O.D. 5 days at 200C	(mg/l)	0.48		-
32	B.O.D. 3 days at 200C	(mg/l)	0.25		-
33	C.O.D (Cr)	(mg/l)	1.4		-
34	Sodium as Na *	(mg/l)	8.5		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.3		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01	-	0.01
39	Coliforms	MPN/100ml	1100		Not be Detectable
40	Fecal Coliform	MPN/100ml	240	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed.. Remark means that a chemical consentration is over the recommended guidelines

Source of Sample -Place of Collection -Date of Collection -21/07/05

Curca, Tiswadi Open Well

(Chlorinated water) (Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	icesuits	Remark	Guidennes
1	Temperature	OC	29		-
2	pH.	00	6	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	U	7.0 10 0.5
4	Taste	(Onit on Precoscate)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	3.87	0	1
7	Specific Conductivity	(mmhos/cm)	163.6	U	-
8	Total Dissolved Solids	(mg/l)	104.5		500
9	Total Hardness	(mg/l)	55		200
10	Total Alkalinity as CaCO3	(mg/l)	42		200
11	Calcium as Ca	(mg/l)	15.2		75
12	Magnesium as Mg	(mg/l)	4.25		<30
13	Chlorides as Cl	(mg/l)	26		200
14	Sulphate as SO4	(mg/l)	5		200
15	Iron as Fe	(mg/l)	0.4	0	0.1
16	Phosphate as PO4 *	(mg/l)	<0.1	U	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	< 0.0015		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	1		-
28	Nitrate-N	(mg/l)	Nil		45
	Nitrite as NO2 *	(mg/l)	0.06		-
29	Ammonia-N	(mg/l)	Nil		-
30		(mg/l)	6.2		-
31	B.O.D. 5 days at 200C	(mg/l)	Nil		-
32	B.O.D. 3 days at 200C	(mg/l)	Nil		-
33	C.O.D (Cr)	(mg/l)	Nil		-
34	Sodium as Na *	(mg/l)	17.7		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36		(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	Nil		Not be Detectable
40	Fecal Coliform	MPN/100ml	Nil		Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample-Mopa, PernemPlace of Collection-Tube wellDate of Collection-21/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	reound	1.0110011	Guidelines
1	Temperature	OC	28		-
2	pH.		5.8	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	0	5
4	Taste	(0 0 1 0.00.000.00)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	1.9	0	1
7	Specific Conductivity	(m mhos/cm)	125.5	Ŭ	-
8	Total Dissolved Solids	(mg/l)	80		500
9	Total Hardness	(mg/l)	37		200
10	Total Alkalinity as CaCO3	(mg/l)	42		200
11	Calcium as Ca	(mg/l)	10.8		75
12	Magnesium as Mg	(mg/l)	2.5		<30
13	Chlorides as Cl	(mg/l)	12		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.34	0	0.1
16	Phosphate as PO4 *	(mg/l)	< 0.1	C C	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	0.02		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	0.3		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	1		-
28	Nitrate-N	(mg/l)	1.6		45
	Nitrite as NO2 *	(mg/l)	0.06		-
29	Ammonia-N	(mg/l)	0.7		-
30	Dissolved Oxygen	(mg/l)	4.8		-
31	B.O.D. 5 days at 200C	(mg/l)	0.5		-
32	B.O.D. 3 days at 200C	(mg/l)	0.4		-
33	C.O.D (Cr)	(mg/l)	1.2		-
34	Sodium as Na *	(mg/l)	8.75		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.1		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	1100	0	Not be Detectable
	Fecal Coliform	MPN/100ml	43	Ō	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample-Malpona, GovanemPlace of Collection-Open WellDate of Collection-22/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	rtemark	Guidelines
1	Temperature	OC	28		-
2	pH.		5.6	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	U	5
4	Taste	(0 0 1 0.00.000.00)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	3.8	0	1
7	Specific Conductivity	(m mhos/cm)	47.7	U	-
8	Total Dissolved Solids	(mg/l)	30.5		500
9	Total Hardness	(mg/l)	17		200
10	Total Alkalinity as CaCO3	(mg/l)	18		200
11	Calcium as Ca	(mg/l)	3.2		75
12	Magnesium as Mg	(mg/l)	2.25		<30
13	Chlorides as Cl	(mg/l)	6		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.14	0	0.1
16	Phosphate as PO4 *	(mg/l)	< 0.1	•	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	0.03		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	< 0.0015		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	1.5		-
28	Nitrate-N	(mg/l)	0.1		45
	Nitrite as NO2 *	(mg/l)	0.05		-
29	Ammonia-N	(mg/l)	Nil		-
30	Dissolved Oxygen	(mg/l)	5.1		-
31	B.O.D. 5 days at 200C	(mg/l)	1.75		-
32	B.O.D. 3 days at 200C	(mg/l)	1.45		-
33	C.O.D (Cr)	(mg/l)	3.3		-
34	Sodium as Na *	(mg/l)	6.65		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.25		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	930	0	Not be Detectable
	Fecal Coliform	MPN/100ml	210	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample-GontelliPlace of Collection-Open WellDate of Collection-22/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	Remark	Guidennes
1	Temperature	OC	28		_
2	pH.	00	6	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	Ŭ	5
4	Taste	(onit on I t.co.seale)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	0.8		1
7	Specific Conductivity	(m mhos/cm)	72.2		1
8	Total Dissolved Solids	(mg/l)	46		500
9	Total Hardness	(mg/l)	27		200
10	Total Alkalinity as CaCO3	(mg/l)	21		200
11	Calcium as Ca	(mg/l)	5.6		75
12	Magnesium as Mg	(mg/l)	3.25		<30
12	Chlorides as Cl	(mg/l)	3.23 8		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.2	0	0.1
16	Phosphate as PO4 *	(mg/l)	<0.1	0	0.1
17	Arsenic as As *	(mg/l)	<0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.01
19	Hexavalent chromium as Cr6+ *	(mg/l)	<0.003		0.05
20	Fluorides as F	(mg/l)	0.09		- 1
20	Cadmium as Cd *	(mg/l)	< 0.09		0.01
21	Zinc as Zn *	(mg/l)	<0.008 0.05		5
22	Copper as Cu *	(mg/l)	< 0.0015		0.05
23 24	Lead as Pb *	(mg/l)	<0.0013		0.05
24	Mercury as Hg *	(mg/l)	<0.0013		0.001
23 26	Selenium as Se *	(mg/l)	<0.0001 <0.01		0.001
20	Sciellulli as Sc		0.5		-
27	Total Suspended Solids Nitrate-N	(mg/l) (mg/l)	0.5 1.55		45
20	Nitrate-N Nitrite as NO2 *	(mg/l) (mg/l)	0.58		43
29	Ammonia-N	(mg/l)	0.38		-
29 30	Dissolved Oxygen	(mg/l)	0.3 6.1		-
30 31	B.O.D. 5 days at 200C		0.1 0.6		-
31	B.O.D. 3 days at 200C B.O.D. 3 days at 200C	(mg/l) (mg/l)	0.8		-
32 33	B.O.D. 3 days at 200C C.O.D (Cr)	(mg/l) (mg/l)	0.4		-
33 34	Sodium as Na *		1.5 9.45		-
34 35	Oxygen absorbed from KMnO4	(mg/l) (mg/l)	9.45 0.2		-
35 36	Cyanide as CN *	(mg/l)	0.2 <0.02		0.05
30	Phenolic compound as C6 H5OH *	(mg/l) (mg/l)	<0.02 <0.001		0.05
37	Mineral Oil *	(mg/l) (mg/l)	<0.001 <0.01		0.001
38 39	Coliforms	(mg/l) MPN/100ml	<0.01 2400	\sim	Not be Detectable
		MPN/100ml	2400	0	
	Fecal Coliform		210	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample - Caranzol, Sattari Place of Collection - Tube well Date of Collection - 29/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement			
1	Temperature	OC	29		_
2	pH.		6.4	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	Ũ	5
4	Taste	()	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	1.5	0	1
7	Specific Conductivity	(mmhos/cm)	332	Ũ	_
8	Total Dissolved Solids	(mg/l)	213		500
9	Total Hardness	(mg/l)	120		200
10	Total Alkalinity as CaCO3	(mg/l)	96		200
11	Calcium as Ca	(mg/l)	32		75
12	Magnesium as Mg	(mg/l)	10		<30
13	Chlorides as Cl	(mg/l)	33		200
14	Sulphate as SO4	(mg/l)	21		200
15	Iron as Fe	(mg/l)	0.06		0.1
16	Phosphate as PO4 *	(mg/l)	<0.1		-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	0.14		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	0.13		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	Nil		-
28	Nitrate-N	(mg/l)	3.5		45
	Nitrite as NO2 *	(mg/l)	1.44		-
29	Ammonia-N	(mg/l)	0.65		-
30	Dissolved Oxygen	(mg/l)	7.15		-
31	B.O.D. 5 days at 200C	(mg/l)	0.25		-
32	B.O.D. 3 days at 200C	(mg/l)	0.2		-
33	C.O.D (Cr)	(mg/l)	Nil		-
34	Sodium as Na *	(mg/l)	25.7		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	930	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	70	Ō	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample-Nirankal, PondaPlace of Collection-Tube WellDate of Collection-25/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	rtemark	Guidelines
1	Temperature	OC	28		-
2	pH.	00	6.7	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	45	ŏ	5
4	Taste	(Child off P t. Co.searc)	Unobjectionable	U	Unobjectionable
5	Odour		Musty odour	0	Unobjectionable
6	Turbidity	(NTU)	21.7	0	1
7	Specific Conductivity	(mmhos/cm)	153.8	U	-
8	Total Dissolved Solids	(mg/l)	98		500
9	Total Hardness	(mg/l)	72		200
10	Total Alkalinity as CaCO3	(mg/l)	80		200
11	Calcium as Ca	(mg/l)	11.6		75
12	Magnesium as Mg	(mg/l)	10.75		<30
13	Chlorides as Cl	(mg/l)	6		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	3.6	0	0.1
16	Phosphate as PO4 *	(mg/l)	< 0.1	•	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	0.1		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	0.33		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	12		-
28	Nitrate-N	(mg/l)	0.2		45
	Nitrite as NO2 *	(mg/l)	0.06		-
29	Ammonia-N	(mg/l)	0.45		-
30	Dissolved Oxygen	(mg/l)	5.85		-
31	B.O.D. 5 days at 200C	(mg/l)	Nil		-
32	B.O.D. 3 days at 200C	(mg/l)	Nil		-
33	C.O.D (Cr)	(mg/l)	Nil		-
34	Sodium as Na *	(mg/l)	11.6		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	23	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	Nil		Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample-DharbandoraPlace of Collection-Tube WellDate of Collection-25/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	1.0110011	Guidenneb
1	Temperature	OC	28		-
2	pH.		7.4		7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	55	0	5
4	Taste	(Chine on Perconsense)	Unobjectionable	Ŭ	Unobjectionable
5	Odour		Musty odour	0	Unobjectionable
6	Turbidity	(NTU)	35	ŏ	1
7	Specific Conductivity	(m mhos/cm)	218	0	-
8	Total Dissolved Solids	(mg/l)	139.5		500
9	Total Hardness	(mg/l)	107		200
10	Total Alkalinity as CaCO3	(mg/l)	112		200
11	Calcium as Ca	(mg/l)	28		200 75
12	Magnesium as Mg	(mg/l)	9.25		<30
12	Chlorides as Cl	(mg/l)	6		200
13	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	3.7	0	0.1
16	Phosphate as PO4 *	(mg/l)	<0.1	0	0.1
17	Arsenic as As *	(mg/l)	<0.01		0.01
18	Managanese as Mn	(mg/l)	0.03		0.01
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	0.3		1
20	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	< 0.0015		5
23	Copper as Cu *	(mg/l)	<0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0013		0.001
26	Selenium as Se *	(mg/l)	<0.001		0.01
27	Total Suspended Solids	(mg/l)	12		-
28	Nitrate-N	(mg/l)	Nil		45
20	Nitrite as NO2 *	(mg/l)	0.09		-
29	Ammonia-N	(mg/l)	Nil		-
30	Dissolved Oxygen	(mg/l)	5.6		_
31	B.O.D. 5 days at 200C	(mg/l)	Nil		_
32	B.O.D. 3 days at 200C	(mg/l)	Nil		_
33	C.O.D (Cr)	(mg/l)	Nil		_
34	Sodium as Na *	(mg/l)	9.75		_
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		_
36	Cyanide as CN *	(mg/l)	<0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	<0.02		0.001
38	Mineral Oil *	(mg/l)	<0.001		0.01
39	Coliforms	MPN/100ml	9	0	Not be Detectable
	Fecal Coliform	MPN/100ml	Nil	0	Not be Detectable
	recal Collionii ameters, tested by an external Laborato		1111		THE DE DEIECIADIE

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample - Mollem Place of Collection - Tube Well Date of Collection - 25/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	Results	Remark	Guidennes
1	Temperature	OC	29		_
2	pH.	00	6	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	U	5
4	Taste	(Unit on Precoscale)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	1.5	0	1
7	Specific Conductivity	(m mhos/cm)	40.2	Ŭ	1
8	Total Dissolved Solids	(mg/l)	26		500
9	Total Hardness	(mg/l)	10		200
10	Total Alkalinity as CaCO3	(mg/l)	7		200
11	Calcium as Ca	(mg/l)	2.4		200 75
11	Magnesium as Mg	(mg/l)	1		<30
12	Chlorides as Cl	(mg/l)	6		200
13	Sulphate as SO4	(mg/l)	Nil		200
14	Iron as Fe	(mg/l)	0.95	0	0.1
16	Phosphate as PO4 *	(mg/l)	<0.1	0	0.1
10	Arsenic as As *	(mg/l)	<0.01		0.01
17	Managanese as Mn	(mg/l)	Nil		0.01
10	Hexavalent chromium as Cr6+ *	(mg/l)	<0.003		
20	Fluorides as F	(mg/l)	<0.003 0.19		- 1
20	Cadmium as Cd *	(mg/l)	< 0.008		0.01
$\frac{21}{22}$	Zinc as Zn *	(mg/l)	<0.008		5
22					0.05
23 24	Copper as Cu * Lead as Pb *	(mg/l) (mg/l)	<0.0015 <0.015		0.05
					0.05
25 26	Mercury as Hg * Selenium as Se *	(mg/l)	<0.0001 <0.01		0.001
20 27	Sciellulli as Sc	(mg/l)	<0.01 Nil		
27	Total Suspended Solids Nitrate-N	(mg/l)	0.6		- 45
28	Nitrate-IN Nitrite as NO2 *	(mg/l)	0.6		45
20		(mg/l)			-
29 30	Ammonia-N Dissolved Owygen	(mg/l)	0.8 6.75		-
30	Dissolved Oxygen B.O.D. 5 days at 200C	(mg/l) (mg/l)	6.75 Nil		-
			Nil		-
32	B.O.D. 3 days at 200C	(mg/l)			-
33	C.O.D (Cr) Sodium as Na *	(mg/l)	Nil 2.75		-
34	Sourum as Iva	(mg/l) (mg/l)	3.75		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.1 <0.02		-
36	Cyanide as CN *	(mg/l)			0.05
37 38	Phenolic compound as C6 H5OH * Mineral Oil *	(mg/l) (mg/l)	<0.001 <0.01		0.001 0.01
38 39	Coliforms	(mg/l) MDN/100ml	<0.01 4	\sim	
		MPN/100ml		0	Not be Detectable
	Fecal Coliform	MPN/100ml	Nil		Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample - Nitravalim Place of Collection - Tube Well Date of Collection - 26/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	1.0110011	Guidennes
1	Temperature	OC	29		-
2	pH.		7.3		7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil		5
4	Taste	(0	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	0.6		1
7	Specific Conductivity	(m mhos/cm)	314		-
8	Total Dissolved Solids	(mg/l)	201		500
9	Total Hardness	(mg/l)	185		200
10	Total Alkalinity as CaCO3	(mg/l)	180		200
11	Calcium as Ca	(mg/l)	42		75
12	Magnesium as Mg	(mg/l)	21.25		<30
13	Chlorides as Cl	(mg/l)	6		200
13	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.06		0.1
16	Phosphate as PO4 *	(mg/l)	<0.1		0.1
17	Arsenic as As *	(mg/l)	<0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.01
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	0.04		1
20	Cadmium as Cd *	(mg/l)	< 0.004		0.01
22	Zinc as Zn *	(mg/l)	0.08		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	Nil		-
28	Nitrate-N	(mg/l)	0.1		45
	Nitrite as NO2 *	(mg/l)	0.07		-
29	Ammonia-N	(mg/l)	Nil		-
30	Dissolved Oxygen	(mg/l)	6		-
31	B.O.D. 5 days at 200C	(mg/l)	0.65		-
32	B.O.D. 3 days at 200C	(mg/l)	0.45		-
33	C.O.D (Cr)	(mg/l)	Nil		-
34	Sodium as Na *	(mg/l)	3.3		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	Nil		Not be Detectable
	Fecal Coliform	MPN/100ml	Nil		Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample-Kazur ,QuepemPlace of Collection-Tube WellDate of Collection-26/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	Remark	Guidennes
1	Temperature	OC	27		_
2	pH.	00	6.6	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	U	5
4	Taste	(Chit on Pt.Co.seale)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	4.7	0	1
7	Specific Conductivity	(m mhos/cm)	217	Ŭ	1
8	Total Dissolved Solids	(mg/l)	139		500
9	Total Hardness	(mg/l)	110		200
10	Total Alkalinity as CaCO3	(mg/l)	115		200
11	Calcium as Ca	(mg/l)	27.2		200 75
11	Magnesium as Mg	(mg/l)	10.5		<30
12	Chlorides as Cl	(mg/l)	10.3		200
13	Sulphate as SO4	(mg/l)	, Nil		200
14	Iron as Fe		0.45	0	0.1
15	Phosphate as PO4 *	(mg/l) (mg/l)	0.43 <0.1	0	0.1
10	Arsenic as As *	(mg/l)	<0.01		0.01
			<0.01 Nil		0.01
18 19	Managanese as Mn Hexavalent chromium as Cr6+ *	(mg/l)	<0.003		
	Fluorides as F	(mg/l)			-
20		(mg/l)	0.19		1
21	Caulifium as Cu	(mg/l)	< 0.008		0.01
22		(mg/l)	0.45		5
23	copper as cu	(mg/l)	< 0.0015		0.05
24	Leau as r u	(mg/l)	< 0.015		0.05
25	wiciculy as fig	(mg/l)	< 0.0001		0.001
26	Scientum as Sc	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	1.5		-
28	Nitrate-N	(mg/l)	0.2		45
•	Infunction as 1002	(mg/l)	0.11		-
29	Ammonia-N	(mg/l)	0.35		-
30	Dissolved Oxygen	(mg/l)	5.35		-
31	B.O.D. 5 days at 200C	(mg/l)	0.7		-
32	B.O.D. 3 days at 200C	(mg/l)	0.5		-
33	C.O.D (Cr)	(mg/l)	1.5		-
34	Sodium as Na *	(mg/l)	14.5		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01	_	0.01
39	Coliforms	MPN/100ml	9	0	Not be Detectable
	Fecal Coliform	MPN/100ml	Nil		Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample-Cordem ,Balli ,Quepem – Spring WaterPlace of Collection-SpringDate of Collection-27/07/05(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	ressures		Guidelines
1	Temperature	OC	27		-
2	pH.		6.9	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	U	5
4	Taste	()	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	4.9	0	1
7	Specific Conductivity	(mmhos/cm)	50.8	-	-
8	Total Dissolved Solids	(mg/l)	32.5		500
9	Total Hardness	(mg/l)	24		200
10	Total Alkalinity as CaCO3	(mg/l)	16		200
11	Calcium as Ca	(mg/l)	6		75
12	Magnesium as Mg	(mg/l)	2.25		<30
13	Chlorides as Cl	(mg/l)	7		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.06		0.1
16	Phosphate as PO4 *	(mg/l)	< 0.1		-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	< 0.0015		5
23	Copper as Cu *	(mg/l)	< 0.005		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	1.5		-
28	Nitrate-N	(mg/l)	0.3		45
	Nitrite as NO2 *	(mg/l)	0.05		-
29	Ammonia-N	(mg/l)	0.4		-
30	Dissolved Oxygen	(mg/l)	7.65		-
31	B.O.D. 5 days at 200C	(mg/l)	0.3		-
32	B.O.D. 3 days at 200C	(mg/l)	0.2		-
33	C.O.D (Cr)	(mg/l)	1		-
34	Sodium as Na *	(mg/l)	6.7		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.1		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	930	0	Not be Detectable
	Fecal Coliform	MPN/100ml	430	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample-Morpilla ,Quepem ---- Spring WaterPlace of Collection-SpringDate of Collection-27/07/05(Rainy Sea)

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement			
1	Temperature	OC	26		-
2	pH.		7		7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil		5
4	Taste	()	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	2.9	0	1
7	Specific Conductivity	(mmhos/cm)	55.9	0	_
8	Total Dissolved Solids	(mg/l)	36		500
9	Total Hardness	(mg/l)	22		200
10	Total Alkalinity as CaCO3	(mg/l)	${20}$		200
11	Calcium as Ca	(mg/l)	4.8		75
12	Magnesium as Mg	(mg/l)	2.5		<30
13	Chlorides as Cl	(mg/l)	8		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.14	0	0.1
16	Phosphate as PO4 *	(mg/l)	< 0.1	C	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	0.17		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	< 0.0015		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	0.5		-
28	Nitrate-N	(mg/l)	0.5		45
	Nitrite as NO2 *	(mg/l)	0.05		-
29	Ammonia-N	(mg/l)	0.8		-
30	Dissolved Oxygen	(mg/l)	7.75		-
31	B.O.D. 5 days at 200C	(mg/l)	0.3		-
32	B.O.D. 3 days at 200C	(mg/l)	0.2		-
33	C.O.D (Cr)	(mg/l)	Nil		-
34	Sodium as Na *	(mg/l)	9.4		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.2		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	150	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	90	Ō	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Guidelines

7.0 to 8.5

5

Unobjectionable

Unobjectionable

1

_

500

200

Source of Sample-Ziltawadi, Gaondongrim , Canacona ---- TubewellPlace of Collection-House Tap in Reservoir ComplexDate of Collection-27/07/05(Rainy Season)

TEST PARAMETERS Unit of Results Remark Sr. Measurement No. Temperature OC 26 1 2 3 pH. 8.2 Colour (Unit on Pt.Co.scale) Nil 4 Taste Unobjectionable 5 6 7 8 Odour Unobjectionable Turbidity (NTU) 0 2.3 Specific Conductivity (mmhos/cm) 240 Total Dissolved Solids (mg/l)154 145

	9 Total Hardness	(mg/l)	145		200
1	0 Total Alkalinity as CaCO3	(mg/l)	145		200
1	1 Calcium as Ca	(mg/l)	27.2		75
1	2 Magnesium as Mg	(mg/l)	19.25		<30
1	3 Chlorides as Cl	(mg/l)	7		200
1	4 Sulphate as SO4	(mg/l)	Nil		200
1	5 Iron as Fe	(mg/l)	0.06		0.1
1	6 Phosphate as PO4 *	(mg/l)	< 0.1		-
1	7 Arsenic as As *	(mg/l)	< 0.01		0.01
1	8 Managanese as Mn	(mg/l)	Nil		0.05
1	9 Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
2	20 Fluorides as F	(mg/l)	0.05		1
2	21 Cadmium as Cd *	(mg/l)	< 0.008		0.01
2	22 Zinc as Zn *	(mg/l)	< 0.0015		5
2	23 Copper as Cu *	(mg/l)	< 0.0015		0.05
2	4 Lead as Pb *	(mg/l)	< 0.015		0.05
2	25 Mercury as Hg *	(mg/l)	< 0.0001		0.001
2	26 Selenium as Se *	(mg/l)	< 0.01		0.01
2	7 Total Suspended Solids	(mg/l)	Nil		-
2	28 Nitrate-N	(mg/l)	0.3		45
	Nitrite as NO2 *	(mg/l)	0.07		-
2	9 Ammonia-N	(mg/l)	0.08		-
3	0 Dissolved Oxygen	(mg/l)	7.75		-
3	1 B.O.D. 5 days at 200C	(mg/l)	0.3		-
3	2 B.O.D. 3 days at 200C	(mg/l)	0.2		-
3	3 C.O.D (Cr)	(mg/l)	1		-
3	4 Sodium as Na *	(mg/l)	11.6		-
3	5 Oxygen absorbed from KMnO4	(mg/l)	Nil		-
3	6 Cyanide as CN *	(mg/l)	< 0.02		0.05
3	7 Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
3	8 Mineral Oil *	(mg/l)	< 0.01		0.01
3	9 Coliforms	MPN/100ml	90	0	Not be Detectable
4	0 Fecal Coliform	MPN/100ml	40	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample-Loliem, CanaconaPlace of Collection-Open WellDate of Collection-27/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results	Itemark	Guidelines
1	Temperature	OC	29		_
2	pH.	00	6.2	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	Nil	0	5
4	Taste	(Chine on Perconsense)	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	1.5	0	1
7	Specific Conductivity	(m mhos/cm)	59.9	0	-
8	Total Dissolved Solids	(mg/l)	39		500
9	Total Hardness	(mg/l)	18		200
10	Total Alkalinity as CaCO3	(mg/l)	11		200
11	Calcium as Ca	(mg/l)	3.6		75
12	Magnesium as Mg	(mg/l)	2.25		<30
12	Chlorides as Cl	(mg/l)	9		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.02		0.1
16	Phosphate as PO4 *	(mg/l)	<0.1		-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	0.03		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	Nil		-
28	Nitrate-N	(mg/l)	1.4		45
	Nitrite as NO2 *	(mg/l)	0.1		-
29	Ammonia-N	(mg/l)	0.5		-
30	Dissolved Oxygen	(mg/l)	4.8		-
31	B.O.D. 5 days at 200C	(mg/l)	0.3		-
32	B.O.D. 3 days at 200C	(mg/l)	0.2		-
33	C.O.D (Cr)	(mg/l)	Nil		-
34	Sodium as Na *	(mg/l)	10.2		-
35	Oxygen absorbed from KMnO4	(mg/l)	Nil		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
39	Coliforms	MPN/100ml	390	0	Not be Detectable
40	Fecal Coliform	MPN/100ml	90	0	Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Source of Sample-Vazangal – Shiroda WellPlace of Collection-Tube WellDate of Collection-28/07/05

(Rainy Season)

Sr.	TEST PARAMETERS	Unit of	Results	Remark	Guidelines
No.		Measurement	results		Guidelines
1	Temperature	OC	30		-
2	pH.		5.7	0	7.0 to 8.5
3	Colour	(Unit on Pt.Co.scale)	5	U	5
4	Taste	(0	Unobjectionable		Unobjectionable
5	Odour		Unobjectionable		Unobjectionable
6	Turbidity	(NTU)	8.1	0	1
7	Specific Conductivity	(m mhos/cm)	64.5	U	-
8	Total Dissolved Solids	(mg/l)	42		500
9	Total Hardness	(mg/l)	15		200
10	Total Alkalinity as CaCO3	(mg/l)	8		200
11	Calcium as Ca	(mg/l)	3.6		75
12	Magnesium as Mg	(mg/l)	1.5		<30
13	Chlorides as Cl	(mg/l)	10		200
14	Sulphate as SO4	(mg/l)	Nil		200
15	Iron as Fe	(mg/l)	0.4	0	0.1
16	Phosphate as PO4 *	(mg/l)	< 0.1	U	-
17	Arsenic as As *	(mg/l)	< 0.01		0.01
18	Managanese as Mn	(mg/l)	Nil		0.05
19	Hexavalent chromium as Cr6+ *	(mg/l)	< 0.003		-
20	Fluorides as F	(mg/l)	Nil		1
21	Cadmium as Cd *	(mg/l)	< 0.008		0.01
22	Zinc as Zn *	(mg/l)	< 0.0015		5
23	Copper as Cu *	(mg/l)	< 0.0015		0.05
24	Lead as Pb *	(mg/l)	< 0.015		0.05
25	Mercury as Hg *	(mg/l)	< 0.0001		0.001
26	Selenium as Se *	(mg/l)	< 0.01		0.01
27	Total Suspended Solids	(mg/l)	2.5		-
28	Nitrate-N	(mg/l)	0.3		45
	Nitrite as NO2 *	(mg/l)	0.14		-
29	Ammonia-N	(mg/l)	0.45		-
30	Dissolved Oxygen	(mg/l)	7.75		-
31	B.O.D. 5 days at 200C	(mg/l)	0.35		-
32	B.O.D. 3 days at 200C	(mg/l)	0.25		-
33	C.O.D (Cr)	(mg/l)	Nil		-
34	Sodium as Na *	(mg/l)	20.3		-
35	Oxygen absorbed from KMnO4	(mg/l)	0.2		-
36	Cyanide as CN *	(mg/l)	< 0.02		0.05
37	Phenolic compound as C6 H5OH *	(mg/l)	< 0.001		0.001
38	Mineral Oil *	(mg/l)	< 0.01		0.01
- 39	Coliforms	MPN/100ml	Nil		Not be Detectable
40	Fecal Coliform	MPN/100ml	Nil		Not be Detectable

* Parameters tested by an external Laboratory. Reports enclosed.

Method of testing: Standard Methods for the examination of water and wastewater APHA18th &20th Ed..

Remark means that a chemical consentration is over the recommended guidelines

Appendix M34

Results of Leakage Survey

Contents for Appendix M34

M34.1	Methodology of the Survey	····· M34-1
M34.2	Selection of Survey Areas	····· M34-2
M34.3	Household survey	····· M34-2
M34.4	House Meter Reading	····· M34-3
M34.5	Flow measurement and Leak Detection	····· M34-4
M34.6	Summary of Leakage Survey Results	····· M34-9

Appendix M34 Results of Leakage Survey

The extent of leakage in the PWD piped water service area was surveyed during the first phase of the study, from May to July 2005, by carrying out leakage surveys in the selected pilot areas.

M34.1 Methodology of the Survey

Leakage surveys were conducted using the following steps:

- 1. Selection of survey areas
- 2. Household survey
- 3. Mapping
- 4. Flow measurement, pressure measurement and house meter reading
- 5. Leakage Detection
- 6. Evaluation of Leakage Reduction

The survey areas were selected through discussions with relevant PWD division/sub-division offices. The survey areas contain approximately 200 house connections.

Once survey areas were selected, household surveys and mapping were conducted by the Study Team, because detailed distribution system drawings were not available at the PWD offices. During the household survey, family size (household size) was confirmed for each house. House and pipeline locations were surveyed, and maps of the survey areas were prepared before the field leakage survey was commenced.

After preparation of the maps, ultrasonic flow meter installation locations were chosen. Prior to the installation of the ultrasonic flow meter sensors, pits were excavated by the PWD in order to expose the distribution pipe. Following the installation of the ultrasonic flow meters, water flow was measured for 24 hours. Individual water meters on each house connection were read and recorded both before and after the 24 hour flow measurement, to compare water consumption with water flow into the survey area. These survey activities were conducted by the JICA Study Team together with their PWD counterparts.

M34.2 Selection of Survey Areas

Survey areas were selected through consultation with the PWD offices. As each survey area contains around 100 to 200 households, survey areas were generally selected from urban areas. Features of the five selected survey areas are as shown in Table M34.2.1.

			s of s all (ey filled			
	Taluka	Name of	Name of Survey	Hours of Water Supply	Distribution Pipe	Number of
		Town	Area		Length (m)	Household
1	Bicholim	Bicholim	Lamgao	24 hours	2,140	192
2	Bardez	Mapusa	Marod	6 hours	1,130	121
		_		(from 4 am to 10 am)		
3	Ponda	Ponda	Khadpabandh	22 hours	1,780	173
4	Salcete	Margao	Fatorda	24 hours	1,310	116
5	Tiswadi	Panaji	Althino	3 hours	1.480	168
		-		(from 7 pm to 10 pm)		

Table M34.2.1Features of Survey Areas

Pipe materials in all five survey areas are mixture of ACP, CI, GI, and PVC.

M34.3 Household survey

The house locations were plotted on a map. The following aspects were surveyed and recorded for each household:

- family size;
- whether or not there is a PWD connection; and
- whether or not they have their own well.

The number of house connections and the service ratio of the respective survey areas are shown in Table M34.3.1.

Table M34.3.1Number of Connections and Service Ratio

	Taluka	Name of Town	Name of Survey Area	Number of Households	Number of PWD Connection	Service ratio
1	Bicholim	Bicholim	Lamgao	192	165	86%
2	Bardez	Mapusa	Marod	121	112	92%
3	Ponda	Ponda	Khadpabandh	173	164	94%
4	Salcete	Margao	Fatorda	116	101	87%
5	Tiswadi	Panaji	Althino	168	164	98%

The number of households which have both a PWD connection and their own well is shown in Table M34.3.2.

	Taluka	Name of Town	Name of Survey Area	Total Number of Households	Number of Households with both PWD connection and well
1	Bicholim	Bicholim	Lamgao	192	72
2	Bardez	Mapusa	Marod	121	12
3	Ponda	Ponda	Khadpabandh	173	0
4	Salcete	Margao	Fatorda	116	12
5	Tiswadi	Panaji	Althino	168	0

Table M34.3.2Number of households with both a PWD connection and a well

M34.4 House Meter Reading

Water consumption in the survey areas was calculated from meter readings. For houses where the meter was malfunctioning or not readable, average water consumption (average per capita consumption in the area multiplied by household size) was applied.

Water meter condition was also investigated during the household survey. Meter condition is summarized in Table M34.4.1.

					Ν	Aeter Condition	n
	Taluka (Town)	Name of Survey Area	Number of house connections	Number of unchecked houses	Good	Not working	Not readable
1	Bicholim (Bicholim)	Lamgao	165	7	141(85%)	15(11%)	2(1%)
2	Bardez (Mapusa)	Marod	111	5	74(67%)	27(36%)	5(5%)
3	Ponda (Ponda)	Khadpaband h	154	26	65(42%)	23(15%)	49(32%)
4	Salcete (Margao)	Fatorda	101	8	70(75%)	21(23%)	2(2%)
5	Tiswadi (Panaji)	Althino	164	13	78(52%)	33(22%)	40(26%)

Table M34.4.1Summary of Water Meter Condition

Several public stand pipes were also found in these survey areas. As these public taps are not equipped with water meters, the PWD/JICA Study Team installed new water meters at every public stand pipe.

The number of public stand pipes, and the respective water consumption, is shown in Table M34.4.2.

	Taluka	Name of Town	Name of Survey Area	Number of Public Stand Pipes	Total Consumption (m ³ /day)	Average Consumption per Stand Pipe (m ³ /day)
1	Bicholim	Bicholim	Lamgao	4	7.70	1.92
2	Bardez	Mapusa	Marod	2	1.74	0.87
3	Ponda	Ponda	Khadpabandh	None	-	-
4	Salcete	Margao	Fatorda	4	6.90	1.72
5	Tiswadi	Panaji	Althino	2	2.18	1.09
Total / Average				12	18.52	1.54

Table M34.4.2Public stand pipes: number and water consumption

M34.5 Flow measurement and Leak Detection

Ultrasonic flow meters were installed on the points where distribution pipes cross the boundary of the respective survey areas. The quantity of water entering and leaving each survey area was measured. The balance of these two volumes represents water consumption and water leakage within the survey area.

Total water inflow (balance of "in" and "out") and the water consumption of each survey area is shown in Table M34.5.1.

	Taluka	Name of Town	Name of Survey Area	Total Inflow (m ³ /day)	Total Consumption (m ³ /day)	UFW Ratio (%)
1	Bicholim	Bicholim	Lamgao	126.51	110.04	13.0%
2	Bardez	Mapusa	Marod	73.16	42.64	41.7%
3	Ponda	Ponda	Khadpabandh	479.40	124.41	74.0%
4	Salcete	Margao	Fatorda	178.04	106.05	40.4%
5	Tiswadi	Panaji	Althino	143.68	109.45	23.8%

Table M34.5.1Results of Flow Measurement and UFW Ratio

The "UFW Ratio" shown in the above table is not exactly equivalent to "Water Losses" shown on Table M34.5.2: "Definition of Non-Revenue Water by IWA" (which is usually treated as "UFW"). This is because "Total Consumption" shown in the above table includes water consumption through public stand pipes. Water consumption from the public stand pipes is usually not measured and not billed. Therefore, this water consumption is categorized as "Unbilled Unmetered Consumption" under "Unbilled Authorized Consumption".

However, to avoid complication, the balance between "Total Inflow" and "Total Consumption" is discussed as the UFW. The UFW ratio shown on the above table varies from 13% to 74 %.

	Authorised	Billed Authorised Consumption	Billed Metered Consumption (including water exported) Billed Unmetered Consumption	Revenue Water	
	Consumption	Unbilled	Unbilled Metered Consumption		
System		Authorised Consumption	Unbilled Unmetered Consumption		
Input		Annarant Lassas	Unauthorised Consumption		
Volume		Apparent Losses	Metering Inaccuracies	Non-Revenue	
			Leakage on Transmission and/or Distribution Mains	Water (NRW)	
	Water Losses		Leakage and Overflows at		
		Real Losses	Utility's Storage Tanks		
			Leakage on Service		
			Connections up to point of		
			Customer metering		

Table M34.5.2Definition of Non-Revenue Water

Source: IWA "Best Practice" Water Balance and Terminology

During the flow measurement, leaks were detected using Leak Detectors and Stethoscopic Bars. Table M34.5.3 shows number of leak points found in each survey area.

1		amber of Lean	i onnes i ounu			
	Name of Survey Area	Length of Distribution Pipe (m)	Number of Leaks Found	Leaks on Distribution Pipe	Leaks on Connection	Leaks per Pipe Length
1	Lamgao	2,140	17	3	14	7.7/km
2	Marod	1,130	4	1	3	3.5/km
3	Khadpabandh	1,780	(38)	(16)	(22)	(21.3/km)
4	Fatorda	1,310	12	6	6	9.9/km
5	Althino	1,480	(11)	(6)	(5)	(7.4/km)

Table M34.5.3Number of Leak Points Found

Note: The number in brackets means confirmed leak points plus locations of unusual sound (leak noise), which were detected but not yet confirmed.

In the previous Table M34.5.1, survey area No. 3 shows the highest UFW ratio. The number of leak points is also the highest in survey area No. 3.

These leak points were repaired completely in survey areas 1, 2, and 4 by the PWD. In survey areas 3 and 5, some leak points were not repaired due to the very heavy rainfall during the wet season. After the repair of leak points, flow measurements were conducted using the ultrasonic flow meter. The results are shown in Table M34.5.4.

	Taluka	Name of Town	Name of Survey Area	Total Inflow (m ³ /day)	Total Consumption (m ³ /day)	UFW Ratio (%)
1	Bicholim	Bicholim	Lamgao	98.97	109.09	-10%
2	Bardez	Mapusa	Marod	79.55	57.20	28%
3	Ponda	Ponda	Khadpabandh	459.40	112.96	75%
4	Salcete	Margao	Fatorda	153.58	94.03	39%
5	Tiswadi	Panaji	Althino	151.91	122.18	20%

Table M34.5.4Results of Flow Measurement and UFW Ratio after Leak Repair

In survey area No. 1, the UFW ratio was negative. This may be because the estimated water consumption for house connections with malfunctioning water meters was lower than the applied average water consumption in the area. Table M34.5.5 shows a comparison of the UFW ratio before and after the leak repairs. In most of the survey areas the UFW ratios decreased after leaks were repaired.

Table M34.5.5Comparison of UFW Ratio Before and After Leak Repairs

	Tabula Name of		Name of Name of Survey		UFW Ratio		
	Taluka	Town Area		Before Repair	After Repair	Status	
1	Bicholim	Bicholim	Lamgao	13.0%	-10%	Complete	
2	Bardez	Mapusa	Marod	41.7%	28%	Complete	
3	Ponda	Ponda	Khadpabandh	74.0%	75%	Incomplete	
4	Salcete	Margao	Fatorda	40.4%	39%	Complete	
5	Tiswadi	Panaji	Althino	23.8%	20%	Incomplete	

Figure M34.5.1 shows the results of flow measurement before and after leak repair, as well as leakage ,and pressure.

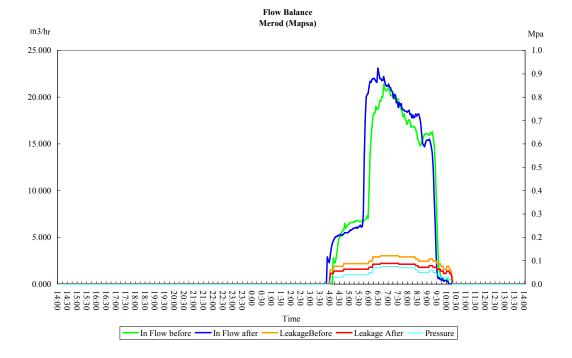
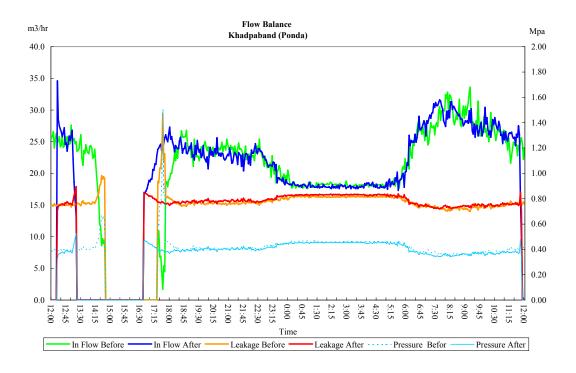
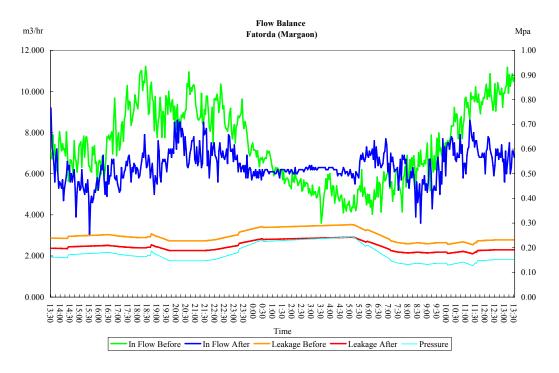
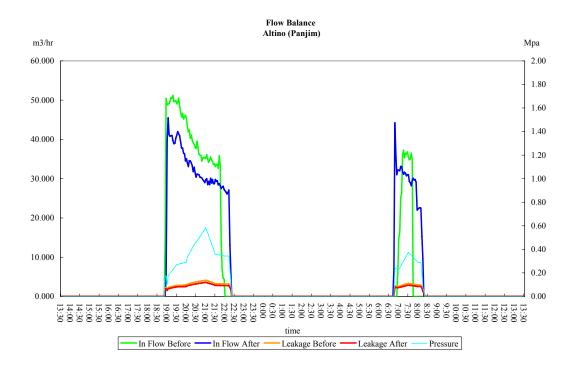






Figure M34.5.1 Results of Flow Measurement and Leakage

M34.6 Summary of Leakage Survey Results

- In the five leakage survey areas, several leaking points were found and the UFW ratio varied from 13 to 74 %. After these leak points were repaired, the UFW ratio decreased in several survey areas.
- Leakage points were found not only on house connections but also on distribution pipelines. Leaks on distribution pipelines were usually from pipe joints and deteriorated ACP pipeline.
- There were several visible (above ground) leakage points.
- Attention should be paid to water meter maintenance. The percentage of good working meters in the survey areas ranges from 42% to 85 %. Meter calibration is not conducted periodically, therefore water consumption data may contain a percentage of metering error.

Appendix M35

Existing Sanitation System

Contents for Appendix M35

M35.1	Flow Calculation Sheet for
	Main and Sub Main Sewers, Panaji City M35-1
M35.2	Flow Calculation Sheets for Branch Sewers, Panaji City M35-2
M35.3	Sewerage Zone and Diameter wise Sewer Length, Panaji City M35-18
M35.4	List of Existing STP Facilities, Panaji City M35-19
M35.5	Data of Flow Calculatoion Sheet of Sewers
	In Year 2001, Panaji City M35-20
M35.6	Imformation of Pumping Stations, Panaji City M35-22
M35.7	Capacity Calculation of STP (Sequencing Batch Reactor),
	Panaji City
M35.8	Capacity Calculation of STP(Activated Sludge),
	Margao City
M35.9	Flow Calculation Sheet for
	Main and Sub Main Sewers, Margao City M35-43
M35.10	Flow Calculation Sheets for Branch Sewers, Margao City M35-44
M35.11	Data for Flow Calculation Sheet of Sewers
	in Year 2001, Margao City M35-55
M35.12	General Description of Main and Sub Main
	Sewers, Margao City
M35.13	Sewerage Zone and Diameter wise Sewer Length, Margao City M35-57
M35.14	List of Existing STP Facilities, Margao City M35-58
M35.15	Capacity Calculation of STP (Activated Sludge),
	Margao City
M35.16	Data Sheets and Photos for Investigation on
	On-site Treatment Facilities ····································

Node 2		Population	ation	Peak flow (lps)	w (lps)				Е	Existing Sewer						
To Increment	Incren		Cumulative	Increment	Cumulative	Size	Length	Gradient	Ground level (m)	evel (m)	Invert level (m)	/el (m)	Velocity	Flow Capacity	Capacity Adequacy	Remarks
		-				(uuu)	(II)	(1/x)	s/n	d/s	s/n	d/s	(m/sec)	(lps)		
									1	:						
111-2		4,201	4,201	23.7	23.7	150	280	Md	4.67	5.73			1.343		Adequate	Pressure main
111-2		4,196	4,196	23.7	23.7	150	210	ΡM	3.79	5.73			1.341		Adequate	Pressure main
IV-PS3		9,774	18,171	55.2	102.6	300	353	200	5.73	4.41	0.68		0.840	59	ŊĊ	
IV-21		0	18,171	0.0	102.6	200	320	ΡM	4.41	7.43		2.43	3.267		ŊĊ	Pressure main
V-20		954	19,125	5.4	108.0	600	270	340	7.43	7.60	2.43		1.022	289	Adequate	
V-2		1,894	1,894	10.7	10.7	225	688	30	134.27	13.71	127.98	8.40	1.790	71	Adequate	
V-20		1,010	2,903	5.7	16.4	225	270	135	13.71		8.40		0.844	34	Adequate	
V-61		1,050	23,079	5.9	130.4	600	240	340					1.022	289	Adequate	
V-PS5		13,768	36,847	77.8	208.1	700	837	420					1.019	392	Adequate	
V-PS5		1,383	1,383	7.8	7.8	225	546	135					0.844	34	Adequate	
VII-221		0	38,230	0.0	215.9	400	310	PM		8.79		4.58	1.718		Adequate	Pressure main
VII-221		2,855	2,855	16.1	16.1	225	1,742	30	194.20	8.79	190.00	4.58	1.790	71	Adequate	
VII-225		1,628	42,714	9.2	241.3	600	370	500	8.79		4.58		0.843	238	NG	
X-11		503	503	2.8	2.8	150	314	80		19.83		18.83	0.837	15	Adequate	
:	- 1							00		40.01		40 01		:		
11-X		121	171	0.7	0.7	061	234	80		19.85		18.85	0.83/	<u>c</u> :	Adequate	
X-40		185	815	1.0	4.6	150	342	80	19.83		18.83		0.837	15	Adequate	
X_40		717	717	4.0	4.0	150	506	80	4 30		3 30		0.837	15	Ademate	
X-PS10	1	999	2.198	3.8	12.4	225	112	80	<u> </u>		2		1 096	44	Ademate	
X-100	1	0	2,198	0.0	12.4	150	532	PM					0.702	:	Adequate	Pressure main
VII-225	1	609	2,807	3.4	15.9	225	920	135					0.844	34	Adequate	
VII-232	i	2,250	47,771	12.7	269.8	600	684	500		4.15		6.46	0.843	238	NG	
VII-232		4,242	4,242	24.0	24.0	200	180	PM		4.15		6.46	0.763		Adequate	Pressure main
VII-232C		189	52,202	1.1	293.8	600	76	500	4.15		6.46					
IX-47A		2,772	2,772	15.7	15.7	200	175	ΡM					0.498		Adequate	Pressure main
VII-232C		2,254	5,026	12.7	28.4	350	563	135					1.133	109	Adequate	
STP		174	57,402	1.0	322.2	600	70	500		3.73		7.06	0.843	238	ŊĊ	
	- I														;	
STP		1,383	1,383	7.8	7.8	150	360	PM		3.73		7.06	0.442		Adequate	Pressure main
4			-						-							
ipes: Sewera		ge Scheme tu	o Panaji, Govt	t. of Goa (zont	Source (1): Diameter, length, gradient of pipes: Sewerage Scheme to Panaji, Govt. of Goa (zone-wise drawing)	ر) الناري			Node I cordin	Node 1 cordinated with Figure 3.2.1	re 3.2.1					Peak factor : 2.25
antro	2	roi ant Danor	THORNWALL IN T	Dernor Dernor	tipupit to upito	0000			MILLION / DECIN	CINCO CITTO CONTO	- our ours owner	,				Manningle n: 0.015

Appendix M35.1Flow Calculation Sheet for Main and Sub Main Sewers, Panaji CityTable M35.1.1Flow Calculation Sheet for Main and Sub Main Sewers, Panaji City (Year 2001)

				-			 _	_			-	-		-	-		-	-	-		-	-				-	~)	1		њ <u>ј</u> .			- ,	(-			-	-	'n
	Remarks		Sewers in Zone I were installed in 1965-67																												Receiving from Zone X (Sec. I)							Discharging into Zone III		
	Capacity A demacy	Combons		Adequate		Adequate		Adequate	Adequate	Adequate		Adequate	Adequate		Adequate		Adequate	Adequate		Adequate	Adequate	Adequate		Adequate	Adequate		Adequate	Adequate	Adequate	Adequate										
	Flow	Capacity (lps)		15	15	15	11	24	33	15	33		15		15	15	71		15	15		34		17	50		15	15	15		15	15		17	15	66	33			
	Velocity	(m/sec)		0.835	0.835	0.835	0.643	0.779	0.842	0.835	0.842		0.835		0.835	0.835	1.787		0.835	0.835		1.928		0.964	1.264		0.835	0.835	0.835		0.835	0.835		0.964	0.835	1.654	0.842			
	el (m)	d/s				3.10	3.10										3.41		3.41										2.02		2.02			-2.43			-5.37			_
	Invert level (m)	s/n		7.75			10.10	2.85					3.69									26.47		11.00				3.69			5.61	2.02		0.03						
Existing sewer	el (m)	d/s				8.78	8.78										7.86		7.86										7.05		7.05			4.30			4.67	5.73		_
Ex	Ground level (m)	s/n		12.40			14.42	8.78					8.11						12.04	7.86		33.63		15.67				8.18			9.30	7.05		3.73				4.67		
	Gradient	(1/x)		80	80	80	135	135	135	80	135		80		80	80	30		80	80		15		99	99		80	80	80		80	80		09	80	35	135	PM		
	Length			62	23	48	89	33	177	46	85		60		35	45	55		106	43		61		30	42		67	33	18		81	67		66	209	59	11	580		_
	Diameter	(mm)		150	150	150	150	200	225	150	225		150		150	150	225		150	150		150		150	225		150	150	150		150	150		150	150	225	225	150		-
		Cumulative		0.9	0.3	1.9	1.3	3.6	6.1	0.6	7.9		0.8		0.5	2.0	2.7		1.5	4.8		0.9		0.4	1.9		0.9	0.5	1.7		1.2	5.6		1.4	10.0	15.6	23.7	23.7		
Peak flow (lps)	-	Increment		0.9	0.3	0.7	1.3	0.5	2.5	0.6	1.2		0.8		0.5	0.6	0.8		1.5	0.6		0.9		0.4	0.6		0.9	0.5	0.3		1.1	0.9		1.4	2.9	0.8	0.2			
Pet		Other Zone																													0.0									
		Cumulative (154	57	331	222	635	1,076	115	1,403		150		87	349	486		264	857		152		75	331		167	8	294		207	1,000		247	1,767	2,771	4,201	4,201		
Population	-	Increment (154	57	120	222	82	441	115	212		150		87	112	137		264	107		152		75	105		167	82	45		202	167		247	521	147	27			
		Other Zone																													5									-
2		To		22	22	23B	23B	23C	25B	25B	16D		10A		10A	10C	17D		17D	16A		5		5	4		4B	4B	4		4	8		8	16A	16D	PSI	III-2		
Node 2		From	-	20	22B	22	23F	23B	23C	25E	25B		10G		10F	10A	10C		18	17D		29B		64	5	T	4G	4C	4B		3	4		8D	8	16A	16D	PS-1		
-1	1	To	Zone I																																			3		
Node 1		From																					T			T		T										1 (PS1)		

Appendix M35.2 Flow Calculation Sheet for Branch Sewers, Panaji City

 Table M35.2.1
 Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (1/16)

					-	1	-	-						•••		 					 		 ~	<u> </u>			1	 		^ و ا		-•	1	· ·		aı	_	
	Remarks	Sewers in Zone II were	installed in 1965-67																																			
	Capacity Adequacy			Adequate	1	Adequate	Adequate	A descent	Aucquate	Adequate	Adequate	Adequate	Adequate		Adequate		Adequate	Adequate	Adequate	Adequate	Adequate		Adequate		A dequate	Adequate	Adequate	Adequate		Adequate								
	Flow Capacity (Inc)	15/11		15	2	cI	15	5	1/	71	15	71	50		15	15	33	15	33	15	15	15	15		15	15	33	15	33		15		15	15	33	33		11
	Velocity (m/sec)			0.835	200.0	0.835	0.835	0.044	0.304	1.787	0.835	1.787	1.264		0.835	0.835	0.842	0.835	0.842	0.835	0.835	0.835	0.835		0.835	0.835	0.842	0.835	0.842		0.835		0.835	0.835	0.842	0.842		0.643
	el (m) d/s			18.00	10 00	18.00	14.52					14.52	7.00						7.00							7.00												
	Invert level (m) u/s d/s			73.00			18.00	02.22	11.10						13.20					6.00								5.74					4.01					
Existing sewer	vel (m) d/s			21.90	0010	21.90	16.71					16.71	9.69						9.69							9.69												
E	Ground level (m) u/s d/s			77.31			21.90	10176	101./0						16.57					10.20								10.04					10.67					
	Gradient (1/x)			80	00	80	80	07	00	30	80	30	60		80	80	135	80	135	80	80	80	80		80	80	135	80	135		80		80	80	135	135		135
	Length (m)			85	ç	52	24	150	0.CT	95	38	26	45		111	71	189	37	26	16	14	27	45		26	30	79	83	81		46		34	48	20	12		186
	Diameter (mm)			150	1 60	001	150	150	001	225	150	225	225		150	150	225	150	225	150	150	150	150		150	150	225	150	225		150		150	150	225	225		150
	Cumulative			1.0	d	0.4	1.6		1./	2.8	0.4	3.5	5.6		1.3	0.8	4.2	0.4	4.9	0.2	0.2	0.6	0.5		0.3	1.8	13.2	0.9	1.9		0.5		0.4	1.5	3.5	16.9		2.1
Peak flow (lps)	Increment			1.0	10	0.4	0.3		1.7	1.1	0.4	0.3	0.5		1.3	0.8	2.1	0.4	0.3	0.2	0.2	0.3	0.5		0.3	0.3	0.9	0.9	0.9		0.5		0.4	0.5	0.2	0.1		2.1
Pea	From Other Zone																																					
				171	2	5	283	105	100	492	76	621	994		223	143	745	74	872	32	28	114	90		52	317	2,342	167	329		92		68	257	627	2,993		374
Population	Increment Cumulative			171	2	8	48	100	100	161	76	52	90		223	 143	380	74	52	32	 28	54	90		52	99	159	167	163		92		68	96	40	24		374
÷	From Other Zone																																					
2	To 0			15	2	cI	13		100	38	38	13	12		27A	27A	51	51	12	19	19	48	48		48	12	20B	24	23A		23F		23F	23A	20B	20A		20A
Node 2	From	=		44	ę	40	15	20	cc	38D	38N	38	13		1	27E	27A	52	51	18	 19A	19	48E		48A	48	12	24D	24		231		23E	23F	23A	20B		22D
-	To	Zone II							1																													
Node 1	From																																					

Table M35.2.1Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (2/16)

	4.01	U 1	VI.	55	•-2			Π.	10	m		-	ar	- ui	a	10	11		iit	ιι	ц	<u>, 1</u>	Ш	21 6	1 11			se	vv		з,	10	an	ıa	J1	C	IL,	y	(1	U	••	20
	Remarks													Discharging into Zone III	1	Sewers in Zone III were installed in 1965-67		Receiving from Zone I and II																								
	Capacity Adequacy	Adequate		A dequate		Adequate	A dequate	- 1	Adequate	Adequate		Adequate	A dequate				Adequate	Adequate		Adequate		Adequate	Adequate		Adequate		Adequate	Adequate	Adequate	aum hone r	Adequate	A dequate	A dequate		Adequate		A dequate	A dequate		Adequate	A dequate	Adequate
	Flow Capacity	(lps) 33		15	2	CI	15	2	с ;	15		15	15				15	59		15	1	17	15	:	15	ŝ	2 2	33	59	5	17	13	59		17		17	17		15	15	15
	Velocity (m/sec)	0.842		0.835	200.0	C58.U	0.835	2000	0.835	0.835		0.835	0.835				0.835	0.838		0.835		0.964	0.835		0.835	100	0.904	0.835	0.838	000	0.964	0.747	0.838		0.964		0.964	0.964		0.835	0.835	0.835
	el (m) 4 6	sin															0.68			2.24	1	2.24		i	1.71		1.11								5.80		5.80				1.06	
	Invert level (m)	sin															1.75	0.68				8.86	2.24	1	5.71	00 0	00.5	1//1			3.72				8.56		10.25	5.80				
Existing sewer	el (m) día	ms															5.73			3.03	1	3.03			5.94		5.94								13.03		13.03				7.96	
Exi	Ground level (m)	s n															5.93	5.73			}	8.89	3.03		5.83	c,	7.48	5.94			7.50				12.46		14.45	13.03			-	
	Gradient (1/x)	135		80	00	80	80	00	80	80		80	80	Md			80	200		80	;	60	80	4	80	ç	00	135	200	0	60	100	200		60		60	60		80	80	80
	Length (5		44	d	8	32	97	80 :	=		125	108	210			51	63		72	3	48	12	:	12	:	c1 %	30	33	2	15	41	46		46		8	47		27	13	21
	Diameter]			150	-	001	150	100	001	150		150	150	150			150	300		150	-	150	150	1	150		001	150 225	300	0	150	150	300		150		150	150		150	150	150
	Cumulative D	19.2		0.5		1.0	1.0	d	0.8	1.9		1.4	4.5	23.7			1.2	50.1		1.7		1.1	3.1	:	0.3		0.4	5.4	56.3	2	0.4	1.3	58.7	_	1.1		0.2	2.4		0.6	3.3	0.5
Peak flow (lps)	Increment Cu	0.2		0.5		0.1	0.4	00	0.8	0.1		1.4	1.2	-			1.2	1.5		1.7	:	=	0.3	:	0.3		0.4	0.0	0.8	2	0.4	1.0	1.1		1.1		0.2	1.1		0.6	0.3	0.5
Peak	From Other Zone										+		_					47.4				+															_				-	
	Cumulative Orl	3,401		88	:	Ib	169	201	13/	327		251	795	4,196			212	8,872		300	;	200	550	:	90	ę	70	950	096-6	20055	62	233	10,385		192		33	421		112	587	87
Population	Increment Cu	34		88	2	10	5		13/	52		251	217	+			212	262		300	;	200	50	1	20	5	70	51	137	à	62	171	192		192		33	196		112	54	87
Po	From Other Zone																	8,397																			_					
	To	PS2		20R		20K	20	ę	707	201	+	20J	PS2	III-2			2	19A		14C		14C	=	-	s	,	~ :	19.4	61	2	20	19	23		26		26	16		16	24	22
Node 2	From	20A	$\left \right $	20V		202	20R	100	20-4	20	+	20N	20J	PS-2	-	╞	3A	2		14	-	9	14C	-	5A	f	۲, אל	~ =	19A		13	20	19		49B		31	26		16C	16	45
	To							╉		╉	+			3		Tone III		3a						+					3h	2			3с				+				╉	+
Node 1	From							╉		+	+			2 (PS2)				3			+					+			3a	1			3b				+				╡	+

Table M35.2.1Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (3/16)

	Remarks																										Discharging into Zone IV		Sewers in Zone IV were installed in 1965-67	Receiving from Zone III					
	Capacity Adequacy		Adomate	Ademate	A dometa	amharc	Adequate	ÐN	Adequate	ŊŊ	A dequate	A dequate	A dequate	A dequate	Adequate	A dequate	A dequate	Adequate	A dequate	Adequate	DN	A dequate	ŊŊ		Adequate	Adequate	Adequate			NG	Adequate	Adequate	Adequate		Adequate
	Flow	(lps)	17	17	33		15	59	11	59	15	17	15	15	15	15	17	15	17	17	59	15	59	:	30	1/	28			59	34	15	17	10	cI
	Velocity		0 964	0.964	0.847	710.0	0.835	0.838	0.643	0.838	0.835	0.964	0.835	0.835	0.835	0.835	0.964	0.835	0.964	0.964	0.838	0.835	0.838	419 y	1.670	0.964	0.692			0.838	1.928	0.835	0.964	200 0	0.835
	vel (m)	d/s							-2.54	-3.37					9.60	9.60				-3.37	-3.83	-3.83	-4.16			4.10				2.09	6.55	6.55			
	Invert level (m)	s/n	8.00	2010					6.53	-2.54							9.60				-3.37		-3.83		24.00						8.08		6.55		
Existing sewer	evel (m)	d/s							5.00	5.15					12.08	12.08				5.15	4.96	4.96	5.14			5.14				5.96	10.56	10.56			
E	Ground level (m)	u/s	11 88	0011					10.06	5.00	48.56						12.08				5.15		4.96		27.97						11.55		10.56		
	Gradient	(1/x)	99	09	135	1.11	80	200	135	200	80	60	80	80	80	80	60	80	60	60	200	80	200		20	90	200			200	15	80	60	00	80
	Length	(II)	25	11	37	6	15	22	90	67	63	120	8	7	57	12	32	12	21	43	35	110	27		82	38	49			22	37	23	68	ç;	12
	Diameter	(mm)	150	150	305	(aa	150	300	150	300	150	150	150	150	150	150	150	150	150	150	300	150	300	1	150	150	225			300	150	150	150	150	150
	Cumulativa		0.6	2.0	6.4		0.4	66.5	2.1	70.2	1.5	4.3	0.2	4.7	1.3	0.3	2.4	0.3	3.2	8.8	79.8	2.6	83.0		1.9	2.8	4.0			87.2	0.3	0.2	1.0	10	1.0
Peak flow (lps)	Increment		0.6	17	0.0		0.4	0.5	2.1	1.6	1.5	2.8	0.2	0.2	1.3	0.3	0.8	0.3	0.5	1.0	0.8	2.6	0.6		1.9	0.9	1.2			0.2	0.3	0.2	0.5	10	0.1
P	From	Other Zone																												87.0					
	Cumulativa	Cumua	104	487	1 220	1,444,1	62	11,768	375	12,422	262	762	33	825	237	50	421	50	558	1,562	14,130	458	14,701		342	000	704			15,437	52	33	181	ţ	17
Population	Increment		104	206	154	t i	62	92	375	279	262	500	33	29	237	50	133	50	87	179	146	458	112	:	342	861	204			31	52	33	96	ţ	1/1
	From	Other Zone																												15,405				T	1
Node 2	Ţ		"	24	. "	(a	23	42	42	44	32	37A	37A	37	40	40	38A	38A	37	44	63	63	IV-68	;	65	60	IV-68			53	83A	83A	56	57	90
Noc	From	IIIOT 1	45R	- CC	1 20	5	23B	23	62	42	30F	32	37B	37A	6B	40A	40	38B	38A	37	4	64D	63	;	99	6	99		ZoneIV	68	83D	83B	83A	9	2013
Node 1	Ţ	2						3d		Зе											3f		3g						Zon	3ћ					
No	From	IIOTI						3с		3d											3e		3f							3g					

 Table M35.2.1
 Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (4/16)

	rks																																				
	Remarks																																				
	Capacity Adequacy		Adequate	ŊŊ	Adequate	Adequate	Adequate	A dequate	Adequate	-	Ademate	annhant,	Adequate		Adequate		Adequate	Adequate	Adequate	Adequate		Adequate	A dequate	A dequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Ademate						
	Canacity	(lps)	15	59	17	15	17	15	15	15	33	15	33	15	33		15	: :	33	1	17		17	15	17	15		24	15	15	15	34	21	34	24	24	24
	Velocity	(m/sec)	0.835	0.838	0.964	0.835	0.964	0.835	0.835	0.835	0.842	0.835	0.842	0.835	0.842		0.835	0.040	0.842		0.964		0.964	0.835	0.964	0.835		1.364	0.835	0.835	0.835	1.928	1.181	1.928	0.779	0.779	0.770
	el (m)	d/s	2.09				2.10	2.10	0.36	0.36	-0.69	-0.69						02	5.05	;	5C.C				5.53			18.50	18.50				6.48	6.48	3.35	5.63	
	Invert level (m)	n/s		2.09	8.00	6.13			2.10	5.00	0.36	4.75	-0.69	2.25			3.07	1010		1	c/.4					5.53		32.64				18.50		27.00	6.48	3.35	67 5
Existing sewer	el (m)	d/s	5.96				5.92	5.92	7.34	7.34	8.60	8.60						1.4.1	4.41	1	1.10				1.10			22.32	22.32			12.68	11.38	11.38	8.40	4.41	-
Exi	Ground level (m)	u/s		5.96	11.50	5.88			5.92	3.70	7.34	8.85	8.60	8.35			737			}	\$8.8					1.10		35.60				22.32	12.68	34.22	27.00	8.40	
	Gradient	(1/x)	80	200	60	80	60	80	80	80	135	80	135	80	135		80	301	135	;	60		60	80	60	80		30	80	80	80	15	40	15	135	135	
	Length 0	(II)	27	28	60	17	76	24	36	76	22	14	49	12	45	:	46	2 5	42	1	36		19	21	16	55		86	17	10	37	44	51	70	47	38	
	Diameter	_	150	300	150	150	150	150	150	150	225	150	225	150	225		150	200	522	1	150		150	150	150	150		150	150	150	150	150	150	150	200	200	000
	Cumulative I		1.3	88.7	0.5	0.1	1.2	0.2	1.7	0.6	2.5	0.1	3.0	0.1	3.4		0.4	1.1	4.1		0.3		0.2	0.6	0.1	1.2		0.7	0.1	0.1	0.5	1.6	2.0	0.6	2.9	4.4	10
Peak flow (lps)	Increment C		0.2	0.2	0.5	0.1	0.6	 0.2	0.3	0.6	0.2	0.1	0.4	0.1	0.4		0.4		0.3	;	0.3		0.2	0.2	0.1	0.4		0.7	0.1	0.1	0.3	0.4	0.4	0.6	0.4	0.3	00
Peal	From																																				ŀ
			236	15,712	85	24	216	34	301	108	440	20	529	17	610		65	201	/34	;	16		27	108	23	208		122	24	14	16	274	347	66	512	774	1 544
Population	Increment Cumulative		38	40	85	24	108	 34	51	108	31	20	69	17	5		65	02	60	1	16		27	30	 23	78	_	122	24	 14	52	62	72	66	99	54	35
đ	From							 									$\left \right $																				
5	Ϋ́		53	34F	1A	IA	25	25	26	26	28	28	32	32	24A		24A	2.41	34E	1	11	┥	17	19	19	11		74	74G	74G	74	84	70	70	11	34E	
Node 2	From	IIIOT T	56	53	15B	8	1A	23	25	36B	26	28A	28	32A	32		24F.	440	24A		Acl	┥	17A	17	20	19		78	74M	74I	74G	74	28	701	70	=	715
_	f	2		3i													t																				ŀ
Node 1	From	IIOIT		3h													t																				ŀ

Table M35.2.1Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (5/16)

	-• NJ	10	111		3.4		1			•		ar	- 4				- 1			ц	JI	1	,,	<i>a</i>		-11	C T	vc.	1.39	•	<i>a</i> 1		JI	<u> </u>	 J	()		••		7
	Remarks																									Discharging into Zone V	Sewers in Zone V were	installed in 1965-67	Receiving from Zone IV											
	Capacity Ademiacy	Cambra a	A decreate	Adequate		A dequate	A dequate	Adequate	A dequate		A dequate		A dequate	Adequate	A dequate	A dequate		Adequate	Adequate	Adequate		Adequate	A dequate	A dequate	DN				Adequate	A dequate		Adequate	Adequate	Adequate	A dequate		Adequate	A -locusto	Adequate	Adequate
	Flow	(lps)	17	33		15	17	15	33		17		15	15	33	21	ŝ	1/	15	33		15	33	33	59				289	15		24	15	289	15		15	1	cl 5	CI
	Velocity	(m/sec)	0.964	0.842		0.835	0.964	0.835	0.842		0.964		0.835	0.835	0.842	1.181		0.904	0.835	0.842		0.835	0.842	0.842	0.838				1.021	0.835		1.364	0.835	1.021	0.835		0.835	0.025	20.0	0.000
	el (m)	d/s		1.76			2.98	1.76	_		2.29		2.29													2.43			1.01	5.50		5.50	1.01	0.73	0.73				6E 0	c/.U
	Invert level (m)	s/n	4 50	0.001		5.00	6.25	2.98	1.76					2.29				4.20				3.00							2.43	33.50		11.00	5.50	1.01	8.60					
Existing sewer	el (m)	d/s		9.96			9.22	9.96			7.75		7.75													7.43			9.90	14,40		14.40	96.6	7.60	7.60				07 5	//00
Ex	Ground level (m)	n/s	8 5 1	1.000		9.20	10.30	9.22	9.96					7.75			0	61.1				6.93							7.43	38.07		15.66	14.40	96.6	12.20					-
	Gradient	(1/x)	60	135		80	60	80	135		60		80	80	135	40	0	99	80	135		80	135	135	200	PM		;	340	80		30	80	340	80		80	00	80	90
	Length	(II)	64	76		34	25	34	60		32		20	45	39	63	2	77	30	37		32	18	9	10	320			154	78		38	28	84	78		18	00	20	- c c
	Diameter	(mm)	150	225		150	150	150	225		150		150	150	225	150	0	120	150	225		150	225	225	300	200			600	150		150	150	909	150		150	150	150	nc1
	Cumulations		5.0	1.1		0.3	0.2	0.7	2.3		0.3		0.2	0.8	3.4	0.5		0.2	0.9	4.6		0.3	5.0	13.8	102.6	102.6			104.1	0.7		0.4	1.4	106.3	0.7		0.2	0	0.2	0.7
Peak flow (lps)	Incoment		50	0.6		0.3	0.2	0.3	0.5		0.3		0.2	0.4	0.3	0.5	4	0.2	0.2	0.3		0.3	0.1	0.0	0.1				1.5	0.7		0.4	0.3	0.8	0.7		0.2	60	0.2	C.U
Pe	From																												102.6											
	Cumulation		10	198		48	35	132	415		45		28	137	607	89	;	51	163	822		45	893	2,445	18,171	18,171			18,431	132		2	243	18,816	132		30	24	54	071
Population	In concerned		10	108		48	35	48	85		45		28	64	55	89	2	51	42	52		45	25	8	14			;	260	132		2	47	142	132		30	24	34	6
ł		Other Zone																											18,171											
2	É		44.4	46		47B	47B	46	43		40		40	43	48	51	;	10	48	24B		24B	34A	34F	PS-3	V-21			24	31		31	24	36	36		36B	dy,	36B	00
Node 2	Essue	LIOII	44D	44A		35	47A	47B	46		36		40A	40	43	52B	c.	8	51	48		34D	24B	34A	34F	PS-3	N.		21	28		30	31	24	18		36C	36D	36D	CIOC
e 1	ŕ	2																							4(PS3)	5	Zone V		5a					5b						
Node 1	Dense	LIGH																							3i	4(PS3)			5					5a						

 Table M35.2.1
 Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (6/16)

-		C I		·•-		_			·	~	 ~~		 		~-		-	-		~1			.11	2	•	 	- ,		 •••J		_		J	(11	<u> </u>
	Remarks			Receivin from Zone VIII, (Sec. I)																																
	Capacity Adequacy	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate	Adequate	Adequate		Adequate	Adequate		Adequate	Adequate	Adequate		Adequate	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate		Adequate	Adequate	Adequate	Adequate	A dequate
	Flow Capacity	(lps) 2.89	15	33	34	11	33	289		15	15	289	15	289		11	289		33	15	15		15	15	289	33		33	15	33		15	33	392	33	15
	Velocity (m/sec)	1.021	0.835	0.842	1.928	0.643	0.842	1.021		0.835	0.835	1.021	0.835	1.021		0.643	1.021		0.842	0.835	0.835		0.835	0.835	1.021	0.842		0.842	0.835	0.842		0.835	0.842	1.018	0.842	0.835
	el (m) 46	s/b	8.40	3.06	10.00	3.06						1.93	1.93	2.44		2.44	0.76						1.39	0.76											T	4.16
	Invert level (m)	u/s 0.73	24.00	8.40	40.50	10.00	3.06							1.93			2.44		-0.17	2.25					0.76	2.86		7.06							4.80	8.00
Existing sewer	el (m)	0/S	13.71	9.74	14.40	9.74						8.84	8.84	10.12		10.12	9.44						10.35	9.44											T	10.78
Exi	Ground level (m)	7.60	27.45	13.71	45.50	14.40	9.74							8.84			10.12		7.16	6.68					9.44	6.66		10.56							5.46	13.64
	Gradient (1/x)	340	80	135	15	135	135	340		80	80	340	80	340		135	340		135	80	80		80	80	340	135		135	80	135		80	135	420	135	80
	Length (m)	32	78	170	100	150	100	50		65	20	30	25	58		52	44		75	35	42	-	30	38	58	95		230	34	28		38	42	90	158	102
	Diameter (mm)		150	225	150	150	225	600		150	150	600	150	600		150	600		225	150	150		150	150	600	225		225	150	225		150	225	700	225	150
	Cumulative I	108.0	0.7	13.1	1.0	2.4	16.4	124.9		0.6	0.2	126.0	0.2	126.8		0.5	127.7		0.7	0.3	1.5		0.3	2.1	130.4	0.9		2.2	0.3	2.8		0.4	3.5	135.7	1.5	1.0
Peak flow (lps)	Increment C	0.3	0.7	1.6	1.0	1.4	1.0	0.5		0.6	0.2	0.3	0.2	0.6		0.5	0.4		0.7	0.3	0.4		0.3	0.4	0.6	0.9		2.2	0.3	0.3		0.4	0.4	0.9	1.5	1.0
Pea	From Other Zone			10.7																															+	
		19,125	132	2,312	169	422	2,903	22,113		110	34	22,307	42	22,447		88	22,609		127	59	257		51	371	23,079	160		388	57	493		64	628	24,019	267	172
Population	Increment Cumulative	54	132	287	169	253	169	8		110	34	51	42	98		88	74		127	59	71		51	64	98	160		388	57	47		64	71	152	267	172
ď	From Other Zone			1,894																															-	
2	To	20	2	7	6	7	20	20A		20A	20A	37	37	51		51	99		54A	54A	60		60	99	19	61		66	99	67		67	61	70	70	77
Node 2	From	36	1	2	8D	6	7	20		20D	20E	20A	37A	37		54	51		58	62	54A		60A	60	99	64C		81B	52	99		68A	67	61	72	78
-	To	8		7a			8	8a				8b		80			8d								6									9a	+	Ť
Node	From	Sb		7			7a	~				8a		86			8c								8d									9	t	T

Table M35.2.1Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (7/16)

	~~~				 		<u> </u>			_		~ ~			 	~		~	 	-				 ~	 		, -	,		-J-	· •	/='	J	1		_	
	Remarks																																				
	Capacity Adenuacy	Casar Iso ar a	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate	A dequate	Adequate		A dequate	Adequate	A dequate		Adequate	A dequate	A dequate		A dequate	A dequate	Adequate	Adequate	Adequate		A degreete	mphony	Adequate	Adequate	Adequate	Adequate		A dequate	Adequate	Adequate	_
	Flow Canadity	(lps)	15	33	15	:	cI	15	15	15	33		15	33	15		15	33	15		17	33	392	15	15	5	¥ ≍	3	CI CI	15	32	33		15	15	33	
	Velocity		0.835	0.842	0.835		0.835	0.835	0.835	0.835	0.842		0.835	0.842	0.835		0.835	0.842	0.835		0.964	0.842	1.018	0.835	0.835	0001	0.925	0.000	CC8.U	0.835	1.012	0.842		0.835	0.835	0.842	_
	vel (m)	d/s	4.16	2.29	2.29		cv.4			2.29														7.80					C4.C		5.45					6.15	_
	Invert level (m)	s/n		4.16	4.32			4.95			2.29				4.25		9.03		1.65		4.50									10.00		5.45			5.18		
Existing sewer	evel (m)	d/s	10.78	8.62	8.62	0	00.8			8.62														12.85				10.04	12.87		12.87					8.98	
	Ground level (m)	u/s		10.78	9.02			8.50			8.62				8.79		9.13		8.24		8.84									14.00		12.87			9.71		
	Gradient	(1/x)	80	135	80	4	80	80	80	80	135		80	135	80		80	135	80		60	135	420	80	80		09	00	80	80	80	135		80	80	135	
	Length	(II)	80	80	24	4	42	44	60	40	70		12	22	22		70	82	28		54	76	122	96	54	~~~	36	00	77	48	42	92		26	24	78	
	Diameter	(mm)	150	225	150		001	150	150	150	225		150	225	150		150	225	150		150	225	700	150	150	1.00	150	001	001	150	200	225		150	150	225	
_	Cumulatina	Culturative	0.8	2.5	0.2	4	0.4	0.8	0.6	1.8	5.2		0.1	5.5	0.2		0.7	7.2	0.3		0.5	8.7	147.0	0.9	0.5		1.5		0.7	0.5	0.9	4.3		0.2	0.2	5.5	_
Peak flow (lps)	Incomment		0.8	0.8	0.2	4	0.4	0.4	0.6	0.4	0.7		0.1	0.2	0.2		0.7	0.8	0.3		0.5	0.7	1.2	0.9	0.5		0.0		7.0	0.5	0.4	0.0		0.2	0.2	0.7	
F	From	Other Zone																																			
	In account Consultation	Culturative	135	442	41	i	/1	145	101	314	915		20	973	37		118	1,266	47		91	1,533	26,025	162	91	101	101	107	450	81	152	763		44	41	979	
Population			135	135	41	i	1/	74	101	68	118		20	37	37		118	138	47		91	128	206	162	16	101	101	5 5	10	81	11	155		44	41	132	
	From	Other Zone																																			
Node 2	°£	01	11	79	79	90	80	80A	80A	79	82A		82A	82	82		82	85	85		85	70	96	16	91-70	01 10	0/-16	1	77	115	92	94		94	94	97	
NG	L	LIOIL	76C	11	81		80F	80	80D	80A	79		82B	82A	82C		83	82	88		86	85	70	91E	91-10	2.10	01-16	0/-1/	16	116	115	92	!	96	95	94	
Node 1	Ê	2																					96														
ź	Denne	LIOII																					9a														

Table M35.2.1Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (8/16)

			1			-							 	-				5		 			~	~ '	 13	, 1	- 4	, ne		× ر	_		J	<b>ر</b> ا			_	_
	Remarks																																					
Consoler	Capacity Adequacy	Adequate		Adequate	Adequate		Adequate		Aucquaic	Adequate		Adequate	Adequate	Adequate		Adequate	Adequate		A dequate	Adequate	Adequate		Adequate	_	Adequate	Adequate												
- 1	_ ≥	(lps) 15		15	33		15	15	33	392	17	33	15	2	3	15	15	15	33	15	15	33		15	15	33		15	33		15	33	392		15		15	15
	Velocity (m/sec)	0.835		0.835	0.842		0.835	0.835	0.842	1.018	0.964	0.842	0.835	2000	0.00.0	0.835	0.835	0.835	0.842	0.835	0.835	0.842		0.835	0.835	0.842		0.835	0.842		0.835	0.842	1.018		0.835		0.835	0.835
	el (m) dís	6.15		6.15												16.03	16.03		9.64	9.64													6.07					6.07
	Invert level (m)	4.50		4.42				6.80			2.50		61.59					16.03				9.64		5.50														
Existing sewer	vel (m) d/s	8.98		8.98												19.02	19.02		16.11	16.11													9.80				_	9.80
Ξ	Ground level (m)	8.50		9.97				9.58			6.63		65.29					19.02				16.11		10.06														
	Gradient (1/x)	80		80	135		80	80	135	420	60	135	80	00	00	80	80	80	135	80	80	135		80	80	135		80	135		80	135	420		80		80	80
	Length (m)	50		20	82		32	90	32	74	102	166	208	ę	07	130	64	42	48	230	96	110		42	92	44		18	28		40	116	28		40		28	50
	Diameter (mm)	150		150	225		150	150	225	700	150	225	150	160	001	150	150	150	225	150	150	225		150	150	225		150	225		150	225	700		150		150	150
	Cumulative	0.5		0.2	7.0		0.3	0.0	8.5	156.2	1.0	2.6	2.0	6	C: 0	1.2	0.6	2.3	5.0	2.2	3.1	9.1		0.4	0.9	10.8		0.2	11.3		0.4	12.7	171.7		0.4	_	0.3	1.1
Peak flow (lps)	Increment	0.5		0.2	0.8		0.3	0.9	0.3	0.7	1.0	1.6	2.0	60	C:N	1.2	0.6	0.4	0.5	2.2	0.9	1.0		0.4	0.9	0.4		0.2	0.3		0.4	1.1	0.3		0.4		0.3	0.5
ď	From Other Zone																																					
		84		34	1,236		54	152	1,496	27,646	172	453	351	Ę	Ť	220	108	398	878	388	550	1,614		71	155	1,915		30	1,992		68	2,256	30,402		68		47	199
Population	Increment Cumulative	84		34	138		54	152	52	125	172	280	351	Ę	Ì	220	108	71	81	388	162	186		71	155	74		30	47		68	196	47		68		47	84
	From Other Zone																																					
Node 2	To	76		97	100		100	100	96	102	107	102	113	c 1 1	C11	113-2	113-2	113	114	117	114	115		115	115	123A		123A	123		123	102	28		135B		135B	28
NOU	From	66		86	97		127	101D	100	6	106B	107	113K1	112	711	113-7	113-2B	113-2	113	H711	117	114		120	121	115		123B	123A		124	123	102		135		135A	135B
Node 1	To									96																							9d					
Ñ	From									96																							96					

Table M35.2.1Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (9/16)

					 ••				•	<u> </u>	~**	u		 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~			• 1	U						 10	·, -			۳J	-		-•J	()		ca			<u> </u>	•)
	Remarks																																						
	Capacity Adequacy	Adomate	amphans.	Adequate	Adequate	Adequate	Adequate	Adequate		Adequate		Adequate	Adequate	Adequate		Adequate	Adequate		Adequate	Adequate	Adequate	A dequate	A dequate	Adequate	Adequate		Adequate	Adequate		Adequate	Adequate	A dequate		Adequate	Adequate		Adequate	Adequate	-
	Flow Capacity	(ps) 397	4/0	15	17	17	15	392		15		15	392	15		15	24		15	24	15	24	15	24	13	1	28	24		13	24	392	:	15	33	1	CI 6	33	
	Velocity	(m/sec)	010-1	0.835	0.964	0.964	0.835	1.018		0.835		0.835	1.018	0.835		0.835	0.779		0.835	0.779	0.835	0.779	0.835	0.779	0.747		0.710	0.779		0.747	0.779	1.018		0.835	0.842	1000	CC0.U	0.842	
	el (m)	d/s						6.95		6.95		6.95																									00 0	2.09	
	Invert level (m)	u/S 6.07	60		5.12	3.58								0.89											13.00	1	3.09			2.85			4	3.00	3.00	000	97.C	-	
Existing sewer	vel (m)	d/s						10.11		10.11		10.11																									000	9.86	
E	Ground level (m)	0/S	0011		10.12	8.58								7.21											23.03		10.91			8.80			0	8.97	8.97	ce t	97.1	_	
	Gradient	(1/X) 420	Dat.	80	99	60	80	420		80		80	420	80		80	135		80	135	80	135	80	135	100	1	190	135		100	135	420	d	80	135	00	0.0	135	
	Length	(III) 89	8	12	108	44	96	40		14		30	40	46		26	164		134	42	26	46	60	36	80	1	70	78		34	122	108	3	126	48	1	00	132	
	Diameter	(mm) 700	8	150	150	150	150	700		150		150	700	150		150	200		150	200	150	200	150	200	150	1	225	200		150	200	700	1	150	225		nc1	225	
	Cumulative	173.5	0.01T	0.1	1.0	0.4	2.4	176.4		0.1		0.3	177.2	0.4		0.2	2.3		1.3	3.9	0.2	4.6	0.6	5.5	0.8	3	0.7	2.2		0.3	3.7	187.4		1.2	1.7		0.0	1.9	
Peak flow (lps)	Increment 0	0.6	20	0.1	1.0	0.4	0.9	0.4		0.1		0.3	0.4	0.4		0.2	1.6		1.3	0.4	0.2	0.4	 0.6	0.3	0.8	;	0.7	0.7		0.3	1.2	1.0		1.2	0.5		0.0	1.3	
Pe	From	anoz ranu																																					
			01/ 007	20	182	74	419	31,223		24		51	31,364	78		44	398		226	696	44	817	101	979	135	1	118	385		57	648	33,174		213	294	:	111	334	
Population	Increment Cumulative	115	2	20	182	74	162	89		24		51	68	78		4	277		226	71	44	78	101	61	135		118	132		57	206	182	4	213	81	:	111	223	
-	From																												1							T	t		
5	To		ĥ	139	144	144	139	147A		147A		147A	147	156		156	161		161	170	170	170B	170B	147	150		150	152	+	152	147	172	ļ	179	180	1021	108A	180	
Node 2	From	28	2	139B	142	145	14	139		147B		147C	147A	164A	1	167	156		131	161	170A	170	170E	170B	148		151	150	1	153	152	147		177	179		100	168A	
	To	90	*					9f					9g																			9h					t		
Node 1	From	рө	2					9e					9f																			9g				T			

 Table M35.2.1
 Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (10/16)

	Remarks																										Receiving from Zone VI	Discharging into Zone VII	Sewers in Zone VI were	installed in 1973						
Compositor	Capacity Adequacy	_	_	Adequate		_	Adequate	Adequate	A dequate	A dequate	Adequate	Adequate	A dequate	Adequate	Adequate	-	Adequate	Adequate	_	Adequate		A dequate	Adequate	Adequate	A dequate							_	Adequate	_	Adequate	
	Flow Capacity	(sal)	33	33	:	15	33	15	15	33	392	15	15	392	15	33	15	33	3	15	33	15	33	15	15	33	392				28	28	33		13	
	Velocity	(m/sec)	0.842	0.842		0.835	0.842	0.835	0.835	0.842	1.018	0.835	0.835	1.018	0.835	0.842	0.835	0.842		0.835	0.842	0.835	0.842	0.835	0.835	0.842	1.018				0.710	0.710	0.842		0.747	
	el (m)	d/s	2.09	4.60		4.60		0.98	0.98					9.97	5.73	2.21	2.21						1.07	1.07	1.07	9.97					4.00	2.49	-1.57		2.09	
	Invert level (m)	u/s	6.50	2.09	1	8.50	4.60	3.53	3.06	0.98						5.73	6.29	2.21							T	1.07					6.57	4.00	2.49		4.93	
Existing sewer	cl (m)	d/s	9.86	8.28	1	8.28		9.50	9.50					9.97	12.49	9.97	9.97						9.54	9.54	9.54	9.97					9.56	9.45	10.57		9.08	
Exi	Ground level (m)	u/s	9.94	9.86	1	9.85	8.28	8.78	8.06	9.50						12.49	10.34	9.97								9.54					9.57	9.56	9.45		9.60	
	Gradient	(1/x)	135	135	;	80	135	80	80	135	420	80	80	420	80	135	80	135		80	135	80	135	80	80	135	420	PM			190	190	135		100	
	Length	(ii)	138	62	:	40	100	28	42	116	52	10	18	170	282	72	118	20	2	178	32	 52	52	56	66	54	45	310			136	59	171		79	
	Diameter		225	225	1	150	225	150	150	225	700	150	150	700	150	225	150	225		150	225	150	225	150	150	225	700	400			225	225	225		150	
	Cumulative D	_	1.3	5.5	;	0.4	6.8	 0.3	 0.4	1.8	196.5	0.1	0.2	198.3	 2.7	3.4	1.1	4.7	-	1.7	6.7	 0.5	7.7	0.5	9.0	9.4	208.1	216.0			1.0	1.4	2.7		0.6	
Peak flow (lps)	Increment Cu	_	1.3	0.6	;	0.4	1.0	0.3	0.4	1.1	0.5	0.1	0.2	1.6	2.7	0.7		0.2	1 2	1.7	0.3	0.5	0.5	0.5	0.6	0.5	0.4				1.0	0.4	1.3		0.6	
Peak	From																											7.8								
	Cumulative		233	966	:	68	1,202	47	71	314	34,779	17	30	35,113	476	598	199	831		301	1,185	 88	1,361	95	III	1,658	36,847	38,230			177	253	475		103	
Population	Increment	_	233	105	;	89	169	47	71	196	88	17	30	287	476	122	199	34	;	301	54	 88	88	95	111	16	76				177	77	222		103	
ł	From																											1,383								
:2	To		180	191		191	172	174	174	172	194	194	194	201	214	219	219	205A		205A	205	205	200B	200B	200B	201	PS-5	VII-221			39	31	6		~	
Node 2	From		182	180	1	190	191	173	175	174	172	194A	194B	194	211C	214	217	219		208C	205A	205D	205	200D	206	200B	201	PS-5	N		35	39	31		12	
51	To										9i			9j											T		11(PS5)	13	Zone VI		10a	10b	10c			
Node	From										9h			9i											T		9j	11(PS5)			10	10a	10b		T	

 Table M35.2.1
 Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (11/16)

	Remarks														Discharging into Zone V	Sewers in Zone VII were	installed in 1965-67	Receiving from Zone V & VIII (Sec. I												Receiving from Zone X (Sec. II)				Receiving from Zone XI	Receiving from Zone IX
Consolar	Adequacy		_	Adequate	A dequate	A dequate	Adequate	Adequate			Adequate	Adequate	_	Adequate	Adequate		Adequate	Adequate		Adequate	NG	Adequate	ŊŊ	_	<			ŊŊ							
	Canacity	(lps)	15	33	33	15	33	15	15	15	17	15	15	33	33			238	15		15	15	15	238	15	238	15	238	15	238		15	238	238	238
	Velocity	(m/sec)	0.835	0.842	0.842	0.835	0.842	0.835	0.835	0.835	0.964	0.835	0.835	0.842	0.842			0.842	0.835		0.835	0.835	0.835	0.842	0.835	0.842	0.835	0.842	0.835	0.842		0.835	0.842	0.842	0.842
	(el (m)	d/s	2.09	-1.57			-5.00			-5.00	1.57	-0.61		-5.00										0.19	0.19								6.46		7.06
	Invert level (m)	u/s		2.09	-1.57						5.00	1.57			-5.00			8.90								0.19								6.46	6.46
Existing sewer	el (m)	d/s	9.08	10.57			8.18			8.18	13.37	11.02		8.18										8.03	8.03								4.15		3.73
Ex	Ground level (m)	u/s		9.08	10.57						11.12	13.37			8.18			18.69								8.03								4.15	4.15
	Gradient	(1/x)	80	135	135	80	135	80	80	80	60	80	80	135	135			500	80		80	80	80	500	80	500	80	500	80	500		80	500	500	500
	Length	(m)	20	50	58	17	45	 20	30	7	29	116	19	132	77			80	24		24	52	40	50	104	130	40	110	100	44		120	640	76	70
	н		150	225	225	150	225	150	150	150	150	150	 150	225	225			600	150		150	150	150	600	150	600	150	600	150	600		150	600	600	600
_			0.1	1.1	4.2	0.1	4.7	0.1	0.2	0.4	0.2	1.1	0.1	2.2	7.8			233.2	0.3		0.3	1.4	0.6	235.9	1.5	239.2	0.6	241.3	1.4	259.2		1.7	269.9	294.9	324.3
Peak flow (lps)	Increment Cumulative		0.1	0.4	0.4	0.1	0.3	0.1	0.2	0.1	0.2	0.9	 0.1	1.0	0.6			1.1	0.3		0.3	0.7	9.0	0.7	1.5	1.8	0.6	1.5	1.4	0.6		1.7	9.0	1.1	1.0
Pea		Other Zone																232.1												15.9			-	24.0	28.4
	Cumulative		26	193	744	22	825	26	39	74	38	188	25	384	1,383			41,285	99		99	249	100	41,758	259	42,340	100	42,714	249	45,879		299	47,771	52,202	57,402
Population	hcrement C	_	26	65	75	22	58	26	39	6	38	151	25	171	100			199	09		09	129	100	124	259	324	100	274	249	110		299	1,593	189	174
	From																	41,085												2,807			_	4,242	5,026
e 2	To		8	9	4	4	2A	2C	2C	2A	42B	43	43	2A	PS-5			222	222B		222B	222	222	223B	223B	224A	224A	225	225	225A		225A	232	232C	STP
Node 2	From		6	~	6	4A	4	2D	2F	2C	42A	42B	44	43	2A	ИІ		221	222D		222C	222B	222F	222	223H	223B	224D	224A	225D	225		225E	225A	232	232C
e 1	То	2			10d		10e								11	Zone VII		13a						13b		13c		21		21a			26	27	29(STP)
Node 1	From				10c		10d								10e			13						13a		13b		13c		21			21a	26	27

 Table M35.2.1
 Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (12/16)

 Image: State State

	Remarks		Sewers in Zone VIII were	installed in 19/6-7/																			Discharging into Zone V											
	Capacity Adequacy	<u></u>			Adequate	A docuoto	vucquate	Adequate		Adequate	Adequate	Adequate	Adequate	Adequate	A dequate	Adequate	Adequate	A dequate	Adequate	A dequate	A dequate	A dequate	Adequate		Adequate	Adequate	Adequate	Adequate	A dequate	Adequate	A dequate	Adequate	Adequate	
	Flow	(lps)			15	15	C1 2	24			15	24	81	15	15	15	15	15	71	11	24		71					50	17	15		11	15	
	Velocity	(m/sec)			0.835	0.025	120.0	1.364	200.0	0.835	0.835	1.364	2.041	0.835	0.835	0.835	0.835	0.835	1.787	1.787	1.364	0.842	1.787		0.855	1.264	0.842	1.264		0.835	0.835	1.787	0.835	
	Invert level (m)	s/p			164.38	02 191	00.401	137.00	00 201	157.00	127.98	127.98	116.00	170.80	170.80	157.37	157.37	157.37	116.00	28'16	28'16	28.16	8.40		86.081	175.38		151.78	151.78					
	Invert l	s/n			171.40	00.021		164.38	20.041	158.85	137.00		127.98	187.14		170.80	185.85	163.00	157.37	116.00	120.00	120.00	91.87		00.001	185.98	175.38			151.78	143.83			
Existing sewer	evel (m)	d/s			171.38	171 20	00.1/1	149.30	110.00	149.50	134.27	134.27	119.87	151.20	181.02	165.34	165.34	165.34	119.87	97.06	97.06	97.06	13.71		11.061	184.76		157.98	157.98					
	Ground level (m)	u/s			176.14	17677	1/0.//	1/1.38	1000	160.29	149.30		134.27	192.61		181.02	197.98	180.50	165.34	119.87	124.29	124.29	97.06		194.20	190.11	185.76		161.20	157.98	148.06			
	Gradient	(1/x)			80	00	00	30	00	80	80	30	23	80	80	80	80	80	30	30	30	135	30		80	60	135	60	60	80	80	30	80	
	Length	(m)			56	90	07	110	41	40	48	156	96	154	40	44	170	88	176	170	100	90	422		8/	118	42	286	64	128	144	218	88	
	Diameter	(mm)			150	150	001	150	1.10	150	150	150	225	150	150	150	150	150	225	225	150	225	225		001	225	225	225	150	150	150	225	150	
	Cumulativa	Cumuary			0.3	60	7.0	1.0		0.2	1.5	0.8	2.9	0.8	0.2	1.3	0.9	0.5	3.6	7.4	0.5	1.0	10.7		0.4	1.1	1.3	2.8	0.3	3.9	0.8	5.8	0.5	
Peak flow (lps)	Increment				0.3	00	7.0	0.0		0.2	0.3	0.8	0.5	0.8	0.2	0.2	0.9	0.5	0.9	6.0	0.5	0.5	2.3		0.4	0.6	0.2	1.5	0.3	0.7	0.8	1.2	0.5	
	From	Other Zone																																
	Cumulativa	Cumuauve			53	77	17	185	40	58	269	149	509	147	38	227	162	84	640	1,311	95	181	1,894		-01	187	227	499	61	682	137	1,027	84	
Population	Increment		<u>(</u> )		53	20	17	102	0.e	58	46	149	91	147	38	42	162	84	168	162	56	86	402	(II)	/4	112	40	272	 61	122	137	208	84	
	From	Other Zone	Zone VIII (Sector I, discharging to Zone V)																					Zone VIII (Sector II, discharging to Zone VII)					_					
Node 2	Ţ		ctor I, discha		69	07	40 1	ЭЕ	Ę	ЭЕ	63	63	65	86A	86A	H98	H98	H98	65	67A	69	67A	V-2	tor II, dischar	4 1	7	~	9	 6	26	26	38	38R	
Noi	From	1011	one VIII (Se		2	40	49	69	ę	315	5E	63E	63	82	86G	86A	86N	86E	H98	65	1/	69	67A	me VIII (Sect	7	4	7	8	5A	6	21A	26	38Z	
Node 1	Ę	2	2										6a							6b			7	Zo	12a	12b	12c	12d		12e		12f		
Ng	Erom	TIOL											9							6a			66		71	12a	12b	12c		12d		12e		

 Table M35.2.1
 Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (13/16)

	Remarks																Discharging into Zone VII	Sewers in Zone IX were	installed in 1980														Discharging into Zone VII	
	Capacity Adequacy		A dequate	Adequate	Adequate	Adequate	A dequate	Adequate	Adequate	A dequate	Adequate	A dequate	Adequate	Adequate	A dequate	Adequate	Adequate			Adequate	Adequate	Adequate	A dequate	Adequate	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate	_	Adequate	
	Flow	(lps)	15	15	15	15	15	15	44	15	15	15	15	15	71	15	71			15	33	33	72	15	72	72	12		109	33	109	15	109	
	Velocity	(m/sec)	0.835	0.835	0.835	0.835	0.835	0.835	1.094	0.835	0.835	0.835	0.835	0.835	1.787	0.835	1.787			0.835	0.842	0.842	1.020	0.835	1.020	1.020	1.020		1.131	0.842	1.131	0.835	1.131	
	Invert level (m)	d/s															4.58																	
	Invert	s/n																																
Existing sewer	Ground level (m)	d/s															8.79																	
	Ground	u/s																																
	Gradient	(1/x)	80	80	80	80	80	80	80	80	80	80	80	80	30	80	30			80	135	135	135	80	135	135	135	PM	135	135	135	80	135	
	Length	(II)	44	44	54	48	140	140	282	142	70	36	30	122	356	90	234			132	60	105	482	182	50	470	15	175	325	365	200	288	38	
	Diameter	(mm)	150	150	150	150	150	150	225	150	150	150	150	150	225	150	225			150	225	225	300	150	300	300	300	200	350	225	3.50	150	350	
	Cumulativa	Cumuariye	0.2	0.9	0.3	1.5	0.8	3.0	10.3	0.8	0.4	0.2	0.7	2.2	14.4	0.5	16.1			1.4	2.0	1.1	8.2	1.9	10.6	4.9	15.7	15.7	19.1	3.8	25.0	3.0	28.4	
Peak flow (lps)	Increment		0.2	0.2	0.3	0.3	0.8	0.8	1.5	0.8	0.4	0.2	0.2	0.7	1.9	0.5	1.3			1.4	0.6	1.1	5.0	1.9	0.5	4.9	0.2		3.4	3.8	2.1	 3.0	0.4	
Pe	From	Other Zone																																
	Cumulativa		42	168	51	265	133	531	1,827	135	67	34	130	381	2,547	86	2,855			245	356	195	1,444	337	1,874	871	2,772	2,772	3,375	676	4,422	534	5,026	
Population	Increment	-	42	42	51	46	133	133	269	135	67	34	29	116	339	86	223			245	III	195	893	337	93	871	78		602	676	371	534	70	_
	From	Other Zone																																
e 2	£		38R	38H	38H	38E	38E	38	42B	42F	42G	42G	42F	42B	91B	91B	VII-221			4	9	9	23	23	25	25	PS-9	47A	55	55	61	61	VII-232C	
Node 2	Erom	TIOT 1	38U	38R	38J	38H	38P	38E	38	42P	42J	42R	42G	42F	42B	H16	91B	e IX		IB	4	6D	9	23H	23	35A	25	PS-9	47A	55-1	55	611	61	
le 1	£	2							12g						12h		13	Zone IX										25	25a		25b	T	27	1
Node 1	Erom	11011							12f						12g		12h											24(PS9)	25		25a		25b	

 Table M35.2.1
 Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (14/16)

	Remarks		Sewers in Zone X were	Instance III 1964		Discharging into Zone I																																
C	Capacity Adequacy				Adequate	Adequate				Adequate	Adequate	A dequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	A dequate	Adequate		Adequate	Adequate		Adequate		A dequate	Adequate		Adequate	Adequate	Adequate	Adequate	Adequate		Adequate	Adequate
	Flow Canacity	(lps)			25	15				15	15	15	15	15	15	15	15	15	15	15	15		15	15		15	:	15	15		15	15	15	15	15		15	15
	Velocity	(m/sec)			1.437	0.835				0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835		0.835	0.835		0.835		0.835	0.835		0.835	0.835	0.835	0.835	0.835		0.835	0.835
	l (m)	d/s								49.25	49.25	30.86			30.86	 37.57	 37.57	30.86	18.83	18.83																		2.31
	Invert level (m)	s/n										49.25						37.57	30.86	46.25	18.83															_		_
Existing sewer	l (m)	d/s								50.25	50.25	31.86			31.86	38.57	38.57	31.86	19.83	19.83										-						_	_	3.31
Exis	Ground level (m)	u/s										50.25						38.57	31.86	47.33	19.83		5.64							_						_		_
	Gradient	(1/x)			27	80				80	80	80	80	80	80	80	80	80	80	80	80		80	80		80	;	80	80		80	80	80	80	80	_	80	80
	Length Gr	-			910	10			_	100	54	110	160	40	38	 130	 134	58	104	234	342		92	202	;	58	;	32	15		70	60	160	42	22	_	22	50
	Diameter Le	_			150	150				150	150	150	150	150	150	 150	 150	150	150	150	150		150	150		150	1	150	150		150	150	150	150	150		150	150
	Cumulative Dia				0.0	0.0			_	0.3	0.2	0.8	0.5	0.1	0.7	0.4	0.4	1.0	2.8	0.7	4.6		0.3	0.6		0.2	;	0.1	0.3	-	0.2	0.7	1.8	0.1	2.0	_	0.1	2.2
w (lps)					0.0	0:0				0.3	0.2	0.3	0.5	0.1	0.1	0.4	0.4	0.2	0.3	0.7	1.0		0.3	0.6		0.2		0.1	0:0	_	0.2	0.2	0.5	0.1	0.1		0.1	0.2
Peak flow (lps)	n Increment				_	+																				-				_								_
	From				0	5				54	29	143	87	22	129	70	73	174	503	127	815	-	50	109	;	31	1	17	57	_	38	127	323	23	358		12	397
uo	nt Cumulative	_			0	5		_		54	29	09	87	 22	21	 70	73	31	56	127	185		50	 109	;	31	1	17	8	_	38	33	87	23	12		12	27
Population	Increment	ne	ne I)			_		ie VII)	_																	_				_								_
	From	Other Zo	Zone X (Sector I, discharging to Zone I)			_	_	Zone X (Sector II, discharging to Zone VII)														-																
Node 2	f		ector I, disch		27	I-3		tor II, discha		13	13	25	26	26	25	24	24	25	11	11	40		40	41H	-	41D	-	41D	41E		41E	41H	4	44	45		45	48
4	From		Zone X (S.		16	27		Zone X (Sec		12D	13B	13	26H	261	26	19C	22B	24	25	1	Π		40G	41-6E		41A		41D-2	41D		41E-4	41E	41H	44B	44		45B	45
Node 1	f									14a		14b							16	16	18																	
Z	From									14		14a							14b	15	16																	

 Table M35.2.1
 Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (15/16)

	Remarks														Discharging into Zone VII	Sewers in Zone XI were installed in 1984	Discharging into Zone VII	2	Sewers in Zone XII were	installed in 1995																	Peak factor : 2.25	0.0.0 Summings n.
	Capacity Adequacy		Adequate		Adequate	Adequate	Adequate	Adequate			Adequate		_	Adequate	Adequate						Adequate	Adequate	Adequate	Adequate			Adequate	Adamata		Adequate	Adequate	Adequate	Adequate		Adequate			-
	Flow Capacity	(sdl)	15	15	15	15	15	15	15	15	15			15	33						15	15	15	15	:	15	15	15	2	15	15	15	15		15			
	Velocity	(m/sec)	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835	0.835			0.835	0.842						0.835	0.835	0.835	0.835		0.835	0.835	0.025	1100	0.835	0.835	0.835	0.835		0.835			
	el (m)	d/s	2.31	1.31	1.31																																	~
	Invert level (m)	s/n		2.31	3.39	1.31								29.04															T								e 3.2.1	lage zone ma
Existing sewer	/el (m)	d/s	3.31	2.85	2.85			2.24	2.24		2.14			7.09															Ì							2 -	ted with Figur	ed with sewe Main
Ex	Ground level (m)	s/n		3.31	4.39	2.85		7.09	6.10	2.24		2.14		30.04																							Node 1 cordinated with Figure 5.2.1	Node 2 cordinated with sewerage zone map "PM": Pressure Main
	Gradient	(1/x)	80	80	80	80	80	80	80	80	80	PM		80	135		PM				80	80	80	80	1	80	80	00	0	80	80	80	80	00	80	M	ZZ	
	Length	(II)	34	50	198	308	72	492	480	54	40	532		204	920		180				250	20	50	290		310	44	000	0.04	120	144	440	320	000	300	360		
	Diameter	(uuu)	150	150	150	150	150	150	150	150	150	150		150	225		200				150	150	150	150		150	150	150	0.71	150	150	150	150		150	150		
	Cumulative		0.1	2.5	0.6	4.0	9.2	1.5	1.5	3.1	12.4	12.4		0.6	15.9		24.0				0.8	0.1	1.0	0.9	4	1.0	3.0	9.0	2.	0.4	1.5	5.9	1.0	0	0.9	1.9		
Peak flow (lps)	Increment	_	0.1	0.2	0.6	0.9	0.2	1.5	1.5	0.2	0.1			0.6	2.8						0.8	0.1	0.2	0.9		1.0	0.1	9.0	2	0.4	0.5	1.4	1.0	0	0.9		Cite Blens	Uity rnase 1
Pe	From																																				wise drawing	ers
	Cumulative		18	443	107	717	1,620	267	260	556	2,198	2,198		Π	2,807		4.242				139	=	178	161	1	172	536	11		67	258	1,038	178		167	345	of Goa (zone	nentar upgrau winstream sew
Population	Increment		18	27	107	167	39	267	260	29	22			III	498						139	=	28	161	į	172	24	Ξ		67	80	245	178		167	: :	o Panaji, Govt	ton Envurour stream and do
	From	Other Zone																																			Source (1): Diameter, length, gradient of pipes: Sewerage Scheme to Panaji, Govt. of Goa (zone-wise drawing)	boutee (z): zone-was wastewater now: Annexture 3, Froject Report on Envuronmental Upgradation of Paraji C Hy Prass 1 Diameter and slope of severs are assumed based on upstream and downstream severs
le 2	To		48	51	51	40	16	90	90	16	PS-10	100		100	VII-225		VII-232				3	3	9	6	,	9	10	a	Ì	6	10	STP	PS-12		PS-12	STP	d pipes: Sewe	ers are assum
Node 2	From		48B	48	52	51	40	100	72	90	16	PS-10		93	100	Zone XI	PS-11		Zone XII		-	2	3	4	,	2	9	r		8	6	10	11	:	12	PS-12	gth, gradient c	d slope of sew
Node 1	To				17a	18	18a				19(PS10)	20			21	Zon	26		Zone																_	29(STP)	Diameter, len	Lone-wise wa Diameter and
No	From				17	1 7a	18				18a	19(PS10)			20		23																			28(PS12)	Source (1):	Source (2).

 Table M35.2.1
 Flow Calculation Sheet for Branch Sewers, Panaji City (Year 2001) (16/16)

### Appendix M53.3 Sewerage Zone and Diameter wise Sewer Length, Panaji City

### Table M3.120Sewerage Zone and Diameter wise Sewer Length, Panaji City

			Branch	Sewer						Ma	in and Sul	o Main Se	wer				
	150mm	200mm	225mm	250mm	300mm	Sub	150mm	225mm	300mm	350mm	600mm	700mm	Pı	essure Ma	un	Sub	Total
	1501111	20011111	22311111	25011111	50011111	Total	15011111	22311111	50011111	5501111	00011111	/0011111	150mm	200mm	400mm	Total	
Zone I	1,222	33	429	0	0	1,684	0	0	0	0	0	0	580	0	0	580	2,264
Zone II	1,499	0	590	0	0	2,089	0	0	0	0	0	0	210	0	0	210	2,299
Zone III	1,264	0	125	0	0	1,389	0	0	293	0	0	0	0	0	0	293	1,682
Zone IV	1,391	110	394	0	0	1,895	0	0	60	0	0	0	0	320	0	380	2,275
Zone V	5,142	530	2,650	0	0	8,322	0	270	0	0	510	837	0	0	310	1,927	10,249
Zone VI	337	0	182	0	0	519	0	546	0	0	0	0	0	0	0	546	1,065
Zone VII	504	0	0	0	0	504	0	0	0	0	1,200	0	0	0	0	1,200	1,704
Zone VIII	2,290	0	266	0	0	2,556	206	2,224	0	0	0	0	0	0	0	2,430	4,986
Zone IX	602	0	530	0	1,017	2,149	0	0	0	563	0	0	0	175	0	738	2,887
Zone X	3,673	0	0	0	0	3,673	1,508	920	0	0	0	0	532	0	0	2,960	6,633
Zone XI	0	0	0	0	0	0	0	0	0	0	0	0	0	180	0	180	180
Zone XII	2,488	0	0	0	0	2,488	0	0	0	0	0	0	360	0	0	360	2,848
Total	20,412	673	5,166	0	1,017	27,268	1,714	3,960	353	563	1,710	837	1,682	675	310	11,804	39,072

Note: Lengths were measured on sewerage zone map

M35.4 List of Existing STP Facilities, Panaji City

Table M35.4.1List of Existing STP Facilities, Panaji City

	Item	Dimension
1	General Condition	
	Name of STP	Panaji Sewage Treatment Plant
	Location	Tonca Caranzalem (by the side of the old STP) – Panaji
	Commissioning year	April, 2005
	Treatment capacity	12,500 m ³ /day
2	Technical Details	
	2.1 Intake Facility	
	Inlet pipe diameter	600 mm (RC Pipe)
	Size of chamber	15.00 m diameter
	2.2 Raw Sewage Pump Facility	
	Pump sum	15.00 m diameter $\times$ 4.50 m
	Pump type	Non clog pumps horizontal model
	Pump power and head	44.0 kw $\times$ 15.0 m $\times$ 2 units
		110.0 kw $\times$ 15.0 m $\times$ 2 units
	2.3 Screening and Grit Chamber	
	Screen type	Manual bar screen (3.00 m $\times$ 0.76 m $\times$ 0.65 m)
		Mechanical bar screen (3.00 m $\times$ 0.90 m $\times$ 0.65 m)
	Size of grit chamber	5.40 m $\times$ 5.40 m $\times$ 1.05 m
	2.4 SBR Tank (C-Tech) Basins	
	Size	40.0 m $\times$ 22.0 m $\times$ 4.0 m $\times$ 2 basins
	2.5 Chlorination System	
	Туре	Gas chlorine
	Size	$9.50 \text{ m} \times 2.60 \text{ m} \times 0.90 \text{ m} \times 9 \text{ passes}$
	2.6 Sludge Dewatering	
	Capacity	$20.0 \text{ m}^3/\text{hr} \times 2 \text{ units (including 1 stand-by)}$

Source: Sector Status Study Water and Sanitation Goa, Draft Final Report (Appendix)

### M35.5 Data for Flow Calculation Sheet of Sewers in Year 2001, Panaji City

Flow calculation sheets for Panaji City for evaluation on flow capacity in year 2001 have been prepared based on Project Report on Environmental Upgradation of Panaji City Phase I and Sewerage zone map. But these data are not sufficient for the required purposes as described in Table (1). Therefore, some presumptions and assumptions on missing data have been adopted to solve the purposes and are described in Table (2). See Appendix M35.1 and M35.2 for the flow calculation sheets prepared in this study.

Item	Description / Controversial Point	Source
(1) Service Area	Total service area: Described (about 400 ha) Sewerage zone wise service area: Not described	(1)
	Catchment area of each sewer: Not described	
(2) Service area	Total population in service area: Described	(1)
Population	58,785 persons in year 2001	
	96,112 persons in year 2031 (target year of current plan)	
	Sewerage Zone wise population: Not described	
	Contributory population of each sewer: Not described	
(3) Wastewater	Calculated based of water demand categorized as below	(1)
Quantity	Domestic, major hotels, other hotels and non-domestic	
	Converted to wastewater quantity using return factor (0.80).	
	Added 20% infiltration	
	Total wastewater quantity: Described and categorized	
	Sewerage Zone wise quantity: Described but not categorized	
	Location of hotels: Not described	
	Flow of each sewer: Not described	
(4) Sewer Alignment	Described on the map clearly except Zone XI	(2)
(5) Diameter and Slope of Sewers	Described on the map for some sewers	(2)
(6) Length of Sewers	Not described	None
(7) Ground Elevation	Described on the map for some nodes, but not clear	(2)
(8) Invert Elevation	Described on the map for some sewer but not clear	(2)
of Sewer	Some logical errors like down stream is higher than up stream	
(9) Flow Velocity	Not described	None
(10) Flow Capacity	Not described	None

(1) Data on Sewers Details, Controversial Points

Source: (1) Project Report on Environmental Upgradation of Panaji City Phase I (2) Sewerage Zone Maps for Zone I to Zone XII

Item	Description / Countermeasure
(1) Service Area	Zone wise service area: Measured on the sewerage zone map Sewer wise catchment area: Not measured Not used for calculating sewer wise wastewater quantity
(2) Service area Population	Sewer wise population: Not used for calculating sewer wise wastewater quantity
(3) Wastewater Quantity, Design flow	Sewer wise wastewater quantity: Distribute sewerage zone wise total wastewater including hotel, non-domestic and infiltrated water to each sewers based on its length assuming that wastewater generation is proportional to sewer length, as sewer wise catchment area and population is not available. Adopt peak factor of 2.25 depending on present population.
(4) Sewer Alignment	Adopt sewer alignment described on sewerage zone map.
(5) Diameter and Slope of Sewers	Adopt diameter and slope described on sewerage zone map when available. Presume diameter and slope based on adjacent sewers for other sewers, if appropriate. Assume diameter and slope 150 mm and 1/80 for other distal branch sewers.
(6) Length of Sewers	Measure alignment described on sewerage zone map
(7) Ground Elevation	Adopt ground elevation described on sewerage zone map when available.
(8) Invert Elevation of Sewer	Adopt invert elevation of sewer described on sewerage zone map when available.
(9) Flow Velocity	Calculate using Manning's formula with 0.015 as roughness coefficient
(10) Flow Capacity	Based on flow velocity and cross section area of sewer
(11) Evaluation of Flow Capacity	For present condition: When full flow capacity exceeds design flow, flow capacity is evaluated as adequate. Leave margin capacity out of consideration.

## (2) Countermeasure for Flow Calculation Sheet and Evaluation on Flow Capacity

#### M35.6 Information of Pumping Stations, Panaji City

### Detailed Information of Pumping Stations, Panaji City

The following Table A-1 to A-8 are shown based on the equipment list made by PWD, the result of interview with PWD Division III and the detail survey conducted by the Study Team.

### 1. Pumping Station - 1 1.1 List of Existing Equipment

(	Tabl	e A-1	)
т	4	•	

Location		Neuginagar				
Number of Pump Units		3 units				
Dimension of No.1 Pump		100 mm diameter $\times$ 60.0 l/sec $\times$ 10.0 HP $\times$ 6.0 m(head)				
Dimension of No.2 Pump		100 mm diameter $\times$ 65.0 l/sec $\times$ 15.0 kw $\times$ 17.0 m(head)				
Dimension of No.3 Pump		100 mm diameter $\times$ 41.0 m3/hour $\times$ 3.0 HP $\times$ 4.8 m(head)				
Total Discharging Flow		Q = 0.1364  m3/sec				
Year of Manufacture		No.1	No.2	No.3		
		1994	1994	1994		
Company Name	Pump	KSB	Kirloskar	Kirloskar		
	Motor	Kirloskar	Kirloskar	Kirloskar		

Diameter of the Pumping Main Pipe : 150 mm

### 1.2 Comments about the Operational Conditions by the PWD Staff

- · Pumps and motors are old and needs replacement
- Working satisfactorily

### 1.3 Comments about the Operational Conditions by the Study Team

- · No.1 pump and motor should be replaced because of deteriorated and corrosive condition
- Piping in the dry well should also be replaced
- · Electrical panel looks good condition

### 2. Pumping Station - 2

### 2.1 List of Existing Equipment

|--|

Location		Bhandari Hospital, Mala			
Number of Pump Units		2 units			
Dimension of No.1 Pump		100 mm diameter $\times$ 30.0 l/sec $\times$ 14.0 kw $\times$ 30.0m(head)			
Dimension of No.2 Pump		80 mm diameter $\times$ 41.0 m3/hour $\times$ 1.5 kw $\times$ 4.8 m(head)			
Total Discharging Flow		Q = 0.0414  m3/sec			
Year of Manufacture		No.1	No.2		
		5 years	>15 years		
Company Name	Pump	Kirloskar	Kirloskar		
	Motor	Kirloskar	Kirloskar		

Diameter of the Pumping Main Pipe

: 150 mm

### 2.2 Comments about the Operational Conditions by the PWD Staff

· Working satisfactorily

#### 2.3 Comments about the Operational Conditions by the Study Team

- No.3 pump and motor has already removed
- No.2 pump and motor should be replaced because of deteriorated
- · Electrical panel looks good condition

### 3. Pumping Station - 3 3.1 List of Existing Equipment

(Table A-3)						
Location		Hotel Avanti				
Number of Pump Units		3 units				
Dimension of No.1 Pump		150 mm diameter $\times$ 60.0 l/sec $\times$ 10.0 HP $\times$ 6.0 m(head)				
Dimension of No.2 Pump		100 mm diameter × 1,300 l/min × 5.5 kw × 25.0 m(head)				
Dimension of No.3 Pump		100 mm diameter × 2,770 l/min × 5.5 kw × 20.0 m(head)				
Total Discharging Flow		Q= 0.1278 m3/sec				
Year of Manufacture		No.1	No.2	No.3		
		2years (pump), 5 (motor)	>15 years	>15 years		
Company Name	Pump	Kirloskar	Jyoti	Jyoti		
	Motor	Kirloskar	Kirloskar	Kirloskar		

Diameter of the Pumping Main Pipe : 200 mm

### 3.2 Comments about the Operational Conditions by the PWD Staff

• Two old pumps needs replacement

### 3.3 Comments about the Operational Conditions by the Study Team

- No.2 and No.3 pumps and motors should be replaced because of deteriorated
- · Piping in the dry well should also be replaced
- · Electrical panel looks good condition

#### 4. Pumping Station - 5

### 4.1 List of Existing Equipment

#### (Table A-4) Location Don Bosco Number of Pump Units 5 units 150 mm diameter $\times$ - m3/hour $\times$ 30.0 HP $\times$ - m(head) Dimension of No.1 Pump 150 mm diameter $\times$ 127.0 l/sec $\times$ 21.5 kw $\times$ 10.0 m(head) Dimension of No.2 Pump Dimension of No.3 Pump 200 mm diameter × 7,650 l/min × 20.0 HP × 10.0 m(head) 200 mm diameter × 7,650 l/min × 20.0 HP × 10.0 m(head) Dimension of No.4 Pump Dimension of No.5 Pump 200 mm diameter $\times$ 7,650 l/min $\times$ 20.0 HP $\times$ 10.0 m(head) Total Discharging Flow Q = 0.5095 m3/sec + No.1 PumpNo.1 No.2 No.3 No.4 No.5 Year of Manufacture 1992 10 years 30 years _ _ Pump Jvoti Kirloskar Jyoti Company Name Motor Kirloskar Kirloskar ---

Diameter of the Pumping Main Pipe

: 400 mm

### 4.2 Comments about the Operational Conditions by the PWD Staff

Working satisfactorily

### 4.3 Comments about the Operational Conditions by the Study Team

- No.4 and No.5 pumps and motors should be replaced because of deteriorated
- · Piping and valves in the dry well should also be replaced
- No.1 to No.3 pumps and motors are good conditions
- Electrical panel looks good condition
- · Gate and screen will be settled by PWD in this year

### 5. Pumping Station - 9 5.1 List of Existing Equipment

(Table A-5)						
Location		Dempo Collage (HRK house)				
Number of Pump Units		3 units				
Dimension of No.1 Pump		100 mm diameter $\times$ 65.0 l/sec $\times$ 15.0 kw $\times$ 17.0 m(head)				
Dimension of No.2 Pump		100 mm diameter $\times$ 65.0 l/sec $\times$ 15.0 kw $\times$ 17.0 m(head)				
Dimension of No.3 Pump		100 mm diameter $\times$ 80.5 l/sec $\times$ 6.8 kw $\times$ 21.5 m(head)				
Total Discharging Flow		Q = 0.2105  m3/sec				
Year of Manufacture		No.1	No.2	No.3		
		>15 years	>15 years	2years (pump), >15 (motor)		
Company Name	Pump	Kirloskar	Kirloskar	Kirloskar		
	Motor	Kirloskar	Kirloskar	Kirloskar		
$\mathbf{D}^{\prime}$ (1) $\mathbf{D}^{\prime}$ (1) $\mathbf{D}^{\prime}$ (150)						

Diameter of the Pumping Main Pipe

: 150 mm

### 5.2 Comments about the Operational Conditions by the PWD Staff

Working satisfactorily

### 5.3 Comments about the Operational Conditions by the Study Team

• All pumps, motors, piping and panel are good working

# 6. Pumping Station - 106.1 List of Existing Equipment

(T 11	10
(Table	A-6)

(Table A-0)					
Location		Bhatulem			
Number of Pump Units		2 units			
Dimension of No.1 Pump		100 mm diameter × 34.72 l/sec × 10.0 HP × 10.0 m(head)			
Dimension of No.2 Pump		100 mm diameter × 30.00 l/sec × 15.0HP × 30.0 m(head)			
Total Discharging Flow		Q = 0.0647  m3/sec			
Year of Manufacture		No.1	No.2		
		>15 years	>10 years		
Company Name	Pump	Kirloskar	Kirloskar		
	Motor	Cromption	Kirloskar		

Diameter of the Pumping Main Pipe : 150 mm

### 6.2 Comments about the Operational Conditions by the PWD Staff

• Need replacement.

### 6.3 Comments about the Operational Conditions by the Study Team

· All pumps, motors, piping and panel are good working

### 7. Pumping Station - 11 7.1 List of Existing Equipment

(Table A-7)						
Location		Miramar, Campal (Lakeview colony)				
Number of Pump Units		3 units				
Dimension of No.1 Pump		100 mm diameter $\times$ 90.0 m3/hour $\times$ 8.7 kw $\times$ 20.0 m(head)				
Dimension of No.2 Pump		100 mm diameter $\times$ 90.0 m3/hour $\times$ 8.7 kw $\times$ 20.0 m(head)				
Dimension of No.3 Pump		80 mm diameter $\times$ 50.0 l/sec $\times$ 4.74 kw $\times$ 20.0 m(head)				
Total Discharging Flow		Q = 0.1000  m3/sec				
Year of Manufacture		No.1	No.2	No.3		
		-	-	-		
Company Name	Pump	Kirloskar	Kirloskar	Kirloskar		
	Motor	Kirloskar	Kirloskar	Kirloskar		
Diameter of the P	umping N	Iain Pipe :	200 mm			

Diameter of the Pumping Main Pipe

## 7.2 Comments about the Operational Conditions by the PWD Staff

• Working satisfactorily.

### 7.3 Comments about the Operational Conditions by the Study Team

- No.3 pump and motor should be replaced because of deteriorated
- · Electrical panel looks good condition

### 8. Pumping Station - 12 8.1 List of Existing Equipment

(Table A-8)
-------------

Location		Kamrabhat			
Number of Pump Units		2 units (Submersible Pump)			
Dimension of No.1 Pump		100 mm diameter $\times$ 42.0 m3/hour $\times$ 3.7 kw $\times$ 10.0 m(head)			
Dimension of No.2 Pump		100 mm diameter $\times$ 42.0 m3/hour $\times$ 3.7 kw $\times$ 10.0 m(head)			
Total Discharging Flow		Q = 0.0233  m3/sec			
Year of Manufacture		No.1	No.2		
		1988	1988		
Company Name	Pump	KSB	KSB		
	Motor	KSB	KSB		

Diameter of the Pumping Main Pipe : 150 mm

### 8.2 Comments about the Operational Conditions by the PWD Staff

• Only one pump is working, other pump is out of order.

### 8.3 Comments about the Operational Conditions by the Study Team

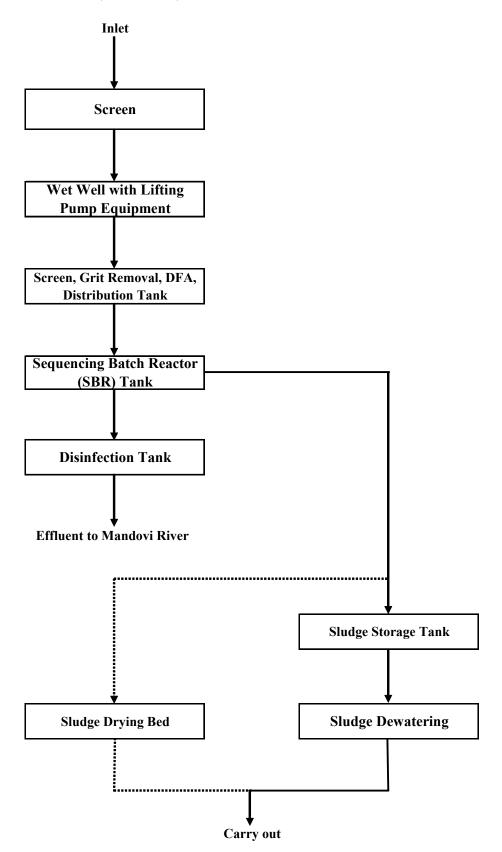
• All pumps, motors, piping and panel are good working

Pumping Station	Electrical Charge	Staff N	umbers	Salaries for Staff
Fumping Station	(Rs / month)	Operator	Helper	(Rs / month)
P/S-1	2,686	4	-	-
P/S-2	2,541	3	3	21,310
P/S-3	4,491	4	3	33,900
P/S-5	10,683	2	3	166,000
P/S-9	3,758	-	-	8,800
P/S-10	4,565	1	5	16,500
P/S-11	25,000	5	-	11,000
P/S-12	2,222	-	-	8,800
Total	55,946	19	14	266,310

Summary of the Operation and Maintenance Conditions for P/S in Panaji The following information are described based on the list of the data of PWD Division III in Panaji

<pre></pre>		DN OF SEWAGE TREATMENT FACILITIES ctor (SBR) Method in Panaji Municipality>
<b>1-1 Basic Items</b> (1) Name	:	Panaji Tonca Sewage Treatment Plant
(2) Land Area	:	Approximately 30,000 m ²
(3) Elevation	:	3.00 m
(4) Inlet Pipe Level	:	-1.00 m
(5) Pipe Diameter	:	Concrete Pipe 600 mm
(6) Land Use	:	Exclusively for Sewage Treatment Plant
(7) Collection System	:	Combined System • Separate System
(8) Treatment Method	:	
Sewage Treatm	ent	; Pre-treatment + SBR Tank + Disinfection Tank
Sludge Treatme	ent	; Sludge Dewatering (Drying Bed as a stand-by
(9) Effluent Point	:	facility) Mandovi river
(10) Effluent Point Water Level	:	High Level = $+2.50$ m, Low Level = $0.00$ m
(11) Target Year	:	2005 Year
1-2 Design Population and A	rea	
Design Population	:	96,112 Persons Present : 60,000 Persons
Design Area	:	765.0 ha

### M35.7 Capacity Calculation of STP (Sequencing Batch Reactor), Panaji City


### 1-3 Design Sewage Flow

Item	m ³ /day	m ³ /hr	m ³ /min	m ³ /sec	Remarks
Daily Average (DA)	12,500	520.8	8.68	0.145	
Daily Maximum (DM)	17,857	744.0	12.40	0.207	DA: DM = 0.7: 1.0
Hourly Maximum (HM)	28,125	1,171.9	19.53	0.326	DA : HM = 1.0 : 2.25

### 1-4 Design Sewage Quality

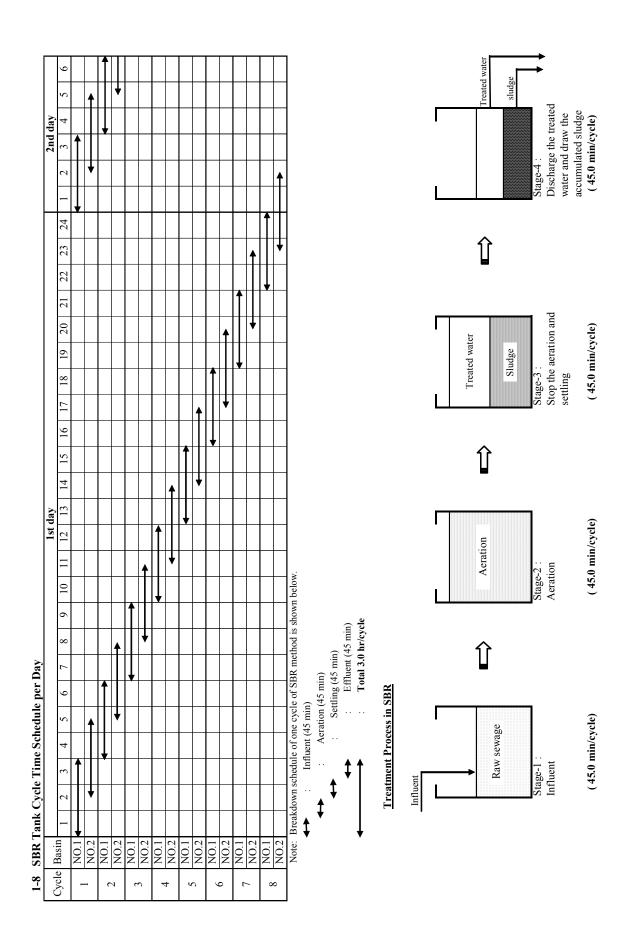
	Item	Influent	Removal Rate	Effluent	Remarks
	nem	(mg/L)	(%)	(mg/L)	Remarks
	BOD	200	85	30	Effluent Quality Regulation = 30 mg/l
ſ	SS	200	75	50	Effluent Quality Regulation = 100 mg/l

### 1-5 Flow Chart (SBR Method)



### 1-6 Design Criteria for SBR Method

ItemsUnitFigure *11-6-1Grit Chamber	Figure *2	Adoption
(2)Average Velocitym/sec $0.3$ 1-6-2Wet Well with Pump Facilities		
(2)Average Velocitym/sec0.31-6-2Wet Well with Pump Facilities $(1)$ Pump Inlet Flow Velocitym/sec $1.5 - 3.0$ (2)Retention Time in Wet Wellmin $ (1)$ 1-6-3SBR Tank (C-Tech Basin) $(1)$ BOD-SS LoadkgBOD/kgSS•day $0.2 - 0.4$ (2)MLSS Concentrationmg/L $1,500 - 2,000$ (3)Cyclecycle/day $3 - 4$ (4)Hydraulic Retention Timehour $12 - 24$ (5)Water Depthm $4 - 6$ (6)Pull-out Ratio $ 1/4 - 1/2$ 1-6-4Disinfection Tank $ -$ (1)Retention Timemin. $15.0$ (2)Dosage Ratiomg/L $2 - 8$ 1-6-5Sludge Storage Tank $-$ (1)Retention Timehr $-$ (2)Raw Sludge Moisture Ratio $\%$ $99.0$ (3)Sludge Recovery Ratio $\%$ $90 - 95$ (4)Dewatered Sludge Moisture $\%$ $78.0 - 80.0$ (1)Retention Time $\%$ $78.0 - 80.0$ (1)Retention Time $\%$ $78.0 - 80.0$ (3)Sludge Drying Bed $ -$ (1)Retention Time $4ay$ $10 - 15$		
(2)Average Velocitym/sec $0.3$ 1-6-2Wet Well with Pump Facilities	2,160	2,160
1-6-2Wet Well with Pump Facilities(1)Pump Inlet Flow Velocitym/sec $1.5 - 3.0$ (2)Retention Time in Wet Wellmin-1-6-3SBR Tank (C-Tech Basin)-(1)BOD-SS LoadkgBOD/kgSS•day $0.2 - 0.4$ (2)MLSS Concentrationmg/L $1,500 - 2,000$ (3)Cyclecycle/day $3 - 4$ (4)Hydraulic Retention Timehour $12 - 24$ (5)Water Depthm $4 - 6$ (6)Pull-out Ratio- $1/4 - 1/2$	0.15 - 0.30	0.3
(1)Pump Inlet Flow Velocitym/sec $1.5 - 3.0$ (2)Retention Time in Wet Wellmin-1-6-3SBR Tank (C-Tech Basin)-(1)BOD-SS LoadkgBOD/kgSS·day $0.2 - 0.4$ (2)MLSS Concentrationmg/L $1,500 - 2,000$ (3)Cyclecycle/day $3 - 4$ (4)Hydraulic Retention Timehour $12 - 24$ (5)Water Depthm $4 - 6$ (6)Pull-out Ratio- $1/4 - 1/2$		
(1)Pump Inlet Flow Velocitym/sec $1.5 - 3.0$ (2)Retention Time in Wet Wellmin-1-6-3SBR Tank (C-Tech Basin)-(1)BOD-SS LoadkgBOD/kgSS·day $0.2 - 0.4$ (2)MLSS Concentrationmg/L $1,500 - 2,000$ (3)Cyclecycle/day $3 - 4$ (4)Hydraulic Retention Timehour $12 - 24$ (5)Water Depthm $4 - 6$ (6)Pull-out Ratio- $1/4 - 1/2$		
(2)Retention Time in Wet Wellmin-1-6-3SBR Tank (C-Tech Basin)		
(2) Retention Time in Wet Well       min       -         1-6-3 SBR Tank (C-Tech Basin)       -         (1) BOD-SS Load       kgBOD/kgSS • day       0.2 - 0.4         (2) MLSS Concentration       mg/L       1,500 - 2,000         (3) Cycle       cycle/day       3 - 4         (4) Hydraulic Retention Time       hour       12 - 24         (5) Water Depth       m       4 - 6         (6) Pull-out Ratio       -       1/4 - 1/2         1-6-4 Disinfection Tank       -       -         (1) Retention Time       min.       15.0         (2) Dosage Ratio       mg/L       2 - 8	_	1.5 - 3.0
Image: constraint of the system of the sy	> 5.0	5.0
Image: constraint of the system of the sy		
Image: constraint of the system of the sy		
(2)MLSS Concentration $mg/L$ $1,500 - 2,000$ (3)Cyclecycle/day $3 - 4$ (4)Hydraulic Retention Timehour $12 - 24$ (5)Water Depthm $4 - 6$ (6)Pull-out Ratio- $1/4 - 1/2$ 1-6-4Disinfection Tank-(1)Retention Timemin.(2)Dosage Ratiomg/L $2 - 8$ 1-6-5Sludge Storage Tank-(1)Retention Timehr-(1)Retention Timehr-(1)Operation Timehr/day-(2)Raw Sludge Moisture Ratio%99.0(3)Sludge Recovery Ratio%90 - 95(4)Dewatered Sludge Moisture Ratio%78.0 - 80.01-6-7Sludge Drying Bed(1)Retention Timeday10 - 15		
(3)Cyclecycle/day $3 - 4$ (4)Hydraulic Retention Timehour $12 - 24$ (5)Water Depthm $4 - 6$ (6)Pull-out Ratio- $1/4 - 1/2$	-	0.2 - 0.4
(4)       Hydraulic Retention Time       hour       12 - 24         (5)       Water Depth       m       4 - 6         (6)       Pull-out Ratio       -       1/4 - 1/2         1-6-4       Disinfection Tank       -       -         (1)       Retention Time       min.       15.0         (2)       Dosage Ratio       mg/L       2 - 8         1-6-5       Sludge Storage Tank       -       -         (1)       Retention Time       hr       -         (1)       Retention Time       hr/day       -         (1)       Operation Time       %       99.0         (3)       Sludge Moisture Ratio       %       99.0         (3)       Sludge Moisture       %       78.0 - 80.0         (4)       Dewatered Sludge Moisture       %       78.0 - 80.0         (1)       Retention Time       day       10 - 15	-	1,750
(5)Water Depthm $4 - 6$ (6)Pull-out Ratio- $1/4 - 1/2$ 1-6-4Disinfection Tank-(1)Retention Timemin.(2)Dosage Ratiomg/L2 - 8-1-6-5Sludge Storage Tank(1)Retention Time(1)Retention Time(1)Retention Time(1)Retention Time(1)Operation Time(1)Operation Time(1)Operation Time(2)Raw Sludge Moisture Ratio%90 - 95(4)Dewatered Sludge Moisture Ratio(4)Nation(5)1-6-7(1)Retention Time(1)Retention Time(1)Retention Time(1)Retention Time(1)Retention Time(2)Nation(3)Sludge Diving Bed(4)10 - 15	-	8
(6)       Pull-out Ratio       -       1/4 - 1/2         1-6-4       Disinfection Tank       -         (1)       Retention Time       min.       15.0         (2)       Dosage Ratio       mg/L       2 - 8	-	12.0
1-6-4 Disinfection Tank         (1) Retention Time       min.         (2) Dosage Ratio       mg/L         2 - 8         1-6-5 Sludge Storage Tank         (1) Retention Time         (1) Retention Time         1-6-6 Sludge Dewatering         (1) Operation Time         (2) Raw Sludge Moisture Ratio         %         90 - 95         (4) Dewatered Sludge Moisture         %         78.0 - 80.0         1-6-7 Sludge Drying Bed         (1) Retention Time         (1) Retention Time	-	4.0
(1) Retention Time       min.       15.0         (2) Dosage Ratio       mg/L       2 - 8         1-6-5 Sludge Storage Tank       -         (1) Retention Time       hr       -         1-6-6 Sludge Dewatering       -       -         (1) Operation Time       hr/day       -         (1) Operation Time       hr/day       -         (2) Raw Sludge Moisture Ratio       %       99.0         (3) Sludge Recovery Ratio       %       90 - 95         (4) Dewatered Sludge Moisture Ratio       -       -         1-6-7 Sludge Drying Bed       -       -         (1) Retention Time       day       10 - 15	-	1/4
(1) Retention Time       min.       15.0         (2) Dosage Ratio       mg/L       2 - 8         1-6-5 Sludge Storage Tank       -         (1) Retention Time       hr       -         1-6-6 Sludge Dewatering       -       -         (1) Operation Time       hr/day       -         (1) Operation Time       hr/day       -         (2) Raw Sludge Moisture Ratio       %       99.0         (3) Sludge Recovery Ratio       %       90 - 95         (4) Dewatered Sludge Moisture Ratio       -       -         1-6-7 Sludge Drying Bed       -       -         (1) Retention Time       day       10 - 15		
(2) Dosage Ratio       mg/L       2 - 8         1-6-5 Sludge Storage Tank		
(2) Dosage Ratio       mg/L       2 - 8         1-6-5 Sludge Storage Tank		15.0
1-6-5 Sludge Storage Tank         (1) Retention Time         1-6-6 Sludge Dewatering         (1) Operation Time         (1) Operation Time         (1) Operation Time         (2) Raw Sludge Moisture Ratio         %         99.0         (3) Sludge Recovery Ratio         %         78.0 - 80.0         1-6-7 Sludge Drying Bed         (1) Retention Time         (1) Retention Time	-	15.0
(1) Retention Time       hr       -         (1) Retention Time       hr/day       -         (1) Operation Time       hr/day       -         (2) Raw Sludge Moisture Ratio       %       99.0         (3) Sludge Recovery Ratio       %       90 - 95         (4) Dewatered Sludge Moisture Ratio       %       78.0 - 80.0         1-6-7 Sludge Drying Bed       -       -         (1) Retention Time       day       10 - 15	-	3.0
(1) Retention Time       hr       -         (1) Retention Time       hr/day       -         (1) Operation Time       hr/day       -         (2) Raw Sludge Moisture Ratio       %       99.0         (3) Sludge Recovery Ratio       %       90 - 95         (4) Dewatered Sludge Moisture Ratio       %       78.0 - 80.0         1-6-7 Sludge Drying Bed       -       -         (1) Retention Time       day       10 - 15		
1-6-6 Sludge Dewatering         (1) Operation Time       hr/day         (2) Raw Sludge Moisture Ratio       %         (3) Sludge Recovery Ratio       %         (4) Dewatered Sludge Moisture Ratio       %         1-6-7 Sludge Drying Bed       78.0 - 80.0         (1) Retention Time       day		
1-6-6 Sludge Dewatering         (1) Operation Time       hr/day         (2) Raw Sludge Moisture Ratio       %         (3) Sludge Recovery Ratio       %         (4) Dewatered Sludge Moisture Ratio       %         1-6-7 Sludge Drying Bed       78.0 - 80.0         (1) Retention Time       day		8.0
(1) Operation Time       hr/day       -         (2) Raw Sludge Moisture Ratio       %       99.0         (3) Sludge Recovery Ratio       %       90 - 95         (4) Dewatered Sludge Moisture Ratio       %       78.0 - 80.0         I-6-7 Sludge Drying Bed       Image: Comparison of the state of t	-	0.0
(1) Operation Time       hr/day       -         (2) Raw Sludge Moisture Ratio       %       99.0         (3) Sludge Recovery Ratio       %       90 - 95         (4) Dewatered Sludge Moisture Ratio       %       78.0 - 80.0         I-6-7 Sludge Drying Bed       Image: Comparison of the state of t		
(2)Raw Sludge Moisture Ratio%99.0(3)Sludge Recovery Ratio%90 - 95(4)Dewatered Sludge Moisture Ratio%78.0 - 80.01-6-7Sludge Drying Bed(1)Retention Timeday10 - 15		
(2)Raw Sludge Moisture Ratio%99.0(3)Sludge Recovery Ratio%90 - 95(4)Dewatered Sludge Moisture Ratio%78.0 - 80.01-6-7Sludge Drying Bed(1)Retention Timeday10 - 15	-	8.0
(3)Sludge Recovery Ratio%90 - 95(4)Dewatered Sludge Moisture Ratio%78.0 - 80.01-6-7Sludge Drying Bed(1)Retention Timeday10 - 15	_	99.0
(4)       Dewatered Sludge Moisture Ratio       %       78.0 - 80.0         1-6-7       Sludge Drying Bed	_	90.0
(4) Ratio       %       /8.0 - 80.0         1-6-7 Sludge Drying Bed	60.0	
(1) Retention Time day 10 - 15	60.0	78.0
(1) Retention Time day 10 - 15		
(1) Retention Time day 10 - 15		1
		1
	< 2 weeks	10.0
	max 0.30	0.30
(3) Required Area m2/capita -	0.10 - 0.25	0.10 - 0.25
*1: Design Criteria in Jananese standard and "Wastewater Engineering"		


*1: Design Criteria in Japanese standard and "Wastewater Engineering" by Metcalf & Eddy

*2: Design Criteria in India named "Manual on Sewerage and Sewage Treatment"

Item	Dimension
1 General Condition	
Name of STP	Panaji Sewage Treatment Plant
Location	Tonca Caranzalem (by the side of existing STP) - Panaji
Commissioning Year	April , 2005
Capacity	12,500m ³ /day
2 Technical Details	
2.1 Intake Facility	
Inlet Pipe Diameter	600mm (RC Pipe)
Size of Chamber	15.00m diameter
2.2 Raw Sewage Pump Facility	
Pump Sum	15.00m diameter $\times$ 4.50m
Pump Type	Non clog pumps horizontal model
Pump Power and Head	44kw × 15m × 2units
	110kw × 15m × 2units
2.3 Screening and Grit Chamber	
Screen Type	Manual bar screen $(3.00 \text{m} \times 0.76 \text{m} \times 0.65 \text{m})$
	Mechanical bar screen $(3.00m \times 0.90m \times 0.65m)$
Size of Grit Chamber	$4.80m \times 4.80m \times 0.80m$
2.4 SBR Tank (C-Tech Basins)	
Size	$40.00m \times 22.00m \times 4.00m \times 2basins$
2.5 Chlorination System	
Туре	Gas Chlorine
2.6 Sludge Dewatering	
Capacity	20.0 m3/hr×2 units (including 1 stand-by)

## 1-7 Summary of the New STP in Panaji (Tonca STP)

Source: Sector Status Study Water & Sanitation Goa, Draft Final Report (Appendix), August 2004, P.117





### 2 STUDY OF THE TREATMENT CAPACITY

### 2-1 Wet Well with Pump Facilities

(1) Wet Well

	-									
Q2	Design sewage flow (Hourl	y Ma	aximum)	:	28,125	m3/day	=	19.53	m3/min	
RT	Retention Time	:	>	5.0	min					
RV	Required Volume	:	$Q2 \times R'$	Г	=	97.7	m3			
	Size of Existing Well	:	15.0	m dia.	$\times$	4.5	m dep.			
V1	Volume of Existing Well		:	V1=	794.8	m3				
	Calculated Retention Time		:	V1/Q2	=	40.7	min			

### Comparison of the retention time between the criteria and calculated figure

	Design criteria	Calculated figure			
	> 5.0 min	40.7 min		.:.	OK
(2) Pump H	Facilities Design sewage flow (Hourly Ma	ximum) · 28.125 m3/day	=	19 53	m3/min

PN	Units number :	2	units	(small c	apacity	)
		2	units	(large c	apacity)	)
PC	Discharging capacity	:	1:1:2	: 2	(assum	ption)
			Small p	ump	3.26	m3/min./unit
			Large p	ump	6.51	m3/min./unit
Н	Pump head :	15.0	m			
D1	Calculated pump diameter		:	D1=	146×(P	$PC/1.5 \sim 3.0)^{0.5}$
	(Small pump)					~ 215
				=	200	mm
D2	Calculated pump diameter		:	D2=	146×(P	$PC/1.5\sim3.0)^{0.5}$
	(Large pump)				215	~ 304
				=	250	mm
P1	Calculated motor power		:	P1=	0.163×	$(PC \times H \times (1+0.15)/0.60)$
	(Small pump)			=	15.3	kw
P2	Calculated motor power		:	P1=	0.163×	$(PC \times H \times (1+0.15)/0.60)$
	(Large pump)			=	30.5	kw

### Comparison of the pump specifications between the existing and calculated facilities

Pump specification		Existing facilities	Required figures by calculation	
Diameter	small	-	200 mm	
Diameter	large	-	250 mm	
Discharging capacity	small	-	3.26 m3/min./unit	
Discharging capacity	large	-	6.51 m3/min./unit	
Pump head	small	15.0 m	15.0 m	
r unip neau	large	15.0 m	15.0 m	
Motor power	small	44.0 kw	15.3 kw	
wotor power	large	110.0 kw	30.5 kw	
Units number	small	2 units	2 units	
	large	2 units	2 units	

### 2-2 Grit Chamber

Q2	Design sewage flow (Hourly Maximum)	:	28,125 m3/day	=	19.53 m3	s/min
----	-------------------------------------	---	---------------	---	----------	-------

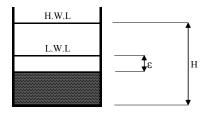
SL Water surface load : 2,160 m3/m2/day

RA	Required surface area :	RA=	Q2/SL	=	13.0	m2	
Α	Area of existing grit chamber	:	4.80	m	$\times$	4.80	m
			=	23.0	m2		

### Comparison of the surface area between the existing and required figures

Existing facilities	Required area by calculation	
23.0 m2	13.0 m2	∴ ОК

AW Actual water surface load :  $AW = Q^2/A = 1,221 \text{ m}^3/\text{m}^2/\text{day}$ 


### 2-3 SBR Tank (C-Tech Basin)

Q1 Design sewage flow (Daily Average) : 12,500 m3/day = 520.8 m3/hrBODin Inlet BOD : 200 mg/l

MS MLSS concentration : 1,750 mg/l

:

- BS BOD-SS load : 0.3 kgBOD/kgSS · day
- CY Cycle : 8 cycle/day
  - Sludge draw ratio : 4
- m Sludge draw ratio AT Aeration time
- $AT= 24 \times BODin/(BS \times m \times MS)$ = 2.3 hrs/cycle



#### Η Basin depth 4.0 ٠ m Clearance depth 0.5 3 m : V0 Settling velocity 3.0 m/hr : ST Settling time ST= $(H \times (1/m) + \varepsilon) / V0$ = 0.5 hrs/cycle

e	Aeration time ratio :		$e = CY \times AT/24 =$	0.76	
RV	Required volume :		$RV = Q1 \times BODin/(e \times MS \times BS)$		
	-		= 6,250  m3		
S	Dimension of existing tank		:		
	40.00 m	$\times$	22.00 m $\times$ 4.00 m $\times$	2	basins

EV Volume of existing aeration tank : EV= 7,040 m3

#### Comparison of the SBR tank volume between the existing and calculated figures

	Existing facilities	Required volun	ne by calculation		0	
	7,040 m3	6,250	m3			OK
2-4 Disinfo	ection Tank					
Q1	Design sewage flow (Daily Ave	rage) :	12,500 m3/day	=	8.68	m3/min
RT	Retention time : 15.0	min				
RV	Required volume :	$RV = Q1 \times RT$	= 130.2	m3		
S	Dimension of existing tank	:				
	9.50 m ×	2.60 m $ imes$	0.90 m $ imes$	9	pass	
EV	Volume of existing aeration tan	κ :	EV= 200	m3		

Compa	arison of disinfection tank volu	me between the existing and calculated figures
	Existing facilities	Dequired velume by coloulation

	Existing facilit	ies	Require	ed volum	ne by cal	culation	1		
	200 m3			130	m3			.:.	OK
2-5 Sludge S	Storage Tank								
Q1	Design sewage flow (I	Daily Aver	age)	:	12,500	m3/day	/		
SSin	Inlet SS :	200	mg/l			-			
SSout	Outlet SS :	50	mg/l						
GS-1	Generated sludge	:		Q1×(S 1.88	S in - SS t/day	out)×	10 ⁻⁶		
W	Sludge moisture ratio	:		99.0	5				
	Generated sludge in vo		:		GS-1×1 187.5	`	/		
RT	Retention time :	8.0	hrs			111 <i>27</i> au			
		:		` 1	. /	62.5	m3/day		
S	Dimension of existing	tank	:	8.50	m ×	8.50	m ×	2.00	m
	Volume of existing ae				EV=				

Existing facilities	Required volume by calculation
1452	() m)

145 m3	63 m3	∴ ОК
		•

### 2-6 Sludge Dewatering

-	Туре	:	Centrifugal type
---	------	---	------------------

	Type . Commugartype					
GS-2	Generated sludge in volume	:	GS-2= 187.5	m3/day		
Ν	Unit number : N=	2	units			
Т	Operating time : T=	-	hr/day			
P1	Dewatering capacity :	P1=	= GS-2/(N×T)	=	11.7	m3/hr
S	Dimension of existing facility	:	20.0 m3/hr	(1 worki	ng + 1 \$	Stand-by)

### Comparison of sludge dewatering facility between the existing and calculated figures

Existing facilities	Required volume by calculation	8
20.0 m3	11.7 m3	∴ ОК

### 2-7 Sludge Drying Bed

0							
Q1	Design sewage flow (Daily	:	12,500	m3/day			
SSin	Inlet SS :	200	mg/l				
SSout	Outlet SS :	50	mg/l				
GS-1	Generated sludge	:	GS-1=	$Q1 \times (SS)$	5 in - SS	S out) $\times 10^{\circ}$	)-6
			=	1.88	t/day		
W	Average sludge moisture ra	atio	:				
	W=( 99.0	+	78.0	)/2 =	88.5	%	
GS-2	Generated sludge in volum	e	:	GS-2=	GS-1×1	00/(100-V	V)
				=	16.3	m3/day	
RT	Retention time :	RT=	10.0	days			
RV	Required volum :	RV=	GS-2×F	RT	=	163.0	m3
Н	Depth of sludge bed	:	H=	0.30	m		

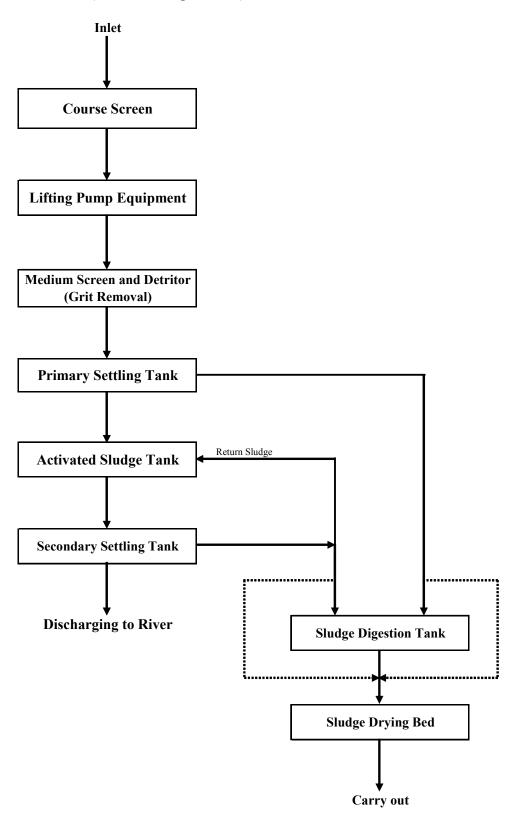
RA	Required area :	RA=	RV/H	=	543.5	m2			
S	Dimension of existing facil	lity	:						
	1	5.00	$m \times$	7.50	$m \times$	0.30	$m \times$	18	basin
EA	Area of existing drying bec	d	:	EA=	2,025	m2			

### Comparison of sludge drying bed areas between the existing and calculated figure

Existing facilities	Required area by calculation	
2,025 m2	543 m2	∴ ОК

CAPACITY CALCUI <a href="https://cartivated"></a> 1 BASIC CONDITIONS			WAGE TRH n Margao M		
<b>1-1 Basic Items</b> (1) Name	:	Margao	Sewage Tre	atment Plan	t
(2) Land Area	:	Approxima	ately	31,500	m ²
(3) Elevation	:	20.50	m		
(4) Inlet Pipe Level	:	14.00	m		
(5) Pipe Diameter	:	Concrete P	lipe	1,200	mm
(6) Land Use	:	Exclusivel	y for Sewage	Freatment F	Plant
(7) Collection System	:	Combined	System • 🤇	Separate Sy	vstem
(8) Treatment Method	:				
Sewage Treatm	ent	;	Pre-treatmen sludge + See		y settling + Activated
Sludge Treatme	ent	;	•	-	dge drying Bed
(9) Effluent Point	:	Sal river			
(10) Effluent Point Water Level	:	High Leve	l = + m,	Low Level	=+ m
(11) Target Year	:	2011	Year		
1-2 Design Population and A	rea				
Design Population	:	120,000	Persons		
Design Area	:	876.0	ha		

## M35.8 Capacity Calculation of STP(Activated Sludge), Margao City


### 1-3 Design Sewage Flow

Item	m ³ /day	m ³ /hr	m ³ /min	m ³ /sec	Remarks
Daily Average (DA)	7,500	312.5	5.21	0.087	
Daily Maximum (DM)	10,714	446.4	7.44	0.124	DA: DM = 0.7: 1.0
Hourly Maximum (HM)	16,875	703.1	11.72	0.195	DA : HM = 1.0 : 2.25

### 1-4 Design Sewage Quality

Item	Influent	Removal Rate	Effluent	Remarks
Item	(mg/L)	(%)	(mg/L)	Keindiks
BOD	300	90	30	Effluent Quality Regulation = 30 mg/l
SS	300	83	50	Effluent Quality Regulation = 100 mg/l

1-5 Flow Chart (Activated Sludge Method)



### 1-6 Design Criteria for Activated Sludge Method

Items	Unit	Figure *1	Figure *2	Adoption
1-6-1 Grit Chamber		0	0	
(1) Water surface load	m3/m2/day	1,800	2,160	2,160
(2) Average velocity	m/sec	0.3	0.15 - 0.30	0.3
	111/300	0.5	0.15 0.50	0.5
1-6-2 Wet Well with Pump Faci	lities			
(1) Pump inlet flow velocity	m/sec	1.5 - 3.0		2.25
(1) Pump met now verocity (2) Retention time in Wet Well		1.5 - 5.0	> 5.0	5.0
(2) Retention time in wet wen	min	-	- 5.0	5.0
1-6-3 Primary Settling Tank				
(1) Water surface load	m3/m2/day	35.0 - 70.0	35.0 - 50.0	31.0
(1) Water surface found (2) Water depth	m	2.5 - 4.0	2.5 - 3.5	2.5
	III	2.5 - 4.0	2.5 - 5.5	2.5
1-6-4 Activated Sludge Tank				
(1) Type of activated sludge	-	-	-	Complete mixed
(2) MLSS concentration	mg/L	1,500 - 2,000	1,500 - 3,000	4,000
(3) BOD-SS Load	kgBOD/kgSS•day	0.2 - 0.4	0.3 - 0.4	0.45
(4) Retention time	hr	6.0 - 8.0	4.0 - 6.0	4.0
(5) Water depth	m	4.0 - 6.0	3.0 - 4.5	3.0
1-6-5 Secondary Settling Tank				
	2/ 2/1	20.0.20.0	15.0 25.0	24.0
(1) Water surface load	m3/m2/day	20.0 - 30.0	15.0 - 35.0	24.0
(2) Water depth	m	2.5 - 4.0	3.5 - 4.5	2.5
1-6-6 Sludge Conditions				
				00.0
(1) Raw sludge moisture ratio		99.0	-	99.0
(2) Digested sludge moisture	%	96.0 - 97.5	-	97.0
1-6-7 Sludge Digestion Tank				
(1) Type of digestion				High rate
(1) Type of algestion (2) Retention time	day	20	10 - 20	10
1-6-7 Sludge Drying Bed				
(1) Retention Time	day	10 - 15	< 2 weeks	10.0
(2) Depth of Sludge Bed	m	0.20 - 0.30	max 0.30	0.30
(3) Required Area	m2/capita	-	0.10 - 0.25	0.10 - 0.25
*1: Design Criteria in Japanese s	tandard and "Wastey	vater Engineerin	o" by Metcalf &	Eddy

*1: Design Criteria in Japanese standard and "Wastewater Engineering" by Metcalf & Eddy

*2: Design Criteria in India named "Manual on Sewerage and Sewage Treatment"

### 1-7 Summary of the Existing STP in Margao

Item	Dimension
1 General Condition	
Name of STP	Margao Sewage Treatment Plant
Location	Sirvodem, Navelim - Margao
Commissioning Year	2000, May, 03
Capacity	15,000m ³ /day (designed), 7,500m ³ /day (existing)
2 Technical Details	
2.1 Intake Facility	
Inlet Pipe Diameter	1,200mm (RC Pipe)
Size of Chamber	$4.00\text{m} \times 3.50\text{m} \times 4.00\text{m}$
2.2 Raw Sewage Pump Facility	
Pump Sum	12.30m diameter, 15.0m height
Pump Type	Non clog pumps horizontal model Centrifugal
Pump Dimension	$200m^{3}$ /hour (3.33m ³ /min) × 12m × 25HP ×2units
(7 years old)	$400\text{m}^3$ /hour (6.67m ³ /min) × 12m × 50HP ×2units
2.3 Screening and Grit Chamber	
Screen Type	Mechanical type
Size of Screen	20mm screen opening
Size of Grit Chamber	$8.00m \times 0.35m \times 1.25m$
2.4 Primary Clarifier	
Size	18.00m diameter $\times$ 3.00m depth
2.5 Activated Sludge Tank	
Method of Aeration	Surface Aerators
Size	$33.00m \times 12.00m \times 3.00m$
2.6 Secondary Clarifier	
Size	21.00m diameter $\times$ 3.00m depth
2.7 Sludge Digester	
Size	18.00m diameter $\times$ 10.65m depth
2.8 Sludge Drying Beds	
Size	$12.80m \times 12.40m \times 14 basins$
2.9 Treated Water Disposal	Discharging to sea through masonry drain

Source: Sector Status Study Water & Sanitation Goa, Draft Final Report (Appendix), August 2004, P.111

### 2 STUDY OF THE TREATMENT CAPACITY

### 2-1 Wet Well with Pump Facilities

(1) Wet Well

Q2	Design sewage flow (Hourl	y M	aximum)	:	16,875	m3/day	=	11.72	m3/min
RT	Retention Time	:		5.0	min				
RV	Required Volume	:	$Q2 \times R$	Т	=	58.6	m3		
	Size of Existing Well	:	12.3	m dia.	$\times$	15.0	m dep.		
V1	Volume of Existing Well		:	V1=	1,7	781	m3		
	Calculated Retention Time		:	V1/Q2	=	152.0	min		

### Comparison of the retention time between the criteria and calculated figure

Design criteria	Calculated figure	
> 5.0 min	152.0 min	∴ OK

- (2) Pump Facilities
  - Q2 Design sewage flow (Hourly Maximum) : 16,875 m3/day = 11.72 m3/min PN Units number : 2 units (small capacity)

<b>F</b> IN	Units number .	2	units (sman capacity)
		2	units (large capacity, including 1 stand-by unit)
PC	Discharging capacity	:	1:1:2 (assumption)
			Small pump 2.95 m3/min./unit
			Large pump 5.90 m3/min./unit
Н	Pump head :	12.0	m
D1	Calculated pump diameter	:	$D1 = 146 \times (PC/1.5 \sim 3.0)^{0.5}$
	(Small pump)		= 145 ~ 205
			= 150 mm
D1	Calculated pump diameter	:	$D1 = \overline{146 \times (PC/1.5 \sim 3.0)^{0.5}}$
21	(Large pump)		$= 205 \sim 290$
	(Luige pump)		= 250  mm
P1	Calculated motor power		: $P1 = 0.222 \times PC \times H \times (1+0.15)/0.60$
	(Small pump)		= 15.1 HP
P2	Calculated motor power		: $P1 = 0.222 \times PC \times H \times (1+0.15)/0.60$
	(Large pump)		= 30.1 HP
	(r)		

### Comparison of the pump specifications between the existing and calculated facilities

Pump specification		Existing facilities	Required figures by calculation
Diameter	small	-	150 mm
Diameter	large	-	250 mm
Discharging consoity	small	3.33 m3/min./unit	2.95 m3/min./unit
Discharging capacity	large	6.67 m3/min./unit	5.90 m3/min./unit
Pump head	small	12.0 m	12.0 m
r unip neau	large	12.0 m	12.0 m
Motor nowor	small	25.0 HP	15.1 HP
Motor power	large	50.0 HP	30.1 HP
Units number	small	2 units	2 units
	large	2 units	2 (1) units

### 2-2 Grit Chamber

2-3

Q2	Design sewage flow (Hourly Maximum)	:	16,875 m3/day	=	11.72 m3/min
----	-------------------------------------	---	---------------	---	--------------

m

SL	Water surface load	:	2,160	m3/m2/c	lay			
RA	Required surface area	:	RA=	Q2/SL	=	7.8	m2	
А	Area of existing grit chamb	er	:	8.00	m	$\times$	1.25	
				=	10.0	m2		

### Comparison of the surface area between the existing and required figures

	Existing facilities	Requir	ed area	by calcu				
	10.0 m2		7.8	m2				OK
AW	Actual water surface load	:	AW=	Q2/A	=	1,688	m3/m2/	day
Primar	y Settling Tank							
Q1	Design sewage flow (Daily Aven	rage)	:	7,500	m3/day	=	312.5	m3/hr
WSL	Water surface load :	WSL=	31	m3/m2/	′day			
RA	Required surface area :	RA= (	Q1/WS	Ĺ	=	241.9	m2	
А	Surface area of existing primary	settling ta	ank	:	18.0	m dia.		
					=	254.3	m2	

### Comparison of the surface area between the existing and required figures

	Existing facilities Required area by calculati			lation								
	254 m2	242	m2				OK					
2-4 Activated Sludge Tank												
Q1	Design sewage flow (Daily Aver	rage) :	7,500	m3/day	=	312.5	m3/hr					
MS	MLSS concentration :	4,000 mg/l										
RT1	Retention time : RT1=	4.0 hr										
RV1	Required volume :	$RV1 = Q1 \times RT1$		=	1,250	m3						
V	Volume of existing tank :	33.0 m $\times$	12.0	m ×	3	m						
		= 1188	m3									
RT2	Retention time calculated based on	the existing tank	:	RT2=	V/Q1							
				=	3.8	hr						
BS	BOD-SS load : 0.45	kgBOD/kgSS•da	ıy									
BOD2	BOD quality at inlet to aeration t	ank :	300.0	×	0.5	(assump	tion)					
			=	150.0	mg/l							
RV2	Required volume :	RV2= Q1×BOI	D2/(BS×	MS)	_							
	-	= 625	m3	<i>,</i>								

### Comparison of required volume between the existing and calculated facilities

Volume of existing tank	Calculated volume based on retention time	Calculated volume based on BOD-SS load
1188 m3	1,250 m3	625 m3

### 2-5 Secondary Settling Tank

Q1	Design sewage flow (Daily Average)	:	7,500	m3/day	=	312.5	m3/hr
----	------------------------------------	---	-------	--------	---	-------	-------

WSL Water surface load : WSL= 24 m3/m2/day

RA Required surface area : RA = Q1/WSL = 312.5 m2

А	Surface area of existing primary settling tank	:	21.0	m dia.	
			=	346.2	m2

### Comparison of the surface area between the existing and required figures

Existing facilities	Required area by calculation	
346 m2	313 m2	∴ ОК

### 2-6 Sludge Digestion Tank

	8		
-	Type of sludge digestion	:	High rate digestion
Q1	Design sewage flow (Dail	y Ave	rage) : 7,500 m3/day
SSin	Inlet SS :	300	mg/l
SSout	Outlet SS :	50	mg/l
GS-1	Generated sludge	:	GS-1= Q1×(SS in - SS out)×10 ⁻⁶
			= 1.88  t/day
W	Sludge moisture ratio	:	W= 99.0 %
GS-2	Generated sludge in volum	ne	: $GS-2=GS-1\times100/(100-W)$
			= 187.5  m3/day
RT	Retention time :	10	days
RV	Required volume	:	$RV = GS - 2 \times RT$ = 1,875 m3
V	Volume of existing tank	:	18.0 m dia. $\times$ 10.65 m depth
			V= 2,709 m3

### Comparison of the tank volume between the existing and required figures

Existing facilities	Required volume by calculation	
2,709 m3	1,875 m3	··· OK

### 2-7 Sludge Drying Bed

Q1	Design sewage flow (Daily	Aver	age)	:	7,500	m3/day			
SSin	Inlet SS :	300	mg/l						
SSout	Outlet SS :	50	mg/l						
GS-1	Generated sludge	:	GS-1=	$Q1 \times (SS)$	S in - SS	S out) $\times 10^{-10}$	)-6		
			=	1.88	t/day				
W	Digested sludge moisture r	atio	:	W=	97.0	%			
GS-2	Generated sludge in volum	ie	:	GS-2=	GS-1×1	00/(100-\	N)		
				=	62.5	m3/day			
RT	Retention time :	RT=	10.0	days					
RV	Required volum :	RV=	GS-2×R	Г	=	625.0	m3		
Н	Depth of sludge bed	:	H=	0.30	m				
RA	Required area :	RA=	RV/H	=	2,083	m2			
А	Area of existing drying be	t	:	12.80	$\times$	12.40	$\times$	14	basins
				A=	2,222	m2			

### Comparison of drying bed area between the existing and required figures

Existing facilities	Required area by calculation	
2,222 m2	2,083 m2	∴ OK

	Node 2	Popul	Population	Peak flow (lps)	w (lps)				н	Existing Sewer	SI .					
Ê		Increment	Cumulativa		Cumulativa	Size	Length	Gradient	Ground level (m)	evel (m)	Invert I	Invert level (m)	Velocity	Flow	Capacity Adequacy	Remarks
01		IIICIGIIIGIII	Culturative		Cumulauve	(mm)	(m)	(1/x)	s/n	d/s	s/n	d/s	(m/sec)	(lps)		
	$\vdash$															
15M		2,869	2,869	13.4	13.4	300	430	180					0.884	62	Adequate	North Main
40M		1,166	4,035	5.5	18.9	350	750	300					0.759	73	Adequate	North Main
59M		1,501	5,537	7.0	26.0	400	630	375					0.742	93	Adequate	North Main
87M		2,179	7,716	10.2	36.2	450	920	430					0.749	119	Adequate	North Main
103M	V	1,947	9,662	9.1	45.3	500	510	500					0.745	146	Adequate	North Main
ΜĹ	Ţ.,	2,680	2,680	12.6	12.6	350	214	200					0.929	89	Adequate	Central North Sub Main
21M	Z	1,493	4,173	7.0	19.6	400	450	275					0.866	109	Adequate	Central North Sub Main
33M	М	1,131	5,304	5.3	24.9	500	360	300					0.962	189	Adequate	Central North Sub Main
47M	Μ	2,179	7,483	10.2	35.1	500	409	575					0.695	136	Adequate	Central North Sub Main
53	53M	3,487	10,971	16.3	51.4	009	180	425					0.913	258	Adequate	Central North Sub Main
64	64M	954	11,924	4.5	55.9	600	360	525					0.821	232	Adequate	Central North Sub Main
100	103M	946	12,870	4.4	60.3	700	160	575					0.870	335	Adequate	Central North Sub Main
17	77M	0	22,533	0.0	105.6	700	720	750					0.762	293	Adequate	North Main
-	13M	6,187	6,187	29.0	29.0	450	369	200	33.530	31.240	29.825		1.099	175	Adequate	Central South Sub Main
-	1 7M	1,734	7,921	8.1	37.1	450	190	140	31.235				1.313	209	Adequate	Central South Sub Main
~	24M	906	8,827	4.2	41.4	500	180	300		29.780		26.310	0.962	189	Adequate	Central South Sub Main
64	27M	1,103	9,930	5.2	46.5	500	73	300	29.780		26.310		0.962	189	Adequate	Central South Sub Main
	37M	946	10,876	4.4	51.0	500	311	300					0.962	189	Adequate	Central South Sub Main
4	42M	670	11,546	3.1	54.1	500	123	300					0.962	189	Adequate	Central South Sub Main
	48M	749	12,295	3.5	57.6	500	220	300					0.962	189	Adequate	Central South Sub Main
	56M	276	12,571	1.3	58.9	600	232	280					1.125	318	Adequate	Central South Sub Main
	64M	394	12,965	1.8	60.8	600	235	300					1.087	307	Adequate	Central South Sub Main
	77M	512	13,477	2.4	63.2	600	361	350					1.006	284	Adequate	Central South Sub Main
	92M	2,250	38,260	10.5	179.3	800	430	750					0.833	418	Adequate	North Main
	111M	4,291	42,551	20.1	199.5	800	570	750					0.833	418	Adequate	North Main
	303M	6,380	48,931	29.9	229.4	900	1,260	950					0.800	509	Adequate	North Main
~)	313M	0	48,931	0.0	229.4	1000	300	1,200					0.764	600	Adequate	North Main
	STP	29,451	78,382	138.1	367.4	1200	60	1,200					0.862	975	Adequate	North Main
Node 1 coordinates with Figure 3.2.2	\$22															Peak factor : 2.25
NAPTO I	Mode 7 ac and instanting Parameter and a second															

Appendix M35.9 Flow Calculation Sheet for Main and Sub Main Sewers, Margao City Table M35.9.1 Flow Caculation Sheet for Main and Sub Main Sewer Margao City (Year 2001)

ſa	ble	N	13	5.1	0.	1		F	lo	w	• (	Cal	cu	ıla	ti	or	18	Sh	ee	t	fo	r E	Bra	an	ch	ı S	lev	we	rs	, N	<b>A</b> la	rg	a	<b>b (</b>	Cit	y	( <b>Y</b>	'ea	r	20	0
	Remarks																				North Main							North Main			North Main			North Main						North Main	
	Capacity Adequacy				Adequate		Adequate	Adequate	A descent	Adequate	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate		Adequate	Adequate	Adequate		Aucquate	Adequate	Adequate	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate	Adequate	Adequate	
	Flow Capacity	(lps)			13	-	19	42	Q.	00	42	13	42		30	38	38		21	38	62	5	17	18	18	16	40	73	1	47 E	5/	17	37	93	1	24	17	19	4	93	
	Velocity (m/sec)				0.732		1.101	1.334	0221	1.0/0	1.334	0.747	1.334		1.670	1.198	1.198		1.181	1.198	0.884	1 101	101.1	1.007	1.007	0.926	1.280	0.759		1.304	66/.0	0.964	1.168	0.742		1.364	0.964	1.056	1.280	0.742	
	1(m) d <i>le</i>	¢/n																																							
	Invert level (m)	c/n																																							
Existing Sewer	el (m) díe	c.m																																							
Exi	Ground level (m)	e m																																			T				
	Gradient (1/x)	r i			104	1	40	46	ę	77	46	100	46		20	57	57		40	57	180	40	4	55	55	65	50	300	1	00	300	99	09	375	1	30	99	50	50	375	
	Length (m)	+			595	001	180	30	000	077	60	06	60		420	30	160		180	55	430	115	CII	150	117	20	258	480	1	420	0/7	71	412	190	4	60	158	150	210	240	
	Diameter (mm)	Ì			150		0.01	200	150	0.01	200	150	200		150	200	200		150	200	300	150	0.01	150	150	150	200	350		0.01	0.05	150	200	400		150	150	150	200	400	
	Cumulative				1.0	0	6.0	1.1	60	C.U	1.6	0.2	2.1		0.7	2.9	5.2		0.5	6.5	13.4	60	7.0	0.6	1.2	1.5	2.1	17.3		0.0	18.9	0.2	0.8	20.7	4	0.3	0.9	0.6	2.5	24.3	
Peak flow (lps)	Increment				1.0	0	6.0	0.1	ç	C.U	0.3	0.2	0.3		0.7	0.1	2.3		0.5	0.8	6.0	0	1.0	0.6	0.6	0.1	9.0	1.8	;	0.0	1.0	0.2	9.0	0.9	4	0.3	0.6	0.6	1.0	1.1	
Pea	From I.																																								
	Cumulative				213		19/	229	02	60	343	51	449		146	623	1,111		102	1,383	2,869	06	60	126	252	315	453	3,696		120	4,035	43	177	4,406	1	63	189	118	528	5,178	
Population	Increment				213		19/	32	03	4C	55	51	55		146	28	489		102	169	1,273	06	60	126	126	24	138	374		120	215	43	134	193	4	63	126	118	221	244	
Ч	From I.							T																																	
2	To				W0	3	40	46A	46.4	V0+	48	48	50		50	51	56		56	0M	15M	01	10	85	81	75	15M	31M		MIC .	40M	105	40M	46M		125	120	120	46M	53M	
Node 2	From	╎	Soutor I		-	\$	40	46		5	46A	61	48		21A	50	51		74	56	0M	107	V70	06	85	81	75	15M	-	76	31M	103A	105	40M		127	125	115	120	46M	
1	To	T	North Zono Sector					T													2	T						2A			s			3A			1			3B	
Node 1	From													t							-	Ť						2	Ť		V7			3			Ť			3A	

M35.10 Flow Calculation Sheets for Branch Sewers, Margao City

		-	7		л. Т	10.	 -	1	-	· IC			Ju		u	ul	10	**	10		1(	/1 ·	. u.		/11 			- 3,	, 1,	1	 ,u'			1	11		. 4		1		<i>.~</i> ′
	Remarks				North Main				North Main					North Main				North Main				North Main			North Main			North Main							Central North Sub Main	Central North Sub Main					
	Capacity Adequacy	A documents	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate		A dequate	A dequate	A dequate	Adequate		A dequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate			A dequate	A dequate	Adequate	Adequate	Adequate	Adequate		A dequate	A -locusta	Adequate	Adequate
	Flow Capacity	(sal)	74	52	93	ę	00	17	119		24	21	45	119		24	52	119	24	17	52	146	30	52	146	24	37	146			73	108	19	40	68	109		24	5	17	52
	Velocity	-	1.304	1.652	0.742	027.1	1.0/0	0.964	0.749		1.364	1.181	1.431	0.749		1.364	1.652	0.749	1.364	0.964	1.652	0.745	1.670	1.652	0.745	1.364	1.168	0.745			1.485	1.531	1.056	1.280	0.929	0.866		1.364	101	1.181	1.652
	el (m)	d/S																																					T	T	
	Invert level (m)	n/s																																							
Existing Sewer	vel (m)	d/s																																					T		
B	Ground level (m)	n/s																																					T		
	Gradient	(X/T)	00	30	375	ç	70	60	430		30	40	40	430		30	30	430	30	60	30	500	20	30	500	30	60	500			50	60	50	50	200	275		30	104	40	30
	Length	(III)	100	277	200	001	120	106	450		105	54	295	210		160	226	260	90	110	130	150	205	120	280	96	145	80			390	06	120	180	214	130		96	001	120	90
	Diameter	(IIIII)	nci	200	400	1001	0C1	150	450		150	150	200	450		150	200	450	150	150	200	500	150	200	500	150	200	500			250	300	150	200	350	400		150	150	001	200
	Cumulative	_	c.n :	0.7	26.0	¢	0.2	0.4	29.6		0.8	1.3	1.7	32.8		0.6	1.5	36.2	0.5	1.0	1.5	39.3	 0.7	1.4	43.9	0.2	0.5	45.3			8.6	10.7	0.3	0.8	12.6	12.8		9.0	r c	0.7	0.8
Peak flow (lps)	Increment	¢ 0	c.0	0.4	1.0	ç	0.2	0.2	3.3		0.8	0.5	0.4	1.5		0.6	0.9	1.9	0.5	0.5	0.5	1.7	 0.7	0.7	3.2	0.2	0.3	0.9			8.6	2.2	0.3	0.5	1.0	0.3		0.6	10	0.7	0.1
Pe	From	Sub Main																																					Ť		_
		_	8	154	5,537	ç	<u> </u>	91	6,325		166	272	355	7,003		122	311	7,716	102	217	315	8,394	146	296	9,363	39	106	9,662			1,828	2,290	67	177	2,680	2,739		126	150	061	166
Population	Increment Cumulative	5	8	6	205	ę	<u>66</u>	51	697		166	106	83	323		122	189	402	102	114	66	363	146	150	674	39	67	193			1,828	461	67	110	213	59		126	150	061	16
	From	_																																					T		-
e 2	To		128	53M	59M	0.1	861	59M	73M		157	159	73M	M67		173	79M	87M	183	187	87M	91M	192	91M	M66	206	M66	103M			23	IM	5	MI	ML	10M		28	77	90	28
Node 2	From	121	161	128	53M	101	154	138	59M		132	157	159	73M		168	173	M07	180	183	187	87M	202	192	91M	209	206	M66		North Sector	11	23	1	5	IM	TM		26	02	2	99
le 1	To				4				4A					4B				s				5A			5B			13		Central Zone North Sector					7	7A			T	T	
Node 1	From				3B				4					4.4				4B				5			5A			5B							9	7			T	T	

Table M35.10.1Flow Calculation Sheet for Branch Sewers, Margao City (Year 2001) (2/10)

	Remarks						Central North Sub Main								Central North Sub Main														Central North Sub Main						
	Capacity Adequacy	Adequate	Adequate	A dequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate	Adequate	Adequate	Adequate		Adequate	A dometo	Adequate	Aucquate
	Flow Capacity	(lps) 37	14	26	21	42	109	24	52	19	37	21	45	62	189	24	52	19	40	19	52	40	24	;	24	6	32	60	136	24	;	21	30	50	5
	Velocity (m/sec)	1.168	0.787	0.826	1.181	0.857	0.866	1.364	1.652	1.056	1.168	1.181	1.431	1.255	0.962	1.364	1.652	1.056	1.280	1.056	1.652	1.280	1.364		1.364	1.280	1.012	1.212	0.695	1.364	-	1.181	029-1	2 0/3	C70.7
	Invert level (m)																															_		-	-
Existing Sewer	evel (m)	us																																	_
E	Ground level (m)	sin																																	
	Gradient (1/x)	(0)	96	120	40	150	275	30	30	50	60	40	40	70	300	30	30	50	50	50	30	50	30	;	30	20	80	75	575	30	1	40	00	20	17
	Length (m)	240	120	171	69	135	320	120	180	120	142	120	30	158	360	130	160	100	25	120	60	55	120	3	96	6	240	370	409	90	-	90	011	30	10
	Diameter (mm)	200	150	200	150	250	400	150	200	150	200	150	200	250	500	150	200	150	200	150	200	200	150	1	120	200	200	250	500	150	1	150	150	200	007
	Cumulative	1.9	0.7	1.8	0.8	6.0	19.6	0.2	0.5	0.6	1.8	0.6	1.3	3.6	24.9	0.2	1.0	0.2	2.1	0.2	0.4	2.5	0.3	3	0.2	0.5	4.3	6.2	35.1	0.2	1	0.2	00	0.5	C.V
Peak flow (lps)	Increment	0.5	0.7	1.1	0.8	1.6	0.7	0.2	0.3	0.6	0.6	0.6	0.7	0.6	1.7	0.2	0.7	0.2	0.9	0.2	0.2	0.1	0.3	1	0.2	0.3	1.0	1.8	4.0	0.2	:	0.2	60	0.2	0.4
Pe	From Sub Main																													T		T			
		398	150	386	166	1,285	4,173	 43	114	130	374	126	280	772	5,304	51	209	47	445	 35	79	540	59	1	10	114	926	1,320	7,483	35	!	47	14	⁴	~~
Population	Increment Cumulative	106	150	236	166	335	150	43	71	130	130	126	154	118	359	 51	158	47	189	35	43	16	 59	3	10	8	213	394	859	35	!	47	14	51	10
	From Sub Main																										T			T		Ť		T	
le 2	To	50	42	50	50	10M	21M	76	56	56	82	89	82	21M	33M	71	108	108	104	102	104	119	119	3	123	119	130	33M	47M	156		156	145	156	0/1
Node 2	From	28	37	42	52	50	10M	74	76	53	56	93	89	82	21M	59	71	110A	108	98	102	104	114	3	120	123	119	130	33M	154A		178A	163	165	102
le 1	To						8								6														10						
Node 1	From						Y.								8														6						

Table M35.10.1Flow Calculation Sheet for Branch Sewers, Margao City (Year 2001) (3/10)

			15		1			1	TC	) w	_	-u		1					10		u						з,	1	urg	5u			L y		u			, I ,	
	Remarks																			Central North Sub Main						Central North Sub Main						Central North Sub Main	North Main						
Consoltre	Capacity Adequacy	Adequate		Adequate	Adequate	Adequate	Adequate	A dequate	Adequate		Adequate	A dequate	Adequate	Adequate	A dequate	Adequate	Adequate	A dequate	A dequate	A dequate	A dequate	A dequate	A dequate	Adequate	Adequate	Adequate		A dequate	Adequate	Adequate	Adequate	Adequate	Adequate			A dequate	Adequate	Adequate	
	Flow Capacity	(lps) 45		24	52	40	19	52	40		24	52	73	21	40	73	17	37	133	258	30	64	45	37	67	232	į	1 5	70	14	37	335	293			24	77	70	
	Velocity (m/sec)	1.431		1.364	1.652	1.280	1.056	1.652	1.280		1.364	1.652	1.485	1.181	1.280	1.485	0.964	1.168	1.385	0.913	1.670	2.023	1.431	1.168	1.355	0.821	0.074	1.504	1.022	0.787	1.168	0.870	0.762			1.364	1.565	0.985	_
	/el (m) A/6	sin																																				32.570	
	Invert level (m)	sm																																		52.985			
Existing Sewer	evel (m)	ŝ																																				36.515	
a	Ground level (m)	ŝ'n																																		53.895			
-	Gradient (1/x)	40		30	30	50	50	30	50		30	30	50	40	50	50	60	60	90	425	20	20	40	60	60	525	00	00	00	06	60	575	750			30	45	145	_
	Length (m)	150		120	60	115	120	155	120		120	300	80	120	300	222	120	60	235	180	120	150	84	150	70	360		010	710	100	45	160	720			58	662	498	_
	Diameter (mm)	200		150	200	200	150	200	200		150	200	250	150	200	250	150	200	350	600	150	200	200	200	250	600	100	001	007	150	200	700	700			150	250	300	_
	Cumulative	1.4		0.4	0.8	2.4	0.3	1.5	4.0		0.2	0.7	5.7	0.3	1.2	9.6	0.3	0.7	14.0	51.4	0.5	1.4	2.1	2.5	2.8	55.9	10	0.0	7.0	0.2	2.8	60.3	105.6			0.4	2.7	10.1	_
Peak flow (lps)	Increment	0.5		0.4	0.4	0.2	0.3	1.1	0.1		0.2	0.5	1.1	0.3	0.9	2.8	0.3	0.4	3.6	2.4	0.5	0.9	0.7	0.4	0.3	1.7	10	0.0	C.	0.2	0.6	1.6	0.0			0.4	2.3	7.4	
Pe	From Sub Main																																45.3						
		296		87	181	512	67	311	843		43	146	1,222	55	248	2,057	71	154	2,979	10,971	110	299	449	532	595	11,924	001	0.11	410	47	599	12,870	22,533			79	571	2,152	
Population	Increment Cumulative	114		87	95	35	67	244	20		43	102	232	55	193	587	71	83	768	508	110	189	150	83	63	359	001	UCI aac	007	47	134	347	0			79	493	1,580	-
	From Sub Main																																9,662						_
e 2	To	161		170	161	222	219	222	227		183	227	230	203	230	236	257	236	47M	53M	239	250	265	270	53M	64M		24.5 1.00	107	281	64M	103M	MLL			3	25	40A	
Node 2	From	156		166	170	161	215	219	222		179	183	227	199	203	230	253	257	236	47M	237	239	250	265	270	53M		247	C+2	282	281	64M	103M	South Sector		-	3	25	
le 1	To																			11						12						13	24	Central Zone South Sector					
Node 1	From																			10						н						12	13						

Table M35.10.1Flow Calculation Sheet for Branch Sewers, Margao City (Year 2001) (4/10)

	Remarks															Central South Sub Main						Central South Sub Main							Central South Sub Main					Central South Sub Main			
	Capacity Adequacy		Adequate	Adequate		Adequate	Adequate	Adequate	Adequate	Adequate	A dequate	Adequate	A dequate	A dequate	Adequate	A dequate	Adequate	Adequate	Adequate	Adequate	A dequate	A dequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	A dequate	A dequate	Adequate	Adequate		Adequate	Adequate
	Flow Capacity	(lps)	45	126	;	17	21	28	45	5	19	30	64	14	84	175	19	52	19	28	54	209	24	£	37	64	52	58	189	30	30	24	37	189	5	24	45
		_	1.431	1.314		1.181	1.181	0.905	1.431	1.302	1.056	0.954	1.302	0.787	1.186	1.099	1.056	1.652	1.056	0.905	1.107	1.313	 1.364	2.023	1.168	2.023	1.652	1.174	0.962	1.670	1.670	1.364	1.168	0.962	1 201	1.364	1.431
		d/s	32.570	30.015		C77.04		40.225	38.675	35.225		35.225	32.815	32.815	30.015			33.755		33.755					31.585		31.585		26.310		32.610	32.610	26.310			-	
	Invert level (m)	u/s	40.065	31.815	007 77	44.480	44.085		40.030	38.675	37.215		35.225	34.205	32.225	29.825	45.155		35.390		31.510					45.630		31.585		49.210			32.220	26.310	-0.705	39.605	_
Existing Sewer	l (m)	d/s	36.515	33.505		42.145		42.145	39.705	36.405		36.405	34.495	34.495	33.505	31.240		35.690		35.690	31.235				35.910		35.910		29.780		34.955	34.955	29.780				_
Exist	Ground level (m)	u/s	41.065	36.515	10.00	080.04	45.085		42.145	39.705	38.215		36.405	35.205	34.495	33.530	46.155		36.390		35.690	31.235				46.630		35.910		51.210		 	34.955	29.780	10.00	40.605	_
	Gradient	(X/I)	40	100	4	40	40	100	40	65	50	90	65	90	100	200	 50	30	50	100	90	140	 30	20	60	20	30	80	300	20	20	 30	60	300	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30	40
	Length Gr		330	180	0.00	138	90	66	85	205	90	120	180	170	248	369	 147	276	90	208	300	190	 120	295	130	120	145	236	180	120	120	 72	355	73	100	120	321
	Diameter Le	_	200	350		001	150	200	200	250	150	200	250	150	300	450	150	200	150	200	250	450	 150	200	200	200	200	250	500	150	150	150	200	500	· •	150	200
			0.6	16.7	0	0.8	0.5	0.8	3.0	4.0	0.2	0.6	5.7	0.4	9.0	29.0	0.4	1.9	1.0	3.5	5.5	37.1	 0.3	1.4	2.5	0.4	0.9	3.9	41.4	0.2	0.5	0.8	2.6	46.5		0.4	2.5
v (lps)	Increment Cumulative		0.6	6.0	0	8.0	0.5	0.3	1.4	1.0	0.2	0.4	1.1	0.4	2.8	3.3	0.4	1.5	1.0	2.5	0.1	2.7	0.3	1.1	1.1	0.4	0.6	0.5	0.4	0.2	0.3	0.8	1.3	2.6		0.4	2.1
Peak flow (lps)					+																						_									_	_
	From		130	3,570		5/1	110	181	646	859	39	126	1,222	95	1,911	6,187	83	398	217	745	1,166	7,921	59	299	532	79	197	828	8,827	35	66	162	548	9,930	arc.	87	540
u	t Cumulative					c/	10		292 (		39		236 1,2	95	595 1,5		83	315 315		528 5	24 1,1	567 7,5							79 8,8	35	63	62 1		556 9,5			53 53
Population	Increment	_	-	1,289			=		52	21		3	2:	5	55	7(	3	31	21	52	.4	5(	 	2,	232		-	~1	**	<1	)	ž	288	55			4
	From	Sub Mar.																																			
Node 2	To		40A	W0		70	62B	62	70	11	81	77	96	96	0M	13M	133	120	113	120	13M	17M	127	144	155	158	155	17M	24M	177	172	172	24M	27M	100	201	27M
Ň	From	:	41	40A	ę	/0	62E	62B	62	70	78	81	17	90	96	0M	129	133	110	113	120	13M	 123	127	144	156B	158	155	17M	173	177	170	172	24M	104	197	201
Node 1	To															15						16							17					18			
No	From															14						15							16					17			

Table M35.10.1Flow Calculation Sheet for Branch Sewers, Margao City (Year 2001) (5/10)

	Remarks		Central South Sub Main												Central South Sub Main							Central South Sub Main			Central South Sub Main							Central South Sub Main					Central South Sub Main	North Main
	Capacity Adequacy		Adequate		Adequate	Adequate	 Adequate	Adequate			Adequate	Adequate		Adequate	Adequate		Adequate		_	Adomato		Adequate	Adequate	Adequate	Adequate			Adequate										
	Flow Canacity	(lps)	189		21	14	37	42	73	40	30	64	40	73	189	21	17	45		19	67	189	19	64	318		21		<u>۲</u>	6	40.00	307	24	19	40	40	284	418
	Velocity	(m/sec)	0.962		1.181	0.787	1.168	2.362	2.336	1.280	1.670	2.023	1.280	1.485	0.962	1.181	0.964	1.431		1.056	1.355	0.962	1.056	2.023	1.125		1.181	1 000	0001	1.652	1.004	1.087	1.364	1.056	1.280	1.280	1.006	0.833
	el (m)	d/s			32.370	32.370	32.660		34.220				32.660			34.230	34.230										29.665		2000	C00767			23.775		23.775			
	Invert level (m)	s/n			35.820	32.720	31.280	47.690		34.220	42.470			30.166		36.480	35.600	33.600		31.535			31.685				32.665	11 400	004-10	75 270	014104	-	25.775	26.365		22.315		
Existing Sewer	el (m)	d/s			33.445	33.445	34.220		35.175				34.220			35.795	39.795										30.725		202.00	C7/ .0C			25.325		25.325			
Exi	Ground level (m)	n/s			36.870	33.720	33.445	49.190		35.175	44.070			34.220		37.480	36.600	39.795		32.535			32.685				33.665	10.400	52.400	30 725	07 1 1 0 C	+	26.775	27.365		25.325	+	_
	Gradient	(1/x)	300	1	40	90	60	10	15	50	20	20	50	50	300	40	60	40		50	60	300	50	20	280		40	02	00	30	000	300	30	50	50	50	350	750
	Length G		311	-	140	130	67	90	55	40	90	57	38	275	123	90	120	210		120	120	220	90	110	232	_	120	00	06	145		552	53	06	90	90	361	57
			500		150	150	200	150	200	200	 150	200	200	250	500	150	150	200		150	250	500	150	200	600	_	150	100	000	2002	007	009	150	150	200	200	600	800
-	Cumulative Di		51.0	-	0.2	0.5	1.4	0.1	0.2	0.2	0.2	0.4	0.6	2.9	54.1	0.1	0.6	1.2		0.3	2.3	57.6	0.3	0.5	58.9	_	0.2		7.0	C.1	1.1	60.8	0.3	0.3	0.7	1.4	63.2	168.8
Peak flow (lps)	Increment Curr		1.9	-	0.2	0.5	0.7	0.1	0.1	0:0	0.2	0.2	0.0	0.9	0.3	0.1	 0.6	0.5		0.3	0.8	1.2	0.3	0.3	0.8		0.2	00	7:0	1	1.0	0.2	0.3	0.3	0.4	0.4	1.0	0.0
Peak fl	-	E	_	+														_	_	_						_							+			_	+	
-	Cumulative Fr		10,876	1	47	102	296	20	47	47	39	83	134	615	11,546	32	 118	252		71	49.7	12,295	55	110	12,571	_	51	00	720	355		12,965	63	55	142	296	13,477	36,009
Population	Increment Cun		406		47	102	146	20	28	0	39	43	4	185	55	32	118	102		71	173	252	55	55	166		51	00	700	38	01	59	63	55	87	91	217	0
Pol	From																																+				_	_
╞	Ę		37M		226	226	229A	240	236	230	234	230	229A	37M	42M	266	266	246		246	42M	48M	254	48M	56M		263	170	107	507		64M	297	294	297	64M	TM	79M
Node 2	From	LIGHT	27M		193		226	237	240	236	231			229 A	37M	272	267	266		250	246	42M	251	254	48M		283	0.50	907	107		26M	300A	291	294	297	64M	TTM TT
	٩	01	19	+											20							21			22						;	23	╞				24	24a
Node 1	From	LIUII	18	+											19							20			21						5	77	╞				23	24

 Table M35.10.1
 Flow Calculation Sheet for Branch Sewers, Margao City (Year 2001) (6/10)

			v1.				T	Ē												u					,	1,	14	 ,u.			l			l			$\overline{1}$
	Remarks		North Main	North Main																							Data Missing		Data Missing	Data Missing				North Main			North Main
Compatibut	Adequacy	Camelian	A dometa	Ademate	ambary	Adequate	Adequate	Adequate	Adequate		Adequate	A dequate	A dequate	A dequate	Adequate	A dequate	Adequate	A dequate	A dequate		Adequate	Adequate	Adequate	Adequate	Adequate	Adequate		A dequate				Adequate	Adequate	Adequate	Adequate	Adequate	Adequate
Ť	Canacity	_	10	418	F	21	45	21	37		24	64	37	21	19	45	26	45	30		19	40	81	24	52	54		19				24	52	418		45	418
	Velocity	(m/sec)	1 364	0.833	rrn .n	1.181	1.431	1.181	1.168		1.364	2.023	1.168	1.181	1.056	1.431	1.494	1.431	1.670		1.056	1.280	1.660	1.364	1.652	1.107		1.056				1.364	1.652	0.833	1.056	1.431	0.833
	el (m)	d/s																27.285	27.285			27.285	24.610		24.610	21.115									20.840		
	Invert level (m)	s/n	01 200	070'17		33.475		25.980									39.035		32.700		36.885		26.735	31.200		24.240	19.950					23.545			22.640	20.840	_
Existing Sewer	vel (m)	d/s																30.240	30.240			30.240	26.490		26.490	23.760									24.555		_
B	Ground level (m)	s/n	11 610	070.77		33.775		26.980									40.035		33.700		37.885		30.240	32.200		26.490	23.760					25.095			23.640	24.555	
	Gradient	(1/x)	30	750	201	40	40	40	60		30	20	60	40	50	40	25	40	20		50	50	40	30	30	90		50				30	30	750	50	40	750
	Length	(II)	00	153	C	120	210	30	60		90	65	55	120	120	160	120	240	90		120	360	85	90	110	280		150				110	90	134	90	170	86
	Diameter	(mm)	150	001	8	150	200	150	200		150	200	200	150	150	200	150	200	150		150	200	250	150	200	250		150				150	200	800	150	200	800
	Cumulative		0	7:0	0.001	0.4	0.9	0.1	1.2		0.1	0.3	1.7	0.3	0.1	0.7	0.3	1.2	0.1		0.3	1.3	4.2	0.1	0.4	5.0	6.4	0.2	6.6	9.1		0.3	9.9	178.9	0.1	0.4	179.3
Peak flow (lps)	Increment		00	7:0	20	0.4	0.6	0.1	0.2		0.1	0.2	0.2	0.3	0.1	0.3	0.3	0.0	0.1		0.3	1.0	1.5	0.1	0.2	0.5	1.3	0.2	0.0	0.0		0.3	0.6	0.0	0.1	0.3	0.0
Å.	From	Sub Main																																			
	Cumulative	Cullulative	43	36.053	rminr	75	201	20	260		28	63	363	71	28	154	63	264	32		67	272	891	28	75	1,076	1,363	51	1,415	1,931		59	2,112	38,165	24	95	38,260
Population	Increment Cumulative		13	f C		75	126	20	39		28	35	39	71	28	55	63	201	32		67	205	323	28	47	110	288	51	0	0		59	122	0	24	71	0
	From	Sub Main																																			
e 2	To	01	70M	81M		345B	362	362	363		353	363	365	346A	346A	365	321	329	 329		277	329	332	305	332	369	367	367	365	380		380	81M	89M	388	M68	92M
Node 2	From	LIOII	375	M02		341B	345B	361	362		350	353	363	346	341A	346A	317	321	314		273	277	329	302	305	332	369	341	367	365		386	380	81M	383	388	M68
le 1	Ę	2		24h	ŝ																													24c			25
Node 1	From	LIOII		74a	-																													24b			24c

Table M35.10.1Flow Calculation Sheet for Branch Sewers, Margao City (Year 2001) (7/10)

		-	1	Т	1		. 1			· IC	JM T		- u							• •		u				-	~,		14		1			• 1		 u1			<u>_</u>
	Remarks														North Main																								
	Capacity Adequacy					A dequate	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	Adequate	A dequate	Adequate	A dequate	A dequate	A dequate	A dequate		Adequate	A dequate	Adequate	Adequate		A dequate	Adequate		Adequate	A dequate	Adequate	Adequate	Adequate
	Flow Canacity	(sol)				24	45	24	52		30	45	81	81	418	27	27	22	25	30	24	40	19	40	119		30	37	67	108		24	163		20	21	45	24	42
	Velocity	(m/sec)				1.364	1.431	1.364	1.652		1.670	1.431	1.660	1.660	0.833	1.525	0.847	1.220	0.809	1.670	1.364	1.280	1.056	1.280	1.677		1.670	1.168	1.355	1.531		1.364	1.696		1.113	1.181	1.431	1.364	1.349
	el (m)	d/s																																					
	Invert level (m)	n/s																																					
EXISTING Sewer	vel (m)	d/s																																					_
7	Ground level (m)	n/s																																					
	Gradient	(1/x)				30	40	30	30		20	40	40	40	750	24	114	38	125	20	30	50	50	50	50		20	60	60	60		30	60		45	40	40	30	45
	Length	(I)				92	95	83	153		122	30	210	30	235	880	150	230	63	95	190	255	35	74	53		64	60	80	120		120	100		96	80	140	90	50
	Diameter	(mm)				150	200	150	200		150	200	250	250	800	150	200	150	200	150	150	200	150	200	300		150	200	250	300		150	350		150	150	200	150	200
	Cumulative					0.1	0.1	0.3	0.6		0.1	1.0	1.4	1.5	182.5	3.0	4.8	0.4	5.8	0.2	0.9	7.2	0.1	0.2	8.3		0.3	0.6	1.1	11.5		0.0	11.5		0.2	0.1	0.3	0.3	0.9
reak now (ips)	Increment 0					0.1	0.1	0.3	0.3		0.1	0.3	0.4	0.0	1.7	3.0	1.8	0.4	0.6	0.2	0.7	0.5	0.1	0.1	0.9		0.3	0.3	0.5	2.1		0.0	0:0		0.2	0.1	0.2	0.3	0.1
P.	From	_													179.3																								
		_				12	28	71	138		16	213	296	323	38,937	646	1,032	83	1,241	43	185	1,533	16	47	1,773		67	130	236	2,447		8	2,463		51	20	59	59	197
roputation	Increment Cumulative					12	16	71	67		16	59	83	0	355	646	386	83	126	43	142	106	16	32	193		67	63	106	437		8	8		51	20	39	59	28
	From	Sub Main													38,260																								
7 a	To					331	334	288	326		326	335	334	92M	100M	240	244	244	246	253	246	275	273	275	276		281	279	276	300		300	307		314	385	314	314	316
7 aboul	From			e Sector II		327	331	285	288		292	326	335	334	92M	211	240	255	244	250	253	246	272	273	275		283	281	279	276		304	300		311	383	385	308	314
le l	To			North Zone Sector II											25a																								
Node I	From														25																								

Table M35.10.1Flow Calculation Sheet for Branch Sewers, Margao City (Year 2001) (8/10)

	ion		1.	55	. 1	υ.	1		1	n	<i>)</i> w	C	∕a.		uli	au		1,	511		-ι	10	1	DI	a	IC	п	50	w	CI	з,	1	1a	Ig	ac		ιy	C	iea	aı	2	υ	, 1	) (
	Remarks																	North Main																								Receiving sewage from South Zone		Data Missing
Canacity	Adequacy	Adequate	Adequate		Adequate	Adequate		Adequate	Adequate	Adequate		Adequate	A dequate	A dequate		A dequate	A dequate	A dequate		Adequate	A dequate		Adequate	Adequate	A dequate	Adequate		Adequate	Adequate	Adequate	Adequate	Adequate		Adequate	Adequate	Adequate	Adequate	Adequate		Adequate	A dequate	Adequate	Adequate	
	Flow Capacity	(lps) 40	163		24	163		24	52	163		45	45	163		21	163	418		30	64		24	45	45	73		30	45	73	09	60		30	64	52	30	81		30	45	59	59	
ľ	Velocity (m/sec)	1.280	1.696		1.364	1.696		1.364	1.652	1.696		1.431	1.431	1.696		1.181	1.696	0.833		1.670	2.023		1.364	1.431	1.431	1.485		1.670	1.431	1.485	1.212	1.212		1.670	2.023	1.652	1.670	1.660		1.670	1.431	0.838	0.838	
-	el (m) d/s	¢,																																										
	Invert level (m)	c m																																										
Existing Sewer	vel (m) d/s	ŝ'n																																										
2	Ground level (m)	e m																																										
	Gradient (1/x)	50	60		30	60		30	30	60		40	40	60		40	60	750		20	20		30	40	40	50		20	40	50	75	75		20	20	30	20	40		20	40	200	200	
	Length (m)	135	185		162	75		90	61	45		95	40	75		125	40	335		90	12		90	62	50	45		100	125	57	180	100		90	40	150	90	120		90	130	83	240	
	Diameter (mm)	200	350		150	350		150	200	350		200	200	350		150	350	800		150	200		150	200	200	250		150	200	250	250	250		150	200	200	150	250		150	200	300	300	
	Cumulative	1.8	13.3		0.3	13.6		0.2	0.4	14.0		0.1	0.3	14.3		0.2	14.6	199.5		0.2	0.6		0.2	0.3	1.0	1.3		0.1	0.4	2.1	3.1	4.0		0.2	0.4	0.1	0.4	1.2		0.1	0.4	0.4	3.5	7.5
Peak flow (lps)	Increment	0.8	0.0		0.3	0.0		0.2	0.2	0.0		0.1	0.1	0.0		0.2	0.0	2.4		0.2	0.4		0.2	0.1	0.1	0.3		0.1	0.2	0.4	1.1	0.8		0.2	0.2	0.1	0.3	0.4		0.1	0.2	I	2.0	0.0
Pe	From Sub Main																																											
	Cumulative	374	2,845		59	2,908		43	83	2,995		32	59	3,058		47	3,109	42,551		51	130		47	63	209	280		32	75	441	666	843		43	87	28	87	252		32	79	3,294	3,964	4,808
Population	Increment (	177	8		59	4		43	39	4		32	28	4		47	4	504		51	<i>P</i> 79		47	16	16	71		32	43	87	225	177		43	43	28	59	79		32	47	3,216	418	0
	From Sub Main																																											
7	To	307	346		346	349		362	349	350		366	350	353		353	100M	MIII		393	373		371	373	374	375		397	375	378	432	157		414	415A	406	415A	149		425	146	149	157	MIII
Node 2	From	316	307		354	346		359	362	349		364A	366	350		379	353	100M		390	393		368	371	373	374		397D	397	375	378	432		411	414	403	406	415A		422	425	146	149	157
61	To																	26																										-
Node	From																	25a																										

Table M35.10.1Flow Calculation Sheet for Branch Sewers, Margao City (Year 2001) (9/10)

No	Node 1	Node 2	le 2		Population		Pt	Peak flow (lps)					EA	Existing Sewer							_
Decree	°.	Ecom	Ê	From	In communit	Cumulation	From	Increased	Cumulating	Diameter	Length	t	Ground level (m)	vel (m)	Invert level (m)	vel (m)	Velocity	Flow	Capacity	Remarks	
LIGH	2	LIOIT	01	Sub Main	Inconen	Cumulative	Sub Main	Incrutent	Cumulative	(mm)	(m)	(1/x)	s/n	d/s	s/n	d/s	(m/sec)		Cambon 1		
26	27	MIII	303M		1,572	48,931		7.4	214.3	006	1,260	950					0.800	509	509 Adequate	North Main	
72	28	303M	313M		0	48,931		0.0	214.3	1000	300	1,200					0.764	600	Adequate	North Main	
58	29 (STP)	29 (STP) 313M	STP		29,451	78,382		I	214.3	1200	60	1,200					0.862	975	975 Adequate	North Main (Proposed South Main	
	_																			connected here)	
Note:		49 will receiv	e wastewatei	Sewer 146-149 will receive wastewater of South Zone in future	ne in future															Peak factor : 2.25	
	North Main	313M-STP w	ill receive wa	North Main 313M-STP will receive wastewater of South Zone through proposed South Main in future	outh Zone th	rough propos	ed South Mai	in in future												Manning's n: 0.015	

Node 1 coordinates with Figure 3.2.2 Node 2 coordinates with Sewerage zone map

Note:

Table M35.10.1Flow Calculation Sheet for Branch Sewers, Margao City (Year 2001) (10/10)

Appendix M35.11 Data for Flow Calculation Sheet of Sewers in Year 2001, Margao City

Flow calculation sheets for Margao City for evaluation on flow capacity in year 2001 have been prepared based on Project Report on Environmental Upgradation of Margao City Phase I and Sewerage zone map. But these data are not sufficient for the required purposes as described in Table (1). Therefore, some presumptions and assumptions on missing data have been adopted to solve the purposes and are described in Table (2). See Appendix M35.9 and M35.10 for the flow calculation sheets prepared in this study.

Item	Description / Controversial Point	Source
(1) Service Area	Total service area:       Described (about 876 ha)         Sewerage Zone wise service area:       Described         North Zone:       360 ha         Central Zone:       308 ha         South Zone:       208 ha         Total:       876 ha         Catchment area of Each Sewer:       Not described	(2)
(2) Service area Population	Total population in service area:       Described         120,000 persons in year 2011 (target year of current plan)         Sewerage Zone wise population:       Described         North Zone:       34,956         Central Zone:       34,311         South Zone:       50,733         Total:       120,000         Contributory population of each sewer:       Not described	(2)
(3) Wastewater Quantity	Calculated not based on water demand Calculated based on population and per capita per day wastewater generation (180 lpcd). Total wastewater quantity: Described (21.6 MLD in 2011) Sewerage Zone wise quantity: Described Location of hotels: Not described	(2)
	Flow of each sewer: Described Total wastewater Quantity: 28.6 MLD This doesn't match the value estimated based on population and per capita wastewater generation 21.6 MLD. The reason of the difference is not clear. But this calculation sheet is useful to estimate flow of each sewer.	(1)
(4) Sewer Alignment	Described on the map clearly	(3)
(5) Diameter and Slope of Sewers	Described in flow calculation sheet clearly	(1)
(6) Length of Sewers	Described in flow calculation sheet clearly	(1)
(7) Ground Elevation	Described on the map for some nodes in South sector of Central Zone	(3)
(8) Invert Elevation of Sewer	Described on the map for some nodes in South sector of Central Zone	(3)

(1) Data on Sewers Details, Controversial Points

Item	Description / Controversial Point	Source
(9) Flow Velocity	Calculated using Manning's formula with 0.015 as roughness coefficient	(1)
(10) Flow Capacity	Based on flow velocity and cross section area of sewer at a design depth depending on diameter of the sewer as given below Diameter Design depth 150mm-400mm 0.50 450mm-900mm 0.67 1000mm-1200mm 0.75	(1)

(1) Report titled "Under Ground Drainage Scheme to Margao Town" Source:

(2) General Sewer Network Plan

(3) Sewerage Zone Maps

# (2) Countermeasure for Flow Calculation Sheet and Evaluation on Flow Capacity

Item	Description / Countermeasure
	-
(1) Service Area	Zone wise service area: Adopt figures in the Report
	Sewer wise catchment area: Not measured
	Not used for calculating sewer wise wastewater quantity
(2) Service area	Sewer wise population:
Population	Calculated based on design flow of each sewer described in the flow
	calculation sheet for year 2011. Assuming that population distribution pattern in year 2001 is same as year 2011.
(3) Wastewater	Sewer wise wastewater quantity:
Quantity,	Calculated based on sewer wise population and per capita wastewater
Design flow	generation.
8	Adopt peak factor of 2.25 depending on present population.
(4) Sewer	Adopt sewer alignment described in sewerage zone map.
Alignment	
(5) Diameter and	Adopt figures described in the flow calculation sheet.
Slope of Sewers	
(6) Length of Sewers	Adopt figures described in the flow calculation sheet.
(7) Ground Elevation	Adopt ground elevation described in sewerage zone map when available.
(8) Invert Elevation	Adopt invert elevation of sewer described on sewerage zone map when
of Sewer	available.
(9) Flow Velocity	Calculate using Manning's formula with 0.015 as roughness coefficient
(10) Flow Capacity	Based on flow velocity and cross section area of sewer
(11) Evaluation of	For present condition:
Flow Capacity	When full flow capacity exceeds design flow, flow capacity is evaluated as adequate. Leave margin capacity out of consideration.

(A) Nort	h Main				
No	ode	Diameter	Length	Trino	Sub main connected to main
From	То	(mm)	(m)	Туре	Sub main connected to main
1	2	300	430		
2	3	350	750		
3	4	400	630		
4	5	450	920		
5	13	500	510		
13	24	700	720	Gravity Sewer	Central north Sub Main
24	25	800	430		Central south Sub Main
25	26	800	570		
26	27	900	1,260		
27	28	1,000	300		
28	STP	1,200	60		(Proposed South Main)
	Sub tot	al	6,580		
(B) Cent	ral North S	Sub Main			
No	ode	Diameter	Length	Trino	Sub main connected to main
From	То	(mm)	(m)	Туре	Sub main connected to main
6	7	350	214		
7	8	400	450		
8	9	500	360		
9	10	500	409	Gravity Sewer	North part of Central Zone
10	11	600	180		
11	12	600	360		
12	13	700	160		
	Sub tot	al	2,133		
(C) Cent	ral South S	Sub Main			
No	ode	Diameter	Length	Trino	Sub main connected to main
From	То	(mm)	(m)	Туре	Sub main connected to main
14	15	450	369		
15	16	450	190		
16	17	500	180		
17	18	500	73		
18	19	500	311	Creatity Come	Courts next of Courter 17
19	20	500	123	Gravity Sewer	South part of Central Zone
20	21	500	220		
21	22	600	232		
22	23	600	235		
23	24	600	361		
	Sub tot		2,294		
	Total		11,007		

M35.12General Description of Main and Sub Main Sewers,Margao CityTable M35.12.1General Description of Main and Sub Mains, Margao City

Source: Under Ground Scheme to Margao Town

#### Sewerage Zone and Diameter wise Sewer Length, Margao City M35.13

#### Table M35.13.1 Sewerage Zone and Diameter wise Sewer length, Margao City

(meters)

			Branch	Sewers							Mai	n and Sub	Main Se	wers					
	150mm	200mm	250mm	300mm	350mm	Sub Total	300mm	350mm	400mm	450mm	500mm	600mm	700mm	800mm	900mm	1000mm	1200mm	Sub Total	Total
North Zone (Sector I)	4,086	2,468	0	0	0	6,554	430	750	630	920	510	0	0	0	0	0	0	3,240	9,794
Central (North)	2,681	3,592	1,425	90	235	8,023	0	214	450	0	769	540	880	0	0	0	0	2,853	10,876
Central (South)	3,898	4,953	2,343	746	180	12,120	0	0	0	559	907	828	0	430	0	0	0	2,724	14,844
North Zone (Sector II)	3,098	1,920	822	496	520	6,856	0	0	0	0	0	0	0	570	1,260	300	60	2,190	9,046
Total	13,763	12,933	4,590	1,332	935	33,553	430	964	1,080	1,479	2,186	1,368	880	1,000	1,260	300	60	11,007	44,560

Note:

Lengths were measured on sewerage zone map (1) North Zone (Sector I):Catchment area of North Main (From starting point to junction with Central North Sub Main) (2) Central Zone (North): Catchment area of Central North Sub Main Note:

(3) Central Zone (South): Catchment area of Central North Sub Main

(4) North Zone (Sector II): Catchment area of North Main (Junction point with Central South Sub Main to sewage treatment plant)

		Item	Dimension
1	Genera	al Condition	
	Name	of STP	Margao Sewage Treatment Plant
	Locati	on	Sirvodem, Navelim - Margao
	Comm	issioning year	May. 03. 2000
	Treatm	nent capacity	7,500 m ³ /day
2	Techni	ical Details	
	2.1	Intake Facility	
		Inlet pipe diameter	1,200 mm (RC Pipe)
		Size of chamber	4.00 m $\times$ 3.50 m $\times$ 4.00 m
	2.2	Raw Sewage Pump Facility	
		Pump sum	12.30 m diameter $\times$ 15.0 m
		Pump type	Non clog pumps horizontal model centrifugal
		Pump power and head	200 m ³ /hr $\times$ 12.0 m $\times$ 25 HP $\times$ 2 units
			400 m ³ /hr $\times$ 12.0 m $\times$ 50 HP $\times$ 2 units
	2.3	Screening and Grit Chamber	
		Screen type	Mechanical screen type
		Size of screen	20 mm screen opening
		Size of grit chamber	$8.00 \text{ m} \times 0.35 \text{ m} \times 1.25 \text{ m}$
	2.4	Primary Clarifier	
		Size	18.00 m diameter $\times$ 3.00 m depth
	2.5	Activated Sludge Tank	
		Method of Aeration	Surface aerator
		Size	33.00 m $\times$ 12.00 m $\times$ 3.00 m depth
	2.6	Secondary Clarifier	
		Size	21.00 m diameter $\times$ 3.00 m depth
	2.7	Sludge Digester	
		Size	18.00 m diameter $\times$ 10.65 m depth
	2.8	Sludge drying bed	
		Size	$12.80 \text{ m} \times 12.40 \text{ m} \times 14 \text{ basins}$

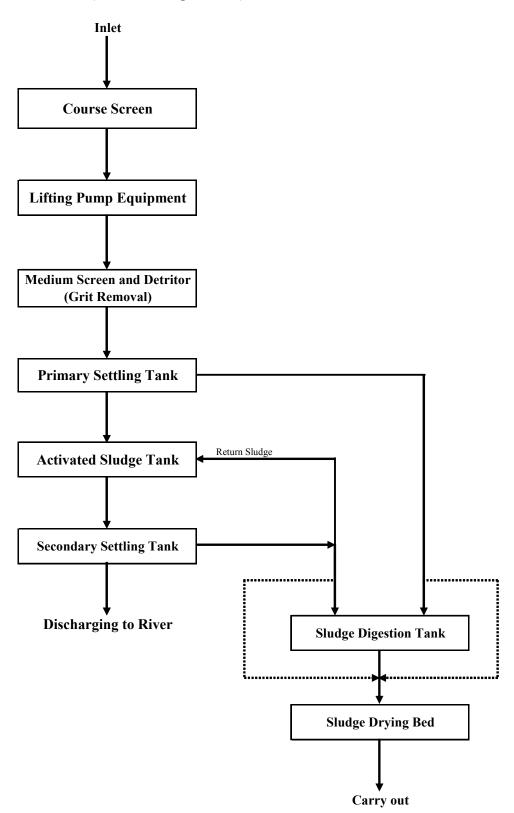
Appendix M35.14 List of Existing STP Facilities, Margao City

### Table M35.14.1 List of Existing Sewage Treatment Plant in Margao

Source: Sector Status Study Water and Sanitation Goa, Draft Final Report (Appendix)

	CAPACITY CALCULA			VAGE TREA Margao Mui		
1	BASIC CONDITIONS	Sluuge	wiethou m	i wiaigao wiui	ncipanty	
<b>1-1</b> (1)	Basic Items Name	:	Margao	Sewage Treatm	nent Plant	
(2)	Land Area	:	Approximat	ely	31,500	m ²
(3)	Elevation	:	20.50	m		
(4)	Inlet Pipe Level	:	14.00	m		
(5)	Pipe Diameter	:	Concrete Pi	ре	1,200	mm
(6)	Land Use	:	Exclusively	for Sewage Tre	eatment Pl	ant
(7)	Collection System	:	Combined S	System · Se	parate Sys	stem
(8)	Treatment Method	:				
	Sewage Treatmen	nt	;	Pre-treatment - sludge + Secor		settling + Activated
	Sludge Treatmen	t	;	Sludge Digesti		
(9)	Effluent Point	:	Sal river			
(10)	Effluent Point Water Level	:	High Level	=+ m, Lo	w Level =	=+ m
(11)	Target Year	:	2011	Year		
1-2	Design Population and Ar	ea				
	Design Population	:	120,000	Persons		
	Design Area	:	876.0	ha		

### M35.15 Capacity Calculation of STP(Activated Sludge), Margao City


### 1-3 Design Sewage Flow

Item	m ³ /day	m ³ /hr	m ³ /min	m ³ /sec	Remarks
Daily Average (DA)	7,500	312.5	5.21	0.087	
Daily Maximum (DM)	10,714	446.4	7.44	0.124	DA: DM = 0.7: 1.0
Hourly Maximum (HM)	16,875	703.1	11.72	0.195	DA : HM = 1.0 : 2.25

### 1-4 Design Sewage Quality

Item	Influent	Influent Removal Rate Effluent		Remarks			
nem	(mg/L)	(%)	(mg/L)	Kennarks			
BOD	300	90	30	Effluent Quality Regulation = 30 mg/l			
SS	300	83	50	Effluent Quality Regulation = 100 mg/l			

1-5 Flow Chart (Activated Sludge Method)



### 1-6 Design Criteria for Activated Sludge Method

Items	Unit	Figure *1	Figure *2	Adoption
1-6-1 Grit Chamber		0	0	
(1) Water surface load	m3/m2/day	1,800	2,160	2,160
(2) Average velocity	m/sec	0.3	0.15 - 0.30	0.3
	111/300	0.5	0.15 0.50	0.5
1-6-2 Wet Well with Pump Faci	lities			
(1) Pump inlet flow velocity	m/sec	1.5 - 3.0		2.25
(1) Fullip lifet now velocity (2) Retention time in Wet Well		1.5 - 5.0	> 5.0	5.0
(2) Retention time in wet wen	min	-	- 5.0	5.0
1-6-3 Primary Settling Tank				
(1) Water surface load	m3/m2/day	35.0 - 70.0	35.0 - 50.0	31.0
(1) Water surface found (2) Water depth	m	2.5 - 4.0	2.5 - 3.5	2.5
	III	2.5 - 4.0	2.5 - 5.5	2.5
1-6-4 Activated Sludge Tank				
(1) Type of activated sludge	-	-	-	Complete mixed
(2) MLSS concentration	mg/L	1,500 - 2,000	1,500 - 3,000	4,000
(3) BOD-SS Load	kgBOD/kgSS•day	0.2 - 0.4	0.3 - 0.4	0.45
(4) Retention time	hr	6.0 - 8.0	4.0 - 6.0	4.0
(5) Water depth	m	4.0 - 6.0	3.0 - 4.5	3.0
1-6-5 Secondary Settling Tank				
	2/ 2/1	20.0.20.0	15.0 25.0	24.0
(1) Water surface load	m3/m2/day	20.0 - 30.0	15.0 - 35.0	24.0
(2) Water depth	m	2.5 - 4.0	3.5 - 4.5	2.5
1-6-6 Sludge Conditions				
				00.0
(1) Raw sludge moisture ratio		99.0	-	99.0
(2) Digested sludge moisture	%	96.0 - 97.5	-	97.0
1-6-7 Sludge Digestion Tank				
(1) Type of digestion				High rate
(1) Type of algestion (2) Retention time	day	20	10 - 20	10
1-6-7 Sludge Drying Bed				
(1) Retention Time	day	10 - 15	< 2 weeks	10.0
(2) Depth of Sludge Bed	m	0.20 - 0.30	max 0.30	0.30
(3) Required Area	m2/capita	-	0.10 - 0.25	0.10 - 0.25
*1: Design Criteria in Japanese s	tandard and "Wastey	vater Engineerin	o" by Metcalf &	Eddy

*1: Design Criteria in Japanese standard and "Wastewater Engineering" by Metcalf & Eddy

*2: Design Criteria in India named "Manual on Sewerage and Sewage Treatment"

### 1-7 Summary of the Existing STP in Margao

Item	Dimension
1 General Condition	
Name of STP	Margao Sewage Treatment Plant
Location	Sirvodem, Navelim - Margao
Commissioning Year	2000, May, 03
Capacity	15,000m ³ /day (designed), 7,500m ³ /day (existing)
2 Technical Details	
2.1 Intake Facility	
Inlet Pipe Diameter	1,200mm (RC Pipe)
Size of Chamber	$4.00m \times 3.50m \times 4.00m$
2.2 Raw Sewage Pump Facility	
Pump Sum	12.30m diameter, 15.0m height
Pump Type	Non clog pumps horizontal model Centrifugal
Pump Dimension	$200m^{3}$ /hour (3.33m ³ /min) × 12m × 25HP ×2units
(7 years old)	$400\text{m}^3$ /hour (6.67m ³ /min) × 12m × 50HP ×2units
2.3 Screening and Grit Chamber	
Screen Type	Mechanical type
Size of Screen	20mm screen opening
Size of Grit Chamber	$8.00m \times 0.35m \times 1.25m$
2.4 Primary Clarifier	
Size	18.00m diameter $\times$ 3.00m depth
2.5 Activated Sludge Tank	
Method of Aeration	Surface Aerators
Size	$33.00m \times 12.00m \times 3.00m$
2.6 Secondary Clarifier	
Size	21.00m diameter $\times$ 3.00m depth
2.7 Sludge Digester	
Size	18.00m diameter $\times$ 10.65m depth
2.8 Sludge Drying Beds	
Size	$12.80m \times 12.40m \times 14 basins$
2.9 Treated Water Disposal	Discharging to sea through masonry drain

Source: Sector Status Study Water & Sanitation Goa, Draft Final Report (Appendix), August 2004, P.111

### 2 STUDY OF THE TREATMENT CAPACITY

#### 2-1 Wet Well with Pump Facilities

(1) Wet Well

Q2	Design sewage flow (Hourl	y M	aximum)	:	16,875	m3/day	=	11.72	m3/min
RT	Retention Time	:		5.0	min				
RV	Required Volume	:	$Q2 \times R$	Т	=	58.6	m3		
	Size of Existing Well	:	12.3	m dia.	$\times$	15.0	m dep.		
V1	Volume of Existing Well		:	V1=	1,7	/81	m3		
	Calculated Retention Time		:	V1/Q2	=	152.0	min		

## Comparison of the retention time between the criteria and calculated figure

Design criteria	Calculated figure	
> 5.0 min	152.0 min	∴ OK

- (2) Pump Facilities
  - Q2 Design sewage flow (Hourly Maximum) : 16,875 m3/day = 11.72 m3/min PN Units number : 2 units (small capacity)

<b>F</b> IN	Units number .	2	units (sman capacity)
		2	units (large capacity, including 1 stand-by unit)
PC	Discharging capacity	:	1:1:2 (assumption)
			Small pump 2.95 m3/min./unit
			Large pump 5.90 m3/min./unit
Н	Pump head :	12.0	m
D1	Calculated pump diameter	:	$D1 = 146 \times (PC/1.5 \sim 3.0)^{0.5}$
	(Small pump)		= 145 ~ 205
			= 150 mm
D1	Calculated pump diameter	:	$D1 = \overline{146 \times (PC/1.5 \sim 3.0)^{0.5}}$
21	(Large pump)		$= 205 \sim 290$
	(Luige pump)		= 250  mm
P1	Calculated motor power		: $P1 = 0.222 \times PC \times H \times (1+0.15)/0.60$
	(Small pump)		= 15.1 HP
P2	Calculated motor power		: $P1 = 0.222 \times PC \times H \times (1+0.15)/0.60$
	(Large pump)		= 30.1 HP
	(r)		

#### Comparison of the pump specifications between the existing and calculated facilities

Pump specification		Existing facilities	Required figures by calculation
Diamatan	small	-	150 mm
Diameter	large	- 2	250 mm
Discharging consoity	small	3.33 m3/min./unit	2.95 m3/min./unit
Discharging capacity	large	6.67 m3/min./unit	5.90 m3/min./unit
Pump head	small	12.0 m	12.0 m
r unip neau	large	12.0 m	12.0 m
Motor nowar	small	25.0 HP	15.1 HP
Motor power	large	50.0 HP	30.1 HP
Units number	small	2 units	2 units
	large	2 units	2 (1) units

#### 2-2 Grit Chamber

2-3

Q2	Design sewage flow (Hourly Maximum)	:	16,875 m3/day	=	11.72 m3/min
----	-------------------------------------	---	---------------	---	--------------

m

SL	Water surface load	:	2,160	m3/m2/c	lay			
RA	Required surface area	:	RA=	Q2/SL	=	7.8	m2	
А	Area of existing grit cham	ber	:	8.00	m	$\times$	1.25	
				=	10.0	m2		

#### Comparison of the surface area between the existing and required figures

	Existing facilities	Requir	Required area by calcula		ulation			
	10.0 m2		7.8	m2				OK
AW	Actual water surface load	:	AW=	Q2/A	=	1,688	m3/m2/	day
Primar	y Settling Tank							
Q1	Design sewage flow (Daily Aver	age)	:	7,500	m3/day	=	312.5	m3/hr
WSL	Water surface load :	WSL=	31	m3/m2/	/day			
RA	Required surface area :	RA= 0	Q1/WS	L	=	241.9	m2	
А	Surface area of existing primary	settling ta	ank	:	18.0	m dia.		
					=	254.3	m2	

#### Comparison of the surface area between the existing and required figures

	Existing facilities	Required area by calc	ulation		
	254 m2	242 m2			∴ ОК
2-4 Activat	ed Sludge Tank				
Q1	Design sewage flow (Daily Aven	rage) : 7,500	m3/day	=	312.5 m3/hr
MS	MLSS concentration :	4,000 mg/l			
RT1	Retention time : RT1=	4.0 hr			
RV1	Required volume :	$RV1 = Q1 \times RT1$	=	1,250	m3
V	Volume of existing tank :	$33.0 \text{ m} \times 12.0$	$m \times$	3	m
		= 1188 m3			
RT2	Retention time calculated based on	the existing tank :	RT2=	V/Q1	
			=	3.8	hr
BS	BOD-SS load : 0.45	kgBOD/kgSS•day			
BOD2	BOD quality at inlet to aeration	tank : 300.0	$\times$	0.5	(assumption)
		=	150.0	mg/l	
RV2	Required volume :	RV2= Q1×BOD2/(BS	×MS)		
		= 625 m3			

### Comparison of required volume between the existing and calculated facilities

Volume of origing tonly	Calculated volume based on	Calculated volume based on		
Volume of existing tank	retention time	BOD-SS load		
1188 m3	1.250 m3	625 m3		
1100		·		

#### 2-5 Secondary Settling Tank

$\sqrt{1}$ Design sewage new (Dany Average) . 7,500 m5/day = 512.5 m5/1	Q1	Design sewage flow (Daily Average)	:	7,500	m3/day	=	312.5	m3/h
-------------------------------------------------------------------------	----	------------------------------------	---	-------	--------	---	-------	------

- WSL Water surface load : WSL= 24 m3/m2/day
- RA Required surface area : RA = Q1/WSL = 312.5 m2

А	Surface area of existing primary settling tank	:	21.0	m dia.	
			=	346.2	m2

### Comparison of the surface area between the existing and required figures

Existing facilities	Required area by calculation	
346 m2	313 m2	∴ ОК

### 2-6 Sludge Digestion Tank

	8		
-	Type of sludge digestion	:	High rate digestion
Q1	Design sewage flow (Dail	y Ave	rage) : 7,500 m3/day
SSin	Inlet SS :	300	mg/l
SSout	Outlet SS :	50	mg/l
GS-1	Generated sludge	:	GS-1= Q1×(SS in - SS out)×10 ⁻⁶
			= 1.88  t/day
W	Sludge moisture ratio	:	W= 99.0 %
GS-2	Generated sludge in volum	ne	: $GS-2=GS-1\times100/(100-W)$
			= 187.5  m3/day
RT	Retention time :	10	days
RV	Required volume	:	$RV = GS - 2 \times RT$ = 1,875 m3
V	Volume of existing tank	:	18.0 m dia. $\times$ 10.65 m depth
			V= 2,709 m3

### Comparison of the tank volume between the existing and required figures

2,709 m3 1,875 m3	· OK

### 2-7 Sludge Drying Bed

0									
Q1	Design sewage flow (Daily	v Avera	age)	:	7,500	m3/day			
SSin	Inlet SS :	300	mg/l						
SSout	Outlet SS :	50	mg/l						
GS-1	Generated sludge	:	GS-1=	$Q1 \times (SS)$	5 in - SS	S out) $\times 10$	-6		
			=	1.88	t/day				
W	Digested sludge moisture r	atio	:	W=	97.0	%			
GS-2	Generated sludge in volum	e	:	GS-2=	GS-1×1	00/(100-W	V)		
				=	62.5	m3/day			
RT	Retention time :	RT=	10.0	days					
RV	Required volum :	RV=	GS-2×R	Т	=	625.0	m3		
Н	Depth of sludge bed	:	H=	0.30	m				
RA	Required area :	RA=	RV/H	=	2,083	m2			
Α	Area of existing drying bec	1	:	12.80	$\times$	12.40	$\times$	14	basins
				A=	2,222	m2			

### Comparison of drying bed area between the existing and required figures

Existing facilities	Required area by calculation	
2,222 m2	2,083 m2	∴ OK

Appendix M35.16 Data Sheets and Photos for Investigation on On-site Treatment Facilities

- (1) Septic Tank and Soak Pit for Domestic, Margao City
- (2) Wastewater Treatment Facility for Taj Exotica Hotel
- (3) Wastewater Treatment Facility for Factory of Zuari Industry Ltd.
- (4) Wastewater Treatment Facility for Birla Institute of Technology (College)

### Data Sheets for Investigation on On-site Treatment Facilities (1/4)

Date of Investigation: August 18, 2005

1. Type of Facility:	Treatment Facility for Domestic
2. Location of Facility:	Aquem area, near Vishand theatre, Margao City
	(In South Sewerage Zone of the City: Not sewered yet)
3. Type of Water Supply:	Public water supply
4. Quantity of Water Consumption:	-

5. Type of wastewater:	Domestic and commercial wastewater
6. Type of Wastewater Treatment Method:	Septic tank and soak pit
7. Size of Facility:	For over 50 persons
8. Actual Wastewater Flow:	No data
9. Discharging Point of Treated Effluent:	Discharging to a side ditch of road for storm water
10.Wastewater Quality:	No data
11. Treatment and Disposal Method of Sludge:	Remove from the tank and carry to Margao STP
	by contractors, as occasion arises

### 12. Others:

- Overflow effluent from soak pit is discharging into side ditch of road for storm water
- The effluent seems to be diluted with storm water and looks clean
- No smell detected at the discharging point
- Septic tank is built of laterite bricks and waterproofed with mortar



Apartment Complex with shops, using target septic tank and soak pit



Top of Septic tank and soak pit, covered by concrete slab and pavement

Discharging point of overflow effluent from soak pit into a side ditch of road

Overflow Effluent



## Data Sheets for Investigation on On-site Treatment Facilities (2/4)

Date of Investigation: June 8, 2005

1. Name of Hotel:	Taj Exot	ica Hotel
2. Location of Hotel:	Benaulir	n, Varka Beach
3. Number of Rooms.	140 roor	ns
4. Type of Water Supply:	Public w	ater supply
5. Quantity of Water Consumption:	- m ³ /day	
6. Type of Wastewater:		Wastewater, kitchen wastewater
7. Type of Wastewater Treatment Meth	nod:	Activated sludge method + chemical clarification
		+ Sand filtration + Activation carbon absorption
8. Design Wastewater Flow:		220 m ³ /day
9. Actual Wastewater Flow:		85-180 m ³ /day
10. Discharging Point of Treated Efflu	ent:	Not discharging to public water body usually
		Effluent is used in hotel premise for gardening
		Discharging pipe to sea for emergency available
11. Wastewater Quality:		No data
12. Treatment and Disposal Method of	Sludge:	-



Treatment facility. Aeration Tank



Treatment facility. Secondary clarifier and tertiary clarifier



Treatment facility. Activated carbon adsorber

### Data Sheets for Investigation on On-site Treatment Facilities (3/4)

Date of Investigation: July 28, 2005

1. Name of Factory:	Zuari Industry Ltd.
2. Location of Factory:	Zuari Industry complex, Vasco-Da-Gama City
	(Out of sewerage service area)
3. Type of Product:	Chemical fertilizer
4. Number of Employees:	800 persons approximately
5. Type of Water Supply:	Public water supply
6. Quantity of Water Consumption:	10,500 m ³ /day (for production process)

### (a) Wastewater Treatment Plant for Process Water

7. Type of wastewater:	Process wastewater
8. Type of Wastewater Treatment Method:	Primary, secondary and tertiary treatment
9. Design Wastewater Flow:	No data
10. Actual Wastewater Flow:	No data
11. Discharging Point of Treated Effluent:	Not discharging to public water body
	Effluent is reused in production process
12.Wastewater Quality:	No data

13. Treatment and Disposal Method of Sludge:

### (b) Domestic Wastewater of Employees

14. Type of wastewater:	Domestic wastewater of employees
15. Type of Wastewater Treatment Method:	Activated sludge method + Sand filter
16. Design Wastewater Flow:	480 m ³ /day (20 m ³ /hr)
17. Actual Wastewater Flow:	No data
18. Discharging Point of Treated Effluent:	Not discharging to public water body
	Effluent is used in factory campus
19. Wastewater Quality:	No data
20. Treatment and Disposal Method of Sludge	: Sludge dried and used as filler material in NPK
	(Nitrogen Phosphorus Kalium) and diammonium
	phosphate plant

### 21. Others:

- The plant was working. Aerator is on.

- One aeration tank and one secondary sedimentation tank (concrete)
- Two sand filter tanks (steel)
- Surface of secondary sedimentation tank is covered with thick scums and some plants
- An engineer of the treatment plant said that the scums are removed once a month



Treatment facility for domestic wastewater of employees. Aeration tank and secondary sedimentation tank



Secondary sedimentation tank covered with thick scums and some plants



Sand filtration tank for treated water of secondary treatment facility

### Data Sheets for Investigation on On-site Treatment Facilities (4/4)

Date of Investigation: July 28, 2005

1. Name of Factory:	Birla Institute of Technology (College)
2. Location of Factory:	Vasco-Da-Gama City (Out of sewerage service area)
3. Type of Product:	-
4. Number of Employees:	4,000 persons approximately (teachers, students, staffs) in
	future, 2,000 persons at present
5. Type of Water Supply:	Public water supply
6. Quantity of Water Consumption:	600 m ³ /day

astewater of teachers, students and
zed Aerated Bioreactor) system +
ing to public water body
sed in college campus for gardening
tered by centrifugal dewatering and
side

### 14. Others:

- The plant was not working. College is in summer vacation.

- One inlet well, one FAB reactor and one effluent storage tank (concrete)

- Two sand filter tanks (steel)



Treatment facilities Aeration tank and secondary clarifier



Treatment facilities Sand filtration tank



Sludge treatment facilities Centrifugal dewatering

Appendix M36

# Water Quality Analysis for Sanitation

### **Contents for Appendix M36**

M36.1	General ······M36-1
M36.2	Evaluation of Water Quality for SewerageM36-1
M36.3	Results of Water Quality Analysis for SanitationM36-2

### Appendix M36.1 General

Water quality analysis of sewerage was undertaken to assess the treatment process efficiency at the existing Panaji and Margao Sewage Treatment Plants and to determine the need for new sewerage systems by investigating the receiving water quality in the river and sea.

Table M36.1.1 shows the number of samples and sample parameters. The sampling locations are shown on Figure M36.2.1.

Sampling Locations		Parameters for analysis				
		pН	BOD ₅ *1	SS	Coliform	
Inlet		2	2	2	2	
Panaji/Margao STPs	Treated Water		2	2	2	2
Discharged Water		ater	2	2	2	2
	Mandovi	River Mouth	1	1	1	1
Rivers Zuari	Widildovi	Upstream	1	1	1	1
	Zuari	River Mouth	1	1	1	1
	Zuall	Upstream	1	1	1	1
Sea         North Goa (2 Points)           South Goa (2 Points)		2	2	2	2	
		2	2	2	2	
Number of Samples to be taken in Each Season		14	14	14	14	
Total Number of Samples			28	28	28	28

 Table M36.1.1
 Water Quality Analysis for the Sewerage System

*1: COD tests were used for the sea samples, instead of BOD5

### M36.2 Evaluation of Water Quality for Sewerage

The water quality for sewerage was evaluated on the 'Environmental Standard for Ambient Air, Automobiles, Industries and Noise, Central Pollution Board in India, 2002 July'.



Figure M36.2.1 Locations of Sewerage Treatment Plants, River Sampling Points and Sea Sampling Points

### M36.3 Results of Water Quality Analysis for Sanitation

### (1) Sewage Treatment Plant (refer to Attachments)

The water quality results for the Panaji and Margao sewage treatment plants are shown in Tables M36.3.1 and M36.3.2. Raw water, treated water and discharge water quality was analyzed for pH, BOD,SS, and coliform.

The raw water and treated water qualities were worse during the dry season. The treated water quality for both of the STPs met the pH, BOD and SS effluent standards during both the dry and rainy seasons. Coliform is not regulated in standards. The analysis showed that the sewage treatment process reduced the number of coliform at both STPs during both seasons.

Test Parameters	Season	Raw Water	Treated Water	Discharged Water	Standards*
pH	Dry	7.1	7.4	7.6	5.5 to 9.0
pn	Rainy	6.3	6.9	7.2	5.5 10 9.0
BOD(mg/L)	Dry	53	7.4	6.9	30
	Rainy	82	5.5	4.0	30
SS(mg/L)	Dry	42	4.5	8.0	100
SS(mg/L)	Rainy	67	5.0	9.5	100
Coliform(MPN/100mL)	Dry	46,000,000	1,100,000	95,000	
	Rainy	4,600,000	1,100,000	4,300	-

Table M36.3.1Water Quality of Panaji STP

* Source: Central Pollution Control Board (July 2002), Environmental Standards for Ambient Air, Automobiles, Industries and Noise, p55

Test Parameters	Season	Raw Water	Treated Water	Discharged Water	Standards*
	Dry	6.4	7.2	7.1	5.5 to 9.0
рН	Rainy	6.1	7.2	6.9	5.5 10 9.0
BOD(mg/L)	Dry	30.5	13	22.5	30
	Rainy	6.0	3.0	2.2	30
SS(mg/I)	Dry	28	9.5	22.0	100
SS(mg/L)	Rainy	8.0	2.0	1.5	100
Coliform(MPN/100mL)	Dry	11,000,000	460,000	240,000	
	Rainv	4.600.000	46.000	110.000	-

* Source: Central Pollution Control Board (July 2002), Environmental Standards for Ambient Air, Automobiles, Industries and Noise, p55

### (2) **Rivers** (refer to Attachments)

The water quality test results for the Mandovi and Zuari Rivers are shown in Tables M36.3.3- 4 The samples for these rivers were taken from the river mouth as well as upstream.

The water quality was shown to be worse at the river mouth in both rivers, compared to their upstream water quality, during both the dry and rainy seasons.

The results for the Mandovi River showed that the effluent standards were not exceeded for pH, however the BOD standard (of 3mg/L) was exceeded. The results also showed that the water quality was worse in the rainy season as compared to the dry season.

Test Parameters	Season	Panaji (River Mouth)	Khandola (Upstream)	Standards* (category SWII)
"II	Dry	7.8	7.7	6.5 to 8.5
рН	Rainy	7.0	6.6	0.5 10 8.5
BOD(mg/L)	Dry	4.8	3.4	2
	Rainy	5.8	4.6	5
SS(mg/L)	Dry	6.5	3.0	
SS(mg/L)	Rainy	30.0	14.0	-
Coliform(MPN/100mL)	Dry	460	430	
	Rainy	-	-	-

Table M36.3.3Water Quality in Mandovi River

* Source: Central Pollution Control Board (July 2002), Environmental Standards for Ambient Air, Automobiles, Industries and Noise, p55

The water quality results for the Zuari River showed that the pH standard was met at all points, however the BOD levels exceed the standard (of 3mg/L) during both the dry and rainy seasons. These water quality trends were the same as observed in the Mandovi River. The BOD, SS and coliform levels were higher in the rainy season as compared to the dry season.

Table 1150.5.4 Water Quality in Zuarr Kiver					
Test Parameters	Season	Cortalim (River Mouth)	Ponchavadi (Upstream)	Standards* (category SWII)	
11	Dry	7.6	6.9	6.5 to 8.5	
рН	Rainy	7.7	6.4	0.5 10 8.5	
BOD(mg/L)	Dry	4.4	3.2	2	
	Rainy	6.2	5.0	5	
SS(mg/L)	Dry	20.5	7.0		
SS(mg/L)	Rainy	58	37.0	-	
Coliform(MPN/100mL)	Dry	4,600	2,400		
	Rainy	110,000	24,000	-	

Table M36.3.4Water Quality in Zuari River

* Source: Central Pollution Control Board (July 2002), Environmental Standards for Ambient Air, Automobiles, Industries and Noise, p55

### (3) Sea (refer to Attachment)

Four sea water samples were collected, one each from Baga and Calangute on the North Beach and Colva and Benaulim on the South Beach. The sea water quality results are shown in Tables M36.3.5 to 6.

The samples from the North Beach did not exceed the pH standard in either the dry or rainy season. However, the BOD did exceed the standard during the rainy season. A BOD sample was not collected during the dry season. The results indicate that the sea water quality is worse during the rainy season.

Test Parameters	Season	Baga	Calangute	Average	Standards* (category SWII)
pH	Dry	8.1	8.1	8.1	6.5 to 8.5
	Rainy	7.5	7.6	7.6	
BOD(mg/L)	Dry	-	-	-	3
	Rainy	7.8	8.4	8.1	
SS(mg/L)	Dry	8.5	10.0	9.3	
	Rainy	30	21.0	25.5	-
Coliform(MPN/100mL)	Dry	460	460	460	-
	Rainv	2.400	4.300	3.350	

Table M36.3.5Sea Water Quality in North Goa

* Source: Central Pollution Control Board (July 2002), Environmental Standards for Ambient Air, Automobiles, Industries and Noise, p55

The water quality trends for the South Beach were the same as for the North Beach. That is, the sea water quality was worse during the rainy season in terms of BOD, SS, and coliform levels. The pH levels did not exceed the standard, however the BOD levels did exceed the standard during the rainy season.

Test Parameters	Season	Colva	Benaulim	Average	Standards* (category SWII)
рН	Dry	7.9	7.9	7.9	6.5 to 8.5
	Rainy	7.9	8.1	8.0	
BOD(mg/L)	Dry	-	-	-	3
	Rainy	8.0	7.3	7.7	
SS(mg/L)	Dry	11.5	5.5	8.5	-
	Rainy	16.0	11.0	13.5	
Coliform(MPN/100mL)	Dry	75	95	85	-
	Rainy	11,000	24,000	17,500	

Table M36.3.6Sea Water Quality in South Goa

* Source: Central Pollution Control Board (July 2002), Environmental Standards for Ambient Air, Automobiles, Industries and Noise, p55

The results show that in general the sea water quality at the North Beach was worse than at South Beach, except for coliform during the rainy season.

The results of water quality analysis will be summarized as follows

- The treated effluent at the Panaji and Margao STPs did not exceed the effluent standards for pH, BOD, and SS in either the dry or rainy seasons.
- The sewage treatment process was shown to decrease the number of coliform during both the dry and rainy seasons.
- The pH levels did not exceed water quality standards in either the Mandovi or Zuari River, during either the dry and rainy seasons. The BOD standard was exceeded in both rivers during both seasons.
- The sea water quality for both North and South Goa did not exceed the pH standards

during both the dry and rainy seasons. The BOD exceeded the water quality standard (of 3 mg/L) during the rainy season for both North and South Goa.

- The sea water quality at the North beach was worse than the sea water quality at the South beach.
- The sea and river water quality was found to be worse during the rainy season as compared to the dry season.

#### Attachments

#### PHE-LABORATORY P.W.D., TONCA-CARANZALEM Sewage Analysis

Panaji Sewage Treatment PlantPlace of collectionPanaji S T PDate of collection22/06/05(Dry Season)

Sr. No.	Test Parameters	Unit of	Inlet of	Outlet of	Discharge Pt.	Effluent WQ Standard
Sr. No. Test Parameters	Measurment	Panaji STP	Panaji STP	of Panaji STP	Inland Surface Water	
1	pH.		7.1	7.4	7.6	5.5 to 9.0
2	BOD 5 days					
	at 20 celsius	(mg/1)	53	7.4	6.9	30
3	BOD 3 days					
	at 20 celsius	(mg/1)	44	6.8	6.2	-
4	S.S	(mg/1)	42	4.5	8	100
6	Coliform	MPN/100ml	46,000,000	1,100,000	95,000	-

Method of Testing: Standard Methods for the Examination of Water Wastewater 18th Ed...

#### PHE-LABORATORY P.W.D., TONCA-CARANZALEM Sewage Analysis

MargaoSewage Treatment PlantPlace of collection- Margao S T P.Date of collection09/06/05(Dry Season)

Sr. No.	Test Denomestons	Unit of	Inlet of	Outlet of	Discharge Pt.	Effluent WQ Standard
Sr. No. Test Parameters	Measurment	Margao STP	Margao STP	of Margao STP	Inland Surface Water	
1	pH.		6.4	7.2	7.1	5.5 to 9.0
2	BOD 5 days at 20 celsius	(mg/1)	30.5	13	22.5	30
3	BOD 3 days	( mg/ I )	50.5	15	22.5	50
	at 20 celsius	(mg/1)	25	11.5	18	-
4	S.S	(mg/1)	28	9.5	22	100
5	Coliform	MPN/100ml	11,000,000	460,000	240,000	-

## PHE-LABORATORY P.W.D., TONCA-CARANZALEM Sewage Analysis

Panaji Sewage Treatment Plant Place of collection : Panaji S T P Date of collection : 15/07/05 (Rainy Season)

Sr No	Test Parameters	Unit of	Inlet of	Outlet of	Discharge Pt.	Effluent WQ Standard
51.110.	Test Parameters			Panaji STP	of Panaji STP	Inland Surface Water
1	pH.		6.3	6.9	7.2	5.5 to 9.0
2						
	at 20 celsius	(mg/1)	82	5.5	4	30
3						
	at 20 celsius	(mg/1)	68	5	3.3	-
4	S.S	(mg/1)	67	5	9.5	100
6	Coliform	MPN/100ml	4,600,000	1,100,000	4,300	-

Method of Testing: Standard Methods for the Examination of Water Wastewater 18th Ed..

## PHE-LABORATORY P.W.D., TONCA-CARANZALEM Sewage Analysis

Margao Sewage Treatment Plant Place of collection : Margao S T P. Date of collection : 13/07/05 (Rainy Season)

		Unit of	Inlet of	Outlet of	Discharge Pt.	Effluent WQ
Sr No	Test Parameters		initet of	Outlet of	Discharge I t.	Standard
51.110.	rest i didiliciers		Margao STP	Margao STP Margao STP of		Inland Surface
		Weasurment	Margao STI	Margao 511	of Margao STI	Water
1	pH.		6.1	7.2	6.9	5.5 to 9.0
2	BOD 5 days					
	at 20 celsius	(mg/1)	6	3	2.2	30
3						
	at 20 celsius	(mg/1)	5	2.5	1.8	-
4	S.S	(mg/1)	8	2	1.5	100
5	Coliform	MPN/100ml	460,000	46,000	110,000	-

#### PHE-LABORATORY P.W.D., TONCA-CARANZALEM WATER ANALYSIS

Public Water Bodies – River Source of samples : Zuari River Place of collection : Zuari River Mouth at Cortalim Date of collection : 10/06/05 (Dry Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		7.6		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	4.4	0	3
3	BOD 3 days at 20 celsius	(mg/1)	3.5		-
4	S.S	(mg/1)	20.5		-
5	Coliform	MPN/100ml	4600		-

Method of Testing: Standard Methods for the Examination of Water Wastewater 18th Ed..

#### PHE-LABORATORY P.W.D., TONCA-CARANZALEM WATER ANALYSIS

Public Water Bodies – River Zuari . Source of samples : Zuari River Place of collection : Zuari River Upstream at Musher, Panchawadi . Date of collection : 10/06/05 (Dry Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		6.9		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	3.2	0	3
3	BOD 3 days at 20 celsius	(mg/1)	2.3	_	-
4	S.S	(mg/1)	7		-
5	Coliform	MPN/100ml	2400		-

#### PHE-LABORATORY P.W.D., TONCA-CARANZALEM WATER ANALYSIS

Public Water Bodies – River Source of samples : Mandovi River Place of collection : Mandovi River Mouth at Panaji . Date of collection : 11/06/05 (Dry Season)

Sr.No.	Test Parameters	Unit of	Results	Remark	Water Quality Standard
		Measurment			SWI
1	pH.		7.8		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	4.8	0	3
3	BOD 3 days at 20 celsius	(mg/1)	3.2		-
4	S.S	(mg/1)	6.5		-
5	Coliform	MPN/100ml	460		-

Method of Testing: Standard Methods for the Examination of Water Wastewater 18th Ed..

#### PHE-LABORATORY P.W.D., TONCA-CARANZALEM WATER ANALYSIS

Public Water Bodies-Mandovi River Source of samples : Mandovi River-- Upstream Place of collection : Mandovi River upstream at Khandola. Date of collection : 110/06/05 (Dry Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.	wiedsuiment	7.7		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	3.4	0	3
3	BOD 3 days at 20 celsius	(mg/1)	2.7		-
4	S.S	(mg/1)	3		-
5	Coliform	MPN/100ml	430		-

## PHE-LABORATORY P.W.D., TONCA-CARANZALEM Water Analysis

Public Water Bodies – River Source of samples : Zuari River Place of collection : Zuari River Mouth at Cortalim Date of collection : 28/07/05 (Rainy Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		7.7		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	6.2	0	3
3	BOD 3 days at 20 celsius	(mg/1)	5.3		-
4	S.S	(mg/1)	58.0		-
5	Coliform	MPN/100ml	110,000		-

Method of Testing: Standard Methods for the Examination of Water Wastewater 18th Ed..

# PHE-LABORATORY P.W.D., TONCA-CARANZALEM Water Analysis

Public Water Bodies – River Zuari.

Source of samples : Zuari River

Place of collection : Zuari River Upstream at Musher, Panchawadi . Date of collection : 28/07/05 (Rainy Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		6.4		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	5.0	0	3
3	BOD 3 days at 20 celsius	(mg/1)	4.0		-
4	S.S	(mg/1)	37.0		-
5	Coliform	MPN/100ml	24,000		-

## PHE-LABORATORY P.W.D., TONCA-CARANZALEM Water Analysis

Public Water Bodies – River Source of samples : Mandovi River Place of collection : Mandovi River Mouth at Panaji . Date of collection : 28/07/05 (Rainy Season)

Sr.No.	Test Parameters	Unit of	Results	Remark	Water Quality
51.INO.	Test Parameters	Measurment	Kesuits	Keillark	Standard SW <b>I</b>
1	pH.		7.0		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	5.8	0	3
3	BOD 3 days at 20 celsius	(mg/1)	4.2		-
4	S.S	(mg/1)	30		-
5	Coliform	MPN/100ml	4,600		-

Method of Testing: Standard Methods for the Examination of Water Wastewater 18th Ed..

# PHE-LABORATORY P.W.D., TONCA-CARANZALEM Water Analysis

Public Water Bodies-Mandovi River Source of samples : Mandovi River-- Upstream Place of collection : Mandovi River upstream at Khandola. Date of collection : 28/07/05 (Rainy Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		6.6		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	4.6	0	3
3	BOD 3 days at 20 celsius	(mg/1)	3.8		-
4	S.S	(mg/1)	14.0		-
5	Coliform	MPN/100ml	7,500		-

# PHE-LABORATORY P.W.D., TONCA-CARANZALEM WATER ANALYSIS

Public Water Bodies – Beaches Source of samples : Colva Beach Place of collection : Colva Date of collection: 10/06/05

(Dry Season)

Sr.No.	Test Parameters	Unit of	Results	Remark	Water Quality Standard
		Measurment			SWI
1	pH.		7.9		6.5 to 8.5
2	S. S.	(mg/1)	11.5		-
3	Coliform	MPN/100ml	75		-

Method of Testing: Standard Methods for the Examination of Water Wastewater 18th Ed..

# PHE-LABORATORY P.W.D., TONCA-CARANZALEM WATER ANALYSIS

Public Water Bodies – Beaches Source of samples : Benaulim Beach Place of collection ; Benaulim Date of collection : 10/06/05 (Dry Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		7.9		6.5 to 8.5
2	S. S.	(mg/1)	5.5		-
3	Coliform	MPN/100ml	95		-

## PHE-LABORATORY P.W.D., TONCA-CARANZALEM WATER ANALYSIS

Public Water Bodies – Beaches Source of samples : Baga Beach Place of collection: Baga Date of collection 11/06/05 (D

(Dry Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		8.1		6.5 to 8.5
2	S. S.	(mg/1)	8.5		-
3	Coliform	MPN/ 100ml	460		-

Method of Testing: Standard Methods for the Examination of Water Wastewater 18th Ed..

### PHE-LABORATORY P.W.D., TONCA-CARANZALEM WATER ANALYSIS

Public Water Bodies – Beaches Source of samples : Calangute Beach Place of collection : Calangute Date of collection : 11/06/05 (Dry Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		8.1		6.5 to 8.5
2	S. S.	(mg/1)	10		-
3	Coliform	MPN/100ml	460		-

# PHE-LABORATORY P.W.D., TONCA-CARANZALEM Water Analysis

Public Water Bodies – Beaches Source of samples : Colva Beach Place of collection : Colva Date of collection: 20/07/05 (Rainy Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		7.9		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	8.0	0	3
3	S. S.	(mg/1)	16.0		-
4	Coliform	MPN/100ml	11,000		-

Method of Testing: Standard Methods for the Examination of Water Wastewater 18th Ed..

# PHE-LABORATORY P.W.D., TONCA-CARANZALEM Water Analysis

Public Water Bodies – Beaches Source of samples : Benaulim Beach Place of collection ; Benaulim Date of collection: 20/07/05 (Rainy Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		8.1		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	7.3	0	3
3	S. S.	(mg/1)	11.0		-
4	Coliform	MPN/100ml	24,000		-

# PHE-LABORATORY P.W.D., TONCA-CARANZALEM Water Analysis

Public Water Bodies – Beaches Source of samples : Baga Beach Place of collection: Baga Date of collection 21/07/05 (Rainy Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		7.5		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	7.8	0	3
3	S. S.	(mg/1)	30.0		-
4	Coliform	MPN/100ml	2,400		-

Method of Testing: Standard Methods for the Examination of Water Wastewater 18th Ed..

# PHE-LABORATORY P.W.D., TONCA-CARANZALEM Water Analysis

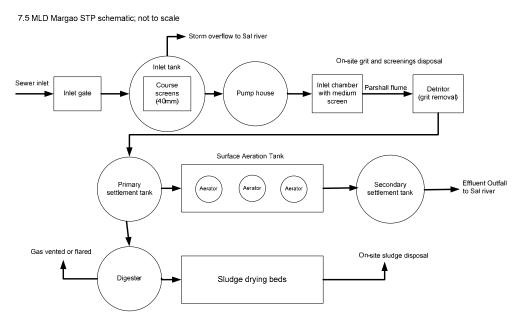
Public Water Bodies – Beaches Source of samples : Calangute Beach Place of collection : Calangute Date of collection 21/07/05 (Rainy Season)

Sr.No.	Test Parameters	Unit of Measurment	Results	Remark	Water Quality Standard SW II
1	pH.		7.6		6.5 to 8.5
2	BOD 5 days at 20 celsius	(mg/1)	8.4	0	3
3	S. S.	(mg/1)	21.0		-
4	Coliform	MPN/100ml	4,300		-

Appendix M37

Site Visit Reports

# **Contents for Appendix M37**


M37.1	Site Visit Report 10/05/05: 7.5 MLD Margao
	Sewage Treatment Plant (W.D.XXI) ···································
M37.2	Site Visit Report 16/05/05: 12.5 MLD Phase I Panaji
	Sewage Treatment Plant (Div. III) M37-4
M37.3	Site Visit Report 16/05/05:
	Opa Water Treatment Plants (Div. III) ·································
M37.4	Site Visit Report 17/05/05:
	Selaulim Water Treatment Plant (Div. XII) ··································
M37.5	Site Visit Report 18/05/05: PHE Sub-Division I (Div. XVII),
	Podocem WTP, Sanquelim WTP and Dabose WTP ······ M37-16
M37.6	Site Visit Report 19/05/05: Assonora Water Treatment Plant
	(Sub-Division IV, Div. XVII)······ M37-23
M37.7	Site Visit Report 19/05/05: Chandel Water Treatment Plant
	(Sub-Division II, Div. XVII) ···································
M37.8	Site Visit Report 20/05/05: Canacona Water Treatment Plant
	(Sub-Division IV, Div. XX) ··································
M37.9	Site Visit Report 23/05/05: Sub-Division II (Div. III)
	Sewerage Network -Panaji ······ M37-36
M37.10	Site Visit Report 24/05/05: PHE Sub-Division I (Div. III),
	Panaji water network ······ M37-41

# Appendix M37.1Site Visit Report 10/05/05:7.5 MLD Margao Sewage Treatment Plant (W.D.XXI)

The current plant represents Phase I of a 15 MLD scheme.

Tour of site conducted with Dayanand Kolkar (Fitter Grade I) and M.U. Jamadar (Technical Assistant)

Plant was built and commissioned by Hindustan Dorr-Oliver Limited approximately 5 years ago (2000), schematic as follows:



The sewerage network feeding the plant conveys the sewage by gravity. The sub-divisions let annual maintenance contracts for sewer cleaning and maintenance.

The plant is 'consented' to operate within agreed quality standards and volume parameters by the Goa State Pollution Control Board. A copy of the consent is held at the plant.

The Directorate of Health Services – Environmental and Pollution Control Wing samples and analyses raw and treated sewage at the plant on a monthly basis. Copies of the reports are held at the plant. Compliance standards are not shown on the reports, however, if compared to the consent standards, the effluent meets the standard for all parameters. Interestingly, the raw sewage results are below the consent standards for all parameters also. This is assumed to be caused by high infiltration levels as a result of a high water table in the catchment area (this requires investigation from the wastewater team). This being the case, there is currently no need for any treatment beyond primary settlement to comply with environmental standards, thus saving energy costs.

The plant and compound looked reasonably clean and tidy, although initial impression and general appearance is of a plant older than 5 years. The plant appeared to be in good working order. The site is manned on an 8 hour basis by 7 staff including operators, fitters and cleaners.

The compound is gated and enclosed by a concrete wall and secured by 24 hour on-site security personnel. Hand railing looked adequate. Guarding of moving machinery was not inspected closely. This will be reviewed as part of a more detailed review of O&M practices at a later date.

The Plant is manually operated. No operating procedures or process control charts/parameters displayed or evident. There were limited drawings on site but no O&M manuals in evidence. We understand these are kept at the sub-divisional office.

The pump house contains 2 number 25HP pumps (1 duty/1 standby) and 2 number 50HP pumps (1 duty/1 standby). There does not appear to be any other redundancy of plant/equipment on site.

'Running maintenance' is the responsibility of on-site staff who are equipped with basic hand tools. Simple maintenance such as gland packing, greasing etc. takes place for which materials are available; however, stocks of other spares are not maintained at the plant. Planned/preventative maintenance measures are not practiced; maintenance is on a breakdown basis. Maintenance procedures/records are not computerised.

We understand that there have not been any incidents or major breakdowns since commissioning; we understand in such circumstances repairs/plant replacement would be on a contract basis, either by open tender or competitive quotations.

The digesters are cleaned bi-monthly with the resulting material diverted to the sludge beds. The screenings, detritus and sludge are contained on site.

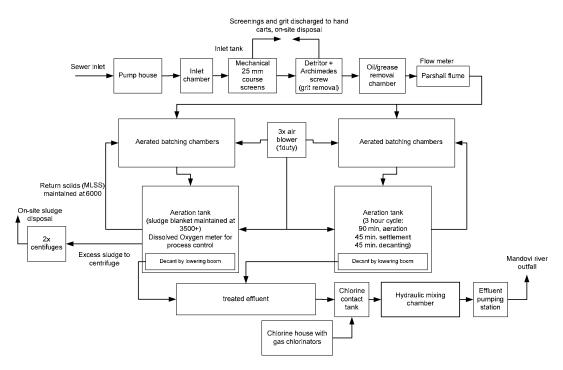
Logs are kept for pump running hours, electricity consumption, O&M problems and activities as well as petty cash operational expenditure for consumables etc. We understand that the electric meters are read monthly by sub-divisional staff who hold the operating budget for the plant O&M running costs.

Logs are kept for tankers offloading septic waste at the plant. Separate logs are kept for Municipal tankers and private tankers. Municipal tankers are not charged. Private tankers are charged Rs.500 payable at the divisional offices. The receipt is presented to the plant operators prior to allowing discharge to the plant.

Data from the logs is not reported 'upwards' (we understand that senior staff inspect the logs periodically). There does not appear to be an established system in place for reporting of management information. Computerised MIS or other systems are not in existence at the plant.

# Appendix M37.2Site Visit Report 16/05/05:12.5 MLD Phase I Panaji Sewage Treatment Plant (Div. III)

The new sequencing batch reactor (SBR) plant came into operation during February 2005 at which time the old 8MLD (trickling filters/digester) plant was decommissioned with the exception of the raw sewage well/pumping plant which is still in use until the new pumping plant is commissioned.


Tour of the site was conducted with Mr. Shetye (J.E) and Mr. Bhat (Managing Partner of H.N. Bhat & Co.)

Plant was built and commissioned by a joint venture company (H.N. Bhat, Pune & SFCU, Austria) between 23/10/03 and 16/02/05. Bhat provided the construction, manufacturing and process know-how, whilst SFCU provided the process automation (PLC/SCADA systems) expertise. It is understood that a remote communication link is maintained between the PLC/SCADA system and SFCU to monitor performance.

There are no printing facilities to log alarms, system parameters, faults or plant performance. We understand that this did not form part of the Contract. We recommend this be addressed as soon as possible.

The plant schematic is as follows:

12.5 MLD Phase I Panaji STP schematic, not to scale



The sewerage network feeding the plant conveys the sewage via 8 sewage pumping stations (SPS's). The sub-division responsible for the sewerage network (including SPS's) does the sewer cleaning and maintenance in-house.

We understand that the plant is yet to be 'consented' to operate within agreed quality and volume parameters by the Goa State Pollution Control Board.

The compound is not adequately gated, fenced or secured although we understand that the site is manned by 24 hour on-site security personnel. The site is being encroached by informal dwellings and is still ostensibly a 'construction site' with a number of hazards with little regard for safety being shown by contractors or PHE (children are freely living and playing on site). Whilst the contractors are responsible for O&M activities, this does not relieve PHE of their H&S responsibilities as 'controller of premises'.

Bhat/SFCU have been contracted to operate and maintain the plant for 5 years. It is evident that there was little formal involvement of PHE staff during the construction/commissioning phases. This continues to be the case for O&M practices. Due to the nature of technology employed (this is the only plant in Goa with process automation) we would recommend that PHE staff work along side the contractors to ensure transfer of knowledge sooner rather than later.

The Plant is automated with manual override and manned 24 hours per day (3 shift system). There are no operating procedures or process control charts/parameters displayed or evident. Whilst there are some equipment catalogues on site there are no written 'standard operating procedures' (SOP's), 'O&M manuals', 'H&S procedures', 'Safe Systems of Work' (example, plant isolation/lock-off procedures for maintenance of moving machinery, working in confined spaces, working in potentially explosive atmospheres etc.) or 'Emergency/Contingency plans'.¹ These will be required to ensure adequate transfer of knowledge and technology to ensure staff proficiency and optimum plant performance, as opposed to the existing informal custom and practice of 'on the job demonstration and instruction'.

Due to regular power failures, standby generation has been proposed but not yet provided.

The existing pump house contains 5 pumps, the 'running maintenance' of which is the responsibility of on-site staff equipped with basic hand tools. Simple maintenance such as gland packing, greasing etc. takes place for which materials are available; however, stocks of other spares are not maintained at the plant. Planned/preventative maintenance measures are not practiced; maintenance is reactive on a breakdown basis. Maintenance procedures/records are not computerised. Logs are kept for pump running hours, voltage and load.

The pump couplings/shafts are not guarded.

Operators/maintenance staff are not issued with personal protective equipment (PPE) such as gloves, goggles masks, helmets, safety shoes etc.

There is no portable gas detection equipment available (in cases of sewage flooding into pump house basement during breakdowns/maintenance).

There is no forced air ventilation equipment available (in cases of sewage flooding into pump house basement during breakdowns/maintenance).

The overhead crane and lifting tackle is not tested/certified periodically.²

The new pumping station contains 5 pumps with sufficient standby (3x 586 m3/hr + 2x 288 m3/hr). Pump couplings/shafts are not guarded.

¹ Check compliance with relevant regulation in force

² Check compliance with relevant regulation in force

Handrails are 0.9m high (need to check that this complies with relevant regulation).

A single dry powder fire extinguisher is provided, however, we understand that no fire fighting training has been provided.³

The overhead crane is not stamped with a 'safe working load'.

There is no forced air ventilation equipment available (in cases of sewage flooding into pump house basement during breakdowns/maintenance), but am told that this is to be provided prior to operation of the plant.

Remote pump switches, lighting and other electrical equipment are not 'explosion proof'.⁴

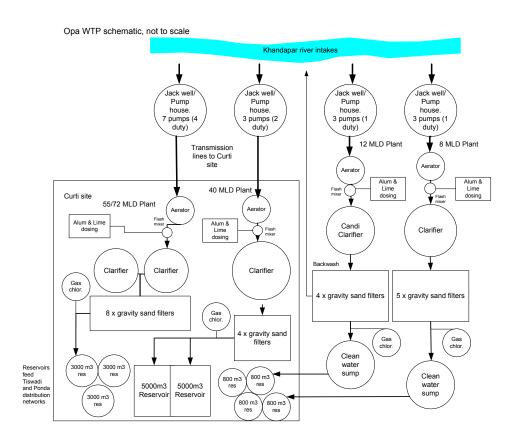
Safety awareness is low and plant operators/maintenance staff (contractors and PHE), are not issued with PPE.

The Chlorine facility is not yet commissioned. It is intended that the final effluent is chlorinated prior to discharge; however, we are informed that it is not the intention of the contractor to provide forced air breathing apparatus for cylinder change-over or for emergencies.

We understand that the plant will be maintained on a planned/preventative basis; however, 'planned maintenance schedules', a system of 'job tickets' or a system for recording asset information is not in existence. We are informed that a system of manual logs will be introduced as opposed to a computerised maintenance management system (CMMS). A limited number of spares are maintained on site, however, a formal stores/stock control system is not in existence or intended for the plant.

There does not appear to be an established formal system in place for reporting of management information including the need for the contractor to provide compliance and performance data to PHE.

³ Check compliance with relevant regulation in force


⁴ Check compliance with relevant regulation in force

#### Appendix M37.3 Site Visit Report 16/05/05: Opa Water Treatment Plants (Div. III)

The Opa facility has been augmented over the years and currently consists of 4 river intakes (one for each self contained WTP). The original site contains Plant I, 8MLD commissioned in 1957 and Plant II, 12 MLD commissioned in 1967. Plant III, 55MLD commissioned in 1972 (later increased to 72 MLD by adding an extra filter bed) and Plant IV, 40 MLD commissioned in 2004 are both sited at Curti, approximately 2.0 km away.

Tour of the site was conducted with Mr. Subhash Parab (A.E) and other technical staff.

The plant schematic is as follows:



Both compounds are adequately gated, fenced and secured by 24 hour on-site security personnel and all plants are operated and maintained on a 3 shift system covering 24 hours.

Raw water supplied to the plants as well as clean water fed to reservoirs is estimated based on pump design capacities and running hours. Flow measurement devices are not available on the plants with the exception of the newest plant.

The original compound has a process control lab covering 8 MLD and 12 MLD plants. The plants are manually controlled and considering the respective ages of the plants, most equipment looked in good working order with the exception of the Alum and Lime mixers which looked in poor order/defunct. Both plants had good housekeeping standards.

Gas chlorination is employed using 1 tonne cylinders. Housekeeping, installation standards and operation and maintenance practices for chlorine use are poor. There are no facilities for adequately detecting or containing gas leaks. Personal breathing apparatus is available in the lab but not used or maintained.

Logs are kept by the laboratory staff for chemical usage and treatment parameters.

Logs are kept for pump running hours, load, filter backwashing etc. as well as clear water reservoir levels, however, there are no maintenance logs detailing repairs to assets or maintenance/breakdown problems.

Hi speed pump couplings/shafts are not guarded.

The 40 MLD plant has its own process control lab. Logs are kept by the laboratory staff for chemical usage and treatment parameters.

The plant was commissioned, operated and maintained for 18 months prior to hand-over to PHE by 'M/S Enviro Control Associates Private Ltd – Surat'. A basic O&M manual has been provided with basic operating, maintenance and H&S instructions. On the job training was provided by the contractors during the O&M period.

The plant appeared to be in good working order and housekeeping standards are good. The plant is manually operated but electrical valve actuators are in use. We understand that a proposal for a SCADA system has been prepared.

Logs are kept for pump running hours, load, filter backwashing etc. as well as clear water reservoir levels, however, there are no maintenance logs detailing repairs to assets or maintenance/breakdown problems.

Gas chlorination is employed using  $3 \times 1$  tonne cylinders. Housekeeping, installation standards and operation and maintenance practices for chlorine use are poor. There are no facilities for adequately detecting or containing gas leaks. Personal breathing apparatus is available in the lab but not used or maintained.

The 72 MLD plant has its own process control lab. Logs are kept by the laboratory staff for chemical usage and treatment parameters.

Logs are kept for pump running hours, load, filter backwashing etc. as well as clear water reservoir levels, however, there are no maintenance logs detailing repairs to assets or maintenance/breakdown problems.

An Electro-chlorination system is used for disinfection. This appeared to be in good working order and housekeeping standards were good with the exception of the chlorination room. Gas chlorination using 1 tonne cylinders is still available for back-up purposes but appeared to be in relatively poor order with no facilities for detection or containment of leaks.

#### **General observations**

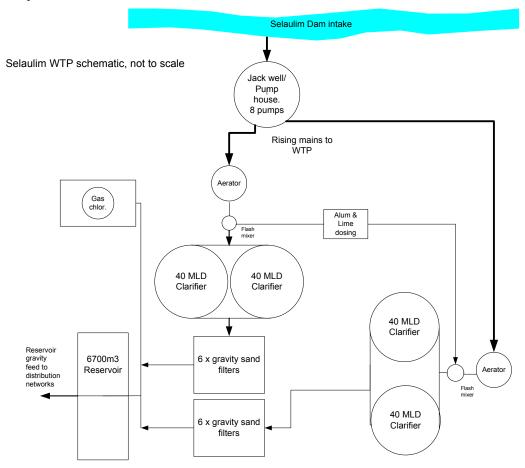
Running maintenance and reactive breakdown maintenance is done by PHE staff for all 4 plants. We understand that regular maintenance such as oiling and greasing is carried out as well as periodic maintenance but this is not recorder or formalised. Planned/preventative maintenance systems are not in place or intended. Repairs for major breakdowns are tendered by the divisional office. Records are maintained manually and there are no plans for employing a computerised maintenance management system.

Guarding of machinery is poor, especially on high speed rotating equipment (pump couplings/shafts).

Safety awareness is low and plant operators/maintenance staff are not issued with personal protective equipment (PPE).

Safety awareness and practices for use of chlorine gas is poor. For example, there are no written procedures for handling and connection of cylinders to chlorinators or for the maintenance of equipment, including replacement intervals for copper piping etc. Gas detectors are not installed and immersion tanks are not maintained fit for purpose. Personal breathing apparatus is available but not used or maintained.

There are no operating procedures or process control charts/parameters displayed or evident. Whilst there are some equipment catalogues on site there are no written 'standard operating procedures' (SOP's), 'O&M manuals' (with the exception of the newest plant), 'H&S procedures', 'Safe Systems of Work' (example, plant isolation/lock-off procedures for maintenance of moving machinery, working in confined spaces, etc.) or 'Emergency/Contingency plans'.


There does not appear to be an established formal system in place for reporting of management information such as compliance and performance data, maintenance issues, maintenance of assets data, H&S issues etc.

# Appendix M37.4Site Visit Report 17/05/05:Selaulim Water Treatment Plant (Div. XII)

The Salaulim facility was commissioned in 1989 and has a design capacity of 160 MLD although we are told that the plant is currently producing approximately 170 MLD. The raw water pump house supplies water to the plant via 2 No.1000mm rising mains approximately 1 km from the intake.

It is expected that the plant will be augmented with a further 40 MLD some time next year (currently being tendered). Plans are also well developed for a new proposed plant of 220 MLD for which the green field site has already been secured. Water for the existing and proposed plants is via the Selaulim Dam.

Tour of the site was conducted with Mr. Paranjape (E.E), Mr. Kunde (A.E) and other technical staff.



The plant schematic is as follows:

Both the raw water pumping compound and the treatment plant compound were adequately gated, fenced and secured by 24 hour on-site security personnel and the plant is operated and maintained on a 3 shift system covering 24 hours.

Raw water supplied to the plant as well as clean water fed to the transmission system via the clean water reservoir is estimated based on pump design capacities and running hours. Flow measurement devices (electromagnetic) are no longer working.

The raw water pump house has 8 pumps each of 1181 m3 capacity. Housekeeping standards are good; however, the drive couplings/shafts are not adequately guarded. We understand that the 10 tonne O/H crane has not been tested since installation in 1989 and whilst chains have been replaced periodically, records are not maintained for chains or lifting tackle.

Logs are maintained for pump running hours, loads etc; however, maintenance records are not kept. A well established system of monthly oiling and greasing is practiced; otherwise a system of reactive corrective maintenance is employed. Pumps are either oiled, greased or impellers replaced when showing signs of reduced discharge. There are no O&M manuals available and training for new staff is provided on the job by existing experienced staff. We are told that due regard is given for safety of staff whilst conducting maintenance, for example removing fuses when working on pumps, however there are no written or formal safe systems of work for plant isolation.

The treatment plant is manually controlled and considering its age most equipment looked in good working order including the Alum and Lime mixers. Generally, good housekeeping standards were evident; however, pump couplings/shafts are not adequately guarded.

Logs are kept for pump running hours, load, filter backwashing etc. as well as clear water reservoir levels, however, there are no maintenance logs detailing repairs to assets or maintenance/breakdown problems.

Logs are kept by the laboratory staff for chemical usage and treatment parameters.

Gas chlorination is employed using 1 tonne cylinders, usually 5 cylinders in the chlorine house at any one time. There are 4 vacuum type chlorinators (Aqua Pura Corp – Pune, who provide spares). Maintenance of chlorinators is performed in-house, but chlorinators are not periodically calibrated and records of maintenance are not kept. Housekeeping, installation standards and operation and maintenance practices for chlorine use are poor. Ammonia solution is used as a means of detecting leaks at pipe and connection joints; however, there are no facilities for adequately detecting or containing gas leaks with the exception of an immersion tank which is not easily accessible in an emergency. Personal breathing apparatus is available in the lab but not used or maintained. A combination of small bore PVC and flexible plastic hose is employed for connecting cylinders to chlorinators and from chlorinators to the contact tank. This is not safe practice.

The clean water reservoir has two compartments and is cleaned annually. The procedure is to remove covers to aid natural ventilation and to allow approximately 120 unskilled contract labour to enter to conduct manual desludging including the hosing/flushing down of internal surfaces. There are no safety precautions, safety equipment or safe system or work.

#### **General observations**

Running maintenance and reactive breakdown maintenance is done by PHE staff. Whilst regular maintenance such as oiling and greasing is carried out as well as periodic maintenance, this is not recorder or formalised. Planned/preventative maintenance systems are not in place or intended. Repairs for major breakdowns are tendered by the divisional office. Records are maintained manually and there are no plans for employing a computerised maintenance management system.

Guarding of machinery is poor, especially on high speed rotating equipment (pump couplings/shafts).

Safety awareness is low and plant operators/maintenance staff are not issued with personal protective equipment (PPE).

Safety awareness and practices for use of chlorine gas is poor. For example, there are no written procedures for handling and connection of cylinders to chlorinators or for the maintenance of equipment, including replacement intervals for copper piping etc. Gas detectors are not installed and personal breathing apparatus is available but not used or maintained.

There are no operating procedures or process control charts/parameters displayed or evident. Whilst there are some equipment catalogues on site there are no written 'standard operating procedures' (SOP's), 'O&M manuals' (with the exception of the newest plant), 'H&S procedures', 'Safe Systems of Work' (example, plant isolation/lock-off procedures for maintenance of moving machinery, working in confined spaces, etc.) or 'Emergency/Contingency plans'.

There does not appear to be an established formal system in place for reporting of management information such as compliance and performance data, maintenance issues, maintenance of assets data, H&S issues etc.

# Appendix M37.5Site Visit Report 18/05/05: PHE Sub-Division I (Div. XVII),<br/>Podocem WTP, Sanquelim WTP and Dabose WTP

The AE Sub-Division I (XVII) takes responsibility for customer services (new connections, meter reading, billing, revenue collection, complaints handling), transmission mains, distribution network, reservoirs and treatment facilities in his geographic region of control (Podecem WTP and Dabose WTP due to retirement). The Sanquelim WTP visited is under the jurisdiction of the sub-division managing the Assonora WTP.

Manual records are kept of water (value) billed versus collected as well as outstanding arrears. These are reported monthly to the Divisional office. Some recovery action is taken by PHE for defaulters, including disconnection. Cases older than 3 months with arrears exceeding Rs.1000 are forwarded to the Revenue Recovery Court (Government body with legal powers to recover charges on behalf of PWD).

We are told that water is available in the system for approximately 12 hours per day and the AE takes responsibility for periodic measurement of residual chlorine at the tail ends of the network. Some drawings are available of transmission lines and reservoirs but generally distribution mains with valve arrangements and customer connections are not available. Locations of pipes and valves are known to staff who are experienced on the system but there is no formal system for recording of asset data.

O&M of the distribution network including burst pipe repairs is carried out by PHE staff. Whilst backfilling of trenches is carried out by PHE, 'PWD roads division' are responsible for resurfacing/repairs to road surfaces and bill PHE for work conducted.

Some stock items are maintained such as pipe fittings, repair couplings, meters etc; with stocks normally replenished from the Divisional stores. Whilst material usage is recorded, there is no system for relating material usage against individual assets and burst pipe records are not maintained.

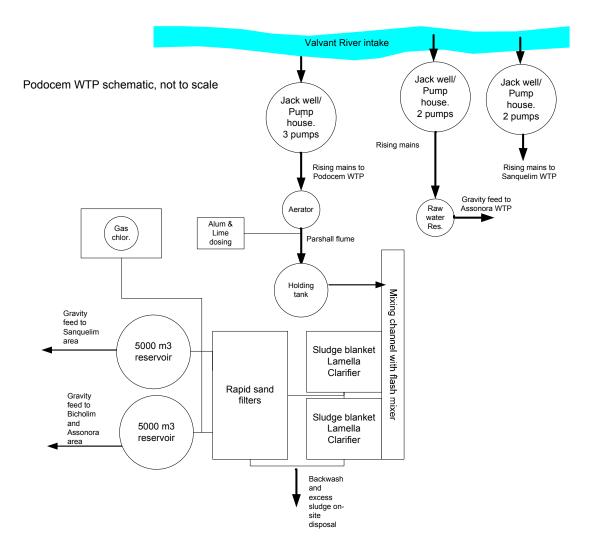
There are no control centres through out the PHE division as currently all networks are independent to each supply scheme.

A complaints log is maintained during office hours. The AE is on call to customers on a 24 hour (residence and mobile numbers listed in the local telephone directory). Also, we understand that PWD do operate a 24 hour help line for emergencies and pass on water/wastewater related calls to the appropriate AE in charge.

PHE do not have a customer service strategy or citizens charter stating levels of service provision. Common design/installation standards are not applied for new connections; however, CPWD Manuals and Byelaws are available for reference. Revenue meters are sealed and certified by the manufacturer; however, the meter does not have a non return valve and is not sealed to fittings such as stop valves. PHE do not have a system of periodic maintenance, cleaning, calibration or replacement of meters.

Staff conducting street works do not have a safe system of work and only limited "work in progress" signage is available. Only rudimentary tools are available for O&M activities. Active leakage control practices are not conducted.

Tour of the sites was conducted with Mr. Shel (A.E), Mr. Joshi (T.A) and other technical staff from each plant.


#### Podocem WTP

The Podocem facility has recently been commissioned (2003) and has a design capacity of 40 MLD. The newly constructed raw water pump house supplies water from the Valvant River to the plant approximately 0.6 km from the intake. There are 3 pumps (2 duty) which are not adequately guarded. A log of running hours, loads etc. is maintained. O&M of the pump house and treatment plant has been contracted to a local company (run by a retired PHE engineer) on a 3 month basis which may be followed by a longer contract (2-5 years).

The Pump house compound also contains a pump house commissioned in 1992 with 2 pumps (1 duty) which are not adequately guarded supplying 25 MLD to Assonora WTP via a short rising main to a reservoir from which it is fed by gravity to the plant approximately 20 km away. A log of running hours, loads etc. is maintained.

A third pump house containing 2 pumps (1 duty) commissioned in 1972 supplies water to the 12 MLD Sanquelim WTP via a 0.6 km rising main. This pump house is untidy and the pumps are not adequately guarded. A log of running hours, loads etc. is maintained.

The plant schematic is as follows:



Both the raw water pumping compound and the treatment plant compound were adequately gated, fenced and secured by 24 hour on-site security personnel and the plant is operated and maintained on a 3 shift system covering 24 hours.

Raw water supplied to the plant as well as clean water fed to the transmission system via the clean water reservoirs is estimated based on pump design capacities and running hours. Flow measurement devices are not available.

Logs are maintained for pump running hours, loads etc; however, maintenance records are not kept. A well established system of monthly oiling and greasing is practiced; otherwise a system of reactive corrective maintenance is employed. There are no O&M manuals available and training for new staff is provided on the job by existing experienced staff. There are no written or formal safe systems of work for plant isolation.

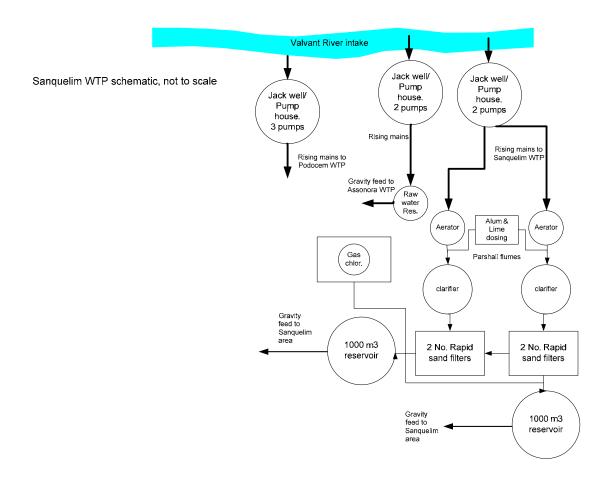
The treatment plant is manually controlled but valves are operated remotely by pneumatic actuators. The plant is new and looked in good working order including the Alum and Lime mixers. Generally, good housekeeping standards were evident; however, pump couplings/shafts are not adequately guarded.

Logs are kept for pump running hours, load, filter backwashing etc. as well as clear water reservoir levels, however, there are no maintenance logs detailing repairs to assets or maintenance/breakdown problems.

Logs are kept by the laboratory staff for chemical usage and treatment parameters.

Gas chlorination is employed using 1 tonne cylinders, usually 2 cylinders in the chlorine house at any one time. There are 2 vacuum type chlorinators (Metito Mach4). Maintenance of chlorinators is performed in-house, but chlorinators are not periodically calibrated and records of maintenance are not kept. Operation and maintenance practices for chlorine use are poor. Ammonia solution is used as a means of detecting leaks at pipe and connection joints; however, there are no facilities for adequately detecting or containing gas leaks. No immersion tank has been provided. Personal breathing apparatus is available in the lab but not used or maintained. Copper connection pipes are being repaired locally and looked in poor condition. These should be discarded, not repaired. The galvanised iron feed pipe to the contact tank was badly corroded and should be replaced.

The clean water reservoirs are cleaned annually. The procedure is to remove covers to aid natural ventilation and to allow manned entry for sludge removal and flushing. There are no safety precautions, safety equipment or safe system or work.


#### **Sanquelim WTP**

The scheme consists of a 7 MLD plant and a 5 MLD plant, commissioned around 1972.

The plants are manually operated and despite their age appear to be in good working condition. Housekeeping standards look reasonable apart from the chemical mixing areas. The chlorine house was equipped with a 1 tonne cylinder and 1 vacuum type chlorinator with no standby.

Logs are maintained for pump run hours, load, chemical use and treatment parameters.

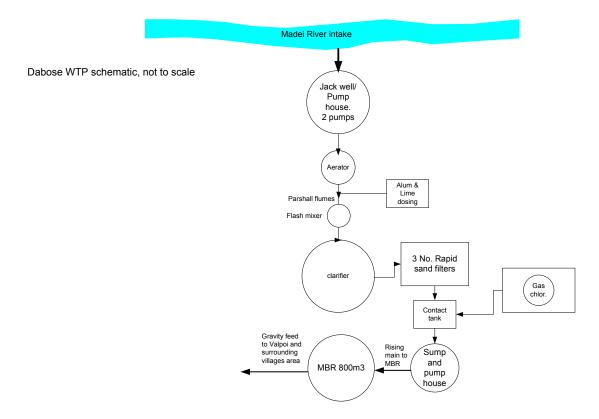
The plant schematic is as follows:



#### **Dabose WTP**

The scheme consists of a 5 MLD plant, commissioned around 1992. We are told that the plant is currently running at 7 MLD to help met demand.

The raw water pump house contains 2 pumps (1 duty) and draws water from the Madei River. The pumps were well guarded. The plant is manually operated and despite its age appears to be in good working condition. There are no flow measuring devices.


Security arrangements at the complex are good.

Housekeeping standards are very good apart from the chemical mixing areas. The chlorine house is equipped with 2 No. 1 tonne cylinders and 1 vacuum type chlorinator with no standby. An immersion tank is present. The chlorine installation looked tidy and well maintained.

A standby generator is available at the site in case of power failures.

Logs are maintained for pump run hours, load, chemical use and treatment parameters.

The plant schematic is as follows:



#### General observations

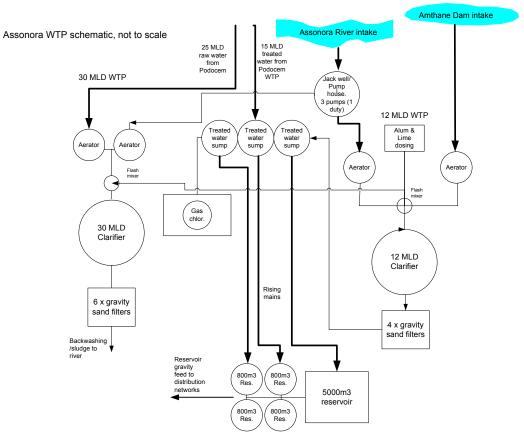
Running maintenance and reactive breakdown maintenance is done by contract staff. Whilst regular maintenance such as oiling and greasing is carried out as well as periodic maintenance, this is not recorder or formalised. Planned/preventative maintenance systems are not in place or intended. Records are maintained manually and there are no plans for employing a computerised maintenance management system.

Guarding of machinery is poor, especially on high speed rotating equipment (pump couplings/shafts).

Safety awareness is low and contract staff are not issued with personal protective equipment (PPE).

Safety awareness and practices for use of chlorine gas is poor. For example, there are no written procedures for handling and connection of cylinders to chlorinators or for the maintenance of equipment, including replacement intervals for copper piping etc. Gas detectors are not installed and personal breathing apparatus is available but not used or maintained.

There are no operating procedures or process control charts/parameters displayed or evident. Whilst there are some equipment catalogues on site there are no written 'standard operating procedures' (SOP's), 'O&M manuals' (with the exception of the newest Podocem plant), 'H&S procedures', 'Safe Systems of Work' (example, plant isolation/lock-off procedures for maintenance of moving machinery, working in confined spaces, etc.) or 'Emergency/Contingency plans'.


There does not appear to be an established formal system in place for reporting of management information such as compliance and performance data, maintenance issues, maintenance of assets data, H&S issues etc.

# Appendix M37.6Site Visit Report 19/05/05:Assonora Water Treatment Plant (Sub-Division IV, Div. XVII)

The Assonora facility consists of a 12 MLD plant commissioned in 1968 and a 30 MLD planned commissioned in 1992. The 12 MLD plant sources water from the Amthane Dam by gravity feed approximately 10 km from the plant as well as a supplementary supply from the Assonora River via a jack well. The river source supply line is interconnected with the 30 MLD plant to supplement the main incoming raw water supply from Podocem (20 km's away) which provides 25 MLD to the plant. The site also contains a clear water supp for the approximately 15 MLD treated water received from Podocem WTP for onward distribution to the Assonora supply area.

We understand that a proposal for an additional 40 MLD plant has been prepared and submitted to PWD for approval.

Tour of the site was conducted with Mr. Vijay Joglekar (A.E), Mr. Halarenker (J.E), Mr. Naik (chemist) and other technical staff.



The plant schematic is as follows:

The raw water pump house and the treatment plant are within the same compound which was adequately gated, fenced and secured by 24 hour on-site security personnel. The plant is manually operated and maintained on a 3 shift system covering 24 hours.

Raw water supplied to the plant from the Dam, river and Podocem and clean water fed to the plant from Podocem WTP as well as onward transmission via the clean water reservoirs is estimated based on pump design capacities and running hours. Flow measurement devices are not installed.

The raw water pump house has 3 pumps (1 duty) each of 15 MLD capacity. Housekeeping standards are good; however, the drive couplings/shafts are not adequately guarded.

Logs are maintained for pump running hours, loads etc; however, maintenance records are not kept. Apart from regular oiling and greasing, a system of reactive corrective maintenance is employed. There are no O&M manuals available and training for new staff is provided on the job by existing experienced staff. There are no written or formal safe systems of work for plant isolation.

The treatment plants are manually controlled and considering their respective ages most equipment looked in good working order with the exception of the Alum and Lime mixers which are defunct. Subsequently, lime and alum are added by hand at the flash mixer point. Generally, good housekeeping standards were evident and the treated water pumps were well guarding. This should be used as an example of good practice to other sites.

Logs are kept for pump running hours, load, filter backwashing etc. as well as clear water reservoir levels, however, there are no maintenance logs detailing repairs to assets or maintenance/breakdown problems.

Logs are kept by the laboratory staff for chemical usage and treatment parameters.

Gas chlorination is employed using 1 tonne cylinders, usually 8 cylinders in the chlorine house at any one time (5 empty). There are 4 vacuum type chlorinators (2 standby). Maintenance of chlorinators is performed in-house, but chlorinators are not periodically calibrated and records of maintenance are not kept. Housekeeping, installation standards and operation and maintenance practices for chlorine use are poor. Ammonia solution is used as a means of detecting leaks at pipe and connection joints; however, there are no facilities for adequately detecting or containing gas leaks with the exception of an immersion tank which is not easily accessible in an emergency and was empty at the time of visit.

The flexible copper pipes were trailing on the platform and presented a trip hazard and the pipes are susceptible to damage; this is not safe practice. The feeder pipe to the contact tanks is PVC and unprotected; this is not safe practice. Personal breathing apparatus is available in the lab but not used or maintained. This facility is probably in the poorest condition of all the facilities visited and presents a serious health hazard.

The clean water reservoirs are cleaned every 6 months by PHE staff. The procedure is to remove covers to aid natural ventilation and to allow entry to conduct manual desludging including the hosing/flushing down of internal surfaces. There are no safety precautions, safety equipment or safe system or work.

#### **General observations**

Running maintenance and reactive breakdown maintenance is done by PHE staff. Whilst regular maintenance such as oiling and greasing is carried out as well as periodic maintenance, this is not recorder or formalised. Planned/preventative maintenance systems are not in place or intended. Records are maintained manually and there are no plans for employing a computerised maintenance management system.

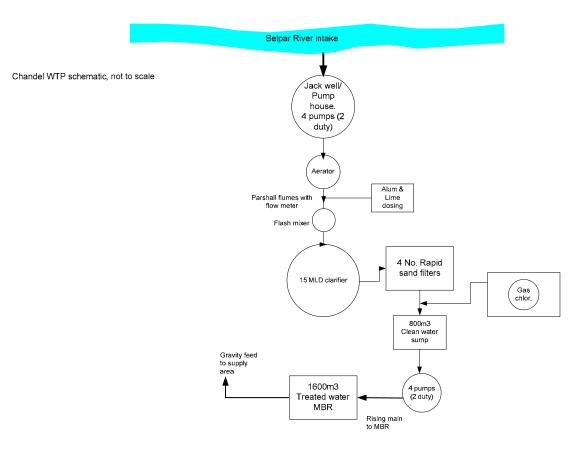
Guarding of machinery is poor, especially on high speed rotating equipment (pump couplings/shafts) with the exception of the treated water pumps.

Safety awareness is low and plant operators/maintenance staff are not issued with personal protective equipment (PPE).

Safety awareness and practices for use of chlorine gas is poor. For example, there are no written procedures for handling and connection of cylinders to chlorinators or for the maintenance of equipment; including replacement intervals for copper piping etc. (stocks of piping and chlorinator spares are available in the lab). Gas detectors are not installed and personal breathing apparatus is available but not used or maintained.

There are no operating procedures or process control charts/parameters displayed or evident. Whilst there are some equipment catalogues on site there are no written 'standard operating procedures' (SOP's), 'O&M manuals', 'H&S procedures', 'Safe Systems of Work' (example, plant isolation/lock-off procedures for maintenance of moving machinery, working in confined spaces, etc.) or 'Emergency/Contingency plans'.

There does not appear to be an established formal system in place for reporting of management information such as compliance and performance data, maintenance issues, maintenance of assets data, H&S issues etc.


## Appendix M37.7Site Visit Report 19/05/05:Chandel Water Treatment Plant (Sub-Division II, Div. XVII)

The Chandel facility consists of a 15 MLD plant commissioned in 2002. Raw water is sourced from the Belpar River which is pumped approximately 150m to the plant. The site contains a clear water sump from which water is pumped to the MBR approximately 800m away for onward gravity feed to the distribution system.

We understand that prior to commissioning of the plant, a number of rural water supply schemes were in operation and the networks for these schemes are now interconnected with the Chandel plant. We understand that the rural schemes serve to augment the regional scheme at peak demand times.

Tour of the site was conducted with Mr. Rao (A.E) and other technical staff.

The plant schematic is as follows:



The raw water pump house and treatment plant are sited in separate compounds which were adequately gated, fenced and secured by 24 hour on-site security personnel. The plant is manually operated and maintained on a 3 shift system covering 24 hours. We are told that due to the need to enhance the distribution network the plant currently only operates at 8.5 MLD.

Raw water supplied to the plant was measured at the Parshall flume which had a working flow measuring device. Flow to the MBR and onward transmission via the clean water reservoirs is estimated based on pump design capacities and running hours. Flow measurement devices are not installed.

The raw water pump house has 4 pumps (2 duty) each of 200lps capacity. Housekeeping standards are good and the drive couplings/shafts are well guarded.

Apart from regular oiling and greasing, a system of reactive corrective maintenance is employed. There is no O&M manual available (although some equipment catalogues are available) and training for new staff is provided on the job by existing experienced staff. There are no written or formal safe systems of work for plant isolation.

The treatment plant is manually controlled and most equipment looked in good working order with the exception of the Alum and Lime mixers. The Lime mixers are not functioning, subsequently; lime is added by hand at the flash mixer point. Generally, good housekeeping standards were evident and the treated water pumps were well guarding.

#### Currently there are no logs maintained at the plant.

The plant does not have an on-site laboratory, although equipment for measuring residual chlorine and ph levels was available. We are told these parameters are measured hourly by the plant operators for process control, however logs are not kept. We understand that staff from the Panaji lab visit the site and take samples for analysis once a week.

Gas chlorination is employed using 1 tonne cylinders, usually 1 cylinder in the chlorine house at any one time. There is 1 vacuum type chlorinator (no standby), although we are told that another chlorinator is to be provided. Maintenance of chlorinators is performed in-house, but chlorinators are not periodically calibrated and records of maintenance are not kept. There are no spares on-site for the chlorine facility. Housekeeping, installation standards and operation and maintenance practices for chlorine use are poor. Ammonia solution is used as a means of detecting leaks at pipe and connection joints; however, there are no facilities for adequately detecting or containing gas leaks with the exception of an immersion tank which is not easily accessible in an emergency. The feeder pipe to the contact tanks was poor quality flexible plastic hose and was unprotected; this is not safe practice and should be rectified immediately. Personal breathing apparatus is not provided and the lack of safety awareness for the safe use of chlorine was evident.

#### **General observations**

Running maintenance and reactive breakdown maintenance is done by PHE staff.

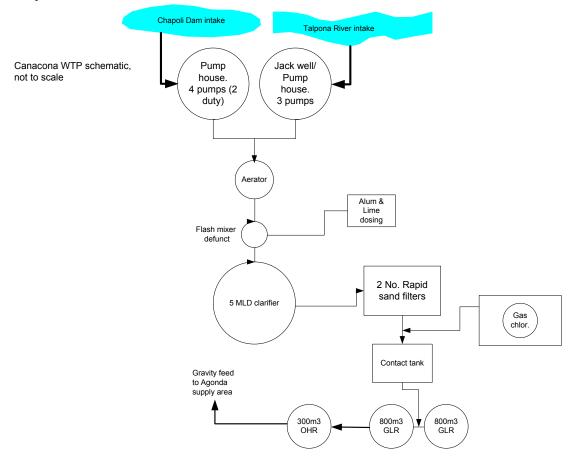
Whilst regular maintenance such as oiling and greasing is carried out this is not recorder or formalised. Planned/preventative maintenance systems are not in place or intended. Records There are no plans for employing a computerised maintenance management system.

Guarding of machinery is good, including high speed rotating equipment (raw and treated water pump couplings/shafts).

Safety awareness is low and plant operators/maintenance staff are not issued with personal protective equipment (PPE).

Safety awareness and practices for use of chlorine gas is poor. There are no written procedures for handling and connection of cylinders to chlorinators or for the maintenance of equipment; including replacement intervals for copper piping etc. Stocks of piping and chlorinator spares are not available on site. Gas detectors are not installed and personal breathing apparatus is not provided. **This is not safe practice.** 

There are no operating procedures or process control charts/parameters displayed or evident. Whilst there are some equipment catalogues on site there are no written 'standard operating procedures' (SOP's), 'O&M manuals', 'H&S procedures', 'Safe Systems of Work' (example, plant isolation/lock-off procedures for maintenance of moving machinery, working in confined spaces, etc.) or 'Emergency/Contingency plans'.


There does not appear to be an established formal system in place for reporting of management information such as compliance and performance data, maintenance issues, maintenance of assets data, H&S issues etc.

### Appendix M37.8Site Visit Report 20/05/05:Canacona Water Treatment Plant (Sub-Division IV, Div. XX)

The Canacona facility consists of a 5 MLD plant commissioned in 1983. Raw water is sourced from the Tapona River as well as the Chapoli Dam which came into operation in 1997. The river intake has a jack well with 3 pumps (this was locked at the time of visit and therefore we could not assess the condition). The Dam intake pump house was equipped with 3 number 100HP pumps and a small submersible pump (not adequately guarded). The rising main to the plant is approximately 8.5km long.

We understand that there are 40 rural water supply schemes still in operation and the networks for these schemes are completely independent from each other as well as form the regional scheme. The rural supply scheme at Matve was visited which supplies water to Parekatta.

Tour of the site was conducted with Mr. Bhangle (J.E) and other technical staff.



The plant schematic is as follows:

The raw water pump house and treatment plant are sited in separate compounds which were adequately gated, fenced and secured by 24 hour on-site security personnel. The plant is manually operated and maintained on a 3 shift system covering 24 hours.

Raw water supplied to the plant was not measured. Water leaving the plant was not measured.

The Dam intake raw water pump house has 3 pumps (1 duty) each of 100HP capacity and a small submersible pump to augment supplies rather than run a second large pump. Housekeeping standards are good; however, the drive couplings/shafts are not guarded.

Apart from regular oiling and greasing, a system of reactive corrective maintenance is employed. There is no O&M manual available and training for new staff is provided on the job by existing experienced staff. There are no written or formal safe systems of work for plant isolation.

The treatment plant is manually operated and controlled and most equipment looked in good working order with the exception of the flash mixer and the clarifier which were not working at the time of visit. Generally, good housekeeping standards were evident. A log is maintained for run hours, loads, etc; however, there were no maintenance logs.

The plant has a small on-site laboratory and a log is kept of the usual treatment parameters as well as chemical usage.

Gas chlorination is employed with bleaching powder being added manually as a back-up. The chlorine house is of open construction using 1 tonne cylinders, usually 2 cylinders in the chlorine house at any one time. There is 1 vacuum type chlorinator (no standby). Maintenance of chlorinators is performed in-house, but chlorinators are not periodically calibrated and records of maintenance are not kept. There are no spares on-site for the chlorine facility. Housekeeping, installation standards and operation and maintenance practices for chlorine use are poor. There are no facilities for adequately detecting or containing gas leaks with the exception of an immersion tank which empty at the time of visit. Flexible rubber hose is used instead of copper tubing for connecting cylinders to the chlorinator. This is not safe practice. The feeder pipe to the contact tanks was poor quality flexible plastic hose and was unprotected; **this is not safe practice and should be rectified immediately**. Gas masks are provided (canister type); however, general lack of awareness for the safe use of chlorine was evident.

#### **General observations**

Running maintenance and reactive breakdown maintenance is done by PHE staff. Whilst regular maintenance such as oiling and greasing is carried out this is not recorder or formalised. Planned/preventative maintenance systems are not in place or intended. There are no plans for employing a computerised maintenance management system.

Guarding of machinery is poor (raw and treated water pump couplings/shafts).

Safety awareness is low and plant operators/maintenance staff are not issued with personal protective equipment (PPE).

Safety awareness and practices for use of chlorine gas is poor. There are no written procedures for handling and connection of cylinders to chlorinators or for the maintenance of equipment; including replacement intervals for copper piping etc. Stocks of piping and chlorinator spares are not available on site. Gas detectors are not installed although canister type breathing apparatus is provided.

There are no operating procedures or process control charts/parameters displayed or evident. Whilst there are some equipment catalogues on site there are no written 'standard operating procedures' (SOP's), 'O&M manuals', 'H&S procedures', 'Safe Systems of Work' (example, plant isolation/lock-off procedures for maintenance of moving machinery, working in confined spaces, etc.) or 'Emergency/Contingency plans'.

There does not appear to be an established formal system in place for reporting of management information such as compliance and performance data, maintenance issues, maintenance of assets data, H&S issues etc.

#### Rural water supply scheme; Matve to Parekatta

The scheme consisted of a manned pump house (24 hour manning) with a small (5 HP) submersible pump suspended in a bore well approximately 160m deep. This was commissioned in 1991. Bore wells are constructed by the Central Ground Water Board on behalf of the PHE. The pump feeds a 25m3 OHR which provides a gravity feed to the village. A chlorine solution (5%) is added to the OHR from 25 litre plastic containers to maintain residual levels; however, it is not clear if the residual chlorine level is regularly tested. There is no standby pump and therefore villagers can go without water for days when the pump breaks down.

We understand that the scheme supplies a population of approximately 1000 people with 2 or 3 hours supply per day. Supply valves are controlled by PHE staff. There are approximately 25 private connections and 25 public stand posts. There is no charge for water consumed from stand posts in rural or urban areas and consumption is not measured.

### Appendix M37.9Site Visit Report 23/05/05:Sub-Division II (Div. III) Sewerage Network -Panaji

The EE Division III takes responsibility for water and wastewater systems within his geographic area of control (Ponda and Tiswadi Talukas). This includes, water production, transmission and distribution systems O&M (including pumping stations, reservoirs, tanker deliveries etc.), customer services including meter reading, billing, revenue collection, new supplies and complaints handling, sewerage network/pumping stations and sewage treatment plant O&M. Regional responsibility is also held for capital schemes (proposals, outline designs, estimation, tendering, contract supervision etc.).

The AE Sub-Division II (Div. III) takes responsibility for the Panaji STP and the Panaji sewerage network. (The STP has been subject to a separate review). Sub-Division II has 114 staff (to be confirmed as organisation charts are not available) consisting of 'regular', 'work charged' and 'contract' categories.

Discussions were held with Mr. Radhakrishnan (AE) and a tour of the sewerage network was conducted with Mr. Charles De Souza (J.E) and other technical staff.

The Panaji system consists of approximately 40 km of sewers with 8 sewage pumping stations (SPS) dating back to 1967, conveying sewage to the Panaji STP. The network is not combined with storm water draining; this is the responsibility of the Municipal Council which also takes responsibility for solid waste disposal. There are drawings available of the network showing location of manholes, inspection chambers etc. There does not appear to be a formal system in place to ensure that asset information is kept up to date. We understand that approximately 85% of Panaji is covered by the network, with a relatively high connection rate of 81% of premises. Pumping mains are either DI or CI and sewers are either stoneware or concrete pipes.

The sub-division operates with the minimal of material and equipment resources which includes 1 jeep, 10 bicycles and a number of hand tools such as picks, hammers, shovels and sewer rods with various attachments for attending to blockages. These are hand operated. Powered cleaning equipment such as mechanically operated rods, dredgers, swab pulleys, gully suckers, pressure washers, etc; are not available, although, we understand that on occasions, contractors are employed with high pressure jetting machines/gully suckers etc. when the need arises. As within other divisions, staff are accustomed to using personal mobile phones and personal vehicles to enable them to carry put their official duties more effectively.

Staff are not equipped with PPE, spark proof tools, explosion proof torches, road signage, manhole lifting keys, gas detection equipment, forced ventilation equipment, tripods/safety harnesses etc. Currently, SPS and sewer O&M are conducted with little regard for safety and without 'safe systems of work'.

We understand that problem areas prone to blockage due to build up of fat/grease and solid waste are inspected and cleared regularly, however, there is not a system in place (scheduling) for regular inspections, cleaning, or maintenance of the network including manhole covers/inspection chambers. O & M records are not maintained. Debris removed from the sewers is usually taken to the Panaji STP for on-site disposal.

We are told that there are instances of illegal connections to the network as well as regular problems caused by the fish market who have tampered with the manholes to allow debris to be swept into the sewers (this was witnessed during our visit) and hotels that do not properly maintain or clean grease traps. Whilst PHE staff visit problem hotels and restaurants occasionally requesting that they 'clean up their act', **there are no formal systems in place to ensure 'trade effluent compliance'.** 

Three of the eight sewage pumping stations were visited that were considered representative, as follows:

#### SPS (5) Don Bosco

This is the largest SPS and is manually operated on a 3 shift 24 hour basis. Most of the equipment is more than 30 years old.

The site is not gated or adequately fenced or secured. The wet well is open and not guarded. We are told that the wet well is emptied and cleaned by hand; manually desludged, annually.

The pump house is untidy and there are a number of trip hazards. 5 pump (1duty), shafts are not guarded.

Lighting is poor and tools for O&M work are inadequate.

Staff are not issued with spark proof tools.

There are no safe systems of work for operation or maintenance activities.

Staff are not issued with PPE with the exception of rubber gloves for unblocking pumps, although we are told that staff do not use these as they are cumbersome.

There is no standby generation equipment.

There is no extraction or forced air ventilation.

There is no method of safely detecting a build up of methane gas.

The electrical switchgear and lighting is not spark or explosion proof.

Reactive breakdown maintenance methods are practiced. Maintenance records are not maintained, however, a log is kept for pump run hours.

#### This site represents a serious hazard to staff and to the general public.

#### SPS (10) Bhatulem

This SPS is manually operated on a 3 shift 24 hour basis. Most of the equipment is more than 15 years old.

The site is gated but not locked, or adequately fenced or secured. The wet well is not adequately guarded. We are told that the wet well is emptied and cleaned by hand; manually desludged, annually.

The pump house is untidy and there are a number of trip hazards. 2 pump (1duty), shafts are not guarded.

Lighting is poor and tools for O&M work are inadequate.

Staff are not issued with spark proof tools.

There are no safe systems of work for operation or maintenance activities.

Staff are not issued with PPE with the exception of rubber gloves for unblocking pumps, although we are told that staff do not use these as they are cumbersome.

There is no standby generation equipment.

There is no extraction or forced air ventilation.

There is no method of safely detecting a build up of methane gas.

The electrical switchgear and lighting is not spark or explosion proof.

Reactive breakdown maintenance methods are practiced. Maintenance records are not maintained, however, a log is kept for pump run hours.

#### SPS (3) Avanti

This SPS is manually operated on a 3 shift 24 hour basis. Most of the equipment is more than 15 years old.

The site is on the public highway pavement and not gated or adequately fenced or secured. The wet well is not adequately guarded. We are told that the wet well is emptied and cleaned by hand; manually desludged, annually.

The pump house is untidy and there are a number of trip hazards. 3 pump (1duty), shafts are not guarded.

Lighting is poor and tools for O&M work are inadequate.

Staff are not issued with spark proof tools.

There are no safe systems of work for operation or maintenance activities.

Staff are not issued with PPE with the exception of rubber gloves for unblocking pumps, although we are told that staff do not use these as they are cumbersome. There is no standby generation equipment.

There is no extraction or forced air ventilation.

There is no method of safely detecting a build up of methane gas.

The electrical switchgear and lighting is not spark or explosion proof.

Reactive breakdown maintenance methods are practiced. Maintenance records are not maintained, however, a log is kept for pump run hours.

#### General observations

Running maintenance and reactive breakdown maintenance is done by PHE staff.

Sewer cleaning and maintenance is done by PHE staff. Sewer cleaning equipment is inadequate.

O&M records are not maintained. Planned/preventative maintenance systems are not in place or intended. Records are maintained manually and there are no plans for employing a computerised maintenance management system.

Guarding of machinery is poor, especially on high speed rotating equipment (pump couplings/shafts).

Safety awareness is low and plant operators/maintenance staff are not issued with personal protective equipment (PPE).

Unsafe practices are employed for working in highways and in potentially explosive atmospheres in sewers and sewage pumping stations. For example, staff are not issued with specialist tools, gas detection equipment, ventilation or extraction equipment, safety masks, PPE or adequate signage or methods for controlling traffic movement.

Lighting and electrical equipment does not appear to be either spark or explosion proof.

There are no written inspection schedules, 'standard operating procedures' (SOP's), 'O&M manuals', 'H&S procedures', 'Safe Systems of Work' (example, plant isolation/lock-off procedures for unblocking/maintenance of moving machinery, working in confined spaces, working in potentially explosive atmospheres etc.) or 'Emergency/Contingency plans'.

There does not appear to be an established formal system in place for reporting of management information such as operations and maintenance issues, updating of assets data, H&S issues etc.

## Appendix M37.10Site Visit Report 24/05/05:PHE Sub-Division I (Div. III), Panaji water network

Discussions were held with MR. Gopalan (AE) and staff.

The AE Sub-Division I (III) takes responsibility for customer services (new connections, meter reading, billing, revenue collection, complaints handling), transmission mains, distribution network and reservoirs in his geographic region of control. The Regional water supply scheme (OPA) supplying the Panaji area is managed by the Opa AE who also takes responsibility for transmission mains up to sub-division I boundary. Sub-Division IV takes responsibility for the mains crossing their geographic region of control. The 'allocation' of water from the plant to the various divisional boundaries is based on custom and practice as there is no means of measuring the flow.

We understand that there is no system for regular meetings within divisions or between division or opportunities for discussing operational issues or sharing of best practice.

An organisation chart for the Division is not in existence.

Maintenance records are not maintained.

There are no O&M or H&S manuals for the network or reservoirs and there are no formal safe systems of work.

Staff are not issued with communications equipment or PPE. There are a limited number of works vehicles available (2 jeeps, 2 trucks and 2 water tankers), staff are accustomed to using their own personal vehicles for work related activities.

Manual records are kept of water (value) billed versus collected as well as outstanding arrears. These are reported monthly to the Divisional office. Some recovery action is taken by PHE for defaulters, including disconnection. Cases older than 3 months with arrears exceeding Rs.1000 are forwarded to the Revenue Recovery Court (Government body with legal powers to recover charges on behalf of PWD).

We are told that water is available in the system for approximately 2 to 4 hours per day and the AE takes responsibility for periodic measurement of residual chlorine at the tail ends of the network. Some drawings are available for the distribution network and reservoirs but valve arrangements and customer connections are not available. Locations of pipes and valves are known to staff who are experienced on the system but there is no formal system for recording of asset data.

O&M of the distribution network including burst pipe repairs is carried out by PHE staff. Whilst backfilling of trenches is carried out by PHE, 'PWD roads division' are responsible for resurfacing/repairs to road surfaces and bill PHE for work conducted.

Some stock items are maintained such as pipe fittings, repair couplings, meters etc; with stocks normally replenished from the Divisional stores. Whilst material usage is recorded, there is no system for relating material usage against individual assets and burst pipe records are not maintained.

There are no control centres through out the PHE division as currently all networks are independent to each supply scheme.

A complaints log is maintained during office hours. The AE is on call to customers on a 24 hour (residence and mobile numbers listed in the local telephone directory).

PHE do not have a customer service strategy or citizens charter stating levels of service provision. Common design/installation standards are not applied for new connections; however, CPWD Manuals and Byelaws are available for reference. Revenue meters are sealed and certified by the manufacturer; however, the meter does not have a non return valve and is not sealed to fittings such as stop valves. PHE do not have a system of periodic maintenance, cleaning, calibration or replacement of meters.

Staff conducting street works do not have a safe system of work and only limited "work in progress" signage is available. Basic tools are available for O&M activities such as small generators for electric pipe cutters and emergency lighting and small pumps.

Active leakage control practices are not conducted. Leaks are repaired when they become evident, either reported by the general public or discovered by PHE staff. Pipe locating and cable locating equipment is not available and we are told that a high incident of leaks is caused by other utility companies digging trenches.

PHE do not have meter repair workshops or facilities to calibrate meters. Occasionally, defunct meters refurbishment is contracted out. Meters are procured from registered manufacturers/suppliers who are certified by the GOG (Director General for Supply and Disposal).

A petty cash system is operated for purchase of materials in emergencies. This is maintained at Rs.5000, however, the AE's spending limit is Rs.500 per voucher, above which, authorisation is required from the EE. For larger expenditure, quotations are sought for approval by the CE.

The Public Service Commission decide on promotions within the PWD from AE upwards and is mainly based on seniority. 'Confidential reports' (staff appraisals) are conducted by AE's and above annually and forwarded to the CE.

The Principle CE (PWD) has a HRD department who coordinate/administer HR and training activities throughout PWD including the PHE Division. However, the training is not targeted to meet personal or corporate development needs.

#### Burst pipe repairs

We attended a burst pipe repair to a small (2.5 inch) galvanised iron distribution mains at the side of a busy road. The trench was dug by hand and the pipe exposed. The trench was dewatered by use of a plastic bottle. Methods were not employed to control traffic or to protect staff working in the road. As supply was not on in that area, there was no need to isolate distribution valves. The pipe was exposed and a temporary repair was made using rubber strapping. It was intended to discard the old pipe and re-connect those customers to a larger newer main running in parallel.

Although burst pipe records are not kept, we understand that the majority of leeks are discovered on supply pipes due to corrosion, saddles and PVC pipes and joints. This will be assessed as part of the leakage survey.

Safety awareness is low and contract staff are not issued with personal protective equipment (PPE).

#### Althino reservoir complex

The complex is controlled by the distribution department and contains 5 number 800m3 GLR's, 1 number 5000m3 GLR, 1 number 450m3 OHR and 1 number 650m3 OHR, supplying the Althino and Panaji areas. The complex is manned on a 24 hour basis and secured. The site is gated and well fenced, but the site is untidy and there were a number of hazards including uncovered valve pits and unprotected pump couplings/shafts. The 650m3 OHR is used for filling tankers (mostly private tankers contracted to PWD) as well as other private tankers. A sales voucher system is used which are issued at the sub-division office and shown to security/operating staff at the reservoir complex prior to loading.

Re-chlorination is carried out to ensure adequate residual chlorine levels prior to discharging from reservoirs to the network. An electro-chlorination facility (with bleaching powder back-up) with an on-site laboratory is available for this purpose.

A diesel generator is maintained at the site due to frequent power failures.

Guarding of machinery is poor, especially on high speed rotating equipment (pump couplings/shafts).

There does not appear to be an established formal system in place for reporting of management information such as compliance and performance data, maintenance issues, maintenance of assets data, H&S issues etc.

Appendix M38

### Water Supply and Sewerage Tariff Structure

#### **Contents for Appendix M38**

M38.1	Water Supply and Sewerage Tariff Structure
1110 011	

### Appendix M38.1Water Supply and Sewerage Tariff StructureTable M38.1.1Tariff System of PWD Goa

1.	Water charges			
	Category	Minimum charge	Rate	Range
1-a	Domestic Consumers	Rs. 30/month	Rs. 2.50 /m ³ Rs. 5.00 /m ³	$0 - 20 \text{ m}^3$ 20 - 50 m ³
1-b	Students, Hostels, Hospitals/Dispensaries and Educational Institutions and recognized charitable Trust Institutions fully aided by Govt.	Rs. 30/month	Rs. 5.50 /m ³	All range
2-a	Students, Hostels, Hospitals/Dispensaries Business Profession ^{*1} , Educational Institution and recognized charitable Trust Institutions not aided by Govt.	Rs. 30/month	Rs. 12.00 /m ³ Rs. 15.00 /m ³	$0 - 300 \text{ m}^3$ $300 \text{ m}^3$ -
2-b	Small hotels ^{*2} , Small restaurants ^{*3}	Rs. 150/month	Rs. 12.00 /m ³ Rs. 15.00 /m ³	0 - 100 m ³ 100 m ³ -
2-c	Defence, Fishing boat owners, Operators association at various Jetties in Goa, All the water bills issued to S.G.P.D.A. market complex at Margao	Rs. 150/month	Rs. 12.00 /m ³	All range
3	Small scale / Medium / Large and all types of Industries / Hotels (registered) (other than small hotels restaurant, Tourist Hostels)	Rs. 150/month	Rs. 22 /m ³	All range
4	Commercial incldg. MPT/Bar/Cinema Theatres/ Construction/ Establishments * ⁴	Rs. 150/month	Rs. 30 /m ³	All range

Note:

*1; Not falling within the purview of Goa, Daman & Diu Shops and Establishment Act, 1974

*2; No restaurants, number of rooms less than 15 with A/C room less than three.

*3; Non air conditioned, area up to 150  $\mbox{m}^2$ 

*4;Registered under the Gaoa, Daman & Diu Shops and Establishment Act, 1974

2. Sewerage charges

25% of water consumption charges

* In case of consumers who consume water from source other than the Govt. water supply, the billing will be done on actual quantity consumed from all the sources as assessed by the department

#### 3. Installation charge

Ι	Category	Size of connection	Amount per connection				
1	Domestic & Small Hotels, Small Restaurants	15mm / 20 mm	Rs. 500.00				
	Ī	20 mm/25 mm	Rs. 1,000.00				
2	Other than Domestic/small hotels/small restaurants	15 mm / 20 mm	Rs. 2,000.00				
	Γ	20 mm / 25 mm	Rs. 5,000.00 Rs. 10,000.00				
	Γ	25 mm - 150 mm					
Sewe	rage Sector connection to Sewerage System						
Ι	Category	Size of connection	Amount per connection				
1	Domestic	Up to 150 mm	Rs. 200.00				
	Γ	Above 150 mm	Rs. 350.00				
2	Non-Domestic	Upto 150 mm	Rs. 500.00				
		Above 150 mm	Rs. 700.00				

- 4. Delayed payment charges and reconnection charges
  - 1) 2% per month shall be become due and payable, if bill is not paid on or before due date of payment specified in the water bill.
  - 2) The water supply/sewerage connection is liable for disconnection in case payment of water bills remains overdue for 2 months.
  - 3) The reconnection charges of the meter after disconnection shall be Rs. 200/-.

#### 5. Meter rent charge

1110101	Tent endige	
No.	Size of meter	Rates per month
1	15 mm (1/2 inch)	Rs. 15.00
2	20 mm (3/4 inch)	Rs. 20.00
3	25 mm (1 inch)	Rs. 25.00
4	40 mm (1 1/4 inch)	Rs. 100.00
5	50 mm (2 inches)	Rs. 150.00
6	80 mm (3 inches)	Rs. 200.00
7	100 mm (4 inches)	Rs. 250.00
8	150 mm (6 inches)	Rs. 400.00

Appendix M39

**Results of Public Awareness Surveys** 

#### **Contents for Appendix M39**

M39.1	Methodology	······ M39-1
M39.2	Questionnaire Surveys for Residents	
	regarding Water Supply	······ M39-3
M39.3	Questionnaire Survey to Residents	
	on Sanitation/Sewerage	······ M39-5
M39.4	Stakeholder Interviews for Residents	
	around the Existing STPs	······ M39-10
M39.5	Water Supply and Sanitation/Sewerage Stakeholder	
	Interviews with Hotels	······ M39-11
M39.6	Water Supply and Sanitation/Sewerage Stakeholder	
	Interviews with Tourists	M39-12

#### M39.1 Methodology

#### (1) **Purposes**

The main purpose of the public awareness surveys was to understand the existing water supply and sanitation/sewerage situations; consumer complaints, demands and willingness to pay for these public services, and stakeholders' perception of the potential environmental and social impacts caused by the existing systems.

The public awareness surveys include two comprehensive questionnaire surveys and three stakeholder interviews, as listed below:

- 1. Questionnaire Survey for Residents regarding Water Supply (approx. 360 samples)
- 2. Questionnaire Survey for Residents regarding Sanitation/Sewerage (approx. 340 samples)
- 3. Stakeholder Interview for Residents living around the Existing STPs (20 samples)
- 4. Stakeholder Interview for Hotels regarding Water Supply and Sanitation/Sewerage (20 samples)
- 5. Stakeholder Interview for Tourists regarding Water Supply and Sanitation/Sewerage (30 samples)

The results of these surveys will be used to inform a range of aspects of the Master Plan including facility planning, OM planning, economic analysis, tariff evaluation, Initial Environmental Evaluation (IEE), Environmental Impact Assessment (EIA), and recommendations for awareness enhancement.

#### (2) Coordination with Other Public Awareness Surveys

In 2004, the PWD conducted a Customer Preference Survey (CPS) regarding water supply as part of the Sector Status Study 2004. The CPS covered cities, towns and villages in Goa and showed the differences in water supply between rural and urban areas in each taluka. The results of the CPS were used to design the questionnaires for the public awareness surveys that were undertaken as part of this current study. This meant the current study did not unnecessarily duplicate questions from the previous survey. The current study also investigated sanitation/sewerage, which was not covered by the 2004 PWD survey.

The PWD had also engaged a local consulting company to conduct household awareness surveys (called the Goa Sanitation Baseline Survey) as part of the Total Sanitation Campaign. These surveys investigated sanitation and water supply for rural areas only. It was agreed at the Inception Meeting for this current study that the PWD would provide the JICA Study Team with the results of Goa Sanitation Baseline Survey to help inform this Progress Report. However, the PWD's survey in rural areas has been delayed and is not expected to be completed for another few months. The JICA Study Team therefore decided to survey both the urban and rural areas in Goa as part of the public awareness surveys.

Some household data regarding water supply, sanitation and drainage that was collected during the 2001 census and the CPS was used to supplement the public awareness surveys.

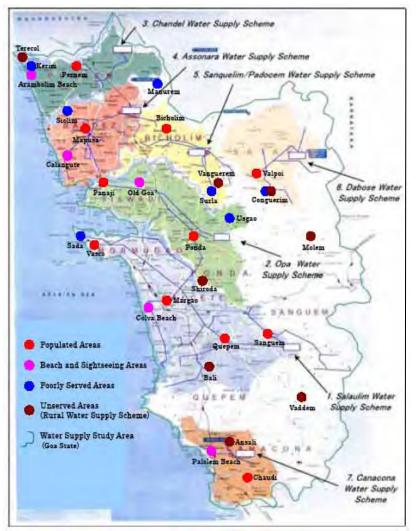
#### (3) **Preparation of Questionnaires and Sampling Design**

Separate questionnaires were developed for:

- water supply;
- sanitation; and
- the stakeholder interviews for the residents around existing STPs, hotel resorts and tourists.

These questionnaires were prepared based on expertise sourced from JICA officials, the different JICA Study Team members, counterparts, local consultants and a local NGO. Prior to implementing the surveys, the questionnaires were checked by conducting pre-testing field surveys (at several households, a hotel, etc) for each type of questionnaire. Sampling design of each survey and survey area was finalized through site visits to different types of residential areas and consultation with the PWD engineers at regional offices.

#### (4) Implementation of the Surveys


A local consulting company (Shah Technical Consultants Private Ltd (STC)) was engaged to carry out the public awareness surveys . All the questionnaire surveys and stakeholder interviews were conducted via interviews. Attachment.1 (Implementation of the Public Awareness Surveys) presents information regarding the implementation structure for the surveys and interviews, the survey schedules, the training and orientation methods for the field survey, and the supervision and reporting procedures.

Dozens of photographs were taken during the field surveys. These photographs document the current water supply and sanitation/sewerage situation pictorially. The photographs are presented in Attachment.2 (Photographs taken during the Public Awareness Surveys).

#### M39.2 Questionnaire Surveys for Residents regarding Water Supply

#### (1) Main Questions asked in the Survey

The questionnaire survey for residents regarding water supply consisted of a large range of questions. The purpose of the survey was to understand the existing water supply situation and the perceptions of different types of residents. The information was gathered for each water supply scheme, each area type and also each water supply service type. The survey questions focused on the consumers' complaints about the current water supply services, the water supply situation during different seasons, hygiene practices, and the residents' willingness to pay for improved water supply services.



#### (2) Sampling Design and Survey Areas

Figure M39.2.1 Water Supply Survey Areas

Figure M39.2.1 shows the survey areas. The sampling was primarily undertaken for the seven large-scale surface water supply schemes. However, some rural water supply schemes were also included. For each surface water supply scheme the survey area included the populated area, the beach/sightseeing area, the area poorly served by the surface water supply scheme, and the area not served by the surface water supply scheme. The survey area for each surface water supply scheme did not include rural water supply schemes. Approximately 360 surveys were conducted in these survey areas.

#### (3) Main Results of the Survey

Attachment.3 presents the results of the questionnaire survey for residents regarding water supply. Some of the main survey results are presented and discussed below.

The most important water supply aspect for households was found to be stability (continuous supply) (308 points). The second and third most important aspects were quantity and pressure (260 points) and water quality (244 points). The least important aspect of water supply was found to be low water charges (52 points). However, Figure M39.2.2 shows that approximately 25% of the households that have house connections (individual house and building connections) believe their current water charges are too expensive, while about 70% believe the charges are fair.

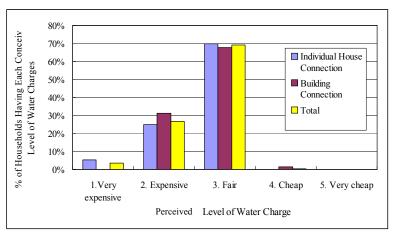



Figure M39.2.2 Perceived Level of Water Charge

Figure M39.2.3 shows that the high monthly water charges and the high connection fees are the main reasons for not connecting to the water supply system. Also, residents can access alternative water supplies (such as public stand posts and open wells) meaning they do not have to connect to the piped water supply.

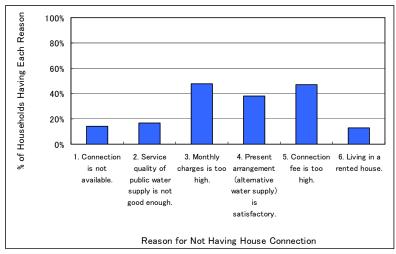



Figure M39.2.3 Reasons for Not Having House Connection

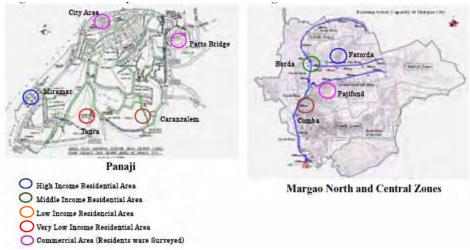
Table M39.2.1 shows that the average Willingness to Pay (WTP) for improved water supply (for adequate pressure, improve water quality, and for 24 hour water supply) is 25 Rs. (Rs.14 +Rs.11) across the seven surface water supply schemes. The WTP differs scheme by scheme but does not significantly differ in terms of the type of survey area (e.g. populated and poorly served). However, the residents using rural water supply connections that are currently not charged clearly have less WTP for improvements to the water supply.

# Table M39.2.1Willingness to Pay Higher Water Charges per Month for Improved<br/>Water Supply (for adequate pressure, improve water quality, and for 24<br/>hour water supply)

Types of Survey Areas					Water	Supply Study	Areas			
		1. Salaulim S.W.S.S Rs.	2. Opa S.W.S.S Rs.	3. Chandel S.W.S.S Rs.	4. Assonora S.W.S.S Rs.	5. Sanquelim S.W.S.S Rs.	6. Dabosei S.W.S.S Rs.	7. Canacona S.W.S.S Rs.	8. Distant form the S.W.S.S Rs.	9.Average Rs.
		11+0*=11	11+8=19	7+9=16	10+11=21	10+9=19	12+8=20	26+16=42		
Survey Areas in	1. to 4. Populated Area	16+14=30 17+8=2	17+8=25							14+11=25
Each Surface		14+12=26								14,11-23
Water Supply		15+14=29								
Scheme (S.W.S.S)	5. Beach and Sightseeing Areas	20+15=35	19+8=27	7+10=17	14+12=26					15+11=26
	6. Poorly served areas	29+22=51	26+16=42	10+7=17	17+25=42	6+6=12	8+5=13	5+8=13		14+13=27
Average of Each S.W.S.S		18+15=33	18+10=28	8+9=17	13+16=29	8+8=16	10+7=17	16+12=28		14+11=25
7. and 8. Rural V	Vater Supply Schemes	- **	7+5=12	- **		10+5=15	- **	8+8=16	- **	9+7=16
within/outside the S.W.S.S									13+10=23	9+7-10

Notes: *This survey area already has 24 hour water supply, so additional WTP for 24 hour water supply was not investigated here. ** There were not enough surveys collected in these rural water supply schemes to determine WTP.

#### M39.3 Questionnaire Survey to Residents on Sanitation/Sewerage


#### (1) Main Questions asked in the Survey

The questionnaire surveys for residents regarding sanitation/sewerage included a large range of questions. The purpose of the surveys was to understand the existing sanitation/sewerage

situation. The information was gathered for different types of residents, each study area, each type of sanitation system, and each income level. The questions focused on the respondents' complaints about the current sanitary situation and sewerage services, the reasons for not connecting to sewer, their perception of water pollution, and their WTP to use the sewerage system.

#### (2) Sampling Design and Survey Areas

Initially, the sewerage study areas were broadly classified into sewered and unsewered areas. Then, the high, middle, low and very low income areas were identified for each of these classifications in each study area. Also, the houses and residential buildings in commercial areas were selected as survey areas. Figure M39.3.1 shows the survey areas in the sewered areas (i.e. Pananji and the north and central zones of Margao). Figure M39.3.2 shows the survey areas for the unsewered areas (i.e. the areas surrounding the residential areas of Panaji, the southern zone of Margao, the Northern and Southern Coastal Belts, Mapusa and Ponda). Approximately 340 surveys were undertaken on sanitation/sewerage.





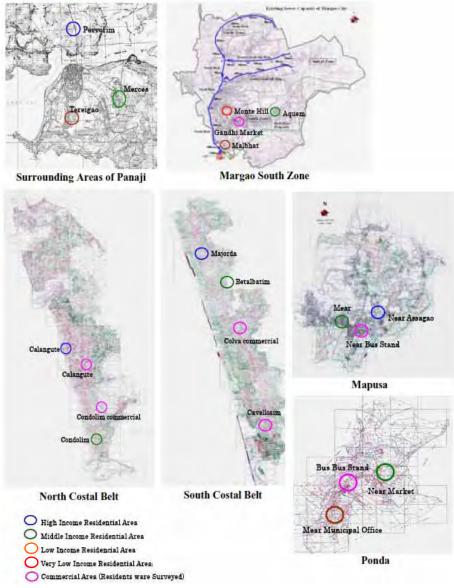



Figure M39.3.2 Survey Areas for the Unsewered Study Area

#### (3) Main Results of the Survey

Attachment.4 presents the results of the questionnaire survey for residents regarding sanitation and sewerage. The following section presents and discusses some of the main results.

Figure M39.3.3 shows that about 30% of the latrines without connection to sewer have experienced overflow problems. About 20% of those latrines overflow at least once a week, while 70% overflow a few times each month, and 10% overflow a few times each year.

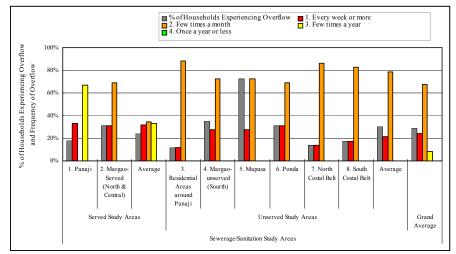



Figure M39.3.3 Percentage of Households that are not Connected to Sewer that Experience Toilet/Latrine Overflow and Frequency of the Overflows

Figure M39.3.4 shows that the respondents estimate that about 60% of the overflows are caused by high water tables, 20% of the overflows are a result of the hard laterite substrata, and 4 to 8% of the overflows are caused by inflow of storm water, poor maintenance, and clogging of chambers.

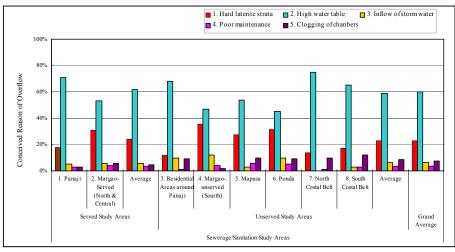
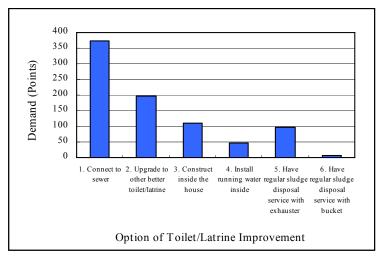




Figure M39.3.4 Perceived Reasons for Overflow of Toilets/Latrines that are not connected to Sewer

Figure M39.3.5 shows that when households that use latrines which are not connected to sewer upgrade their latrine, the most popular method is to connect to sewer (374 points). The second most popular method is to improve the on-site sanitation facilities (198 points). The next most popular upgrade method is to construct a latrine inside the house (109 points) followed by having regular sludge disposal services with exhauster (96 points). Figures M39.3.3 to



M39.3.5 show there is a need to upgrade / expand the sewerage system in Goa.

Figure M39.3.5 Public Preferences for Improvement Options for Existing On-site Sanitation

Table M39.3.1 shows that the average percentage of households willing to connect to sewer is quite high in the sewered areas of Panaji (100%) and Margao (93%), compared to the unsewered areas (75%). This difference seems to result from the different level of awareness about sewerage. Panaji has a long history of sewerage and residents awareness on sewerage is considered to be the highest in Goa. WTP for sewerage use was found to depend on income level and the level of difficulty people experience regarding their current sanitation facilities. However, the WTP by the low income groups of the Margao sewered area and the very low income groups of the unsewered areas are higher than those of higher income groups. In most cases, the residents in commercial areas have the highest WTP.

 Table M39.3.1
 Willingness to Pay to Connect Existing Toilet/Latrine to Sewer

							Sewer	age/San	itation	Study A	reas						
_	1. Panaji - Served					2. Margao-Served (North & Central)					3. to 8. Unserved Areas (Average)						
Category	High Income	Low Income	Very Low Income	Commer cial	Average	High Income	Middle Income	Low Income	Comme rcial	Average	High Income	Middle Income	Low Income	Very Low Income	Comme rcial	Average	Average
% of Households willing to Connect to Sewer	100%	100%	100%	100%	100%	100%	100%	90%	80%	93%	100%	97%	60%	33%	85%	75%	88%
1. WTP of Monthly Charges for Improving Quality of Life (Rs.)		19	18	35	27	37	32	61	146	69	39	47	26	39	98	50	49
2. Additional WTP of Monthly Charge for Improving Water Environment (Rs.)	20	10	10	18	15	21	14	19	28	21	21	19	10	8	27	17	17
1.+2. Total WTP of Monthly Charge for Using Sewerage (Rs.)		29	28	53	42	57	47	80	174	89	61	65	36	47	125	67	66
3. WTP for Initial Connection Cost (Rs.)	2067	2500	3167	1633	2342	1647	1222	675	1179	1181	1885	2057	1078	1513	1719	1650	1719

#### M39.4 Stakeholder Interviews for Residents around the Existing STPs

#### (1) Main Questions asked in the Interviews

Residents living near the STPs and the STP discharge points were interviewed to gain an understanding of the environmental and social considerations required for sewerage projects. These considerations include the types of sanitation facilities that are incorporated into the STPs, the method / degree of consultation in the past, and the social and environmental impacts of the STPs and the associated wastewater discharge. The results of these stakeholder interviews will be used to inform the IEE study in the second phase of this study.

#### (2) Sampling Design and Survey Areas

The interviews were conducted with people living near the STPs at Panaji near Tonca (seven samples) and Margao near Shirvodem (five samples) and living near the relatively small Panaji commercial STP located behind the Kadamba Bus Stand (five samples). The discharge points of Margao STP and Panaji commercial STP are located next to the STPs. However, the treated wastewater from Panaji STP is discharged into Aguada Bay through a discharge pipeline that passes behind the sporting field and swimming pool near Miramar Beach. Therefore, a few additional interviews were conducted in the area in front of the sporting field (three samples). In total, 20 interviews were undertaken.

The income levels of the residents living near the Panaji STP vary considerably. For example, a low income group lives adjacent to the drain near the STP and a middle income group lives in the buildings adjacent to the STP. The number of interviews in this area was higher than for other areas to adequately capture this range of income levels. The residents living around the Margao WWTP are mainly low income earners. The Panaji commercial STP is located close to offices, shops etc. and therefore only a few residents live nearby.

#### (3) Main Results of the Interview

Attachment.5 presents the full results of the stakeholder interviews. The following section presents and discusses some of the main results.

Even though the stakeholder interviews were conducted near the STPs, a large number of the sampled households (47%) have not connected to sewer. In fact, some households practice open defecation (10%). Approximately 25% of the respondents discharge their non-toilet wastewater to open drains. Of the households that are connected to sewer, 45% complained of clogged sewer lines, overflowing manholes, etc.

The majority of the residents were unaware that the STP was located nearby. Most residents had not participated in any public hearings or social meetings regarding the STP. Some of the residents (11%) who live near the STPs noticed that the value of their land has declined due to their proximity to the plants and the unpleasant odor emanating from the plants.

#### M39.5 Water Supply and Sanitation/Sewerage Stakeholder Interviews with Hotels

#### (1) Main Questions asked in the Interview

Since tourism plays a very important role in Goa, the hotel industry makes an important contribution to the state revenue. The main intention of the questionnaire was to understand the hoteliers perception of the existing water supply and sanitation facilities. The hoteliers were also asked about their understanding / concerns regarding environmental pollution resulting from the existing water supply and sanitation situation and their willingness to pay for improved water supply and sanitation facilities.

#### (2) Sampling Design and Survey Areas

There are many hotels and resorts of various standards which cater to the needs of the tourists. The hotels and resorts are mainly located in coastal areas. The stakeholder interviews were conducted in the most populated tourist destinations as listed here: the Candolim and Calangute areas of the Northern Coastal Belt (10 samples), Benaulim and Colva at the center of the Southern Coastal Belt (5 samples) and Mobor, which is another city popular with tourists at the southern end of Southern Coastal Belt (5 samples). In total, 20 interviews were conducted.

#### (3) Main Results of the Interview

Attachment.6 presents the detailed results of these stakeholder interviews. The following section presents and discusses some of the main results.

The occupancy rate for the hotel resorts in the peak tourist season is almost 100%, while the occupancy rate in the low season is around 65%.

Figure M39.5.1 shows that the hotel resorts in the Northern Coastal Belt are heavily dependent on open wells (%) and private water vendors (41%) to meet their water demand during the high season. The public piped water supply contributes only 17% of their demand. The hotel resorts in the center of the Southern Coastal Belt are also dependent on private water vendors (12%) while the southern end of the Southern Coastal Belt relies on their own wells (37%) during the high season.

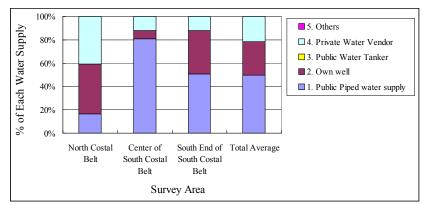



Figure M39.5.1 Proportion of Water Supplied from different sources during the High Season

It was found that 100% of the sampled hotels within the coastal belts understand the importance of the sewer network and are willing to connect to the sewer. On average, the hotels in the Northern Coastal Belt are willing to pay approximately Rs.7,500 for the initial sewerage connection and Rs.7,140 for the monthly sewerage charges. In the center of the Southern Coastal Belt, where many five star hotels are located, the average WTPs is 16,600 and 27,000 for connection costs and monthly charges, respectively.

#### M39.6 Water Supply and Sanitation/Sewerage Stakeholder Interviews with Tourists

#### (1) Main Questions asked in the Interview

During the interview with both domestic and foreign tourists, the following three major topics were discussed:

- Water supply;
- Sanitation; and
- Environmental water.

A key aim was to determine whether tourists were satisfied with the quality and stability of the existing water supply service and to determine whether they would be willing to pay for improvements to meet international standards. The interviews were also aimed at determining the tourists' satisfaction levels regarding Goa's sanitary situation and also their willingness to pay for improvements to the sanitary situation in public toilets, restaurants and hotels. The tourists were also asked about their willingness to contribute to the cost of improving / expanding the sewerage systems with the aim of maintaining the water quality and water dependent ecosystems, which in turn could improve tourism in Goa.

#### (2) Sampling Design and Survey Areas

Tourism is one of Goa's main sources of income. It was therefore important to include tourists in these stakeholder interviews. The stakeholder interviews for tourists were conducted in Candolim (12 for foreign tourists and 5 for domestic tourists) in the Northern Coastal Belt, and Benaulim (5 for foreign tourists and 3 for domestic tourists) and Mobor (3 for foreign tourists and 2 for domestic tourists) in the Southern Coastal Belt.

#### (3) Main Results of the Interview

Attachment.7 presents the results of these stakeholder interviews in detail. The following section presents and discusses some of the main results.

Large portions of domestic (30%) and foreign (50%) tourists were not satisfied with the existing piped water supply system in terms of quality and stability and were annoyed on a daily basis by the intermittent supply of water. Many domestic (60%) and foreign (30%) tourists were also dissatisfied with the available sanitation facilities and were annoyed about the sanitary situation for public toilets, restaurants and hotels. Almost all of the sampled tourists believed that considerable improvement to the public water supply network and sanitation facilities would assist the future development of tourism in Goa. Table M39.6.1 shows the tourists' average WTPs for these improvements.

Table M39.6.1Average Willingness to Pay for the Improvements to the Water Supply,<br/>Sanitary Situation and Water Environmental Water in Goa

Willingness to pay for each service improvement (Rs. per day per person)						
Service Improvement	Domestic Tourist	Foreign Tourist	Average			
1. Water supply to international standards	36	197	117			
2. Significant improvement of sanitary situation in public places etc.	27	181	104			
3. Preserving environmental water quality by expanding / upgrading the sewerage system	18	240	129			

### List of Attachment

AT.1	Implementation of the Public Awareness Surveys
AT.2	Photographs taken during the Public Awareness Surveys
AT.3	Results of the Questionnaire Survey
	for Residents regarding Water Supply
AT.4	Results of the Questionnaire Survey
	for Residents regarding Sanitation and Sewerage
AT.5	Results of the Stakeholder Interview
	for Residents around the Existing STPs
AT.6	Results of the Stakeholder Interview
	for Hotels regarding Water Supply and Sanitation/Sewerage $\cdots$
AT.7	Results of the Stakeholder Interview
	for Tourists regarding Water Supply and Sanitation/Sewerage

#### Attachment 1 Implementation of the Public Awareness Surveys

#### (1) Implementation Structure

The following figure shows the implementation structure of the surveys organized by the entrusted local consultants, Shah Technical Consultants Private Ltd. (STC).

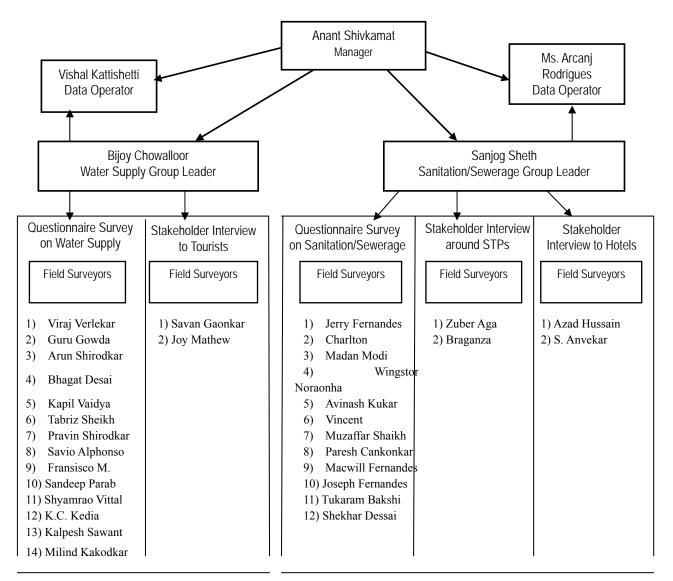



Figure AT.1.1 Organizational Chart of the Survey Team

#### (2) Implementation Schedule

The entrusted work of the public awareness surveys was implemented in five weeks from July 22th, 2005 to August 25th, 2005 as follows;

Week 1: Preparation of the detailed survey schedules, finalization of questionnaires and survey design including pre-test surveys, and preparation of the survey implementation.

Weeks 2 - 4: Implementation of the questionnaire surveys and stakeholder interviews, and data input and data processing (including 2 days for training).

Week 5: Analysis of the results and preparation of the report.

#### (3) Training and Orientation of Survey Teams

All the survey team members were given a two days orientation and training regarding the background, importance and purpose of the assessment of water supply and sanitation. Detail briefing of each questionnaire and methodology of conducting the interview, appropriate attitude and patience to be adopted while conducting the interview were also explained so that accurate information is elicited.

Each surveyor was given an ID card.

### (4) Conducting the field surveys

As there were two different questionnaires each for water supply and sanitation, two groups each were formed for the same. A team of two members for each of the three types of the stake holder interview were formed.

#### Water survey team

The survey was conducted in seven water supply schemes and two sites outside the water supply schemes. A group of fourteen members were basically further divided into seven teams. The mode of operation would be to go to the Panchayat/Municipality office as per the survey area, appraise the Panchayat/Municipality officers about the purpose of the questionnaire and take a list of the areas/wards therein.

The survey members spent four days for collecting the information from Salaulim water supply scheme, three days for Opa water supply scheme, two days for Assonora water supply scheme and Sanquelim water supply scheme respectively and one day each for Dabose water supply scheme, Chandel water supply water scheme and Canacona water supply scheme. The survey team used to cover twenty eight to thirty household per day.

#### Sanitation survey team

Sanitation survey was done in six areas. Group of twelve members were basically divided into six teams. The mode of operation would be to go to the Panchayat/Municipality office as per the survey area, appraise the Panchayat/Municipality officers about the purpose of the questionnaire and take a list of the areas/wards therein.

They spent three days each in Panaji served area and Margao served area respectively. Two day for Margao unserved area, residential areas around Panaji and 1 day each in Mapusa, Ponda, North Costal Belt, and South Costal Belt. The survey team used to cover twenty eight to thirty household per day.

#### Stake holder interview

Stake holder interview in the areas surrounding sewerage treatment plant was carried out in Panaji and Margao. Team of two members carried out the survey.

Stake holder interview of hotels was carried out in North Coastal Belt, Center of South Coastal Belt and South End of South Coastal Belt. Team of two members carried out the survey.

Stake holder interview of tourist was carried out in various tourist places in North Coastal Belt, and South Coastal Belt. A team of two members carried out the survey.

#### (5) Supervision of the surveys

One group leader instructed the surveyors for the questionnaire survey on water supply and the stake holder interview to tourist. Another group leader instructed the surveyors for the questionnaire survey on sanitation/sewerage and the stake holder interview to the residents living around existing sewerage treatment plants and the stake holder interview to hotels. Group leaders were in charge of logistics and co-ordination of the day's activities. Initially, each team member would check each of his/her own formats for errors and omissions and then, these would be further checked by the group leader. Only completed forms were accepted for data-entry and further processing. At the end of each day's visit, the group leaders would submit the completed and checked forms along with a list of the number of formats each team member had completed.

The collected data were entered and also checked first by the data operators and these would be further checked by the manager. Manager would then check random formats for any further errors and if any mistakes were noticed, next morning these formats would be given back to the concerned survey team member for correction.

Supervision of the field survey was done independently by the manager through surprise visits to a particular location which was under survey on particular day, contacting the field teams and then accompanying them on a few household visits. Feedback was given to the teams the next day regarding observations made during the visit.

#### (6) **Reporting on the Public Awareness Surveys**

The report of the public awareness surveys was drafted by the entrusted local consultants with support from the JICA Study Team. The report was prepared in accordance with the detailed instruction sheets on the reporting which had been prepared by the JICA Study Team.

### Attachment 2 Photographs Taken During the Public Awareness Surveys



Regional water supply scheme source, open well



Big open well -shared by 2 to 3 households



Hand pump



Metered stand post / metered water connection outside house shared by 2 to 3 houses in Monte Hill , Margao



Storage tank outside the house. Habitants totally dependent on tanker water.



Spring water source



Public stand post leaking water



People fetching water from Public Stand Post



Private water Tanker



Example of polluted open well



House wastewater discharged into open ground

Temporary habitant for coustruction wokers



Questionnaire survey in progress



Local people called Kunbi Tribe in front of



a rural water supply scheme (open well)



Open well and toilet very closely placed



Sulabh privated toilet Open drain polluted by mining



Questionnaire survey completed



Garbagecollection outside common toilet (sulabh toilet) in Monte Hill (slum), Margao



Home wastewater pipeline and sepetic tank in Monte Hill, Margao



Solidwaste dumped outside collection bin in Monte Hill, Morgao



Closed draing close to houses in low income aras, Sada, Vasco



Example of Indian water close let type toilet with flushing system in sulabh toilet



Drainage in Monte Hill, Margao



Very low income area in Mapusa



Zuari Nagar low incom residencial area, Mormugao



Temperory structures of cunstruction workers



Another pilot survey to a low income household not connected to sewer in sewerage served area in Margao



Pilot survey in high income neighborhood



Notice of sewerage connection in PWD



Pilot survey to a low income household in Comba, Margao



Sewerage manhole chambers overflowing in wet season in Margao



PWD owned sluge suction machine



Around Margao Sewerage Treatment Plant



Water stored in utensils only for cooking and drinking in a rural household



Nallah meeting the Sea at Colva Beach, South Costal Area



Tourist hotel-GTDC where a pilot survey was conducted



Sepetic tank corved with grass in a hotel



Woman cleaning at Public Stand Post



Near Calangute Beach, North Costal Zone



Underground closed water tank having metered water connection in a hotel



Discharge point of Panaji Commercial STP



Plastic garbage in nallah near Vasco



PWD owned water tanker

### Attachment 3 Results of the Questionnaire Survey for Residents Regarding Water Supply

#### (1) Existing Situation

#### 1) Water Supply Service Types

- ✓ Table AT.3.1 shows that the dependency on the other water sources by the household having individual/building house connection during the difficult season and the purpose for which it is being used. It is found that the individual building household connection mainly depends on the public water tankers supplied by the PWD during the shortage of water in their regular source. This water is mainly used for washing and bathing.
- ✓ Table AT.3.2 shows that the respondents having public stand post as their main source are dependent on mainly public water tankers and open wells for their daily water requirement in the difficult season. The water from open wells is used for drinking, cooking and other activities while the water from public tanker is mainly used for washing and bathing.
- ✓ Table AT.3.3 shows that the respondents having open well as their main water source are scarcely depend on public stand post and rivers, lakes, ponds, springs, etc. for the water requirement during difficult season.
- ✓ Table AT.3.A4 shows that the respondents using rivers, lakes, ponds, springs etc. as the primary water source are generally not depending on other water sources like public or private water vendors and public stand posts.
- ✓ Table AT.3.5 shows that the respondent having usable wells is only 15% for the households using individual house connection as their primary water source and 1% in case of building connection.
- ✓ Average size of the wells of the sampled households is 3.7m in diameter, 7.5m in depth. Average water levels of the wells in wet season (June to September) and dry season (October to May) are 5.0m and 2.7m from ground level, respectively. Average initial construction cost of well facilities (including the costs of boring, pump, etc.) and average annual maintenance cost of well facilities are about Rs. 4200 and Rs. 400 per year, respectively. The wells and pumping facilities are assumed to have 11 years more of life time on average.
- ✓ In this survey, 64% and 36% of the sample are allocated to households having house connection and household without house connection, respectively. It was found that 2.3% of the sampled households having house connection use free alternative water sources such as public stand posts, open well as their primary water source. This

percentage seems to be lower than actual situation because in this survey the fewer sample number was allocated to rural areas where there are more stand post left. The 49% of the household without house connection (using public stand post, well, etc.) answered that they do not have house connections because public stand post is available at free of charge, while 7% and 11% of the household without house connection answered that the house connection is too expensive and quality of house connection service is not good enough.

- ✓ Table AT.3.6 shows that about 20% of the sampled households having individual house connection, on average buy bottled water for drinking. Their average monthly cost of bottled water is Rs. 90 per month.
- ✓ Table AT.3.7 shows that 7% of the sampled household buy water from private water vendors. 81% and 11% of the households buying water form private water vendor say that it is because public water service is not sufficient and as there are problems with public water services. Their average monthly cost of water from private venders is about Rs. 260 per month. The price of water per tanker is around Rs. 500.

# Table AT.3.1Different water sources for different purposes for households using<br/>house connection as their main water source

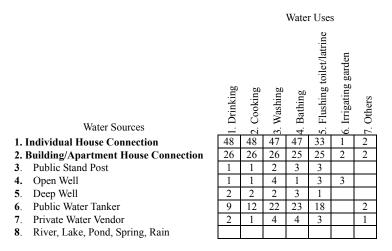
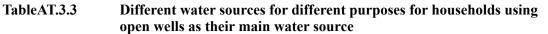
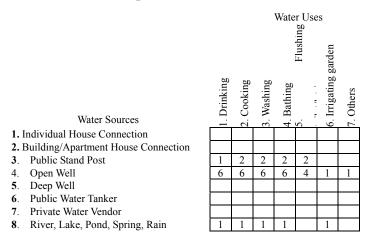





Table AT.3.2Different water sources for different purposes for households using<br/>public stand posts as their main water source

		Water Uses						
	Water Sources	1. Drinking	2. Cooking	3. Washing	4. Bathing	5. Flushing toilet/latrine	6. Irrigating garden	7. Others
1.1	Individual House Connection							
2.1	Building/Apartment House Connection							
3.	Public Stand Post	26	26	26	26	15	2	7
4.	Open Well	3	3	3	3	2	1	
5.	Deep Well							
6.	Public Water Tanker	6	7	10	13	7		6
7.	Private Water Vendor			1	1	1		4
8.	River, Lake, Pond, Spring, Rain		1	1	1			





# Table AT.3.4Different water sources for different purposes for households using<br/>river, lake pond, spring, rain, etc. as their main water source

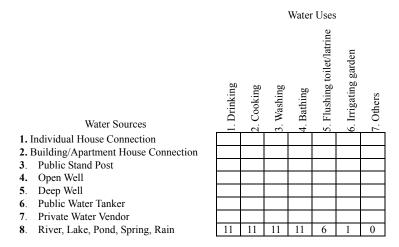



Table AT.3.5Percentage of the household having usable wells

	Type of Primary Water Source									
Perception	1. Individual House Connection%	2. Building Connection%	3. Public Stand Post%	4. Private Well (Mostly Open wells)%	5. Public/Private Water Tanker%	6. Others (river, spring, etc.)%	Grand Average%			
1. Having Usable Wells	15%	1%	24%	100%	0%	0%	23%			
2. Not having Usable Wells	85%	99%	76%	0%	0%	100%	60%			

#### Table AT.3.6Percentage of buying bottled Water

	Type of Primary Water Source									
	1. Individual	2. Building	3. Public	4. Private	5. Public/Private	6. Others	Grand			
Perception	House	Connection	Stand Post	Well	Water Tanker	(river,	Average			
	Connection			(Mostly		spring, etc.)				
				Open wells)						
1. Yes, buy bottled water	20%	24%	15%	0%	0%	0%	10%			
2. No, don't buy bottled										
water	80%	76%	85%	100%	0%	100%	74%			

#### Table AT.3.7 Percentage of buying water from private water vendors

	Type of Primary Water Source									
D (	1. Individual	2. Building	3. Public	4. Private Well	5.	6. Others	Grand			
Perception	House	Connection	Stand Post	(Mostly Open	Public/Priv	(river,	Average			
	Connection			wells)	ate Water	spring, etc.)				
					Tanker					
1. Yes, buy water from										
private vendor	9%	10%	21%	0%	0%	0%	7%			
2. No, don't buy water										
from vendor	91%	90%	79%	100%	0%	100%	77%			

#### 2) Water Consumption

- ✓ It is found in the survey that 99% of the sampled households secure enough water for drinking, cooking, washing hands, however about 5% and 15% of the household do not have enough water for taking bath and washing clothes in usual time respectively. 64% of the household would like to use more water, but 77% of them answered that low availability of water is the main constraint for them to use more water while cost of water and time/labor to fetch water are minor constraints.
- ✓ In the survey 98% of households using piped public water supply services (individual house connection, building connection and public stand post) answered that they are saving water. 100% of the users saving water answered that they save water because it is a common and limited resource. 65% of the users saving water also answered that they do so because water charge is expensive. In the survey, it is also found that 94% of the piped public water supply users think that the use of house connection should be charged depending on the volume of water use to encourage saving water rather than be charged with a fixed price per person.
- ✓ Table AT.3.8 shows that the metered water consumption is 111 lpcd in populated areas and 205 lpcd in beach and sight seeing areas of Salaulim water supply scheme. The metered consumption is on 55 lpcd in a populated area of Opa water supply scheme. This may be due to the poor supply by the system as there is less water at the source.
- ✓ Table AT.3.9 shows that the total water consumption i.e. house connection and water from private/public water vendors. It is observed that of the requirement of 152 lpcd by the respondents in populated area of the water supply scheme the actual metered consumption is 97 lpcd. The balance 55 lpcd is catered by the other sources viz., public water tankers and private water vendors.
- $\checkmark$  Table AT.3.10 shows the total water consumption of household using public stand post.

			Water Supply Study Areas									
Types of Su	urvey Areas	1. Salaulim	2.	3. Chandel		5. Sanquelim		7. Canacona	8. Distant	Average		
J1		S.W.S.S	Opa	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	form the	-		
			S.W.S.S						S.W.S.S			
		111	59	62	129	113	84	107	$\setminus$			
		(Sanguem)	(Ponda)	(Pernem)	(Mapusa)	(Bicholim)	(Valpoi)	(Chaudi)	$\backslash$			
Survey Areas in	1. to 4. Populated Area	114 (Margao)	55 (Panaji)									
Each Surface Water Supply		118 (Vasco)							$\langle \rangle$	97		
Scheme (S.W.S.S)	<ol> <li>Beach and Sightseeing Areas</li> </ol>	205 (Colva Beach)	96 (Old Goa)	59 (Arambol)	91 (Calangute)					113		
	6. Poorly Served Areas	100 (Sada)	159 (Usgoa)	81 (Kerim)	79 (Siolim)	71 (Surla)	76 (Conqueri m)	60 (Palolem)		89		
Average of E	Each S.W.S.S	127	92	67	100	92	80	84		97		
House Connection presented in Sec	LPCD Supply of and Stand Post ctor Status Study											
2004*		176	225	80	158	96	120	98		136		
7. and 8. Rural Wat within/outside the S	ter Supply Schemes S.W.S.S	54 (Bali)	68 (Shiroda)	- (Terekhol)		56 (Mankurem)	- (Conqueri m (Partly))		- (Molem) 84			
									(Valdem)	64		

#### Table AT.3.8. Metered water consumption of house connection (Individual and **Building connection) in lpcd.**

Reference: * Sector Status Study 2004, PWD, Appendix p.79 Note: S.W.S.S. means the seven large-scale surface water supply schemes which are not rural water supply schemes.

			Water Supply Study Areas								
		1.	2.	3.	4.	5.	6.	7.	8.	Average	
Types of Surve	ey Areas	Salaulim	Opa	Chandel	Assonora	Sanquelim	Dabosei	Canacona	Distant	C C	
		S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	form the		
									S.W.S.S		
		163	100	175	181	154	131	150			
	1. to 4.	165	138							154	
Summer Amon in	Populated Area	173								134	
Survey Areas in Each Surface Water		175									
Supply Scheme (S.W.S.S)	5. Beach and Sightseei ng Areas	193	106	131	180					155	
	6. Poorly Served Areas	122	153	163	142	90	105	100		125	
Average of Each	n S.W.S.S	164	124	125	168	122	118	125		145	
Average Domestic I of House Connect Post presente Status Stud	tion and Stand	176	225	80	158	96	120	98		136	
7. and 8. Rural V Schemes within	Water Supply outside the	100	90	-		100	-	100	-	103	
Schemes within S.W.S.S	vouisiue ille		$\searrow$						125	105	

# Table AT.3.9Total water consumption (including different type water supply and<br/>sources) of the households having house connection in lpcd

Reference: * Sector Status Study 2004, PWD, Appendix p.79

Note: S.W.S.S. means the seven large-scale surface water supply schemes which are not rural water supply schemes.

					Water S	Supply Study	Areas			
Types of Surve	ev Areas	1.	2.	3.	4. Assonora	5.	6.			Average
Types of Burvey Theus		Salaulim	Opa	Chandel	S.W.S.S	Sanquelim		Canacona		
		S.W.S.S	S.W.S.S	S.W.S.S		S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	
		-	100	108	125	100	133	75		
	1. to 4. Populated	50	100							
Survey Areas in	Area	75								
Each Surface Water		100								97
Supply Scheme (S.W.S.S)	5. Beach and Sightseei									
× ,	ng Areas	100	75	93	100					92
	6. Poorly Served								$\searrow$	
	Areas	67	125	130	125	125	100	50		103
Average of Eacl	h S.W.S.S	78	100	110	117	113	117	63		98
	LPCD Supply inection and presented in									
Sector Status Stud	1	176	225	80	158	96	120	98		136
7. and 8. Rural V Schemes within	Water Supply n/outside the		67	117		125	100	67	75	
S.W.S.S	noutside the								100	88

Table AT.3.10Total water consumption (including different type water supply and<br/>sources) of household using public stand post in lpcd

Reference: * Sector Status Study 2004, PWD, Appendix p.79 Note: S.W.S.S. means the seven large-scale surface water supply schemes which are not rural water supply schemes.

3) Current Situation of Individual/building Connection

- ✓ Table AT.3.11 shows that 20% of the individual house connection has got a tap for supply of piped water on outside their household.
- ✓ Table AT.3.13 shows that 31% of the respondents having house connection does not have ground water tank and pumping facilities to pump up the water. However there may be other types of water storage by these households such as PVC tanks, overhead tanks, drums, etc.
- ✓ Table AT.3.14 shows that 97% and 73% of building and individual house connection respectively has water tanks installed on the upper floor for storage of water during the supply hours.
  - ✓ It is found that the most important reason given by the respondents for having house connection is convenience including the reduction of hard work to fetch water.
  - $\checkmark$  In the survey it is found that 88% of the households having house connection recognize that house connection contribute to reduce the frequency of diarrhoea in their households.
  - ✓ Table AT.3.15 shows that on an average the respondents having metered house connection pay Rs. 102.60 for 15.8 m³ of water per month.

- ✓ Tables AT.3.17, 18 and 19 infer that 100% of the house connection has water meters of which 6% of the meters are having some defects. 60% of the household having said that the current water charges for the piped water supply is fair.
- ✓ Table AT.3.20 shows that 3% of the respondents having house connection said that they think that water charges are fixed per month while 14% didn't know.
- ✓ A total of 12% of the respondents in the entire survey sample said that they metered bill as they say that the metering system is not proper.

1abit A1.5.11 1aps III	the nouse conne			
Туре	1. Both inside and outside	2. Only outside	3. Only inside	
1. Individual house connection	47%	20%	33%	
2. Building connection	3%	1%	95%	

Table AT.3.11Taps in the house connection

Table AT.3.12Number of water taps in household

Туре	Average Tap Number
1. Individual house connection	4.2
2. Building connection	3.9
3. Average	4.1

Table AT.3.13	Ground water tank and pu	mning facilities
1401C A1.5.15	Orbunu water tank and pu	mping facilities

Туре	Having a ground water tank and pumping facilities to pump up water			
Type	Yes	No		
1. Individual house connection	66%	40%		
2. Building house connection	81%	19%		
3. Average	69%	31%		

#### Table AT.3.14Water tank on upper floor

Туре	Having a water tank installed on the roof or upper flower			
Турс	Yes	No		
1. Individual house connection	73%	33%		
2. Building house connection	97%	3%		
3. Average	79%	21%		

Туре	Water consumption m ³ per month per household	Metered lpcd	Water charges Rs. per month
1. Individual House Connection	16.6	105.5	99.1
2. Building Connection	14.6	98.0	110.4
3. Average	15.8	102.3	102.6

Table AT.3.15Water consumption and water charge

Table AT.3.16	Reasons for not paying water charges.
---------------	---------------------------------------

			If you	do not pay for wate	er, what is the reason	?	
Туре	1. No money	2. Meter is broken	3. No Legal action even not to pay	4. No disconnection even not to pay	5. Believing that Government should pay	6. No reason	7. Government doesn't know you are connected
1.Individual House	10 50/	4.004	2.00/	0.00/	1.00/		0.00/
Connection	49.5%	4.0%	3.0%	0.0%	4.0%	38.4%	0.0%
2. Building Connection	49.2%	6.6%	0.0%	0.0%	0.0%	44.3%	0.0%
3. Average	50.0%	4.9%	1.9%	0.0%	2.5%	40.1%	0.0%

Table AT.3.17	Perception of water charge
---------------	----------------------------

Trino	Do you think the water charge of house connection is expensive?					
Туре	1.Very expensive	2. Expensive	3. Fair	4. Cheap	5. Very cheap	
1. Individual House Connection	5.4%	24.8%	69.8%	0.0%	0.0%	
2. Building Connection	0.0%	31.1%	67.6%	1.4%	0.0%	
3. Average	3.4%	26.8%	69.3%	0.5%	0.0%	

#### Table AT.3.18Water meter installed

Туре	Water meter installed to house connection			
Туре	Yes	No		
1. Individual House Connection	100.0%	0.0%		
2. Building Connection	98.6%	1.4%		
3. Average	99.5%	0.5%		

Time	Condition of the water meter				
Туре	1. Broken	2. Not accurate	3. Working	4. I don't know	
1. Individual House Connection	3.1%	3.1%	92.1%	1.6%	
2. Building Connection	2.8%	2.8%	83.3%	11.1%	
3. Average	3.0%	3.0%	89.1%	5.0%	

#### Table AT.3.19Condition of water meter

	Water cl	harges the hous	sehold pay
Туре	1. Based on the measured volume,	2. Fixed	3. I don't know
1. Individual House Connection	86.1%	4.1%	9.8%
2. Building Connection	76.4%	1.4%	22.2%
3. Average	82.7%	3.1%	14.3%

Table AT.3.21	Preference of paying water charges as fixed charge or metered bill by
	household connection

Tranca	Preference for fixed charge or metered bill					
Types	1.Fixed charge	2. Metered bill				
1. Individual House Connection	10.1%	89.9%				
2. Building Connection	13.5%	86.5%				
3. Average	11.2%	88.8%				

#### 4) Fetching Water

- ✓ The sampled households fetching water from public stand posts, well, etc. carry 470 litres of water a day taking 1.9 hours on average. The average age of the person fetching water is 29 years old and 75% of them are females. 72% of the households without house connection use public stand posts. About a half of the other 28% do not use public stand post as there are none existing close to their household, while 30% of them do not use public stand post as they are having other options.
- ✓ On an average the public stand post were at a distance of 20 m from the respondents households. One public stand post is shared among 4.5 household. The average water consumption of public stand post per household is 410 litres per day. The average time required to fetch water from the public stand post each time was 7.5 minutes. All of the

sample households using public stand post answered that they carry water by walk. 25% of the sampled households without house connection expressed their needs to have a public stand post more close to their household.

#### (2) Complaints and Needs

#### 1) Complain in Each Scheme

- ✓ It is found that the most important aspect in water supply recognized among sampled households is stability (continuous supply) (308 points). The second and third important aspects are quantity & pressure (260 points) water quality (244 points) respectively. On the other hand, low water charge was recognized as the least important aspect (52 points).
- ✓ Table AT.3.22 shows that almost 30% of the respondents in the surface water supply scheme are having complains on the current public piped water supply service with a high degree of complain of 52% and 41% in Opa water supply scheme and Assonora water supply scheme respectively. Most of the complains are obtained from the tail end users of the various schemes.
- ✓ The respondents main complain on the current public piped water supply service is about the quantity and pressure followed by current operation hours and quality of water supplied.
- ✓ Table AT.3.23 shows that the sampled household were also interested in knowing about the water supply management. The first aspect were of water quality control, the second aspect being how the water charges is decided and the third being that they should be informed about when and where the water supply is cut off.

## Table AT.3.22Perception on complains on the current public piped water supply<br/>scheme

	Surface water supply schemes											
	1.	2	3.	4.	5.	6.	7.	Average	8.	Grand		
Perception	Salaulim	Opa	Chandel	Assonora	Sanquelim	Dabose	Canacona	within the	Rural	Average		
									Water			
									Supply			
									Schemes			
1. Yes, have complain on supply	21%	52%	9%	41%	27%	28%	27%	30%	28%	29%		
2.No, do not have complain on supply	79%	48%	91%	59%	73%	72%	73%	70%	72%	71%		

Areas of Interest among Customers of Public Water Supply	Level of Interest (Points)
1. How water charge is decided (rate setting)	328
2. How the water charge collected is utilized	252
3. Water quality control	387
4. Financial status of water providing organization/company (Financial Management)	93
5. What is water source, how the water treated, transmitted, and distributed.	137
6. How the water business is run (business management)	90
7. Extension, rehabilitation plan	134
8. When and where the water supply is cut-off	270
9. Others:	5

Table AT.3.23To know more about water supply management

#### 2) Hours of Water Supply and Pressure of Piped Public Water Supply Services

- ✓ The survey found that the respondents find the month of March to June as the most difficult season to gain desirable water sources as shown in Figure AT.3.3 per day.
- ✓ Table AT.3.24 and 25 shows that the respondents get an average of 11 hours of water supply in Chandel water supply during the regular season and respondents depending on Assonora water supply scheme receives only 5 hours per day of water supply. During difficult season the same schemes gives 7 hours and 3 hours of water supply per day.
- ✓ Figure AT.3.2 shows usual daily pattern of water supply on average among the whole sampled households, however the timing and period of water supply differ area by area in the reality.
- ✓ Table AT.3.26 shows that 60% of the respondents in Chandel water supply scheme is unhappy about the water supply during both the difficult as well as regular season. This may be due to the less quantity of water available at source. Similarly there is a high discontent among the respondents in Dabose water supply scheme. 23% of the respondents are not satisfied with the piped water supply in the regular season from Selaulim water supply scheme. The main reason might be that water is not reaching the tail end users of these schemes.
- ✓ Table AT.3.27 and Figure AT.4.3 show that 50% and 40% of the respondents in Dabose and Assonora water supply scheme respectively feels that the water pressure is a little low when water is supplied, 55% and 41% respondents of Chandel and Sanquelim water supply scheme respectively conceived that the water pressure is very low.
- ✓ Table AT.3.28 shows that 56% of the respondents having house connection are willing to pay more for improved water supply service if the raise is reasonable and 13% are ready to pay even if it is raised.

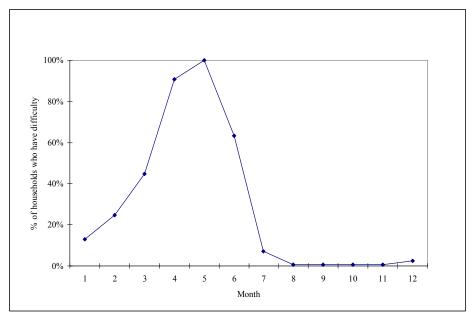



Figure AT.3.1 Degree of difficulty to have enough water in each month

Table AT.3.24	<b>Regular hours of water supply in Usual</b>
1 abit 11.5.24	Regular nours of water supply in Osuar

					Water	Supply Study	/ Areas			
Types of Survey Areas		1. Salaulim S.W.S.S	2. Opa S.W.S.S	3. Chandel S.W.S.S	4. Assonora S.W.S.S	5. Sanquelim S.W.S.S	6. Dabosei S.W.S.S	7. Canacona S.W.S.S	8. Distant form the S.W.S.S	Average
		24	19	20	8	21	17	24		
Survey Areas in Each	Area	24	2							
		19								
Surface Water		14								18
Supply Scheme (S.W.S.S)	5. Beach and Sightseeing Areas	22	2	5	4					8
	6. Poorly Served Areas	6	19	3	3	7	5	18		9
Average of E	Each S.W.S.S	14	11	11	5	14	11	21		12
	Average presented in Sector Status Study 2004*		10	13	6	7	8	4		9
	7. and 8. Rural Water Supply Schemes within/outside the		20	1		4	2	12	7	
S.W.S.S	iin/outside the								12	10

Reference: * Sector Status Study 2004, PWD, Appendix p.85

 Table AT.3.25
 Hours of Piped Public Water Supply in Difficult Seasons

					Water	Supply Study	/ Areas			
Types of Su	irvev Areas	1.	2.	3.	4. Assonora		6.	7.	8. Distant	Average
	51		Opa	Chandel	S.W.S.S	Sanquelim	Dabosei	Canacona	form the	
		S.W.S.S	S.W.S.S	S.W.S.S		S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	
		19	15	16	7	15	13	19	$\backslash$	
Sumou Aroos	1. to 4. Populated Area	20	2							
in Each		15								
Surface Water		12								14
Supply Scheme	5. Beach and Sightseeing									
(S.W.S.S)	Areas	20	2	3	2					7
	6. Poorly									
	Served Areas	4	18	2	1	4	3	13		7
Average of Each S.W.S.S		15	9	7	3	10	8	16		10
	7. and 8. Rural Water Supply Schemes within/outside the		17	0		2	1	10	5	
S.W.S.S	ini/outside the								3	8

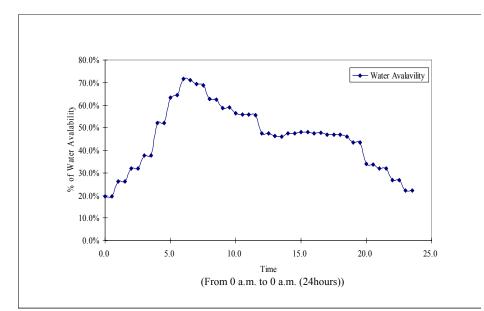



Figure AT.3.2 Water availability of public water supply service at each time of the day

Table AT.3.26Perception on household unhappy about the water supply hours

		Surface water supply schemes												
	1.	2.	3.	4.	5.	6.	7.	8.	Average					
Types of Survey	Salaulim	Opa	Chandel	Assonora	Sanquelim	Dabose	Canacona	Rural water						
Areas								supply						
								schemes						
1. Not, Enough water Supply in Difficult Seasons		53%	61%	81%	34%	73%	3%	17%	62%					
2. Not, Enough water supply in regular seasons	23%	44%	63%	75%	20%	62%	0%	8%	38%					

			Surface water supply schemes									
Types of survey areas		1.	2.	3.	4.	5.	6.	7.	8.	Average		
		Salaulim	Opa	Chandel	Assonora	Sanquelim	Dabose	Canacona	Rural water			
									supply schemes			
	1. Too High	0%	0%	0%	0%	3%	0%	0%	0%	1%		
Adequateness of water	2. Enough	70%	71%	31%	23%	23%	33%	100%	83%	54%		
pressure	3. A Little Low	14%	21%	14%	40%	33%	50%	0%	0%	21%		
	4. Very Low	16%	8%	55%	37%	41%	17%	0%	17%	24%		

#### Table AT.3.27Perception on adequateness of water pressure

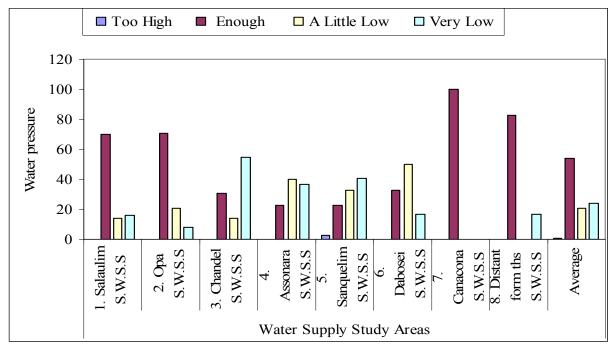



Figure AT.3.3 Perception on adequateness of water pressure

Table AT.3.28	Perception on improved public water supply service, even if current
	water charge is increased

	Perception	on improved publ	ic water supply se	ervice, even if cur	rent water charge	is increased
	1. I am satisfied	2. Yes, if it is	3. Yes, even if it	4. No, even if it	5. No, if it is	6. I don' know
	by the current	reasonable raise	is steep raise	is reasonable	steep raise	
	service and			raise		
	charge.					
1. Individual House		<b>7</b> 0.00/	0.00/	4 =0 (	2 10/	<b>-</b> 10/
Connection	18.6%	58.9%	9.3%	4.7%	3.1%	5.4%
2. Building Connection	28.4%	51.4%	20.3%	0.0%	0.0%	0.0%
3. Total	22.0%	55.6%	13.2%	2.9%	2.0%	4.4%

#### 3) Perception on Water Quality of Different Water Supply Services

- ✓ Table AT.3.29 shows that an average of 27% of the households depending on surface water supply schemes feels that the quality of water is not good.
- ✓ Table AT.3.30 shows that the biggest concern regarding the quality of water is turbidity followed by taste, smell, chemicals, colour, etc.

✓ Table AT.3.31 shows that 37% of the respondents in the sample area feels that the water causes various kinds of illness in their household.

Type of water source									
	1. Individual	2. Building	3. Public	4. to 5. Private	6. to 7.	8. Others	Grand		
Perception of	House	Connection	Stand Post	Well (Mostly	Public/Private	(river, spring,	Average		
water quality	Connection			Open wells)	Water Tanker	etc.)			
1. Water is of	950/	750/	590/	270/	00/	120/	420/		
good quality	85%	75%	58%	27%	0%	13%	43%		
2.Water is not									
of good quality	15%	25%	42%	73%	0%	88%	41%		

Table AT.3.29Perception of water quality

Table AT.3.30Perception on biggest concern of each water supply services and water<br/>sources.

Perception on		Type of water source										
biggest concern	1. Individual	2. Building	3. Public	4. to 5. Private	6. to 7.	8. Others	Grand					
of each water	House	Connection	Stand Post	Well (Mostly	Public/Private	(river, spring,	Average					
supply	Connection			Open wells)	Water Tanker	etc.)						
1. Turbidity	7	5	4	3	0	2	4					
2. Taste	6	3	2	2	0	1	2					
3. Smell	4	0	0	0	0	0	1					
4. Chemicals	3	0	0	0	0	0	1					
5. Colour	0	0	0	0	0	3	1					

	Type of water source										
D (	1. Individual	2. Building	3. Public	4. to 5. Private	6. to 7.	8. Others	Grand				
Perception	House	Connection	Stand Post	Well (Mostly	Public/Private	(river, spring,	Average				
	Connection			Open wells)	Water Tanker	etc.)					
1. Feels that											
water causes	21%	16%	47%	65%	0%	72%	37%				
illness											
2.Water do not											
cause illness	79%	84%	53%	35%	0%	18%	45%				

#### Table AT.3.31Perception of water causing illness in household

#### (3) Willingness to Pay for Water Supply Services

#### 1) Basic Information for the Evaluation of Willingness to Pay

- ✓ Table AT.3.32 shows that the average of total persons in each household in the surface water supply scheme is 4.98 and in the rural water supply scheme is 6.27.
- ✓ Table AT.3.33 shows that 33% and 6% of the respondent in water supply survey area and 29% and 4% of the respondents in sanitation survey area felt that the electricity charges per month is expensive to very expensive. However an average of 64% of the total respondents including water supply survey area and sanitation survey area felt that the electricity charges are fair.

	Type of Water Supply Survey Areas									
	1. to 4.	5. Beach and	6. Poorly Served	Average within	7. and 8. Rural Water	Grand				
Perception	Populated	Sightseeing	Area	the S.W.S.S	Supply Schemes	Average				
	Area	Area			within/outside the					
					S.W.S.S					
1. Adult men	1.57	1.86	2.19	1.87	2.64	2.255				
2. Adult women	1.51	1.79	2.14	1.81	2.19	2				
3. Children (< 16										
years olds)	1.07	1.40	1.43	1.30	1.44	1.37				
4. In total	4.15	5.38	5.76	4.98	6.27	5.625				

Table AT.3.32Average no of persons in sampled households.

	Type of Water Supply Survey Areas									
Housing ownership in	1. to 4.	5. Beach and	6. Poorly Served	Average	7. and 8. Rural Water	Grand				
sample household	Populated	Sightseeing	Area	within the	Supply Schemes	Average				
	Area	Area		S.W.S.S	within/outside the					
					S.W.S.S					
1. House hold	48%	43%	46%	46%	45%	46%				
2. Wife	20%	25%	23%	23%	11%	17%				
3. Husband	6%	10%	3%	6%	13%	10%				
4. Parent	2%	2%	3%	2%	0%	2%				
5. Child	10%	10%	10%	10%	22%	13%				
6. Grand parent	2%	2%	8%	4%	0%	3%				
7. Grand child	0%	0%	3%	1%	0%	1%				
8. Relative	0%	0%	0%	0%	0%	0%				
9. Tenants	12%	8%	7%	9%	9%	9%				
10. Room mate	0%	0%	0%	0%	0%	0%				
11. Employee	0%	0%	0%	0%	0%	0%				
12. Others	0%	0%	0%	0%	0%	0%				

Table AT.3.33Perception on housing ownership in sampled household in each survey<br/>area

Table AT.3.34Aver

### Average income and electricity bill of sampled household

	Water Supply Survey Areas						Sanitation/Sewerage Survey Areas					
	1. to 4.	5. Beach	6.	7. to 8.	Average	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average	
Category	Populate	and	Poorly	Unserved		Income	Middle	Income	Low	Commercial		
	d Area	Sightseeing	Served	Area			Income		Income			
		Area	Area									
1. Average income												
(Rs.)	6041	6280	5102	3083	5127	9162	5193	2868	2150	7657	5406	
2. Average electric												
bill (Rs.)	135	116	83	55	97	199	126	78	66	468	187	

	Water Supply Survey Areas						Sanitation/Sewerage Survey Areas					
	1. to 4.	5. Beach and	6.	7. to 8.	Average	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average	
Category	Populated	Sightseeing	Poorly	Unserved		Income	Middle	Income	Low	Commercial		
	Area	Area	Served	Area			Income		Income			
			Area									
1. Very expensive	7%	7%	0%	10%	6%	3%	3%	0%	0%	4%	2%	
2. Expensive	28%	21%	40%	44%	33%	18%	31%	20%	41%	34%	29%	
3. Fair	63%	67%	58%	47%	59%	77%	67%	79%	59%	58%	68%	
4. Cheap	1%	5%	1%	0%	2%	2%	0%	1%	0%	4%	1%	
5. Very cheap	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	

#### Table AT.3.35Perception of the electricity bill of sampled household

#### 2) Perception on Responsibility to Pay Water Charges

- ✓ Table AT.3.36 and Figure AT.3.4 show that 31% of the respondents in surface water supply scheme are of the opinion that most of the cost for running public water supply services shall be covered by the user fee with 15% of respondents feeling that half of the cost should only be covered by the user fee.
- ✓ Table AT.3.37 shows that individual house connection and buildings/apartment connection pays a total expense of Rs. 103/- and Rs. 105/- respectively for both public water supply and private water vendors.
- ✓ 43% of the sampled households having house connection answered that water charge collected from the users should recover only the cost of operation and maintenance of water supply system. 26% answered both the construction cost and operation and maintenance cost should be recovered by the users charges, while 30% answered that they do not have any idea.

	Type of Water Supply Survey Areas									
	1. to 4.	5. Beach and	6. Poorly	Average within	7. and 8. Rural Water	Grand Average				
Perception	Populated	Sightseeing	Served Area	the S.W.S.S	Supply Schemes					
	Area	Area			within/outside the					
					S.W.S.S					
1. Yes, most to be										
covered by the user	32%	28%	33%	31%	3%	24%				
fees										
2. No half to be										
covered by the user	14%	14%	18%	15%	22%	17%				
fees										
3. No, most to be										
covered by	8%	14%	18%	13%	8%	12%				
tax/government										
4. No, I don't have	46%	44%	33%	41%	67%	47%				
any idea	40%	44%0	33%	41%	0/%	4/%				

Table AT.3.36Perception on who should pay for running water supply services.

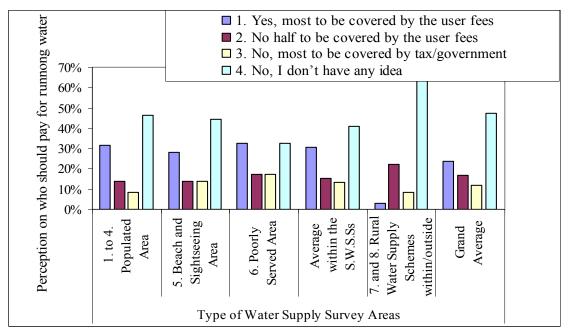



Figure AT.3.4 Perception on who should pay for running water supply services.

Table AT.3.37Total expense for water (public water supply and private water vendor)<br/>of each type of households which used different type of water supply as<br/>primary water source)

			Type of Pr	imary Water Sou	irce	
	1. Individual	2. Building	3. Public	4. Private Well	5. Public/	6. Others (river,
	house	connection	stand post	(Mostly Open	Private Water	spring, etc.)
	connection			wells)	Tanker	
1. Total expense for					_	
water per month (Rs.)	103	105	49	35	0	0

### 3) Willingness to Pay of Current House Connection for Improved Water Supply Services

- ✓ Table AT.3.38 and 39 shows that on average in each surface water supply scheme the respondents are willing to pay Rs. 14/- more above the existing water charges per month for adequate pressure and improved water quality and an average of Rs. 12/- per month for 24 hours water supply service.
- ✓ 82% of the sampled households having house connection answered that the quality of water supplied should be of an international standard (24 hour supply, directly drinkable, transparent) to improve the tourism in Goa. Those 82% of households have willingness to

pay of Rs. 16/- on average as a contribution to improve the public water supply services to international standards for the tourism in Goa.

Table AT.3.38	Willingness to pay more water charge per month for adequate pressure
	and improve water quality

					Water Sup	oply Study A	reas			
		1.	2.	3.	4.	5.	6.	7.	8.	Average
Types of 9	Survey Areas	Salaulim	Opa	Chandel	Assonora	Sanquelim	Dabosei	Canacona	Distant	
Types of a	Survey Areas	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	form the	
				Rs.		Rs.	Rs.	Rs.	S.W.S.S	Rs.
		Rs.	Rs.		Rs.				Rs.	
		11	11	7	10	10	12	26	$\backslash$	
Survey Areas	1. to 4.	16	17			$\mathbf{i}$		$\backslash$		
in Each	Populated Area	14	$\mathbf{i}$							
		15								14
Surface Water	5. Beach and					$\backslash$		$\backslash$	$\backslash$	
Supply	sightseeing									
Scheme	Areas	20	19	7	14					15
(S.W.S.S)	6. Poorly served									
	areas	29	26	10	17	6	8	5		14
Average of E	ach SWSS									
	aon 0. 11.0.0	18	18	8	13	8	10	16		14
7. and 8. Rur	al Water Supply									
Schemes wit	thin/outside the	•	7	-		10	-	8	-	
S.W.S.S									13	9

					Water Sup	ply Study A	reas			
		1.	2.	3.	4.	5.	6.	7.	8.	Average
Types of S	Survey Areas	Salaulim	Opa	Chandel	Assonora	Sanquelim	Dabosei	Canacona	Distant	Rs.
Types of S	Survey Areas	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	S.W.S.S	form the	
		Rs.	Rs.	Rs.	Rs.	Rs.	Rs.	Rs.	S.W.S.S	
									Rs.	
		-	8	9	11	9	8	16	$\backslash$	
Survey Areas		14	8		$\backslash$	$\backslash$		$\mathbf{i}$		11
	1. 10 4.	12	$\mathbf{i}$							11
	Populated Area	14								
Surface Water	5. Beach and					$\backslash$			$\backslash$	
Supply	sightseeing	15	8	10	12					11
Scheme	Areas									
(S.W.S.S)	6. Poorly served									
	areas	22	16	7	25	6	5	8		13
Average of E	ach S.W.S.S	15	10	9	16	8	7	12		11
7. and 8. Ru	al Water Supply	-	5	_		5	_	8	_	
Schemes wit	hin/outside the		5			5		5		7
S.W.S.S									10	

# Table AT.3.39Willingness to pay more water charge per month for 24 hours water<br/>supply service

### 4) Willingness to Pay for New House Connection

- ✓ Table AT.3.40 shows that the main reason of the 28% of respondents for not having a house connection of public piped water supply is that the monthly charges along with the connection fee is too high and 38% respondents in this group feels that the present arrangement (alternative water supply) is satisfactory.
- ✓ It was found in the survey that 72% of the respondents without house connection would like to have an individual house connection, provided PWDs piped water supply services newly covers their areas or increase the amount of piped water supply to their area so that they can get enough water supply at adequate pressure with good water quality. Among them, the willingness to pay per month to have new individual house connection is Rs. 41/- on average. On the other hand, the average willing to spend for the initial connection cost (including material and labour costs) for new house connection is Rs. 273/-.

Reasons for not having house connection	%
1. Connection is not available	14%
2. Service quality of public water supply is not good enough	17%
3. Monthly charges is too high	48%
4. Present arrangement (alternative water supply) is satisfactory	38%
5. Connection fee is too high	47%
6. Living in a rented house	13%

Table AT.3.40Reasons for not having house connection

#### 5) Willing to pay for New Sewerage Connection

- ✓ 29% of the households sampled in the survey on water supply practice open defecation, when asked about their sanitation option. While 68% and 13% are using toilets/latrines without connection to sewer and toilets/latrines connected to sewer, respectively. 20% of the household using toilets/latrine use common toilets.
- ✓ The respondents are willing to pay Rs. 600/- for the new sewerage connection and Rs. 24/- as the monthly sewerage charges in the surveyed areas of water supply.

### Attachment 4 Results of the Questionnaire Survey for Residents Regarding Sanitation and Sewerage

(1) Existing Situation

### 1) Sanitation/Sewerage types

✓ Table AT.4.1 shows the different toilets/latrines not connected to sewer used by different income level. An average of 51% of the respondents in the sanitation survey has their toilet/latrine connected to septic tanks.

			uge of L						Sanitation	Study Ar	eas						
		1.	Panaji - Se	erved		2. N			th & Cent		3. to 8. Unserved Areas (Average)						
Survey Areas in Each Study Area	High Income	Low Income	Very Low Income	Commer cial	Average	High Income	Middle Income	Low Income	Commer cial	Average	High Income	Middle Income	Low Income	Very Low Income	Commerc ial	Average	Average
1. Simple Pit Latrine	9%	1%	16%	5%	8%	17%	20%	27%	4%	17%	17%	0%	0%	0%	0%	3%	9%
2. Pour-Flush Latrine without Septic Tank		3%	10%	18%	12%	0%	12%	19%	14%	11%	0%	2%	0%	0%	5%	1%	8%
3. Double Pit Pour-Flush Latrine	0%	31%	20%	27%	20%	29%	17%	15%	24%	21%	0%	17%	40%	0%	26%	16%	19%
4. Septic Tank connected to drain	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	17%	2%	40%	0%	4%	13%	5%
5. Septic Tank connected to Soak Pit	720/	65%	54%	50%	61%	54%	51%	39%	58%	51%	67%	79%	20%	50%	51%	53%	55%
6. Others	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	15%	13%	5%

Table AT.4.1Percentage of Each Type of On-Site Sanitation in Each Area

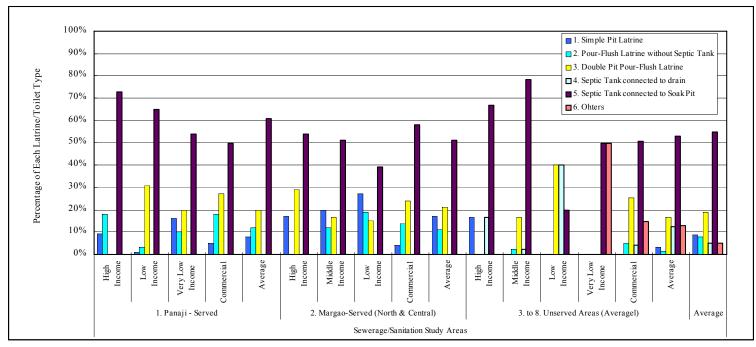



Figure AT.4.1 Percentage of Each Type of On-Site Sanitation in Each Area

#### 2) Problem of Toilets/Latrines not connected to Sewer

- ✓ Table AT.4.2 shows an average of 32% of the total respondents are having problem of their toilet/latrine which are not connected to sewer. 47% of the respondents in Panaji served area but not connected to sewer has various problems with their toilet/latrine, in which the major problem of 75% is due to non availability of water.
- ✓ Table AT.4.3 and its figure show the occurrence of overflow from the toilet/latrine not connected to sewer in Margao is 35% and the unserved area of Mapusa is 73%. The reason for such higher occurrence of overflow may be due to the poor sanitary conditions and maintenance prevailing in these areas.
- ✓ Table AT.4.4 shows that the reasons of overflow from toilet/latrine in served and unserved areas is due to the high water table 62% and 59% respectively. The second main reasons in both served and unserved areas is due to the hard late rite strata 24% and 23% respectively. The hard late rite does not allow the toilet water to soak in it causing clogging.
- ✓ Table AT.4.5 shows that even though the target respondents are having open wells, they are of the opinion that the water is not being polluted as their toilet/latrines are far away from the well.

		Sewerage/S	Sanitation Study Areas	
Category	1. Panaji-Served	2. Margao-Served	3. to 8. Unserved	Average
		(North & Central)	Areas (Average)	
1. Yes, toilet latrine have problem	47%	18%	33%	32%
a. Dirty	0%	0%	17%	6%
b. Bad smell	0%	0%	21%	7%
c. Dangerous	0%	0%	0%	0%
d. No water available	75%	0%	18%	31%
e. Problem with privacy	25%	0%	0%	8%
f. Overflow	0%	75%	20%	32%
g. Others	0%	13%	23%	12%

 Table AT.4.2
 Perception of toilet / latrine not connected to sewer

			ver									
					Sewer	age/Sanitation Stu	ıdy Area	ıs				
		Served Study Areas				Unserv	ed Study	/ Areas	5			
		1.	2.	Average	3.	4.	5.	6.	7.	8.	Average	
Cate	gory	Panaji	Margao-Served		Residential	Margao-unserved	Mapusa	Ponda	North	South		Grand
			(North &		Areas	(South)			Costal	Costal		Average
			Central)		around				Belt	Belt		
					Panaji							
	1. Yes,											
Occurrence	Overflow	18%	31%	24%	12%	35%	73%	31%	14%	17%	30%	29%
of Overflow	2. No	82%	69%	76%	88%	73%	27%	69%	86%	83%	71%	72%
	1. Every											
	week or more	33%	31%	32%	12%	27%	27%	31%	14%	17%	21%	24%
	2. Few times											
Frequency of	a month	0%	69%	35%	88%	73%	73%	69%	86%	83%	79%	68%
Overflow	3. Few times											
	a year	67%	0%	33%	0%	0%	0%	0%	0%	0%	0%	8%
	4. Once a											
	year or less	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

## Table AT.4.3Occurrence and frequency of over flow from the toilets not connected to<br/>Sewer

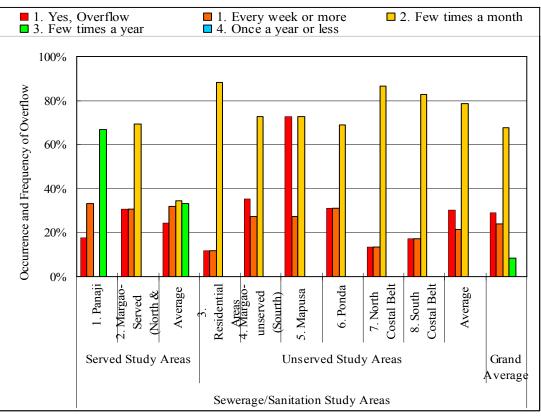



Figure AT.4.2 Occurrence and frequency of over flow from the toilets not connected to Sewer

				Sewer	age/Sanitation Stu	dy Area	s				
	Se	rved Study Area	IS		Unser	ved Stud	ly Are	as			
	1.	2.	Average	3.	4.	5.	6.	7.	8.	Average	2
Category	Panaji	Margao-Served		Residentia	Margao-unserved	Mapusa	Ponda	North	South		Grand
		(North &		Areas	(South)			Costal	Costal		Average
		Central)		around				Belt	Belt		
				Panaji							
Hard late rite											
strata	18%	31%	24%	12%	35%	27%	31%	14%	17%	23%	23%
High water table	71%	53%	62%	68%	47%	54%	45%	75%	65%	59%	60%
In flow of storm											
water	5%	6%	6%	10%	12%	3%	10%	0%	3%	6%	6%
Poor maintenance	3%	4%	4%	1%	4%	6%	5%	1%	3%	3%	3%
Clogging of											
chambers	3%	6%	5%	9%	2%	10%	9%	10%	12%	9%	8%

#### Table AT.4.4Reasons of Overflow

	,	Water Suppl	ly Surv	ey Areas		Se	werage	/Sanitat	tion St	udy Areas	
	1. to 4.	5. Beach	6.	7. to 8.	Average	Open	Simple	Pour	Septic	Sewerage	
Open well	Populated	and	Poorly	Unserved		Defecation	Pit	Flash	Tank		
	Area	Sightseeing	Served	Area			Latrine	Latrine			Average
		Area	Area								
1. Own open well	13%	33%	24%	25%	24%	4%	5%	0%	13%	4%	5%
2. Toilets within											
10 meters	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

#### 3) House Wastewater and Water use in Toilets

- ✓ Table AT.4.6 shows that the home waste water is disposed to the kitchen garden by 32% of the respondents in water supply survey area, whereas in Sewerage/Sanitation survey household 33% dispose home waste water to the open drain. It is also observed that in the sanitation survey area covered by sewerage 50% of the respondents dispose the waste water into the sewer line.
- ✓ Table AT.4.7 and its figure show that 36% and 41% of the respondents in the North costal belt and south costal belt respectively use open drainage facility for disposing their home

waste water. These table and figures are made from the data collected in Census 2001 and Sector Status Study 2004, PWD

- ✓ It is also conceived by the survey that even though 90% of the respondents connected to sewer has availability of water supply in the toilet, 60% of the household having use of semi auto flushing device would prefer more mater in their toilet/latrine as per Table AT.4.9.
- ✓ It is found that water is available in 90% of the respondents who have connected to sewerage of which 85% are having semi auto flushing device.
- ✓ It is also observed from Table AT.4.12 that 70% and 41% of the respondents from Panaji served and Margao served areas respectively required more water to flush their toilets.

		Water Suppl	ly Surv	ey Areas		5	Sewerag	ge/Sanit	ation S	Study Area	s
	1. to 4.	5.	6.	7. to 8.	Average	Open	Simple	Pour	Septic	Sewerage	Average
Importance	Populated	Beach and	Poorly	Unserved		Defecation	Pit	Flash	Tank		
	Area	Sightseeing	Served	Area			Latrine	Latrine	;		
		Area	Area								
1. To the sewer	25%	0%	3%	0%	7%	0%	0%	0%	0%	50%	10%
2. To the open											
drain	16%	19%	29%	19%	21%	62%	46%	22%	28%	5%	33%
3. To the closed											
drain	10%	14%	18%	7%	12%	27%	27%	17%	9%	5%	17%
4. To the street	1%	0%	3%	3%	2%	9%	0%	8%	0%	0%	3%
5. To the soak											
pit/septic tank	28%	37%	22%	10%	24%	2%	8%	25%	53%	40%	26%
6. Kitchen garden	20%	21%	26%	60%	32%	0%	19%	28%	10%	0%	11%
7. It is re-used	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Table AT.4.6Home waste water disposal types

		Sector Status Study 2004			
Study Area	Number of Households	Closed Drainage (including sewerage)	Open Drainage	No Drainage	Sewerage Connection
1. Panaji Municipality	15513	64%	18%	18%	81%
2. Margao Municipality	16521	56%	27%	17%	3%
3. Mapusa Municipality	8382	41%	24%	35%	0%
4. Ponda Municipality	3853	67%	19%	14%	0%
<ol> <li>Major Towns of North Costal Belt (Calangute, Candolim)</li> </ol>	4793	30%	36%	33%	0%
6. Major Towns of South Costal Belt (Benaulim,					
Varca)	3199	30%	41%	29%	0%

# Table AT.4.7Percentage of Household using Each Drainage Type in 2001 and<br/>Sewerage connection in 2004

Source: Census 2001, Sector Status Study PWD 2004 Chapter 4. p 30 (Number of Sewerage Connection)

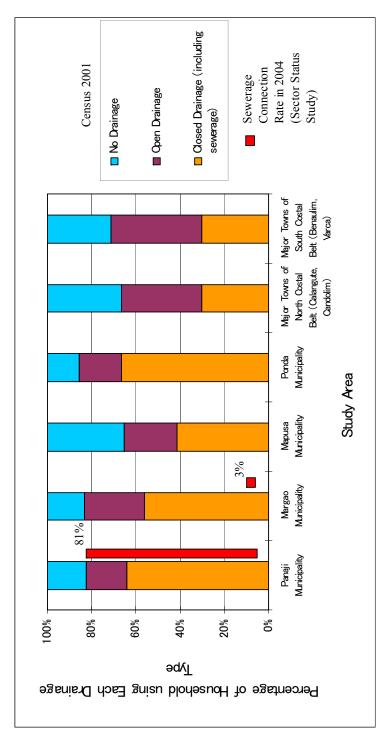



Figure AT.4.3Percentage of Households using Each Drainage Type in 2001 (Census)<br/>and Sewerage Connection Rate in 2004 (Sector Status Study)

	8			, Luch Drainage 1	-					
Туре о	of Drainage	Drainage Chandel WSS		SURFACE V Sanquelim/Padocem WSS	WATER SUI Dabose WSS	PPY SCHEM Salaulim WSS	IE Opa WSS	Canacona WSS	Total within Surface WSS	of the Surface
Total Numb	er of Households	14286	48409	18228	6363	105716	57394	6392	256788	22428
Sector Status Study in 2004	Sewerage Connection	0	0	0	0	4170	12570	0	16740	-
Census in 2001	<ol> <li>Closed Drainage (the number of sewerage connection is deducted)</li> </ol>	325	13958	1877	121	27805	5559	283	49928	
	2. Open Drainage	1362	13700	3437	960	34144	15291	682	69576	_
	3. No Drainage	12598	20751	12469	5282	39598	23974	5427	120100	-
Sector Status Study in 2004	1. % of Sewerage	0%	0%	0%	0%	4%	22%	0%	7%	-
Census in 2001	1. % Closed Drainage (does not include sewerage)	2%	29%	10%	2%	26%	10%	4%	19%	-
	2. % of Open Drainage	10%	28%	19%	15%	32%	27%	11%	27%	-
	3. % of No Drainage	88%	43%	68%	83%	37%	42%	85%	47%	

Source: Census 2001, Sector Status Study PWD 2004 Chapter 4 p. 30 and Appendix 9.1 p.78

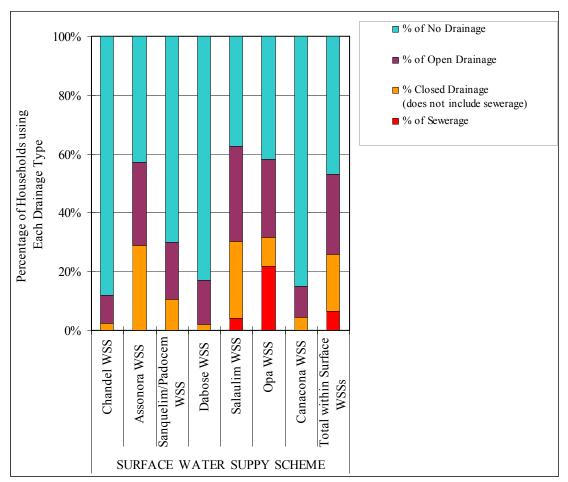



Figure AT.4.4 Percentage of Households using Each Drainage Type

	Sewerage/Sanitation Study Areas							
Category	Panaji - Served	Margao-Served (North & Central)	Average					
1. Semi-Auto Flushing	45%	74%	60%					
2. Pour Flush	55%	26%	40%					

Category		Pour flush toilet	Septic tank	Sewerage
	latrine			
1. Semi-auto flushing with a				
device (large amount of				
water),	16%	31%	79%	85%
2. Pour flushing (small				
amount of water)	84%	69%	21%	15%

Table AT.4.10Flushing types for sanitation

Table AT.4.11	Availability of wa	ter in toilet connec	cted to sewer
14010 111-1-11	Tranability of wa	ter m tonet connet	

	<b>、</b>		Water Supply Survey Areas						Sewerage/Sanitation Study Areas					
	$\backslash$	1. to 4.	5. Beach	6.	7. to 8.	Average	Open	Simple	Pour	Septic	Sewerage	Average		
		Populated	and	Poorly	Unserved		Defecation	Pit	Flash	Tank				
		Area	Sightseeing	Served	Area			Latrine	Latrine					
			Area	Area										
1. 4	Availability o	f												
v	water suppl	y 89%	83%	73%	85%	83%	0%	60%	75%	80%	90%	61%		
i	in toilet													

Table AT.4.12Need more water to flush the toilets

	Sewerage/Sanitation Study Areas						
Category	Panaji - Served	Margao-Served (North & Central)	Average				
1. Require more water	70%	41%	55%				
2. Do not need more water	30%	59%	45%				

#### (2) Awareness and Needs

#### 1) Pollution by Human Waste and Home Wastewater.

- ✓ Table AT.4.13 shows that 100% of the respondents using open defecation are aware that their human waste is polluting the living and natural environment of Goa and 65% of the respondent having simple pit and pour flush type toilets feels that their home waste water disposed is polluting the natural environment.
- ✓ Table AT.4.14 and its figure show that almost 52% and 9% of the respondents of both water supply and sanitation survey areas feels that the pollution of water environment in Goa is serious and very serious in nature respectively.

- ✓ Table AT.4.15 and its figure show that 34% and 45% of the respondents of water supply and sanitation survey area respectively feels that residential areas is the most polluted environment in Goa.
- ✓ Table AT.4.16 and its figure show that 44% and 53% of the target respondents of water supply and sanitation respectively feels that the local drains and nallas should be cleaned so that the pollution level of the residential area may drop.
- ✓ Table AT.4.17 and its figure show that 90% of all the respondent of different income level of water supply and sanitation survey area feels the need for drastic improvement in the sanitary situation in the state. A high 91% of respondents in the unserved area of water supply survey area felt that the water environment is becoming polluted and a total of 90% of the respondents in both water supply and sanitation survey area think that there is a need to prevent further deterioration of the living environment.
- ✓ Table AT.4.18 throws light that 86%, 76% and 47% of the respondents practicing open defecation in the served areas of Panaji, Margao and the unserved areas respectively are not satisfied by the existing situation and would prefer better alternative for human waste disposal.
- ✓ Table AT.4.19 shows that 55% and 77% of the respondents in Panaji and Margao sewerage areas connected to sewer says that they would prefer better human waste disposal.

Table III		reception on ponution by numan waste and nome waste water										
		Water Supp	ly Surve	y Areas		Sewerage/Sanitation Study Areas						
	1. to 4.	5.	6.	7. to 8.	Average	Open	Simple	Pour	Septic	Sewerage		
Types	Populated	Beach and	Poorly	Unserved		Defecation	Pit	Flash	Tank		A	
	Area	Sightseeing	Served	Area			Latrine	Latrine			Average	
		Area	Area									
<ol> <li>Yes, polluting living &amp; natural environment by human waste</li> </ol>	-	-	-	-	-	100%	85%	49%	35%	25%	59%	
<ol> <li>Yes, polluting natural environment by home waste</li> </ol>	34%	23%	51%	31%	35%	20%	62%	65%	41%	22%	42%	

 Table AT.4.13
 Perception on pollution by human waste and home waste water

		Water Supp	y Areas		Sanitation/Sewerage Survey Areas						
	1. to 4.	5. Beach and	6.	7. to 8.	Average	1. High	2. and 3.	4. Low	5.	6. and 7.	Average
Category	Populated	Sightseeing	Poorly	Unserved		Income	Middle	Income	Very	Commercial	
	Area	Area	Served	Area			Income		Low		
			Area						Income		
1. Very serious	8%	16%	8%	3%	9%	13%	11%	3%	5%	9%	8%
2. Serious	53%	42%	58%	54%	52%	62%	50%	54%	27%	51%	49%
3. Not Serious	39%	42%	35%	43%	39%	23%	39%	41%	68%	40%	42%
4. Not polluted at											
all	0%	0%	0%	0%	0%	2%	0%	3%	0%	0%	1%

Table AT.4.14Conceived pollution of water environment in Goa

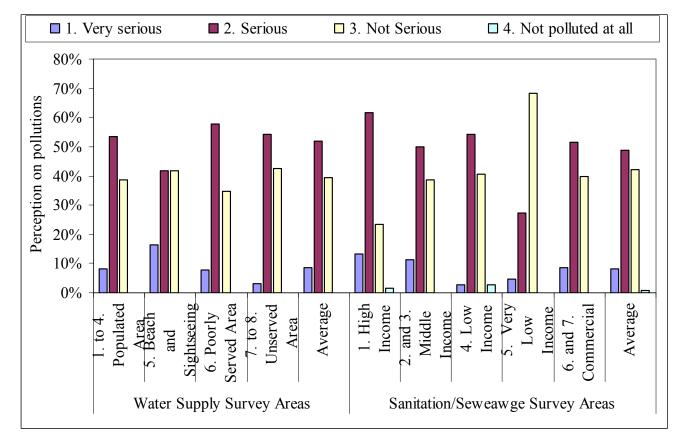



Figure AT.4.5 Conceived pollution of water environment in Goa

	Water Supply Survey Areas						Sanitation/Sewerage Survey Areas					
Category	1. to 4. Populated Area	5. Beach and Sightseeing Area	6. Poorly Served Area	7. to 8. Unserv ed Area		1. High Income	2. and 3. Middle Income		5. Very Low Income	6. and 7. Commercial	Average	
1. Rivers	6%	19%	18%	22%	16%	17%	13%	4%	9%	16%	12%	
2. Lakes and ponds	46%	44%	37%	47%	44%	47%	47%	27%	32%	27%	36%	
3. Beaches	4%	12%	4%	6%	6%	3%	9%	5%	9%	12%	8%	
4. Residential area	43%	26%	41%	25%	34%	33%	31%	64%	50%	46%	45%	
5. Others	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	

Table AT.4.15Conceived most polluted environment in Goa

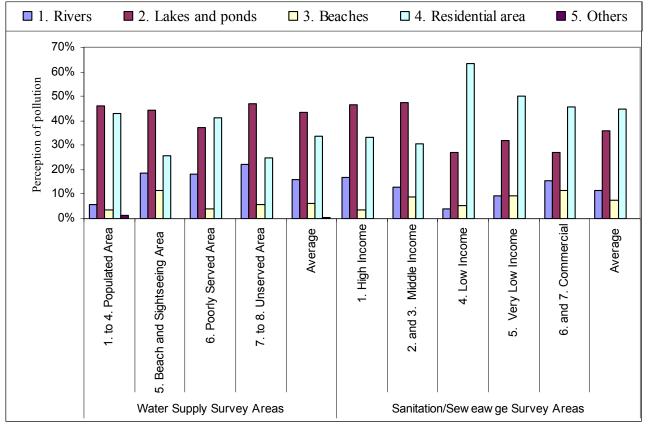



Figure AT.4.6 Conceived most polluted environment in Goa

		Water Suppl	ly Surv	ey Areas			Sanita	tion/Sev	verage S	Survey Areas	
	1. to 4.	5.	6.	7. to 8.	Average	1. High	2. and	4. Low	5.	6. and 7.	Average
Category	Populated	Beach and	Poorly	Unserved		Income	3.	Income	Very	Commercial	
	Area	Sightseeing	Served	Area			Middle		Low		
		Area	Area				Income		Income		
1. Local drains and nallas	56%	56%	40%	25%	44%	55%	46%	51%	50%	62%	53%
2. Nearby rivers											
for local people	42%	37%	56%	74%	52%	40%	36%	36%	45%	21%	36%
3. Beaches for tourists	1%	7%	4%	1%	3%	5%	16%	11%	5%	17%	11%

Table AT.4.16Most important environment to clean

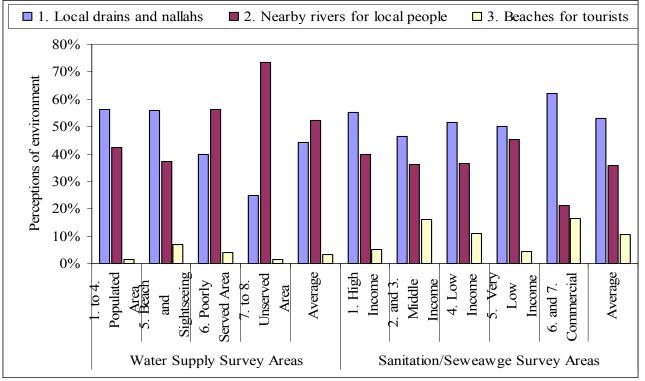



Figure AT.4.7 Most important environment to clean

		Water Suppl	ly Surv	ey Areas			Sanita	tion/Sev	verage S	Survey Areas	
	1. to 4.	5.	6.	7. to 8.	Average	1. High	2. and	4. Low	5. Very	6. and 7.	Average
Category	Populated	Beach and	Poorly	Unserved		Income	3.	Income	Low	Commercial	
	Area	Sightseeing	Served	Area			Middle		Income		
		Area	Area				Income				
1. Yes, need to											
improve											
sanitary situation						98%	88%	88%	100%	82%	91%
2. Yes, water											
environment											
becoming	85%	77%	86%	91%	85%	78%	69%	74%	95%	81%	79%
polluted		///0	8070	91/0	8370	/8/0	0970	/4/0	9370	01/0	/ 9 / 0
3. Yes, prevent											
further	0.50/	0.607	0.604	000/	0.407	000/	000/	0.604	1000/	000/	0004
deterioration	95%	86%	96%	99%	94%	80%	88%	86%	100%	88%	88%

Table AT.4.17Perception on improvement of the environment

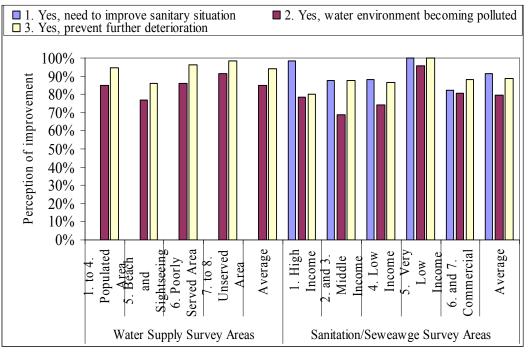



Figure AT.4.8 Perception on improvement of the environment

							-								
Survey Areas in		Sewerage/Sanitation Study Areas													
Each Study Area		1. Panaji - Served				2. Margao-Served (North & Central)				3. to 8. Unserved Areas (Average)					
	Open	Simple	Pour	Septic	Sewerage	Open	Simple	Pour	Septic	Sewera	Open	Simple	Pour	Septic	Sewer
	Defecation	Pit	Flash	Tanks		Defecation	Pit	Flash	Tanks	ge	Defecation	Pit	Flash	Tanks	age
		Latrine	Latrine				Latrine	Latrine				Latrine	Latrine		
1. Yes, satisfied	14%	0%	0%	29%	67%	0%	0%	0%	16%	54%	22%	0%	7%	29%	0%
2. Moderately satisfied	0%	0%	0%	47%	30%	24%	100%	0%	74%	44%	33%	40%	93%	42%	0%
3. Not satisfied at all	86%	0%	0%	24%	3%	76%	0%	0%	11%	3%	47%	0%	0%	21%	0%

Table AT.4.18Satisfaction level for household human waste disposal

Table AT.4.19Preference for better human waste disposal

		Sewerage/Sanitation Study Areas													
	1. Panaji - Served					2. Margao-Served (North & Central)				3. to 8. Unserved Areas (Average)				age)	
	Open	Simple	Pour	Septic	Sewerage	Open	Simple	Pour	Septic	Sewerage	Open	Simple	Pour	Septic	
Survey Areas in Each Study Area	Defecation	Pit	Flash	Tanks		Defecation	Pit	Flash	Tanks		Defecation	Pit	Flash	Tanks	Sewerage
Each Study Mea		Latrine	Latrine				Latrine	Latrine				Latrine	Latrine		
1. Would prefer															
better human															
waste disposal	71%	0%	0%	100%	55%	57%	100%	0%	87%	77%	69%	40%	90%	90%	0%
2. Do not prefer															
better human															
waste disposal	29%	0%	0%	0%	45%	43%	0%	0%	13%	23%	28%	0%	10%	10%	0%

#### 2) Open Defecation

- ✓ Table AT.4.20 shows that 50% of the people practicing open defecation is aware that it will cause various diseases and 54% of the people practicing the same would like to use common toilets.
- ✓ Table AT.4.21 shows that out of 20% of people practicing open defecation in unserved area are having community toilets, but cannot use them as it is too far.
- ✓ Table AT.4.22 shows the reasons that people practicing open defecation have not constructed toilet/latrine so far. 60% of the people living in Panaji served area could not construct as they are staying in rented places with the land lord refusing permission to construct a toilet in his land. 36% of the total respondent which are generally migrant labourers have not constructed toilet as they are staying on temporary basis.
- ✓ Table AT.4.23 shows that 45% of the respondent practicing open defecation are not willing to borrow money on low interest loan available from the government as they being of low and very low income feels that the government can set up common toilets like sulabh, etc. so that the people are not burdened with the expenses of constructing the same.

Peopl	e practicing open defecation	S	ewerage/Sanita	ation Study Are	as
		1.	2.	3. to 8.	Average
		Panaji -	Margao-Serv	Unserved	
				Areas	
			Central)	(Average)	
	1. Yes, know that it cause diseases	67%	33%	49%	50%
	2. No, do not know that it cause disease	33%	67%	51%	50%
Open defecation	3. Have available latrine	15%	13%	20%	16%
	4. Would like to have a private latrine	30%	27%	17%	25%
	5. Would like to have a common latrine	50%	58%	53%	54%
	6. No, doesn't need latrine	20%	15%	30%	22%

Table AT.4.20	Situation of people practicing open defecation
---------------	------------------------------------------------

Table AT.4.21	Latrine not being used

		Sewerage/Sa	nitation Study Areas	5
	1. Panaji -	2.	3. to 8. Unserved	Average
Category	Served	Margao-Served	Areas (Average)	
		(North &		
		Central)		
1. Latrine for storage	0%	0%	0%	0%
2. Latrine is dirty	0%	0%	4%	1%
3. Pit filled	0%	0%	11%	4%
4. Built on subsidy	0%	0%	0%	0%
5. Land lord has forbidden	100%	60%	5%	55%
6. Against culture	0%	0%	0%	0%
7. Community toilet is too far	0%	40%	75%	38%
8. Others	0%	0%	0%	0%

Table AT.4.22Latrine not constructed

		Sewerage/Sa	nitation Study Areas	
	1.	2.	3. to 8. Unserved	Average
Category	Panaji -	Margao-Served	Areas (Average)	
	Served	(North &		
		Central)		
1. Latrine not needed	0%	0%	0%	0%
2. Latrine too expensive	0%	20%	38%	19%
3. Rented place, no permission	60%	20%	0%	27%
4. No space for constructing latrine	20%	7%	4%	10%
5. Not enough water	0%	7%	0%	2%
6. Loan not available	0%	0%	0%	0%
7. Temporary residence	20%	47%	42%	36%
8. Others	0%	0%	0%	0%

	Sewerage/Sanitation Study Areas						
	1. Panaji -	2.	3. to 8. Unserved	Average			
Category	Served	Margao-Served	Areas (Average)				
		(North &					
		Central)					
1. Yes, willing to borrow money	71%	43%	51%	54%			
2. Not willing to borrow money	29%	57%	49%	45%			

#### Table AT.4.23 Borrow money on low interest loan availability from Government

#### **3)** Toilet/latrines without Connection to Sewer

- ✓ Table AT.4.24 and its figure show that 50% of the respondent living in Margao served area is of the opinion that the effluent from the toilet/latrine pollutes the surrounding environment and 76% of the people residing in unserved areas feel that their toilet/latrine is polluting the ground water whereas the respondents thinking that the overflow causing health hazards in neighbourhood is 35% in Panaji served area.
- ✓ Table AT.4.25 indicates that 51% of respondent thinks that the negative impact due to overflow from toilet on living and natural environment is of serious nature.
- ✓ From Table AT.4.26 it is generally observed that the toilet/latrine is constructed simultaneously along with the house/buildings. Hence the main source of construction is once own finance.
- ✓ From Table AT.4.27 it is observed that the respondents aspects of toilet/latrine with respect to technology type, quality of construction and maintenance and cleanliness ranges from fair to good.
- ✓ The improvement listed by the respondents to be made to their toilet/latrine in connection to sewer is first followed by up gradation to a better toilet/latrine. Constructing the toilet/latrine within the house is the third priority.
- ✓ Table AT.4.29 shows that 76% of the respondents in the served areas but not connected to sewer are willing to connect to sewer if a general/common law is enforced which makes it compulsory to connection to sewer compulsory.

	Sewerage/Sanitation Study Areas						
	1.	2.	3. to 8. Unserved	Average			
Category	Panaji - Served	Margao-Served	Areas (Average)				
		(North &					
		Central)					
1. Yes pollutes surrounding environment	35%	50%	23%	36%			
2. Yes, pollutes ground water	47%	78%	76%	67%			
3. Yes, health hazards in neighbourhood due to overflow	35%	79%	80%	65%			

Table AT.4.24Perception on effluent from toilet/latrine not connected to sewer

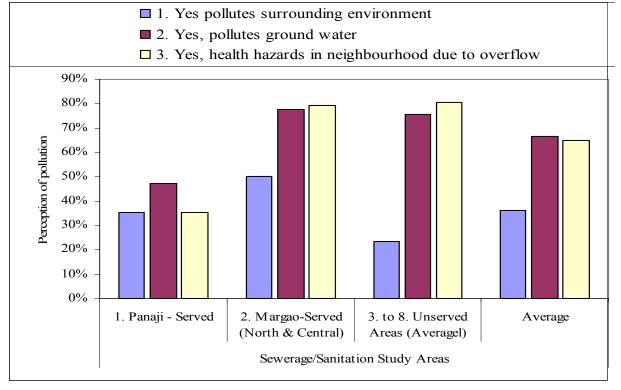



Figure AT.4.9 Perception on effluent from toilet/latrine not connected to sewer

# Table AT.4.25Perception on the living & natural environment due to overflow from<br/>toilets

	Sewerage/Sanitation Study Areas							
	1. 2. 3.		3. to 8. Unserved	Average				
Category	Panaji -	Margao-Served	Areas (Average)					
	Served	(North &						
		Central)						
1. Very serious on living ♮ environment	12%	6%	28%	15%				
2. Serious	59%	50%	45%	51%				
3. Not very serious	29%	44%	27%	34%				
4. Not serious at all	0%	0%	0%	0%				

 Table AT.4.26
 Finance for construction of toilet / latrine

	Sewerage/Sanitation Study Areas							
Category	1. Panaji -	1. Panaji - 2. Margao-Served 3		Average				
	Served (North & Central) A		Areas (Average)					
1. Own source construction toilet	69%	94%	86%	83%				
2. Government subsidy	19%	6%	13%	12%				
3. Borrow money	13%	0%	1%	5%				

Table AT.4.27	Unsatisfaction levels of toilet/latrine not connected to sewer
---------------	----------------------------------------------------------------

Technology type	2.5
Quality of construction	2.7
Maintenance & Cleanliness	2.6

#### Table AT.4.28 Improvement liked to be made of households toilet/latrine

1 Connect to gauge	274
1. Connect to sewer	374
2. Upgrade it to other better toilet/latrine	198
3. Construct it inside the house	109
4. Install running water inside it	46
5. Have regular sludge disposal service with exhauster	96
6. Have regular sludge disposal service with bucket	7

	Sewerage/Sanitation Study Areas						
	1. Panaji -	2.	3. to 8. Unserved	Average			
Category	Served	Margao-Served	Areas (Average)				
		(North &					
		Central)					
1. Yes, if sewerage law is enforced	75%	67%	86%	76%			
2. No, even when sewerage law is enforced	25%	33%	14%	24%			

 Table AT.4.29
 Connection to sewer if sewerage law is enforced

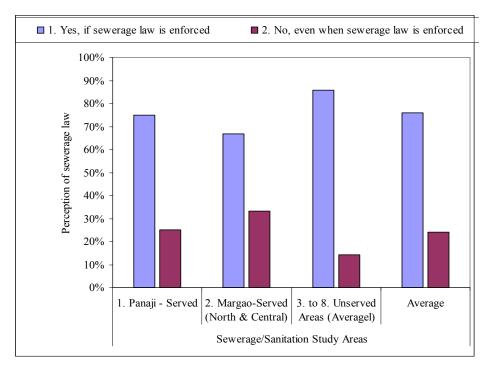



Figure AT.4.10 Connection to sewer if sewerage law is enforced

#### 4) Toilets/Latrine connected to Sewer

- ✓ Table AT.4.30 shows that in the served areas of Panaji and Margao the reasons obtained from respondents for connection to sewer for improving household sanitation is 47% and for the improving surrounding water environment is 19%.
- ✓ Table AT.4.31 and 3.32 shows that 45% and 38% of the respondents in Panaji served and Margao served respectively has conceived that there are complains in the existing sewerage system with 18% in Margao served still feeling that frequency of diarrhoea has not reduced even after connection to sewer.
- ✓ The respondents already connected to sewer has listed the 3 major complains of the existing sewerage system. The largest complaint is that initial sewerage connection charge is expensive, second largest is the monthly charge is too expensive and the third largest complaint is clogging.

	Sev	werage/Sanitation Stu	dy Areas
Category	Panaji - Served	Margao-Served (North & Central)	Average
1. Before moving in	6%	26%	16%
2. Improve Household Sanitation	45%	49%	47%
3. Improve surrounding Water Environment	30%	8%	19%
4. For Convenience	15%	18%	17%
5. Forced to connect	0%	0%	0%
6. Others	3%	0%	1%
7. I don't know	0%	0%	0%

Table AT.4.30Reason for connecting to Sewer

#### Table AT.4.31 Frequency of Diarrhoea after connecting to Sewer

	Sewerage/Sanitation Study Areas						
Category	Panaji - Served	Margao-Served	Average				
		(North & Central)					
1. Yes Diarrhoea decreased	94%	82%	59%				
2. No	6%	18%	12%				

	Sewerage/Sanitation Study Areas						
Category	Panaji - Served	Margao-Served	Average				
		(North & Central)					
1. Yes, having complains on the existing system	45%	38%	42%				
2. No, complains on the existing system	55%	62%	59%				

#### Table AT.4.32Complains of Existing Sewerage system users

#### (3) Difference in Willing to Pay by Income Level

#### 1) Basic Information for the Evaluation of Willingness to Pay

- ✓ Table AT.4.33 shows that the average high income group is having an income of Rs. 9000/- per month and for low income group the average monthly income is around Rs. 2500/-. It is also interesting to note that the commercial income groups income per month is found to be in between the high income and the middle income group. The average income varies between Rs. 2000/- to Rs. 9000/- per month.
- ✓ Table AT.4.34 shows that there is an average of 5.59 persons in each household in the sewerage/sanitation survey area.
- ✓ Table AT.4.36 and 3.37 shows that the electricity bill per month in the high income group is Rs. 199/- and for the very low income group is Rs. 66/- per month. 41% and 34% of the respondents in the very low income group and commercial income group feels that the existing electricity charges are expensive.
- ✓ Table AT.4.38 shows that 50% of the respondents in the higher income group of the entire survey area has conceived that the user fee should be covering the cost for running the sewerage service. 31% of the low income group in the Panaji served area feel that the cost for running the sewerage service should be covered by tax/government. A high 60% of the low and very low income group of Panaji served and Margao unserved has no idea about the basic principle that most of cost for running sewerage service other the capital costs shall be covered by the user fee.
- ✓ Table AT.4.39 shows that 54% of the respondents in the served area of Panaji and Margao feels that the initial connection cost should be borne by the government using our tax and 42% and 56% of respondents in Panaji and Margao respectively has conceived that cost of running the sewerage works to be charged to the household connected as monthly sewerage charges.

Table AT.4.33Average household Income in each survey area.	
------------------------------------------------------------	--

		Sewerage/Sanitation Study Areas									
		Served Study Areas Unserved Study Areas									
Survey Areas of	1.	2.	Average	3.	4.	5.	6.	7.	8.	Average	
Different Income	Panaji	Margao-Served		Residential	Margao-unserved	Mapusa	Ponda	North	South		Grand
Group in Each Study		(North &		Areas	(South)			Costal	Costal		Average
Area		Central)		around				Belt	Belt		
				Panaji							
1. High Income	10545	8805	9675	8929		10143	$\searrow$	7714	8757	8886	9149
2. Middle Income		4528	4528	4367	5022	7367	6306	5660	4233	5492	5355
3. Low Income	3708	2930	3319	2410	2525		2500			2478	2815
4. Very Low Income	2491		2491		1809					1809	2150
	8209	8342			6981	7713	6338	6950	4513		
5 & 6. Commercial	8368		8306					6838	10500	7119	7475

Table AT.4.34Average number of persons in sampled households

	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average
People	Income	Middle	Income	Low Income	Commercial	
		Income				
1. Adult Men	1.87	1.73	1.82	2.14	2.76	2.06
2. Adult Woman	1.67	1.85	1.85	1.91	1.46	1.75
3. Children (<16 years old)	1.40	1.65	1.89	2.09	1.08	1.62
4. Total	4.93	6.00	5.57	6.14	5.29	5.59

	1. High	2. and 3.	4. Low	5. Very Low	6. and 7.	Average
People	Income	Middle	Income	Income	Commercial	
		Income				
1. Household himself	53%	54%	59%	50%	62%	56%
2. Wife	27%	22%	9%	14%	7%	16%
3. Husband	10%	8%	15%	18%	11%	12%
4. Parents	0%	0%	5%	9%	1%	3%
5. Child	10%	9%	3%	0%	6%	6%
6. Grand Parents	0%	1%	5%	9%	2%	4%
7. Grand Child	0%	6%	1%	0%	1%	2%
8. Relative	0%	0%	1%	0%	0%	0%
9. Tenant	0%	0%	0%	0%	0%	0%
10. Room mate	0%	0%	0%	0%	0%	0%
11. Employee	0%	0%	0%	0%	4%	1%
12. Others	0%	0%	0%	0%	5%	1%

Table AT.4.35Housing ownership in sampled household

Table A	АТ.4.36	Average income and electricity	ty bill of sampled household

		Water Supp	ly Surve	y Areas		Sanitation/Sewerage Survey Areas								
	1. to 4.	5. Beach	6.	7. to 8.	Average	1. High	2. and	4. Low	5. Very	6. and 7.	Average			
Category	Populated	and	Poorly	Unserved		Income	3.	Income	Low	Commercial				
	Area	Sightseeing	Served	Area			Middle		Income					
		Area	Area				Income							
1. Average income (Rs.)	6041	6280	5102	3083	5127	9162	5193	2868	2150	7657	5406			
2. Average														
electric bill	135	116	83	55	97	199	126	78	66	468	187			
(Rs.)														

		Water Supp	ly Surve	y Areas		Sanitation/Sewerage Survey Areas								
	1. to 4.	5. Beach and	6.	7. to 8.	Average	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average			
Category	Populated	Sightseeing	Poorly	Unserved		Income	Middle	Income	Low	Commercial				
	Area	Area	Served	Area			Income		Income					
			Area											
1. Very														
expensive	7%	7%	0%	10%	6%	3%	3%	0%	0%	4%	2%			
2. Expensive	28%	21%	40%	44%	33%	18%	31%	20%	41%	34%	29%			
3. Fair	63%	67%	58%	47%	59%	77%	67%	79%	59%	58%	68%			
4. Cheap	1%	5%	1%	0%	2%	2%	0%	1%	0%	4%	1%			
5. Very cheap	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%			

Table AT.4.37Perception of the electricity bill of sampled household

Table AT.4.38Perception of payment for running Sewerage system by the user

Category		Sewerage/Sanitation Study Areas															
		1. Panaji - Served						2. Margao-Served (North & Central)						ved Area	s (Average)		
	High Income	Low Income	Very Low Income	Commercial	Average	High Income	Middle Income	Low Income	Commercial	Average	High Income	Middle Income	Low Income	Very Low Income	Commercial	Average	Average
1. Yes, by user Fee	73%	0%	36%	50%	40%	57%	50%	31%	38%	44%	35%	28%	0%	0%	10%	15%	31%
2. No, with user fee	18%	0%	0%	18%	9%	0%	13%	10%	4%	7%	17%	9%	5%	0%	11%	9%	8%
3. No, by Government Tax	0%	31%	0%	5%	9%	19%	17%	0%	4%	10%	14%	13%	25%	18%	13%	17%	12%
4. No Idea	9%	69%	64%	27%	42%	24%	21%	59%	54%	39%	34%	50%	70%	82%	66%	60%	48%

		Sewerage/Sanitation Study Areas						
Categ	gory	Panaji - Served	Margao-Served (North & Central)	Average				
Initial Connection cost	1. Household to be connected	33%	59%	46%				
	2. Government using tax	67%	41%	54%				
Cost of Running sewerage	1. Household connected as monthly sewerage charge	42%	56%	49%				
works	2. Government using tax as subsidy	58%	44%	51%				

### Table AT.4.39Perception of payment for initial connection and cost of running<br/>sewerage works for households connected to sewer

#### 2) Willingness to Pay

- ✓ Table AT.4.40 shows that 43% and 40% of the middle income in unserved area and Margao served area practicing open defecation are willing to construct a toilet/latrine to avoid the negative impacts on their household and on the water environment in Goa. It is also interesting to note that 100% of people in Panaji served are willing to construct the toilet/latrine.
- ✓ Table AT.4.41 shows that on an average Rs. 261/- is spent by the respondents of the survey study area for annual maintenance cost of the facility including sludge disposal. The construction cost of toilet/latrine not connected to sewer is Rs. 24,227/- for high income groups in the study area.
- ✓ Table AT.4.42 shows that 100% of the high income and middle income in Margao served area are ready to connect to sewer as compared to only 26% in the high income group of unserved area. This may be because the high income group respondents may have already spent for constructing toilets, septic tanks, etc. The monthly sewerage charges for the purpose of improving the quality of life is given as RS. 37/- and Rs. 20/- by the high income and low income group respectively. Overall the respondents are ready to pay Rs. 49/- as total monthly charges for usage of sewerage connection. The willingness to pay the initial connection cost varies from Rs. 3000/- for high income group to Rs. 500/- for very low income group in the study area.
- ✓ Table AT.4.43 shows that the respondents in low income pay Rs 34/- and Rs. 39/- for the existing sewerage charge per month in Panaji and Margao served area. 57% of the commercial area are only willing to keep the existing sewerage network which infers that the balance 43% has some problem with the system and require improvement on the same.

The respondents in the commercial group were found willing to pay Rs. 78/- as total monthly charges for the existing sewerage connection so as to improve the quality of life in the household and for the water environment in Goa.

#### 3) sons of Low Willingness of Connecting to Sewer and Keeping the Connection

✓ Table AT.4.44 shows that only a low of 7% of the respondents are not willing to connection to sewer. The main reasons given by these respondents as per Table AT.4.45 is first that they don't want to spend any money for sewerage. The reasons that current toilet/latrine is enough and don't think that sewerage is essential for life are the second and third reasons respectively.

# Table AT.4.40Willingness to pay (of people practicing open defecation) to construct new toilet/latrine connected to sewer to avoid<br/>negative impacts of open defecation

		Sewerage/Sanitation Study Areas															
		1. Panaji - Served					2. Margao-Served (North & Central)					3. to	8. Unser	ved Area	as (Average)		
	High Inco me	Low Income	Very Low Income	Commercial	Average	č	Middle Income	Low Income	Commercial	Average	High Income	Middle Income		Very Low Income	Commercial	Average	Average
1. Yes, like to																	
construct toilet	-	100%	100%	100%	100%	-	40%	60%	40%	47%	-	50%	90%	100%	60%	75%	74%
2. Monthly Rs. for																	
quality of life	-	20	15	3	12	-	8	9	10	7	-	9	29	22	55	29	18
3. Monthly more for environment	_	10	6	3	7	-	8	8	5	5	_	8	13	10	8	10	8
4. Monthly cost to connect to sewer		5	7	3	5	_	5	7	2	3	_	5	8	7	7	7	5
5. Total Monthly																	
charges	-	35	28	8	24	-	20	23	17	15	-	21	50	39	70	45	31

	Sewerage/Sanitation Study Areas																
		1. Panaji - Served					2. Margao-Served (North & Central)				3. to 8. Unserved Areas (Average)						
	High Income	Low Income	Very Low Income	Commercial	Average	High Income	Middle Income		Commercial	Average	High Income	Middle Income		Very Low Income		Average	Average
1. Annual maintenance Cost Rs.	517	400	0	1125	510	456	261	270	223	302	358	339	134	88	1011	386	398
2. Construction cost Rs.	6833	4500	5500	7417	6063	22214	4689	16667	18500	15517	6542	6385	2050	7042	6583	5720	8840

Table AT.4.41Willingness to pay for annual maintenance cost of construction cost for toilet / latrine user without connecting to sewer.

	Sewerage/Sanitation Study Areas																
		1	. Panaji	- Served		2	. Margao	-Served (	North & Centr	al)		3. to	8. Unser	ved Area	s (Average)		
Category	High Income	Low Income	Very Low Income	Commercial	Average	C	Middle Income		Commercial	Average	C	Middle Income		Very Low Income	Commercial	Average	Average
1. Yes, connect to sewer	100%	100%	100%	100%	100%	100%	100%	90%	80%	93%	100%	97%	60%	33%	85%	75%	88%
2. Monthly charges for quality of life (Rs.)	37	19	18	35	27	37	32	61	146	69	39	47	26	39	98	50	49
<ol> <li>Monthly more for improving water environment (Rs.)</li> </ol>		10	10	18	15	21	14	19	28	21	21	19	10	8	27	17	17
4. Total monthly for use of sewerage (Rs.)		29	28	53	42	57	47	80	174	89	61	65	36	47	125	67	66
5. Initial connection cost (Rs.)		2500	3167	1633	2342	1647	1222	675	1179	1181	1885	2057	1078	1513	1719	1650	1719

#### Table AT.4.42Willing to pay to connect toilet/latrine to sewer for improving household livelihood & water environment in Goa

		Sewerage/Sanitation Study Areas															
		1	I. Panaji	- Served		2. Margao-Served (North & Central)						3. to	8. Unser	rved Area	as (Average)		
Category	U	Low Income		Commercial	Average	High Income	Middle Income		Commercial	Average	- C	Middle Income		Very Low Income	Commercial	Average	Average
1. Current monthly sewerage charge (Rs.)	56	24	16	61	39	52	40	39	171	76	-	-	-	-	-	-	58
2. Yes, to keep sewerage the existing connection		100%	100%	57%	86%	90%	70%	100%	78%	84%	-	-	-	-	-	-	85%
3. Monthly more for sewerage connection or improving quality of life (Rs.)	30	13	9	24	19	23	19	14	50	27	-	-	-	-	-	-	23
<ol> <li>Monthly more for improving water environment (Rs.)</li> </ol>	10	11	8	17	13	15	15	10	28	17	-	-	-	-	-	-	15
5. Total monthly for use of sewerage (Rs.)	48	24	17	41	32	38	34	24	78	44	-	-	-	-	-	-	38

Table AT.4.43	Willingness to p	ay to keep	the existing sewerag	e connection

	Sewerage/Sanitation Study Areas																
		1	. Panaji -	Served		2. Margao-Served (North & Central)					3. to 8. Unserved Areas (Average)						
Survey Areas	High	Low	Very	Commercial	Average	High	Middle	Low	Commercial	Average	High	Middle	Low	Very	Commercial		
in Each Study	Income	Income	Low			Income	Income	Income			Income	Income	Income	Low			Average
Area			Income											Income			
1. Do not like																	
to connect to	0%	0%	0%	0%	0%	0%	0%	11%	20%	8%	0%	27%	0%	0%	8%	11%	7%
sewer																	

Table AT.4.44Toilet/latrine not liking to connect to sewer

1. Monthly charge of sewer connection is too expensive	9
2. Cost of connecting to sewer is too expensive	8
3. Don't want to spend any money for sewerage	30
4. Current toilet/latrine is enough	20
5. Not enough water to use flush toilet	8
6. Don't think sewerage is essential for our life	11
7 Don't think sewerage can improve our livelihood or environment	2
8. Neighbors also don't connect to sewerage	0
9. The government doesn't enforce the connection and the use of sewerage	0
10. Others (please specify)	0

 Table AT.4.45
 Reasons for not liking to have a sewer connection

#### (4) vironmental Education and Sanitation Promotion

- ✓ Table AT.4.46 shows that 58% of the toilet/latrines of simple pit type, 18% each of the toilet/latrines of pour flush and septic tank type are having bad sanitary situation.
- ✓ Table AT.4.47 shows that 40% and 45% of the respondents of pour flush and septic tank toilet/latrines clean the toilet every day as against 46% of the respondents of the simple pit toilet/latrine who cleans the toilet every two weeks. It is also found that 58% of the toilets of simple pit type were having bad sanitary situation.
- ✓ Table AT.4.48 indicates that 45% and 33% of the respondents having simple pit toilets and pour flush toilet respectively has to remove the sludge from their toilet/latrines annually.
- ✓ Table AT.4.49 shows that in the sanitation survey area among the very low income group 36% and 79% of adults and children respectively wash their hands without soap after defecation. Also in the water supply schemes of poorly served area it is observed that 35% of children do not wash hand with soap after defecation an d51% of the adults do not wash their hands with soap before eating.
- ✓ Table AT.4.50 shows that 43% of the respondents in low and very low income group does not use any domestic water treatment before using water with 60% of the balance 57% of the same respondent group use boiling method of water treatment before drinking.
- ✓ Table AT.4.51 occurrence of diarrhoea is 6.8 times in a year for poorly served area and 4.0 times in a year in beach and sight seeing areas of water supply areas and 6.4 in low income areas of sanitation survey area. It is also found that the respondent suffer from malaria 5 times in a year in the very low income group of sanitation survey area.

- ✓ Table AT.4.52shows that diarrhoea is prevalent in respondents going in for open defecation which is 9.7 times in a year and 6.8 times in the poorly served areas of water supply.
- ✓ Table AT.4.53 shows that 60% of the adults in all the income level, high, middle, low and commercial does not have exposure to hygiene education and a high 91% of very low income level similarly does not have any exposure to any type of education or sanitary promotion. Almost 44% of the respondents in the low income group does not know whether the schools have any kind of hygiene education for their children with 37% of the respondent in high income level says that there is no promotion of sanitation education in the school. The table also shows that an average 68% of all the target respondents think that the promotion or education on water related hygiene and sanitation is necessary for the household to be more healthier.

Table AT.4.46	<b>Cleanness of Toilet /latrine not connected to sewer</b>

	Types of Toilets/latrines								
Category	Simple Pit	Pour Flash	Septic	Average					
	Latrine	Latrine	Tanks						
1. Impossible Sanitary Situation	0%	2%	0%	0%					
2. Bad Sanitary Situation	58%	17%	18%	23%					
3. Acceptable Sanitary Situation	27%	61%	64%	38%					
4. Good Sanitary Situation	15%	20%	18%	9%					

Table AT.4.47F	Frequency of Cleaning the Toilet / Latrine not connected to sewer
----------------	-------------------------------------------------------------------

	Types of Toilets/latrines								
Category	Simple Pit	Pour Flash Latrine	Septic Tanks	Average					
	Latrine								
1. Everyday	8%	27%	0%	9%					
2. Every Few Days	19%	40%	45%	26%					
3. Once a Week	19%	32%	18%	17%					
4. Every Two Weeks	46%	2%	18%	17%					
5. More Than Two Weeks	8%	0%	18%	6%					

	Types of Toilets/latrines									
Category	Simple Pit	Pour Flash	Septic Tanks	Average						
	Latrine	Latrine								
1. Six Months	0%	0%	0%	0%						
2. Annually	45%	33%	0%	19%						
3. Five Years	0%	16%	0%	4%						
4. More Than Five Years	10%	22%	0%	8%						
5. Never Did	45%	29%	100%	43%						

Table AT.4.48Sludge Withdrawal of Toilet / Latrine not connected to sewer

		78 1		Water Supp	oly Survey A	Areas		Sanitation/Sewerage Survey Areas						
	Catego	<b>rs</b> 7	1. to 4.	5. Beach and	6. Poorly	7. to 8.	Average	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average	
	Catego	I y	Populated	Sightseeing	Served	Unserved		Income	Middle	Income	Low	Commercial		
			Area	Area	Area	Area			Income		Income			
		1. No washing	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	
		2. Washing												
	Adult	without soap	2%	14%	14%	22%	13%	5%	20%	23%	36%	24%	22%	
		3. Washing with												
After		soap	98%	86%	86%	78%	87%	95%	80%	76%	64%	76%	78%	
defecation		1. No washing	0%	0%	0%	0%	0%	0%	0%	10%	0%	0%	2%	
		2. Washing												
	Children	without soap	7%	22%	35%	37%	25%	8%	34%	47%	79%	38%	41%	
		3. Washing with												
		soap	93%	78%	65%	63%	75%	92%	66%	43%	21%	63%	57%	
		1. No washing	0%	2%	0%	3%	1%	0%	1%	3%	14%	4%	4%	
		2.Washing												
	Adult	without soap	30%	21%	51%	34%	34%	48%	34%	71%	55%	57%	53%	
		3. Washing with												
Before		soap	70%	77%	49%	63%	65%	52%	65%	26%	32%	39%	43%	
eating		1. No washing	0%	3%	0%	4%	2%	0%	1%	15%	17%	6%	8%	
		2. Washing												
	Children	without soap	44%	36%	72%	43%	49%	59%	75%	73%	78%	70%	71%	
		3. Washing with												
		soap	56%	61%	28%	53%	50%	41%	23%	12%	6%	24%	21%	

Table AT.4.49Hygiene practices washing hand with soap

		Water Supp	ly Surve	y Areas			Sanit	tation/Sev	werage S	urvey Areas	
Domestic water	1. to 4.	5. Beach and	6.	7. to 8.	Average	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average
treatment	Populated	Sightseeing	Poorly	Unserved		Income	Middle	Income	Low	Commercial	
treatment	Area	Area	Served	Area			Income		Income		
			Area								
1. No domestic water treatment before use	11%	19%	22%	12%	16%	10%	38%	43%	43%	29%	33%
<ol> <li>Both Boiling and Simple filtering</li> </ol>	38%	41%	35%	69%	46%	46%	39%	7%	8%	19%	24%
3. Boiling	46%	47%	55%	29%	44%	21%	33%	60%	77%	53%	49%
4.Simple Filtering	16%	12%	10%	2%	10%	33%	29%	28%	0%	22%	22%
5.Domestic Chlorination	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
6. Other means	0%	0%	0%	0%	0%	0%	0%	5%	15%	5%	5%

Table AT.4.50Domestic water treatment before using water

		Water Supp	ly Surve	y Areas			Sanit	ation/Sev	werage S	urvey Areas	
	1. to 4.	5. Beach and	6.	7. to 8.	Average	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average
Types of Disease	Populated	Sightseeing	Poorly	Unserved		Income	Middle	Income	Low	Commercial	
	Area	Area	Served	Area			Income		Income		
			Area								
1. Diarrhoea	3.0	4.0	6.8	3.2	4.2	2.5	6.0	6.4	5.9	6.5	5.5
2. Typhoid	1.1	0.7	2.2	0.7	1.2	1.3	1.9	4.2	3.6	1.9	2.1
3. Hepatitis	0.1	0.2	0.5	0	0.2	0.2	2.1	1.1	0	0.8	0.7
4. Malaria	1.5	1.2	2.3	0.9	1.5	1.2	3.5	3.2	5.0	3.5	1.5

 Table AT.4.51
 Occurrence of water borne disease (income level wise)

Table AT.4.52Occurrence of water borne diseases (sanitation type wise)

		Water Suppl	ly Surv	ey Areas		Se	werage	/Sanitat	tion St	udy Areas	
	1. to 4.	5. Beach	6.	7. to 8.	Average	Open	Simple	Pour	Septic	Sewerage	Average
Types	Populated	and	Poorly	Unserved		Defecation	Pit	Flash	Tank		
	Area	Sightseeing	Served	Area			Latrine	Latrine			
		Area	Area								
1. Diarrhoea	3.0	4.0	6.8	3.2	4.2	9.7	1.5	4.4	4.0	2.8	4.5
2. Typhoid	1.1	0.7	2.2	0.7	1.2	5.0	2.0	0.6	1.5	1.4	2.1
3. Hepatitis	0.1	0.2	0.5	0	0.2	3.0	0	0	0.2	0.3	0.8
4. Malaria	1.5	1.2	2.3	0.9	1.5	4.8	2.5	3.3	3.6	2.2	3.3

		W	ater Supply S	urvey Ar	eas			Sanit	tation/Sev	werage S	urvey Areas	
		1. to 4. Populated	5. Beach and	6.	7. to 8.	Average	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average
Category		Area	Sightseeing	Poorly	Unserved		Income	Middle	Income	Low	Commercial	
			Area	Served	Area			Income		Income		
				Area								
Exposure to Hugiana Education	1. Yes	63%	53%	59%	82%	64%	40%	38%	31%	9%	41%	32%
Exposure to Hygiene Education	2. No	37%	47%	41%	18%	36%	60%	63%	69%	91%	59%	68%
	1. Yes	60%	48%	55%	76%	60%	58%	31%	22%	27%	49%	37%
Hygiene education for children in school	2. No	23%	38%	27%	11%	24%	37%	36%	33%	50%	27%	37%
	3. I don't know	17%	15%	18%	13%	16%	5%	33%	44%	23%	24%	26%
Promotion or Education of	1. Yes	90%	88%	76%	81%	84%	85%	64%	50%	64%	78%	68%
hygiene & sanitation	2. No	10%	12%	24%	19%	16%	15%	36%	50%	36%	22%	32%

## Table AT.4.53Hygiene education and sanitation promotion

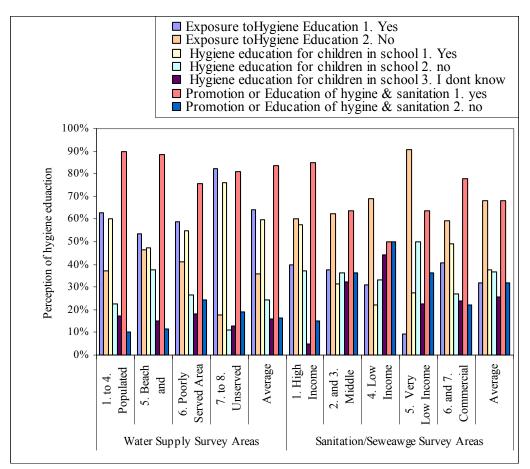
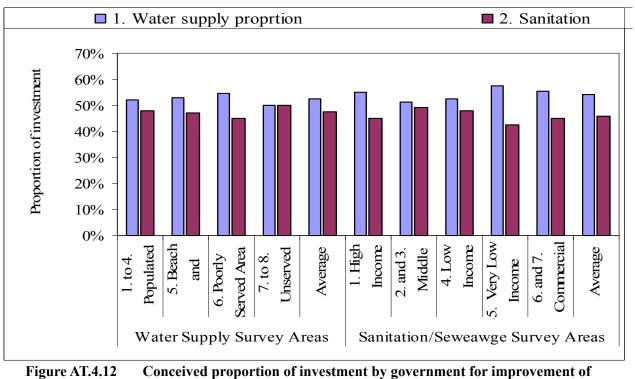



Figure AT.4.11 Hygiene education and sanitation promotion


#### (5) Omparison between Water Supply and Sewerage/Sanitation

- ✓ Table AT.4.54 shows that overall respondents in sewerage survey area prefers that government should invest 54% for the improvement of water supply and 46% for sanitation facilities.
- ✓ Table AT.4.55 shows that the respondents require the government to invest more in water supply as the first priority in both the survey areas of water supply and sanitation. The second priority given by the respondents in the water supply survey area is improvement in the facilities of schools. The improvement of electricity is the fifth and sixth development factor in case of water supply and sanitation survey area respectively.
- ✓ Table AT.4.56 shows that only 15% of the target respondents feel that convenient flush toilet/latrine connected to sewer is more important that 24 hours water supply. This low margin is because of the lack of hygiene education and sanitation promotion.

- ✓ Table AT.4.57 shows that 31% of middle income only feels that improving sanitation and water environment by sewerage is more important for their household as against only 5% in the very low income group favoring improvement of sanitary conditions.
- ✓ Table AT.4.58 shows that the respondents feels that more improvement of water supply and sanitation facility is needed for the residential areas of the local people.
- ✓ Table AT.4.59 shows that 55% of the respondents in the low income group feels that improvement in water supply system can lower the water borne disease. 45% of the high and middle income group thinks that improvement of sanitation facilities is more effective to reduce the water borne disease.
- ✓ Table AT.4.60 shows that the respondents prefers only 25% as the appropriate proportion of sewerage charges to water charges.

Table AT.4.54Conceived proportion of investment by government for improvement of<br/>water supply & sanitation

	,	Water Suppl	y Surv	ey Areas			Sanitat	tion/Sev	verage S	Survey Areas	
	1. to 4.	5. Beach	6.	7. to 8.	Average	1. High	2. and	4. Low	5. Very	6. and 7.	Average
Types	Populated	and	Poorly	Unserved		Income	3.	Income	Low	Commercial	
	Area	Sightseeing	Served	Area			Middle		Income		
		Area	Area				Income				
1. Water supply											
proportion	52%	53%	55%	50%	52%	55%	51%	52%	58%	55%	54%
2. Sanitation	48%	47%	45%	50%	48%	45%	49%	48%	43%	45%	46%



water supply & sanitation

		Water Supp	ply Survey	' Areas			Sanit	ation/Sev	verage Sur	vey Areas	
Table, showing in which Government	1. to 4.	5. Beach and	6. Poorly	7. to 8.	Average	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average
should develop more	Populated	Sightseeing	Served	Unserved		Income	Middle	Income	Low	Commercial	
	Area	Area	Area	Area			Income		Income		
1. Water Supply											
(House	597 (1)	899 (1)	762 (1)	692 (3)	737 (1)	849 (1)	799 (1)	794 (2)	921 (2)	747 (1)	822 (1)
connection)											
2.											
Sanitation/Sewer	442 (3)	847 (3)	665 (3)	613 (5)	642 (4)	823 (2)	744 (2)	706 (3)	903 (4)	578 (3)	786 (2)
age (Human		0.7 (0)	000 (0)	010 (0)	0.2(1)	020 (2)	,(_)	, (2)	,	0,00	, (_)
waste disposal)											
3. Home waste											
disposal	289 (5)	803 (5)	565 (6)	586 (7)	561 (6)	676 (5)	613 (4)	567 (6)	868 (6)	443 (5)	633 (5)
(sewer/Drain)											
4.Storm water	224 (7)	784 (7)	520 (8)	0 (10)	527 (8)	623 (8)	532 (7)	511 (7)	845 (10)	392 (6)	581 (7)
drainage (Drain)											
5. Solid Waste											
Management	153 (10)	759 (9)	426 (10)	533 (9)	468 (10)	594 (9)	460 (9)	479 (8)	850 (8)	294 (9)	535 (9)
(collection											
disposal)											
6. School	511 (2)	866 (2)	741 (2)	803 (1)	726 (2)	813 (3)	694 (3)	811 (1)	940 (1)	609(2)	773 (3)
7. Hospital	337 (4)	843 (4)	650 (4)	740 (2)	642 (3)	681 (4)	602 (5)	654 (4)	914 (3)	485 (4)	667 (4)
8. Electricity	280 (6)	786 (6)	583 (5)	670 (4)	580 (5)	664 (6)	553 (6)	607 (5)	880 (5)	373 (7)	615 (6)
9. Road	193 (8)	778 (8)	541 (7)	595 (6)	527 (7)	651 (7)	461 (8)	503 (8)	855 (7)	330 (8)	560 (8)
10. Police Office	155 (9)	729 (10)	469 (9)	546 (8)	475 (9)	564 (10)	444 (10)	469 (9)	847 (9)	254 (10)	516 (10)

Table AT.4.55Development works in which the government should invest more

		Water Supp	ly Surv	ey Areas		Se	werage	/Sanitat	tion St	udy Areas	
	1. to 4.	5. Beach	6.	7. to 8.	Average	Open	Simple	Pour	Septic	Sewerage	Average
Importance	Populated	and	Poorly	Unserved		Defecation	Pit	Flash	Tank		
	Area	Sightseeing	Served	Area			Latrine	Latrine			
		Area	Area								
1. 24 hour water		0.40/	960/	(00/	750/	1000/	0.50/	0/0/	0.20/	7(0/	1.50/
supply	72%	84%	86%	60%	75%	100%	85%	86%	82%	76%	15%
2. Convenient											
flush toilet		1.60/	1.40/	400/	250/	00/	1.50/	1.407	1.00/	2.40/	1.50/
connected to	28%	16%	14%	40%	25%	0%	15%	14%	18%	24%	15%
sewer											

Table AT.4.56Conceived importance for household

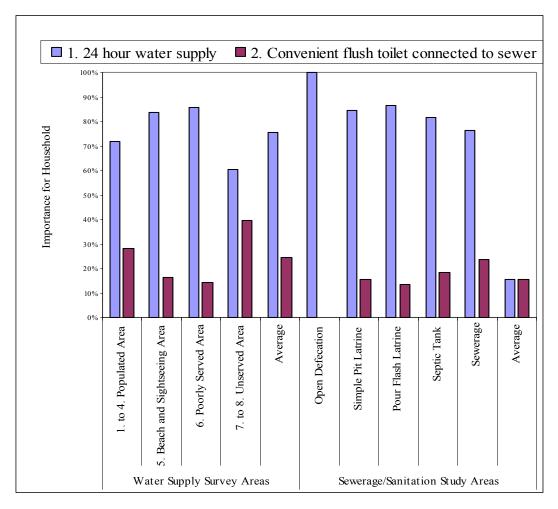
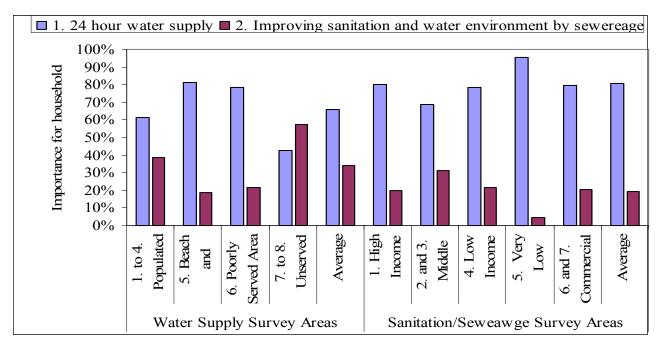
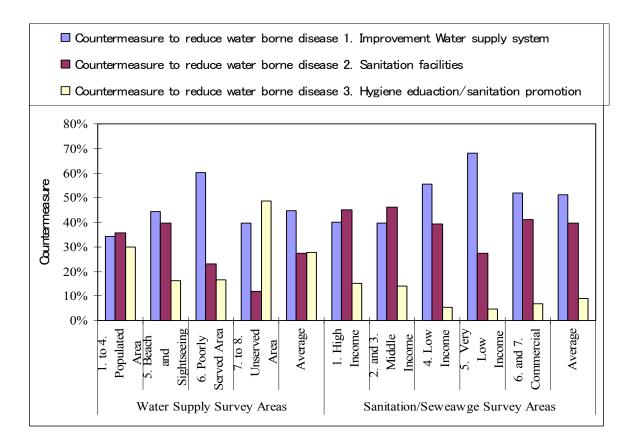


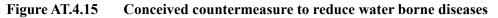

Figure AT.4.13 Conceived importance for household

	W	ater Supply	y Surv	ey Areas	5	S	anitatio	on/Sew	erage	Survey Are	eas
	1. to 4.	5. Beach	6.	7. to 8.	Average	1. High	2. and	4. Low	5. Very	6. and 7.	Average
Types	Populate	and	Poorly	Unserved		Income	3.	Income	Low	Commercial	
	d Area	Sightseein	Served	Area			Middle		Income		
		g Area	Area				Income				
1. 24 hour water	61%	81%	78%	43%	66%	80%	69%	78%	95%	79%	80%
supply	01/0	01/0	/ 0 / 0	4370	0070	8070	09/0	/ 0 /0	9370	/9/0	8070
2. Improving											
sanitation and											
water	39%	19%	22%	57%	34%	20%	31%	22%	5%	21%	20%
environment by											
sewerage											

 Table AT.4.57
 Conceived importance for household





Figure AT.4.14 Conceived importance for household


		Water Supp	ly Surve	y Areas			Sanit	ation/Sev	werage S	urvey Areas	
	1. to 4.	5. Beach and	6.	7. to 8.	Average	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average
Types	Populated	Sightseeing	Poorly	Unserved		Income	Middle	Income	Low	Commercial	
	Area	Area	Served	Area			Income		Income		
			Area								
1. Tourism areas	2%	12%	4%	0%	4%	12%	4%	0%	5%	12%	6%
2. Residential											
areas for local	96%	81%	92%	96%	91%	67%	74%	86%	86%	80%	79%
people											
3. Residential											
areas for											
immigrants and	2%	7%	4%	4%	4%	22%	23%	14%	9%	8%	15%
seasonal											
workers											

## Table AT.4.58Areas needing more improvement in water supply and sanitation<br/>conditions

			Water Supply	Survey 4	Areas			Sani	tation/Se	werage S	urvey Areas	
		1. to 4.	5. Beach and	6.	7. to 8.	Average	1. High	2. and 3.	4. Low	5. Very	6. and 7.	Average
C	ategory	Populated Area	Sightseeing	Poorly	Unserved		Income	Middle	Income	Low	Commercial	
			Area	Served	Area			Income		Income		
				Area								
	1. Improvement Water	34%	44%	60%	40%	45%	40%	40%	55%	68%	52%	51%
Countermeasure to	supply system											
	2. Sanitation facilities	36%	40%	23%	12%	28%	45%	46%	39%	27%	41%	40%
reduce water borne disease	3. Hygiene		1.60/	1.50/	100/	2007	1.50 (	1.40 /	50 (	50/	70/	00/
	education/sanitation promotion	30%	16%	17%	49%	28%	15%	14%	5%	5%	7%	9%

 Table AT.4.59
 Conceived countermeasure to reduce water borne diseases





Table AT.4.60	Conceived proportion of sewerage charges to water charges

		Water Suppl	ly Surve	ey Areas			Sanita	tion/Sev	verage S	Survey Areas	
	1. to 4.	5. Beach	6.	7. to 8.	Average	1. High	2. and	4. Low	5.	6. and 7.	Average
	Populated	and	Poorly	Unserved		Income	3.	Income	Very	Commercial	
	Area	Sightseeing	Served	Area			Middle		Low		
		Area	Area				Income		Income		
1. Proportion of											
sewerage charges to	34%	30%	27%	33%	31%	36%	28%	21%	15%	26%	25%
water charges											

# Attachment 5 Results of the Stakeholder Interview for Residents around the Existing STPs

#### (1) Existing Conditions and Perception of the Residents living around the STPs

- ✓ Table AT.5.1 shows that there are still some people 10% practicing open defecation and that about the half of them 47% have not connected to sewer although they are living around the STPs. It was also found that 10% of the households, which are using the toilets/latrine without connection to sewer, are using common toilets (sulabh international).
- ✓ Table AT.5.2 also shows that 10% of the households are not satisfied with current situation of their human waste disposal.
- ✓ Table AT.5.3 shows 25% of the respondents discharge their house wastewater to the open drains although they live around the STPs.
- ✓ It was also found in the survey that 45% out of 11 sewerage users have complains on the existing sewerage system around the STPs.
- ✓ Table AT.5.4 shows that clogging of sewer is more serious matter than expensiveness of monthly sewerage charges for the people living near STP.
- ✓ The survey also disclosed that 95% of the residents living around the STPs and discharge points proud that their area contributes to environmental protection with the STP.
- ✓ It is interesting to observe that 70% to 75% of the household near STP are aware about the fact that their household waste water is also being treated in the plant before discharge & are also inquisitive to know more about the functioning of the STP.

## Table AT.5.1Types of sanitation used for disposing human waste (feces and<br/>urine)around the STPs

Sanitation Type	%
1. Open defecation	10%
2. Toilet/latrine without connection to sewer	45%
3. Toilet/latrine connected to sewer	45%

# Table AT.5.2Perception of satisfaction with current situation of household's human<br/>waste disposal

Satisfaction Level	%
1. Fully Satisfied	30%
2. Moderately Satisfied	60%
3. Not Satisfied	10%

# Table AT.5.3Types of the house wastewater (drain water from kitchen, etc.) disposal<br/>around the STPs

Drainage Type	%
1. To sewer	40%
2. To the open drain	25%
3. To the closed drain	0%
4. To the street	0%
5. To the soak pit/septic tank	35%
6. Kitchen garden	0%
7. Re-used	0%

Table AT.5.4Types of complains on the existing sewerage system by users

Type of Complains	Points
1. Monthly charge is too expensive	7
2. Cost to connect to sewer was too expensive	1
3. Not enough water to use flush toilet	2
4. Clogging	10
5. Others	2

Note: Points shows the level of complain

#### (2) **Public Notification**

Table AT.5.5 shows that the majority of people 60% became aware about the construction of STP just before the construction started and the participation of the people for the public hearing about STP was negligible.

Timing of Public Notification	%
1. Long time before construction	20%
2. Short time before construction	10%
3. Just before the start of construction	60%
4. After the construction	10%
5. Moved to this area after the construction started	0%

Table AT.5.5Timing of Public Notification about the construction of STP

#### (3) Social Influences of the STPs

- ✓ Initially during the construction of Phase-I of the STPs there were minor disputes and agitations regarding the land acquisitions. Few people were also concerned regarding the discharge of the wastewater from the STPs. However, construction of phase II was easier as there were no land acquisitions and moreover no social problems relating to the discharge wastewater from the STP.
- ✓ Table AT.5.6 shows that 11% of the people staying around the STPs feels that their social/commercial value has changed.
- ✓ Table AT.5.7 shows that 60% of the people do not know, understand or accept the reason why the STP was constructed in their neighborhood.
- ✓ Table AT.5.8 shows that 20% of the people feel there is misdistribution of benefit and negative impacts concerning the STPs.

# Table AT.5.6Feeling the social/commercial value of the surrounding land has been<br/>decreased by the STPs

Answer	%
1. Yes, land value has been decreased.	11%
2. No, land value has not been decreased.	89%

#### Table AT.5.7Understanding/Accepting the reason why the STP was constructed

Answer	0⁄0
1. Yes, the reason was understandable / acceptable.	35%
2. No, the reason was not understandable / acceptable.	65%

#### Table AT.5.8Feeling the misdistribution of benefit and damage concerning the STP

Answer	%
1. Yes, we feel the misdistribution	26%
2. No, we don't feel the misdistribution	74%

#### (4) Environmental Influences of the STPs

- ✓ Table AT.5.9 shows that on an average only 10% of the people have felt that there was an environmental impact due to the STP.
- ✓ Table AT.5.10 shows that people staying in an around the STP has to frequently face the odour coming from the plant.
- ✓ Table AT.5.11 shows that 80% of the people feel that the discharge from the WWTP still pollutes the receiving water source.

#### Table AT.5.9Perception on the environmental impacts by the STP

Questions on Each Type of Environmental Impacts	% of Respondents who answered "Yes"
1. Having noticed any environmental impacts caused by the WWTP?	10%
2. Feeling that the landscape become less beautiful due to the WWTP?	25%
3. Having noise and vibration problems during the construction of the WWTP?	15%
4. Having noise and vibration problems during the operation of the WWTP?	5%

#### Table AT.5.10Perception on the seriousness of the odour from the STPs

Level of Seriousness of the Odour	%
1. Very serious	25%
2. Serious	37%
3. Not very serious	38%

## Table AT.5.11Perception on the negative impacts of wastewater discharged from the<br/>STP

Perception on the Negative Impacts of Discharged Wastewater	%
1. Very serious	10%
2. Serious	80%
3. Not very serious	10%

## Attachment 6 Results of the Stakeholder Interview for Hotels regarding Water Supply and Sanitation/Sewerage

#### (1) Current Situation

#### 1) Hotel Information

- ✓ Goa being the most sought after tourist destination in India, the occupancy rate of hotels during the high season is 100% and 60% to 70% during the low season. However, the number of hotel employee usually does not significantly change between high and low season. High season is from October to June and Low season is from July to September.
- ✓ Table AT.6.1 shows that most of the star hotel resorts, which are clustered around the costal belts, consists of about 173 beds on an average. Moreover, employing on an average of almost 148 people during the high season. The average electricity bill of sampled hotels is Rs.91,667/- per month.

Hotel Information	North	Center of South	South End of South	Total Average
	Coastal	Coastal	Coastal	
1. No of beds (Beds)	129	143	246	173
2. Employees in high season (Nos.)	83	141	220	148
3. Electricity bill (Rs.)	71000	83000	121000	91667

#### 2) Water Supply

- ✓ Table AT.6.2 shows that average water usage during the high season is 4507 m³ per month for hotels in the north coastal belt and in the 5 star hotel resorts of the center of south costal belt it is 10550 m³ per month. Additional private water tankers contribute  $3060 \text{ m}^3$  per month of water to the hotel resorts of north costal belt during the high seasons.
- ✓ Table AT.6.3 shows that during the high tourist season the average electricity consumption per bed of the hotel resort is Rs. 540/- per month and the average water consumption is 46 m³ per bed per month. The electricity consumption shown in the Table AT.6.3 also covers the total hotel requirement of lighting of the hotel area, fencing, including landscape garden etc. and the water consumption caters to the requirement of the guests, landscape and gardens, swimming pools, etc.
- $\checkmark$  Table AT.6.4 shows that the hotel resorts in the north costal belt heavily depend on open

well 43% and private water vendors 41% to fulfill the demand of water during the tourist high season. The public piped water supply contributes to only a poor 17% of their demand. The hotel resort in south costal belt are also dependent on private water vendors 12% and another tourist city viz. Mobor are relying on their own well sources.

- ✓ Figure AT.6.1 shows that the hotels along the north coastal belt is having a severe water crisis of piped water supply, getting an average water supply for 2 hours a day. The water availability along the south coastal belt is better than north coastal but a lot more is required to be done for improvement of the piped water supply system.
- ✓ Figure AT.6.2 shows that 100% of the hotel industry is using water from private water vendors for the daily requirement of water. The hotel resorts in north costal belt is dependent on private water vendors for both high and low tourist season with maximum tanker water usage for the summer months from March to June.

Water Used	North	Center of South	South End of South	Total Average
	Coastal	Coastal	Costal	
1. Water used in high season (m3)	4507	10550	14690	9916
2. Additional water required during high				
season (m3)	3060	600	840	1500

Table AT.6.3	Electricity and	l water consumptio	on per occupied	l bed in high season

Answers	Hotels
1. Electricity consumption (Rs./bed/month)	540
2. Water consumption in high season (m3/bed/month)	46
3. Water consumption in low season (m3/bed/month)	26

#### Table AT.6.4Proportion of water supply during tourists high season.

Water Sources	North	Center of South	South End of South	Total Average
	Coastal	Coastal	Costal	
1. Public Piped water supply	17%	81%	51%	50%
2. Own well	43%	7%	37%	29%
3. Public Water Tanker	0%	0%	0%	0%
4. Private Water Vendor	41%	12%	12%	22%
5. Others	0%	0%	0%	0%

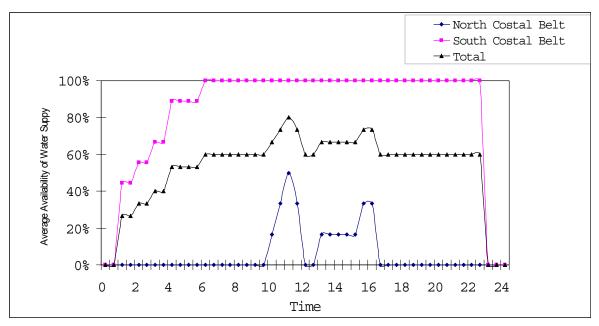



Figure AT.6.1 Average availability of Water Supply

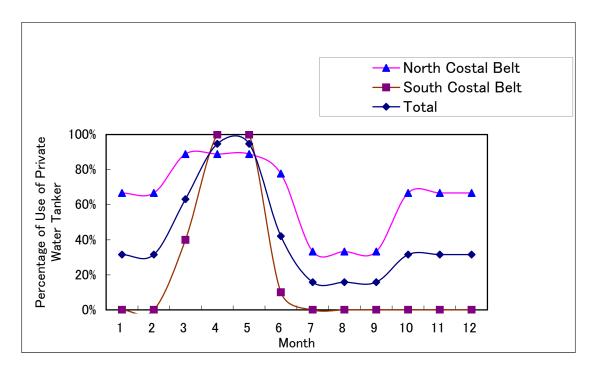



Figure AT.6.2 Percentage of Private Water Tanker Use in Each Month

#### (2) Awareness and Needs

#### 1) Treatment Facilities for Water and Sewerage

- ✓ Table AT.6.5 shows that 15% of the total hotels does not have any kind of water purification facility.
- ✓ Table AT.6.6 shows that 60% of the costal hotel resorts are having waste water treatment facility.
- ✓ It was also observed that most of the higher grade of hotel resorts spends about Rs. 40,000/- annually on operation and maintenance of the waster water and sludge treatment facilities.

 Table AT.6.5
 Availability of water purification facility in the hotel

Water Treatment	Hotels
1. Water purification facility available	85%
2. Water purification facility not available	15%

#### Table AT.6.6Facility of Waste Water Treatment.

Water Treatment	Hotels
1. STP facility available	60%
2. Not available	40%

#### 2) Water Supply

- ✓ Table AT.6.7 shows that the incentive of offering reduced water charges to encourage the hoteliers for using pipe water supply is of no avail. 90% of the hoteliers would prefer better service quality of the water supplied to them by the PWD.
- ✓ Table AT.6.8 shows that the north costal belt contributes to Rs. 20,940/- per month in high season for the piped water supply services as against Rs. 1,72,000/- in the south costal belt. It also shows that the hotel resorts along the north costal belt are willing to pay Rs. 10,450/- per month for the improvement of water supplied by the PWD to meet the international standards.
- ✓ Table AT.6.9 shows that the average water charge is Rs. 576/- per bed per month during the tourist high season for the piped water supply given by PWD, which infers that 60% of the total volume of water required by the hotels are catered by outside sources other than PWD.

✓ Table AT.6.10 showing the perception on existing water supply infers that none of the hotel resorts in the north costal belt and Mobor are satisfied at the existing water supply hours. The frequency of disruption is 25% for the hotel resorts of south costal belt.

Table AT.6.7Encouragement to use more piped water supply

Level of Encouragement	%Respondent
1. Less water charge	0%
2. Better service quality	90%
3. Public pipe water not required	10%

Table AT.6.8Water Charges.

Charges	North	Center of	South End of	Total Average
	Coastal	South	South Costal	
		Coastal		
1. Average water charges of PWD pipe water per month (Rs.)	20940	172000	197000	129980
2. Willingness to pay for improved water supply (Rs.)	10450	6000	10000	8817

#### Table AT.6.9Water Charges per occupied bed in high season

	Hotels
	(Rs./bed/month)
1. Water charges in high season	576
2. Water charges in low season	338

### Table AT.6.10Perception on Existing Water Supply.

Perception	North	Center of South	South End of	Total Average
	Coastal	Coastal	South Costal	
1. Satisfaction of existing supply hours	0%	80%	0%	27%
2. Frequency of disruption	23%	25%	20%	23%

### 3) Sanitation/Sewerage

✓ Table AT.6.11 shows that none of the hotels catering to the majority of tourists in the costal belt of Goa are connected to sewerage system. Most of the hotels have their own

STP or are using the septic tank connected to soak pit for discharging their hotel waster water.

Perception	North	Center of South	South End of	Total Average
	Coastal	Coastal	South Costal	
1. Open drain	0%	0%	0%	0%
2. Sewer	0%	0%	0%	0%
3. Street	0%	0%	0%	0%
4. Field	0%	0%	0%	0%
5. River Stream pond	10%	0%	0%	3%
6. Re-used recycled	60%	40%	80%	60%
7. Septic tank	30%	60%	20%	37%

Table AT.6.11Disposal of Waste Water

#### (3) Willingness to Pay

#### 1) For Improvement of Water Supply

- ✓ Table AT.6.12 strongly indicates that 90% of the hotel resorts in north Goa and 80% of another tourist city Mobor is of the opinion that the improvement of piped water supply is very important.
- ✓ Table AT.6.13 shows that none of the hotel resorts in the costal region of Goa wants reduction in the water tariff. Most of the resorts in the north costal belt have given an opinion that they are ready to pay 22% extra on the water charge for a better and improved water supply system.

Table AT.6.12	Perception on Improvement of Water Supply
1401011100112	reception on improvement or water suppry

Perception	North	Center of South	South End of South	Total Average
	Coastal	Coastal	Costal	
1. Very important	90%	20%	80%	64%
2. Important	0%	80%	20%	50%
3. Not very important	0%	0%	0%	0%
4. Not important at all	10%	0%	0%	0%

Willing to Pay	North	Center of South	South End of	Total Average
	Coastal	Coastal	South Costal	
1. Extra increased percentage of water charge	22%	9%	22%	18%
Reduced percentage of water	0%	0%	0%	0%

Table AT.6.13Willingness to pay for improved Piped Water Supply

#### 2) For Improving Sewerage/Sanitation

- ✓ Table AT.6.14 shows that 100% of the hotel industry around the costal belt feel the importance of the sewer network and are willing to connect to the sewer for disposing the hotel waste water and human waste.
- ✓ Table AT.6.15 shows that the hotels in the north coastal belt are ready to pay approximately Rs.7,500/- for the new sewer connection and a monthly sewerage charge of Rs. 27,000/- was found reasonable by the hotels in the south costal belt.

#### Table AT.6.14Perception of Sewerage and Sanitation

Perception	North	Center of South	South End of	Total Average
	Coastal	Coastal	South Costal	
1. Pollution of rivers and streams	0%	0%	0%	0%
2. Importance of sewer	100%	100%	100%	100%
3. Willingness to connect to sewer	100%	100%	100%	100%

#### Table AT.6.15Willingness to spend for new sewer connection

Willingness to pay	North	Center of South	South End of South	Total Average
	Coastal	Coastal	Costal	
1. Sewer connection cost (Rs.)	7500	16600	10200	11434
2. Sewer monthly charge (Rs.)	7140	27000	18000	17380

## Attachment 7 Results of the Stakeholder Interview for Tourists regarding Water Supply and Sanitation/Sewerage

#### (1) Current Situation

Since Goa is a popular safe tourist destination it is found that the tourism industry is galloping at a very fast rate, the domestic tourists arriving in the state are from almost all the different states of India and foreign tourists are mainly from Europe, USA, South Africa and down under from New Zealand and many other countries. However, the domestic tourists are generally staying for around 3 to 4 days approximately and the foreign tourist for more than a week.

#### 1) Water Supply

- ✓ Table AT.7.1 infers that the tourists both domestic 30% and foreign 50% coming to Goa are not satisfied with the piped water supply provided to them.
- ✓ Table AT.7.2 shows that 30% of both the tourists category are annoyed over the intermittent piped water supply.
- ✓ Table AT.7.3 shows that the level of disappointment shows that is to the tune of 20% almost every day for the domestic tourist who come for a short duration and also 15% a week for the foreign tourist.
- ✓ Foreign tourist was having problem with the quality of water supplied in terms of high turbidity, hardness, standard of water and in some case foul smell. Also one of the major complain was that the pipe water was not up to the standard with respect to their country.

# Table AT.7.1Satisfaction among domestic tourist, foreign tourist and average for<br/>water supply

Type of Tourists	Satisfied	Not Satisfied
1. Domestic Tourists	70%	30%
2. Foreign Tourists	50%	50%
3. Average	60%	40%

Category	Domestic	Foreign	Average
	Tourist	Tourist	
1. Yes, annoyed over intermittent water supply	30%	30%	30%
2. No, not annoyed over intermittent water supply	70%	70%	70%

#### Table AT.7.2Annoyed tourist (domestic, foreign, total) in terms of water supply

#### Table AT.7.3Frequency of disappointment regarding water supply

	%Respondent				
Level of Disappointment	Domestic	Foreign	Average		
	Tourist	Tourist			
1. Every day	20%	0%	10%		
2. Almost every day	20%	5%	13%		
3. Few times a week	0%	5%	3%		
4. Once a week	0%	15%	8%		
5. Less than once a week	0%	5%	3%		

#### 2) Sewerage and Sanitation

- ✓ Table AT.7.4 shows that a high level of almost 60% of the domestic tourist are not satisfied with the sewerage and sanitation facility available in the state. Also the foreign tourist unhappy about the situation is 30%.
- ✓ Table AT.7.5 shows that 30% to 15% of both the domestic tourists and the foreign tourist are annoyed over the sanitary situation in Goa on daily basis.
- ✓ In case of sanitation the major problems faced by tourists were overflowing of toilet and septic tanks, chambers & manhole being open, flooding of the roads due to bad storm water drainage system, garbage strewn all over at major tourist places as the bins are full.

# Table AT.7.4Satisfaction among domestic tourist foreign tourist and average<br/>(separately presented) for Sewerage and Sanitation

Type of Tourists	Satisfied	Not Satisfied
1. Domestic Tourists	40%	60%
2. Foreign Tourists	70%	30%
3. Average	55%	45%

	%Respondent				
Level of Disappointment	Domestic	Foreign	Average		
	Tourist	Tourist			
1. Every day	10%	0%	5%		
2. Almost every day	20%	15%	18%		
3. Few times a week	10%	5%	8%		
4. Once a week	0%	5%	3%		
5. Less than once a week	0%	5%	3%		

#### Table AT.7.5Frequency of disappointment regarding sewerage and sanitation

#### (2) Awareness and Needs

- ✓ Table AT.7.6 shows that 90% of the total tourists are of the opinion that there should be considerable improvement of public water supply network.
- ✓ Table AT.7.7 shows that on an average of 98% of the total tourists would prefer improve sewerage and sanitation facilities for the further development of tourist industry in Goa.

Table AT.7.6Perceptional importance of water supply improvement for tourists

	%Respondent			
Perception on improvement of water supply	Domestic	Foreign	Average	
	Tourist	Tourist		
1. Very important	40%	55%	48%	
2. Important	40%	40%	40%	
3. Not very important	20%	5%	12%	
4. Not important at all	0%	0%	0%	

tourists			
Perception on improvement of sanitation	%Respondent		
	Domestic	Foreign	Average
	Tourist	Tourist	
1. Very important	50%	75%	63%
2. Important	50%	20%	35%
3. Not very important	0%	0%	0%
4. Not important at all	0%	0%	0%

# Table AT.7.7Perceptional importance of sanitation/sewerage improvement for<br/>tourists

### (3) Willingness to Pay

- ✓ Table AT.7.8 shows that the tourists both domestic and foreign are willing to pay more per night per person for the water supply level in Goa to the international standards.
- ✓ Table AT.7.8 shows that the foreign tourist are ready to pay Rs. 181/- per day per person to facilitate improvement of sanitary situation of restaurants and hotels in Goa.
- ✓ For preserving the water and ecosystem in rivers and costal areas the tourists are willing to pay Rs. 129/- extra per day as a contribution for running and improving the sewerage facilities.

# Table AT.7.8Average willingness to pay for the improvement of water supply<br/>standard, sewerage and sanitation situation.

Willingness to pay for each service improvement (Rs.)					
Services	Domestic	Foreign	Average		
	Tourist	Tourist			
1. Water supply to international standards	36	197	117		
2. Significant improved sanitary situation	27	181	104		
3. For preserving water by sewerage	18	240	129		