PART-III PILOT PROJECTS

CHAPTER 9 OUTPUTS AND ISSUES OF THE PILOT PROJECTS

9.1 Execution of Pilot Projects

9.1.1 Outline of the Pilot Projects

(1) Objectives and Purpose

The main objective is related to community landslides, as approximately 80% of damage by landslides is related to communities and private sector.

The purpose of the Pilot Projects was to undertake a trial and confirmation of the effectiveness of the 'Community Based Approach (CBA)'.

(2) Outline of Outcomes of the Pilot Projects

The Pilot Projects have become multipurpose projects, which contribute to community infrastructure development, resulting in expanded benefits. The reduction of construction costs by the participation of inhabitants showed that the pilot projects can serve as examples of economically feasible projects.

'The landslide management and community infrastructure development plan' and 'the community development concept plan for acquisition of project resources' were formulated by focusing on the working commissions in the communities. Parts of the plans, including drainage works for community roads and the implementation of landslide monitoring and early warning systems were initiated through the participation of local inhabitants. Residents' awareness of the benefits of self-help and mutual assistance was markedly improved in conjunction with the improvement of community infrastructure and the reduction of landslide activities.

Stakeholders meetings (advisory committees) were held and chaired by MoUD. Technical support, such as environmental assessment, was provided through these committees.

Plans for "landslide mitigation works which contribute to community infrastructure development" formulated from the Pilot Projects of Gosh and Martuni Villages, were assessed as economically feasible. The Pilot Project in Kapan involving hazard recovery works (opening of 2-lanes of Harutyunyan Street) was economically beneficial in keeping regional traffic safe, including the flow of bulky international cargo, which is the major means of trade across the Iranian border. The project is highly recommended for implementation.

Landslide monitoring was undertaken by the Study Team together with communities in the landslide areas. Monitoring technologies were transferred to the communities and monitoring systems were established and are operational. Drilling and GIS equipment were provided as grants to MoUD to provide technical support to the public.

(3) Items of Landslide Management

The following items were discussed and formulated at the Working Commission (WkC), which is the planning and execution center of the community, and at the general assembly:

a. The ultimate goal is community development. Project purposes are landslide damage reduction and community infrastructure development. Multi-purpose projects contributing to community infrastructure development are a priority.

b. Formulation of landslide management and community infrastructure development plans.

c. Formulation of community development concept plan (plan of project resource acquisition).

d. Formulation of task teams (landslide monitoring and early warning, community infrastructure maintenance, and countermeasure works).

(4) Pilot Projects Promotion System

The system shown in Figure 9.1 was formulated for the promotion of community initiatives.

Figure 9.1 Pilot Projects Promotion System

9.1.2 Execution System

Preparation and execution of the plan was conducted by centering on WkC.

Figure 9.2 Execution System of Village Type Pilot Projects (Gosh & Martuni Village)

Figure 9.3 Execution System of City Type Pilot Project (Kapan City)

9.1.3 Execution Content and Achievement

Execution content and achievement level of each Pilot Project is outlined in Table 9.1.

Project Name	Execution	Purpose	Achievement	
Kapan City Harutyunyan Street Landslide	-Geotechnical investigation and risk assessment (by MoUD/ JICA Study Team)	Overall goal: Development of Kapan City Project purposes: -Securing of two-lane traffic of Harutyunyan Street -Bare land landscape improvement -Avoidance of casualties Output: -Risk assessment	 Project effects were confirmed among th stakeholders. This project secured an alternative route for the M-2 highway. (Kapan tunnel is bottleneck for trucks). -Landslide monitoring team wa organized. Early warning system wa formulated. -Risk assessment was done and landslid management plan was formulated. 	
Gosh & Martuni Village Landslide	-Geotechnical investigation and risk assessment (by MoUD/ JICA Study Team)	-Landslide management plan Overall goal: -Community development, income generation Project purposes: -Improvement of life and industry basis -Landslide risk reduction - Avoidance of casualties Outputs:	 -Landslide management and community infrastructure development plan and community development plan were -Project purpose was achieved by simple countermeasure works and landslide monitoring and early warning systems. - Output was achieved. 	
		 -Landslide management and community infrastructure development -Community roads drainage -Community infrastructure maintenance system -Landslide monitoring and early warning system 		
Yerevan City Cemetery Landslide	-Geotechnical investigation and risk assessment (by MoUD/ JICA Study Team)	Ultimate goal: -Landslide technology of this type is used for urban/ regional development plans Project purposes: -Information sharing of technology of this type of landslides Outputs: -Technologies for landslide investigation and monitoring -Geotechnical investigation results (Issue of technical bulletin)	-New findings about the landslides were disseminated by technical bulletins. -Methods of geotechnical investigation and monitoring were transferred to a private company related to National Science Academy through contracted work.	
Information Services	Newsletters Technical bulletins Others	Dissemination of landslide-related information (related government organizations, international organizations, community inhabitants)	Publication four times Publication of volume one in December 2005. It included landslide distribution map, landslide inventory of this Study. -Landslide physical model and experiment video -Brusher of landslide management -Manual of landslide management and	
			early warning -Technical transfer, experience sharing seminar (Yerevan) -Experience sharing seminar in Ijevan and Gavar Cities -Study tour to Martuni Village	

Table 9.1 Outline of the Pilot Projects

9.1.4 Outcomes and Issues of Pilot Projects

(1) Social and Organizational Outcomes

The 'Landslide management and community infrastructure development plan' and the 'community development plan' were formulated by the Working Commissions. The inhabitants constructed an

open ditch with conduit along the community road, and horizontal drainage boring was executed by a Japanese company (contract with an Armenian Company). Landslide monitoring teams and early warning systems were established. Methods of maintenance of community infrastructure were discussed. And the systems started to operate. Inhabitants planned a cleaning activity of tourism resources for the community development.

Inhabitants recognized that their participation in simple countermeasures such as landslide monitoring can mitigate landslide activity, and improve their life and industrial base, as, for example, having a dry community road.

It was confirmed that planning and implementation by the inhabitants, consensus building about priority projects, and sharing of issues among themselves can enhance the self reliance of the community.

Social and organizational outcomes and issues are summarized in Table 9.2.

T4	0 4	T
Item	Outcomes	Issues
Working	-WkC was formulated for 3 pilot projects (Gosh, Martuni, Kapan), with the	-For the project continuance, the
Commission	role of plan making.	WkC should not be dissolved.
(WkC)	-For obtaining various needs, the head of community was not a proper	-For continuous implementation
	member and non-community staff members participated in the WkC.	of the project, public and
	- In WkC, various opinions were obtained step by step.	international assistance
		(technical and financial) is
		necessary. Application for
		assistance should be made by the
		WkC.
General	- General assembly was called at Gosh and Martuni Villages as required.	-This is necessary to avoid
Assembly	- The purposes were to secure project transparency and to compile various	overemphasis of the plan on
	opinions. In general assembly, WkC members were recruited and approved.	some stakeholders.
	-Participants were less than 30 people. Remarks were not active in the Gosh	-To be practical, bulletin boards
	Village; it did not seem to carry out its functions.	and neighboring circulars should
		be used.
Advisory	-MoUD chaired the advisory committee.	-MoUD should support the
Committee	-The purpose was to support the Pilot Projects and to secure their	holding of advisory committee
	transparency.	meetings.
	-Agreement of responsibilities and roles for the Pilot Projects was made by	
	signed document.	
	-Advisory committee carried out the function of stakeholders committee for	
~	the environmental assessment.	~ · · · ·
Geotechnical	-Geotechnical investigation was done by JICA Study Team and MoUD with	-Carrying on the investigation
investigation	local contractors.	(by the contractor) by MoUD is
and risk	-House damage investigation was done by Armenian specialists.	indispensable.
resource	-Installment of landslide monitoring equipment was done by local contractor.	
assessment	- Landslide monitoring was undertaken by landslide monitoring team with the	
	support from the Study Team.	
0: 1	- For the resource assessment only itemization was done by WkC.	m • 1 • • 1 • 1
Simple	-At Gosh Village, active landslide damage was minimized by drainage and	- To provide materials and
countermeasur	horizontal drainage boring. Due to this effect, motivation was improved.	workers' rewards public and
e works	-In Gosh and Martuni Villages, muddy roads were improved.	international assistance is
	-in Gosn village and Chambarik City, which neighbors Martuni Village, there	necessary.
	were experimental civil engineers who performed the role of construction	
	supervisors.	

Table 9.2 Outline of the Pilot Projects Outcomes and Issues

(2) Landslide Management and Community Infrastructure Development Plan

1) Gosh Village

Table 9.3 Plan of Gosh Village

Item	Outline
Features of	-It is 1000m wide, 500m long, and is divided into 15 sub-blocks. Risk objects are houses and
landslide,	community roads. The road across H block is important for accessing pasture and for tourism.
risk and	- H block (100m long, 50m wide) is active. During Jan-Sep 2005 (before drainage works),
resource	landslide movement was approximately 10mm/day. In snow melting season, Mar 2005, the
assessment	movement was 75mm/day. In winter, inhabitants were watering using domestic water to prevent
	freezing of water systems. This aggravated the landslide activity. H block damaged 4 houses and
	the important community road.
	- C block and J block are also active (1mm/day to 10mm/day movement); other blocks are not
	active (less than 1mm/day movement).
	- Resources are itemized (farmland, sand and rock mines, and lake and monastery for tourism)
Landslide	- As project resource acquisition, tourism development (tourist homes, ecotourism), agriculture
Management	and stockbreeding development (juice, meat, dairy processing) were planned.
and Community	- Execution system (landslide monitoring team, WkC, and community staff) was established.
Infrastructure	- Drainage works against assumed main causes (precipitation, thawed water, watering using
Development	domestic water) were planned, including the installation of community road drainage to prevent
	the road from becoming muddy, and ensure passableness by vehicles all year. (This pilot project
	had the following plan: 770m length open ditch with conduit, 160m long conduit, 1,480m long
	open ditch, 570m long horizontal drainage boring, 1,830m long road stone pavement).
Executed	- In Sep-Dec 2005, 470 m long open ditch with conduit, 160m long conduit, 400m long horizontal
Activities	drainage works were installed at H block. Activity of H block was reduced. Boring and materials
	procurement were executed by Japan side through the local contractor. Community input was in
	the form of general workers (Japan side assisted reward for about 1/3-of market price AMD1200
	=USD 2.6 /day, as well as supplemental materials (sand etc.)).

Figure 9.4 Landslide Sub-Blocks of Gosh Village

Figure 9.5 General View of H block of Gosh Village Landslide

Figure 9.6 Engineering Geological Map of Gosh Village Landslide

Figure 9.7 Engineering Geological Profile of Gosh Village Landslide

2) Martuni Village

Table	9.4	Plan	of Martuni	Village
Table	7.	I Iall	or mar cum	v mage

Item	Outline
Features of	-Martuni Village is located at the foot area of a huge landslide (8km length, 1.5km width). The
landslide,	landslide shifts to the Getik River.
Risk and	- Small secondary landslides are distributed in the inhabitable area About 8 secondary landslides
resource	caused damage. A total of 108 out of 196 houses were damaged A block is the most active and
assessment	has many risk objects. Landslide monitoring from Aug to Dec 2005 shows no cumulative
	movement, just tentative movement with precipitation.
	- Assumed induced cause of landslide activity is invading water from water tank leaks and a small
	river. Existing effective drainage is available only in the upper portion of the village; lower
	portion of drainage is without watertight lining and the drainage capacity is small. Inflow water
	activates landslide activity, and the community road becomes muddy.
	- Community road through A block is important as it accesses sharing pastures, the church and the
	cemetery.
	- Resource is itemized in firm land, pastures, and ruins as a tourism place.
Landslide	- As project resource acquisition, wheat mill business was itemized.
Management	- Execution system (landslide monitoring team, WkC, and community staff) was established.
and Community	Responsibility for community infrastructure maintenance is given to the head of the village.
Infrastructure	- Drainage works and river revetment works (concrete wall and gabion) were planned and
Development	prioritized.
	(This pilot project had the following plan: 54,400m long open ditch with conduit, 11,000m long
	conduit, 790m long open ditch, 400m long horizontal drainage boring, 8,100m long river side
	concrete wall, 2,470m long gabion wall, 1 site of small bridge, 200m long earth bank).
Exacuted	In Oat Day 2005, 400m long open ditch with conduit and 400m long horizontal drainage works
Activities	- In Oct-Dec 2005, 400m long open altern with conduct and 400m long nonzolitat dramage works
Activities	were instance at A block. Community four unloging house was imported. Boring and material
	the form of general workers (Japan side assisted reward for shout 1/2 of market price AMD1200
	-USD 2.6 /day, as well as supplemental materials (sand etc.))

Figure 9.8 General View of Martuni Village Landslide (from North West)

Figure 9.9 Distribution of Secondary Landslide Block in Martuni Village

Figure 9.10 Engineering Geological Investigation Layouts at A block in Martuni Village

Figure 9.11 Engineering Geological Profile of A block of Martuni Village Landslide

3) Kapan City Harutyunyan Street Landslide

Table 9.5 Kapan	City Harutyunyan Street Landslide
-----------------	-----------------------------------

Item	Outline		
Features of	- 200m width, 400m length		
landslide,	- Landslide 400 thousand m ³ failure occurred in 1994. Collapsed materials are weathered		
Risk and	pyroclastic deposits. Three people died. Springs were assumed as cause (the source of water might		
resource	be irrigation).		
assessment	 -Landslide monitoring of this Study shows 0.1mm-0.2mm/day crack extension at the upper slope. Boreholes pipe strain gauge monitoring shows the surface depth of the failure (upper slope B-1 boring has 8m depth, B-3 boring has 3m depth). In the lower slope (dumped soil zone), no movement during Aug to Dec, 2005 was identified Ersch score of shallow slide or earth flow trace score and The dumped soil closed 2 longs of total. 		
	80m length of Harutyunyan street		
	-West side Yerkatughain district is a potential landslide area. Because house damage is scattered, it is not caused by landslides.		
	- M-2 road is an interstate road; Kapan Tunnel has a narrow inner section, and it is bottleneck for large vehicles transportation. When Harutyunyan street 2 lanes are secured, they can carry out the function of an alternative road to the M-2 road.		
	- Kapan citizens think that the bare land at the landslide damages the landscape at the entrance to Kapan city.		
Landslide	Alternative landslide countermeasures:		
Management and	I: 1-lane securing (detour maintenance): soil removing 1,800m ³ with gabion and drainage works II: 2-lane securing: soil removal 8,300m ³ with gabion and drainage works		
Community			
Davalopment	III: Complete removal of the dumped soil: soil removing 159,200m with gabion and drainage		
Development	WORKS		
Execution	The way of the project produced the alternative in.		
Activities	- Organization of unsaster management conference (Chairman: Mayor), establishment of landshde		
Activities	Formulation of early warning system based on extension and rain gauge data		
	i officiation of carry warning system based on extensioneter and rain gauge data.		
	1		

Figure 9.12 General View of Kapan City Harutyunyan Street Landslide

Area	Hazard and risk	Management plan
I: Upper Slope	Approximately 60 thousand m ³ soil is moving (maximum 0.2mm/day movement)	-Landslide monitoring and early warning -Drainage of surface water
II: Lower slope	Approximately 60 thousand m ³ soil is dumped no movement was observed. New surface failure, shallow small slide, immature debris flow are recognized	-Drainage of surface water - Soil Removal
III : Road IV : Condominiums	The dumped soil closes one lane of 2 lanes, total of 80m length of Harutyunyan street.	-Landslide monitoring and early warning
V : Yerkatughain district	51 families Potential landslide, existing damage is not caused by landslides	 Periodic inspection Improvement of drainage

Figure 9.13 Management Division of Kapan City Harutyunyan Street Landslide

Figure 9.14 Engineering Geological Profile of Kapan City Harutyunyan Street Landslide

4) Yerevan City Cemetery Landslide

Item	Outline		
Features of	(Yerevan Landslide)		
landslide,	- 500m width, 1000m length		
Risk	- Base rocks are soft sedimentary rocks. Slip surface is in weathering rocks and old		
assessment	colluvial deposits. Depth of slip surface is confirmed (head – 24m, center – 14m, foot –		
	8m) by drilling and pipe strain gauge monitoring.		
	- Induced causes: weathering sedimentary rocks contain swelling clay minerals, which		
	accumulate to bedding and formulate potential slip surface. Highly weathering rocks:		
	residual soil is susceptible to erosion. In the cemetery area, bedding is 20 degree and		
	slopes are available. In the east upper portion, permeable gravely soil develops.		
	Therefore, groundwater is easily supplied to the landslide.		
	-Induced causes: Water supply pipe at landslide head leaks at several points (one of them		
	is 30L/min). Irrigation water flows to the gravelly soil.		
	(Similar Type Landshide from South East of Verevan to Kotayk Marz) Many landshides are distributed along the M 15 road (Verevan hypersping road). Two		
	- Many failustices are distributed along the M-15 Todd (Televall Dypassing Todd). Two kilometer section is impossable, and many summer houses are damaged		
	- Landslide is distributed near the border area of gravelly soil, sedimentary rocks and		
	tuff Landslide area density is more dominant in sedimentary rocks area. This is because		
	in sedimentary rocks bedding is developed which may easily become slip surface.		
	- Residual soil of tuff is reddish and includes swelling clay minerals. When saturated it		
	has dispersive characteristics.		
	- Induced causes may be leakage of water supply system, irrigation for orchards, or		
	domestic sewage without drainage.		
Technology	- Technical bulletin will be published and widespread to the related organizations.		
Disseminatio	- Study Team and MoUD appealed to Yerevan City to use the technology of these similar		
n Policy	type landslides in urban development plan.		
	- This investigation results will be used in the cemetery improvement (water supply and		
	asphalt pavement).		

Table 9.6 Risk Assessment of Yerevan Cemetery Landslide and Technology Dissemination Policy

Figure 9.15 Outcrop of Sedimentary Rocks and Erosion of the Residual Soil

Figure 9.16 Geotechnical Map of South-East of Yerevan City in the Direction of Kotayk Marz

(2) Technical Issues Clarified during the Pilot Projects

Table 9.7 shows technical issues and policies for technical development.

Item Work division	Technical Issues	Equipment procured from Japan	Technical Development Policy
Geographical analysis	A few engineers who can undertake geographical analysis are employed in private companies. But such technologies are used rarely, so technology has not been disseminated.	Stereograph	Dissemination by technical bulletins
Topographic survey	A necessary result can be achieved if the appropriate consultant is utilized.	Nothing	Nothing
Soil Test	Clay mineral identification analysis by X-ray is available. Mechanical test is not popular and was not done in the Study. MoUD will do mechanical test under their budget.	Nothing	In the future, installation of mechanical soil testing equipment and technical transfer should be done.
Geophysical Prospecting	Local contactor used analysis software. In the government agency there is no engineer to examine the result. In the RA, dynamite cannot be used so prospecting deeper than 30m is impossible. Limited private companies own equipment for geophysical prospecting.	Nothing	Examination and accumulation of results (MoUD with National Science Academy, National Seismic Institute)
Surface landslide monitoring	 -It is done by association of Study Team, local contractor, and community landslide monitoring team. -GPS movable point monitoring, horizontal accuracy is less than 1cm, vertical accuracy is less than 5cm. Therefore, monitoring interval of 4 times/year is appropriate. -Simple movable beam (Nuki-ita) was adapted at the pilot project sites. MoUD adopted other landslide sites from 2005. 	Landslide monitoring equipment	Landslide monitoring equipment was granted to MoUD. Communities will continue monitoring by the organized teams. MoUD will support this by budget and technology.
Boring, in-site test	 -In the RA, almost all are Russian truck-mounted machines. They have poor performance. There is no experience of on-site testing (Standard penetration test and ground water prospecting were first done in this Study). -There is no experience of boring with water. Study Team provided instructions on boring with water to provide good quality coring. 	Boring machine/in-	-MoUD will lend boring machine to contractor for landslide geotechnical investigation.
Borehole monitoring	 -Local contractor was instructed on borehole monitoring equipment installation. Monitoring is done by community monitoring team. 		
Horizontal Drainage Boring	 -In Gosh Village it was done by Armenian contractor's disassembly type drilling machine. -In Martuni Village it was done by the local contractor with Japanese disassembly type drilling machine. 		
GIS data base	GIS is used by governmental organizations and private institutions.	GIS software and computer, plotter, printer	MoUD will accumulate landslide data. Compiled data will be published by technical bulletins and on web-site.

Table 9.7 Technical Issues Clarified during the Pilot Projects

9.2 Economic Evaluation of Pilot Projects

9.2.1 Basic Concept of the Evaluations

The economic evaluation of the projects is based on cost-benefit analysis. Given the non-revenue-generating nature of the disaster management projects, the basic concept of the evaluations is that at certain probabilities the investment on the project can avert (save) the losses that would result from the damages caused by the landslide¹.

Disaster management is a set of various activities at individual, community or society level designed to protect welfare against physical and economic risks associated with occurrence of natural hazards. Risk management involves reducing risk to an acceptable level and coping with its consequences, once the risk materializes.

Calculating <u>direct damages</u> is a difficult task because of difficulties related to valuation of assets or properties. EMA tended to overvalue lost assets to obtain international assistance and debt relief. Inversely, assets lost by poor individuals, typically uncovered by insurance, might not be included in the valuation of losses. Moreover, direct damage assessment tends to underestimate damages to the environment (e.g. erosion to total sedimentation that makes the land unsuitable for cultivation) as well as negative effects on human capital.

Landslides also cause <u>indirect damages</u>, which refer to the loss of potential production due to the disturbed flow of goods and services, lost production capacities and increased costs of production. Indirect damages (consequence of direct damages to production capacity and social or economic infrastructure) can be substantial. Indirect damages continue to occur until reconstruction is completed and the entire production capacity is restored.

Based on the above basic concept, economic evaluations for the three pilot projects have been conducted in detail to assess their cost-effectiveness hereunder.

9.2.2 Common Features of Expected Benefits

(1) Potential Benefits (Direct / Indirect)

Given the non-revenue generating nature of the project, benefits will be estimated based on the expected losses (<u>potential damages</u>) averted due to the investments pursued in the projects. The damages are assessed for the "risk objects" grouped in the following sectors:

¹ However, the sensitivity analysis will assume various values for damages averted, and both the NPV and EIRR will be subject to the sensitivity tests.

- (i) Buildings,
- (ii) Transportation,
- (iii) Infrastructure,
- (iv) Agriculture, and
- (v) Others.

Potential damages on the risk objects are those which will occur over the next 20 years (if no prevention measures are implemented) in the: "Existing Landslide Zone (A)", "Assumed Further Accumulation Zone (B)", "Reservoir Zone of Landslide Dam (C)", and "The Flood Area (D)".

The distinction is also made between (a) direct damages, and (b) indirect damages, where

- (a) Direct damages are the effect on property, immovable assets and inventories, and
- (b) Indirect damages are other losses induced by the direct damages, e.g. the effects on production flows of goods and services²

Those risk objects as potential damages for the three pilot project sites have been updated from the results of the damage assessment by the Landslide Inventory Survey conducted in 2004.

Those benefits are a combination of (i) physical losses (<u>direct damages</u>) avoided and (ii) the costs of lost economic activity and disruptions in social welfare (<u>indirect damages</u>) minimized³. The potential damages will serve as proxy for benefit in the project evaluation.

(2) Willingness to pay

During the implementation of pilot projects, a simplified Contingent Valuation Method (CVM) survey was conducted in three sites using a questionnaire asking "Willingness to Pay (WTP)" for the projects, which potentially represents the project worth for the residents. The number of samples in each site is as follows:

Pilot Project Sites	No. of Samples
Kapan City	200
Gosh Village	30
Martuni Village	31

Table 9.8 Sample Size of CVM in Each Pilot Project Site

In each site, respondents are chosen from three different clusters of inhabitants living in relation to the landslide: (i) Risky area under the landslide zone, (ii) Non-risky area under the landslide zone,

² For indirect damages on buildings, based on MoUD data, US\$500 per number of object is applied.

³ Especially if damages to physical infrastructure lead to prolonged disruptions in economic activity.

(iii) Not in landslide zone. This clustering is aimed at identifying the weighted average value of WTP, since it is assumed that there must be a significant gap of WTP among the respective zones (i.e. residents under the risky area are willing to pay more than those under the non-risky area). Thus obtained weighted average of WTP per respondent is considered as a contribution amount for the project per household. Therefore, the project benefits from WTP can be estimated by the value from:

(Weighted average of WTP) x (Total number of households in city or village)

(3) Other Benefit

The impact on the local economies of the respective sites are evaluated in either quantitative or qualitative manner, taking into consideration upgrading of the land use, improving regional roads, expected budget saving for villages, and incorporating landslide management into multipurpose programs of regional development. Human life is not valued and not taken into account.

9.2.3 Costs

Costs of the implementation of engineering countermeasures are estimated based on the basic design prepared by the Study Team and unit costs per construction works obtained under the pilot projects in the respective sites.

9.2.4 Basic Assumptions for Cost-Benefit Analysis

The cost-benefit analysis undertakes the following basic conditions and assumptions.

- (1) The economic life of those particular pilot projects is assumed to be 30 years.
- (2) Exchange rate applied in the analysis is US\$1.00 = AMD 450.

(3) The project costs in the project period are estimated based on November 2005 constant prices in the Armenian Dram.

(4) Construction period of each project is assumed for 2-7 years depending on the type of project (city / village types).

(5) For the estimation of the economic project cost, each item of the financial cost is divided into the tradable and non-tradable portions. The latter is converted into economic value by

applying Standard Conversion Factor (SCF) at 0.9⁴.

(6) The price contingencies, taxes and other kinds of transfer payments are excluded from the project costs

(7) For the calculation of the Net Present Value (NPV), discount rate of $10\%^5$ is applied.

(8) Sunk costs iccured by implementing pilot projects during Aug.-Dec. 2005, are excluded from the project costs. Only the future costs are taken into account as the project costs.

(9) Project benefits are based on the principle of "annual probability of loss", which is the sum of the loss from the expected disaster event multiplied (or weighted) by the probability of its occurrence. The annual probability of avoided loss is the difference between background risk without and with project

9.2.5 Economic Evaluation of Pilot Projects

- (1) Economic Evaluation of the Kapan pilot project
- (a) Project benefit

In case of pilot project in Kapan, the result of updating landslide inventory data shows that there are few risk objects unlike the other major type of landslides. The major identified risk object is Harutyunyan Street, which is presently limited to one lane of traffic. The expected quantified benefits considered in the analysis are indirect damages to the street, willingness to pay by city residents, and expected annual budget saving due to the project implementation. Such quantified benefits are the same for both Plan II and III, which have been examined by the Working Commission, since both plans propose recovery of two-lane traffic on Harutyunyan Street. The details of the three types of benefit are discussed below.

1)Indirect damages as a benefit

Rehabilitation of Harutyunyan Street will bring smooth traffic for all types of vehicles. If the project is realized, it is expected that approximately two minutes of time will be saved for passing the street. Forty-five (45) vehicles pass per day during weekdays, and 30 vehicles during holidays. The project will offer in quantitative terms, the annual estimated benefits of AMD 799 thousand for vehicle operation cost and AMD 996 thousand for opportunity costs of passengers (time saving).

⁴ SCF estimated based on the trade and tariff data during 1999-2002 of Armenia (Statistical Yearbook of Armenia 2003, National Statistical Service) resulted in 0.97. However, for this analysis 0.9 used by World Bank is adopted.

⁵ Project Appraisal Document on Irrigation Dam Safety II Project, May 10, 2004. World Bank

2) Willingness to pay as a result from CVM

200 Kapan City residents are randomly chosen for the two questions, "Are you willing to contribute for the project as a city resident?" and "How much are you willing to pay to support the project?" The table below presents the estimated number of households, sample size, and average willingness to pay per zone.

Zone	No. of Households	Share (%)	Sample Size	Average WTP by Zones (AMD)
(1) Risky Area (Landslide Area)	280	3%	60	2,000
(2) Non-Risky Area (Landslide Area)	130	1%	40	756
(3) Not in Landslide Area	8,890	96%	100	1,547
Total	9,300	100%	200	

Table 9.9 Number of Households and Sample Size for CVM in Kapan City

The results show that there is a significant variation of WTP amount by the zones. Those who live in Risky Area (Condominium residents) are willing to pay AMD 2,000 each, while others in Non-Risky Area show the least (AMD 756), and those who have no relationship with landslide show the moderate (AMD 1,547). This variation is probably due to income level and level of awareness of landslide. The table below summarizes the answers by respondents. It can be interpreted that 79% of Kapan residents are willing to pay, although 28% have willingness to pay but no money.

(a) Willing to pay	No. of Households	Share (%)
(1) Risky Area (Landslide Area)	56	28%
(2) Non-Risky Area (Landslide Area)	32	16%
(3) Not in Landslide Area	69	35%
Sub-Total I	157	79%
(Willing to pay but zero AMD)	55	28%
(b) Not willing to pay		
(1) Risky Area (Landslide Area)	4	2%
(2) Non-Risky Area (Landslide Area)	8	4%
(3) Not in Landslide Area	31	16%
Sub-Total II	43	22%
Total Sample (I+II)	200	100%

Table 9.10Summary of the CVM Answers

In case of Kapan City, the majority of the population belongs to "Not in Landslide Area." Yet the fact that they are willing to pay slightly less than those in Risky Area is considered to be highly appreciable for the project.

Thus, the weighted average of WTP is estimated at AMD1,550 / household (0.2% of annual average income), which can sum up to AMD 14.4 million or US\$ 32,025 as a whole city as shown below:

Item	Value
Annual Average Income / Household (Year 2004 estimate)	AMD 882,000
WTP/Household (Weighted Average)	AMD 1,550
WTP/Annual Income/Household (%)	0.2%
Whole City (AMD)	AMD14,411,110
Whole City (at US\$1.00 = 450 AMD)	<u>US\$32,025</u>

Table 9.11 Weighted Average of WTP per Household and Whole City

As an economic benefit of the project, WTP of AMD 14.4 million is taken into account for the cost-benefit analysis.

3) Expected annual budget saving

Since the Harutyunyan Street and the landslide slope area are property of the City of Kapan, the city has allocated an annual budget for the removal and cleaning of mud on the street. The amount is estimated about AMD 1.5 million per annum⁶. The implementation of the project will offer the saving of disbursement of this budget, which is considered as a project benefit.

(b) Project Cost

1) Plan II: Recovery of Two-Lane Traffic

Financial project cost for Case II is estimated at AMD 98,293 thousand. Based on this, economic cost is calculated by applying SCF (0.9) to the Non-Tradable portion and estimated as AMD 92,343 thousand as shown in the table below.

⁶ The figure is based on the Social Survey and Landslide Management Proposal prepared by Kapan Community Union.

			(Unit: 1,0	00AMD)		
		Financial Cost]	Economic Cost	
Countermeasure	Tradable	Non-Tradable	Total	Tradable	Non-Tradable	Total
Cut	4,876	11,378	16,254	4,876	10,240	15,116
Gabion	3,450	2,300	5,750	3,450	2,070	5,520
Open Ditch	15,298	6,556	21,854	15,298	5,901	21,198
Catchment Pit	3,551	14,204	17,755	3,551	12,784	16,335
Concrete	406	609	1.015	406	548	954
(Sedimentation Pool)	-100	007	1,015	100	540	754
Grass Planting	4,413	17,652	22,065	4,413	15,887	20,300
Tree Planting	0	0	0	0	0	0
Pavement	6,800	6,800	13,600	6,800	6,120	12,920
Total	38,794	59,499	98,293	38,794	53,549	92,343

Table 9.12 Financial and Economic Project Costs of Plan II

2) Plan III: Full Rehabilitation of the Slope

Financial project cost for Case III is estimated at AMD 369,630 thousand. Based on this, economic cost is calculated by applying SCF (0.9) to the Non-Tradable portion and estimated as AMD 344,549 thousand as shown in the table below.

(Unit: 1,000AMD)						
		Financial Cost			Economic Cost	
Countermeasure	Tradable	Non-Tradable	Total	Tradable	Non-Tradable	Total
Cut	75,168	175,392	250,560	75,168	157,853	233,021
Gabion	1,800	1,200	3,000	1,800	1,080	2,880
Open Ditch	20,384	8,736	29,120	20,384	7,862	28,246
Grass Planting	8,832	35,328	44,160	8,832	31,795	40,627
Free Frame	5,838	23,352	29,190	5,838	21,017	26,855
Pavement	6,800	6,800	13,600	6,800	6,120	12,920
Total	118,822	250,808	369,630	118,822	225,727	344,549

Table 9.13 Financial and Economic Project Costs of Plan III

The major differences between Plan I the Plan II are the volume of cutting soils and the associated volume of works on gabion installation and grass planting.

For both plans, it is proposed that Armenia Forest (NGO) will cope with tree planting on the stabilized landslide slope, the cost of which is excluded from the project cost estimate.

(a) Justification of the Project

1) Results of the Economic Evaluation

The assumed probability of landslide occurrence is once in five years if no countermeasure is

conducted and it is reduced to zero in case of project implementation. The above mentioned project costs and benefits are incorporated into the cost-benefit analysis by applying the reduction of probability over the next 30 years. The results for both plans are shown below.

						(Unit: 1,000AMD)
		A	В	С	D	$\mathbf{E} = (\mathbf{B} + \mathbf{C}) - \mathbf{D}$
Year in		Probability	Willingness	Transport Benefit		
Number	Year	Reduction	to Pav	& Rehab. Cost	Project Cost	Net Benefit
rumber		of Losses	10 1 4 y	Saving		
1	2006	0%	2,882	0	18,469	-15,586
2	2007	20%	2,882	660	18,469	-14,926
3	2008	20%	2,882	660	18,469	-14,926
4	2009	20%	2,882	660	18,469	-14,926
5	2010	20%	2,882	660	18,469	-14,926
6	2011	20%	0	660	0	660
7	2012	20%	0	660	0	660
8	2013	20%	0	660	0	660
9	2014	20%	0	660	0	660
10	2015	20%	0	660	0	660
11	2016	20%	0	660	0	660
12	2017	20%	0	660	0	660
13	2018	20%	0	660	0	660
14	2019	20%	0	660	0	660
15	2020	20%	0	660	0	660
16	2021	20%	0	660	0	660
17	2022	20%	0	660	0	660
18	2023	20%	0	660	0	660
19	2024	20%	0	660	0	660
20	2025	20%	0	660	0	660
21	2026	20%	0	660	0	660
22	2027	20%	0	660	0	660
23	2028	20%	0	660	0	660
24	2029	20%	0	660	0	660
25	2030	20%	0	660	0	660
26	2031	20%	0	660	0	660
27	2032	20%	0	660	0	660
28	2033	20%	0	660	0	660
29	2034	20%	0	660	0	660
30	2035	20%	0	660	0	660
	1	1	1	1	EIRR =	<u>0%</u>

Table 9.14 Cost-Benefit Flow for Plan II

NPV =<u>-62,005</u>

					(Unit: 1,000AMD)
		А	В	С	D	$\mathbf{E} = (\mathbf{B} + \mathbf{C}) - \mathbf{D}$
Year in Number	Year	Probability Reduction of Losses	Willingness to Pay	Transport Benefit & Rehab. Cost Saving	Project Cost	Net Benefit
1	2006	0%	2,882	0	68,910	-66,028
2	2007	20%	2,882	660	68,910	-65,368
3	2008	20%	2,882	660	68,910	-65,368
4	2009	20%	2,882	660	68,910	-65,368
5	2010	20%	2,882	660	68,910	-65,368
6	2011	20%	0	660	0	660
7	2012	20%	0	660	0	660
8	2013	20%	0	660	0	660
9	2014	20%	0	660	0	660
10	2015	20%	0	660	0	660
11	2016	20%	0	660	0	660
12	2017	20%	0	660	0	660
13	2018	20%	0	660	0	660
14	2019	20%	0	660	0	660
15	2020	20%	0	660	0	660
16	2021	20%	0	660	0	660
17	2022	20%	0	660	0	660
18	2023	20%	0	660	0	660
19	2024	20%	0	660	0	660
20	2025	20%	0	660	0	660
21	2026	20%	0	660	0	660
22	2027	20%	0	660	0	660
23	2028	20%	0	660	0	660
24	2029	20%	0	660	0	660
25	2030	20%	0	660	0	660
26	2031	20%	0	660	0	660
27	2032	20%	0	660	0	660
28	2033	20%	0	660	0	660
29	2034	20%	0	660	0	660
30	2035	20%	0	660	0	660
					EIRR = NPV =	<u>0%</u> -280,861

Both plans result in 0% of Economic Internal of Return (EIRR) and negative Net Present Value (NPV). This indicates that the project is not feasible in terms of cost effectiveness, if the decision criteria is followed strictly.

However, the quantified project benefits included in the analysis are very minimal and it is assured that there are other intangible or qualitative underlying benefits as discussed below.

2) Intangible Benefit and Importance of the Project

One intangible, qualitative benefit is the improvement of the town scenery which will be assured by grass and tree planting on the landslide slope. This will also improve the green ratio of the city.

The project is designed to install proper surface drainage equipped with sedimentation pool. The groundwater drained from the slope may be made use as non-drinking water (ex. washing vehicles). This will save the existing water that would have been used.

The greatest benefit and the most important aspect of the project is to provide the alternative road as a detour linking the Inter-State Road M-2. When vehicles pass through Kapan City, they must go through the Kapan Tunnel, of which height (5.6m) and width (7.8m) are too limited for large cargoes to safely pass.

Figure 9.17 Relationships between M-2 and Harutyunyan Street

The figure above shows the present condition of Harutyunyan Street and Kapan Tunnel, and relationship between M-2 and the Harutyunyan Street. In fact, larger cargoes sometimes pass the tunnel by lowering the air pressure of tyres so that they can reduce the height. However, some cargoes hit and scratch their upper corner on the tunnel ceiling, particularly at the entrance of the tunnel. According to an interview with the Kapan Community Union, if the tunnel is shut down for some reason, it will have an enormous negative impact on not only Kapan City but also Armenian Economy, since the M-2 is the single route connecting Iran and Yerevan. In such case, the diversion of traffic to Harutyunyan Street would result in crippling local vehicles, and more importantly,

delaying international cargoes shipping goods and materials unloaded at the port of Bandar Abbas in Iran.

Because of the geopolitical condition of Armenia, international trade is only available from the borders with three countries: Georgia, Turkey and Iran⁷. External trade values of Armenia in 2004 recorded almost double of those in 1999⁸. The figure below illustrates the major ground transportation routes and proportions of international trade volume.

Figure 9.18 Major Ground Transportation Routes for International Trade of Armenia

 ⁷ There are some volumes of trade through air cargoes. However, considering the conditions of international airport, its volume is assumed to be extremely small compared with the ground transportation.
 ⁸ Statistical Variables of America 2002, page 12002, Tables of the ground transportation.

⁸ Statistical Yearbook of Armenia 2002 and 2005. Trade value (import and export) was US\$1,042 mil. in 1999 and US\$2,073 mil. in 2004.

Trade volume from M-2 through Iranian border is estimated about 28% of total trade values, while the remaining 78% from Georgia and Turkey⁹. Moreover, trade volume through the Iranian border is increasing from its share of 20% in 1999 (8% increased in last five years). Major trade partners through the Iranian border are Iran ($4\sim6^{th}$ major trade partner), UAE, India, China, Japan and Korea.

Therefore, it is extremely important for the Armenian economy to secure the smooth traffic of international large cargoes, which currently Kapan Tunnel bottlenecks. The project is expected to provide a detour through the Harutyunyan Street so that vehicles do not need to pass through the tunnel.

Plan II offers much less negative NPV than Plan III (about one-fifth of Plan III). The decision for implementation will depend on the City Mayor and the City Council of Kapan. Apart from a choice of plans, the project is highly worth implementing if the above background is taken into consideration in relation with national security.

(2) Economic Evaluation of the Pilot Project in Gosh

- (a) Project Benefit
- 1) Potential damages as a benefit

In the case of the pilot project in Gosh, updating landslide inventory data is divided into two areas: (i) H-Block, where small countermeasure works were conducted under the Study, (ii) Remaining landslide area. The risk objects are updated separately for the two areas to estimate the potential benefit, and summarized in the table below.

(Unit: USD)						
Sector	H-Block			Re	maining Landslide	Area
	Direct	Direct Indirect Sub-Total			Indirect	Sub-Total
Construction	14,840	3,500	18,340	241,468	55,000	296,468
Transportation	9,000	979	9,979	68,000	6,960	74,960
Infrastructure	7,935	397	8,332	148,933	7,447	156,380
Agriculture	441	690	1,131	10,535	16,483	27,018
Others	181	0	181	22,901	0	22,901
Sub-Total	32,397	5,566	37,963	491,837	85,890	577,727
Total in USD						615,690
Total in 1,000 AMD						277,060

Table 9.16 Estimated Potential	Damages in	Gosh	Village
--------------------------------	------------	------	---------

(Unit: USD)

 $^{^9}$ Based on the data of external trade by countries from Statistical Yearbook of Armenia 2005.

The total potential damages are valued at US\$ 615,690 or 277,060 thousand AMD. The dwellings are the greatest risk objects, of which there are 113 identified in total. A health centre, school building, culture centre, and kiosk are also assessed as potential risk objects. Infrastructure would get the second greatest damages, including the breakdown of lifelines such as water pipes, electricity and telephone lines.

Village roads will also be affected although the values are relatively small. While indirect damages are accounted only for higher exploitation costs of vehicles, village roads connecting to the grazing land or crop land are extremely important for the economic activities of the residents. Further discussions are given in the later part of this sub-section.

2) Willingness to pay as a result from CVM

30 residents in Gosh Village are randomly chosen for the two questions, "Are you willing to contribute for the project as a city resident?" and "How much are you willing to pay to support the project?" The table below presents the estimated number of households, sample size, and average willingness to pay per zone.

Zone	No. of Households	Share (%)	Sample Size	Average WTP by Zones (AMD)
(1) Risky Area (Landslide Area)	13	3%	8	2,188
(2) Non-Risky Area (Landslide Area)	76	19%	8	1,150
(3) Not in Landslide Area	310	78%	14	7,286
Total	399	100%	30	

Table 9.17 Number of Households and Sample Size for CVM in Gosh Village

The result shows that there is a significant variation of WTP amount by the zones. It should be noted that those who are in "Not in Landslide Area" are the majority of the population and likely to pay much more than the other residents. Moreover, none of the respondents answered "Not willing to pay". Such fact implicitly indicates high level of awareness on landslide management¹⁰. It is assumed that most residents are willing to contribute for the project not by in-kind contribution (voluntary work) but by financial form.

The weighted average of WTP for the entire village is estimated at AMD 5,951 / household (1.0% of annual average income), which can sum up to AMD 2.37 million or US\$ 5,277 as a whole village as shown below:

¹⁰ CVM survey is normally associated with bias that the obtained answers are unnecessarily outrageous. This case shows to some extent higher WTP specifically for those of "Not in Landslide Area".

 Table 9.18
 Weighted Average of WTP per Household and Whole Village

Item	Value
Annual Income / Household (Year 2004 estimate)	AMD 582,000
WTP/Household (Weighted Average)	AMD 5,951
WTP/Annual Income/Household (%)	1.0%
Whole Village (AMD)	AMD 2,374,504
Whole Village (at US $$1.00 = 450$ AMD)	<u>USD 5,277</u>

As an economic benefit of the project, a WTP of AMD 2.37 million is taken into account for the cost-benefit analysis.

(b) Project Cost

Financial project cost is estimated at AMD 115,579 thousand. Based on this, economic cost is calculated by applying SCF (0.9) to the Non-Tradable portion to eliminate market distortion and estimated as AMD 109,813 thousand. The cost estimates are summarized in the table below.

Table 9.19	Financial	and Economic	Project	Costs of Plan II
-------------------	-----------	--------------	---------	-------------------------

(
Countermeasure		Financial Cost		Economic Cost			
	Tradable	Non-Tradable	Total	Tradable	Non-Tradable	Total	
Road Pavement	6,852	15,989	22,841	6,852	14,390	21,242	
Open-ditch Drainage culvert	8,284	3,550	11,834	8,284	3,195	11,479	
Open Ditch	33,065	14,171	47,235	33,065	12,754	45,818	
Stone Drainage	2,481	5,788	8,269	2,481	5,209	7,690	
Horizontal Drainage	6,480	15,120	21,600	6,480	13,608	20,088	
Catchment basin (each 30m)	760	3,040	3,800	760	2,736	3,496	
Total	57,921	57,658	<u>115,579</u>	57,921	51,892	109,813	

(Unit: 1,000AMD)

(c) Justification of the Project

1) Results of the Economic Evaluation

The assumed probability of landslide occurrence is once in 3 years in H-Block and once in 10 years in the remaining areas if no countermeasure is conducted. The probabilities are reduced to once in 10 years and 20 years respectively in case of project implementation. The above mentioned project costs and benefits are incorporated into the cost-benefit analysis by applying the reduction of probability over the next 30 years. The result is shown below.

								(Unit	: 1,000AMD)
									H =
		А	В	С	D	Е	F	G	(C+D+E)-F-
									G
		Reduction	Reduction of	Project	Project				
Year in	Year	of Losses in	Losses in	Benefit	Benefit	Willingness	Project	Annual	Net Benefit
Number	Tear	H-Block	Remaining	(H-Block)	(Remaining	to Pay	Cost	O&M Cost	Net Denem
		II DIOCK	Area	(II BIOCK)	Area)				
1	2006	0%	0%	0	0	339	15,688	0	-15,348
2	2007	0%	0%	0	0	339	15,688	0	-15,348
3	2008	0%	0%	0	0	339	15,688	0	-15,348
4	2009	0%	0%	0	0	339	15,688	0	-15,348
5	2010	23%	5%	3,986	0	339	15,688	60	-11,423
6	2011	23%	5%	3,986	0	339	15,688	60	-11,423
7	2012	23%	5%	3,986	12,999	339	15,688	60	1,576
8	2013	23%	5%	3,986	12,999	0	0	60	16,925
9	2014	23%	5%	3,986	12,999	0	0	60	16,925
10	2015	23%	5%	3,986	12,999	0	0	60	16,925
11	2016	23%	5%	3,986	12,999	0	0	60	16,925
12	2017	23%	5%	3,986	12,999	0	0	60	16,925
13	2018	23%	5%	3,986	12,999	0	0	60	16,925
14	2019	23%	5%	3,986	12,999	0	0	60	16,925
15	2020	23%	5%	3,986	12,999	0	0	60	16,925
16	2021	23%	5%	3,986	12,999	0	0	60	16,925
17	2022	23%	5%	3,986	12,999	0	0	60	16,925
18	2023	23%	5%	3,986	12,999	0	0	60	16,925
19	2024	23%	5%	3,986	12,999	0	0	60	16,925
20	2025	23%	5%	3,986	12,999	0	0	60	16,925
21	2026	23%	5%	3,986	12,999	0	0	60	16,925
22	2027	23%	5%	3,986	12,999	0	0	60	16,925
23	2028	23%	5%	3,986	12,999	0	0	60	16,925
24	2029	23%	5%	3,986	12,999	0	0	60	16,925
25	2030	23%	5%	3,986	12,999	0	0	60	16,925
26	2031	23%	5%	3,986	12,999	0	0	60	16,925
27	2032	23%	5%	3,986	12,999	0	0	60	16,925
28	2033	23%	5%	3,986	12,999	0	0	60	16,925
29	2034	23%	5%	3,986	12,999	0	0	60	16,925
30	2035	23%	5%	3,986	12,999	0	0	60	16,925
					*			EIDD	12.20/

Table 9.20 Cost-Benefit Flow for Pilot Project in Gosh

EIRR = 12.2% NPV = 15,766

EIRR shows 12.2%, which is greater than discount rate of 10% and NPV turns out to be a positive value at about 15.7 million AMD. It indicates that the project will be economically viable. The soonest implementation will be required to protect the village properties and avoid the economic losses incurred by the landslide as discussed below.

2) Intangible Benefit and Importance of the Project

There are substantial potential damages, which are not quantified (not included) for the above cost-benefit analysis.

One of Armenia's largest churches, the St. Gevorg Monastery, is under potential damage. The church is an important tourist attraction, and an invaluable historical heritage.

One of the major indirect potential damages is the probable loss incurred from the blockage of access roads to grazing and agricultural lands, from which forages are acquired and brought down into the individual house garden as stocks for the winter season. Given the fact that livestock grazing is the most important economic activity for the villagers¹¹, blockage of the access roads will require them to acquire forages from outside the village, which are expected to cost more than forages from inside the village. Consequently, the difficulty of forage acquisition may trigger a shortage of forage stock, which would endanger livestock.

In addition to this, about 83 cow houses are identified as direct potential damage and included as benefits in the cost-benefit analysis. The damage on the cow houses which cater to cattle, horses, etc., will subordinately stagnate livestock grazing activities.

The project is designed to avoid the above mentioned dangers and losses, and to provide a stable ground for enhanced productive activities. Stable ground and village fundamentals will be a prerequisite for village development. Therefore, the project is totally in line with the Village Development Plan that proposes livestock-based income generation activities.

(3) Economic Evaluation of the Pilot Project in Martuni

- (a) Project Benefit
- 1) Potential damages as a benefit

In the case of the pilot project in Martuni, the proposed countermeasure works are prioritized in terms of urgency: (i) Priority I: 20% probability of landslide occurrence; (ii) Priority II: 15% probability; and (iii) Priority III: 10% probability, if no countermeasure is conducted. The risk objects are updated separately to estimate the potential benefit and summarized in the table below.

¹¹ More than 900 head of livestock (excluding hens) are grazed in the village, according to the statistics of Gosh village.

(U									Unit: US\$)	
		Priority I		Priority II			Priority III			Total
Sector	Direct	Indirect	Sub- Total	Direct	Indirect	Sub- Total	Direct	Indirect	Sub- Total	
Construction	56,000	11,500	67,500	358,838	25,500	384,338	357,613	25,500	383,113	834,950
Transportation	35,164	5,424	40,588	51,802	6,268	58,070	51,802	6,268	58,070	156,728
Infrastructure	43,896	1,860	45,756	49,560	2,100	51,660	49,560	2,100	51,660	149,076
Agriculture	3,000	8,400	11,400	7,500	21,000	28,500	7,500	21,000	28,500	68,400
Others	-	-	-	-	-	-	-	-	-	0
Total	138,060	27,184	165,244	467,700	54,868	522,567	466,475	54,868	521,342	1,209,154
]	Total in 1,0	000AMD	544,119

Table 9.21 Estimated Potential Damages in Martuni Village

The total potential damages are valued at USD 1.2 million or 544,119 thousand AMD. The dwellings are the greatest risk objects, which number 125 in total. School building and a culture house will be potentially damaged. The transportation sector would get the second greatest damages, including the breakdowns of a bridge on Getik River, about 2,300 m of community roads (gravel) and 30 m of asphalt roads. Infrastructure, including a water pipe running underground, and the irrigation system, are also assessed as potential risk objects, while 6 ha of crop land may be damaged by flood and another 24 ha of orchard may be damaged by landslide.

2) Willingness to pay as a result from CVM

Thirty-one (31) residents in Martuni Village were randomly chosen for the two questions, "Are you willing to contribute for the project as a city resident?" and "How much are you willing to pay to support the project?" The table below presents the estimated number of households, sample size, and average willingness to pay per zone.

Zone	No. of Housebolds	Share (%)	Sample Size	Average WTP by Zones (AMD)
	Tiouscholus			Lones (MMD)
(1) Risky Area (Landslide Area)	77	43%	17	8,824
(2) Non-Risky Area (Landslide Area)	71	39%	11	6,000
(3) Not in Landslide Area	33	18%	3	10,833
Total	181	100%	31	

 Table 9.22
 Number of Households and Sample Size for CVM in Martuni Village

The result shows that variation of WTP amount by the zones are much smaller than those in Kapan and Gosh. It should be noted that those who are in "Not in Landslide Area" give higher value of WTP than any other residents. The table below summarizes the answers by respondents. 84% of Martuni residents are willing to pay, while 16% are not willing to pay.

(a) Willing to pay	No. of Households	Share (%)
(1) Risky Area (Landslide Area)	12	39%
(2) Non-Risky Area (Landslide Area)	11	35%
(3) Not in Landslide Area	3	10%
Sub-Total I	26	84%
(Willing to pay but zero AMD)	0	0%
(b) Not willing to pay		
(1) Risky Area (Landslide Area)	5	16%
(2) Non-Risky Area (Landslide Area)	0	0%
(3) Not in Landslide Area	0	0%
Sub-Total II	5	16%
Total Sample (I+II)	31	100%

 Table 9.23
 Summary of the CVM Answers

Generally all the respondents who are not willing to pay had a large family with two or more children, and at the same time had few financial resources. However, all the respondents including the residents who have refused to contribute financially, offered their contributions by using their knowledge, labor, etc.

The weighted average of WTP for the entire village is estimated at AMD 8,083 / household (1.4% of annual average income), which can sum up to AMD 1.46 million or USD 3,267 as a whole village as shown below:

Item	Value
Annual Income / Household (Year 2004 estimate)	AMD 576,000
WTP/Household (Weighted Average)	AMD 8,083
WTP/Annual Income/Household (%)	1.4%
Whole Village (AMD)	AMD 1,462,937
Whole Village (at USD 1.00 = AMD 450)	<u>USD 3,251</u>

 Table 9.24
 Weighted Average of WTP per Household and Whole Village

As an economic benefit of the project, a WTP of AMD 1.46 million is taken into account for the cost-benefit analysis.

(b) Project Cost

Financial project cost of the project is estimated at AMD 628,796 thousand. Based on this, economic cost is calculated by applying SCF (0.9) to the Non-Tradable portion to eliminate market distortion and estimated as AMD 604,604 thousand. The cost estimates are summarized in the table below.

Priority Countermeasures		Financial Cost			Economic Cost		
Area		Tradable	Non-Tradable	Total	Tradable	Non-Tradable	Total
	Open ditch with drainage culvert	155,127	66,483	221,610	155,127	59,835	214,962
I	Gabion Works	23,970	15,980	39,950	23,970	14,382	38,352
(Next 5 Years)	Concrete banking	15,840	23,760	39,600	15,840	21,384	37,224
Tearsy	Others (Horizontal Drainage)	5,100	11,900	17,000	5,100	10,710	15,810
	Sub-Total	200,037	118,123	318,160	200,037	106,311	306,348
	Open ditch with drainage culvert	69,223	29,667	98,890	69,223	26,700	95,923
II	Concrete banking	19,800	29,700	49,500	19,800	26,730	46,530
(Next 10 Years)	Gabion Works	35,700	23,800	59,500	35,700	21,420	57,120
	Small bridge construction	68	68	136	68	61	129
	Sub-Total	124,791	83,235	208,026	124,791	74,911	199,702
III	Open ditch with drainage culvert	3,402	1,458	4,860	3,402	1,312	4,714
Years)	Gabion Works	58,650	39,100	97,750	58,650	35,190	93,840
	Sub-Total	62,052	40,558	102,610	62,052	36,502	98,554
	Total	386,880	241,916	628,796	386,880	217,724	604,604

 Table 9.25
 Financial and Economic Project Costs for Priority Area I-III

 (Unit: 1,000AMD)

(c) Justification of the Project

1) Results of the Economic Evaluation

The probabilities for each priority are assumed to reduce to zero in case of project implementation. The above mentioned project costs and benefits are incorporated into the cost-benefit analysis by applying the reduction of probability over the next 30 years. The result is shown below.

							(Unit: 1	,000AMD)
	Reduction of	Reduction of	Reduction of	Ducient Demofit	Willingmaga		Annual	Nat
Year	Losses	Losses	Losses	Project Benefit	willingness to Day	Project Cost	O&M	Denefit
	(Priority I)	(Priority II)	(Priority III)	(1+11+111)	to Pay		Cost	Bellefit
2006	0%	0%	0%	0	209	102,116	0	-101,907
2007	0%	0%	0%	0	209	102,116	0	-101,907
2008	20%	0%	0%	14,872	209	168,683	60	-153,663
2009	20%	0%	0%	14,872	209	66,567	60	-51,547
2010	20%	15%	0%	50,145	209	99,419	121	-49,185
2011	20%	15%	0%	50,145	209	32,851	121	17,382
2012	20%	15%	10%	73,606	209	32,851	181	40,782
2013	20%	15%	10%	73,606	0		181	73,424
2014	20%	15%	10%	73,606	0		181	73,424
2015	20%	15%	10%	73,606	0		181	73,424
2016	20%	15%	10%	73,606	0		181	73,424
2017	20%	15%	10%	73,606	0		181	73,424
2018	20%	15%	10%	73,606	0		181	73,424
2019	20%	15%	10%	73,606	0		181	73,424
2020	20%	15%	10%	73,606	0		181	73,424
2021	20%	15%	10%	73,606	0		181	73,424
2022	20%	15%	10%	73,606	0		181	73,424
2023	20%	15%	10%	73,606	0		181	73,424
2024	20%	15%	10%	73,606	0		181	73,424
2025	20%	15%	10%	73,606	0		181	73,424
2026	20%	15%	10%	73,606	0		181	73,424
2027	20%	15%	10%	73,606	0		181	73,424
2028	20%	15%	10%	73,606	0		181	73,424
2029	20%	15%	10%	73,606	0		181	73,424
2030	20%	15%	10%	73,606	0		181	73,424
2031	20%	15%	10%	73,606	0		181	73,424
2032	20%	15%	10%	73,606	0		181	73,424
2033	20%	15%	10%	73,606	0		181	73,424
2034	20%	15%	10%	73,606	0		181	73,424
2035	20%	15%	10%	73,606	0		181	73,424
							EIRR =	10.2%
							NPV =	7,383

Table 9.26 Cost-Benefit Flow for Pilot Project in Martuni

EIRR shows 10.2%, which is slightly greater than discount rate of 10% and NPV turns out to be positive value at about 7.4 million AMD. It indicates that the project will be economically viable. The soonest implementation will be required to protect the village properties and avoid the economic losses incurred by the landslide discussed below.

2) Intangible Benefit and Importance of the Project

The project is designed to develop intra-community infrastructure which will serve as landslide countermeasures. The cost-benefit analysis has taken only valued or quantified benefits into consideration. In addition, the project has invaluable or intangible underlying benefits.

In particular, the main village roads toward grazing land in Verin Tagha will be rehabilitated and equipped with an open ditch. It will assure the safe and smooth transportation of trucks for locally-produced goods and materials, such as cheese, milk, fodder, and other agricultural commodities. In fact, in the upper reach of the road, there is a private cheese factory¹², which needs to collect milk from all over the village through the road. The project will increase transportation efficiency, support increased volume of goods, and indirectly enhance economic activities. This will be applicable not only to the said road, but also to the intra-road network across the village. In the long-run, an improved road network with proper drainage facilities will expand the possibility of land use for various village-wide production activities such as major crop production, dairy production, bee-keeping oriented production and other subsidiary productions.

The project also will provide the flood mitigation on the Getik River, which flows through the center of the village. River regulation by concrete banks will offer not only annual flood mitigation, but also the possibility of horizontal expansion of land use in the protected area. Such protected area can, for example, be used as a recreational or utility space, residential area, storage for goods and materials, workshops for light industry and so on.

Thus, the project will bring about stable ground with basic intra-community infrastructures, provide improved living conditions for the residents, and enable possibilities of economic development in line with the community development plan.

(4) Summary of economic evaluation for pilot projects

(a) Benefit

Given the non-revenue generating nature of the project, benefits will be estimated based on the expected losses (potential damages) averted due to the investments pursued in the projects. The damages are assessed for the "risk objects" grouped into the following sectors:

(i) Buildings, (ii) Transportation, (iii) Infrastructure for water, energy and communication, (iv) Agriculture and (v) Others.

The distinction is also made between (a) direct damages, and (b) indirect damages, where:

- (a) Direct damages are the effect on property, immovable assets and inventories, and
- (b) Indirect damages are other losses induced by the direct damages, e.g. the effects on production flows of goods and services.

 $^{^{12}}$ USDA financed this cheese factory in sequence of its marketing promotion program for dairy products in Martuni.

Those risk objects, such as potential damages for the three pilot project sites, have been updated from the results of the damage assessment by the Landslide Inventory Survey conducted in 2004.

Those benefits are a combination of (i) physical losses (direct damages) avoided, (ii) the costs of lost economic activity and disruptions in social welfare (indirect damages) minimized, and (iii) willingness to pay of whole community inhabitants.

The potential damages serve as proxies for benefit in the project evaluation and are estimated as shown in Table 9.27.

Item	Kapan	Gosh	Martuni
Diment Democrat	AMD 0	AMD 235,905,000	AMD 482,506,000
Direct Damages	USD 0	USD 519,000	USD 1,062,000
Indianat Dama and	AMD 3,300,000	AMD 41,155,000	AMD 61,613,000
Indirect Damages	USD 7,300	USD 91,000	USD 136,000
Willingness to Pay of	AMD 14 411 000	AMD2 275 000	AMD 1 462 000
Whole Community	AND 14,411,000	AWD2,575,000	AMD 1,405,000
Inhabitants	05D 52,000	USD 3,000	05D 5,000
T-4-1	AMD 17,711,000	AMD279,435,000	AMD 545,582,000
Total	USD 39,000	USD 415,000	USD 1,200,000
Percentage of Willingness		1.20/	1 104
to Pay to Direct Damage	-	1.2 70	1.1%0

Table 9.27 Estimated Benefit in Pilot Project Sites

'Willingness to pay of whole community" in Table 9.8 was calculated by a simplified Contingent Valuation Method (CVM). This survey was conducted in three sites using a questionnaire asking "Willingness to pay (WTP)" for the projects, which potentially represents the project worth for the residents. The result of WTP in each site is outlined in Table 9.28.

The CVM result is an estimation of monetary value of regional economic effect taking into consideration upgrading of land use, improving regional roads, expected budget savings for villages, and incorporating landslide management into multipurpose programs of regional development. Therefore willingness to pay is included in the benefits of the projects.

		•	
Item	Kapan	Gosh	Martuni
Annual Income/Household	AMD 882,000	AMD 582,000	AMD 576,000
Annual Income/Household	USD 1,940	USD 1,280	USD 1,267
Willingness to Pay/Household (Weighted	AMD1,550	AMD5,951	AMD8,083
Average)	USD 3	USD 13	US 18
Percentage of Annual Income to Willingness	0.2%	1.00/	1 404
to Pay	0.2%	1.0%	1.4%
$W_{i} = 1 - C_{i} + \sqrt{N_{i}} = 1$	AMD 14,411,110	AMD2,374,504	AMD1,462,937
whole City/ village	USD 31,704	USD 5,223	USD 3,218

Table 9.28 Result of CVM in Each Pilot Project Site

(b) Project Costs

Costs of the implementation of engineering countermeasures are estimated based on the basic design prepared by the communities and unit costs per construction works obtained under the pilot projects in the respective sites.

		Kapan	*	Gosh	Martuni			
	Plan II:	AMD 9	98,293,000					
Construction		USD	216,245	AMD115,579,000	AMD 628,796,000			
Costs	Plan III:	AMD 3	44,549,000	USD 254,274	USD 1,383,351			
		USD	758,008					

Table 9.29Construction Cost

* At Kapan, Plan II is securing 2 lane traffic of Harutyunyan Street, plan III is complete removal of landslide dumped soil

(c) Results of Economic Evaluation

With the above project benefits (quantified) and costs, cost-benefit analysis was carried out and the results are presented Table 9.30.

			•
	Kapan	Gosh	Martuni
Economic Internal Rate of Return (%)	N/A*	12%	10%
	Plan II: -AMD 62,005,000		
Net Present	USD 136,411	AMD 15,766,000	AMD 7,383,000
Value	Plan III: -AMD 280,861,000	USD 34,685	USD 16,243
	USD 617,894		

 Table 9.30
 Results of Economic Evaluation for Three Pilot Projects

Note: * Because the costs exceeded to calculated internal rate of return, the value is not available.

The results for Gosh and Martuni show positive Net Present Value: NPV and higher Economic Internal Rate of Return: EIIR than the discount rate of 10%. This indicates that these projects are economically viable for implementation. The earliest implementation will be required to protect the village properties and avoid the economic losses incurred by the landslide.

Although the Pilot Project in Kapan shows a negative NPV, it is extremely important for the Armenian economy to secure regional traffic and moreover international large cargoes, which are the key means of trade through the Iranian border. The project is highly worthy for implementation with Plan II, which offers a much less negative NPV than Plan III.

9.3 Issues Resolved by the Pilot Projects and Integrated into the M/P

The Pilot Projects became economically feasible because of the expansion of the benefit streams by the transformation of the projects into multipurpose projects which contribute to community infrastructure development. The reduction in project costs through the participation of local inhabitants in project implementation adds to the economic feasibility. These positive experiences should be shared, new projects should be formulated and public finance allocated.

'Community Based Approach' (CBA), planning by the community and implementation with the participation of local inhabitants, has proven to be useful for effective project formulation. While the initial investment requirements and specialists in the communities are still scarce, public technical assistance and initial investments are needed for the implementation of new projects. Funding for landslide monitoring and maintenance is needed after the project is ended. The continuation of the Pilot Projects and the implementation of new projects by CBA will be difficult without such kind of public or foreign assistance.

Therefore, the basic policies of the M/P include not only CBA, but also the responsibility of the State (management authorities) to ensure landslide management by the continuous provision of technical and financial assistance to implementing bodies for landslide management (communities and management organizations for wide-area infrastructure).

9.4 Environmental Evaluation of the Pilot Projects

9.4.1 Environmental Evaluation of the Pilot Projects

Prior to construction works in Gosh and Martuni Villages general assemblies were held and it was confirmed that conflicts in the communities and important negative environmental effects would not occur.

Confirmation among government and regional stakeholders was also taken at the advisory committees.

During the construction stage, the water-table at drilling sites and amount of spring water were confirmed. Water quality tests were performed at the existing springs and for water from horizontal drainage boring before and after the construction. For some drilling a lower groundwater table was shown. But negative environmental effects did not occur because in the neighboring areas there are no wells or saturated clay, which is concerned with consolidation. There was also no influence on spring volume and water quality. The quality test of horizontal drainage boring water in Martuni Village indicated the presence of sulfur exceeding drinking water standards, and detected arsenic, indicating that it is therefore inappropriate to use as drinking water.

9.4.2 Environmental Evaluation for Further Plans

Discussions at the general assemblies of Gosh and Martuni Villages confirmed that there were no conflicts or important negative environmental effects on the villages.

Confirmation by Government and regional stakeholders was also taken at the meetings of the advisory committees on the Gosh, Martuni, and Kapan Pilot Projects

The Study On Landslide Disaster Management In The Republic Of Armenia Final Report Volume-IV Main Report

Reference

References

1. Landslide, Hazard and Geology

A. Karakhanyan, R Djrbashian, V. Trifonov, H.Phillip, S. Arakelian, A.Avagiyan, Journal of Volcanology and Geothermal Research 113 (2002) 319-344, Holocene-historical Volcanism and Active Faults as Natural Risk Factors for Armenia and Adjacent Countries

A. Karakhanyan, R Jrbashyan, V. Trifonov, H.Phillip, S.Arakelian, A.Avagiyan, H. Baghdassaryan, V. Davitan, Yu. Ghoukassyan, Journal of Volcanology and Geothermal Research 126 (2003) 31-64, Volcanic Hazards in the Region of the Armenian Nuclear Power Plant

Arkady S. Karakhanyan, Vladimir G. Trifonov, Here Philip, Ara Avagyan, Khaled Hessami, Farshad Jamali, M. Salih Bayaraktutan, H. Bagdassariyan, S. Arakelian, V. Davtian, A. Adilkhanyan, Tectonophysics 380 (2004) 189-219, Active faulting and natural hazards in Armenia, Eastern Turkey and Northwestern Iran

Armenian Academy of Science, Problems of Geo-mechanics (1982) No.8, Geological and Rheological Premises of Landslide Mechanism

Armenian Academy of Science, Problems of Geo-mechanics (1982) No.10, Deformation of Soils and Slopes

Georisk (xxxx), Landslide Map by Spitak Earthquake

H. Phillip, E. Rogozhin, A.Cisternas, C. Bousquet, B. Borisov and A. Karakhanyan, Geophys. J. Int. (1992) 110, 141-158, The Armenian Earthquake of 1988 December 7; Faulting and Folding, Neotectonics and Palaeoseismicity

R.N. Arutjunyan, Scientific Research Institute for Construction and Architecture, Yerevan, USSR A.A.Balkema/ Rotterdam/ Brookfield/ Landslides Glissements De Terrain (1988), Prevention of Landslide Slope Process by Vacuuming Treatment of Deconsolidated Soils

Territories in Armenia Subject to Desertification

UNDP/ georisk (2000), Landslide Hazard and Risk, Geographic Information System for the Assessment of Landslide Hazard and Risk in the Republic of Armenia

United Nations Center for Regional Development (UNCRD) Kobe, Japan (December 2003), Guidelines and Tools for Sustainability in Community Based Disaster Management, Draft Version. 2

World Bank (May 25,1999) Report No, 1963 AM, Project Appraisal Document to the Government

of Armenia for Dam Safety Project

2. Environment

MoEP (2002), National Action Programme to Combat Desertification in Armenia

MoEP(2003), Ministerial Report from Aarhus to Kiev

RA (2002), World Summit on Sustainable Development Johannesburg Republic of Armenia National Assessment Report

3. Finance and Economic

Ministry of Finance and Economy of the RA (2003), Armenia Budget Fiscal year 2003, a Citizen's Guide to the Budget

The World Bank (2003), a World Bank Country Study, Public Expenditure Review of Armenia

UNDP(2002), Growth, Inequality and Poverty in Armenia, a Report of a UNDP mission led by Keith Griffin on the Impact of Macroeconomic Policy on Poverty

Urban Institute Local Government Program (February 28,2004), Memo, Trends in Local Government Tax Collection in 2000-2003

RA (2002), RA Medium Term Expenditure Framework 2003-2005

RA(2003) RA 2004-2006 Medium-Term Public Expenditure Framework

4. Organizations / Institutions

Communities Finance Officers Association (2005), Local Self – Government in Armenia: Development Imperatives (2005)

Communities Finance Officers Association (2005), The way of Local-Self Government System Development in The Republic of Armenia, Optimization of Territorial and Administrative Division of Armenia and Local Self-Government Development, Communities Financial Viability in Armenia, the Strategy of Formation and Strengthening of Local Self-Government Capacities in Armenia, Policy Papers of the Armenian Team in the Framework of the South Caucasus Regional Project (2002-2004), Edited by David Tumanyan

DfID(2005), Armenia Regional Development Project, Participatory Poverty Assessment Policy Briefing Note

FRCS/GTZ (August 2004), Community Unions Tavush Marz PART I

Irina Grigoryan, Analysis of the Survey of Ten Poorest Communities in Lori Marz

International Federation of Red Cross and Red Crescent Societies (2003), Appeal 2003-2004, Appeal no. 01.77/2003

Kapan Community Union (xxxx), General Provision etc.

Local Government In Armenia (http://www.eurasianet.org/departments/election/armenia/arlocall21419.html)

National Statistical Service of the Republic of Armenia (2000), Statistical Booklet, Family and Children in Armenia

National Statistical Service of the Republic of Armenia (2002), Report on the Sample Survey of Financial Results of the Non-Profit Institutions Activity During 2001

National Statistical Service of the Republic of Armenia (2003), Report, Demographic Outline Southern Caucasus (1958-1999)

National Statistical Service of the Republic of Armenia (2003), Report on Sample Survey of the Health Care Organizations and Drugstores and the Households Expenditures on Health Care Services

National Statistical Service of the Republic of Armenia (2003), Report on Sample Survey of Passenger Turnover (Migration) at the Border Guarding Posts of the Republic of Armenia

National Statistical Service of the RA (2003), Income and Expenditure and Food Consumption of Population of RA

UN Department of Humanitarian Affairs (DHA) (31 December 1997), Armenian Situation Report No.18

UNDP (2001), 10 years of Independence and Transition in Armenia

UNDP (2002), Assessment of Capacity Building Needs for Biodiversity of Armenia

SECO (2002), Swiss Programme for the South Caucasus 2002-2006

SHEN(2005), SHEN Non-governmental Organization

Statistical Yearbook of Armenia, Year (2002)

5. Laws

Constitution (1995)

Civil Code (2002)

Land Code (2001)

Law on Automobile Roads (1996)

Law on Civil Defense (2002)

Law on Civil Defense Troops

Law on Control Chamber of National Assembly of the RA

Law on Fire Security (2001)

Law on Geodesy and Cartography (2001)

Law on Local-Self Government (2002)

Law on Environmental Protection (1997)

Law on Seismic Protection (2002)

Law on State Service (2002)

Law on State Statistics (2000)

Law on State Registration of Rights to the Property

Law on Urban Development (1998)

Law of the Republic of Armenia on Population in Emergency Situations (1998)

The Act of the Republic of Armenia on Environmental Impact Assessment (1998)

Water Code (2002)

6. Government Decisions/ Resolutions

Resolution of the Armenian Government N 156-N (February 20, 2003)

The Government Decision of the RA on Conception State Interference Policy in Case of Natural Disaster (1998)

The Government Decision of the RA, No.1074, about the Approval of Landslide Primary Preliminary Countermeasures Program on RA territory (November 07, 2001)

The Government Decision of the RA, No.1992 A (December 13, 2002), about the State Assistance in Resettlement (migration) of Inhabitants of Voghjaberd Village of Kotayk Marz of the RA

The Government Decision N67-D on the Confirmation of Structure and Charter of the Emergency Management Administration under the Government of the Republic of Armenia (2003)

The Government Decision about the Transfer of State-owned Land, Located within the Administrative Territory of Norashen Village Community of Lori Marz, to the Community by the Right of Gratuitous Ownership (2003)

7. Guidelines, Norms, Standards

Administration of Dimitrov Community (2004), Strategy Development Plan 2004-2008, Dimitrov Community, Ararat Marz (Artashat Region), Republic of Armenia

Approved by Decision of the State Committee of USSR for Construction No.255 (December 29, 1979), Official Edition, Instruction for Design and Building of Counter-Landslide and Counter-Collapse Protective Constructions

Approved at General Meeting of Dilijan Community Union (April 04,2003), Regulations

Conception State Interference (Mediation) Policy in Case of Natural Disasters

Gegharkunik Marz (July 2005), Regional Development Plan, A Draft Synthesis

Head of Tavush Marz Dilijan Community Mr. J. Sahabalyan (September 16, 2004), Act Investment of Community

Ministry of Water Management Construction of USSR Moscow (1990), State Normative Documents, Contents: Procedure for Elaboration, Concordance and Approval of Schemes for Engineering Protection of Territory from Dangerous Geological Processes (Mudflows, Landslides, Collapses, Debris)

MoUD (1997), Purpose program on complex study of basic issue on protection from dangerous

geological processes"

MoUD (2002), Program of Landslide Prevention in territory of Armenia for 2002-2004

MoUD (2002), Norm of Construction Works

MoUD (xxxx), Provision for Definition of Damage Level of Dwelling and Public Buildings

State Agro-Industrial Committee of the Armenian SSR ARMGIPROZEM (1986), State Design Institute of Land Planning, General Layout of the Protection of Rural Settlements, Enterprises, Buildings, Structures, and Land Plots Against Landslides, Rock Falls, Snow Avalanches, and Mudflows in the Territory of the Armenian SSR until the Year of 2000.

Tavush Marz (July 2005), Regional Development Plan: a Draft Synthesis

Tavush Marz Dilijan (2003), Regional Development Found of Tavush Marz Dilijan, RDF, Operational Manual

UN World Food Programme, Food for Work in Armenia, Guidelines for Implementing Partners

USAID (November 1999), a New Housing Strategy for the Earthquake Zone the Republic of Armenia