# 13. The Result of Water Quality Test

Although supplemental water quality analysis was made which is shown below under the Study, the more comprehensive results conducted during JICA M/P and F/S are used for determination of water treatment process.

| Appendix Table 22 The Result of Water quality Test in this B/D survey |           |           |        |           |         |        |            |          |  |  |  |  |
|-----------------------------------------------------------------------|-----------|-----------|--------|-----------|---------|--------|------------|----------|--|--|--|--|
|                                                                       |           | K3        | K4     | G         | 1       |        | G2         | D6       |  |  |  |  |
| Parame                                                                | eter      | JICA Well | Intake | JICA Well | Shallow | JICA   | House      | Existing |  |  |  |  |
|                                                                       |           |           |        |           | Well    | Well   | Connection | Well     |  |  |  |  |
| Temperature                                                           |           | 25.4      | 24.7   | 26.8      | 26.0    | 26.0   | 27.0       | 25.9     |  |  |  |  |
| рН                                                                    |           | 7.1       | 6.7    | 7.2       | 5.3     | 5.4    | 5.5        | 7.4      |  |  |  |  |
| Conductivity                                                          | µs/cm     | -         | 72     | -         | 15      | 101    | 112        | 173      |  |  |  |  |
|                                                                       | ms/cm     | 0.7       | -      | 0.21      | -       | -      | -          | -        |  |  |  |  |
| Color                                                                 |           | Non       | Non    | Non       | Non     | Non    | Non        | Non      |  |  |  |  |
| Odor                                                                  |           | Non       | Non    | Non       | Non     | Non    | Non        | Non      |  |  |  |  |
| Hardness                                                              | mg/L      | 247       | 19.9   | 17.9      | 22.1    | 12.8   | 12.5       | 40.1     |  |  |  |  |
| Ammonium $(NH_4^+)$                                                   | mg/L      | < 0.01    | 0.02   | < 0.01    | < 0.01  | < 0.01 | < 0.01     | <0.01    |  |  |  |  |
| Nitrite (NO <sub>2</sub> <sup>-</sup> )                               | mg/L      | < 0.01    | < 0.01 | < 0.01    | < 0.01  | < 0.01 | < 0.01     | < 0.01   |  |  |  |  |
| Nitrate (NO <sub>3</sub> <sup>-</sup> )                               | mg/L      | 0.58      | 0.6    | 1.25      | 0.77    | 16.6   | 17.1       | 1.72     |  |  |  |  |
| Chloride (Cl <sup>-</sup> )                                           | mg/L      | 1.98      | 1.28   | 1.13      | 0.78    | 7.09   | 8.51       | 1.12     |  |  |  |  |
| Sulfate $(SO_4^{2-})$                                                 | mg/L      | 109       | <1.0   | <1.0      | <1.0    | <1.0   | <1.0       | <1.0     |  |  |  |  |
| Phosphate $(PO_4^{3-})$                                               | mg/L      | 0.08      | 0.12   | 0.08      | 0.09    | 0.2    | 0.12       | 0.09     |  |  |  |  |
| Sodium (Na)                                                           | mg/L      | 5.5       | 4.84   | 9.41      | 10.2    | 6.04   | 7.57       | 23.9     |  |  |  |  |
| Total Iron (Fe)                                                       | mg/L      | 0.03      | 6.57   | 0.11      | 0.05    | 0.04   | 0.03       | < 0.03   |  |  |  |  |
| Manganese (Mn)                                                        | mg/L      | 0.18      | 0.49   | < 0.03    | < 0.03  | < 0.03 | 0.03       | < 0.03   |  |  |  |  |
| Aluminum (Al)                                                         | mg/L      | < 0.02    | < 0.02 | < 0.02    | < 0.02  | < 0.02 | < 0.02     | < 0.02   |  |  |  |  |
| Total Dissolved<br>Solids                                             | mg/L      | 425       | 58.4   | 68.2      | 83.5    | 62.5   | 61.5       | 151      |  |  |  |  |
| Total coliform                                                        | MPN/100mL | 0         | 2200   | 0         | 1100    | 0      | 0          | 0        |  |  |  |  |
| Thermo tolerant coliform                                              | MPN/100mL | 0         | 170    | 0         | 40      | 0      | 0          | 0        |  |  |  |  |
| Escherichia coli                                                      | MPN/100mL | 0         | 210    | 0         | 110     | 0      | 0          | 0        |  |  |  |  |

Appendix Table 22 The Result of Water quality Test in this B/D survey

|                 |      | K3-1   | G1        | G2       | D2       | D4-1     |
|-----------------|------|--------|-----------|----------|----------|----------|
| Parameter       |      | Dak Ui | Kong Tang | Nhon Hoa | Ea Drang | Ea Drong |
| pH              |      | 7.19   | 7.32      | 7.00     | 6.42     | 7.85     |
| Total Iron (Fe) | mg/L | 3.49   | 0.82      | 0.21     | 0.39     | 3.76     |
| Manganese (Mn)  | mg/L | 0.1211 | 0.0013    | 0.1950   | 0.0410   | 0.039    |

Appendix Table 23 The Result of Water quality Test in Master Plan

## 14. Environmental and Social Consideration

#### (1) Drop Down of Groundwater Level of Existing Wells

In the JICA Feasibility Study, the 24 hours water pumping tests were carried out for the JICA test wells in 14 communes. During the water pumping tests, the monitoring in the neighboring dug wells which are located 22 to 100 meters away from the JICA test wells, was also carried out whether or not their water levels are lowered. The results indicate that there was no drop down of water level except the monitoring well K3-1. The only drop down at K3-1 is assumed that non-pressured groundwater in the shallow layer was pumped up from JICA well different from other JICA wells where pressured groundwater were pumped up. As the counter measure for this problem, in case that there is strong influence to the dug well in the dry season, it is adequate to shift the water source from this dug well to the newly constructed water supply service.

Concerning the other monitoring wells, although they were located relatively near to JICA wells, there was no groundwater level drop down observed. It is assumed because the dug wells utilize groundwater from the shallow layer while JICA wells utilize groundwater from the deep layer of the basalt zone (excluding K2).

#### (2) Water Utilization Right

As mentioned in the paragraph (1), there is almost no possibility of the JICA wells to lower the water level of the existing wells. In the stakeholder meeting of each commune during the Basic Study, the explanation was made to the inhabitants that the JICA wells and the existing wells utilized the different water sources of the shallow aquifer and the deep aquifer respectively, and the understanding of the inhabitants was obtained.

Even if the water levels of existing wells drop down and it becomes difficult for inhabitants to intake water due to the JICA wells, the new water supply system can alternatively supply safe water to each household and this concept was overwhelmingly welcomed in the stakeholder meeting.

#### (3) Monitoring System for Well Water Quality

In the JICA Feasibility Study Report, it is stated that the monitoring has been carried out for 73 monitoring wells in Dak Lak, Gia Lai and Kon Tum Provinces since 1993 in accordance with "National Program of Groundwater Monitoring in the Central Highlands under the Ministry of Industry".

According to the hearings from Sub-divisions No.701 and 704, the following matters were confirmed:

- The Ministry in charge has been changed to Ministry of Resources and Environment since 3 years ago.
- The number of target province has been extended to 5 provinces by adding Dak Nong and Lam Dong Provinces.
- The monitoring has been implemented periodically for groundwater level and water quality (112 monitoring items)
- > The interval of monitoring is basically as follows:

Groundwater Level: each 3 days in the rainy season

each  $5 \sim 6$  days in the dry season

Water Quality: Twice/year each for rainy season and dry season

The monitoring wells in the target communes are as follows:

| Commune/<br>town | Monitoring<br>Well | Aquifer                 | Screen(m)  | Constructed<br>Year | Location                     |
|------------------|--------------------|-------------------------|------------|---------------------|------------------------------|
| G2,Nhon Hoa      | LK67T              | Basalt( $N_2$ - $Q_1$ ) | 0-20       | 1993                | SSE 1.4 km from<br>JICA Well |
| G5,Nghia Hoa     | C2a                | Basalt( $N_2-Q_1$ )     | 0-22.7     | 1995                | SE 1.5 km from               |
|                  | C2b                | Basalt( $N_2-Q_1$ )     | 33-58.5    |                     | JICA Well                    |
|                  | C2c                | Basalt( $N_2-Q_1$ )     | 62-75      | ]                   |                              |
|                  | C2o                | Basalt( $N_2-Q_1$ )     | 89.6-190.8 |                     |                              |

## (4) Land Acquisition

In order to decide the locations of new well construction, the physical detection was carried out in the area with high potentiality of groundwater development where the proposal was made in the JICA Development Study and, at the same time, the consultations were held with CERWASS in each province and the representatives of People's Committee in Communes and Districts. Accordingly, the planned lands for water treatment plants, that require large area for land acquisition, are secured in the public lands excluding one site. However, the planned lands for water intake points, that require small area for land acquisition, include some private lands.

|      | Commune    | Ov                 | vner                     | Remark                                |
|------|------------|--------------------|--------------------------|---------------------------------------|
| K2-3 | Dak Su     | Public Land (CPC)  |                          | CPC ( Commune People s<br>Committee ) |
| K3-1 | Dak Ui     | Public Land (CPC)  |                          |                                       |
| K4-1 | Dak Hring  | Public Land (CPC)  |                          |                                       |
| G1   | Kong Tang  | Public Land (CPC)  |                          |                                       |
| G2   | Nhon Hoa   | Public Land (CPC)  |                          |                                       |
| G3   | Chu Ty     | Public Land (CPC)  |                          |                                       |
| G4-1 | Thang Hung | Public Land (CPC)  |                          |                                       |
| G5-1 | Nghia Hoa  | Public Land (CPC)  |                          |                                       |
| D1   | Krong Nang | Public Land (CPC)  |                          |                                       |
| D2   | Ea Drang   | Public Land (Army) |                          | Approved by army                      |
| D3-1 | Krong Buk  |                    | Private Lanc<br>(YNHOEN) | Cornfield                             |
| D4-1 | Ea Drong   | Public Land (CPC)  |                          |                                       |
| D6-1 | Kien Duc   | Public Land (CPC)  |                          |                                       |

Appendix Table 24 List of the Land Owner (Planned Site for Water Treatment Plant)

## Appendix Table 25 List of the Land Owner (Planned Site for Well)

|      | Commune      | No.  |                                       | Owner                      |  |  |
|------|--------------|------|---------------------------------------|----------------------------|--|--|
|      |              | No.1 |                                       | Private Land (A.Chem)      |  |  |
| K2-3 | Dak Su       | No.2 |                                       | Private Land (A.Vu)        |  |  |
|      |              | No.3 |                                       | Private Land (A.Ang)       |  |  |
| K3-1 | Dak Ui       | -    | None                                  |                            |  |  |
| K4-1 | Dak Hring    | -    | None                                  |                            |  |  |
| G1   | Kong Tang    | No.1 |                                       | Private Land (Nhan)        |  |  |
|      |              | No.1 | Public Land (CPC)                     |                            |  |  |
|      |              | No.2 | Public Land<br>(Elementary school)    |                            |  |  |
| G2   | Nhon Hoa     | No.3 |                                       | Private Land (Mane)        |  |  |
| 02   | INHOII 110a  | No.4 |                                       | Private Land (Lu Thi Dong) |  |  |
|      |              | No.5 |                                       | Private Land (O.Tro)       |  |  |
|      |              | No.6 | Public Land<br>(Elementary school)    |                            |  |  |
| G3   | Chu Ty       | No.1 | Public Land (CPC)                     |                            |  |  |
| G4-1 | Thang Hung   | No.1 | Public Land (CPC)                     |                            |  |  |
| G5-1 | Nghia Hoa    | No.1 |                                       | Private Land (Do Mot)      |  |  |
| D1   | Vaca e Neu e | No.1 | Public Land (CPC)                     |                            |  |  |
| DI   | Krong Nang   | No.2 | Public Land (CPC)                     |                            |  |  |
| D2   | Ea Drang     | No.1 | Public Land<br>(Elementary school)    |                            |  |  |
|      |              | No.2 |                                       | Private Land (Phan Van Sy) |  |  |
|      |              | No.3 |                                       | Private Land (Mable)       |  |  |
|      |              | No.4 |                                       | Private Land (Ngoc)        |  |  |
|      |              | No.5 | Public Land<br>(Army, Coffee Company) |                            |  |  |
|      |              | No.6 | Public Land (CPC)                     |                            |  |  |

|               | Commune   | No.  |                                    | Owner                     |
|---------------|-----------|------|------------------------------------|---------------------------|
|               |           | No.7 | Public Land (CPC)                  |                           |
| D3-1          | Krong Buk | No.1 | Public Land (CPC)                  |                           |
| D4-1 Ea Drong | No.1      |      | Private Land (Y Yot Nie)           |                           |
|               | Ea Diong  | No.2 |                                    | Private Land (Y Vin Qtla) |
|               |           | No.1 | Public Land (CPC)                  |                           |
| D6 1          | Kien Duc  | No.2 |                                    | Private Land (Uy)         |
| D0-1          | Kiell Duc | No.3 | Public Land<br>(Elementary school) |                           |

#### (5) Concerning Drainage and Sewage

Since the groundwater source planned in the Basic Study is all the pressurized aquifer (deep wells), there is no chance of the organic matters of the drainage and wastewater from the daily living to infiltrate into deep aquifer and worsen water quality.

## (6) Others

It is stated in the EIA of the JICA F/S and it is also confirmed in this Basic Study that the Project has no negative influence to the poverty class and the culture & life style of minority ethnic groups. The Government of Vietnam is making efforts for improving the dwelling environment for the minority ethnic groups especially in the Central Highlands area through the subsidization, the improvement of water supply facilities and roads, etc.

Concerning the gender, since the water draw up work is not limited to women in the target area of the Basic Study and the water supply service to each individual household is the basic plan of the Project, there is no factor to be influenced by the Project.

## 15. Necessity for Construction of Facilities and Provision of Equipment

#### (1) Improvement of Facilities

For the selected 5 communes in 3 provinces of Kon Tum, Gia Lai and Dak Lak, the basic design is formulated to construct water supply facilities with distribution system for the target year of 2010. The per capita demand is 60 liter per day, same as the target of NRWSS. The water source is deep wells in order to secure sufficient water volume. Although iron and manganese are not harmful to the health they are troublesome to the daily life. Therefore, if iron and/or manganese are present or acidity is observed in the water, required water treatment facilities should be constructed. Moreover, the disinfection facility should be provided to all the facilities.

#### 1) Necessity for Improvement of Facilities

In the past, the invested budget has been only half of the required budget in achieving NRWSS target. If this tendency continues, NRWSS target would be difficult to achieve. In order to achieve the target, it is necessary to increase the amount of the Government fund and, at the same time, there should be increased assistance from the donors.

The water supply system in future will be mainly the central water supply system instead of present system of small scale water supply. The central system of water suply consists of the securing of water source, the water treatment according to the raw water quality and the water distribution facilities.

The lists of the existing central water supply systems in the Central Highlands are shown in the Tables below. Each system serve one village with the size of service population less than 1,000 persons (service household under 200 houses). A village in general has the area of 500m square at the most that is topographically uniform and therefore, its water supply system is technically a simple one.

Nevertheless, their operation and maintenances are not adequate in general. In order to strengthen the system of the operation and maintenance (CPC and P-CERWASS), it is necessary to develop the central water supply system at the commune level (population served: 10,000 persons) which is high-ranking administrative unit of a village (a commune consists of 10 to 15 villages) instead of the conventional water supply system at village level (population served: 1,000 persons).

MARD and its executing agency CERWASS, who are in charge of rural water supply, have less experience of the central system. As for the proportion of CERWASS staff, since they have been making efforts to increase water supply service ratio mainly by the small-scale water supply system, there are many geology experts but few water supply experts. The present situation is that CERWASS has just started to employ new water supply engineers.

Therefore, the assistance of Japan to strengthen CERWASS is effective. The service area of central water supply system is one commune for which the areal extent is vast and topographic conditions are complicated. Thus, the technology for complicated topographic conditions is required (such as the water hammer pressure control when pumps are started and stopped, protection of pipe joints from slip off that might cause water leakage, techniques to balance water demand and water supply, etc.). P-CERWASS, after receiving adequate technology and skill through the Project, can continue to construct the central water supply system in the communes, other than six communes, where the well will be drilled using the drilling equipment supplied by the Project.

The capability of staff responsible for operation and maintenance of the completed facilities will be strengthened by the establishment of management organization with the guidance of PCERWASS through the soft-component, cooperation as advisors from the Ministry of Construction or the urban water supply entities with sufficient experience of large-scale central system and the training for staff of P-CERWASS at the vocational school in Da Nang City.

| -   | 11      |               | 11 5 3                        |                                 |              |    |                         |
|-----|---------|---------------|-------------------------------|---------------------------------|--------------|----|-------------------------|
| No. | Commune | District/City | Population Served<br>(person) | Total<br>Population<br>(person) | No. of wells | 1  | Year of<br>Construction |
| 1   | Ya Chim | KonTum        | 500                           | 9,936                           | 1            | 72 | 2000                    |
|     | Total   |               | 500                           |                                 | 1            |    |                         |

Appendix Table 26 The Constructed Water Supply Systems in Kon Tum province (2000)

| No. | Commune   | District/City | District/City Population Served (person) Total Population (person) N |       | No. of wells | Depth<br>(m)             | Year of<br>Construction |
|-----|-----------|---------------|----------------------------------------------------------------------|-------|--------------|--------------------------|-------------------------|
| 1   | Ia Rsuom  | Krông Pa      | 5,343                                                                | 5,343 | 4            | 100 - 180<br>(JICA well) | 2004                    |
| 2   | Ia Rsai   | Krông Pa      | 1,420                                                                | 3,674 | 2            | 100                      | 2005                    |
| 3   | Uar       | Krông Pa      | 2,500                                                                | 3,624 | 3            | 100                      | 2005                    |
| 4   | Chu Drang | Krông Pa      | 2,210                                                                | 4,993 | 2            | 100                      | 2005                    |
| 5   | Ia Rmok   | Krông Pa      | 2,230                                                                | 4,626 | 3            | 100                      | 2005                    |
| 6   | Ia Dreh   | Krông Pa      | 1,500                                                                | 3,450 | 1            | 100                      | 2005                    |
| 7   | Kon Thup  | Mang Yang     | 350                                                                  | 2,623 | 1            | 120                      | 2003                    |
| 8   | De Ar     | Mang Yang     | 320                                                                  | 2,586 | 1            | 110                      | 2004                    |
| 9   | Dak Tro I | Mang Yang     | 300                                                                  | 1,958 | 1            | 120                      | 2005                    |
| 10  | Ia Der    | Ia Grai       | 1,450                                                                | 7,011 | 1            | 160                      | 2004                    |

Appendix Table 27 The Constructed Water Supply Systems in Gia Lai province (2003-05)

| No. | Commune    | District/City | Population Served<br>(person) | Total<br>Population<br>(person) | No. of wells | Depth<br>(m) | Year of<br>Construction |
|-----|------------|---------------|-------------------------------|---------------------------------|--------------|--------------|-------------------------|
| 11  | Ia O       | Ia Grai       | 1,520                         | 6,063                           | 2            | 120          | 2005                    |
| 12  | Phu Hoa    | Chu Pah       | 1,850                         | 3,915                           | 4            | 150          | 2003                    |
| 13  | Dak So Mei | Dak Doa       | 560                           | 8,028                           | 1            | 140          | 2003                    |
| 14  | Kong Yang  | Kong Chro     | 1,620                         | 2,759                           | 1            | 160          | 2005                    |
|     | Total      |               | 23,173                        | 60,653                          | 27           |              |                         |

#### Appendix Table 28 The Constructed Water Supply Systems in Dak Lak province (2003-05)

| No. | Village                  | Commune    | District/City | Population<br>Served<br>(person) | Total<br>Population<br>(person) | No. of<br>wells | Depth<br>(m) | Year of<br>Construction |
|-----|--------------------------|------------|---------------|----------------------------------|---------------------------------|-----------------|--------------|-------------------------|
| 1   | Thôn 3                   | Hòa Xuân   | Buôn Ma Thuột | 440                              | 440                             | 1               | 60           | 2004                    |
| 2   | Thôn 5                   | Hòa Xuân   | Buôn Ma Thuột | 300                              | 300                             | 1               | 58           | 2004                    |
| 3   | Buôn ĐrayHlinh           | Hòa Xuân   | Buôn Ma Thuột | 700                              | 700                             | 1               | 65           | 2004                    |
| 4   | Thôn 1                   | Hòa Xuân   | Buôn Ma Thuột | 396                              | 396                             | 1               | 60           | 2005                    |
| 5   | Thôn 2 <b>&amp;</b> 4    | Hòa Xuân   | Buôn Ma Thuột | 850                              | 950                             | 1               | 65           | 2003                    |
| 6   | Buôn Buôr                | Hòa Xuân   | Buôn Ma Thuột | 920                              | 1,230                           | 1               | 56           | 2005                    |
| 7   | Buôn CưĐluê              | Hòa Xuân   | Buôn Ma Thuột | 740                              | 850                             | 2               | 84           | 2005                    |
| 8   | Thôn 2                   | Hòa Xuân   | Buôn Ma Thuột | 480                              | 590                             | 1               | 62           | 2005                    |
| 9   | Thôn 4                   | Hòa Phú    | Buôn Ma Thuột | 700                              | 820                             | 1               | 63           | 2004                    |
| 10  | Thôn 11                  | Hòa Phú    | Buôn Ma Thuột | 650                              | 800                             | 1               | 60           | 2005                    |
| 11  | Buôn Tuôr                | Hòa Phú    | Buôn Ma Thuột | 460                              | 550                             | 1               | 56           | 2005                    |
| 12  | Thôn 7                   | Hòa Phú    | Buôn Ma Thuột | 750                              | 850                             | 1               | 65           | 2005                    |
| 13  | Buôn Kbu                 | Hòa Khánh  | Buôn Ma Thuột | 1,100                            | 1,475                           | 1               | 51           | 2005                    |
| 14  | Cụm thôn 6               | YaTờMot    | EaSup         | 310                              | 310                             | 1               | 68           | 2005                    |
| 15  | Cụm thôn 8               | YaTờMot    | EaSup         | 1,100                            | 1,600                           | 1               | 75           | 2005                    |
| 16  | EaPôk                    | EaPôk      | CưMga         | 3,450                            | 3,450                           | 1               | 80           | 2005                    |
| 17  | Thôn An Bình             | EaPôk      | CưMga         | 500                              | 615                             | 1               | 80           | 2005                    |
| 18  | CTCN Đông tân giang      | Buôn tría  | Lăk           | 900                              | 1,190                           | 1               | 61           | 2005                    |
| 19  | CTCN Hòa Bình<br>1,2&Cam | Đăk Liêng  | Lăk           | 1,460                            | 1,500                           | 1               | 52           | 2005                    |
| 20  | CTCN Thôn Hòa Bình 3     | Đăk Liêng  | Lăk           | 880                              | 900                             | 1               | 58           | 2005                    |
| 21  | CTCN Thôn Đoàn kết 1,2   | Buôn Triết | Lăk           | 1,150                            | 1,550                           | 1               | 55           | 2005                    |
| 22  | CTCN EaYiêng             | EaYiêng    | KrôngPăc      | 2,650                            | 4,485                           | 2               | 60           | 2005                    |
|     | Total                    |            |               | 20,886                           |                                 | 24              |              |                         |

## 2) Selection of the 5 Communes

Considering the factors mentioned below, 5 communes are selected from requested 13 communes to implement the Project activities on priority basis.

|           |                 |           |        | Population     | No. of Required Wells             |
|-----------|-----------------|-----------|--------|----------------|-----------------------------------|
| Province  | District        | Commune   | System | served in 2010 | ((); no. of new drilling wells in |
|           |                 |           |        | (person)       | total)                            |
| Kon Tum   | n Dak Ha Dak Ui |           | K3-1   | 2,757          | 1 (0)                             |
| Gia Lai   | Mang Yang       | Kong Tang | G1     | 6,797          | 2 (1)                             |
| Gla Lai   | Chu Se          | Nhon Hoa  | G2     | 11,493         | 7 (6)                             |
| Dala Lala | Ea Hleo         | Ea Drang  | D2     | 16,795         | 7 (7)                             |
| Dak Lak   | Cu M Gar        | Ea Drong  | D4-1   | 7,132          | 3 (2)                             |
|           |                 |           | Total  | 44,974         | 20(16)                            |

Appendix Table 29 The Selected 5 Communes

#### a) Priority of Communes in JICA Development Study

The 13 systems requested are considered to be of the high priority among the 46 systems of 20 communes according to the JICA Development Study. Eight evaluation criteria have been used to rank the communes in the study including urgency, population density, improvement conditions of related infrastructure, potential of groundwater, poverty degree, financial affordability, potential of operation and maintenance, gender and environmental assessment.

The weight of environmental assessment is 3 points and all other 7 items have 10 points weight, respectively. Each system has been scored in terms of all eight factors with scores such as A class 3 points, Ba class 2.5 points, B class 2 points, Bc class 1.5 points and C class 1 point. Therefore, the score ranged from the maximum of 219 points (7 items x 10 points x 3 points + 1 item x 3 points x 3 points) to minimum of 73 points (7 items x 10 points x 1 point + 1 item x 3 points x 1 point).

If the average of each item is Ba class, the score is 182.5 points, and if it is B class, the score is 146.0 points. All the 10 communes of Gia Lai, Dak Lak and Dak Nong Provinces are included between Ba and B. The score of each commune is D6(189.0), D2(184.0), G3(184.0), G2 (179.0), D4 (174.0), G1 (164.0), D3-1 (164.0), G4-1 (159.0), G5-1, (159.0), D1 (159.0).

On the other hand, the 3 communes of Kon Tum Province are included between B class (146.0 points) and Bc class (109.5 points). The score of each commune is K3-1 (131.0), K2-3 (127.5), and K4-1(121.0). This means that, in comparison to the other provinces, the priority is low in the items such as population density, potential of groundwater, poverty degree, financial affordability and environmental assessment. However, considering the geological and political balances the three communes in Kon Tum province was selected to have high priority.

| System | Commune    | Urgency | Population<br>Density and<br>Infrastructure | Groundwater<br>Potential | Poverty | Financial<br>Affordability | O&M<br>Potential | Gender | Environment | Total<br>Score | Rank |
|--------|------------|---------|---------------------------------------------|--------------------------|---------|----------------------------|------------------|--------|-------------|----------------|------|
|        | Weight     | 10      | 10                                          | 10                       | 10      | 10                         | 10               | 10     | 3           |                |      |
| K2-3   | Dak Su     | Ba      | В                                           | Bc                       | Bc      | В                          | Bc               | С      | Ba          | 127.5          | 17   |
| K3-1   | Dak Ui     | В       | В                                           | В                        | Bc      | С                          | В                | В      | В           | 131.0          | 16   |
| K4-1   | Dak Hring  | Bc      | А                                           | Bc                       | С       | С                          | В                | Bc     | В           | 121.0          | 18   |
| G1     | Kong Tang  | С       | А                                           | Ba                       | В       | Ba                         | В                | Ba     | А           | 164.0          | 7    |
| G2     | Nhon Hoa   | А       | А                                           | Bc                       | А       | Ba                         | В                | В      | А           | 179.0          | 4    |
| G3     | Chu Ty     | Ba      | А                                           | Ba                       | Ва      | А                          | В                | В      | А           | 184.0          | 2    |
| G4-1   | Thang Hung | В       | А                                           | Ba                       | Bc      | Ba                         | В                | Bc     | А           | 159.0          | 9    |
| G5-1   | Nghia Hoa  | В       | А                                           | В                        | Bc      | Ва                         | В                | В      | А           | 159.0          | 9    |
| D1     | Krong Nang | С       | А                                           | А                        | В       | Ba                         | В                | Bc     | А           | 159.0          | 9    |
| D2     | Ea Drang   | А       | А                                           | В                        | В       | А                          | А                | Bc     | А           | 184.0          | 2    |
| D3-1   | Krong Buk  | Bc      | А                                           | А                        | Ba      | В                          | В                | Bc     | А           | 164.0          | 7    |
| D4-1   | Ea Drong   | А       | А                                           | В                        | А       | В                          | В                | Bc     | А           | 174.0          | 6    |
| D6     | Kien Duc   | А       | А                                           | Ba                       | Bc      | А                          | А                | В      | А           | 189.0          | 1    |

Appendix Table 30 Project Prioritization in Development Study

G6 ( Ia Rsion Commune) excluded from the request was ranked as No. 4.

Communes from rank 12 to 15 are not excluded.

### b) Priority Communes in Basic Design Study

In the Basic Design Study, it is assessed that the priority decided 3 years ago in the Development Study is still appropriate in 2005.

The level of poverty reflects the same affects as financial affordability, that is to say, a lower value of financial affordability implies higher level of poverty. Therefore, the level of poverty is excluded while carrying our assessment in Basic Design Study to avoid repeated evaluation in terms of similar factors. With respect to the financial affordability, for all the provinces except Kon Tum province, the evaluations in this Study are almost same as in the previous Development Study, an increase in the financial affordability has been observed in Kon Tum province.

In this Basic Design Study, three new evaluation criteria have been added. These are continuity of pilot project, willingness to construct the water supply system and distance between adjoining communes.

In terms of continuity of pilot project, 2 communes (K3 and G2) are evaluated as "A", because it is appropriate that pilot project is expanded to full facilities in these two communes. The other communes have been evaluated as "C" with respect to continuity of pilot project.

Willing to construct the water supply system overlaps with ability to pay or urgency (amount of water supply and water quality) in Developing Study. However, it is important criteria and is evaluated as high rank, if willing to construct the water supply system is high. (Refer to Appendix) Distance between adjoining communes becomes evaluation criteria from viewpoint of efficiency of implementation and cost required for implementation. The Study 13 communes are located in 4 provinces, and these communes are separated from each other. If the distance between considered communes is more than 40km, the implementation cost will be higher in comparison, because staff and office for construction and supervision will be required separately for both communes. However, if the distance between considered communes is less than 40km, the implementation cost will be low, because staff and office for construction and supervision will be required separately for both communes. However, if the distance between considered communes is less than 40km, the implementation cost will be low, because staff and office for construction and supervision could be shared by these communes. Therefore, only D6 commune is evaluated as "C" due to being located at long distance (3 hrs) from D3 or D4. The other communes being located within a distance of 40km from each other, these have been evaluated as "A".

| <b>Evaluation Item</b> | Comment                                                                                                                                                                                 |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overlap of request     | No                                                                                                                                                                                      |
| with other donors      |                                                                                                                                                                                         |
| Urgency                | In G1, inhabitants complain of the smell of oil in dug well as existing water source.<br>Accordingly, urgency is higher. Urgency in other communes are same as Development Study.       |
| Willing to construct   | Urgency is evaluated in terms of water volume and quality. Relating to this, basic study survey                                                                                         |
| the water supply       | of willing to construct the water supply system is reflected in evaluation. (weight is 10 points                                                                                        |
| system                 | as same as other items. If more than 9 0% of households expect: A, more than 8 0%: Ba,                                                                                                  |
| bybtom                 | more than 7 0 %: B, more than 6 0 %: Bc, less than 6 0 %: C )                                                                                                                           |
| Population density     | District center or semi-center. Population density is high. Town has been developed as a base                                                                                           |
| & improvement          | town faced with national road for cultivation of plantation for coffee, rubber and pepper. High                                                                                         |
| conditions of related  | potential of development in future. Power supply conditions have been improved greatly and                                                                                              |
| infrastructure         | power failure occurs frequently.                                                                                                                                                        |
| Groundwater            | Potential of water source in 2 communes of Kon Tum Province is low. It is proposed to use                                                                                               |
| potential              | surface water for K4 and, for K2, to utilize water supply from water in neighboring town.                                                                                               |
|                        | Concerning water quality, treatment facilities are constructed in many communes where iron                                                                                              |
|                        | and manganese are contained. Concerning D2 and D6 where water yield was assumed from                                                                                                    |
|                        | neighboring wells, and G3 where existing well may be utilized, pumping test was conducted.                                                                                              |
| Poverty Level and      | Poverty level (ethnic minority group) and Soundness of financial basis are contrary items. If                                                                                           |
| financial              | former is high, latter is low. Communes of low financial soundness are receiving Government                                                                                             |
| affordability          | financial assistance for development of minority ethnic group, etc. Since target in Central<br>Highlands is area with relatively high poverty degree, in Basic Study, poverty degree is |
|                        | excluded from priority items by placing importance on self-supporting development after                                                                                                 |
|                        | completion of facility construction. Willingness to pay survey was carried out in Basic Study.                                                                                          |
|                        | Result of Kon Tum Province was changed. Relating to financial soundness, financial survey of                                                                                            |
|                        | communes was also carried out this time. Although financial soundness of communes in Kon                                                                                                |
|                        | Tum is low as same as result of Development Study, financial size has been increased.                                                                                                   |
| Operation &            | This evaluation item is important in terms of sustainability. On the other hand, commune's                                                                                              |
| maintenance            | volition, support system of province including P-CERWASS and efforts by people's                                                                                                        |
|                        | committee are also essential in future.                                                                                                                                                 |
|                        | In North, WSU was established in each commune, under support from province such as                                                                                                      |
|                        | training at vocational school, and WSU has been managing water supply service and are                                                                                                   |
|                        | successful in general.                                                                                                                                                                  |
|                        | It is also expected to encourage self-supporting development of water supply facilities through                                                                                         |
|                        | utilization of soft component and promotion of IEC activities.                                                                                                                          |
|                        | In Dak Lak Province, a plan is under progress that P-CERWASS will directly manage                                                                                                       |
|                        | operation and maintenance of facilities that is of relatively large scale.                                                                                                              |
|                        | Therefore, there is no difference of management capability in each commune for operation<br>and maintenance of facilities as evaluated in JICA Development Study.                       |
| Gender and             | There is no difference between communes as evaluated in JICA Development Study.                                                                                                         |
| environmental          | nere le le universe serven communes as erananea in sterriserrespinent stady.                                                                                                            |
| assessment             |                                                                                                                                                                                         |
| Continuity of pilot    | Pilot projects were carried out in K3 and G2. In respect of study continuity, it is expected to                                                                                         |

Appendix Table 31 The Evaluation Items for Project Prioritization

| <b>Evaluation Item</b> | Comment                                                                                                                                                                                                                                                                                                                          |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| project                | continue them in Basic Study.                                                                                                                                                                                                                                                                                                    |
| Land Acquisition       | Except 1 commune, it is possible to acquire public lands for water treatment plants that require vast land.<br>Half number of lands for well drillings, that require small lands, are private lands. These sites were selected by attendance of people's committee and therefore lands acquisition will be smoothly carried out. |

| System | Commune       | Urgency | Populatio<br>n Density<br>and<br>Infrastruct<br>ure | Groundw<br>ater<br>Potential | Financial<br>Affordabilit<br>y | O&M<br>Potential | Pilot<br>Project | Willing to<br>construct<br>the water<br>supply<br>system | Distance<br>between<br>adjoining<br>commun<br>es | Total<br>Score | Rank | Selected<br>Commune |
|--------|---------------|---------|-----------------------------------------------------|------------------------------|--------------------------------|------------------|------------------|----------------------------------------------------------|--------------------------------------------------|----------------|------|---------------------|
|        | Weight        | 10      | 10                                                  | 10                           | 10                             | 10               | 10               | 10                                                       | 10                                               |                |      |                     |
| K2-3   | Dak Su        | Ва      | В                                                   | Bc                           | C.                             | Bc               | С                | А                                                        | А                                                | 155            | 13   |                     |
| K3-1   | Dak Ui        | В       | В                                                   | В                            | Ва                             | В                | Α                | В                                                        | А                                                | 185            | 4    |                     |
| K4-1   | Dak Hring     | Bc      | А                                                   | Bc                           | Ва                             | В                | С                | Bc                                                       | А                                                | 160            | 12   |                     |
| G1     | Kong Tang     | Α       | А                                                   | Ba                           | Ba                             | В                | С                | В                                                        | А                                                | 190            | 3    |                     |
| G2     | Nhon Hoa      | А       | А                                                   | Bc                           | Ва                             | В                | Α                | А                                                        | А                                                | 210            | 1    |                     |
| G3     | Chu Ty        | Ba      | А                                                   | Ba                           | А                              | В                | С                | Bc                                                       | А                                                | 185            | 4    |                     |
| G4-1   | Thang<br>Hung | В       | А                                                   | Ba                           | Ba                             | В                | С                | Bc                                                       | Α                                                | 175            | 9    |                     |
| G5-1   | Nghia Hoa     | В       | А                                                   | В                            | Ва                             | В                | С                | Ba                                                       | А                                                | 180            | 8    |                     |
| D1     | Krong<br>Nang | С       | А                                                   | А                            | Ba                             | В                | С                | В                                                        | Α                                                | 175            | 9    |                     |
| D2     | Ea Drang      | А       | А                                                   | <u>B</u>                     | А                              | А                | С                | Bc                                                       | А                                                | 195            | 2    |                     |
| D3-1   | Krong Buk     | Bc      | А                                                   | А                            | В                              | В                | С                | С                                                        | Α                                                | 165            | 11   |                     |
| D4-1   | Ea Drong      | А       | А                                                   | В                            | В                              | В                | С                | Ba                                                       | Α                                                | 185            | 4    |                     |
| D6     | Kien Duc      | А       | А                                                   | <u>Ba</u>                    | А                              | А                | С                | В                                                        | С                                                | 185            | 4    |                     |

Appendix Table 32 Project Prioritization in Basic Design

Parts of Master Plan are revised.

The nomination of the priority communes have been carried out considering the Total Score that has been estimated using weighted score. For example, the Full Score has been calculated as 279 assuming that for all the 10 evaluated factors, grade "A" has been awarded (Full Score = 3 point X weighting factor 10 point X 7 items = 240). After calculation of the Total Score for each commune, those communes that have scored more than 75% of full score (i.e. score higher than 180) have been evaluated as priority communes. Thereby, there are 7 communes that could be considered as priority communes and included 1 commune in Kon Tum province, 3 in Gia Lai province, 3 in Dak Lak and Dak Nong provinces.

On the other hand, it has also been considered that CERWASS should conduct the water supply plan in other communes on their own after building up their skills through experience of planning and construction for large scale water supply facility in this project, and through operation and maintenance after construction.

For this reason, considering the scale of population, communes of distribution are decreased

to 2 communes from 3 communes in Kon Tum province and therefore total number of considered communes decreased to 5 from 7.

Dak Nong province separated from Dak Lak province in 2004 and has strong relationship with Dak Lak province. Therefore, based on the project implementation experiences in Dak Lak province, project activities could be carried out similarly in Dak Nong province, and therefore, D6 Kien Duc is excluded. At present, the staffs in Dak Nong province have been assigned from Dak Lak province.

#### (2) Supply of Equipment

#### 1) Solar Power Generation System

In the 4 communes, the introduction of Solar Power Generation System had been requested, but the Government of Vietnam agreed to delete it from the request because the electric power supply conditions has improved since 2002 when the request was presented, and the power supply has been stable with infrequent power failure.

#### 2) Well Drilling Equipment

#### a) Objective of Equipment Supply and Coordination with the Sector

The objectives of equipment supply are as follows:

- To construct the water production well (deep well) for the Project by using the equipment (well drilling)
- To transfer the technology to the CERWASS in order to level up the Vietnamese technology for construction of wells and contribute to the projects of NRWSS after the completion of the Project.

#### b) Necessity for Supply of Equipment

During the last 5 years (2000~2004), total 164 deep wells were drilled in 4 provinces and about a half of them (86 wells) was drilled directly by P-CERWASS. The 3 provinces (excluding Dak Nong Province which was separated from Dak Lak Province in 2004) have respectively one unit of well drilling equipment that is basically a core boring machine made in China (diameter 46mm) and therefore the drilling depth is shallow (usually less than 100m), the drilling diameter is small (intake water volume is small) and a long drilling time is required. The remaining 78 wells were drilled by drilling companies. There are 8 drilling companies at least and they own total 40 boring machines. However, their drilling equipment are boring machines and have the same problem as the P-CERWASS machine.

In the future, the equipment used exclusively for well drilling will be required that is able to

drill the large size wells (diameter 300mm), (intake of sufficient water volume) in the deep and hard ground layer (drilling depth 200m) because rock layer appears at the depth of 5~20m in Central Highland.

Japan has supplied the well drilling equipment for exclusive use in the northern provinces as the grant aid cooperation and it has drilled 16 wells by the year 2005. From now on, the equipment will be used to drill 8 wells annually in the northern provinces of dry area and it is planned to improve water supply service ratio in the northern areas. The supplied equipment is operated and maintained by the staff of 9 persons of CERWASS and they use the equipment fully and effectively.

It is judged that the equipment supplied in the central highlands will be also used effectively through the measures such as the equipment center to be established in the central highlands, the new employment of staff of 9 persons similar to the north, accumulating experiences through the grant aid cooperation in the central highlands and receiving the training from the staff of the North. It is judged that it is possible to secure the budget for the projects mentioned above.

The necessity for the equipment supply is summarized in the table below.

| Item                                                                | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Contribution to<br>NRWSS Strategy 2020                           | Contribution to achievement of service ratio<br>(85% in 2010 and 100% in 2020)<br>Expectation to growth of the population served by water supply as percent<br>of total population (6.4%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2. Securing Stable Water<br>Source                                  | Although the service ratio is improved to above 50% in each province,<br>most of the water source is dug wells. Dug wells are unstable water<br>source due to risks of infiltration of muddy water and organically polluted<br>water in the rainy season and due to water shortage problem in the dry<br>season (for 5~6 months) resulted from lower water level. On the other<br>hand, deep wells are good water source with stable water volume and<br>good water quality all year round.                                                                                                                                                                                  |
| 3. Result of Utilization of<br>Equipment Supplied to<br>the North   | 16 wells were drilled from 2003 to 2004 (including unsuccessful wells).<br>Drilling diameter is 275mm and drilling depths are from 75m to 122m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4. Schedule of Utilization<br>of Equipment Supplied to<br>the North | 7 wells will be drilled from October 2005 to December 2006 in Ha Tay<br>Province neighboring to Hanoi City. Afterwards, 8 wells in every year<br>will be drilled in the dry areas of the North.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5. Existing Equipment in<br>Each CERWASS                            | There are equipments (XY-1) made in 1993 in Kon Tum, Gia Lai and Dak<br>Lak Province. Drilling diameter is as small as 46~100mm and drilling<br>depth is as shallow as 100m(in case of diameter 46mm). Gia Lai Province<br>also owns an equipment made in Canada 1985 (small diameter and 100m<br>of drilling depth). These equipments were modified from boring machines<br>for geological survey and, are used for drilling of deep wells. But since<br>diameter is small, it takes long time and labor to enlarge the drilled<br>diameter. Too long time of drilling works cause bad influence such as<br>difficulty of maintenance of hole wall, stuffing vein of water. |
| 6. Result of Drilling by                                            | It is confirmed that 8 companies are active in Central Highlands (4 state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Appendix Table 33 Necessity for Equipment Supply

| Item                       | Comment                                                                      |
|----------------------------|------------------------------------------------------------------------------|
| Local Companies            | companies under Ministry of Science, Technology and Environment and 4        |
|                            | private companies). A company owns on average 5 machines made in             |
|                            | former Soviet and China and has result of 40 wells annually. Deepest         |
|                            | drilling depth is 180m. Drilling period per well is from 1 to 3 months.      |
|                            | Spare parts are available in market. Drilling machines are modified ones     |
|                            | from boring machines for geological survey and therefore the same            |
|                            | problems mentioned above exist.                                              |
| 7. Comparison of Drilling  | $$15,000 \sim 20,000$ per meter by these companies in item 6$                |
| Costs                      | ¥7,000 per meter directly by CERWASS (example of North)                      |
| 8. Schedule of Utilization | Drilling result for last 5 years is 164 wells in 4 target provinces.         |
| of Equipment Supplied to   | Drilling schedule for next 5 years will be 400 wells that is a big increase. |
| the Central Vietnam        |                                                                              |
| 9. Management Method of    | In order to manage supplied equipment to North, North center has been        |
| Equipment Supplied to      | established in Hanoi City. Staff consists of 2 engineers, 2 technicians and  |
| the Central Vietnam        | 5 operators (they are also drivers). Central center will be established in   |
|                            | Gia Lai Province in order to manage equipment to be supplied to Central      |
|                            | Vietnam. 9 persons of staff for Central center will be employed and          |
|                            | positioned after receiving training in North center.                         |
| 10. Limitation of          | 8                                                                            |
| Construction Period        | location of well, locations of ground facilities (pipeline, water treatment  |
|                            | plant and reservoir) are decided.                                            |
|                            | Accordingly, existing drilling machines of inferior capacity of drilling     |
|                            | (drilling period of $1\sim3$ months) will shorten period of construction for |
|                            | ground facilities and therefore cause difficulty to complete all facilities  |
|                            | within the limited construction period.                                      |

## Supplement to the Table above

## a) Result of utilization and Schedule of utilization of the equipment supplied to the North in items 3 and 4

The equipment was utilized until 2004 for the projects in the North. In 2006, the equipment will be utilized for the well drilling of water projects in 9 communes of Ha Tay Province neighboring to Hanoi City. (15.9 billion VND of National budget (¥115 million) and almost the same amount of Provincial budget) In October 2005, the well drilling in a commune has been commenced.

| Population             | 2.39 million                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Budget                 | 38.8 billion VND ( approx 242 million JPY )                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| The Details of<br>Plan | <ul> <li>✓ <u>Water Supply facilities ( including drilling deep well and laying distribution pipe )</u><br/>9 schemes<br/>Total budget: 15,85 billion VND (approx 115 million JPY)</li> <li>✓ <u>Individual systems</u><br/>Shallow Well: 11,852 wells<br/>Dug Well: 2,100 wells<br/>Rain – Water Storage Tank: 1,000</li> <li>✓ <u>Sanitation Plan</u><br/>Small Sewerage facilities: 2<br/>Toilet Installation</li> </ul> |  |  |  |  |  |  |  |

#### b) 6. Result of Local Companies

There are at least 8 drilling companies in Central Highlands. A company owns on average 5 machines and has experience of drilling about  $30 \sim 50$  wells annually. Most of their machines are supplied by the former Soviet Union in the eighties or purchased from China in the nineties. Since these drilling machines are modified ones from boring machines for geological survey originally, it takes a long time for drilling that requires time for reaming works to enlarge drilled diameter. Although these machines have faced many troubles frequently, the spare parts are available in the markets.

#### c) 8. Schedule of Utilization of Equipment Supplied

According to the Central CERWASS, the result of drilling for the last 5 years is shown in the table below. In Kon Tum Province, the number of drilled wells has been low, (3 wells per year maximum), because of the small size of province (the population of 360,000 persons in 2005). In Gia Lai Province, the number of wells drilled for the last 3 years is about 15 to 21 wells per year. Reflecting the geological conditions, the drilling depth is as deep as from 100 to 180m. In Dak Lak Province (including the present Dak Nong Province), the result of drilling for the last 2 years is  $34 \sim 35$  wells annually that are more wells in comparison to Gia Lai Province but the depth is as shallow as  $45 \sim 85m$ . About a-half the number of all wells drilled during 2000 ~2004 has been drilled directly by CERWASS.

| Year<br>Province | 2000 | 2001 | 2002 | 2003 | 2004 | Total | Depth<br>( Max/Ave/Min ) | Number of Constructed<br>Wells by CERWASS |
|------------------|------|------|------|------|------|-------|--------------------------|-------------------------------------------|
| Kon Tum          | 1    | 1    | 0    | 3    | 3    | 8     | NA                       | NA                                        |
| Gia Lai          | 8    | 13   | 16   | 21   | 15   | 73    | 180/140/100              | 43                                        |
| Dak Lak          | 1    | 4    | 4    | 20   | 15   | 44    | 85/55/45                 | 24                                        |
| Dak Nong         | 0    | 0    | 5    | 14   | 20   | 39    | 70/55/45                 | 18                                        |
| Total            | 10   | 18   | 25   | 58   | 53   | 164   | 180/100/45               | 85                                        |

Appendix Table 35 Number of Drilling Wells (2000-2004)

(source : CERWASS)

The schedule of drilling wells in the next 5 years in each province is shown in the table below. From 10 wells annually (Gia Lai Province) to 50 wells annually (Dak Lak and Dak Nong Provinces), 400 wells in total are scheduled to be drilled. The schedule of drilling in Gia Lai Province has the same pace as in the last 5 years, but the schedules of the other provinces require to be  $6 \sim 8$  times more than the number of drilling during the last 5 years. Therefore, the equipment with higher level of capacity is required in order to realize the shorter drilling time and the deeper drilling depth. It is supposed that the water production will be 80m3 per day per well and, in total, the water supply of 45,000m3 per day will be possible, that is, equivalent to one third of the required increase in water volume of 126,000m3 per day.

The budget arrangement is also shown in the table below that occupies reasonably  $10 \sim 20$  % of the annual investment budget of all CERWASS for the last 3 years mentioned previously (12 billion VND of Kon Tum Province, 18 billion VND of Gia Lai Province and 32 billion VND of Dak Lak Province). The investment budget of past years was used mainly in the construction of dug wells, but in the future, it will be used for the construction of deep wells. If the budget for well construction covers  $10 \sim 20$  %, the remaining amount of budget for the relating water supply facilities (reservoir, distribution pump, distribution pipes) will be reasonable and feasible in terms of budget estimation. It is possible to drill 10 wells annually (50 wells for 5 years) by the equipment owned by CERWASS of 3 provinces except Dak Nong Province. The remaining wells will be drilled economically by the supplied equipment and, at the same time, consigned to the local drilling companies.

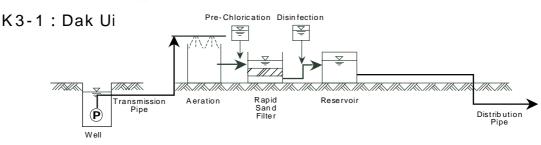
| Year         | r                     | 2006  | 2007   | 2008   | 2009   | 2010   | Total  |
|--------------|-----------------------|-------|--------|--------|--------|--------|--------|
| Province     |                       |       |        |        |        |        |        |
| Kon Tum      | No. of Wells          | 11    | 14     | 14     | 14     | 14     | 67     |
|              | Budget (million VND)  | 1,650 | 2,100  | 2,100  | 2,100  | 2,100  | 10,050 |
| Gia Lai      | No. of Wells          | 13    | 13     | 10     | 8      | 6      | 50     |
|              | Budget (million VND)  | 2,600 | 2,600  | 2,000  | 1,600  | 1,200  | 10,000 |
| Dak Lak      | No. of Wells          | 16    | 38     | 39     | 38     | 39     | 170    |
|              | Budget (million VND)  | 1,920 | 4,560  | 4,680  | 4,560  | 4,680  | 20.400 |
| Dak Nong     | No. of Wells          | 25    | 23     | 20     | 25     | 20     | 113    |
| C C          | Budget (million VND)  | 3,500 | 3,220  | 2,800  | 3,500  | 2,380  | 15,400 |
| Total        | No. of Wells          | 65    | 88     | 83     | 85     | 79     | 400    |
|              | Budget (million VND)  | 9,670 | 12,480 | 11,580 | 11,760 | 10,360 | 55,850 |
|              | by Direct Drilling    | 30    | 30     | 30     | 30     | 30     | 150    |
| No. of wells | by Sub-Contract       | 35    | 43     | 38     | 40     | 34     | 190    |
|              | by Supplied Equipment | -     | 15     | 15     | 15     | 15     | 60     |

Appendix Table 36 Number of Drilling Wells (2006-2010)

(source : CERWASS)

| No. | Province | District   | Commune    | Population<br>(Person) | No. of<br>Existing<br>Water<br>Supply<br>Systems | No. of<br>Proposed<br>Water<br>Supply<br>Systems | No. of<br>Proposed<br>Wells | Existing<br>Population<br>Served<br>(Person) |
|-----|----------|------------|------------|------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------|----------------------------------------------|
| 1   | Dak Lak  | Ea Kar     | Ea Nop     | 12,140                 | -                                                | 1                                                | 3                           |                                              |
| 2   | Dak Lak  | Cu Mga     | Quanh Hiep | 11,330                 | -                                                | 1                                                | 2                           |                                              |
| 3   | Gia Lai  | Ia Pa      | Ia Trok    | 8,373                  | -                                                | 1                                                | 3                           |                                              |
| 4   | Gia Lai  | Ayun Pa    | Phu Thien  | 15,410                 | -                                                | 1                                                | 5                           |                                              |
| 5   | Gia Lai  | Ia Grai    | Ia Sao     | 17,656                 | -                                                | 1                                                | 6                           |                                              |
| 6   | Gia Lai  | Ia Grai    | Ia To      | 10,856                 | -                                                | 1                                                | 3                           |                                              |
| 7   | Kon Tum  | Dak Ha     | Dak La     | 6,302                  | -                                                | 1                                                | 2                           |                                              |
| 8   | Kon Tum  | Kon Tum    | Ya Chim    | 9,936                  | -                                                | 2                                                | 2                           |                                              |
| 9   | Dak Nong | Dak R'Lap  | Nhan Co    | 13,795                 | 1                                                | 1                                                | 4                           | 500                                          |
| 10  | Dak Nong | Dak Mill   | Duc Minh   | 12,625                 | 1                                                | 1                                                | 5                           | 475                                          |
|     |          |            | Sub-total  | 118,423                |                                                  | 11                                               | 35                          |                                              |
| 11  | Gia Lai  | Duc Co     | Chu Ty     | 8,713                  | 1                                                | 1                                                | 1                           | 500                                          |
| 12  | Gia Lai  | Chu Prong  | Thang Hung | 4,645                  | -                                                | 1                                                | 1                           |                                              |
| 13  | Gia Lai  | Chu Pah    | Nghia Hoa  | 4,013                  | -                                                | 1                                                | 1                           |                                              |
| 14  | Dak Lak  | Krong Nang | Krong Nang | 11,497                 | -                                                | 1                                                | 2                           |                                              |
| 15  | Dak Lak  | Krong Pac  | Krong Buk  | 7,465                  | -                                                | 1                                                | 1                           |                                              |
| 16  | Dak Lak  | Dak R' lap | Kien Duc   | 9,970                  | 1                                                | 1                                                | 3                           |                                              |
|     |          |            | Sub-total  | 46,303                 |                                                  | 6                                                | 7                           |                                              |
|     |          |            | Total      | 164,726                |                                                  |                                                  | 44                          |                                              |

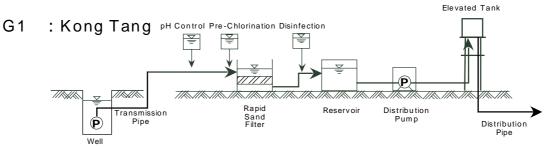
Appendix Table 37 Planned Communes where Well Drilled by Supplied Drilling Equipment


Remark: Depending on hydro geological survey, number of proposed wells may differ.

# d) 9. The Systems of Operation and Maintenance of Equipment Supplied to Central Highlands

9 persons including 2 engineers and 2 technicians will be employed and On-the-Job training will be implemented for them in the equipment center of northern and central parts. The equipment center of Central Vietnam will be established in Pleiku City of Gia Lai Province.

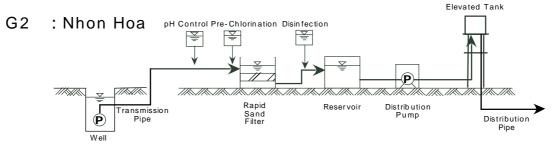
# 16. Outline of Water Supply Facilities


## (1) Outline of Water Supply Facilities in K3-1 Dak Ui



#### **Appendix Table 38 Outline of Water Supply Facilities**

| Facility/Equi             | pment         | Dimension & Specification                                            |  |  |  |
|---------------------------|---------------|----------------------------------------------------------------------|--|--|--|
| Well Pump                 |               | 0.18m <sup>3</sup> /min×88m×5.5kw (J1)                               |  |  |  |
|                           | Diameter (mm) | 100 (Existing)                                                       |  |  |  |
| Transmission Pipe         | Length (km)   | 0.8(Existing)                                                        |  |  |  |
| Aeration Facility         |               | Capacity: 259m <sup>3</sup> /day<br>W1.5m×L1.0m×H3.5m×1 (Existing)   |  |  |  |
| Sedimentation Basin       |               | W1.0m×L1.0m×1 (Existing)                                             |  |  |  |
| Filtration Basin          |               | W2.8m×L5.6m×2 A=15.68m <sup>2</sup>                                  |  |  |  |
| Chemical Feeding Facility | pH Control    | —                                                                    |  |  |  |
| Chemical Feeding Facility | Disinfection  |                                                                      |  |  |  |
| Distribution Reservoir    |               | W3.0m×5.0m×H3.0m×2<br>Capacity: 90m <sup>3</sup> Reinforced concrete |  |  |  |
| Distribution Pump         |               | —                                                                    |  |  |  |
| Elevated Tank             |               | —                                                                    |  |  |  |
| Distribution Pipe         | Diameter (mm) | φ50 ~ 100                                                            |  |  |  |
| Distribution r ipe        | Length (km)   | 5.0                                                                  |  |  |  |
|                           | Household     | 624                                                                  |  |  |  |
| Service Pipe              | Pipe (m)      | 12,480                                                               |  |  |  |
|                           | Water Meter   | 624                                                                  |  |  |  |

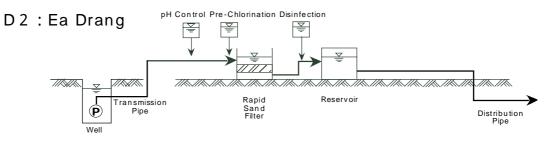

#### (2) Outline of Water Supply Facilities in G1 Kong Tang



|                           |               | Diverging & Constitution                                                                                                       |
|---------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------|
| Facility/Equi             | pment         | Dimension & Specification                                                                                                      |
| Well Pump                 |               | 0.23m <sup>3</sup> /min×73m×5.5kw (J1)                                                                                         |
| () en r ump               |               | $0.23 \text{m}^{3}/\text{min} \times 82 \text{m} \times 5.5 \text{kw} (N1)$                                                    |
| Transmission Pipe         | Diameter (mm) | φ100 ~ 150                                                                                                                     |
| Transmission Fipe         | Length (km)   | 2.2                                                                                                                            |
| Aeration Facility         |               | —                                                                                                                              |
| Filtration Basin          |               | W1.4m×L1.9m×2 A= $2.66m^2$ /basin                                                                                              |
|                           |               | 80mm × Q0.4m <sup>3</sup> /min × H17m × 3.7kw × 1 unit                                                                         |
| Surface washing pump      |               | Backwashing; Washing by treated water from                                                                                     |
|                           |               | elevated tank                                                                                                                  |
|                           | pH Control    |                                                                                                                                |
| Chemical Feeding Facility | Disinfection  |                                                                                                                                |
|                           |               | W4.0m×9.0m×H3.0m×2                                                                                                             |
| Distribution Reservoir    |               | Capacity: 216m <sup>3</sup> Reinforced concrete                                                                                |
| Distribution Dump         |               | $100 \text{ mm} \times \text{Q}0.88 \text{ m}^3/\text{min} \times \text{H}15.0 \text{m} \times 7.5 \text{kw} \times 2$ (1 unit |
| Distribution Pump         |               | is Stand-by)                                                                                                                   |
|                           |               | W4.4m×4.4m×H2.0m×1                                                                                                             |
| Elevated Tank             |               | Capacity: 38.7m <sup>3</sup> Reinforced concrete                                                                               |
|                           |               | L.W.L.+752.0m                                                                                                                  |
| Distribution Pipe         | Diameter (mm) | φ50 ~ 200                                                                                                                      |
| Distribution 1 tpe        | Length (km)   | 26.5                                                                                                                           |
|                           | Household     | 1,738                                                                                                                          |
| Service Pipe              | Pipe (m)      | 34,760                                                                                                                         |
| *                         | Water Meter   | 1,738                                                                                                                          |

Appendix Table 39 Outline of Water Supply Facilities

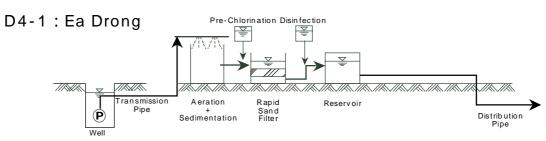
## (3) Outline of Water Supply Facilities in G2 Nhon Hoa




| Appendix Table 40 Outline of Water Supply F | Facilities |
|---------------------------------------------|------------|
|---------------------------------------------|------------|

| Facility/Equi             | ipment                       | Dimension & Specification                                                                                                                                                                                                                                                                          |
|---------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well Pump                 |                              | 0.12m <sup>3</sup> /min×87m×3.7kw (J1)<br>0.12m <sup>3</sup> /min×87m×3.7kw (N1)<br>0.12m <sup>3</sup> /min×88m×3.7kw (N2)<br>0.12m <sup>3</sup> /min×118m×5.5kw(N3)<br>0.12m <sup>3</sup> /min×86m×3.7kw (N4)<br>0.12m <sup>3</sup> /min×85m×3.7kw (N5)<br>0.12m <sup>3</sup> /min×116m×5.5kw(N6) |
| Transmission Pipe         | Diameter (mm)<br>Length (km) | <u>φ80 ~ 250</u><br>7.9                                                                                                                                                                                                                                                                            |
| Aeration Facility         |                              | _                                                                                                                                                                                                                                                                                                  |
| Filtration Basin          |                              | W2.0m×L2.3m×2 A=4.60m <sup>2</sup> /basin<br>Manganese sand                                                                                                                                                                                                                                        |
| Surface washing pump      |                              | $80 \text{mm} \times \text{Q0.69m}^3/\text{min} \times \text{H17m} \times 3.7 \text{kw} \times 1 \text{ unit}$<br>Backwashing; Washing by treated water from elevated tank                                                                                                                         |
| Chemical Feeding Facility | pH Control<br>Disinfection   |                                                                                                                                                                                                                                                                                                    |

| Distribution Reservoir |               | W4.0m×15.0m×H3.0m×2<br>Capacity: 360m <sup>3</sup> Reinforced concrete              |  |  |  |  |  |
|------------------------|---------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| Distribution Pump      |               | 150mm×Q1.49m <sup>3</sup> /min×H17.0m×11.0kw×2 (1 unit is Stand-by)                 |  |  |  |  |  |
| Elevated Tank          |               | W5.0m×5.0m×H2.0m×1 Capacity: 50.0m <sup>3</sup><br>Reinforced concrete L.W.L.+432.0 |  |  |  |  |  |
| Distribution Dina      | Diameter (mm) | Φ40 ~ 250                                                                           |  |  |  |  |  |
| Distribution Pipe      | Length (km)   | 38.6                                                                                |  |  |  |  |  |
|                        | Household     | 2,181                                                                               |  |  |  |  |  |
| Service Pipe           | Pipe (m)      | 43,620                                                                              |  |  |  |  |  |
|                        | Water Meter   | 2,181                                                                               |  |  |  |  |  |


## (4) Outline of Water Supply Facilities in D2 Ea Drang

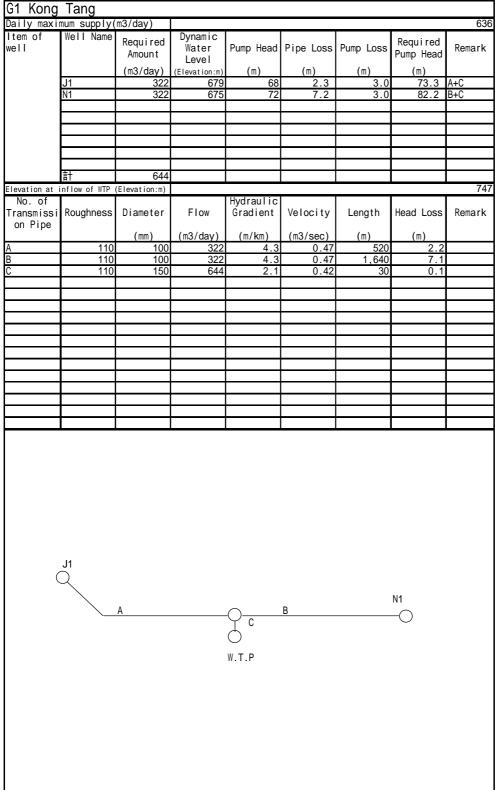


**Appendix Table 41 Outline of Water Supply Facilities** 

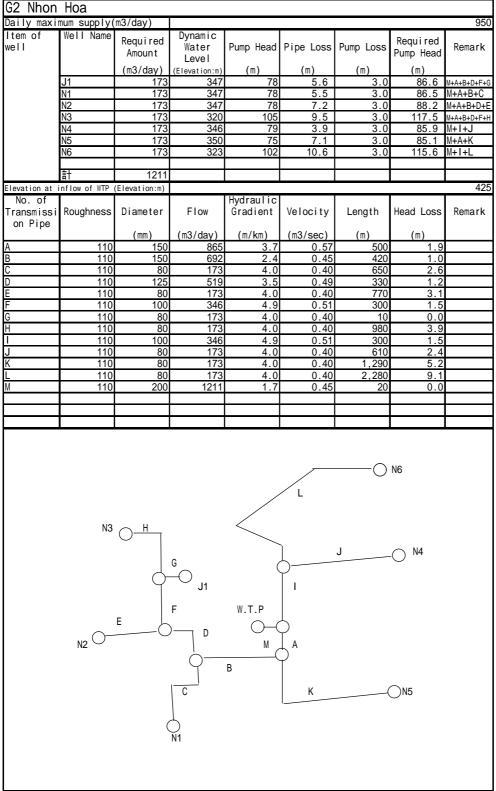
| Facility/Equip               | ment          | Dimension & Specification                                                                                               |
|------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------|
|                              |               | $0.16m^{3}/min \times 141m \times 7.5kw$ (N1)                                                                           |
|                              |               | 0.16m <sup>3</sup> /min×150m×7.5kw (N2)                                                                                 |
|                              |               | 0.16m <sup>3</sup> /min×150m×7.5kw (N3)                                                                                 |
| Well Pump                    |               | 0.16m <sup>3</sup> /min×161m×7.5kw (N4)                                                                                 |
|                              |               | $0.16m^{3}/min \times 165m \times 11kw$ (N5)                                                                            |
|                              |               | $0.16m^3/min\times167m\times11kw$ (N6)                                                                                  |
|                              |               | 0.16m <sup>3</sup> /min×144m×7.5kw (N7)                                                                                 |
| T                            | Diameter (mm) | φ125 ~ φ150                                                                                                             |
| Transmission Pipe            | Length (km)   | 5.0                                                                                                                     |
| Aeration Facility            |               | —                                                                                                                       |
| Filtration Basin             |               | W2.9m×L2.3m×2 A=6.67m <sup>2</sup> /basin                                                                               |
| Surface and backwashing pump | )             | 200mm $\times$ 150mm $\times$ Q5.0m <sup>3</sup> /min $\times$ H25m $\times$ 45kw $\times$ 2 units (1 unit is stand-by) |
| Chamical Fooding Facility    | pH Control    | · · · · · · · · · · · · · · · · · · ·                                                                                   |
| Chemical Feeding Facility    | Disinfection  |                                                                                                                         |
| Distribution Reservoir       |               | W6.0m×15.0m×H3.0m×2<br>Capacity: 540m <sup>3</sup> Reinforced concrete                                                  |
| Distribution Pump            |               | —                                                                                                                       |
| Elevated Tank                |               | —                                                                                                                       |
| Distribution Pipe            | Diameter (mm) | φ50 ~ 300                                                                                                               |
| Distribution ripe            | Length (km)   | 51.8                                                                                                                    |
|                              | Household     | 3,874                                                                                                                   |
| Service Pipe                 | Pipe (m)      | 77,480                                                                                                                  |
| *                            | Water Meter   | 3,874                                                                                                                   |

## (5) Outline of Water Supply Facilities in D4-1 Ea Drong

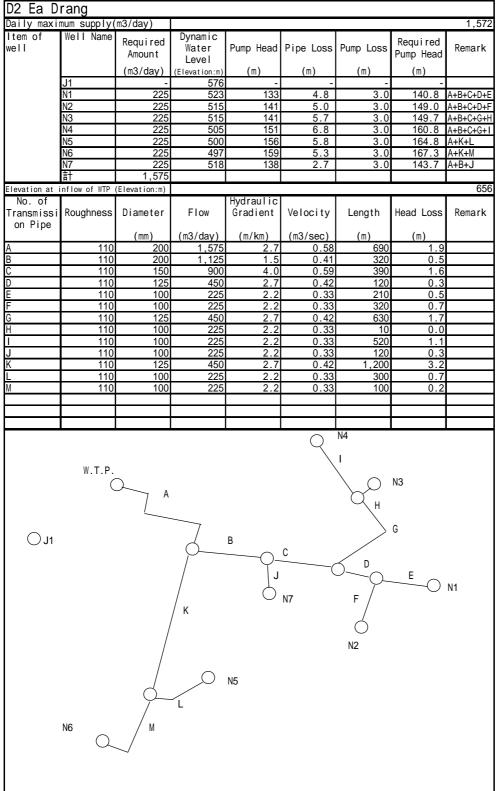



| пррег                       |               | ie of water Supply Facilities                                              |  |  |  |  |
|-----------------------------|---------------|----------------------------------------------------------------------------|--|--|--|--|
| Facility/Equi               | pment         | Dimension & Specification                                                  |  |  |  |  |
|                             |               | $0.19 \text{m}^3/\text{min} \times 117 \text{m} \times 7.5 \text{kw}$ (J1) |  |  |  |  |
| Well Pump                   |               | $0.19 \text{m}^3/\text{min} \times 112 \text{m} \times 7.5 \text{kw}$ (N1) |  |  |  |  |
|                             |               | 0.19m <sup>3</sup> /min×139m×7.5kw (N2)                                    |  |  |  |  |
| Transmission Pipe           | Diameter (mm) | φ100 ~ 125                                                                 |  |  |  |  |
| Tansmission Fipe            | Length (km)   | 4.9                                                                        |  |  |  |  |
| Sedimentation Basin         |               | W5.2m×L2.6m×H4.15×2                                                        |  |  |  |  |
| Aeration Facility           |               | Capacity: 668m <sup>3</sup> /day                                           |  |  |  |  |
|                             |               | W5.2m×L2.6m×H4.0m×2                                                        |  |  |  |  |
| Filtration Basin            |               | W1.4m×L2.0m×2 A= $2.8m^2$ /basin                                           |  |  |  |  |
| Surface and backwashing pun | n             | 125mm × 100mm × Q2.1m <sup>3</sup> /min × H25m × 15kw ×                    |  |  |  |  |
| Surface and backwashing pun | ір<br>        | 2 units(1 unit is stand-by)                                                |  |  |  |  |
| Chemical Feeding Facility   | pH Control    | _                                                                          |  |  |  |  |
| Chemiear recuring raemity   | Disinfection  |                                                                            |  |  |  |  |
| Distribution Reservoir      |               | W4.0m×9.5m×H3.0m×2                                                         |  |  |  |  |
|                             |               | Capacity: 228m <sup>3</sup> Reinforced concrete                            |  |  |  |  |
| Distribution Pump           |               |                                                                            |  |  |  |  |
| Elevated Tank               |               | —                                                                          |  |  |  |  |
| Distribution Pipe           | Diameter (mm) | φ50 ~ 200                                                                  |  |  |  |  |
| Distribution ripe           | Length (km)   | 27.2                                                                       |  |  |  |  |
|                             | Household     | 1,583                                                                      |  |  |  |  |
| Service Pipe                | Pipe (m)      | 31,660                                                                     |  |  |  |  |
|                             | Water Meter   | 1,583                                                                      |  |  |  |  |

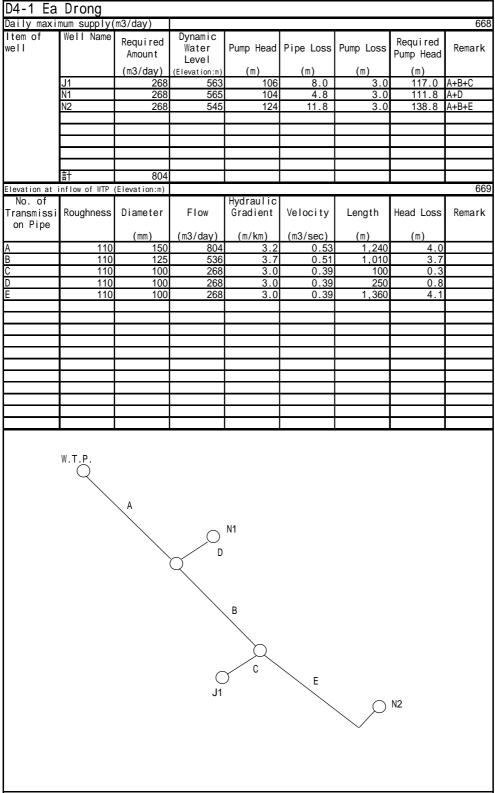
**Appendix Table 42 Outline of Water Supply Facilities** 


# **17.** Capacity Calculation

## Hydraulic analysis for transmission pipe


|              |               |               | t i anomi     | 1331011 p | TPC       |           |           |         |
|--------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------|---------|
| <3-1 Dal     |               |               |               |           |           |           |           |         |
| aily maxin   | mum supply(   | (m3/day)      |               |           |           |           |           | 25      |
| tem of       | Well Name     | Required      | Dynamic       |           |           |           | Required  |         |
| ell          |               | Required      | Ŵater         | Pump Head | Pipe Loss | Pump Loss | Required  | Remark  |
|              |               | Amount        | Level         |           |           |           | Pump Head |         |
|              |               | (m3/day)      | (Elevation:m) | (m)       | (m)       | (m)       | (m)       |         |
|              | 14            | (IIIS/uay)    | (Elevation:m) | ( )       | ()        | ( )       | ( )       | ٨       |
|              | J1            | 259           | 647           | 73        | 2.7       | 3.0       | 78.7      | A       |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              | ÷1            |               |               |           |           |           |           |         |
|              | 計             | 259           |               |           |           |           |           |         |
| evation at i | inflow of WTP | (Elevation:m) |               |           |           |           |           | 72      |
| No. of       |               | (,            |               | Hydraulic |           |           |           |         |
|              | Poughpooo     | Diameter      | Flow          | Gradient  | Velocity  | Length    | Head Loss | Remark  |
| ansmissi     | Roughness     | Drameter      | FIOW          | Grautent  | verocity  | Length    | neau Luss | Reliark |
| on Pipe      |               |               |               |           |           |           |           |         |
|              |               | (mm)          | (m3/day)      | (m/km)    | (m3/sec)  | (m)       | (m)       |         |
|              | 100           | 100           | 259           | 3.4       | 0.38      | 800       | 2.7       |         |
|              |               |               |               | 011       | 0.00      |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               | •             |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |
|              |               |               |               | /         |           | $\frown$  | J1        |         |
|              |               | W.T.P         |               | A         |           |           |           |         |
|              |               |               | V             |           |           |           |           |         |
|              |               |               |               |           |           |           |           |         |




Hydraulic analysis for transmission pipe



Hydraulic analysis for transmission pipe



Hydraulic analysis for transmission pipe



Hydraulic analysis for transmission pipe

| Commune Name      | 2                                                     | Unit                   | G1 Kong Tang                  | G2 Nhon Hoa           | D2 Ea Drang | D4-1 Ea<br>Drong                            |  |
|-------------------|-------------------------------------------------------|------------------------|-------------------------------|-----------------------|-------------|---------------------------------------------|--|
| Treatment Process |                                                       |                        | Sand Filter +<br>Disinfection | (Manganese)<br>Disinf |             | Aeration +<br>Sand Filter +<br>Disinfection |  |
| 1 Design Bas      | sis                                                   |                        |                               |                       |             |                                             |  |
|                   | Water Quantity                                        | m <sup>3</sup> /day    | 636                           | 1075                  | 1572        | 66                                          |  |
|                   |                                                       | m <sup>3</sup> /h      | 26.5                          | 44.8                  | 65.5        | 27.                                         |  |
|                   |                                                       | m <sup>3</sup> /min    | 0.44                          | 0.75                  | 1.09        | 0.4                                         |  |
|                   | No. of Series                                         | No.                    | 2                             | 2                     | 2           |                                             |  |
|                   | Water Quantity per Series                             | m <sup>3</sup> /day    | 318                           | 537.5                 | 786         | 33                                          |  |
|                   |                                                       | m <sup>3</sup> /h      | 13.25                         | 22.4                  | 32.75       | 13.9                                        |  |
|                   |                                                       | m <sup>3</sup> /min    | 0.22                          | 0.37                  | 0.55        | 0.2                                         |  |
| 2 Rapid Sand      | Filter                                                |                        |                               |                       |             |                                             |  |
| 2 rtupiu suite    | Water Quantity per Series                             | m <sup>3</sup> /day    | 318                           | 537.5                 | 786         | 33                                          |  |
|                   | Water Quantity per Series                             | m <sup>3</sup> /min    | 0.22                          | 0.37                  | 0.55        | 0.2                                         |  |
|                   | Required Filtration Speed                             | m/day                  | 120                           | 120                   | 120         | 12                                          |  |
|                   | Required Area                                         | m <sup>2</sup> /filter | 2.65                          | 4.48                  | 6.55        | 2.7                                         |  |
|                   | Filter Size                                           |                        | 2.03                          | 4.40                  | 0.55        | 2.1                                         |  |
|                   | Width                                                 | m                      | 1.4                           | 2                     | 2.9         | 1                                           |  |
|                   | Length                                                | m<br>m                 | 1.4                           | 2.3                   | 2.9         | 1                                           |  |
|                   | Height                                                | m                      | 1.9                           | 1.84                  | 1.84        | 1.0                                         |  |
|                   | Filter Area                                           | m<br>m²/filter         | 2.66                          |                       | 6.67        | 1.8                                         |  |
|                   |                                                       |                        |                               | 4.6                   |             |                                             |  |
| 2 10 .            | Filter Area                                           | m/day                  | 119.5                         | 116.8                 | 117.8       | 119                                         |  |
| 3 Reservoir       |                                                       | 2 / 2                  |                               |                       |             |                                             |  |
|                   | Water Quantity per Series                             | m <sup>3</sup> /day    | 318                           | 537.5                 | 786         | 33                                          |  |
|                   |                                                       | m <sup>3</sup> /h      | 13.25                         | 22.4                  | 32.75       | 13.9                                        |  |
|                   | Reservoir Size                                        |                        |                               |                       |             |                                             |  |
|                   | Width                                                 | m                      | 4                             | 4                     | 6           |                                             |  |
|                   | Length                                                | m                      | 9                             | 13.5                  | 15          | 9                                           |  |
|                   | Height                                                | m                      | 3                             | 3                     | 3           |                                             |  |
|                   | Volume                                                | m <sup>3</sup>         | 108                           | 162                   | 270         | 11                                          |  |
|                   | No. of Reservoir                                      | No.                    | 2                             | 2                     | 2           |                                             |  |
|                   | Material                                              |                        | RC                            | RC                    | RC          | R                                           |  |
|                   | Retention Time                                        | hour                   | 8.15                          | 7.23                  | 8.24        | 8.                                          |  |
| 4 Elevated Ta     |                                                       |                        |                               |                       |             |                                             |  |
|                   | Wash Speed                                            |                        |                               |                       |             |                                             |  |
|                   | Back Wash                                             | m/min                  | 0.6                           | 0.6                   |             | 0                                           |  |
|                   | Surface Wash                                          | m/min                  | 0.15                          | 0.15                  |             | 0.                                          |  |
|                   | Washing Time                                          |                        |                               |                       |             |                                             |  |
|                   | Back Wash                                             | min                    | 6                             | 6                     |             |                                             |  |
|                   | Surface Wash                                          | min                    | 4                             | 4                     |             |                                             |  |
|                   | Filter Area                                           | m <sup>2</sup> /basin  | 2.66                          | 4.6                   |             | 2                                           |  |
|                   | Back Washed Water Quantity per                        | m <sup>3</sup> /min    | 1.596                         | 2.76                  | 0           | 1.0                                         |  |
|                   | Minute<br>Surface Washed Water Quantity per<br>Minute | m <sup>3</sup> /min    | 0.4                           | 0.69                  | 0           | 0.4                                         |  |
|                   | Back Washed Water Quantity                            | m <sup>3</sup>         | 9.58                          | 16.56                 | 0           | 10.0                                        |  |
|                   | Surface Washed Water Quantity                         | m <sup>3</sup>         | 9.38                          | 2.76                  |             | 10.0                                        |  |
|                   | Total Washed Water Quantity                           | m <sup>3</sup>         | 11.18                         | 19.32                 | 0           | 11.                                         |  |
|                   | Total Washed Water Quantity                           | m <sup>3</sup>         | 11.18                         | 20                    | 29          | 11.                                         |  |
|                   | Tank Size                                             | 111                    | 12                            | 20                    | 29          |                                             |  |
|                   | Width                                                 | m                      | 4.4                           | 5                     |             |                                             |  |
|                   | Length                                                | m                      | 4.4                           | 5                     |             |                                             |  |
|                   |                                                       |                        |                               |                       |             |                                             |  |
|                   | Effective Height                                      | m<br>m <sup>3</sup>    | 2 28 72                       | 2                     |             |                                             |  |
|                   | Effective Volume                                      |                        | 38.72                         | 50                    |             |                                             |  |
| 1                 | No. of Tank                                           | No.                    |                               | 1                     |             |                                             |  |
|                   |                                                       |                        |                               |                       |             |                                             |  |
| 5 Drain Pit       | Material                                              |                        | RC                            | RC                    |             |                                             |  |

# Appendix Table 43 Rapid sand filter, Reservoir, Elevated Tank, Drain Pit, Aeration Equipment

| and s | sedimentation | Tank |
|-------|---------------|------|
|-------|---------------|------|

| Commune Name |                                    | Unit                              | G1 Kong Tang  | G2 Nhon Hoa | D2 Ea Drang   | D4-1 Ea<br>Drong |
|--------------|------------------------------------|-----------------------------------|---------------|-------------|---------------|------------------|
|              |                                    |                                   | Sand Filter + | (Manganese) | Sand Filter + | Aeration +       |
| Treatment    | reatment Process                   |                                   | Disinfection  |             | fection       | Sand Filter +    |
|              |                                    |                                   |               |             |               | Disinfection     |
|              | Drained Water Quantity from Filter | m <sup>3</sup>                    | 4.37          | 4.6         | 6.3           | 4.37             |
|              | Required Volume                    | m <sup>3</sup>                    | 16.37         | 24.6        | 35.3          | 16.37            |
|              | Pit Size                           |                                   |               |             |               |                  |
|              | Width                              | m                                 | 3             | 3           | 4             | 3                |
|              | Length                             | m                                 | 3             | 5           | 5             | 3.5              |
|              | Effective Height                   | m                                 | 2             | 2           | 2             | 2                |
|              | Height                             | m                                 | 2.5           | 2.5         | 2.5           | 2.5              |
|              | Effective Volume                   | m <sup>3</sup>                    | 18            | 30          | 40            | 21               |
| 6 Aerat      | ion Equipment                      |                                   |               |             |               |                  |
|              | Aeration Area Load                 | $m^3/m^2/h$                       |               |             |               | 0.88             |
|              | Required Aeration Area             | m <sup>2</sup> per Series         |               |             |               | 15.82            |
|              | Size                               | 1                                 | -             |             |               |                  |
|              | Width                              | m                                 |               |             |               | 5.2              |
|              | Length                             | m                                 | -             |             |               | 2.6              |
|              | Effective Height                   | m                                 | -             |             |               | 3.3              |
|              | Height                             | m                                 |               |             |               | 4                |
|              | Effective Aeration Area            | m <sup>2</sup>                    | -             |             |               | 13.52            |
|              | Load of Aeration                   | m <sup>3</sup> /m <sup>2</sup> /h |               |             |               | 1.03             |
|              | No. of Equipment                   | No.                               |               |             |               | 2                |
|              | Material                           |                                   |               |             |               | RC               |
| 7 Sedin      | nentation Tank                     |                                   |               |             |               |                  |
|              | Water Quantity per Series          | m <sup>3</sup> /day               |               |             |               | 334              |
|              |                                    | m <sup>3</sup> /min               | -             |             |               | 0.23             |
|              | Surface Load                       | mm/min                            |               |             |               | 40               |
|              | Required Surface Area              | m <sup>2</sup>                    | -             |             |               | 5.75             |
|              | Size                               |                                   |               |             |               |                  |
|              | Width                              | m                                 |               |             |               |                  |
|              | Length                             | m                                 | -             |             |               | 2.5              |
|              | Effective Height                   | m                                 |               |             |               | 3.4              |
|              | Height                             | m                                 |               |             |               | 4.5              |
|              | Effective Area                     | m <sup>2</sup>                    |               |             |               | 7.               |
|              | Effective Volume                   | m <sup>3</sup>                    |               |             |               | 25.:             |
|              | Surface Load                       | mm/min                            |               |             |               | 30.6             |
|              | No. of Tank                        | No.                               |               | -           |               |                  |
|              | Material                           |                                   |               |             |               | RC               |

K3-1 Dak Ui Verification of filter (Existing)

Filtration bed area:  $5.6m \times 2.8m = 15.68m^2$ Maximum daily supply:  $259m^3/day$ Filtration rate:  $259m^3/day \div 15.68m^2 = 16.5m$ 

Therefore, this existing filter will be utilized as medium speed filter.

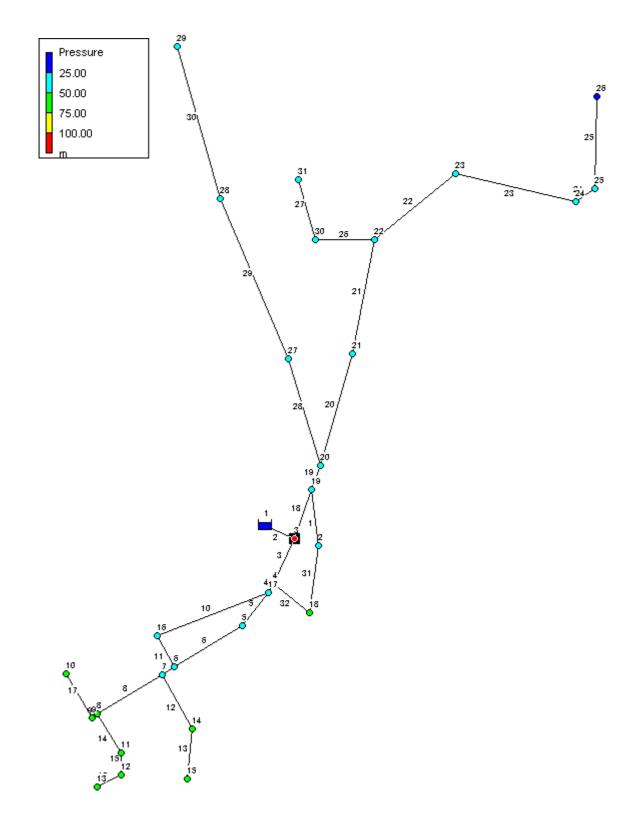
|             |                 |                                                |                                                                             | 0                                          |                                          |
|-------------|-----------------|------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|
| System Name | Commune<br>Name | Daily Maximum<br>Demand<br>(m <sup>3</sup> /d) | Washed Water<br>Quantity (Back<br>Washing +<br>Surface Washing)<br>(m3/min) | Washed Water<br>Quantity X 1.2<br>(m3/min) | Washed Water<br>Quantity X 1.2<br>(m3/s) |
| G1          | Kong Tang       | 636                                            | 2                                                                           | 2.4                                        | 0.04                                     |
| G2          | Nhon Hoa        | 1075                                           | 3.45                                                                        | 4.14                                       | 0.069                                    |
| D2          | Ea Drang        | 1572                                           | 5                                                                           | 6                                          | 0.1                                      |
| D4-1        | Ea Drong        | 668                                            | 2.1                                                                         | 2.52                                       | 0.042                                    |
| D6          | Kien Duc        | 933                                            | 3                                                                           | 3.6                                        | 0.06                                     |

Appendix Table 44 Calculation for Filter Trough

Appendix Table 45 Various size of Filter Trough

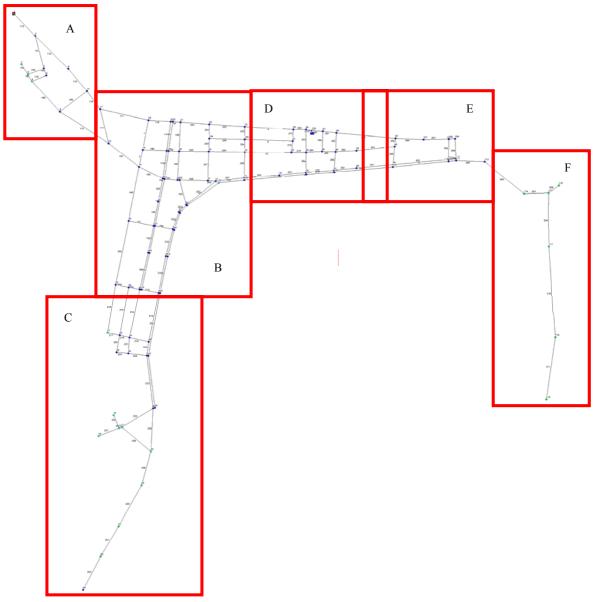
| System | Q      | В            | h0             | L             | Ι     | No. of |
|--------|--------|--------------|----------------|---------------|-------|--------|
| Name   | (m3/s) | Trough Width | Water Depth at | Trough Length | Angle | Trough |
|        |        | (m)          | Upstream       | (m)           |       |        |
|        |        |              | Trough         |               |       |        |
|        |        |              | (m)            |               |       |        |
| G1     | 0.08   | 0.4          | 0.3            | 1.4           | 1     | 1      |
| G2     | 0.08   | 0.4          | 0.3            | 2.3           | 1     | 1      |
| D2     | 0.16   | 0.4          | 0.3            | 2.3           | 1     | 2      |
| D4-1   | 0.08   | 0.4          | 0.3            | 1.4           | 1     | 1      |
| D6     | 0.08   | 0.4          | 0.3            | 2.3           | 1     | 1      |

Miller's Formula Q=1.05B (  $h \ 0 + Ltani$  ) ^1.5

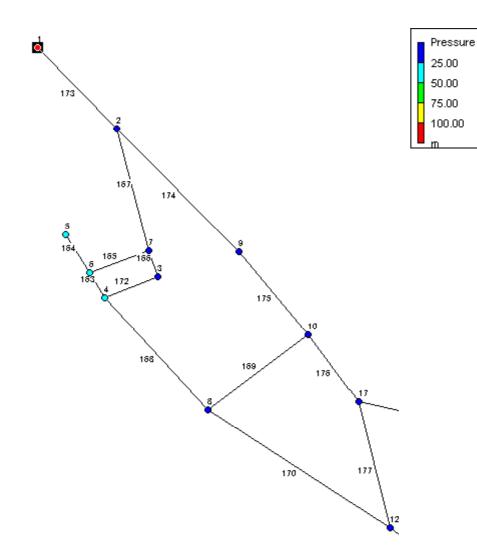

| System Name | Commune Name                                                                                                                             | T-Fe<br>(mg/!)<br>(2002) | T-Fe<br>(mg/!)<br>(2005) | After<br>Aeration<br>(T-Fe×<br>1/2) | Design<br>T-Fe | Mn <sup>2+</sup><br>(mg/!)<br>(2002) | Mn <sup>2+</sup><br>(mg/!)<br>(2005) | Design<br>Mn                        | NH <sup>4+</sup><br>(mg/!)<br>(2002) | NH <sup>4+</sup><br>(mg/!)<br>(2005) | Design<br>NH4+ | рН<br>(2002) | Process                                             | Theoretical Pre-<br>chlorination<br>(mg/L) |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-------------------------------------|----------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|----------------|--------------|-----------------------------------------------------|--------------------------------------------|
| K3-1        | Dak Ui                                                                                                                                   | 3.49                     | 0.03                     | 1.745                               | 1.8            | 0.1211                               | 0.1800                               | 0.2                                 | 0.1211                               | < 0.0100                             | 0.2            | 7.19         | A(Modification to<br>Existing Slow<br>Sand Filter ) | none                                       |
| G1          | Kong Tang                                                                                                                                | 0.82                     | 0.11                     |                                     | 0.9            | 0.0130                               | < 0.0300                             | 0.1                                 | 0.0130                               | < 0.0100                             | 0.1            | 5.30         | B + pH<br>Adjustment                                | 1.6                                        |
| G2          | Nhon Hoa                                                                                                                                 | 0.21                     | 0.04                     |                                     | 0.3            | 0.1950                               | < 0.0300                             | 0.2                                 | 0.1950                               | < 0.0100                             | 0.2            | 5.40         | B(Manganese<br>Sand) + pH<br>Adjustment             | 2.1                                        |
| D2          | Ea Drang                                                                                                                                 | 0.39                     |                          |                                     | 0.4            | 0.0410                               |                                      | 0.1                                 | 0.0410                               |                                      | 0.1            | 6.42         | B + pH<br>Adjustment                                | 2.3                                        |
| D4-1        | Ea Drong                                                                                                                                 | 3.76                     |                          | 1.88                                | 1.9            | 0.0390                               |                                      | 0.1                                 | 0.0390                               |                                      | 0.1            | 7.85         | С                                                   | 2.3                                        |
| Require     | d Chlorinat<br>Fe<br>Mn<br>NH4                                                                                                           |                          |                          | neoretic<br>0.6<br>1.2              | -              | ie                                   | Desigr                               | n Value<br>0.7 mg<br>1.3 mg<br>8 mg | g/L<br>g/L                           |                                      |                |              |                                                     |                                            |
| Require     | Required Chlorination Amount for Disinfection<br>1 mg/L                                                                                  |                          |                          |                                     |                |                                      |                                      |                                     |                                      |                                      |                |              |                                                     |                                            |
| Raw Wa      | Raw Water Quality<br>Cut out two place of decimals of maximum data<br>Taget iron concentrate is half in case of flow which has aeration. |                          |                          |                                     |                |                                      |                                      |                                     |                                      |                                      |                |              |                                                     |                                            |
| Chemic      | Chemical<br>7% Sodium hypochlorite                                                                                                       |                          |                          |                                     |                |                                      |                                      |                                     |                                      |                                      |                |              |                                                     |                                            |

# Appendix Table 46 Calculation for dosing amount

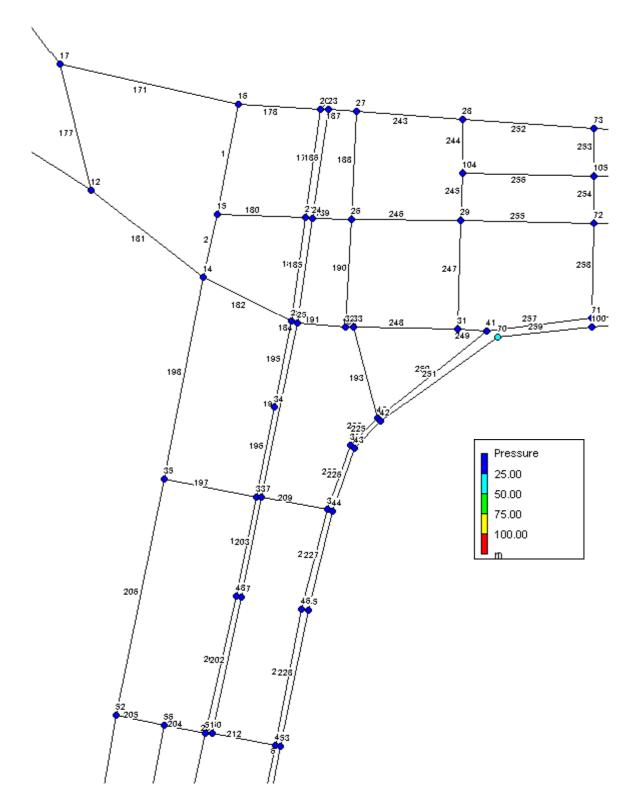
1.0


| Sample Calculation : D2 Ea Drang |                                            |                             |                                   |                         |       |  |  |  |  |  |
|----------------------------------|--------------------------------------------|-----------------------------|-----------------------------------|-------------------------|-------|--|--|--|--|--|
| Sample Calcula                   |                                            | ing                         | Unit Doquirad                     | Domirad                 |       |  |  |  |  |  |
|                                  | Pre-                                       | Raw Water Quality           | Unit Required                     | Required                |       |  |  |  |  |  |
|                                  | chlorination                               | · · ·                       |                                   |                         |       |  |  |  |  |  |
|                                  | Fe                                         | $0.4 \text{ mg/L} \times$   | 0.7 =                             | 0.28 mg/L               |       |  |  |  |  |  |
|                                  | Mn                                         | $0.1 \text{ mg/L} \times$   | 1.3 =                             | 0.13 mg/L               |       |  |  |  |  |  |
|                                  | NH4+                                       | $0.1 \text{ mg/L} \times$   | 8 =                               | 0.8 mg/L                |       |  |  |  |  |  |
|                                  | -                                          |                             | Theoretical Value                 | 1.21 mg/L               |       |  |  |  |  |  |
|                                  |                                            |                             | Designed Value                    | 2 mg/L                  |       |  |  |  |  |  |
|                                  | Post-                                      |                             | 0                                 | Ũ                       |       |  |  |  |  |  |
|                                  | Chlorination                               |                             |                                   |                         |       |  |  |  |  |  |
|                                  | E D'' C /                                  |                             |                                   | 1 /7                    |       |  |  |  |  |  |
|                                  | For Disinfection                           |                             | Sub-total                         | 1 mg/L                  |       |  |  |  |  |  |
|                                  |                                            |                             |                                   |                         |       |  |  |  |  |  |
|                                  |                                            |                             |                                   |                         |       |  |  |  |  |  |
|                                  | Water Quantity                             | $1572 \text{ m}^3/\text{d}$ |                                   |                         |       |  |  |  |  |  |
|                                  | <b>(</b>                                   |                             |                                   |                         |       |  |  |  |  |  |
|                                  | Liquid or Solid Liquid Sodium hypochlorite |                             |                                   |                         |       |  |  |  |  |  |
|                                  | Effective                                  |                             |                                   |                         |       |  |  |  |  |  |
|                                  |                                            | 770                         |                                   |                         |       |  |  |  |  |  |
|                                  | W ( O )                                    | 1 570 3/1                   |                                   |                         |       |  |  |  |  |  |
|                                  | Water Quantity                             | 1,572 m <sup>3</sup> /day   |                                   |                         |       |  |  |  |  |  |
|                                  | Dosing rate                                |                             |                                   |                         |       |  |  |  |  |  |
|                                  | Pre-chlorination                           |                             | 2 mg/L as Cl <sub>2</sub>         | Injection ratio of pre- |       |  |  |  |  |  |
|                                  | chlorination                               |                             | l mg/L as Cl <sub>2</sub>         | should be integrate 3   | mg/L. |  |  |  |  |  |
|                                  | Total                                      |                             | $3 \text{ mg/L}$ as $\text{Cl}_2$ | -                       | -     |  |  |  |  |  |
|                                  | 10001                                      |                             | J J-2                             |                         |       |  |  |  |  |  |
|                                  | Chloride Dosing                            |                             |                                   |                         |       |  |  |  |  |  |
|                                  | Amount                                     | 4.72 kg/day                 | as Cl <sub>2</sub>                |                         |       |  |  |  |  |  |
|                                  | Effective                                  | 7 %                         | - 2                               |                         |       |  |  |  |  |  |
|                                  |                                            | 67.4 kg/day                 | 7% NaClO required                 |                         |       |  |  |  |  |  |
|                                  | Specific Gravity                           | 1.11 kg/L                   | , to mucho required               |                         |       |  |  |  |  |  |
|                                  | Liquid Amount                              | 1.11 Kg/L                   |                                   |                         |       |  |  |  |  |  |
|                                  | -                                          | (1 T /J                     |                                   |                         |       |  |  |  |  |  |
|                                  | V=                                         | 61 L/day                    |                                   |                         |       |  |  |  |  |  |
|                                  | Pre-Chlorination                           | 40 L/day                    |                                   |                         |       |  |  |  |  |  |
|                                  | Post-                                      | 20 L/day                    |                                   |                         |       |  |  |  |  |  |
|                                  | Storage Tank                               |                             |                                   |                         |       |  |  |  |  |  |
|                                  | Storage Period                             | 5 days equiva               | alent                             |                         |       |  |  |  |  |  |
|                                  | Storage Volume                             |                             |                                   |                         |       |  |  |  |  |  |
|                                  | foe Pre-                                   |                             |                                   |                         |       |  |  |  |  |  |
|                                  | chlorination                               | $0.20 \text{ m}^3$          |                                   |                         |       |  |  |  |  |  |
|                                  |                                            | $0.2 \text{ m}^3$           | Minimum Tank Volur                | me                      |       |  |  |  |  |  |
|                                  |                                            |                             |                                   |                         |       |  |  |  |  |  |
|                                  |                                            |                             |                                   |                         |       |  |  |  |  |  |
|                                  | Storage Period                             | 5 days equiva               | alent                             |                         |       |  |  |  |  |  |
|                                  | Storage volume                             | 2 1                         |                                   |                         |       |  |  |  |  |  |
|                                  | foe Post-                                  | $0.10 \text{ m}^3$          |                                   |                         |       |  |  |  |  |  |
|                                  |                                            | $0.2 \text{ m}^3$           | Minimum Tank Volur                | me                      |       |  |  |  |  |  |
|                                  |                                            | 0. <u>–</u> m               |                                   |                         |       |  |  |  |  |  |
|                                  | Storage Tank                               |                             |                                   |                         |       |  |  |  |  |  |
|                                  | Volume                                     |                             |                                   |                         |       |  |  |  |  |  |
|                                  |                                            | $0.2 m^3$                   |                                   |                         |       |  |  |  |  |  |
|                                  | Volume                                     | 0.2 m                       |                                   |                         |       |  |  |  |  |  |
|                                  | N. 07. 1                                   |                             |                                   |                         |       |  |  |  |  |  |
|                                  | No. of Tank                                | 2 No.                       |                                   |                         |       |  |  |  |  |  |
|                                  | Material                                   | PVC                         |                                   |                         |       |  |  |  |  |  |
|                                  |                                            |                             |                                   |                         |       |  |  |  |  |  |
|                                  |                                            |                             |                                   |                         |       |  |  |  |  |  |

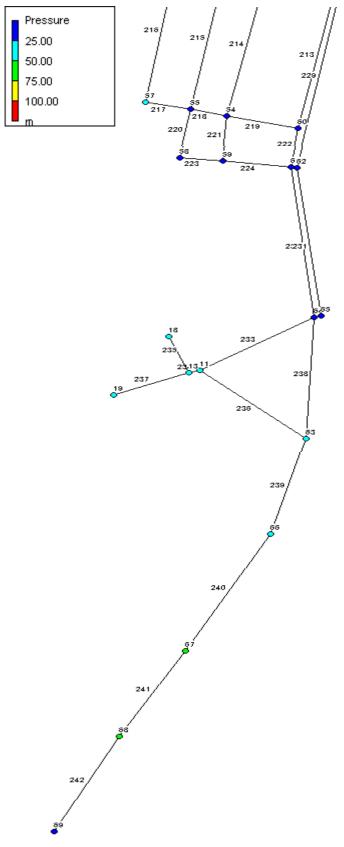
| B. Dosing Amount                        |                               |                                                                      |
|-----------------------------------------|-------------------------------|----------------------------------------------------------------------|
| 1)Design Basis<br>ppm                   |                               |                                                                      |
|                                         |                               |                                                                      |
| Sample Calculation : D2 Ea Drang        |                               |                                                                      |
| Water Quantity                          | $1572 \text{ m}^{3}/\text{d}$ |                                                                      |
| Liquid or Solid<br>Effective            | Liquid Sodium hyd<br>32%      | lrate                                                                |
| Water Quantity<br>Dosing Ratio          | 1,572 m <sup>3</sup> /day     |                                                                      |
|                                         | 10                            | 0 mg/L                                                               |
|                                         |                               |                                                                      |
| Dosing Amount<br>Effective<br>52 % NaOH | 15.72 kg/day<br>32 %          |                                                                      |
| Required<br>Amount                      | 49.1 kg/day                   |                                                                      |
| Specific Gravity<br>Liquid Amount       | 1.35 kg/L                     |                                                                      |
| V=                                      | 36 L/day                      |                                                                      |
| Tank                                    |                               |                                                                      |
| Storage Period                          | 5 days<br>equivalent          | This is diluted as needed, in this case, storage days will be short. |
| Storage Volume                          | 0.18 m <sup>3</sup>           |                                                                      |
|                                         | $0.2 \text{ m}^3$             | Minimum Tank Volume                                                  |
| Storage Volume                          |                               |                                                                      |
| Volume                                  | 0.2 m <sup>3</sup>            |                                                                      |
| No. of Tank<br>Material                 | 1 No.<br>PVC                  |                                                                      |

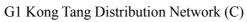



K3-1 Dak Ui Distribution Network

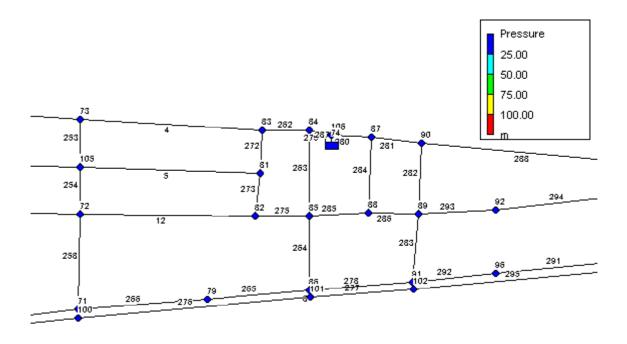

| Network Table - Nodes |                   |       |          | Network Table - Links |                   |          |           |
|-----------------------|-------------------|-------|----------|-----------------------|-------------------|----------|-----------|
|                       | Demand            | Head  | Pressure |                       | Flow              | Velocity | Head loss |
| Node ID               | m <sup>3</sup> /d | m     | m        | Link ID               | m <sup>3</sup> /d | m/s      | m/km      |
| June 3                | 34.4              | 714.9 | 29.9     | Pipe 2                | 515.6             | 0.3      | 1.15      |
| Junc 4                | 27.2              | 714.5 | 37.5     | Pipe 3                | 226.6             | 0.3      | 1.90      |
| June 5                | 17.2              | 714.1 | 42.1     | Pipe 4                | 169.2             | 0.3      | 1.09      |
| June 6                | 17.2              | 713.7 | 44.2     | Pipe 5                | 109.9             | 0.3      | 2.09      |
| June 7                | 17.2              | 713.6 | 44.6     | Pipe 6                | 92.7              | 0.2      | 1.51      |
| Junc 8                | 17.2              | 712.9 | 59.9     | Pipe 7                | 90.4              | 0.2      | 1.44      |
| Junc 9                | 0.0               | 712.9 | 63.9     | Pipe 8                | 38.8              | 0.2      | 2.32      |
| Junc 10               | 7.2               | 712.9 | 62.9     | Pipe 9                | 7.2               | 0.0      | 0.05      |
| Junc 11               | 7.2               | 712.9 | 56.9     | Pipe 10               | 32.1              | 0.2      | 1.62      |
| Junc 12               | 0.0               | 712.9 | 57.9     | Pipe 11               | 14.9              | 0.1      | 0.39      |
| June 13               | 7.2               | 712.9 | 59.9     | Pipe 12               | 34.4              | 0.2      | 1.85      |
| Junc 14               | 17.2              | 713.2 | 56.2     | Pipe 13               | 17.2              | 0.1      | 0.51      |
| June 15               | 17.2              | 713.1 | 58.6     | Pipe 14               | 14.4              | 0.1      | 0.37      |
| Junc 16               | 17.2              | 713.7 | 29.9     | Pipe 15               | 7.2               | 0.0      | 0.06      |
| Junc 17               | 27.2              | 714.5 | 38.5     | Pipe 16               | 7.2               | 0.0      | 0.06      |
| Junc 18               | 25.6              | 714.3 | 57.3     | Pipe 17               | 7.2               | 0.0      | 0.06      |
| Junc 19               | 27.2              | 714.4 | 42.4     | Pipe 18               | 254.6             | 0.4      | 2.38      |
| June 20               | 27.2              | 714.2 | 45.7     | Pipe 19               | 206.4             | 0.3      | 1.59      |
| June 21               | 17.2              | 713.9 | 47.9     | Pipe 20               | 137.6             | 0.2      | 0.73      |
| June 22               | 17.2              | 713.7 | 43.7     | Pipe 21               | 120.4             | 0.2      | 0.57      |
| June 23               | 17.2              | 713.0 | 37.0     | Pipe 22               | 68.8              | 0.2      | 1.79      |
| June 24               | 17.2              | 712.5 | 38.5     | Pipe 23               | 51.6              | 0.2      | 1.04      |
| June 25               | 17.2              | 712.3 | 37.8     | Pipe 24               | 34.4              | 0.2      | 1.85      |
| June 26               | 17.2              | 712.1 | 24.1     | Pipe 25               | 17.2              | 0.1      | 0.51      |
| June 27               | 17.2              | 713.1 | 43.1     | Pipe 26               | 34.4              | 0.2      | 1.85      |
| June 28               | 17.2              | 712.5 | 38.5     | Pipe 27               | 17.2              | 0.1      | 0.51      |
| June 29               | 7.2               | 712.5 | 26.5     | Pipe 28               | 41.6              | 0.3      | 2.65      |
| June 30               | 17.2              | 713.3 | 45.3     | Pipe 29               | 24.4              | 0.1      | 0.97      |
| June 31               | 17.2              | 713.1 | 36.1     | Pipe 30               | 7.2               | 0.0      | 0.06      |
| June 2                | 25.6              | 714.2 | 44.2     | Pipe 1                | 21.0              | 0.1      | 0.74      |
| Resvr 1               |                   | 715.0 |          | Pipe 31               | -4.6              | 0.0      | 0.04      |
|                       |                   |       |          | Pipe 32               | 30.2              | 0.2      | 1.44      |



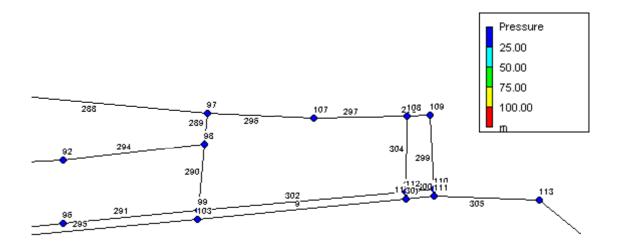

G1 Kong Tang Key Map



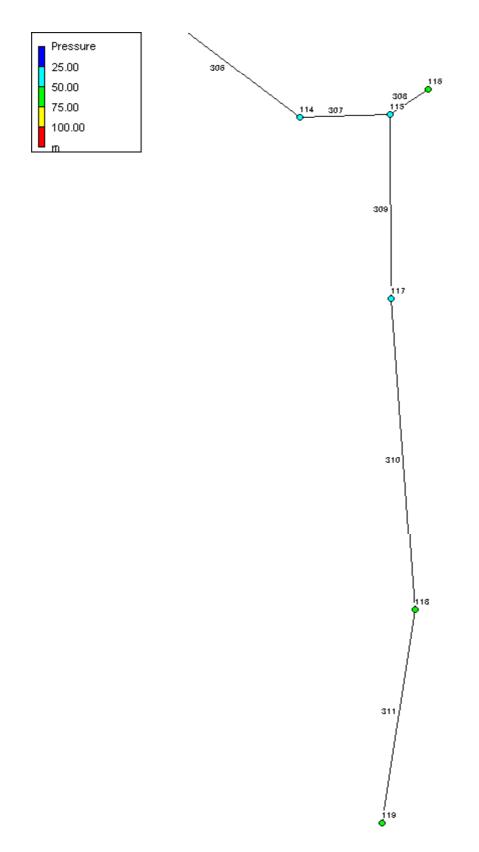

G1 Kong Tang Distribution Network (A)




G1 Kong Tang Distribution Network (B)







Appendix-146



G1 Kong Tang Distribution Network (D)

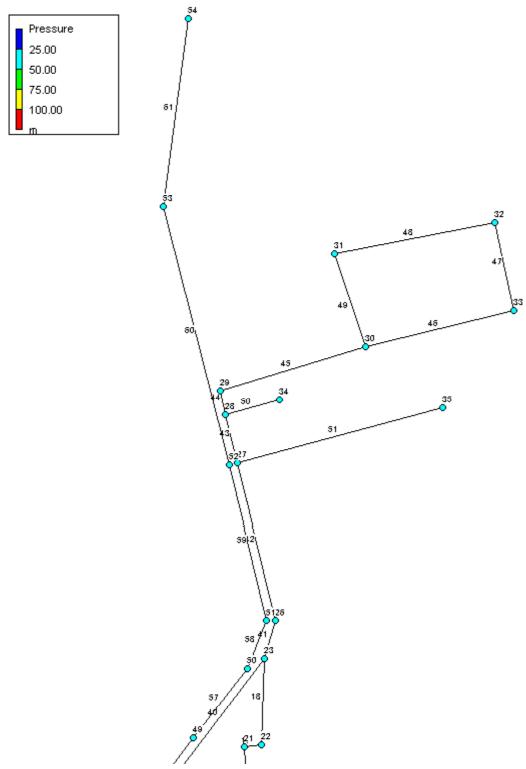


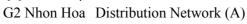
G1 Kong Tang Distribution Network (E)

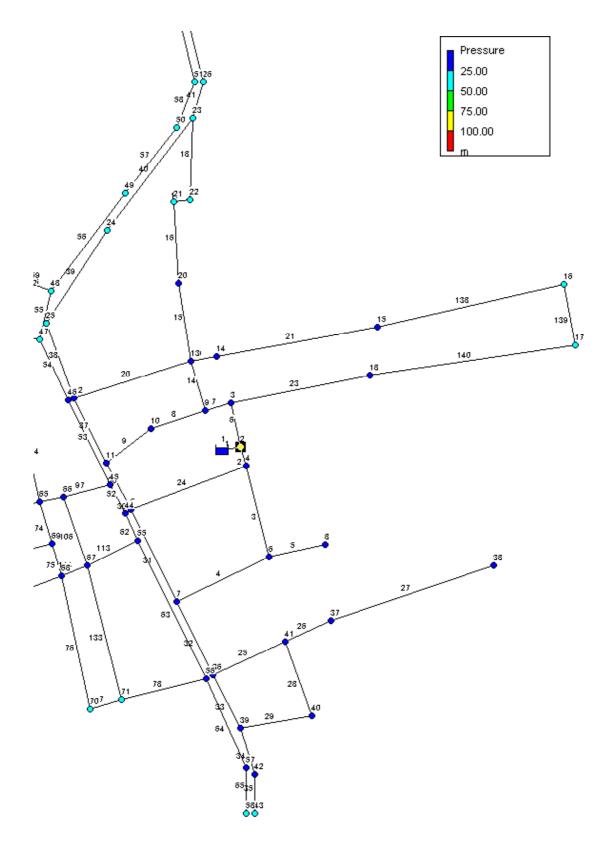



G1 Kong Tang Distribution Network (F)

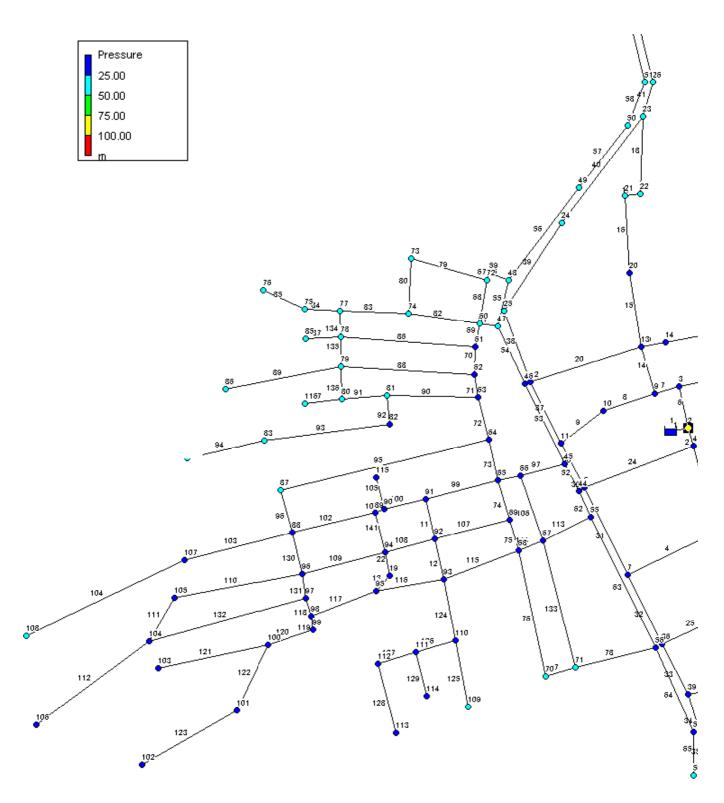
| ]                  | Network Ta        | ble - Nodes    | 5        | Network Table - Links |              |          |           |
|--------------------|-------------------|----------------|----------|-----------------------|--------------|----------|-----------|
|                    | Demand            | Head           | Pressure |                       | Flow         | Velocity | Head loss |
| Node ID            | m <sup>3</sup> /d | m              | m        | Link ID               | $m^3/d$      | m/s      | m/km      |
| Junc 1             | 5.2               | 749.4          | 29.4     | Pipe 163              | 8.0          | 0.1      | 0.07      |
| June 2             | 5.2               | 749.4          |          | Pipe 164              | 5.2          | 0.0      | 0.04      |
| June 3             | 5.2               | 749.3          |          | Pipe 165              | -2.4         | 0.0      | 0.02      |
| Junc 4             | 5.2               | 749.4          |          | Pipe 166              | -2.3         | 0.0      | 0.02      |
| June 5             | 5.2               | 749.3          |          | Pipe 167              | -9.9         | 0.1      | 0.12      |
| Junc 6             | 5.2               | 749.3          |          | Pipe 168              | -16.1        | 0.1      | 0.45      |
| Junc 7             | 5.2               | 749.3          |          | Pipe 169              | -8.1         | 0.1      | 0.07      |
| Junc 8             | 5.2               | 749.5          |          | Pipe 170              | -13.2        | 0.1      | 0.31      |
| Junc 9             | 5.2               | 749.4          |          | Pipe 171              | -69.2        | 0.2      | 0.63      |
| Junc 10            | 11.2              | 749.5          |          | Pipe 172              | 2.9          | 0.0      | 0.02      |
| June 12            | 11.2              | 749.6          |          | Pipe 173              | -5.2         | 0.0      | 0.04      |
| Junc 14            | 11.2              | 749.6          |          | Pipe 174              | -20.3        | 0.1      | 0.19      |
| June 15            | 11.2              | 749.6          |          | Pipe 175              | -25.5        | 0.1      | 0.28      |
| Junc 16            | 11.2              | 749.8          |          | Pipe 176              | -44.8        | 0.2      | 0.80      |
| Junc 17            | 11.2              | 749.6          |          | Pipe 177              | 13.2         | 0.1      | 0.06      |
| June 20            | 11.2              | 749.9          |          | Pipe 178              | -100.9       | 0.2      | 1.28      |
| June 21            | 11.2              | 749.7          |          | Pipe 179              | 31.8         | 0.2      | 1.59      |
| June 22            | 11.2              | 749.6          |          | Pipe 180              | 9.3          | 0.1      | 0.10      |
| June 23            | 11.2              | 750.0          |          | Pipe 181              | -11.2        | 0.0      | 0.04      |
| Junc 24            | 11.2              | 749.9          |          | Pipe 182              | -45.4        | 0.1      | 0.29      |
| June 25            | 11.2              | 749.6          |          | Pipe 183              | -11.3        | 0.1      | 0.18      |
| June 26            | 11.2              | 749.9          |          | Pipe 184              | -74.9        | 0.2      | 0.72      |
| June 27            | 11.2              | 750.1          |          | Pipe 185              | -29.1        | 0.2      | 1.35      |
| June 28            | 11.2              | 750.4          |          | Pipe 186              | -18.4        | 0.1      | 0.58      |
| June 29            | 5.2               | 750.2          |          | Pipe 187              | -173.5       | 0.4      | 3.60      |
| June 31            | 5.2               | 749.8          |          | Pipe 188              | 28.0         | 0.2      | 1.25      |
| June 32            | 5.2               | 749.7          |          | Pipe 189              | 21.9         | 0.1      | 0.79      |
| June 33            | 5.2               | 749.7          |          | Pipe 190              | 28.4         | 0.2      | 1.29      |
| June 34            | 11.2              | 749.4          |          | Pipe 191              | 74.7         | 0.2      | 0.72      |
| June 35            | 11.2              | 749.3          |          | Pipe 192              | -51.5        | 0.1      | 0.36      |
| June 36            | 11.2              | 749.3          |          | Pipe 193              | 16.6         | 0.0      | 0.01      |
| June 37            | 11.2              | 749.5          |          | Pipe 194              | 17.7         | 0.1      | 0.54      |
| June 38            | 11.2              | 749.5          |          | Pipe 195              | 29.6         |          | 0.58      |
| June 39            | 11.2              | 749.6          |          | Pipe 196<br>Pipe 197  | 18.4<br>-6.0 | 0.1      | 0.38      |
| June 40            | 11.2              | 749.7          |          |                       |              |          |           |
| Junc 41<br>Junc 42 | 11.2<br>17.2      | 749.9          |          | Pipe 198              | 41.6         | 0.1      | 0.69      |
| June 42<br>June 43 | 17.2              | 750.2          |          | Pipe 199<br>Pipe 200  | 2.0          | 0.1      | 0.01      |
| June 43<br>June 44 | 17.2              | 750.1<br>749.9 |          | Pipe 200<br>Pipe 201  | -67.9        | 0.0      | 1.74      |
| June 44<br>June 45 | 17.2              | 749.9          |          | Pipe 201<br>Pipe 202  | -07.9        | 0.2      | 0.17      |
| June 45<br>June 46 |                   | 749.8          |          | · ·                   | -10.9        | 0.1      | 0.17      |
|                    | 11.2              |                |          | Pipe 203              |              | 0.1      | 0.80      |
| June 47            | 11.2              | 749.3          |          | Pipe 204              | 37.1         |          |           |
| June 48            | 11.2              | 749.3          |          | Pipe 205              | 6.2          | 0.0      | 0.02      |
| Junc 49            | 11.2              | 749.5          | 19.3     | Pipe 206              | -24.3        | 0.1      | 0.26      |


| ]                  | Network Ta  | ble - Nodes    | 5        | Network Table - Links |               |          |           |
|--------------------|-------------|----------------|----------|-----------------------|---------------|----------|-----------|
|                    | Demand      | Head           | Pressure |                       | Flow          | Velocity | Head loss |
| Node ID            | $m^3/d$     | m              | m        | Link ID               | $m^3/d$       | m/s      | m/km      |
| Junc 50            | 11.2        | 749.3          | 16.3     | Pipe 207              | 56.9          | 0.2      | 1.25      |
| Junc 51            | 11.2        | 749.3          |          | Pipe 208              | 45.7          | 0.2      | 0.83      |
| June 52            | 11.2        | 749.2          |          | Pipe 209              | 15.5          | 0.1      | 0.42      |
| June 53            | 11.2        | 749.5          |          | Pipe 210              | 19.0          | 0.1      | 0.17      |
| Junc 54            | 11.2        | 749.1          |          | Pipe 211              | 7.8           | 0.0      | 0.02      |
| June 55            | 11.2        | 749.1          |          | Pipe 212              | 68.2          | 0.2      | 1.76      |
| June 56            | 11.2        | 749.2          |          | Pipe 213              | 57.8          | 0.2      | 1.28      |
| June 57            | 11.2        | 749.1          |          | Pipe 214              | 21.6          | 0.1      | 0.77      |
| June 58            | 11.2        | 749.0          |          | Pipe 215              | 19.7          | 0.1      | 0.66      |
| June 59            | 11.2        | 749.0          |          | Pipe 216              | 19.3          | 0.1      | 0.63      |
| June 60            | 5.2<br>5.2  | 749.1          |          | Pipe 217              | 8.1           | 0.1      | 0.07      |
| June 61            |             | 748.9          |          | Pipe 218              | -3.1          | 0.0      | 0.02      |
| June 62            | 11.2<br>5.2 | 749.5<br>748.8 |          | Pipe 219              | -14.6<br>19.7 | 0.1      | 0.38      |
| Junc 64<br>Junc 65 | 5.2         | 748.8          |          | Pipe 220<br>Pipe 221  | 21.9          | 0.1      | 0.00      |
| June 03            | 5.2         | 749.3          |          | Pipe 221<br>Pipe 222  | 38.0          | 0.1      | 2.23      |
| June 11<br>June 13 | 5.2         | 748.7          |          | Pipe 222<br>Pipe 223  | 8.5           | 0.2      | 0.08      |
| June 13            | 5.2         | 748.7          |          | Pipe 223              | 19.2          | 0.1      | 0.62      |
| June 19            | 5.2         | 748.7          |          | Pipe 225              | 202.6         | 0.1      | 1.53      |
| June 63            | 5.2         | 748.7          |          | Pipe 225              | 185.4         | 0.3      | 1.33      |
| June 66            | 5.2         | 748.6          |          | Pipe 220              | 168.2         | 0.3      | 1.07      |
| June 67            | 5.2         | 748.4          |          | Pipe 227              | 157.0         | 0.2      | 0.94      |
| June 68            | 5.2         | 748.4          |          | Pipe 229              | 16.4          | 0.1      | 0.12      |
| June 69            | 5.2         | 748.4          |          | Pipe 230              | 52.0          | 0.1      | 0.37      |
| Junc 70            | 17.2        | 750.6          |          | Pipe 231              | 5.2           | 0.0      | 0.01      |
| Junc 71            | 11.2        | 750.6          | 14.6     | Pipe 233              | 16.8          | 0.1      | 0.49      |
| June 72            | 5.2         | 750.7          | 11.8     | Pipe 234              | 15.6          | 0.1      | 0.43      |
| June 73            | 11.2        | 750.9          | 10.9     | Pipe 235              | 5.2           | 0.0      | 0.04      |
| Junc 79            | 11.2        | 751.2          | 12.2     | Pipe 236              | -4.1          | 0.0      | 0.03      |
| Junc 81            | 11.2        | 751.5          |          | Pipe 237              | 5.2           | 0.0      | 0.04      |
| Junc 82            | 5.2         | 751.5          | 10.5     | Pipe 238              | 30.1          | 0.1      | 0.38      |
| June 83            | 11.2        | 751.7          |          | Pipe 239              | 20.8          | 0.1      | 0.72      |
| Junc 84            | 17.2        | 751.9          |          | Pipe 240              | 15.6          | 0.1      | 0.43      |
| June 85            | 23.2        | 751.9          |          | Pipe 241              | 10.4          | 0.1      | 0.15      |
| Junc 86            | 23.2        | 751.8          |          | Pipe 242              | 5.2           | 0.0      |           |
| Junc 87            | 17.2        | 751.9          |          | Pipe 243              | -212.7        | 0.3      | 1.68      |
| Junc 88            | 23.2        | 751.8          |          | Pipe 244              | 11.2          | 0.1      | 0.19      |
| June 89            | 17.2        | 751.7          |          | Pipe 245              | 39.5          | 0.2      | 2.40      |
| June 90            | 17.2        | 751.8          |          | Pipe 246              | 33.5          | 0.2      | 1.76      |
| June 91            | 23.2        | 751.7          |          | Pipe 247              | 39.0          | 0.2      | 2.34      |
| June 92            | 11.2        | 751.6          |          | Pipe 248              | 73.3          | 0.2      | 0.70      |
| June 96            | 23.2        | 751.6          |          | Pipe 249              | -39.4         | 0.2      | 2.39      |
| June 97            | 11.2        | 751.6          |          | Pipe 250              | -51.5         | 0.2      | 1.03      |
| Junc 98            | 11.2        | 751.6          | 13./     | Pipe 251              | -219.8        | 0.3      | 1.79      |


| ]        | Network Ta        | ble - Nodes | 5        | Network Table - Links |              |          |              |
|----------|-------------------|-------------|----------|-----------------------|--------------|----------|--------------|
|          | Demand            | Head        | Pressure |                       | Flow         | Velocity | Head loss    |
| Node ID  | m <sup>3</sup> /d | m           | m        | Link ID               | $m^3/d$      | m/s      | m/km         |
| Junc 99  | 17.2              | 751.6       | 18.6     | Pipe 252              | -235.1       | 0.4      | 2.04         |
| Junc 100 | 23.2              | 750.9       | 14.9     | Pipe 253              | 24.2         | 0.1      | 0.95         |
| Junc 101 | 35.2              | 751.8       | 12.3     | Pipe 254              | 24.3         | 0.1      | 0.97         |
| June 102 | 29.2              | 751.8       |          | Pipe 255              | 38.2         | 0.2      | 2.25         |
| June 103 | 17.2              | 751.7       |          | Pipe 256              | -33.6        | 0.2      | 1.76         |
| Junc 104 | 5.2               | 750.4       |          | Pipe 257              | -102.2       | 0.4      | 3.80         |
| Junc 105 | 5.2               | 750.8       |          | Pipe 258              | -22.8        | 0.1      | 0.86         |
| Junc 106 | 17.2              | 752.0       |          | Pipe 259              | -237.0       | 0.4      | 2.07         |
| Junc 107 | 11.2              | 750.8       |          | Pipe 262              | -323.1       | 0.5      | 3.77         |
| Junc 108 | 11.2              | 750.3       |          | Pipe 263              | 667.8        | 0.3      | 0.43         |
| Junc 109 | 11.2              | 750.3       |          | Pipe 264              | 564.3        | 0.2      | 0.31         |
| Junc 110 | 11.2              | 750.2       |          | Pipe 265              | 101.8        | 0.4      | 3.77         |
| Junc 111 | 11.2              | 750.2       |          | Pipe 266              | 90.6         | 0.3      | 3.02         |
| June 112 | 11.2              | 750.3       |          | Pipe 272              | 41.5         | 0.2      | 2.63         |
| June 113 | 11.2              | 750.2       |          | Pipe 273              | -8.7         | 0.1      | 0.08         |
| Junc 114 | 11.2              | 750.1       |          | Pipe 275              | -55.8        | 0.3      | 4.63         |
| June 115 | 11.2              | 750.1       |          | Pipe 276              | -260.2       | 0.4      | 2.48         |
| Junc 116 | 11.2              | 750.1       |          | Pipe 277              | 98.2         | 0.1      | 0.39         |
| June 117 | 11.2              | 749.9       |          | Pipe 278              | 45.7         | 0.2      | 0.83         |
| Junc 118 | 11.2              | 749.5       |          | Pipe 279              | -1008.1      | 0.4      | 0.95         |
| Junc 119 | 11.2              | 749.4       |          | Pipe 280              | 206.7        | 0.3      | 1.59         |
| June 30  | 11.2              | 750.3       | 15.3     | Pipe 281              | 169.1        | 0.3      | 1.09         |
| Resvr 74 |                   | 752.0       |          | Pipe 282              | 36.0         | 0.1      | 0.53         |
|          |                   |             |          | Pipe 283              | 18.9         | 0.1      | 0.16         |
|          |                   |             |          | Pipe 284              | 20.4         | 0.1      | 0.70         |
|          |                   |             |          | Pipe 285              | 24.6         | 0.1      | 0.99         |
|          |                   |             |          | Pipe 286              | 21.8         | 0.1      | 0.79         |
|          |                   |             |          | Pipe 287              | -1232.0      | 0.5      | 1.40         |
|          |                   |             |          | Pipe 288              | 115.9        | 0.2      | 0.53         |
|          |                   |             |          | Pipe 289              | 49.0         | 0.1      | 0.11         |
|          |                   |             |          | Pipe 290              | 48.4         | 0.1      | 0.11         |
|          |                   |             |          | Pipe 291              | -18.2        | 0.1      | 0.15         |
|          |                   |             |          | Pipe 292              | -41.4        | 0.1      | 0.69         |
|          |                   |             |          | Pipe 293              | 21.7         |          | 0.78         |
|          |                   |             |          | Pipe 294              | 10.5         | 0.1      | 0.15         |
|          |                   |             |          | Pipe 295              | 69.0<br>55.7 | 0.1      | 0.20         |
|          |                   |             |          | Pipe 296              | 55.7         |          | 4.61         |
|          |                   |             |          | Pipe 297              | 44.5<br>28.5 | 0.3      | 3.00         |
|          |                   |             |          | Pipe 298              | 17.3         | 0.2      | 0.51         |
|          |                   |             |          | Pipe 299              | 44.9         | 0.1      |              |
|          |                   |             |          | Pipe 300              | 44.9         | 0.3      | 3.05<br>3.66 |
|          |                   |             |          | Pipe 302<br>Pipe 303  | 49.3<br>38.8 | 0.3      |              |
|          |                   |             |          | <u> </u>              | 38.8<br>4.8  | 0.2      | 2.32         |
|          |                   |             |          | Pipe 304              | 4.8          | 0.0      | 0.04         |


| ]       | Network Ta        | ble - Node | s        | Network Table - Links |                   |          |           |
|---------|-------------------|------------|----------|-----------------------|-------------------|----------|-----------|
|         | Demand            | Head       | Pressure |                       | Flow              | Velocity | Head loss |
| Node ID | m <sup>3</sup> /d | m          | m        | Link ID               | m <sup>3</sup> /d | m/s      | m/km      |
|         |                   |            |          | Pipe 305              | 78.4              | 0.1      | 0.26      |
|         |                   |            |          | Pipe 306              | 67.2              | 0.1      | 0.19      |
|         |                   |            |          | Pipe 307              | 56.0              | 0.1      | 0.14      |
|         |                   |            |          | Pipe 308              | 11.2              | 0.1      | 0.19      |
|         |                   |            |          | Pipe 309              | 33.6              | 0.1      | 0.47      |
|         |                   |            |          | Pipe 310              | 22.4              | 0.1      | 0.83      |
|         |                   |            |          | Pipe 311              | 11.2              | 0.1      | 0.19      |
|         |                   |            |          | Pipe 1                | 20.5              | 0.1      | 0.71      |
|         |                   |            |          | Pipe 2                | 18.6              | 0.1      | 0.59      |
|         |                   |            |          | Pipe 6                | -129.4            | 0.5      | 6.00      |
|         |                   |            |          | Pipe 7                | 143.9             | 0.3      | 2.51      |
|         |                   |            |          | Pipe 8                | 393.6             | 0.2      | 0.16      |
|         |                   |            |          | Pipe 9                | 51.8              | 0.3      | 4.02      |
|         |                   |            |          | Pipe 10               | 44.8              | 0.3      | 3.04      |
|         |                   |            |          | Pipe 11               | 4.1               | 0.0      | 0.04      |
|         |                   |            |          | Pipe 4                | -270.4            | 0.4      | 2.67      |
|         |                   |            |          | Pipe 5                | -38.9             | 0.2      | 2.33      |
|         |                   |            |          | Pipe 12               | -41.9             | 0.3      | 2.68      |




G2 Nhon Hoa Key Map

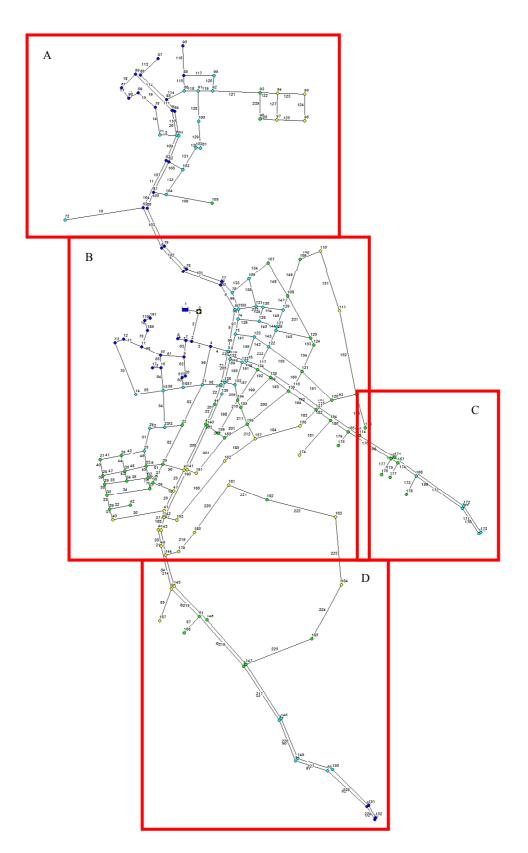




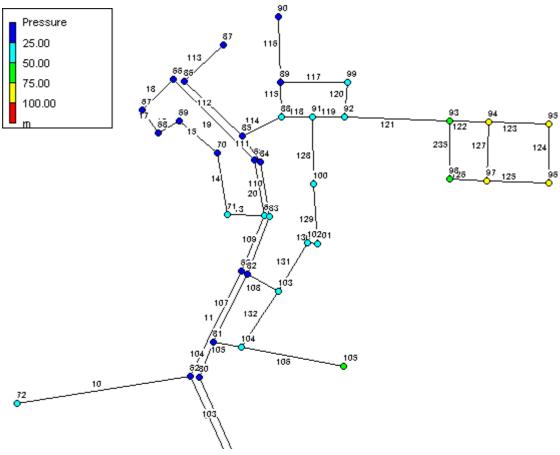


G2 Nhon Hoa Distribution Network (B)

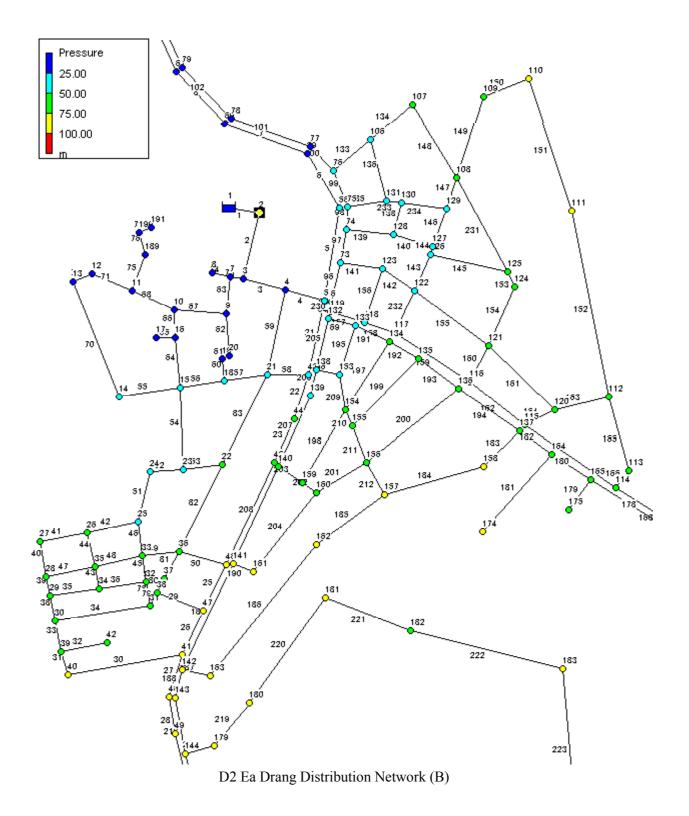


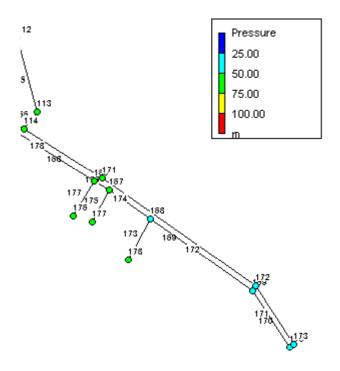

G2 Nhon Hoa Distribution Network (C)

| ]                  | Network Ta        | ble - Nodes    | 6        | Network Table - Links |                   |          |           |  |
|--------------------|-------------------|----------------|----------|-----------------------|-------------------|----------|-----------|--|
| Node ID            | Demand            | Head           | Pressure | Link ID               | Flow              | Velocity | Head loss |  |
| Noue ID            | m <sup>3</sup> /d | m              | m        | LIIKID                | m <sup>3</sup> /d | m/s      | m/km      |  |
| June 2             | 16.6              | 431.9          | 11.9     | Pipe 1                | 1908.4            | 0.5      | 1.04      |  |
| June 3             | 16.6              | 431.9          | 14.9     | Pipe 2                | 1683.2            | 0.4      | 0.81      |  |
| Junc 4             | 16.6              | 431.9          | 11.9     | Pipe 3                | 85.9              | 0.2      | 0.94      |  |
| Junc 5             | 16.6              | 431.6          |          | Pipe 4                | 52.7              | 0.1      | 0.38      |  |
| Junc 6             | 16.6              | 431.6          |          | Pipe 5                | 16.6              | 0.1      | 0.48      |  |
| June 7             | 16.6              | 431.5          |          | Pipe 6                | 208.6             | 0.1      | 0.21      |  |
| Junc 8             | 16.6              | 431.5          |          | Pipe 7                | 148.2             | 0.5      | 7.81      |  |
| Junc 9             | 16.6              | 431.3          |          | Pipe 8                | 13.4              | 0.1      | 0.06      |  |
| Junc 10            | 16.6              | 431.2          |          | Pipe 9                | -3.3              | 0.0      | 0.01      |  |
| Junc 11            | 16.6              | 431.3          |          | Pipe 14               | 118.3             | 0.4      | 5.04      |  |
| Junc 12            | 16.6              | 430.8          |          | Pipe 15               | 87.4              | 0.3      | 2.82      |  |
| June 13            | 16.6              | 430.4          |          | Pipe 16               | 70.8              | 0.3      | 1.89      |  |
| Junc 14            | 16.6              | 430.2          |          | Pipe 17               | 54.2              | 0.2      | 1.14      |  |
| June 15            | 16.6              | 429.8          |          | Pipe 18               | 37.6              | 0.1      | 0.57      |  |
| June 16            | 16.6              | 429.8          |          | Pipe 19               | -39.2             | 0.2      | 2.37      |  |
| June 17            | 16.6              | 429.8          |          | Pipe 20               | -24.9             | 0.2      | 1.01      |  |
| June 18            | 16.6              | 430.6          |          | Pipe 21               | 22.6              | 0.1      | 0.84      |  |
| June 20            | 16.6              | 429.7          |          | Pipe 23               | -43.8             | 0.3      | 2.92      |  |
| June 21            | 16.6              | 429.2          |          | Pipe 24               | 1580.7            | 0.4      | 0.72      |  |
| June 22            | 16.6              | 429.2          |          | Pipe 25               | 55.3              | 0.2      | 1.18      |  |
| June 23            | 16.6              | 429.0          |          | Pipe 26               | 33.2              | 0.2      | 1.73      |  |
| June 24            | 16.6              | 430.2          |          | Pipe 27               | 16.6              | 0.1      | 0.48      |  |
| June 25            | 16.6              | 430.5          |          | Pipe 28               | 5.5               | 0.0      | 0.04      |  |
| June 26            | 16.6              | 428.6          |          | Pipe 29               | -11.1             | 0.1      | 0.18      |  |
| June 27            | 16.6              | 427.4          |          | Pipe 30               | 1227.8            | 0.3      | 0.44      |  |
| June 28            | 16.6<br>16.6      | 426.6          |          | Pipe 31               | 96.7              | 0.1      | 0.38      |  |
| June 29            |                   | 426.5          |          | Pipe 32               | 132.8             | 0.3      | 2.15      |  |
| June 30            | 16.6              | 425.7          |          | Pipe 33               | 60.9<br>33.2      | 0.2      | 1.42      |  |
| June 31            | 16.6              | 425.3          |          | Pipe 34               |                   |          | 0.46      |  |
| June 32<br>June 33 | 16.6              | 425.3          |          | Pipe 35               | 16.6              | 0.1      | 0.12      |  |
| June 33<br>June 34 | 16.6<br>16.6      | 425.3<br>426.6 |          | Pipe 36<br>Pipe 37    | 239.6<br>219.7    | 0.4      | 1.79      |  |
| June 34            | 16.6              | 420.0          |          | Pipe 38               | 178.2             | 0.3      | 1.79      |  |
| June 35<br>June 36 | 16.6              | 427.1          |          | Pipe 39               | 1/8.2             | 0.3      | 1.20      |  |
| June 30<br>June 37 | 16.6              | 430.9          |          | Pipe 40               | 145.0             | 0.2      | 2.55      |  |
| June 37            | 16.6              | 430.1          |          | Pipe 41               | 145.0             | 0.3      | 3.31      |  |
| June 39            | 16.6              | 430.7          |          | Pipe 42               | 149.4             | 0.4      | 2.70      |  |
| June 40            | 16.6              | 430.7          |          | Pipe 43               | 1149.4            | 0.3      | 4.87      |  |
| June 40            | 16.6              | 430.6          |          | Pipe 44               | 83.0              | 0.4      | 2.55      |  |
| June 42            | 16.6              | 430.6          |          | Pipe 45               | 66.4              | 0.2      | 1.67      |  |
| June 42<br>June 43 | 16.6              | 430.6          |          | Pipe 46               | 22.9              | 0.2      | 0.86      |  |
| June 45            | 16.6              | 431.6          |          | Pipe 47               | 6.3               | 0.0      | 0.05      |  |
| June 45            | 16.6              | 431.4          |          | Pipe 48               | -10.3             | 0.0      | 0.05      |  |
| June 45            | 16.6              | 430.7          |          | Pipe 49               | -26.9             | 0.1      | 1.16      |  |
|                    | 10.0              | 130.7          | 20.2     | i ipe +7              | -20.7             | 0.2      | 1.10      |  |

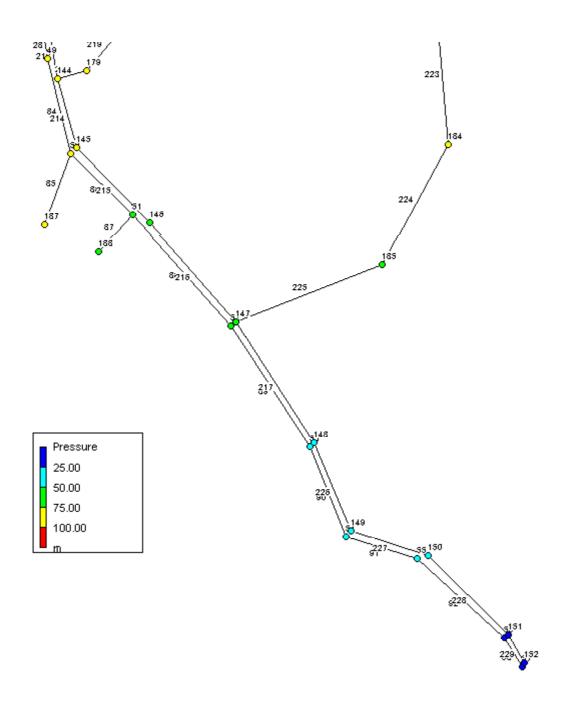

| ]                  | Network Ta        | ble - Nodes    | 6        | Network Table - Links |                   |          |           |
|--------------------|-------------------|----------------|----------|-----------------------|-------------------|----------|-----------|
| Nada ID            | Demand            | Head           | Pressure | L inte ID             | Flow              | Velocity | Head loss |
| Node ID            | m <sup>3</sup> /d | m              | m        | Link ID               | m <sup>3</sup> /d | m/s      | m/km      |
| Junc 47            | 16.6              | 430.3          | 25.8     | Pipe 50               | 16.6              | 0.1      | 0.48      |
| Junc 48            | 16.6              | 429.9          | 30.9     | Pipe 51               | 16.6              | 0.1      | 0.48      |
| Junc 49            | 16.6              | 429.5          | 40.0     | Pipe 52               | 757.0             | 0.5      | 2.41      |
| June 50            | 16.6              | 429.2          |          | Pipe 53               | 241.8             | 0.4      | 2.15      |
| June 51            | 16.6              | 429.1          | 46.6     | Pipe 54               | 225.2             | 0.3      | 1.88      |
| June 52            | 16.6              | 429.0          |          | Pipe 55               | 136.6             | 0.3      | 2.27      |
| June 53            | 16.6              | 428.6          | 43.1     | Pipe 56               | 99.6              | 0.2      | 1.24      |
| June 54            | 16.6              | 428.3          |          | Pipe 57               | 83.0              | 0.2      | 0.88      |
| June 55            | 16.6              | 431.5          |          | Pipe 58               | 66.4              | 0.2      | 0.58      |
| June 56            | 16.6              | 431.3          |          | Pipe 59               | 49.8              | 0.1      | 0.34      |
| June 57            | 16.6              | 431.1          |          | Pipe 60               | 33.2              | 0.1      | 0.46      |
| June 58            | 16.6              | 431.1          |          | Pipe 61               | 16.6              | 0.1      | 0.48      |
| June 59            | 16.6              | 429.9          |          | Pipe 62               | 454.2             | 0.3      | 0.90      |
| Junc 60            | 16.6              | 430.2          |          | Pipe 63               | 59.1              | 0.1      | 0.47      |
| Junc 61            | 16.6              | 430.2          |          | Pipe 64               | 33.2              | 0.1      | 0.46      |
| June 62            | 16.6              | 430.2          |          | Pipe 65               | 16.6              | 0.1      | 0.12      |
| June 63            | 16.6              | 430.3          |          | Pipe 66               | 20.4              | 0.1      | 0.70      |
| June 64            | 16.6              | 430.7          |          | Pipe 67               | 3.8               | 0.0      | 0.03      |
| June 65            | 16.6              | 431.1          |          | Pipe 68               | -35.7             | 0.2      | 1.98      |
| Junc 66            | 16.6              | 431.2          |          | Pipe 69               | -56.8             | 0.1      | 0.14      |
| June 67            | 16.6              | 431.4          |          | Pipe 70               | -112.0            | 0.2      | 0.50      |
| Junc 68            | 16.6              | 431.4          |          | Pipe 71               | -173.0            | 0.3      | 1.13      |
| Junc 69            | 16.6              | 431.1          |          | Pipe 72               | -256.2            | 0.4      | 2.41      |
| June 70            | 16.6              | 431.3          |          | Pipe 73               | -286.3            | 0.4      | 2.99      |
| June 71            | 16.6              | 431.3          |          | Pipe 74               | 7.4               | 0.0      | 0.06      |
| June 72            | 16.6              | 429.9          |          | Pipe 75               | -40.0             | 0.2      | 2.46      |
| June 73            | 16.6              | 429.7          |          | Pipe 76               | 11.3              | 0.1      | 0.19      |
| June 74            | 16.6              | 429.7          |          | Pipe 77               | -5.3              | 0.0      | 0.04      |
| June 75            | 16.6              | 429.2          |          | Pipe 78               | -9.3              | 0.0      |           |
| June 76<br>June 77 | 16.6<br>16.6      | 429.1<br>429.3 |          | Pipe 79<br>Pipe 80    | 23.0<br>6.4       | 0.1      | 0.87      |
| June 77<br>June 78 | 16.6              | 429.3          |          | Pipe 80               | 71.9              | 0.0      | 1.94      |
| June 78            | 16.6              | 429.2          |          | Pipe 82               | 76.4              | 0.3      | 2.18      |
| June 80            | 16.6              | 428.3          |          | Pipe 82               | 66.1              | 0.3      | 1.66      |
| June 80            | 16.6              | 428.3          |          | Pipe 83               | 33.2              | 0.2      | 0.46      |
| June 81<br>June 82 | 16.6              | 428.0          |          | Pipe 85               | 16.6              | 0.1      | 0.40      |
| June 82<br>June 83 | 16.6              | 428.0          |          | Pipe 86               | 38.7              | 0.1      | 2.31      |
| June 83            | 16.6              | 425.3          |          | Pipe 87               | 16.6              | 0.2      | 1.47      |
| June 85            | 16.6              | 429.0          |          | Pipe 88               | 44.3              | 0.2      | 2.98      |
| June 85            | 16.6              | 429.0          |          | Pipe 89               | 16.6              | 0.3      | 1.47      |
| June 87            | 16.6              | 430.4          |          | Pipe 90               | 66.7              | 0.2      |           |
| June 88            | 16.6              | 430.4          |          | Pipe 91               | 0.3               | 0.0      | 0.01      |
| June 89            | 16.6              | 430.6          |          | Pipe 92               | 49.8              | 0.0      | 3.73      |
| June 90            | 16.6              | 430.6          |          | Pipe 92               | 33.2              | 0.3      | 5.45      |
| 5 uno 70           | 10.0              | 150.0          | 20.0     | 1 100 75              | 55.2              | 0.5      | 5.т5      |

| 1                    | Network Tal       | ble - Nodes    | 6        | Network Table - Links |                   |          |           |
|----------------------|-------------------|----------------|----------|-----------------------|-------------------|----------|-----------|
| Nada ID              | Demand            | Head           | Pressure | L inte ID             | Flow              | Velocity | Head loss |
| Node ID              | m <sup>3</sup> /d | m              | m        | Link ID               | m <sup>3</sup> /d | m/s      | m/km      |
| Junc 91              | 16.6              | 430.7          | 20.9     | Pipe 94               | 16.6              | 0.2      | 1.47      |
| June 92              | 16.0              | 430.7          | 19.2     | Pipe 95               | 13.5              | 0.1      | 0.33      |
| Junc 93              | 16.6              | 430.7          |          | Pipe 96               | -3.1              | 0.0      | 0.02      |
| Junc 94              | 16.6              | 430.5          |          | Pipe 97               | 498.6             | 0.3      | 1.08      |
| June 95              | 16.6              | 430.5          |          | Pipe 98               | 505.8             | 0.3      | 1.11      |
| Junc 96              | 16.6              | 430.4          |          | Pipe 99               | 195.5             | 0.3      | 1.43      |
| Junc 97              | 16.6              | 430.4          |          | Pipe 100              | 166.3             | 0.3      | 1.05      |
| Junc 98              | 16.6              | 430.4          |          | Pipe 101              | 133.1             | 0.2      | 0.69      |
| Junc 99              | 16.6              | 430.4          |          | Pipe 102              | 102.4             | 0.2      | 0.42      |
| Junc 100             | 16.6              | 430.1          |          | Pipe 103              | 33.2              | 0.1      | 0.05      |
| Junc 101             | 16.6              | 429.7          |          | Pipe 104              | 16.6              | 0.0      | 0.01      |
| Junc 102             | 16.6              | 429.5          |          | Pipe 105              | 16.6              | 0.2      | 1.47      |
| June 103             | 16.6              | 429.9          |          | Pipe 106              | -23.8             | 0.1      | 0.92      |
| Junc 104             | 16.6              | 430.2          |          | Pipe 107              | 30.8              | 0.2      | 1.50      |
| June 105             | 16.6              | 430.2          |          | Pipe 108              | 25.7              | 0.2      | 1.07      |
| June 106             | 16.6              | 429.9          |          | Pipe 109              | 15.3              | 0.1      | 0.41      |
| June 107             | 16.6              | 430.4          |          | Pipe 110              | 17.9              | 0.1      | 0.55      |
| June 108             | 16.6              | 430.4          |          | Pipe 111              | 1.3               | 0.0      | 0.01      |
| June 109             | 16.6              | 429.8          |          | Pipe 112              | 16.6              | 0.1      | 0.48      |
| June 110             | 16.6              | 430.0          |          | Pipe 113              | 378.5             | 0.3      | 0.63      |
| Junc 111             | 16.6              | 429.0          |          | Pipe 114              | 325.5             | 0.2      | 0.48      |
| Junc 112             | 16.6              | 428.8          |          | Pipe 115              | 257.6             | 0.4      | 2.43      |
| June 113             | 16.6              | 428.7          |          | Pipe 116              | 143.2             | 0.2      | 0.79      |
| June 114             | 16.6              | 429.0          |          | Pipe 117              | 117.8             | 0.2      | 0.55      |
| June 115<br>June 116 | 16.6<br>16.6      | 430.4          |          | Pipe 118              | -18.2             | 0.0      | 0.05      |
| June 110<br>June 19  | 16.6              | 428.1<br>430.5 |          | Pipe 119<br>Pipe 120  | 83.0<br>66.4      | 0.2      | 0.88      |
| Resvr 1              | 10.0              | 430.3          | 19.3     | Pipe 120<br>Pipe 121  | 16.6              | 0.2      | 0.48      |
| Resvi I              |                   | 432.0          |          | Pipe 121<br>Pipe 122  | 33.2              | 0.1      | 1.73      |
|                      |                   |                |          | Pipe 122<br>Pipe 123  | 16.6              | 0.2      | 0.48      |
|                      |                   |                |          | Pipe 123              | 99.6              | 0.1      | 3.62      |
|                      |                   |                |          | Pipe 124              | 16.6              | 0.1      | 0.48      |
|                      |                   |                |          | Pipe 125              | 66.4              | 0.1      | 6.47      |
|                      |                   |                |          | Pipe 120              | 33.2              | 0.4      | 1.73      |
|                      |                   |                |          | Pipe 127              | 16.6              | 0.2      | 0.48      |
|                      |                   |                |          | Pipe 120              | 16.6              | 0.1      | 0.48      |
|                      |                   |                |          | Pipe 130              | 49.5              | 0.1      | 0.34      |
|                      |                   |                |          | Pipe 130              | 30.3              | 0.1      | 0.14      |
|                      |                   |                |          | Pipe 132              | 31.9              | 0.1      | 0.42      |
|                      |                   |                |          | Pipe 133              | 12.6              | 0.1      | 0.27      |
|                      |                   |                |          | Pipe 134              | 16.3              | 0.2      | 1.43      |
|                      |                   |                |          | Pipe 135              | 21.8              | 0.2      | 2.46      |
|                      |                   |                |          | Pipe 136              | 32.9              | 0.3      | 5.37      |
|                      |                   |                |          | Pipe 137              | 16.6              | 0.2      | 1.47      |


| ]       | Network Table - Nodes       |           |               |          | Network Table - Links     |                 |                   |  |
|---------|-----------------------------|-----------|---------------|----------|---------------------------|-----------------|-------------------|--|
| Node ID | Demand<br>m <sup>3</sup> /d | Head<br>m | Pressure<br>m | Link ID  | Flow<br>m <sup>3</sup> /d | Velocity<br>m/s | Head loss<br>m/km |  |
|         |                             |           |               | Pipe 138 | 6.0                       | 0.0             | 0.05              |  |
|         |                             |           |               | Pipe 139 | -10.6                     | 0.1             | 0.15              |  |
|         |                             |           |               | Pipe 140 | -27.2                     | 0.2             | 1.19              |  |
|         |                             |           |               | Pipe 11  | 12.6                      | 0.1             | 0.28              |  |
|         |                             |           |               | Pipe 12  | 1.8                       | 0.0             | 0.01              |  |
|         |                             |           |               | Pipe 13  | 8.8                       | 0.1             | 0.08              |  |
|         |                             |           |               | Pipe 22  | -7.8                      | 0.1             | 0.06              |  |
|         |                             |           |               | Pipe 141 | -14.1                     | 0.1             | 0.35              |  |




D2 Ea Drang Key Map




D2 Ea Drang Distribution Network (A)



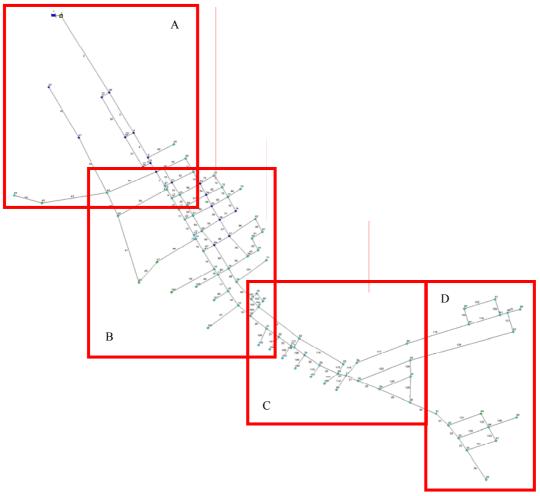


D2 Ea Drang Distribution Network (C)

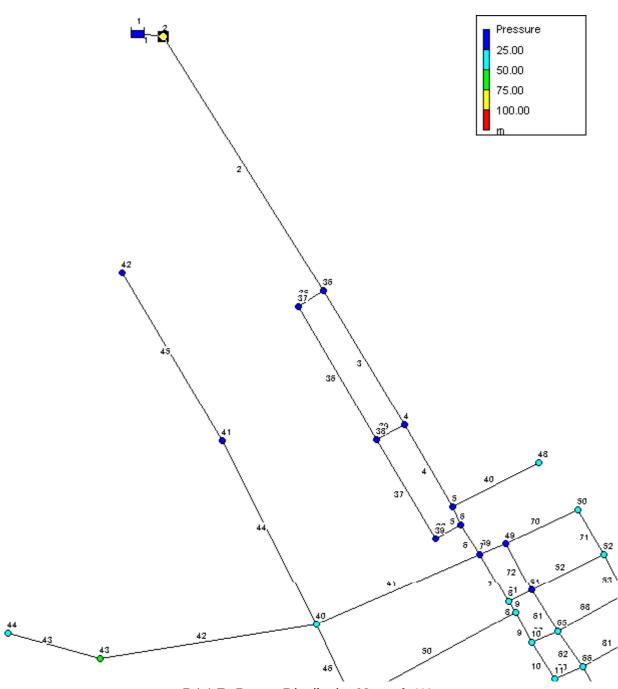


D2 Ea Drang Distribution Network (D)

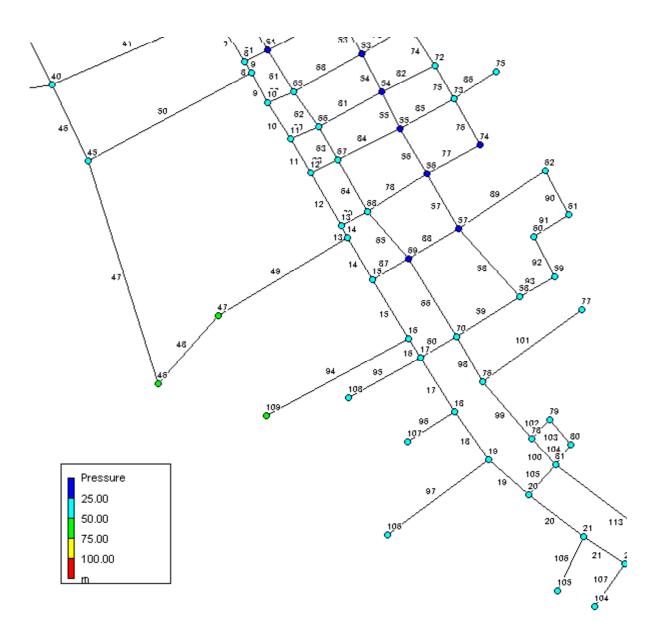
| ]       | Network Tal       | ble - Nodes | 5        | Network Table - Links |              |          |           |
|---------|-------------------|-------------|----------|-----------------------|--------------|----------|-----------|
|         | Demand            | Head        | Pressure |                       | Flow         | Velocity | Head loss |
| Node ID | m <sup>3</sup> /d | m           | m        | Link ID               | $m^3/d$      | m/s      | m/km      |
| June 2  | 0.0               | 649.4       | 4.4      | Pipe 1                | 3137.4       | 0.5      | 1.07      |
| June 3  | 25.2              | 649.2       | 9.7      | Pipe 2                | 3137.4       | 0.5      | 1.07      |
| Junc 4  | 26.6              | 649.0       |          | Pipe 3                | 2920.9       | 0.5      | 0.93      |
| June 5  | 30.6              | 648.9       | 36.9     | Pipe 4                | 2684.3       | 0.4      | 0.79      |
| Junc 6  | 30.6              | 648.9       | 36.9     | Pipe 5                | 259.0        | 0.4      | 2.46      |
| June 7  | 24.6              | 649.0       |          | Pipe 6                | 232.4        | 0.3      | 2.00      |
| Junc 8  | 8.6               | 649.0       |          | Pipe 7                | 215.8        | 0.3      | 1.73      |
| Junc 9  | 24.6              | 648.6       |          | Pipe 8                | 199.2        | 0.3      | 1.48      |
| Junc 10 | 16.6              | 648.4       |          | Pipe 9                | 182.6        | 0.3      | 1.26      |
| Junc 11 | 29.8              | 648.3       |          | Pipe 10               | 16.6         | 0.1      | 0.48      |
| Junc 12 | 16.6              | 648.3       |          | Pipe 11               | 149.4        | 0.3      | 2.70      |
| June 13 | 16.6              | 648.3       |          | Pipe 12               | 132.8        | 0.3      | 2.15      |
| Junc 14 | 16.6              | 648.3       |          | Pipe 13               | 50.6         | 0.3      | 3.84      |
| June 15 | 16.6              | 648.3       |          | Pipe 14               | 34.0         | 0.2      | 1.81      |
| Junc 16 | 16.6              | 648.3       |          | Pipe 15               | 17.4         | 0.1      | 0.52      |
| Junc 17 | 16.6              | 648.3       |          | Pipe 16               | 0.8          | 0.0      | 0.01      |
| Junc 18 | 16.6              | 648.4       |          | Pipe 17               | -15.8        | 0.1      | 0.44      |
| Junc 19 | 16.6              | 648.4       |          | Pipe 18               | -32.4        | 0.2      | 1.65      |
| June 20 | 16.6              | 648.4       |          | Pipe 19               | -49.0        | 0.2      | 0.94      |
| June 21 | 26.6              | 648.6       |          | Pipe 20               | -65.6        | 0.2      | 1.63      |
| June 22 | 16.6              | 648.3       |          | Pipe 21               | 489.7        | 0.3      | 1.04      |
| June 23 | 16.6              | 648.2       |          | Pipe 22               | 384.3        | 0.3      | 0.65      |
| June 24 | 16.6              | 648.1       |          | Pipe 23               | 357.7        | 0.2      | 0.57      |
| June 25 | 16.6              | 648.0       |          | Pipe 24               | 331.1        | 0.2      | 0.49      |
| June 26 | 16.6              | 647.9       |          | Pipe 25               | 222.7        | 0.3      | 1.84      |
| June 27 | 16.6              | 647.8       |          | Pipe 26               | 182.8        | 0.3      | 1.26      |
| June 28 | 16.6              | 647.8       |          | Pipe 27               | 145.2        | 0.3      | 2.56      |
| June 29 | 16.6              | 647.8       |          | Pipe 28               | 128.6        | 0.3      | 2.02      |
| June 30 | 16.6              | 647.8       |          | Pipe 30               | 21.0         | 0.1      | 0.07      |
| June 31 | 16.6              | 648.0       |          | Pipe 31               | 4.4          | 0.0      | 0.01      |
| June 32 | 16.6              | 648.0       |          | Pipe 32               | 16.6         | 0.1      | 0.48      |
| June 33 | 16.6              | 648.0       |          | Pipe 33               | -28.8        | 0.1      | 0.12      |
| June 34 | 16.6              | 647.8       |          | Pipe 34               | -58.1        | 0.1      | 0.45      |
| June 35 | 16.6              | 647.8       |          | Pipe 35               | -8.8         | 0.1      | 0.08      |
| June 36 | 16.6              | 648.2       |          | Pipe 36               | -21.3        | 0.1      | 0.76      |
| June 37 | 16.6              | 648.0       |          | Pipe 37               | -29.3        | 0.2      | 1.37      |
| June 38 | 16.6              | 648.0       |          | Pipe 38               | 12.8         | 0.0      | 0.05      |
| June 39 | 16.6              | 647.8       |          | Pipe 39               | 5.0          | 0.0      | 0.01      |
| June 40 | 16.6              | 647.8       |          | Pipe 40               | -2.2         | 0.0      | 0.01      |
| June 41 | 16.6              | 647.9       |          | Pipe 41<br>Pipe 42    | -18.8        |          |           |
| June 42 | 16.6              | 647.8       |          | Pipe 42<br>Pipe 43    | -44.1        | 0.2      | 0.77      |
| June 43 | 26.6              | 648.7       |          | Pipe 43<br>Pipe 44    | -4.1<br>-8.6 | 0.0      | 0.03      |
| June 44 | 26.6              | 648.6       |          | Pipe 44<br>Pipe 45    |              |          | 0.08      |
| June 45 | 26.6              | 648.5       | 38.3     | r ipe 43              | -8.5         | 0.1      | 0.08      |


| ]                  | Network Ta        | ble - Nodes    | 5        | Network Table - Links |                   |          |           |  |
|--------------------|-------------------|----------------|----------|-----------------------|-------------------|----------|-----------|--|
|                    | Demand            | Head           | Pressure |                       | Flow              | Velocity | Head loss |  |
| Node ID            | m <sup>3</sup> /d | m              | m        | Link ID               | m <sup>3</sup> /d | m/s      | m/km      |  |
| Junc 46            | 20.6              | 648.3          | 78.3     | Pipe 46               | -10.9             | 0.1      | 0.17      |  |
| Junc 47            | 16.6              | 648.0          | 85.5     | Pipe 47               | -9.4              | 0.1      | 0.10      |  |
| Junc 48            | 16.6              | 647.5          | 93.5     | Pipe 48               | -21.4             | 0.1      | 0.76      |  |
| Junc 49            | 16.6              | 647.3          |          | Pipe 49               | -35.6             | 0.2      | 1.97      |  |
| Junc 50            | 16.6              | 646.8          | 78.8     | Pipe 50               | -87.8             | 0.2      | 0.98      |  |
| June 51            | 16.6              | 646.6          |          | Pipe 51               | -71.5             | 0.2      | 0.67      |  |
| June 52            | 16.6              | 646.2          |          | Pipe 52               | -88.1             | 0.2      | 0.99      |  |
| June 53            | 6.6               | 646.0          |          | Pipe 53               | -69.6             | 0.2      | 0.63      |  |
| Junc 54            | 6.6               | 645.8          |          | Pipe 54               | -35.1             | 0.1      | 0.51      |  |
| June 55            | 6.6               | 645.7          |          | Pipe 55               | 19.5              | 0.1      | 0.17      |  |
| Junc 56            | 7.2               | 645.6          |          | Pipe 56               | -78.1             | 0.2      | 0.78      |  |
| June 57            | 2.0               | 645.6          |          | Pipe 57               | -97.5             | 0.2      | 1.19      |  |
| June 58            | 26.6              | 648.2          |          | Pipe 58               | -78.8             | 0.2      | 0.80      |  |
| Junc 59            | 16.6              | 647.8          |          | Pipe 59               | -210.0            | 0.3      | 1.64      |  |
| June 60            | 16.6              | 647.3          |          | Pipe 60               | 2.8               | 0.0      | 0.02      |  |
| Junc 61            | 16.6              | 647.0          |          | Pipe 61               | -13.8             | 0.1      | 0.34      |  |
| June 62            | 16.6              | 646.6          |          | Pipe 62               | -30.4             | 0.2      | 1.46      |  |
| June 63            | 16.6              | 645.6          |          | Pipe 63               | -158.1            | 0.4      | 3.01      |  |
| Junc 64            | 16.6              | 645.2          |          | Pipe 64               | 6.8               | 0.0      | 0.05      |  |
| June 65            | 16.6              | 644.9          |          | Pipe 65               | 16.6              | 0.1      | 0.48      |  |
| Junc 66            | 16.6              | 644.6          |          | Pipe 66               | -26.4             | 0.2      | 1.12      |  |
| June 67            | 16.6              | 644.4          |          | Pipe 67               | 103.1             | 0.2      | 1.33      |  |
| June 68            | 16.6              | 644.3          |          | Pipe 68               | 60.1              | 0.1      | 0.48      |  |
| Junc 69<br>Junc 70 | 16.6<br>16.6      | 644.3<br>644.4 |          | Pipe 70<br>Pipe 71    | -2.9<br>30.3      | 0.0      | 0.01      |  |
| June 70<br>June 71 |                   | 644.4          |          | 1                     |                   |          |           |  |
| June 71<br>June 72 | 16.6<br>16.6      | 646.4          |          | Pipe 72<br>Pipe 73    | 13.7<br>191.3     | 0.1      | 0.07 4.35 |  |
| June 72<br>June 73 | 30.6              | 648.7          |          | Pipe 73<br>Pipe 74    | 8.6               | 0.4      | 0.08      |  |
| June 73            | 26.6              | 648.5          |          |                       | 0.0               | 0.1      |           |  |
| June 74            | 26.6              | 648.5          |          | Pipe 75<br>Pipe 76    | 0.0               | 0.0      | 0.00      |  |
| June 76            | 16.6              | 648.3          |          | Pipe 77               | 0.0               | 0.0      | 0.00      |  |
| June 70            | 16.6              | 648.2          |          | Pipe 78               | 0.0               | 0.0      | 0.20      |  |
| June 78            | 16.6              | 648.0          |          | Pipe 79               | -74.9             | 0.0      | 0.20      |  |
| June 79            | 16.6              | 647.8          |          | Pipe 80               | -68.2             | 0.2      | 0.72      |  |
| June 80            | 16.6              | 647.5          |          | Pipe 81               | -114.2            | 0.3      | 1.61      |  |
| June 81            | 16.6              | 647.5          |          | Pipe 82               | -78.6             | 0.1      | 0.26      |  |
| June 82            | 16.6              | 647.3          |          | Pipe 83               | -164.8            | 0.2      | 1.03      |  |
| June 83            | 16.6              | 646.8          |          | Pipe 84               | 112.0             | 0.3      | 1.55      |  |
| June 84            | 16.6              | 646.4          |          | Pipe 85               | 16.6              | 0.1      | 0.48      |  |
| June 85            | 16.6              | 646.2          |          | Pipe 86               | 78.8              | 0.2      | 0.80      |  |
| Junc 86            | 16.6              | 645.8          |          | Pipe 87               | -16.6             | 0.1      | 0.48      |  |
| June 87            | 16.6              | 645.7          |          | Pipe 88               | 45.6              | 0.2      | 0.82      |  |
| Junc 88            | 16.6              | 645.7          |          | Pipe 89               | 29.0              | 0.1      | 0.36      |  |
| Junc 89            | 16.6              | 645.3          |          | Pipe 90               | 22.4              | 0.1      | 0.83      |  |

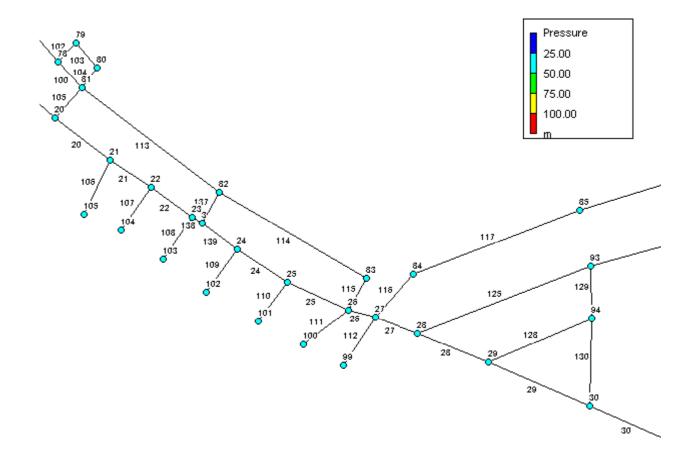
| ]                    | Network Table - Nodes |       |          | Network Table - Links |              |          |           |  |
|----------------------|-----------------------|-------|----------|-----------------------|--------------|----------|-----------|--|
|                      | Demand                | Head  | Pressure |                       | Flow         | Velocity | Head loss |  |
| Node ID              | m <sup>3</sup> /d     | m     | m        | Link ID               | $m^3/d$      | m/s      | m/km      |  |
| Junc 90              | 16.6                  | 645.2 | 24.2     | Pipe 91               | 15.8         | 0.1      | 0.44      |  |
| Junc 91              | 16.6                  | 645.5 |          | Pipe 92               | 9.2          | 0.1      | 0.10      |  |
| Junc 92              | 16.6                  | 645.3 |          | Pipe 93               | 2.0          | 0.0      | 0.02      |  |
| Junc 93              | 16.6                  | 644.9 |          | Pipe 94               | -780.6       | 0.5      | 2.56      |  |
| Junc 94              | 16.6                  | 644.7 |          | Pipe 95               | -1221.4      | 0.8      | 6.13      |  |
| Junc 95              | 16.6                  | 644.7 |          | Pipe 96               | 653.0        | 0.4      | 1.81      |  |
| Junc 96              | 16.6                  | 644.7 |          | Pipe 97               | 598.8        | 0.4      | 1.53      |  |
| Junc 97              | 16.6                  | 644.7 |          | Pipe 98               | 545.9        | 0.4      | 1.28      |  |
| Junc 98              | 16.6                  | 644.7 |          | Pipe 99               | 496.3        | 0.3      | 1.07      |  |
| Junc 99              | 16.6                  | 645.3 |          | Pipe 100              | 481.4        | 0.3      | 1.00      |  |
| Junc 100             | 16.6                  | 645.5 |          | Pipe 101              | 464.8        | 0.3      | 0.94      |  |
| Junc 101             | 16.6                  | 645.8 |          | Pipe 102              | 448.2        | 0.3      | 0.88      |  |
| June 102             | 16.6                  | 645.9 |          | Pipe 103              | 431.6        | 0.3      | 0.81      |  |
| June 103             | 16.6                  | 647.0 |          | Pipe 104              | 415.0        | 0.3      | 0.76      |  |
| Junc 104             | 16.6                  | 647.3 |          | Pipe 105              | 65.6         | 0.2      | 1.63      |  |
| Junc 105             | 16.6                  | 647.1 |          | Pipe 106              | 16.6         | 0.1      | 0.48      |  |
| Junc 106             | 16.6                  | 648.3 |          | Pipe 107              | 332.8        | 0.2      | 0.50      |  |
| June 107             | 16.6                  | 648.3 |          | Pipe 108              | 47.6         | 0.3      | 3.42      |  |
| Junc 108             | 16.6                  | 648.3 |          | Pipe 109              | 268.6        | 0.4      | 2.64      |  |
| Junc 109             | 16.6                  | 648.0 |          | Pipe 110              | 252.0        | 0.4      | 2.33      |  |
| June 110             | 16.6                  | 648.0 |          | Pipe 111              | 235.4        | 0.4      | 2.05      |  |
| June 111             | 16.6                  | 648.0 |          | Pipe 112              | 33.2         | 0.2      | 1.73      |  |
| Junc 112             | 16.6                  | 648.1 |          | Pipe 113              | 16.6         | 0.1      | 0.48      |  |
| June 113             | 16.6                  | 648.1 |          | Pipe 114              | 185.6        | 0.4      | 4.10      |  |
| Junc 114             | 16.6                  | 648.1 |          | Pipe 115              | 44.5         | 0.3      | 3.00      |  |
| June 115             | 16.6                  | 648.4 |          | Pipe 116              | 16.6         | 0.1      | 0.48      |  |
| June 116             | 16.6                  | 648.5 |          | Pipe 117              | 11.3         | 0.1      | 0.19      |  |
| June 117             | 33.2                  | 648.6 |          | Pipe 118              | 124.5        | 0.3      | 1.90      |  |
| June 118             | 26.6                  | 648.7 |          | Pipe 119              | 121.6        | 0.3      | 1.82      |  |
| Junc 119             | 20.6                  | 648.7 |          | Pipe 120              | 5.4          | 0.0      |           |  |
| June 120             | 16.6                  | 648.3 |          | Pipe 121              | 99.6         | 0.2      | 1.24      |  |
| June 121             | 16.6                  | 648.4 |          | Pipe 122              | 56.7         | 0.2      | 1.24      |  |
| June 122             | 16.6                  | 648.5 |          | Pipe 123              | 26.1         | 0.1      | 0.29      |  |
| June 123             | 16.6                  | 648.6 |          | Pipe 124              | 9.5          |          |           |  |
| June 124             | 16.6                  | 648.3 |          | Pipe 125              | -7.1         | 0.0      | 0.06      |  |
| June 125             | 16.6                  | 648.3 |          | Pipe 126              | -9.8         | 0.1      | 0.12      |  |
| June 126             | 16.6                  | 648.4 |          | Pipe 127              | 13.9         | 0.1      | 0.35      |  |
| June 127             | 16.6<br>16.6          | 648.4 |          | Pipe 128              | -13.6        | 0.1      | 0.33      |  |
| June 128             |                       | 648.4 |          | Pipe 129<br>Pipe 130  | -30.2        | 0.2      | 3.31      |  |
| June 129             | 16.6                  | 648.4 |          | Pipe 130<br>Pipe 131  | -46.8        | 0.3      |           |  |
| Junc 130<br>Junc 131 | 16.6<br>16.6          | 648.3 |          | Pipe 131<br>Pipe 132  | -63.4        | 0.4      | 5.92      |  |
|                      |                       | 648.3 |          | Pipe 132<br>Pipe 133  | -32.4        | 0.2      | 1.65      |  |
| June 132             | 20.6                  | 648.7 |          |                       | -1.7<br>-9.1 | 0.0      | 0.00      |  |
| June 133             | 26.6                  | 648.4 | 45.4     | Pipe 134              | -9.1         | 0.0      | 0.00      |  |


| ]                    | Network Tal       | ble - Nodes    | 5        | Network Table - Links |               |          |           |  |
|----------------------|-------------------|----------------|----------|-----------------------|---------------|----------|-----------|--|
|                      | Demand            | Head           | Pressure |                       | Flow          | Velocity | Head loss |  |
| Node ID              | m <sup>3</sup> /d | m              | m        | Link ID               | $m^3/d$       | m/s      | m/km      |  |
| Junc 134             | 16.6              | 648.1          | 54.1     | Pipe 135              | 23.1          | 0.1      | 0.87      |  |
| Junc 135             | 16.6              | 648.0          | 62.0     | Pipe 136              | 9.2           | 0.1      | 0.10      |  |
| June 136             | 36.6              | 647.8          |          | Pipe 138              | -14.4         | 0.1      | 0.37      |  |
| June 137             | 16.6              | 646.9          |          | Pipe 139              | 26.2          | 0.2      | 1.11      |  |
| June 138             | 26.6              | 648.5          |          | Pipe 140              | -4.7          | 0.0      | 0.04      |  |
| Junc 139             | 26.6              | 648.5          |          | Pipe 141              | 23.7          | 0.1      | 0.92      |  |
| Junc 140             | 16.6              | 648.3          |          | Pipe 142              | 22.4          | 0.1      | 0.83      |  |
| Junc 141             | 20.6              | 648.2          |          | Pipe 143              | 133.4         | 0.2      | 0.69      |  |
| Junc 142             | 16.6              | 647.5          |          | Pipe 144              | 104.9         | 0.2      | 0.44      |  |
| June 143             | 16.6              | 647.4          |          | Pipe 145              | 11.9          | 0.1      | 0.23      |  |
| Junc 144             | 16.6              | 647.3          |          | Pipe 146              | 83.5          | 0.1      | 0.29      |  |
| June 145             | 16.6              | 646.7          |          | Pipe 147              | 61.9          | 0.1      | 0.17      |  |
| Junc 146             | 16.6              | 646.2          |          | Pipe 148              | -25.7         | 0.0      | 0.03      |  |
| June 147             | 16.6              | 645.7          |          | Pipe 149              | 27.2          | 0.2      | 1.19      |  |
| Junc 148<br>Junc 149 | 6.6               | 645.6          |          | Pipe 150              | 10.6          | 0.1      | 0.16      |  |
| June 149<br>June 150 | 6.6<br>6.6        | 645.3<br>645.2 |          | Pipe 151              | -6.0<br>-22.6 | 0.0      | 0.02      |  |
| June 150<br>June 151 | 7.2               | 645.2          |          | Pipe 152<br>Pipe 153  | -22.0         | 0.1      | 0.25      |  |
| June 151<br>June 152 | 2.0               | 645.2          |          | Pipe 155<br>Pipe 154  | -12.3         | 0.0      | 0.03      |  |
| June 152<br>June 153 | 16.6              | 648.3          |          | Pipe 154              | 12.1          | 0.1      | 0.33      |  |
| June 155             | 16.6              | 648.1          |          | Pipe 156              | -15.3         | 0.1      | 0.24      |  |
| June 154             | 16.6              | 648.0          |          | Pipe 150              | 420.2         | 0.1      | 0.77      |  |
| June 155             | 16.6              | 647.8          |          | Pipe 157              | 378.3         | 0.3      | 0.63      |  |
| June 150             | 16.6              | 647.3          |          | Pipe 150              | 205.4         | 0.1      | 0.20      |  |
| June 158             | 16.6              | 646.9          |          | Pipe 160              | 49.7          | 0.2      | 0.96      |  |
| June 159             | 16.6              | 648.1          |          | Pipe 161              | 16.3          | 0.1      | 0.46      |  |
| Junc 160             | 16.6              | 648.0          |          | Pipe 162              | 139.1         | 0.2      | 0.75      |  |
| Junc 161             | 16.6              | 648.1          |          | Pipe 163              | 46.8          | 0.2      | 0.86      |  |
| Junc 162             | 16.6              | 647.3          |          | Pipe 164              | -47.2         | 0.2      | 0.88      |  |
| Junc 163             | 16.6              | 647.4          |          | Pipe 165              | 7.7           | 0.1      | 0.06      |  |
| Junc 164             | 16.6              | 646.3          | 66.3     | Pipe 166              | -8.9          | 0.1      | 0.09      |  |
| June 165             | 16.6              | 645.8          | 63.3     | Pipe 167              | 75.3          | 0.2      | 0.73      |  |
| Junc 166             | 16.6              | 643.6          | 55.6     | Pipe 168              | 49.8          | 0.3      | 3.73      |  |
| Junc 167             | 16.6              | 643.4          | 51.9     | Pipe 169              | 33.2          | 0.2      | 1.73      |  |
| Junc 168             | 16.6              | 643.1          |          | Pipe 170              | 16.6          | 0.1      | 0.48      |  |
| Junc 169             | 16.6              | 642.4          |          | Pipe 171              | -16.6         | 0.1      | 0.48      |  |
| Junc 170             | 16.6              | 642.3          |          | Pipe 172              | -33.2         | 0.2      | 1.73      |  |
| Junc 171             | 16.6              | 647.0          |          | Pipe 173              | 16.6          | 0.1      | 0.48      |  |
| June 172             | 16.6              | 646.0          |          | Pipe 174              | -66.4         | 0.2      | 1.67      |  |
| June 173             | 16.6              | 645.9          |          | Pipe 175              | 16.6          | 0.1      | 0.48      |  |
| June 174             | 16.6              | 646.1          |          | Pipe 176              | -99.6         | 0.4      | 3.62      |  |
| June 175             | 16.6              | 645.7          |          | Pipe 177              | 16.6          | 0.1      | 0.48      |  |
| June 176             | 16.6              | 643.5          |          | Pipe 178              | -132.8        | 0.5      | 6.31      |  |
| Junc 177             | 16.6              | 643.3          | 55.3     | Pipe 179              | 16.6          | 0.1      | 0.48      |  |

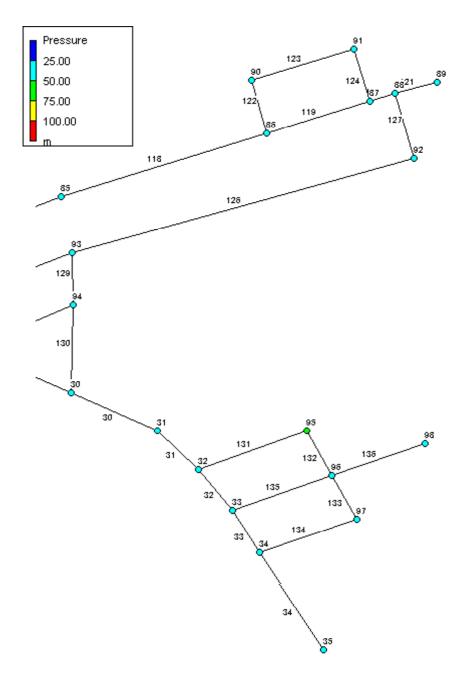
| Network Table - Nodes |                      |       | Network Table - Links |                      |               |           |      |
|-----------------------|----------------------|-------|-----------------------|----------------------|---------------|-----------|------|
|                       | Demand Head Pressure |       |                       | Flow                 | Velocity      | Head loss |      |
| Node ID               | m <sup>3</sup> /d    | m     | m                     | Link ID              | $m^3/d$       | m/s       | m/km |
| Junc 178              | 16.6                 | 643.0 | 53.0                  | Pipe 180             | -166.0        | 0.4       | 3.31 |
| June 179              | 6.6                  | 647.0 |                       | Pipe 181             | -16.6         | 0.1       | 0.48 |
| Junc 180              | 6.6                  | 646.7 |                       | Pipe 182             | -199.2        | 0.5       | 4.70 |
| Junc 181              | 6.6                  | 646.2 |                       | Pipe 183             | 34.5          | 0.1       | 0.49 |
| June 182              | 6.6                  | 646.0 |                       | Pipe 184             | -51.1         | 0.2       | 1.02 |
| June 183              | 6.6                  | 645.8 |                       | Pipe 185             | -10.8         | 0.0       | 0.03 |
| June 184              | 6.6                  | 645.7 |                       | Pipe 186             | -27.4         | 0.1       | 0.32 |
| June 185              | 6.6                  | 645.7 |                       | Pipe 187             | -44.0         | 0.2       | 0.77 |
| June 187              | 16.6                 | 646.7 |                       | Pipe 188             | 158.2         | 0.2       | 0.96 |
| June 188              | 16.6                 | 646.5 |                       | Pipe 189             | -218.8        | 0.3       | 1.78 |
| Junc 189              | 0.0                  | 648.3 |                       | Pipe 190             | 76.4          | 0.2       | 0.75 |
| Junc 190              | 0.0                  | 648.3 |                       | Pipe 69              | 291.0         | 0.4       | 3.08 |
| June 191              | 0.0                  | 648.3 | 3.3                   | Pipe 191             | 249.2         | 0.4       | 2.28 |
| Resvr 1               |                      | 649.5 |                       | Pipe 192             | 208.2         | 0.3       | 1.62 |
|                       |                      |       |                       | Pipe 193             | 186.2         | 0.3       | 1.30 |
|                       |                      |       |                       | Pipe 194             | 181.3         | 0.4       | 3.92 |
|                       |                      |       |                       | Pipe 195             | 15.2          | 0.1       | 0.41 |
|                       |                      |       |                       | Pipe 196<br>Pipe 197 | -40.7<br>24.4 | 0.2       | 0.26 |
|                       |                      |       |                       | Pipe 197<br>Pipe 198 | 9.1           | 0.1       | 0.20 |
|                       |                      |       |                       | Pipe 198             | 5.5           | 0.0       | 0.03 |
|                       |                      |       |                       | Pipe 200             | -31.7         | 0.0       | 0.04 |
|                       |                      |       |                       | Pipe 200             | -78.5         | 0.1       | 0.13 |
|                       |                      |       |                       | Pipe 201             | -35.3         | 0.2       | 1.94 |
|                       |                      |       |                       | Pipe 202             | -42.8         | 0.2       | 2.79 |
|                       |                      |       |                       | Pipe 203             | -59.8         | 0.1       | 0.48 |
|                       |                      |       |                       | Pipe 205             | 469.0         | 0.3       | 0.96 |
|                       |                      |       |                       | Pipe 206             | 401.7         | 0.3       | 0.71 |
|                       |                      |       |                       | Pipe 207             | 375.1         | 0.3       | 0.62 |
|                       |                      |       |                       | Pipe 208             | 315.8         | 0.2       | 0.45 |
|                       |                      |       |                       | Pipe 209             | 39.3          | 0.2       | 2.38 |
|                       |                      |       |                       | Pipe 210             | 38.0          | 0.2       | 2.22 |
|                       |                      |       |                       | Pipe 211             | 26.8          | 0.2       | 1.16 |
|                       |                      |       |                       | Pipe 212             | 56.9          | 0.3       | 4.82 |
|                       |                      |       |                       | Pipe 213             | 141.6         | 0.2       | 0.77 |
|                       |                      |       |                       | Pipe 214             | 83.5          | 0.3       | 2.59 |
|                       |                      |       |                       | Pipe 215             | 66.9          | 0.2       | 1.69 |
|                       |                      |       |                       | Pipe 216             | 50.3          | 0.2       | 0.99 |
|                       |                      |       |                       | Pipe 217             | 29.0          | 0.1       | 0.36 |
|                       |                      |       |                       | Pipe 218             | 41.5          | 0.2       | 2.63 |
|                       |                      |       |                       | Pipe 219             | 34.9          | 0.2       | 1.89 |
|                       |                      |       |                       | Pipe 220             | 28.3          | 0.2       | 1.28 |
|                       |                      |       |                       | Pipe 221             | 21.7          | 0.1       | 0.78 |
|                       |                      |       |                       | Pipe 222             | 15.1          | 0.1       | 0.40 |


| Network Table - Nodes |                   |      |          | Network Table - Links |                   |          |           |
|-----------------------|-------------------|------|----------|-----------------------|-------------------|----------|-----------|
|                       | Demand            | Head | Pressure |                       | Flow              | Velocity | Head loss |
| Node ID               | m <sup>3</sup> /d | m    | m        | Link ID               | m <sup>3</sup> /d | m/s      | m/km      |
|                       |                   |      |          | Pipe 223              | 8.5               | 0.1      | 0.08      |
|                       |                   |      |          | Pipe 224              | 1.9               | 0.0      | 0.01      |
|                       |                   |      |          | Pipe 225              | -4.7              | 0.0      | 0.04      |
|                       |                   |      |          | Pipe 226              | 22.4              | 0.1      | 0.83      |
|                       |                   |      |          | Pipe 227              | 15.8              | 0.1      | 0.44      |
|                       |                   |      |          | Pipe 228              | 9.2               | 0.1      | 0.10      |
|                       |                   |      |          | Pipe 229              | 2.0               | 0.0      | 0.02      |
|                       |                   |      |          | Pipe 29               | 23.3              | 0.1      | 0.24      |
|                       |                   |      |          | Pipe 230              | 1905.0            | 0.3      | 0.41      |
|                       |                   |      |          | Pipe 231              | -7.6              | 0.0      | 0.02      |
|                       |                   |      |          | Pipe 232              | 139.7             | 0.2      | 0.76      |
|                       |                   |      |          | Pipe 233              | -2.8              | 0.0      | 0.02      |
|                       |                   |      |          | Pipe 234              | -5.0              | 0.0      | 0.04      |
|                       |                   |      |          | Pipe 235              | 26.4              | 0.2      | 1.12      |




D4-1 Ea Drong Key Map




D4-1 Ea Drong Distribution Network (A)



D4-1 Ea Drong Distribution Network (B)



D4-1 Ea Drong Distribution Network (C)



D4-1 Ea Drong Distribution Network (D)

| Network Table - Nodes |                   |       | Network Table - Links |         |                   |          |           |
|-----------------------|-------------------|-------|-----------------------|---------|-------------------|----------|-----------|
| Nada ID               | Demand            | Head  | Pressure              | Link ID | Flow              | Velocity | Head loss |
| Node ID               | m <sup>3</sup> /d | m     | m                     | Link ID | m <sup>3</sup> /d | m/s      | m/km      |
| June 2                | 12.6              | 658.4 | 1.4                   | Pipe 1  | 1335.6            | 0.5      | 1.64      |
| Junc 4                | 12.6              | 656.8 | 18.8                  | Pipe 2  | 1323.0            | 0.5      | 1.61      |
| June 5                | 12.6              | 656.5 | 19.5                  | Pipe 3  | 1271.4            | 0.5      | 1.49      |
| Junc 6                | 12.6              | 656.4 | 20.4                  | Pipe 4  | 1244.9            | 0.5      | 1.43      |
| June 7                | 12.6              | 656.3 | 24.3                  | Pipe 5  | 1219.7            | 0.5      | 1.38      |
| Junc 8                | 12.6              | 655.9 | 25.9                  | Pipe 6  | 1222.2            | 0.5      | 1.38      |
| Junc 9                | 12.6              | 655.8 | 27.8                  | Pipe 7  | 936.4             | 0.6      | 3.65      |
| Junc 10               | 12.6              | 655.6 | 30.1                  | Pipe 8  | 886.5             | 0.6      | 3.28      |
| June 11               | 12.6              | 655.3 | 32.3                  | Pipe 9  | 859.7             | 0.6      | 3.09      |
| June 12               | 12.6              | 655.1 | 32.6                  | Pipe 10 | 816.4             | 0.5      | 2.79      |
| June 13               | 12.6              | 654.8 | 30.8                  | Pipe 11 | 773.2             | 0.5      | 2.51      |
| Junc 14               | 12.6              | 654.7 | 30.7                  | Pipe 12 | 730.8             | 0.5      | 2.25      |
| June 15               | 12.6              | 654.5 | 29.5                  | Pipe 13 | 692.9             | 0.5      | 2.03      |
| June 16               | 12.6              | 654.2 | 31.2                  | Pipe 14 | 686.4             | 0.5      | 1.99      |
| June 17               | 12.6              | 654.1 | 30.1                  | Pipe 15 | 647.0             | 0.4      | 1.78      |
| Junc 18               | 12.6              | 652.7 | 29.2                  | Pipe 16 | 621.8             | 0.4      | 1.65      |
| Junc 19               | 12.6              | 651.5 | 32.5                  | Pipe 17 | 535.7             | 0.8      | 10.11     |
| June 20               | 12.6              | 650.6 | 36.1                  | Pipe 18 | 510.5             | 0.8      | 9.20      |
| Junc 21               | 12.6              | 649.5 | 35.5                  | Pipe 19 | 485.3             | 0.7      | 8.33      |
| June 22               | 12.6              | 648.9 |                       | Pipe 20 | 439.9             | 0.7      | 6.88      |
| June 23               | 12.6              | 648.3 |                       | Pipe 21 | 414.7             | 0.6      | 6.13      |
| June 24               | 12.6              | 647.7 | 35.2                  | Pipe 22 | 389.5             | 0.6      | 5.43      |
| June 25               | 12.6              | 647.2 | 38.2                  | Pipe 24 | 330.0             | 0.5      | 3.93      |
| Junc 26               | 12.6              | 646.7 |                       | Pipe 25 | 304.8             | 0.5      | 3.37      |
| June 27               | 12.6              | 646.5 | 41.0                  | Pipe 26 | 315.0             | 0.5      | 3.59      |
| June 28               | 12.6              | 646.3 | 44.8                  | Pipe 27 | 208.0             | 0.3      | 1.61      |
| June 29               | 12.6              | 646.2 | 43.2                  | Pipe 28 | 153.2             | 0.2      | 0.90      |
| June 30               | 12.6              | 646.0 | 46.0                  | Pipe 29 | 122.6             | 0.2      | 0.59      |
| June 31               | 12.6              | 645.7 | 48.9                  | Pipe 30 | 113.4             | 0.3      | 1.59      |
| June 32               | 12.6              | 645.5 |                       | Pipe 31 | 100.8             | 0.2      | 1.27      |
| June 33               | 12.6              | 645.3 | 43.8                  | Pipe 32 | 63.8              | 0.2      | 1.55      |
| June 34               | 12.6              | 645.3 | 45.3                  | Pipe 33 | 36.1              | 0.1      | 0.53      |
| June 35               | 12.6              | 645.2 | 46.2                  | Pipe 34 | 12.6              | 0.1      | 0.27      |
| June 36               | 12.6              | 657.3 | 9.3                   | Pipe 35 | 39.0              | 0.2      | 2.35      |
| June 37               | 12.6              | 657.2 |                       | Pipe 36 | 26.4              | 0.2      | 1.13      |
| June 38               | 12.6              | 656.8 | 14.8                  | Pipe 37 | 27.7              | 0.2      | 1.23      |
| June 39               | 12.6              | 656.5 |                       | Pipe 38 | 15.1              | 0.1      | 0.40      |
| Junc 40               | 12.6              | 655.9 |                       | Pipe 39 | -13.8             | 0.1      | 0.34      |
| Junc 41               | 12.6              | 655.8 |                       | Pipe 40 | 12.6              | 0.1      | 0.27      |
| Junc 42               | 12.6              | 655.7 |                       | Pipe 41 | 92.7              | 0.2      | 1.09      |
| Junc 43               | 12.6              | 655.8 |                       | Pipe 42 | 25.2              | 0.1      | 0.28      |
| Junc 44               | 12.6              | 655.8 |                       | Pipe 43 | 12.6              | 0.0      | 0.05      |
| Junc 45               | 12.6              | 655.6 |                       | Pipe 44 | 25.2              | 0.1      | 0.28      |
| Junc 46               | 12.6              | 654.8 |                       | Pipe 45 | 12.6              | 0.1      | 0.27      |

| Network Table - Nodes |                   |       |          | Network Table - Links |                   |          |           |
|-----------------------|-------------------|-------|----------|-----------------------|-------------------|----------|-----------|
| Node ID               | Demand            | Head  | Pressure | L' 1 ID               | Flow              | Velocity | Head loss |
| Node ID               | m <sup>3</sup> /d | m     | m        | Link ID               | m <sup>3</sup> /d | m/s      | m/km      |
| Junc 47               | 12.6              | 654.7 | 52.7     | Pipe 46               | 29.7              | 0.2      | 1.40      |
| Junc 48               | 12.6              | 656.4 | 31.4     | Pipe 47               | 31.3              | 0.2      | 1.55      |
| Junc 49               | 12.6              | 656.1 | 23.1     | Pipe 48               | 18.7              | 0.1      | 0.59      |
| Junc 50               | 12.6              | 655.8 |          | Pipe 49               | 6.1               | 0.0      | 0.05      |
| June 51               | 12.6              | 655.8 |          | Pipe 50               | 14.2              | 0.1      | 0.36      |
| June 52               | 12.6              | 655.6 |          | Pipe 51               | 37.4              | 0.2      | 2.16      |
| June 53               | 12.6              | 655.4 |          | Pipe 52               | 25.4              | 0.2      | 1.05      |
| Junc 54               | 12.6              | 655.1 |          | Pipe 53               | 125.4             | 0.3      | 1.93      |
| June 55               | 12.6              | 654.9 |          | Pipe 54               | 91.4              | 0.3      | 3.07      |
| Junc 56               | 12.6              | 654.7 |          | Pipe 55               | 77.9              | 0.3      | 2.26      |
| June 57               | 12.6              | 654.3 |          | Pipe 56               | 69.9              | 0.2      | 1.84      |
| Junc 58               | 12.6              | 654.1 |          | Pipe 57               | 81.8              | 0.3      | 2.48      |
| Junc 59               | 12.6              | 654.0 |          | Pipe 58               | 58.6              | 0.2      | 1.32      |
| Junc 60               | 12.6              | 654.0 |          | Pipe 59               | 24.0              | 0.1      | 0.25      |
| Junc 61               | 12.6              | 654.0 |          | Pipe 60               | -60.9             | 0.2      | 1.42      |
| Junc 62               | 12.6              | 654.0 |          | Pipe 61               | 42.1              | 0.3      | 2.70      |
| Junc 65               | 12.6              | 655.5 |          | Pipe 62               | 43.0              | 0.3      | 2.81      |
| Junc 66               | 12.6              | 655.2 |          | Pipe 63               | 40.3              | 0.2      | 2.49      |
| Junc 67               | 12.6              | 655.0 |          | Pipe 64               | 37.3              | 0.2      | 2.15      |
| Junc 68               | 12.6              | 654.7 |          | Pipe 65               | 38.3              | 0.2      | 2.26      |
| Junc 69               | 12.6              | 654.4 |          | Pipe 66               | 34.6              | 0.2      | 1.87      |
| June 70               | 12.6              | 654.0 |          | Pipe 67               | 30.7              | 0.2      | 1.49      |
| Junc 71               | 12.6              | 655.1 |          | Pipe 68               | 17.2              | 0.1      | 0.51      |
| June 72               | 12.6              | 655.0 |          | Pipe 69               | 180.5             | 0.4      |           |
| June 73               | 12.6              | 654.8 |          | Pipe 70               | 125.2             | 0.3      | 1.92      |
| Junc 74               | 12.6              | 654.7 |          | Pipe 71               | 112.6             | 0.3      | 1.57      |
| June 75               | 12.6              | 654.8 |          | Pipe 72               | 42.7              | 0.3      | 2.78      |
| Junc 76               | 12.6              | 652.2 |          | Pipe 73               | 38.5              | 0.2      | 2.29      |
| June 77               | 12.6              | 652.1 |          | Pipe 74               | 25.9              | 0.2      |           |
| June 78               | 12.6              | 650.6 |          | Pipe 75               | 34.8              | 0.2      | 1.89      |
| Junc 79               | 12.6              | 650.5 |          | Pipe 76               | 25.2              | 0.2      | 1.03      |
| June 80               | 12.6              | 650.4 |          | Pipe 77               | 12.6              | 0.1      | 0.28      |
| Junc 81               | 12.6              | 650.4 |          | Pipe 78               | -11.8             | 0.1      | 0.23      |
| June 82               | 12.6              | 648.1 |          | Pipe 79               | -25.4             | 0.2      | 1.04      |
| June 83               | 12.6              | 646.8 |          | Pipe 80               | 30.6              | 0.2      |           |
| June 84               | 12.6              | 646.1 |          | Pipe 81               | 20.6              | 0.1      | 0.71      |
| June 85               | 12.6              | 645.4 |          | Pipe 82               | 21.5              | 0.1      | 0.77      |
| June 86               | 12.6              | 644.9 |          | Pipe 83               | 29.8              | 0.2      | 1.41      |
| June 87               | 12.6              | 644.7 |          | Pipe 84               | 20.2              | 0.1      | 0.68      |
| June 88               | 12.6              | 644.7 |          | Pipe 85               | 15.6              | 0.1      | 0.42      |
| June 89               | 12.6              | 644.7 |          | Pipe 86               | 12.6              | 0.1      | 0.27      |
| June 90               | 12.6              | 644.7 |          | Pipe 87               | 26.8              | 0.2      | 1.15      |
| June 91               | 12.6              | 644.7 |          | Pipe 88               | 17.9              | 0.1      | 0.54      |
| Junc 92               | 12.6              | 644.8 | 43.8     | Pipe 89               | 28.5              | 0.2      | 1.29      |

| Network Table - Nodes |                   |       | Network Table - Links |                      |                   |          |           |
|-----------------------|-------------------|-------|-----------------------|----------------------|-------------------|----------|-----------|
| Node ID               | Demand            | Head  | Pressure              | L intr ID            | Flow              | Velocity | Head loss |
| Node ID               | m <sup>3</sup> /d | m     | m                     | Link ID              | m <sup>3</sup> /d | m/s      | m/km      |
| Junc 93               | 12.6              | 646.0 | 41.5                  | Pipe 90              | 15.9              | 0.1      | 0.44      |
| Junc 94               | 12.6              | 646.0 | 40.5                  | Pipe 91              | 3.3               | 0.0      | 0.02      |
| Junc 95               | 12.6              | 645.3 | 52.3                  | Pipe 92              | -9.4              | 0.1      | 0.10      |
| Junc 96               | 12.6              | 645.2 | 47.2                  | Pipe 93              | -22.0             | 0.1      | 0.80      |
| Junc 97               | 12.6              | 645.2 |                       | Pipe 94              | 12.6              | 0.1      | 0.27      |
| Junc 98               | 12.6              | 645.2 |                       | Pipe 95              | 12.6              | 0.1      | 0.27      |
| Junc 99               | 12.6              | 646.4 |                       | Pipe 96              | 12.6              | 0.1      | 0.27      |
| Junc 100              | 12.6              | 646.6 |                       | Pipe 97              | 12.6              | 0.1      | 0.27      |
| Junc 101              | 12.6              | 647.2 |                       | Pipe 98              | 106.9             | 0.6      | 16.31     |
| Junc 102              | 12.6              | 647.7 |                       | Pipe 99              | 81.7              | 0.5      | 9.67      |
| Junc 103              | 12.6              | 648.2 |                       | Pipe 100             | 35.8              | 0.2      | 1.99      |
| Junc 104              | 12.6              | 648.8 |                       | Pipe 101             | 12.6              | 0.1      | 0.27      |
| Junc 105              | 12.6              | 649.5 |                       | Pipe 102             | 33.3              | 0.2      | 1.74      |
| Junc 106              | 12.6              | 651.5 |                       | Pipe 103             | 20.7              | 0.1      | 0.72      |
| Junc 107              | 12.6              | 652.7 |                       | Pipe 104             | 8.1               | 0.1      | 0.07      |
| Junc 108              | 12.6              | 654.1 |                       | Pipe 105             | -32.7             | 0.2      | 1.68      |
| Junc 109              | 12.6              | 654.1 |                       | Pipe 106             | 12.6              | 0.1      | 0.27      |
| June 3                | 12.6              | 648.1 | 35.1                  | Pipe 107             | 12.6              | 0.1      | 0.27      |
| Resvr 1               |                   | 658.5 |                       | Pipe 108             | 12.6              | 0.1      | 0.27      |
|                       |                   |       |                       | Pipe 109             | 12.6              | 0.1      | 0.27      |
|                       |                   |       |                       | Pipe 110             | 12.6              | 0.1      | 0.27      |
|                       |                   |       |                       | Pipe 111             | 12.6              | 0.1      | 0.27      |
|                       |                   |       |                       | Pipe 112             | 12.6              | 0.1      | 0.27      |
|                       |                   |       |                       | Pipe 113             | 64.1              | 0.4      | 6.04      |
|                       |                   |       |                       | Pipe 114             | 48.0              | 0.3      | 3.47      |
|                       |                   |       |                       | Pipe 115             | 35.4              | 0.2      | 1.95      |
|                       |                   |       |                       | Pipe 116             | 81.8              | 0.3      | 2.48      |
|                       |                   |       |                       | Pipe 117             | 69.2              | 0.2      | 1.81      |
|                       |                   |       |                       | Pipe 118             | 56.6              | 0.2      | 1.23      |
|                       |                   |       |                       | Pipe 119             | 20.0              | 0.1      | 0.67      |
|                       |                   |       |                       | Pipe 120             | 6.2               | 0.0      |           |
|                       |                   |       |                       | Pipe 121             | 12.6              | 0.1      | 0.27      |
|                       |                   |       |                       | Pipe 122             | 24.0              | 0.1      | 0.94      |
|                       |                   |       |                       | Pipe 123             | 11.4              | 0.1      | 0.20      |
|                       |                   |       |                       | Pipe 124             | -1.2<br>42.2      | 0.0      |           |
|                       |                   |       |                       | Pipe 125<br>Pipe 126 | 42.2              | 0.2      | 0.71      |
|                       |                   |       |                       | Pipe 126<br>Pipe 127 |                   |          | 0.61      |
|                       |                   |       |                       | Pipe 127<br>Pipe 128 | 19.0<br>18.0      | 0.1      | 0.61      |
|                       |                   |       |                       | <b>.</b>             |                   | 0.1      |           |
|                       |                   |       |                       | Pipe 129<br>Pipe 130 | 2.0               | 0.0      |           |
|                       |                   |       |                       | Pipe 130<br>Pipe 131 | -3.4              | 0.0      | 0.03      |
|                       |                   |       |                       | Pipe 131<br>Pipe 132 | 11.8              | 0.1      | 0.97      |
|                       |                   |       |                       | Pipe 132<br>Pipe 133 | 11.8              | 0.1      |           |
|                       |                   |       |                       | 1 ipe 133            | 1./               | 0.0      | 0.00      |

| Network Table - Nodes |                   |      |          | Network Table - Links |                   |          |           |
|-----------------------|-------------------|------|----------|-----------------------|-------------------|----------|-----------|
| Node ID               | Demand            | Head | Pressure | Link ID               | Flow              | Velocity | Head loss |
|                       | m <sup>3</sup> /d | m    | m        |                       | m <sup>3</sup> /d | m/s      | m/km      |
|                       |                   |      |          | Pipe 134              | -10.9             | 0.1      | 0.14      |
|                       |                   |      |          | Pipe 135              | 15.1              | 0.1      | 0.39      |
|                       |                   |      |          | Pipe 136              | 12.6              | 0.1      | 0.27      |
|                       |                   |      |          | Pipe 137              | 3.5               | 0.0      | 0.03      |
|                       |                   |      |          | Pipe 138              | 364.3             | 0.5      | 4.76      |
|                       |                   |      |          | Pipe 139              | 355.2             | 0.5      | 4.54      |