

ROAD DEVELOPMENT AUTHORITY MINISTRY OF HIGHWAYS THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

JAPAN INTERNATIONAL COOPERATION AGENCY(JICA)

RECOVERY, REHABILITATION AND DEVELOPMENT PROJECT FOR TSUNAMI AFFECTED TRUNK ROADS ON THE EAST COAST IN THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA FINAL REPORT MAIN REPORT 2 of 3 May 2006

No.

The following foreign exchange rates are applied in the Project:

JPY 1.00 = 0.921 Rs. (as of April 2005) for Emergency Recovery Project

JPY 1.00 = 0.901 Rs. (as of August 2005) for Rehabilitation Project

PREFACE

In response to the request from the Government of the Democratic Socialist Republic of Sri Lanka, the Government of Japan decided to conduct the Recovery, Rehabilitation and Development Project for Tsunami Affected Trunk Roads on the East Coast and entrusted the Project to the Japan International Cooperation Agency (JICA).

JICA selected and dispatched a study team headed by Dr. Masaaki TATSUMI of Oriental Consultants Co., Ltd. and consist of Oriental Consultants Co., Ltd. in association with Nippon Koei Co., Ltd. and Japan Engineering Consultants Co., Ltd. to Sri Lanka, between March 2005 and February 2006.

The team held discussions with the officials concerned of the Government of Sri Lanka and conducted field surveys at the study area. Upon returning to Japan, the team conducted further studies and prepared this final report in May 2006.

I hope that this report will contribute to the rehabilitation of Sri Lanka, and to the enhancement of friendly relationship between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of Sri Lanka for their close cooperation extended to the Project.

May 2006

Kazuhisa MATSUOKA Vice President Japan International Cooperation Agency

LETTER OF TRANSMITTAL

May 2006

Mr. Kazuhisa MATSUOKA, Vice President Japan International Cooperation Agency (JICA) Tokyo, JAPAN

We are pleased to submit to you the Final Report of the Recovery, Rehabilitation and Development Project for Tsunami Affected Trunk Roads on the East Coast.

This Project was conducted by Oriental Consultants Co., Ltd. in association with Nippon Koei Co., Ltd. and Japan Engineering Consultants Co., Ltd. under a contract to JICA, during the period from March 2005 to May 2006. In conducting the Project, we have completed the Emergency Recovery Project and the Rehabilitation Project.

We wish to take this opportunity to express our sincere gratitude to the officials concerned of JICA, Ministry of Foreign Affairs of Japan, Japan International Cooperation Bank, Ministry of Highway of Sri Lanka, Road Development Authority, JICA Sri Lanka Office, JBIC Representative Office in Colombo and Embassy of Japan in Sri Lanka for their cooperation assistance throughout the Project.

Finally, we hope this report will contribute to further cooperation of Sri Lanka.

Very truly yours,

Masaaki TATSUMI Team Leader, Study Team of the Recovery, Rehabilitation and Development Project for Tsunami Affected Trunk Roads on the East Coast

Location Map

PROJECT OUTLINE

1. COUNTRY	Democratic Socialist Republic of Sri Lanka
2. NAME OF STUDY	Recovery, Rehabilitation and Development for Tsunami Affected Trunk Roads on the East Coast in the Democratic Socialist Republic of Sri Lanka
3. COUNTERPART AGENCY	Road Development Authority (RDA) of the Ministry of Highways
4. OBJECTIVE OF STUDY	 To prepare draft tender documents and preliminary designs for the reconstruction of the four causeways damaged by the tsunami of 26th December 2004 as part of an Emergency Recovery Project. To carry out a feasibility study on trunk roads on the East Coast damaged by the tsunami as part of a Rehabilitation Project (including the New Kallady Bridge).

1. STUDY AREA Project components for the Project road AA004 and AA015 are as follows:

- Four Causeways: Komari (Km 334/2 on AA004), Periya Kallar (Km 396/3 on AA004), Koddaia Kallar (Km 398/1 on AA004), Panichchaankeni (Km59/1 on A0015)
- The 100 km section of road on the East Coast from Akkaraipattu to Trikkandimadu on AA004 and AA015 (including the Kallady Bridge).

2. SCOPE OF STUDY

Emergency Recovery Project (Preliminary Design & Draft Tender Document Preparation for Four Causeways)

- 1) Execution of natural condition surveys
- 2) Preparation of preliminary designs
- 3) Preparation of construction plan & cost estimates
- 4) Preparation of draft tender documents
- 5) Preparation of community support program

Rehabilitation Project (FS & Preliminary Design of East Coast Road including the New Kallady Bridge)

- 1) Execution of natural condition surveys
- 2) Execution of traffic surveys
- 3) Execution of initial environmental examination (IEE)
- 4) Forecast of traffic demand
- 5) Establishment of appropriate design standards and criteria
- 6) Development of preliminary engineering design and cost estimation
- 7) Economic evaluation of the Project road and the New Kallady Bridge as a single undertaking
- 8) Development of community support program
- 9) Preparation of a road maintenance plan for rehabilitated road
- 10) Economic analysis and evaluation
- 11) Preparation of Project implementation plan

3. EMERGENCY RECOVERY PROJECT (Preliminary Design & Draft Tender Document Preparation for 4 Causeways)

The Emergency Recovery Project, together with executing the necessary natural condition surveys, prepared a preliminary design including a construction plan and cost estimate for the four causeways. Moreover, in the draft tender documents for this Project, employment opportunities for tsunami affected people are described.

4. REHABILITATION PROJECT (FS & Preliminary Design of East Coast Road including the New Kallady Bridge)

Regarding the Project road's preliminary design, geological, topographical, and high water level surveys were executed and reflected in the planning of the road and its drainage facilities. Project road alignment was then designed with the goal of keeping to the existing alignment as much as possible to minimize social impacts. Pavement structure, after in-depth discussions with RDA, was set with the assumption that road design life is 10 years. After considering cost effectiveness, it was proposed that urban areas receive an overlay only while widening and overlay work applying an aggregate base course be implemented for the other sections of the Project road. Regarding the New Kallady Bridge, its preliminary design was carried out and is to be constructed in parallel to the existing structure. A construction plan and cost estimate for Project road rehabilitation and the New Kallady Bridge's construction was then prepared.

Project evaluation was carried out based on forecasts of traffic demand using data from roadside OD surveys as well as other traffic surveys. The calculation of the EIRR for 10-, 15-, and 20-year periods resulted in values of 7.76%, 9.40%, and 10.10%. In terms of economic justification, an EIRR of at least 10% is desirable, which is obtained if a 20-year evaluation period is applied.

As for environmental impacts, it was deemed that these are minor via an IEE and that an EIA was unnecessary. In the case of social measures, it is recommended that community support be carried out via revitalization of Kalmunai Town and that jobs be provided to local people in the construction of the Project road (including the New Kallady Bridge).

Finally, the Project is to adopt a design-build method and is to start in April 2007 and continue for 30 months till September 2009.

5. CONCLUSIONS & RECOMMENDATIONS:

- Recommendations are only for the Rehabilitation Project, as the Emergency Recovery Project is already in progress.
- 1) Detailed design should be based on the conceptual designs in this report. However, when the design of a particular piece of infrastructure is not clearly indicated, the Contractor should prepare his design based on sound engineering principles.
- 2) This report carried out a careful analysis to determine the most cost-effective pavement structure. Therefore, it is important that due attention is paid to the Project's design and materials in order to ensure costs are approx. in line with preliminary design estimates.
- As part of the overall support system for tsunami affected people, the Contractor for the Project is to exert his efforts to provide income-earning opportunities for both skilled and unskilled workers.
- 4) The Project's road's design life is 10 years and it is therefore necessary that routine maintenance, together with functional and structural overlay work to be performed 10 and 20 years after Project completion, be diligently executed. For this reason, it is recommended that the Sri Lanka Road Fund be implemented as intended.

Summary of Project

Project Period: March 2005 – May 2006

Implementation Agency: Road Development Authority of the Ministry of Highways

1 Project Background & Objectives

The Recovery, Rehabilitation and Development Project for Tsunami Affected Trunk Roads on the East Coast is an undertaking that will implement a preliminary design and prepare draft tender documents for the reconstruction of four causeways on AA004 and AA015 on the country's East Coast, as well as carry out a feasibility study on the rehabilitation of AA004 and AA015 between Akkaraipattu and Trikkandimadu (including the New Kallady Bridge).

2 Emergency Recovery Project

2.1 Outline of Emergency Recovery Project

The facilities considered by the Emergency Recovery Project consist of the following four causeways, which are at present under construction. The design conditions and outline of the preliminary design for the causeways are as shown in Table 2.1.1.

- ① Komari Causeway
- 2 Periya Kallar Causeway
- ③ Koddaia Kallar Causeway
- (4) Panichchankeni Causeway

Item		Komari	Periya Kallar	Koddaia Kallar	Panichchankeni
Road/Km		A4, KM334/2	A4, KM396/3	A4, KM398/1	A15, KM59/1
Road Class		А	А	А	А
Design Speed	(km/hr)	70	70	70	70
Effective Road	d Width (m)	10.0	13.6	13.6	10.0
Estimated Pre (ADT: PCU/da	Estimated Present Traffic Volume (ADT: PCU/dav)		7,070	7,070	500
Pavement	Causeway Road	Concrete	Concrete	Concrete	Concrete
Туре	Approach Road	Asphalt Concrete	Asphalt Concrete	Asphalt Concrete	Asphalt Concrete
		or DBST	or DBST	or DBST	or DBST
Design Water	Level (m)	1.6	1.8	1.8	1.9
Opening for	Required Structure	Bridge	Bridges/Culverts	Bridge/Culvert	Bridge
Canal	Total Opening	48m	136m	41m	127m
Opening for Bridge	Superstructure	Pre-cast Pre-tensioned Beam	Pre-cast RC Concrete Slab	Pre-cast RC Concrete Slab	Pre-cast Pre-tensioned Beam
(prominary		Doann			Deam

 Table 2.1.1.
 Causeway Design Conditions & Preliminary Design Outline

design)	Substructure	Reversed T-shape & Wall Type	Reversed T-shape	Reversed T-shape	Pile Bent Type	
	Foundation	Spread Foundation on Gneiss Rock Base	Spread Foundation on Sandstone	Spread Foundation on Sandstone	Cast-in-situ RC Concrete Pile Embedded in Coarse Sand	
Causeway		Random Rubble			Random Rubble	
(preliminary c	lesign)	Masonry Filling	Retaining Wall	Retaining Wall	Masonry Filling	
		with Crushed	i totali i i g i tali	i totali i i g i tali	with Crushed	
		Stone			Stone	
Incidental	Sidewalk	Mounted up with Co	ncrete Curb for all Ca	auseways		
Facilities	Handrail	Typical Type of Pre-	cast Concrete Handra	ails & Uprights for all (Causeways	
	Duct for Utility cable	Two Ducts for Future	e Utilities to be Conta	ined Inside Mounted	up Sidewalks	
	End Pilasters	Both Ends of Handra	ails to Have Commen	norative Plates		
	Guard Rail	Outside of Embankment Shoulders on Approach Roads				
	Road Marking	Center-line & Edge I	Lines			
	Reflective Road Studs	Center-line on Causeway Roads & Bridges				
	Relocation of Utility	No	Electric Line	Telephone Line Electric Line	No	

Note that the preliminary designs for the road and bridge sections of the causeways in the Emergency Recovery Project are for cost estimation purposes and would have to be re-examined when detailed design work is carried out.

2.2 Community Support Program & Social Environmental Considerations for Emergency Recovery Project

As for the community support program, the draft tender documents contain a mechanism to employ as many local residents as possible affected by the tsunami who have lost their means of earning a living. On the other hand, due to the urgent nature of the Project, a detailed environmental study was not executed. For this reason, the draft tender documents clearly indicate that causeway construction activities should be conducted carefully and all appropriate measures necessary taken in regards to protecting the ecosystem of seaside lagoons.

3 Rehabilitation Project

3.1 Outline of Rehabilitation Project

As for medium- and long-term rehabilitation programs for the trunk roads on the East Coast, the section of AA004 from Akkaraipattu to Batticaloa and AA015 from Batticaloa to Trikkandimadu, as well as the Kallady Bridge on AA004 to the south of Batticaloa, were selected. The vertical alignment on these sections is almost flat, and the horizontal alignment has few curves, meaning that it is possible to have a curvature radius with a design speed of 50 km/hr to 60 km/hr. Presently, the existing pavement structure is macadam, and the road surface is experiencing numerous types of damage such as cracking and pot holes at both the center and edge of the carriageway.

As for the New Kallady Bridge, on the other hand, its length and span arrangements will be the same as the existing Kallady Bridge and will be located 20m to the south.

3.2 Natural Condition Survey

According to a soil survey, the sub-base and base of the existing road, which are located underneath the surface layer, are about 40cm in thickness. In addition, the high water level for the Batticaloa Lagoon is 1.35m for a 50-year return period and for the Valachchenai Lagoon 3.30m for the same return period. These results are useful in determining the necessary elevation of the proposed road alignment and the placement of culverts.

3.3 Traffic Demand Forecast

As there was no existing traffic data for the Project area, the following traffic surveys were executed: 1) a roadside origin-destination survey (passenger & freight vehicles), 2) traffic volume survey, 3) bus passenger survey, 4) bus terminal survey, 5) road condition survey, 6) travel speed survey, 7) turning movement survey, and 7) rail terminal survey.

Based on the results of the above surveys, the area near Kalmunai has the largest daily traffic flow for a total of 8080 vehicles per day (vpd). Note that the average vpd for the Project road is about 4120, with about 16% of this traffic being heavy vehicles (i.e., large buses, medium trucks, and large trucks). In terms of passenger car units (pcu), the relatively busy Kalmunai area has a daily flow of 7070 pcu, with the average daily pcu flow for the Project road being about 3770, indicating that the there is a large number of small-sized vehicles such as motorcycles. In fact, 72% of existing traffic is has a pcu of 1.00 or smaller (i.e., passenger cars, 3 wheelers, and motorcycles).

The traffic evaluation criteria of daily vehicle-kilometers (Veh-km), vehicle-hours (Veh-hr), and average area speed are used to assess the impact of the rehabilitation of the Project road. In 2025, travel speeds without rehabilitation range from a low of 53 km/h to a high of about 56 km/h, while with rehabilitation speeds would be in the range of 64 km/h to 68 km/h, indicating that improvement of the Project road would have a significant impact on vehicle operation speeds in the Project area.

3.4 Environmental & Social Considerations

After a general examination, both the Project road and the New Kallady Bridge were determined to have impacts classified as "*Category B*", which indicate that these impacts on the environment and society are insignificant and normal mitigation measures can be designed readily.

Note that an initial environmental examination (IEE) has been conducted and it was

deemed that there would be no significant impacts. Note the Sri Lankan Government does not require an IEE for this Project.

3.5 Preliminary Design for Rehabilitation of Eastern Trunk Road

The Project road shall basically keep to the existing alignment in order to minimize social and environmental impacts. However, for sections experiencing inundation during the rainy season, these sections shall be raised so as to be higher than inundation levels based on the guidelines of the RDA.

The standard ROW is basically 11.0m wide with a pavement width of 10.0m, while the minimum ROW will be 9.0m with a pavement width of 8.0m in the case of narrow sections bordered by structures. Note that the existing ROW in urban areas with a width greater than 11.0m shall be maintained in its current state. The composition of land use along the Project road is such that urban (ROW>11.0m), rural (ROW \ge 11.0m), paddy field and lagoon (ROW \ge 11.0m), and narrower urban sections (ROW=9.0m) account for 24%, 58%, 14% and 4% of the Project road length, respectively. The quantities to be compensated for are 773m of parapet wall, 77.1m of wire fence, and 510.88m² of land.

In regards to the most economical design for pavement, this was decided in discussions with RDA and it was deemed unnecessary to reconstruct the existing road and that overlay work would be sufficient. Moreover, it was determined that it would be economical only to carry out overlay work for urban areas and overlay work together with an aggregate base course (ABC) for other sections of the Project road.

3.6 Preliminary Design for Rehabilitation of New Kallady Bridge

The outline for the design of the New Kallady Bridge is as shown in the table below.

Items			Plan	
Improvement Method			The bridge will be constructed in parallel with the existing	
				bridge
Bridge	Length	Bridge Length	I	289.5m
Design		Span Arrange	ments	6 x 48.05m
	Type Superstructure		Э	6 Spans Continuous PC Box Girder
				(Extruded Construction)
		Abutments		RC Reversed-T Type
		Piers		RC Wall and Pile Cap (Oval Shape)
		Foundation	Pier	Cast-in-Situ Protrusion RC Pile
				with Steel Tubular Pipe (dia. 1.2m)
			Abutment	Cast-in-Situ RC Pile (dia. 1.2m)
	P	Pavement	Carriageway	Asphalt Concrete
			Cycle Lane	Cast-in-Situ Concrete

Table 3.6.1.Design Outline of the New Kallady Bridge

			Sidewalk	Pre-cast Concrete Panel
	Accessory	Expansion Joint Steel Finger Type Joint on A1 and A2 Abutments		
		Bearing		Elastic Rubber Type Bearings
Riverside	Protection	Bank Protection	on	A1 Side : Soil Embankment
				A2 Side : Grouted Riprap
		Riverbed Prote	ection	Non
Approach Road		Length		Kalmunai Side : approx. 145m
				Batticaloa Side : approx. 105m
		Pavement		Asphalt Concrete
		Bank Protection	on	A1 Side : Soil Embankment
				A2 Side : Wet Masonry (grouted riprap)
		Safety Barriers	6	Steel Guard Rail for embankments higher than 2m

3.7 Project Evaluation

Project costs and benefits (including the New Kallady Bridge) are first evaluated over the period of 2006 to 2020 using least cost analysis to confirm the cost-effectiveness of the selected road design, which is based on a design life of 10 years adopted after careful consideration and discussions with RDA. On the other hand, a 10-year period is too short to sufficiently consider benefits that will flow from the improvement of the Project road. Therefore, 15- and 20-year periods of time for economic evaluation are taken up.

Benefit cost analysis is next carried out for the three evaluation periods of 10, 15, and 20 years in order to check the economic viability of the Project road. Note that the longer the evaluation period the larger the economic internal rate of return (EIRR) becomes. In the case of a 10-year period, the EIRR is only 7.76%. On the other hand, the EIRR for the 15-and 20-year periods is 9.40% and 10.10%. In terms of economic justification an EIRR of at least 10% should be obtained, meaning that the Project satisfies the minimum if a longer evaluation period is applied.

3.8 Community Support Program for Rehabilitation Project

In the Rehabilitation Project community support takes two forms: ① the Kalmunai Township Redevelopment program and ② the provision of work directly to tsunami affected persons via the construction work of the Project road and bridge.

3.9 Plan for Maintenance of Rehabilitated Road Facilities

The minimal road maintenance that should be considered is pavement maintenance, shoulder maintenance, bridge maintenance, and traffic operation maintenance. Annual O&M costs (including the costs for functional and structural overlays) are as indicated in Table 3.9.1.

Type of Wo	Cost (Rs.)	
Annual O&M	1 Maintenance	9,000,000
	^② Operation	
	Total	≑10,500,000
Overlay	③ Functional Overlay (after 10 years)	618,000,000
	④ Structural Overlay (after 20 years)	1,120,000,000

Table 3.9.1.	Road Maintenance	Cost after	Rehabilitation
--------------	-------------------------	-------------------	----------------

 \mathbb{O} : Based on actual Baseline Road maintenance expenditures; \mathbb{O} : 15% of \mathbb{O} ; \mathbb{O} : Based on data from RDA's RMBEC; \oplus : Twice the value of \mathbb{O} .

Note, however, given the current lack of funding for maintenance, it is suggested that the Sri Lanka Government implement the planned Road Fund as quickly as possible.

3.10 Project Implementation Plan

Upon receiving a strong request from the Sri Lankan Government for the earliest possible commencement of the civil works, it has been decided that the period for pre-construction procedures be minimized. The Sri Lankan and Japanese sides have therefore planned to carry out in parallel the selection of the contractor, who will also be responsible for the detailed design work, and the supervising consultant. Thus, construction is scheduled to start in April 2007 and be completed 30 months later in September 2009.

3.11 Conclusions & Recommendations

The conclusions and recommendations for the Rehabilitation Project are as follows:

- Detailed design should be based on the conceptual designs in this report. However, when the design of a particular piece of infrastructure is not clearly indicated, the Contractor should prepare his design based on sound engineering principles.
- This report carried out a careful analysis to determine the most cost-effective pavement structure. Therefore, it is important that due attention is paid to the Project's design and materials in order to ensure costs are approx. in line with preliminary design estimates.
- As part of the overall support system for tsunami affected people, the Contractor for the Project is to exert his efforts to provide income-earning opportunities for both skilled and unskilled workers.
- The Project's road's design life is 10 years and it is therefore necessary that routine maintenance, together with functional and structural overlay work to be performed 10 and 20 years after Project completion, be diligently executed. For this reason, it is recommended that the Sri Lanka Road Fund be implemented as intended.

Recovery, Rehabilitation and Development Project for Tsunami Affected Trunk Roads on the East Coast in The Democratic Socialist Republic of Sri Lanka

Table of Contents

1 OF 3: EXECUTIVE SUMMARY

2 OF 3: MAIN REPORT

Location Map Project Outline Summary of Project Table of Contents Abbreviations

PART 1 GENERAL

Chapter 1	Introduction1-1
1.1	Background1-1
1.2	Scope1-4
1.3	Components of Final Report1-7
1.4	Project Organizational Setup1-7
	1.4.1 Project Implementation Organizations1-7
	1.4.2 Staffing1-7
1.5	Project History1-9
	1.5.1 Brief Narrative1-9
	1.5.2 Project Milestones1-10
Chapter 2	Overview of Project Area2-1
2.1	Overall Socioeconomic Situations and Road Profile of Sri Lanka2-1
	2.1.1 Socioeconomic Profile of Sri Lanka2-1
	2.1.2 Road Profile of Sri Lanka
2.2	Natural Conditions of Project Area2-4
2.3	Environmental Characteristics of Project Area2-8
2.4	Road Profile of Project Area2-8

2.5	Pre-Tsunami Socioeconomic Conditions of Project Area	.2-10
2.6	Impact of the Tsunami on the Socioeconomic Conditions of the Project Area	.2-11
2.7	Tsunami Damage to Road Facilities & Recovery Status in Project Area	.2-13

PART 2 EMERGENCY RECOVERY PROJECT

Chapter 3	Overvie	ew of Emergency Recovery Project	3-1
3.1	Selecte	ed Road Facilities for Emergency Recovery	
	3.1.1	Overview of Site Conditions for Emergency Recovery	3-1
	3.1.2	Present Conditions of Selected Roads for Emergency Recover	ry3-1
3.2	Natura	l Condition Survey for Emergency Recovery	
	3.2.1	Topographic Survey	
	3.2.2	Geological Survey	
	3.2.3	Hydrological Survey	
3.3	Princij	ples for Project Implementation	
Chapter 4	Facility	Designs for Emergency Recovery	4-1
4.1	Desigr	n Standards & Criteria to be Adopted	4-1
	4.1.1	Design Standards	4-1
	4.1.2	Geometric Criteria	4-2
	4.1.3	Structure Design Criteria	4-7
	4.1.4	Design of Culvert	
4.2	Outlin	es of Facility Designs for Emergency Recovery	4-13
	4.2.1	Existing Condition of Each Causeway	4-13
	4.2.2	Design Policy for Each Causeway	4-14
	4.2.3	Preliminary Design of Causeway Facilities	4-14
	4.2.4	Preliminary Plan for Bridges & Causeway Roads	4-16
Chapter 5	Constru	ction Planning and Cost Estimate for Emergency Recovery	5-1
5.1	Constr	uction Planning	5-1
	5.1.1	General	5-1
	5.1.2	Construction Area	5-1
	5.1.3	Major Work Item	
	5.1.4	Construction Method	
	5.1.5	Construction Schedule	5-5
5.2	Cost E	Stimate	5-7
	5.2.1	General	5-7

	5.2.2 Procurement	5-7
	5.2.3 Unit Cost	5-12
	5.2.4 Total Project Cost	5-12
Chapter 6	Preparation of Draft Tender Documents for Emergency Recovery Project	6-1
6.1	General	6-1
6.2	Principles for Preparation of Draft Tender Documents	6-1
6.3	Composition of Draft Tender Documents	6-2
Chapter 7	Community Support Program & Social Environmental Considerations for	
	Emergency Recovery	7-1
7.1	Rationale for Incorporating Community Support to the Tsunami Victims	
	in the Emergency Recovery Project	7-1
7.2	Objectives of Support Programs of the Emergency Recovery Project	7-2
7.3	Method of Recruiting Tsunami Victims in Emergency Recovery Works	7-2
7.4	Potential Risks and Risk Management	7-4
7.5	Intended Community Support in the Emergency Recovery Project	7-5
7.6	Instruction on Community Support in Draft Tender Documents	7-6
7.7	Monitoring of Community Support	7-6
7.8	Evaluation of Community Support	7-9
7.9	Social Environmental Consideration for Emergency Recovery	7-10
	7.9.1 General	7-10
	7.9.2 Anticipated Negative Impacts and Mitigation Measures	7-10

PART 3 REHABILITATION PROJECT

Chapter 8	Overvie	ew of Rehabilitation Project	8-1
8.1	Selecte	ed Road & Bridge Section for Rehabilitation Project	
8.2	Existir	ng Road Conditions	
	8.2.1	General	
	8.2.2	Road Conditions	
8.3	Outlin	e of Rehabilitation Project for Eastern Trunk Roads	
	8.3.1	Outline of Feasibility Study	
	8.3.2	Prospective Road Width	
8.4	Outlin	e of Rehabilitation Project for New Kallady Bridge	
	8.4.1	Present Condition of Existing Kallady Bridge	8-9
	8.4.2	Outline of Feasibility Study	

Chapter 9	Environmental and Social Considerations for Rehabilitation Project9-1		
9.1	Background9-1		
9.2	Project Categorization Based on JICA Guidelines9-3	3	
9.3	Summary of Initial Environmental Examination9-4	1	
	9.3.1 Initial Environmental Examination of Rehabilitation of the Project Road 9-5	5	
	9.3.2 Initial Environmental Examination of Construction of New Kallady Bridge 9-1	14	
9.4	Summary Conclusions	22	
Chapter 10	Natural Condition Survey for Rehabilitation Project	-1	
10.1	Topographic Survey10	-1	
	10.1.1 Scope of Work	-1	
	10.1.2 Survey Specifications	-2	
	10.1.3 Survey Method	-2	
10.2	Geological Survey	-3	
	10.2.1 Scope of Work	-3	
	10.2.2 Testing & Investigation Methods	-4	
	10.2.3 Survey Results	-5	
10.3	Hydrological Survey	-9	
	10.3.1 Basic Hydrological Conditions of Project Area	-9	
	10.3.2 Rivers, Tributaries and Lagoons in Project Area	-9	
	10.3.3 Determination of High Water Level	-10	
Chapter 11	Traffic Demand Forecast	-1	
11.1	Objective	-1	
11.2	Traffic Surveys	-1	
11.3	Results from Traffic Surveys	-5	
	11.3.1. Trip Making Patterns	-5	
	11.3.2. Traffic Flow Characteristics & Average Vehicle Occupancy	-7	
	11.3.3. Bus Travel	-11	
	11.3.4. Project Road Condition & Travel Speed	-13	
	11.3.5. Turning Movement	-14	
	11.3.6. Rail Travel	-16	
11.4	Traffic Demand Model	-16	
	11.4.1 Outline of Model	-16	
	11.4.2 Zoning	-18	
	11.4.3 Socioeconomic Considerations & Future Trip-Making Assumptions11	-20	

	11.4.4 Traffic Network & Assignment	11-25
11.5	Future Traffic Demand & Traffic Evaluation Criteria	11-30
Chapter 12	Preliminary Design for Rehabilitation of Eastern Trunk Road	12-1
12.1	General	12-1
12.2	Alignment & Geometric Design Criteria	12-1
	12.2.1 Alignment	12-1
	12.2.2 Right of Way (ROW)	
	12.2.3 Public Utilities	12-7
	12.2.4 Geometric Design Criteria	12-7
12.3	Pavement Structure	
	12.3.1 Pavement Design Method & Standards	
	12.3.2 Traffic Load	
	12.3.3 Sub-grade Strength	
	12.3.4 Suitable Pavement Composition in the Case of Reconstruction	12-16
	12.3.5 Suitable Pavement Composition in the Case of an Overlay	
12.4	Drainage Structures	
	12.4.1 Existing Condition of Drainage Structure	
	12.4.2 Establishment of Design Policy for Roadside Drainage	
	12.4.3 Establishment of Design Policy for Culverts and Bridges	
12.5	Road Facilities	
	12.5.1 Design Policy for Road Facilities	
	12.5.2 Traffic Signs and Markings	
	12.5.3 Ancillary Facilities	
12.6	Preliminary Design Scenarios	
	12.6.1 Potential Scenarios	
	12.6.2 Comparison of Scenarios	
	12.6.3 Most Suitable Preliminary Design	
	12.6.4 Appropriateness of Preliminary Design	
Chapter 13	Preliminary Design of New Kallady Bridge	13-1
13.1	General	13-1
13.2	Conditions of the Existing Kallady Bridge	13-1
	13.2.1 Site and Bridge Structure Conditions	13-1
	13.2.2 Traffic Characteristics and Safety Conditions	13-1
13.3	Basic Policy for Rehabilitation of Kallady Bridge	13-3

	13.4	Examination of Bridge Location	
		13.4.1 Alternative Plans	
		13.4.2 Examination of Adjacent Location to the Existing Bridge	
		13.4.3 Selection of Optimum Location	
	13.5	Preliminary Design of New Kallady Bridge	
		13.5.1 Applicable Design Criteria and Conditions	13-6
		13.5.2 Examination of Preferable Bridge Length and Type	
		13.5.3 Public Utility Plan	
		13.5.4 Outline of Bridge Plan	
	13.6	Suggestions for Next Stage	
Chapter	14	Preliminary Construction Planning and Cost Estimate for Rehabilitation Pro	ject14-1
	14.1	Preliminary Construction Planning for Rehabilitation Project	14-1
		14.1.1 General	14-1
		14.1.2 Construction Area	14-1
		14.1.3 Major Work Items and Quantities	
		14.1.4 Rehabilitation Work of Project Road	14-3
		14.1.5 New Kallady Bridge	
		14.1.6 Construction Schedule	
	14.2	Preliminary Cost Estimate for Rehabilitation Project	
		14.2.1 General	
		14.2.2 Procurement	
		14.2.3 Unit Cost	
		14.2.4 Preliminary Project Cost Estimate	
Chapter	15	Project Evaluation	15-1
	15.1	Objective	
	15.2	Project Costs & Benefits	
	15.3	Cost & Benefit Valuation	
		15.3.1 Cost Valuation	
		15.3.2 Benefit Valuation	
	15.4	Least Cost Analysis	
	15.5	Benefit Cost Analysis of Selected Least Cost Alternative	
	15.6	Sensitivity Analysis	
Chapter	16	Community Support Program for Rehabilitation Project	16-1
	16.1	Community Support in Eastern Trunk Roads Rehabilitation	
	16.2	Context of Kalmunai Township Redevelopment in Eastern Trunk Roads	

	Rehabilitation
16.3	Conceptualizing the Kalmunai Township Redevelopment Plan16-2
	16.3.1 Governing Principles
	16.3.2 Basic Considerations for KTR Concept Plan16-6
16.4	Potential Community Support Sub-Projects in Kalmunai Township
	Redevelopment Project16-7
16.5	Prioritizing Community Support in Proposed Rehabilitation Project16-8
	16.5.1 Support for Survival
	16.5.2 Support for Functioning
	16.5.3 Support for Progress
Chapter 17	Plan for Maintenance of Rehabilitated Road Facilities 17-1
17.1	Present Status 17-1
17.2	Maintenance Plan
17.3	Implementation Issues
Chapter 18	Project Implementation Plan

PART 4 CONCLUSIONS & RECOMMENDATIONS

Chapter 19	Conclusions & Recommendations19-		19-1
19.1	General		19-1
19.2	Conclusion	Emergency Recovery Project	19-1
19.3	Conclusion	Rehabilitation Project	19-2
19.4	Recommendations	3	19-5

3 OF 3: DRAWINGS

Abbreviations

ABC	:	Aggregate Base Course
AC	:	Asphalt Concrete
ADB	:	Asian Development Bank
ADT	:	Average Daily Traffic
AFD	:	French Development Agency
ASTM	:	American Society for Testing and Materials
BC Analysis	:	Benefit Cost Analysis
BIQ	:	Basic Information Questionnaire
BM	:	Benchmark
BS	:	British Standard
СВО	:	Community Based Organization
CBR	:	California Bearing Ratio
CCD	:	Coast Conservation Department
CEA	:	Central Environmental Authority
CIF	:	Cost Insurance and Freight
CW	:	Causeway
DBST	:	Double Bituminous Surface Treatment
DCP	:	Dynamic Cone Penetration
DS	:	District Secretaries
DWL	:	Design Water Level
EC	:	European Community
EF	:	Equivalence Factor
EIA	:	Environmental Impact Assessment
EIRR	:	Economic Internal Rate of Return
ERD	:	Department of External Resources, Ministry of Finance and Planning (of Sri Lanka)
ESA	:	Equivalent Standard Axle
ESAL	:	Equivalent Standard Axle Load
FFPO	:	Fauna and Flora Protection Ordinance
FIDIC	:	International Federation of Consulting Engineers
GDP	:	Gross Domestic Product
GN	:	Grama Niladari
GOSL	:	Government of Sri Lanka
GPS	:	Global Positioning System
HDI	:	Human Development Index
HEC	:	Hydrological Engineering Center (US Army Corps of Engineers)
HSR	:	(Sri Lanka) Highway Schedule of Rates
HWL	:	High Water Level
ICTAD	:	Institution for Cooperation Training and Development
IDP	:	Internally Displaced Population
IEE	:	Initial Environmental Examination
INGO	:	International Non-Governmental Organization
IRI	:	International Roughness Index
JBIC	:	Japan bank for International Cooperation
JEC	:	Japan Engineering Consultants Company Limited
JICA	:	Japan International Cooperation Agency
JICS	:	Japan International Cooperation System

JPY	:	Japanese Yen
KEL	:	Knife Edge Load
kmp	:	kilometer post
KTR	:	Kalmunai Township Redevelopment
LC Analysis	:	Least Cost Analysis
LTTE	:	Liberation Tigers of Tamil Eelam
MSL	:	Mean Sea Level
NEA	:	National Environmental Act
NFL	:	Normal Flood Level
NGO	:	Non-Governmental Organization
NK	:	Nippon Koei Company Limited
NPV	:	Net Present Value
OC	:	Oriental Consultants Company Limited
O&M	:	Operation & Maintenance
PC	:	Prestressed Concrete
pcu	:	passenger car unit
PI	:	Preliminary Information
RC	:	Reinforced Concrete
RCDC	:	Road Construction and Development Co. (Pvt) Ltd. (in Sri Lanka)
RDA	:	Road Development Authority
RDA-EPO	:	Road Development Authority - Eastern Provincial Office
RMBEC	:	Road Maintenance Budgeting and Expenditure Control
ROW	:	Right of Way
Rs.	:	(Sri Lankan) Rupees
SN	:	Structural Number
SPT	:	Standard Penetration Test
TAFOR	:	Task Force for Relief
TAFREN	:	Task Force for Rebuilding Nation
TRL	:	UK Transport Research Laboratory
UDL	:	Uniformly Distributed Load
UK	:	United Kingdom
UNDP	:	United Nations Development Programme
US\$:	United States Dollars
USAID	:	United States Agency for International Development
VAT	:	Value Added Tax
Veh-hr	:	Vehicle-hour
Veh-km	:	Vehicle-kilometer
vpd	:	vehicles per day
WG	:	Working Group

PART 1 GENERAL

CHAPTER 1

Introduction

Chapter 1 Introduction

1.1 Background

1) Tsunami Damage to Sri Lanka & Its Roads

A devastating tsunami caused by an undersea earthquake off of Indonesia's Sumatra Island, on 26th December 2004 hit many coastal areas of countries across the Bay of Bengal and the Indian Ocean including Indonesia, Thailand, Sri Lanka, India, and some African countries, causing serious damage with about 300 thousand people killed or missing. In Sri Lanka, except for the 200km long western coastal area from Jaffna to Puttalam, 85% of the island's 2,825km coastline was affected by the tsunami and more than 30 thousand people killed and about 800 thousand people displaced. In addition, about 78 thousand houses were destroyed (41.4 thousand completely and 36.2 thousand partially) and public utilities, private property and infrastructure (including highways) were severely damaged.

The road network in Sri Lanka has a total length of about 100 thousand km including 4,339km of Class A inter-provincial trunk road and 7,670km of Class B intra-provincial arterial road, both under the RDA. Of the Class A and B roads, which total 5,243 km in the North, East, West and Southern Provinces, RDA reported that about 430km was damaged by the tsunami and became impassable. The most severely damaged were the highways from Colombo to Hambantota on the West and South Coasts, and from Pottuvil to Mullaitive and in and around Jaffna on the East and North Coasts.

2) Road Recovery & Rehabilitation Plan by GOSL

To immediately rehabilitate the road network in affected areas, the Ministry of Highways adopted a 3-stage program covering emergency, short- and medium-term repair/ rehabilitation/improvement as follows:

Stage 1: Emergency repairs to a passable level of service to be carried out within the first 2-3 weeks from the date of the disaster

All damaged road sections on the South, North and East Coasts have been already recovered and made passable.

Stage 2: Reconstruction/rehabilitation of damaged roads/structures for short-term requirements within 3-4 months after completion of emergency repairs Temporary works have to be stabilized and reinforced with permanent bridges, structural repairs, surface improvement and paving to ensure safety. The estimated total cost for Stages 1 and 2 is US\$ 15.35 million.

Stage 3: Rehabilitation/reconstruction/improvement of damaged roads for mediumterm requirements to be carried out over 2-3 year period

Taking into consideration public safety, many sections of rehabilitated road have to be realigned or shifted inland from the beach reservation, which is a 100m belt area on beaches designated by the Government of Sri Lanka after the tsunami disaster that prohibits any kind of construction work in order to minimize future tsunami risks. RDA has set up two options to implement projects in this Stage:

- Option 1: To rehabilitate/reconstruct roads to their original normal condition without considering projected traffic and regional development needs (estimated total cost: US\$ 153 million).
- Option 2: To rehabilitate/reconstruct as well as widen roads to the required number of lanes based on projected traffic and regional development for the next 20 years (estimated total cost: US\$ 490 million).

The trunk road network is one of the fundamental pieces of infrastructure that need to be urgently recovered or rehabilitated after such a severe disaster as the tsunami of 2004. Compared with other sectors, it is relatively neutral to the ethnic issues peculiar to Sri Lanka so that relatively early commencement of the recovery work for damaged trunk roads could be realized. Also, coordination among donors began soon after the disaster. As mentioned above, emergency repairs have been completed and the major component of the recovery work is shifting from temporary repairs to rehabilitation and construction of permanent structures and development beyond the original state before the disaster.

3) Coordination in Assistance among Donors

Assistance from donors other than the Japanese for the recovery and rehabilitation of trunk roads on the East Coast has been basically fixed and is as follows:

- i) Bridge construction on the Kinniyai ferry section of AA015 by Saudi funding
- Rehabilitation of the road sections, excluding bridge sections, of AA015 between Trincomalee and Mutur by France
- iii) Construction of three bridges (Mutur, Gangei, and Upparu) on AA015 between Trincomalee and Mutur by France
- iv) Rehabilitation of the road section of AA015 between Mutur and Verugal (78 km to 110

km) by France

- v) Rehabilitation of the road section of AA015 between Verugal and Trincomalee (37 km to 78 km, including three bridges) and construction of the Verugal and Kayankerny Bridges on AA015 by France
- vi) Construction of a new Oddaimavadi Bridge on AA015 by Spain
- vii) Rehabilitation of the road section of AA004 between Pottuvil and Akkaraipattu, excluding the Komari Causeway by EC/ADB
- viii) Construction of the Arugam Bay Bridge on B374 by USAID
- ix) Rehabilitation of the road section of B374 between Panama and Pottuvil by EC/ADB

4) Assistance by Japan

JICA dispatched a Preparatory Study Team to examine the possibility of recovery, rehabilitation, and development projects for tsunami affected areas in Sri Lanka from 13th to 31st March 2005, and conducted a field study and had discussions with the relevant officials of the Government of Sri Lanka. On 21st March 2005, the Scope of Work for three projects (i.e., the so-called "Northeastern," "Southern," and "Eastern Trunk Road" projects) was agreed upon and the Minutes of Meeting signed in Colombo between JICA and the relevant Ministries.

The basic policy regarding JICA's contribution is to implement recovery and rehabilitation works for trunk roads as urgently as possible via grant and loan assistance from the Government of Japan. The outline for Japanese assistance for these works as follows:

- x) Rehabilitation of five bridges (Akurala, Seenigama, Magalle, Goiyapana & Weligama) on AA002 on the South Coast using Non-Project Grant Aid
- xi) Rehabilitation of four causeways (Komari, Periya Kallar, Koddaia Kallar & Panichchankeni) on AA004 and AA015 on the East Coast using Non-Project Grant Aid
- xii) Preparation of a rehabilitation plan (inclusive of a feasibility study) for the section of AA004 and AA015 between Akkaraipattu and Trikandimadu as a JICA Emergency Development Study, which would be implemented via a JBIC yen loan
- xiii) Preparation of a construction plan (inclusive of a feasibility study) for a New KalladyBridge on AA004 as a JICA Emergency Development Study, which would beimplemented via a JBIC yen loan

5) Formation of this Project

As mentioned previously, the Scope of Work for the *Recovery, Rehabilitation and Development Project for Tsunami Affected Trunk Roads on the East Coast in the Democratic Socialist Republic of Sri Lanka* (hereinafter referred to as "the Project") was signed on 21st March 2005 as one of three tsunami-related JICA projects, and is primarily concerned with the preliminary design and preparation of draft tender documents for the four causeways listed in Item xi) and the execution of a feasibility study for the 100km road from Akkaraipattu to Trikandimadu described in Item xii). Note that the feasibility study in Item xiii) was added to the scope of work during the course of the Project.

1.2 Scope

The Project consists of two major components: (i.e., the Emergency Recovery Project and Rehabilitation Project) as shown in Fig. 1.2.1. The Emergency Recovery Project is concerned with rehabilitating the four damaged causeways on the East Coast using permanent structures to replace the existing temporary ones and are as follows:

- Komari Causeway at 334/2 kmp on AA004
- Periya Kallar Causeway at 396/3 kmp on AA004
- Koddaia Kallar Causeway at 398/1 kmp on AA004
- Panichchankeni Causeway at 59/1 km on AA015

The work of the Emergency Recovery Project includes natural condition surveys on topography, geology and hydrology, preliminary design, construction planning, cost estimates, preparation of a community support program, drafting of tender documents for construction works, etc.

The Rehabilitation Project consists of a feasibility study on the rehabilitation/development of the trunk roads AA004 and AA015 on the East Coast for a total length of about 100km from Akkaraipattu to Trikkandimadu, as well as a feasibility study on the construction of a new Kallady Bridge on AA004 south of Batticaloa. The Project includes a review and analysis of present socioeconomic and environmental conditions, natural condition surveys on topography, geology and the environment, traffic surveys, an initial environmental examination based on JICA/JBIC guidelines, preliminary designs of the Project road and New Kallady Bridge, construction planning, cost estimates, project implementation plan, maintenance planning, economic analyses, etc.

1.3 Components of Final Report

This Final Report contains the work undertaken by the Study Team in the period from March 2005 to May 2006, which concerns the Emergency Recovery Project for the four selected causeways and the Rehabilitation Project for the above-mentioned roads and New Kallady Bridge. Note that the drawings and IEE Report described in the Table of Contents are only submitted to JICA. In the case of the former, as there has been no change to the drawings of the Draft Final Report, RDA stated that it is unnecessary to re-submit them. As for the latter document, RDA noted that it is not a requirement of the Sri Lankan Government and therefore unnecessary.

Regarding the Emergency Recovery Project, after reviewing the present overall conditions of the Project area, the natural conditions of the four areas and facilities are examined. Then, the preliminary design¹ and construction plan of the facilities, as well as their cost estimate, are outlined. A description of the preparation of the draft tender documents and the tender implementation assistance follows this. Also, a community support program with monitoring and evaluation, together with social and environmental considerations for the Emergency Recovery Project, are reported.

As for the Rehabilitation Project, the statutory environmental requirements are first reviewed, followed by a description of the surveyed natural conditions of the coastal areas along the Project road (i.e., topography, geology, and hydrology). Next, present traffic flows in the area are surveyed and reported, and the outcomes of a traffic demand forecast subsequently disclosed. Then, the preliminary design and construction plan of the Project road between Akkaraipatu and Trikkandimadu and the New Kallady Bridge, as well as their cost estimates, are outlined. In addition, an economic analysis for the whole of the Rehabilitation Project is carried out. Moreover, a community support program for the Project is suggested, together with a maintenance plan for the rehabilitated roads and a Project implementation plan.

¹ Note that the preliminary designs for the road and bridge sections of the causeways in the Emergency Recovery Project are for cost estimation purposes and would have to be re-examined when detailed design work is carried out.

1.4 Project Organizational Setup

1.4.1 Project Implementation Organizations

The Project is implemented by organizations consisting of Japanese and Sri Lankan government entities and a Study Team of consultants as shown in Fig. 1.4.1 below.

Figure 1.4.1. Project Implementation Organizations

1.4.2 Staffing

The members involved in this Project are listed as follows:

1) Technical Committee for the Recovery, Rehabilitation and Development Project for Tsunami Affected Trunk Roads on the East Coast

No.	Name	Title
1	Dr. G. L. Asoka J. de Silva	Director, Engineering Services, RDA
2	Mr. R. M. Amarasekera	Director, Planning, RDA
3	Mr. M. G. E. Perera	Director, Highway Department, RDA
4	Mr. Mylvaganam Thuraisamy	Project Director, Japanese Aid Project, RDA
5	Mr. Rohita	Deputy Director, Engineering Services, RDA
6	Mr. Vasanthakumar	Design Engineer, Engineering Services, RDA
7	Dr. T. Takano	JICA Expert, RDA

Members relevant to Urgent Task Force for Indian Ocean Tsunami Disaster Support 2) of JICA

No.	Position	Name	Title
1	Secretary General	Mr. M. Fuwa	Sr. Assistant, Social Development
			Dept.
2	Chief, Sri Lanka	Mr. Y. Kurashina	Team Director, Transportation 1, Group
			3, Social Development Dept.
3	Member, Trunk Roads	Mr. N. Yamamura	Staff, Transportation 1, Group 3, Social
			Development Dept.
4	Support, Trunk Roads	Mr. S. Isogai	Staff, Transportation 1, Group 3, Social
			Development Dept.
5	Support, Trunk Roads	Mr. H. Matsumoto	Staff, Water Resources 2, Group 3,
			Global Environment Dept.

JICA Study Team 3)

No.	Position	Name	Firm
1	Team Leader / Disaster Recovery Planning	Dr. Masaaki Tatsumi	OC
2	Deputy Team Leader / Disaster Mitigation	Mr. Yuichi Tsujimoto	NK
3	Community Support Planning	Dr. Rajamanoharan	NK
		Kumarasuriyar	
4	Road Planning / Design 1	Mr. Keigo Konno	OC
5	Road Planning / Design 2	Mr. Hitoshi Okita	OC
6	Road Structure Design 1	Mr. Hiroshi Fujisawa	NK
7	Road Structure Design 2	Mr. Tetsuya Maeda	NK
8	Construction Planning / Cost Estimates 1	Mr. Futoshi Hatanaka	OC
9	Construction Planning / Cost Estimates 2	Mr. Nobuo Yoneda	JEC
10	Survey 1	Mr. Hisashi Muto	JEC
11	Survey 2 / Natural Conditions	Mr. Satoshi Mizuno	JEC
12	Tender Documents 1 / Equipment	Mr. Shinichi Matsumoto	NK
	Procurement Planning		
13	Tender Documents 2	Mr. Hikohiro Nakamura	NK
14	Social Environment	Mr. Shigeru Sai	OC
15	Project Assessment	Dr. William Hayes	OC
16	Coordinator	Mr. Kouhei Shimomura	OC

1.5 Project History

1.5.1 Brief Narrative

The Project has progressed as shown in the work flow of Figure 1.2.1, starting in March 2005 and ending in May 2006.

After the execution of field studies on the present condition of the Project areas, which were conducted in the starting stages, efforts have been made to complete the first major task —the preliminary design and construction planning of the four causeways for the Emergency Recovery Project — as quickly as possible. This was successfully accomplished within the target time of the end of May 2005. In parallel with the Emergency Recovery Project, work for the Rehabilitation Project for the 100km long section on the East Coast had also been initiated.

With the submission of the Progress Report at the end of May 2005, which described the work of the Emergency Recovery Project, assistance with the tender procedure for the civil works of this undertaking was conducted in June and July of 2005. Note that after the commencement of the construction works for the four causeways monitoring of the community support program continued periodically until the end of January 2006, with the assistance of a separate construction supervising team for the civil works.

During June and July of 2005, JICA decided that the construction of the New Kallady Bridge should also be included in the feasibility study of the Study Team for the Rehabilitation Project for the 100 km long section of trunk road between Akkaraipattu and Trikandimadu. In the Rehabilitation Project, the Study Team engaged in the preliminary design of roads, bridges, minor structures, drainage, and accessories. In parallel, an Initial Environmental Examination, traffic demand forecast, construction planning, cost estimation, and economic analysis were carried out. Also, a community support program and a maintenance plan for the rehabilitated road were summarized.

Note that intermediate briefings on Project output for the trunk roads and the New Kallady Bridge were held with JICA at the end of August and September, respectively, and the output incorporated into the Interim Report.

After submission of the Interim Report, emphasis was put on an overall evaluation of the Rehabilitation Project from the aspect of both recovering and developing the

tsunami-affected Eastern Trunk Road, as well as making a final review of all engineering studies and community support programs. All of the Project outcomes were compiled in a Draft Final Report that was submitted at the end of February 2006.

The Draft Final Report was then reviewed by RDA and JICA till 20th March 2006, and comments submitted to the Study Team so the appropriate amendments could be made. That is, by incorporating the comments on the Draft Final Report a Final Report was prepared and submitted on 26th May 2006.

1.5.2 Project Milestones

The milestones of the Project are as follows:

Date	Event
13 to 23 March 2005	Visit to Sri Lanka by JICA Preparatory Study Team,
	Negotiations with Government of Sri Lanka, and Field Trip
	to Project areas
21 March 2005	Signing of Scope of Work and Minutes of Meeting for
	Project between JICA and Sri Lankan Ministry of
	Highways
11 April 2005	Submission of Inception Report to RDA
19 May 2005	Transmittal of Draft Tender Documents for Emergency
	Recovery Project to JICS
25 May 2005	Briefing on Progress Report to RDA
27 May 2005	Briefing on Progress Report to JICA
30 May 2005	Submission of Progress Report to RDA and JICA
8 July 2005	Tenders Opened for Emergency Recovery Project by JICS
19 July 2005	Submission of Tender Evaluation Report for Emergency
	Recovery Project to JICA
28 July to 9 August 2005	Participation in Discussions with JBIC Fact-finding
	Mission
3 August 2005	Amendment of Contract for Project Consultancy Services
	due to Addition of New Kallady Bridge to Project Scope of
	Work
1 September 2005	Briefing on Intermediate Outcomes for the Rehabilitation
	Project to JICA
5 September 2005	Briefing to RDA on Intermediate Outcomes for the
	Rehabilitation Project, which resulted in agreement except
	for the cost estimation

9 to 29 September 2005	Intermittent Negotiations with RDA on Cost Estimate for
	Project Road, with an Agreement Reached after
	Adjustments to Pavement Design Policy
28 September 2005	Participation in Discussions with JICA and JBIC
	Fact-finding Mission
10 October 2005	Briefing on and Agreement with RDA on Intermediate
	Outcomes of the Rehabilitation Project for the New
	Kallady Bridge
12 October 2005	Briefing to JICA on Intermediate Outcomes of the
	Rehabilitation Project for the New Kallady Bridge
1 November 2005	Participation in Discussions with JICA and JBIC
	Appraisal Mission
25 November 2005	Briefing on Interim Report to RDA
28 November 2005	Briefing on Interim Report to JICA
29 November 2005	Submission of Interim Report to RDA and JICA
22 February 2006	Briefing on Draft Final Report to RDA
24 February 2006	Briefing on Draft Final Report to JICA
27 February 2006	Submission of Draft Final Report to RDA and JICA
20 March 2006	Deadline for Receiving Comments on Draft Final Report
26 May 2006	Submission of Final Report to RDA and JICA

CHAPTER 2

Overview of Project Area

Chapter 2 Overview of Project Area

2.1 Overall Socioeconomic Situations and Road Profile of Sri Lanka

2.1.1 Socioeconomic Profile of Sri Lanka

Since gaining independence in 1948 after 150 years of rule by the British monarchy, politics have been relatively democratic in character, and local, parliamentary and presidential elections have been held since independence that have resulted in smooth transitions of power. However, twenty-two years of ethnic war centered in the Northern and Eastern Provinces has imposed a large drain on the Government's financial resources, as a significant proportion of the annual national budget is consumed by military expenditures; thus, starving development-oriented economic, social and infrastructure sectors of very valuable resources.

1) The Economy

Despite the two decades of ethnic conflict, Sri Lanka's economy has grown steadily since liberalization began in 1978, with the rate of growth reaching 5.3% in 2003 and an estimated 5.4% in 2004. For the first time in Sri Lanka's history, per capita income exceeded \$1,000 in 2004. Many would argue that the benefits of this growth had not percolated widely enough to reach all segments of the population. With more than 70% of the population engaged in agriculture, growth appears to have been concentrated in urban areas, especially in the industrial and service sectors and therefore poverty still persists. About 20% - 25% of the population is considered to be living below the poverty line, and while much of this poverty is in rural areas, there is also severe urban poverty. Note that the annual inflation rate is about 12.3%, and unemployment, which is officially estimated at around 14%, may be as high as 35%-40% if underemployment is included.

2) The Development Challenge

Sri Lanka has an ethnically diverse population of 19.2 million (identical in size to Australia's population and almost double that of the Tohoku region in Japan) residing in an area of about 65,600 sq.km (about the size of Tasmania in Australia or the Tohoku region of Japan). Population growth has averaged around a low 1.2% over the past few decades. However, due to the harsh climatic conditions and the low levels of development investment in the north, north-central and the eastern regions of the country, the population
has tended to concentrate heavily towards the south, south central and south western regions.

Sri Lanka combines good human and natural resources with comparatively impressive social indicators. Life expectancy is high for a developing country, and about 87% of the population is literate. However, wide disparities exist in socioeconomic status and access to employment opportunities. One of the most serious social problems is extremely poor maternal and child nutrition, with stunting and wasting of children being more prevalent in the rural areas. The GOSL has placed a high priority on poverty alleviation. The country's natural resource base is rapidly being eroded, endangering health as well as livelihoods in agriculture, industry and tourism.

Sri Lanka ranks relatively high in terms of HDI (UNDP's Human Development Index), especially among countries with similar levels of economies and could be considered a responsive, sustainable development partner. However, its track record as a high-level performer in development is relatively short, and while progress has been good, it is also fragile. Sustainability, particularly in the context of unresolved ethnic conflicts, will depend significantly on social and political stability, continued policy reform, environmental protection and conservation.

2.1.2 Road Profile of Sri Lanka

There exists about 99 thousand km of road in total in Sri Lanka. Of this, about 27,100 km is classified and is under the jurisdiction of RDA, the Provincial Councils, and the Local Authorities. The classified road network, which represents the country's core network, is grouped into five classes and is described below.

- A Class: Trunk roads that connect the national capital with district capitals, district capitals with one another, and other major roads that are paved and bitumen-surfaced with a carriageway width of over 7.32m and a crest width of over 11.0m.
- B Class: Main roads that connect important towns to district capitals and provide links to A Class roads. B Class roads are paved and bitumen-surfaced and have a carriageway width between 3.66m to 7.32m.

- C Class: Minor roads such as agricultural and local roads that usually have a single lane with a carriageway width of 3.66m and a crest width of 5.49 m and are generally paved and bitumen-surfaced.
- D Class: Graveled roads having a 2.44m to 3.05m wide graveled surface and which are generally passable during dry weather only.
- E Class: Unpaved paths generally not motorable except for jeeps.

RDA is in charge of maintaining and improving important national roads (or Class A and B roads) totaling about 12,000km as shown in Figure 2.1.1. The nine Provincial Councils, on the other hand, are responsible for Class C and D roads that total about 13,400km, while the Local Authorities supervise Class E roads (approx. 1,700km) that make up the remainder of the classified road network. In addition to the classified network there is the much larger unclassified road network, which totals about 72,000km The total length of each type of road and the responsible agency are summarized in Table 2.1.1.

	Responsible Authority	Class	Total Lei	ngth (km)	Remarks
RD	A	Α	4,339	12,009	Classified road network totals
		В	7,670		27,154km.
Pro	vincial Councils	С	7,682	13,445	
		D	5,763		
Loc	al Authorities	E	1,700	1,700	
Loc	al & Other Authorities			71,646	Municipal/Urban Councils
					Local Authorities
					Mahaweli Authority,
					Irrigation Department,
					Dept. of Wild Life, and
					Dept. of Land Development
Tota	al			98.800	

Table 2.1.1. Roads in Sri Lanka

Sources: Economic and Social Statistics of Sri Lanka, Central Bank of Sri Lanka, 2003. UN Economic and Social Commission for Asia and the Pacific, Asian Highway Handbook, 2003

Figure 2.1.1. Trunk Road Network in Sri Lanka

2.2 Natural Conditions of Project Area

1) Definition of Project Area

In this report, the Project area is defined as the Batticaloa and Ampara Districts of Eastern Province. Natural conditions of the northeastern and eastern parts of the country covering the Project area, such as topography, geology, climate, ecology, and land use and settlement patterns, are briefly described below.

2) Topography

Extensive faulting and erosion over time have produced a wide range of topographic features, making Sri Lanka one of the most scenic places in the world. Three zones are distinguishable by elevation: the Central Highlands, the plains, and the coastal belt.

A coastal belt about 30 meters above sea level surrounds the island. Much of the coast consists of scenic sandy beaches indented by coastal lagoons. In the northeast and east where the Project area is located, as well as in the southwest, the coast cuts across a stratum of crystalline rock, creating rocky cliffs, bays, and offshore islands. These conditions have provided one of the world's best natural harbors at Trincomalee.

On the basis of elevation and landform, Sri Lanka can be roughly divided into six topographical regions as follows:

- Central Highlands
- Southwest country
- East and Southeast country
- Uplifted belt of lowland, upland and highland along the axis of maximum uplift
- Northern lowlands
- Coastal fringe consisting of lagoons, marshes sand bars, spits, peninsulas, dunes, islands and other associated features

The Project area belongs to the East and Southeast country in this classification. The East and Southeast country is a rolling or undulating plain dotted with isolated hills with somewhat flat tops (e.g., Monaragala and Kataragama).

Rivers in Sri Lanka, which are mostly short in length, originate in the Central Highlands and flow in a radial pattern towards the sea. The longest river is the Mahaweli Ganga (335 km) which passes through the plain and coastal belt of Eastern Province. Once they reach the plain, the rivers slow down and meander across flood plains and deltas. In the north, east, and southwest the rivers feed numerous artificial lakes and reservoirs that store water during the dry season. During the 1970s and 1980s, large-scale projects dammed the Mahaweli Ganga and neighboring streams to create large lakes.

3) Geology

More than 90 percent of Sri Lanka's surface lies on Precambrian strata, some of it dating back two billion years. The metamorphic rock surface was created by the transformation of ancient sediments under intense heat and pressure during mountain-building processes. Aside from recent deposits along river valleys, the island contains relatively limited strata of sedimentation surrounding its ancient hills. These general geological conditions seem to apply to the Project area and the East and Southeast country is classified as the Vijayan Complex, consisting of hornblende and biotite-bearing orthogneisses and granitoids with

inclusions of metaquarrtzite and calc-silicate rocks (Atlas of Sri Lanka, 1997).

4) Climate

Sri Lanka's position between 5 and 10 north latitude endows it with a warm climate, moderated by ocean winds and considerable moisture. The average yearly temperature for the whole country ranges around 26° to 28°C, but the mean temperature in Trincomalee is 29°C, the highest of the country. The coolest month is January and the hottest is May.

The rainfall pattern is influenced by the monsoon winds of the Indian Ocean and Bay of Bengal and is marked by four seasons. From mid-May to October, when winds come from the southwest bringing moisture from the Indian Ocean, the leeward slopes of the Central Highland in the east and northeast receive little rain. From December to March monsoon winds come from the northeast with moisture from the Bay of Bengal and the northeastern slopes of the mountains may be inundated with up to 1,250 mm of rain during these months. During the two inter-monsoonal periods, winds are light and variable, but periodic squalls, tropical cyclones, or evening thundershowers occur sometimes.

Humidity is typically lower in the northeast and east areas, though this is dependent on the seasonal patterns of rainfall.

5) Ecology

The pattern of life in Sri Lanka depends directly on the availability of rainwater. Most of the southeastern, eastern, and northern parts of the country comprise the "dry zone," which receives rain between 1,200 and 1,900 mm annually. (In the "wet zone," the mountains and the southwestern part of the country, the annual average rainfall is 2,500 mm.) Much of the rain in these areas falls from October to January, and during the rest of the year there is little precipitation and all living creatures must conserve precious moisture.

The natural vegetation of the dry zone is adapted to the annual changes from flooding to drought. The typical ground cover is scrub forest, interspersed with bushes and cactuses in the driest areas. Plants grow very fast from November to February when rainfall is heavy, but stop growing during the hot season from March to August. When water is absent, the plains of the dry zone are dominated by browns and grays. When water becomes available, either during the wet season or through proximity to rivers and lakes, the vegetation explodes into shades of green with a wide variety of beautiful flowers.

Source: US Library of Congress

6) Land Use & Settlement Patterns

In the 1970s and 1980s, the wet cultivation area was expanding rapidly, as the Government implemented large-scale irrigation projects to restore the dry zone to agricultural productivity. In the 1980s, the area drained by the Mahaweli Ganga changed from a sparsely inhabited region to a wet rice area similar to the southwest.

The coastal belt surrounding the island contains a settlement pattern that has evolved from older fishing villages. Separate fishing settlements expanded laterally along the coast, linked by a coastal highway and a railway. The mobility of the coastal population during colonial times and after independence led to an increase in the size and number of villages, as well as to the development of growing urban centers with outside contacts.

2.3 Environmental Characteristics of Project Area

At present the total forest area of the country is around 2.0 million ha. Out of this, in the Project related districts, some types of forests are found as Table 2.3.1.

District	Moist	Dry	Riverine Dry	Mangrove	Sparse		
	monsoon	monsoon					
Trincomalee	4	110,491	1,826	1,491	17,629		
Batticaloa	13,302	21,770	-	1,421	16,325		
Ampara	45,190	69,265	10,160	292	41,760		

Table 2.3.1. Forest types in the Eastern Province (ha)

Source: Atlas of Sri Lanka, 1997

Note that both of the moist monsoon forest and dry monsoon forest are distributed inland and only sparse and open forests are found along the Project route, which runs along a coastal area. The diversity of Sri Lanka's fauna is both rich and unique. Within the confines of this island of 65,525 sq.km are found 628 species of terrestrial vertebrates, while its inland and territorial waters have over 1,000 species of freshwater and marine fish. In the Eastern Province, there are several wild reserves as Shown in Table 2.3.2.

District	Wild Reserve	Areas(ha)			
Trincomalee Kokilai Sanctuary		The whole lagoon			
	Sober Islands Sanctuary	71.0			
	Naval Headworks Sanctuary	18,130.0			
	Seruwavila Sanctuary	15,540.0			
Batticaloa	Somawathiya Chaitiya National Park	37,762.2			
Ampara	Maduru Oya National Park	58,849.8			
	Gal Ova National Park	25,900.0			

Table 2.3.2. Wild Reserves in Eastern Province

Source: Atlas of Sri Lanka, 1997

*: Gal Oya National Park is located approx. 20km west of the Project road (Rt.4).

2.4 Road Profile of Project Area

As mentioned above, the classified road network, which consists of roads categorized from Class A to E, is approximately 27,100 km in length. The Project area's Eastern Province, which has a land area of 9,361 km² (or 14.9 % of the national total) and a population of 1,518 thousand (or 7.9% of the national total), has a classified road network of 2,847 km, which is 10.5% of the national total (see Table 2.4.1 and Figure 2.4.1). These numbers seem to indicate no distinctive quantitative bias, but observations of the current status of the road network (e.g., road width, alignment, pavement, structures, drainage, etc.) suggest that the quality of roads in Eastern Province is relatively low.

	Area	Population		Road Length, in km				
_	in km ²	in '000	А	В	С	D	Е	Total
National	62,705	19,252	4,339	7,670	7,682	5,763	1,700	27,154
Total								
Eastern	9,361	1,518	620	527	556	1,003	141	2,847
Province	14.9%	7.9%	14.3%	6.9%	7.2%	17.4%	8.3%	10.5%

Table 2.4.1.	Road Profile of Eastern	n Province

Sources: Central Bank of Sri Lanka 2003, UN Economic and Social Commission for Asia and the Pacific, Asian Highway Handbook, 2003

Figure 2.4.1. Trunk Roads in Project Area

Taking a look at the motor vehicle registration statistics shown in Table 2.4.2, the number of registered vehicles is obviously low for Eastern Province for all vehicle types except for land vehicles (agricultural and construction vehicles), given the relative size of the population or land area. The fact that the ownership of land vehicles is comparatively high in this region illustrates why this region and its road system are less developed.

	National Total	Eastern	Province
	Vehicles	Vehicles	% of Nat. Total
Omnibuses	14,633	431	2.9 %
Private Coaches	17,556	468	2.7 %
Dual Purpose Vehicles	137,144	1,967	1.7 %
Private Cars	160,242	1,631	1.0 %
Land Vehicles	58,974	5,929	10.0 %
Good Transport Vehicles	127,585	2,549	2.0 %
Motor Cycles & Three Wheelers	723,271	41,524	5.7 %
Others	9,716	193	2.0 %
Total	1,249,121	54,692	4.4 %

Table 2.4.2.	Motor Vehicle Re	gistration in	Eastern	Province
--------------	------------------	---------------	---------	----------

As of 2003, Source: Central Bank of Sri Lanka

2.5 Pre-Tsunami Socioeconomic Conditions of Project Area

The Project area is situated in the districts of Ampara and Batticaloa. Unfortunately, the security situation at the time of the last National Census and Statistics Survey of 2001 prevented it from being conducted for the whole of Batticaloa District and some parts of Ampara District. Consequently, no data and information comparable to districts outside the North and East Provinces exist. However, a "Household Income and Expenditure Survey" was conducted in 2002/03 by the Department of Census and Statistics for these provinces. The data from this survey, together with results from some surveys conducted following the tsunami, has been used in developing the socioeconomic profile of the Project area.

Both Ampara and Batticaloa, two coastal districts in Eastern Province (Trincomalee is the other district of this province), have historically had low populations and low levels of development investment. From various surveys prior to the tsunami, Batticaloa District is known to have had a population of around 536,000 and Ampara District a population of about 605,000 (2003), which are approximately 3.0% and 3.2% of the total population of Sri Lanka. As for the ethnic breakdown of these two districts, this has been somewhat difficult to assess due to the 2001 census survey not being conducted. However, in 1981, Batticaloa District had an ethnic mix of 72% Tamils, 24% Muslims and 3% Sinhalese, while Ampara had an ethnic composition of 20% Tamils, 42% Muslims and 38% Sinhalese. Ampara's composition seems to have slightly changed according to the partial results of the 2001 census, which indicates a breakdown of 19% Tamils, 42% Muslims and 39% Sinhalese. As mentioned before, no census was conducted in Batticaloa District in 2001.

Batticaloa has a total land area of 2,610 sq.km and 244 sq.km of inland water, while Ampara has 4,222 sq.km of land and 193 sq.km of water. This would suggest the population densities in these districts are relatively small (205 and 143 persons per sq.km respectively). However, spot densities, particularly in urban areas, are known to be extremely high. For instance, Kalmunai Township, an urban area located very close to the seacoast in Ampara District, is said to have a density of 23,000 persons per sq.km, which explains why this area experienced the biggest impact of the tsunami.

The dominant economic sectors of the Eastern Province are agriculture and fisheries, and, to a lesser but significant extent, services driven by tourism. The Eastern Province's contribution to national GDP has been around 5%, illustrating its underdeveloped state. Those engaged in agriculture mostly grow rice and vegetables, while coconut plantations and naturally growing palmyra and cashew are found along the coast. With a significant number of inland water bodies in the two districts, inland fishing is common, while those living along the coastal belt engage in off-shore fishing, which has been severely affected in the past few years by Government imposed restrictions due to LTTE naval activities.

The average household income per month for Eastern Province was Rs.7640 (the national average is Rs.12,803 and the average for Western Province is Rs.17,732). More than 50% of the population earns less than Rs.5500 per month, while the average amount spent by a household per month on food is Rs.6327 (the national average is Rs.13,147 and that for Western Province is Rs.18,600), illustrating the poverty level in this province in 2002.

2.6 Impact of the Tsunami on the Socioeconomic Conditions of the Project Area

Along the coastline in the Project area, persons and properties in 8 of the 13 DS divisions in Batticaloa and 11 of the 20 divisions in Ampara were severely affected by the tsunami. The overall impact on persons in Batticaloa and Ampara are illustrated in the table below:

District	Deaths	Injured	Missing	Displaced Families	Displaced Persons	No. of Refugee
						Camps
Batticaloa	2,975	2,375	340	12,494	55,935	36
Ampara	10,436	6,711	161	38,002	103,949	70
Total	13,411	9,086	501	50,496	159,431	106

Table 2.6.1. Impact of Tsunami on Persons

From the above table, it is evident that these two districts, particularly the DS divisions around Kalmunai in the Ampara District, which are densely populated, faced the brunt of the tsunami's brutal force. Nowhere else in Sri Lanka has the destruction to lives and property been as severe. Damage to property has had multiple effects. On the one hand, damages to houses, either wholly or partially, have made nearly 160,000 persons in the two

districts homeless and asset-less. On the other hand, damage to important service providing institutions such as hospitals and schools has also been severe. The tables below show the extent of the property damage (both residential and non residential) in the two districts.

	Number of Housing Units in Affected Areas						
District	Before	Completely	Partially	Partially	Not		
	Tsunami ¹	Damaged	Damaged &	Damaged	Damaged		
			Unusable	but Usable			
Batticaloa	26,274	7,445	2,460	7500	8,869		
	(100%)	(28.33%)	(9.36%)	(28.55%)	(33.76%)		
Ampara	27,339	8,139	2,427	8,244	8,529		
	(100%)	(29.77%)	(8.89%)	(30.15%)	(31.20%)		
Total	53,613	15,584	4,887	15,744	17398		
	(100%)	(29.07%)	(9.12%)	(29.37%)	(32.45%)		

Table 2.6.2. Impact of Tsunami on Property (Residential)

1: Total no. of houses in affected census blocks along coastal area only and NOT for the whole district.

14								
		Number of Housing Units in Affected Areas						
District	Before	Completely	Partially	Partially	Not			
	Tsunami ¹	Damaged	Damaged	Damaged	Damaged			
			& Unusable	but Usable				
Batticaloa	2,333	525	167	506	1,135			
	(100%)	(22.50%)	(7.12%)	(21.69%)	(48.65%)			
Ampara	3,200	1,173	243	683	1,101			
	(100%)	(36.66%)	(7.59%)	(21.34%)	(34.41%)			
Total	5,533	1,698	410	1,189	2,236			
	(100%)	(30.69%)	(7.41%)	(21.49%)	(40.41%)			

 Table 2.6.3.
 Impact of Tsunami on Property (Non-Residential)

1: Total no. of buildings (non-residential) in affected census blocks along coastal area only and NOT for the whole district.

The above statistics while describing the total extent of the destruction in the Project area do not necessarily reflect the accurate state of damage at specific locations. For instance, even though the "completely damaged" housing in the affected areas of Batticaloa District amounts to 28.33% of that area's housing stock, in the DS division of Koralai Pattu North almost 60% of that division's housing stock was completely damaged and a further 12% was partially damaged and unusable. Similarly in Ampara, where the completely damaged housing accounted for 29.77%, the Kalmunai Muslim Division and the Kalmunai Tamil Division had, respectively, 32% and 44% of their housing completely damaged. The damage in Ampara District appears dispersed across a number of DS divisions, while in Batticaloa it is concentrated in a few.

As for non-residential buildings, the most significant damage was to schools, medical facilities and places of worship. With refugees being accommodated within the premises of schools and places of worship not damaged, these institutions are under great stress.

2.7 Tsunami Damage to Road Facilities & Recovery Status in Project Area

According to TAFOR and TAFREN, the tsunami damaged 1,615 km of road in Sri Lanka, including 135 km of RDA road, 300 km of provincial road, and 1,180 km of Local Authority road, as well as 22 bridges in total, including 2, 15 and 6 in the Northern, Eastern and Southern Provinces, respectively. Within two weeks after the disaster, all damaged roads had been temporarily repaired and made passable, and all damaged bridges bypassed with temporary Bailey bridges and made functional. In the Project area's Eastern Province, RDA counted 29 damaged sections/points on trunk roads, with a considerable number of road sections being washed out or damaged and some culverts and bridges being damaged or collapsed (see Table 2.7.1 and Figure 2.7.1). The total cost for emergency repairs and short-term rehabilitation (Stages 1 and 2) of these damaged roads and bridges was estimated at Rs. 434 million.

No.	Road	Damage	Status	Cost for Stages 1 & 2 (Rs, Mil)
9	Trincomalee-Pulmoddai Road 22 km - Salappawaru Bridge	Approach (200m) washed off	Repaired	2
10	Beach Road, 1 km	Culvert damaged, Half the carriageway (75m) washed out	Repaired	2
11	A15, 116-121 km	Washed off	Repaired	30
11	A15, 126 km	Half the carriageway (100m) washed out	Repaired	1
12	Thampalakamam-Kinniyai Road, 8 km	Bailey bridge damaged	Repaired	2
15	A04, 334/1 km	Collapsed	Repaired	50
	(Komari Bridge)		Reh. due	
14	A04, 362-364 km	Washed out	Repaired	18
14	A04, 375 km	Washed out	Repaired	6
14	A04, 380 km	Washed out	Repaired	6
13	A04, 392 km	Washed out	Repaired	6
13	A04, 393 km	Washed out	Repaired	6
13	A04, 394 km	Damaged	Repaired	2
13	A04, 394/1 km Culvert	Washed out	Repaired	1
13	A04, 394/2 km	Washed out	Repaired	1
13	A04, 395/1 km	Washed out	Repaired	1
13	A04, 396/3 km	Washed out	Repaired	3
	(Periya Kallar Br/Cw)		Reh. due	
13	A04, 398/1 km	Washed out	Repaired	5
	(Koddaia Kallar Br/Cw)		Reh. due	
13	A04, 409/5 & 410/1 km (Culverts)	Washed out	Repaired	5
13	A04, 412 & 415 km	Carriageway partly damaged	Repaired	6
17	A15, 42/1 km Bridge	Bailey bridge damaged	Repaired	50
17	A15, 46-59 km	Damaged	Repaired	6
18	A15, 59/1 km (Panichchankeni	Washed out	Repaired	2
	Bridge)		Reh. due	

Table 2.7.1. Damage to Trunk Roads in Eastern Province

19	A15, 60-78 km	Washed out	Repaired	54
20	Bar Road, 4/2 km Bridge	Washed out	Repaired	20
21	Ditto, 5/2 km Bridge	Damaged	Repaired	20
21	Ditto, 3-5 km	Damaged	Repaired	9
22	Pottuvil-Panama Road, 1-3 km	Washed out	Repaired	50
23	Ditto, Bridge No 3/4	Damaged	Repaired	10
	(Arugam Bay)		Reh. Due	
33	Peradeniya-Badulla-Chenkaladi	Damaged	Repaired	60
	Road, 282/2 km Bridge		Reh. Due	
		Total		434

Source: RDA

Figure 2.7.1. Locations of Road Damage in Eastern Province

PART 2 EMERGENCY RECOVERY PROJECT

CHAPTER 3

Overview of Emergency Recovery Project

Chapter 3 Overview of Emergency Recovery Project

3.1 Selected Road Facilities for Emergency Recovery

3.1.1 Overview of Site Conditions for Emergency Recovery

The selected road facilities for the Emergency Recovery Project are the following four causeways on AA004 and AA015, which were heavily damaged by the last tsunami:

- Komari Causeway at Km 334/2 on AA004
- Periya Kallar Causeway at km 396/3 on AA004
- Koddaia Kallar Causeway at km398/1 on AA004
- Panichchankeni Causeway at km59/1 on AA015

The above causeways were either damaged or washed out by the tsunami and temporary Bailey bridges constructed as part of the emergency work. As the existing road width of causeways was around 5.4m, trucks and buses often waited in line in order to pass. In addition, pedestrians, bicycles, motorcycles and three wheelers worsened traffic congestion on the Periya Kallar and Koddaia Kallar Causeways, which are located near a town.

3.1.2 Present Conditions of Selected Roads for Emergency Recovery

1) **Topographic Conditions**

The physical conditions of the causeways are as described Table 3.1.1.

	Table 3.1.1. Topographic Conditions for each Site
Causeway	Topography
Komari	 The lagoon is located on the landside of the causeway.
	 The bridge and the causeway cross a narrow section of the lagoon, about
	150m away from the sea.
	 The opening of the bridge and the length of the causeway were 35m and
	54m, respectively.
Periya Kallar	 The lagoon is located on the landside of the causeway and interconnected
	with the landside lagoon of Koddaia Kallar causeway.
	 The bridge and the causeway are at a narrow section of the lagoon, about
	400m and in width 1.5km away from the sand bar and lagoon mouth.
	• The opening of the bridge/culverts and the length of the causeway are 104m
	and 630m, respectively.
Koddaia Kallar	 The lagoon is located on the landside of the causeway.
	 The bridge and the causeway are at a narrow section of the lagoon, about
	400m away from the sand bar at the seashore.

Table 3.1.1. Topographic Conditions for each Site

	 The opening of the bridge and the length of the causeway were 11.8m and 450m, respectively. 				
	The lagoons of Periya Kallar and of Koddaia Kallar are interconnected.				
	• The average sand bar height from high tide level is more than 2m and no flow				
	discharge to sea.				
Panichchankeni	The bridge and the causeway are at a narrow section of the lagoon about				
	6km away from the lagoon mouth and divide the lagoon into two parts.				
	• The opening of the bridge is 32m in total length with 28 pipes of 1.5m in				
	diameter, and the length of the causeway is 210m.				

2) Causeway Damage & Status of Emergency Repair Work

a) Komari Causeway

The total length of this causeway was about 80m, which was completely washed away by the tsunami. The emergency repair work for this causeway consisted of constructing a 48.5m embankment section with a 4m wide gabion mat, together with a gabion mat for the substructure and a Bailey bridge for the superstructure of a 33m long bridge section, for a total length of 81.5m. This work secured the minimum requirements necessary for the safe passage of traffic.

b) Periya Kallar Causeway

The total length of this causeway was about 700m, and of this approximately 630m included a retaining wall. A 120m section extending from the center of the structure to the north, which included an opening, was either washed away or badly damaged. In addition, parts of a 360m long area of the southern side were destroyed as well. Emergency repairs were carried out and consisted of providing a temporary embankment for the destroyed sections of the causeway that was consistent with its original width of 5.3m; thereby, securing a safe passageway for traffic.

c) Kodaia Kallar Causeway

The total length of this causeway was about 490m and of this a 13m section with a retaining wall was completely washed away on the northern side. Moreover, 160m of the southern side having a retaining wall had its shoulder portion damaged. Emergency repair work consisted of using a 4.0m wide gabion mat for the substructure and a Bailey Bridge for the superstructure for the washed out section to secure a passageway for traffic. As for the southern side, the damaged portions of shoulder were repaired to ensure safety.

d) Panichchankeni Causeway

The total length of this causeway is about 280m and of this there is a 66m long center bridge section with 6 spans, with the superstructure of 1 span on the southern side and the

superstructure of 2 spans and a bridge pier on the northern side completely washed away. In addition, there is one bridge pier that was not washed away but that was tilted to the side, and as a result it is impossible to use the superstructure on that section. Emergency repair work consisted of using a gabion mat for the substructure and a Bailey Bridge for the superstructure in order to secure passage for traffic.

3.2 Natural Condition Survey for Emergency Recovery

3.2.1 Topographic Survey

1) Scope of Work

A topographic survey has been conducted to assess existing topographic conditions for the four tsunami affected causeways. The work items are as follows:

- Establishment of Benchmarks
- Plan survey
- Centerline survey
- Cross-section survey

2) Establishment of Benchmarks

The above surveys are not related to the Sri Lanka national grid or mean sea level datum. Due to the urgency of the work, survey measurements applied arbitrary co-ordinates for each site, and site co-ordinate values are independent of each other. Elevations also applied arbitrary datum whose assumed value was 50.000m. Benchmark coordinates based on this methodology are as shown in table 3.2.1.

Causeway	Benchmark No.	North	East	Elevation
Komari	BM-1	1003.734	1983.022	50.000
	BM-2	860.635	2025.369	49.566
Periya Kallar	BM-1	2315.005	2965.503	50.000
	BM-2	2241.886	2963.202	48.774
	BM-3	1635.975	3044.659	49.508
	BM-4	1608.495	3041.606	50.497
Koddaia Kallar	BM-1	2180.826	2925.207	50.000
	BM-1A	2215.850	2895.358	51.052
	BM-2	1613.965	3039.333	49.569
	BM-2A	1553.455	3048.258	50.236
Panichchankeni	BM-1	1000.000	2000.000	50.000
	BM-2	996.040	1641.619	49.525

Table 3.2.1. Benchmark Coordinates for each Site

3) Plan Survey

The plan survey has been conducted using the Total Station.

Name of Causeway	Location	<u>Length</u>	Area of Survey
Komari	AA004 - 333km-P	App. 81m	290m x 50m
Periya Kallar	AA004 - 397km-P	App. 700m	900m x 50m
Koddaia Kallar	AA004 - 399km-P	App. 489m	700m x 50m
Panichichankeni	AA015 - 56km-P	App. 277m	280m x 50m

4) Centerline Survey

This survey has been carried out in order to stake out pegs at about 20m interval stations, and principal points on the centerline are in accordance with benchmark coordinates in order to confirm the horizontal alignment of the existing centerline of causeways.

5) Cross-Section Survey

The measurement of cross-sections is done using the Total Station for either land or underwater based on the elevation of points at approximately 100m intervals for the existing road centerline. The measuring width is 20m from the centerline on either side (for a total of 40m).

3.2.2 Geological Survey

1) Scope of Work

A geological survey has been conducted to confirm the bearing layer (standard penetration test only) and performed in conformance with the latest international standards, such as the British Standard (BS), American Society for Testing and Materials (ASTM) and American Association of State Highway and Transportation Officials (AASHTO). Standard penetration test (SPT) equipment and procedures are in accordance with ASTM D 1586 and the drive hammer employed an automatic trip mechanism to ensure free fall. This survey was separated into the following two steps:

a) 1st Geological Survey

Field investigation consists of eleven boreholes at appropriate locations:

			=
Bridge /	Trunk Road	No. of	Borehole
Causeway		Borehole	Demarcation
Komari	AA004	2	BH-1, BH-2
Periya Kallar	AA004	4	BH-1, BH2, BH-3, BH-4
Koddaia Kallr	AA004	2	BH-1, BH-2
Panichchankeni	AA015	3	BH-1, BH-2, BH-3

Table 3.2.2.	Number of	of Boreholes	for 1 st	Survey
--------------	-----------	--------------	---------------------	--------

b) 2nd Geological Survey

The 2nd geological survey conducted boring at three underwater sites at the expected main bridge or culvert places for the Komari, Koddaia Kallar and Panichchankeni causeways.

Table 5.2.5. Number of Borenoies for 2nd Survey			
Coupoway	Trupk Bood	No. of	Borehole
Causeway	TTUNK KOAU	Borehole	Demarcation
Komari	AA004	1	BH – 03
Koddaia Kallr	AA004	1	BH – 03
Panichchankeni	AA015	1	BH – 04

Table 3.2.3. Number of Boreholes for 2nd Survey

2) Standard Penetration Test (SPT)

The SPT is the major determining factor for subsoil assessment via borehole investigation. In according with specifications, the SPT was conducted at each borehole at 1.0 m intervals.

3) Geological Conditions (on the basis of SPT only)

The summary of the geological survey on the basis of the SPT and core sampling is as follows:

Causeway	Riverbed layer	Bearing layer	Test Boring
Komari	 Top 0~2m layer is silty sand 	 3rd layer is gneissic 	 BH-1 Onshore
	 2nd layer is completely 	basement rock	 BH-2 Onshore
	weathered rock (sand) layer;	 Depth: GL-3-5m~ 	 BH-3 Offshore at
	N-value is more than 50	- RQD: 23~86%	existing Bridge
		 Compressive strength: 	
		Weathered rock at BH-3	
		Depth: 3.4-3.56m	
		20N/mm ²	
		Fresh rock at BH-3	
		Depth: 5.0-5.15m	
		68N/mm ²	
Periya Kallar	 Top layer is mostly sandy 	 Highly weathered rock in 	 BH-1 Onshore
	soil or sandstone layer	sand or silty sand layer	 BH-2 Onshore

Table 3.2.4.	Summary	of Anal	ysis for	SPT

	 Depth: from GL-0-1.5m~ Thickness: 3~4m RQD: 23~73% 	 Area: GL-5~15m N-Value: 2~50 Area: GL-15m~ N-Value: More than 50 	BH-3 OnshoreBH-4 Onshore
Koddaia Kallar	 Top layer is mostly sandstone layer Depth: GL-0-5m~ Thickness: 1.5~3m RQD: 18~100% Compressive strength: Sandstone at BH-1 Depth: 0.05-0.2m 25 MPa 	 Highly weathered rock in sand or silty sand layer Area: GL-3~15m N-Value: 4~50 Area: GL-15m~ N-Value: More than 50 	 BH-1 Onshore BH-2 Onshore BH-3 Offshore at existing Bridge
Panichchanken i	 Top layer is sand layer N-value: 2~50 Thickness of the layer is at 0~6m depth from the ground/riverbed level 	 Highly weathered and decomposed rock Depth: GL-3-7m~ N-Value: More than 50 Basement rock layer was not encountered at maximum depth of boring 12m 	 BH-1 Onshore BH-2 Onshore BH-3 Onshore BH-4 Offshore at existing Bridge

3.2.3 Hydrological Survey

1) Hydrological Field Survey

The Project area experiences heavy rainfall during the Northeast Monsoon Season from November to February. The monthly average rainfall distribution in Batticaloa for the last 30 years is as shown in Fig.3.2.1. Because of the excessive and intense rainfall, the water levels of lagoons rise rapidly during December, inundating surrounding areas and flooding the causeways that consequently obstructs vehicle flows. However, owing to the recent raising of causeway elevation, flooding occurs now only once every 3 to 4 years. Note that sandbars at the mouths of lagoons obstruct flow discharges to the sea and increase the extent of inundation.

Figure 3.2.1. Monthly Average Rainfall in Batticaloa for Last 30 years

2) Hydrological/Hydraulic Analysis

The design discharge hydrographs of the sub-catchment areas for the 50-year return period were determined by applying the HEC-HMS hydrological model developed by the Hydrologic Engineering Center. A detailed hydraulic analysis was carried out to determine the water levels and the required bridge openings. Figure 3.2.2 illustrates water level variation over time under two conditions, for sandbar elevations 1m and 0.5m above the high tide water level.

Figure 3.2.2. Water Level Variation Over Time with New Openings

In the case of a sandbar being 0.5m above the high tide water level, there is a sharp drop in the water level as compared with that of the 1m high sandbar. For design purposes, the dimensions determined under the 1m high sandbar are recommended, as they are representative of actual conditions. However, according to the results of the analysis, it is clear that if the sandbars are dredged before the rainy season, flooding levels can be reduced.

3) Design High Water Levels

After considering the hydrological and structural conditions, as well as taking into account pre-tsunami bridge/culvert lengths, the total opening lengths given in Table 3.2.5 are selected as appropriate design dimensions.

Description	Bridge / Causeway			
	Komari	Periya Kallar	Koddaia Kallar	Panichchankeni
Total Opening Length Required (m)	48.0	136.0	41.0	127
Design High Water Level (m, M.S.L.)	1.6	1.8	1.8	1.9
Mean Sea Level (m)	47.2	47.3	47.3	48.5
Design High Water Level (m)	48.8	49.1	49.1	50.4

Table 3.2.5. Design High Water Levels at Four Causeways

3.3 Principles for Project Implementation

As the target for the Project is the emergency recovery of the four tsunami affected causeways, the Project is required to start and be completed as early as possible. Generally, a design-build contract, in which the detailed design is conducted by the contractor as one component of the contract, is supposed to be able to commence the civil works earlier than a conventional type contract, mainly because mobilization and preparatory works can be initiated at the same time as the start of the detailed design. For this reason, the Ministry of Highways of Sri Lanka suggested a design-build contract as the procurement procedure. In discussions between the Government of Sri Lanka and JICA regarding this matter, a consensus that the Project would be implemented by the design-build method has been reached. The characteristics of the design-build method for the Project are as follows:

• The period from the distribution of the tender documents to the signing of the contract

with the contractor will be estimated as less than 1.5 months. This procurement period is half a month shorter than the normal procurement.

- After conclusion of the contact between the owner and the contactor, the detailed design will be carried out so as to optimize the implementation of the construction plan.
- The detailed design and actual civil works are combined harmoniously so that the total Project period can be considerably shortened (see Chapter 5 for details).

CHAPTER 4

Facility Designs for Emergency Recovery

Chapter 4 Facility Designs for Emergency Recovery

4.1 Design Standards & Criteria to be Adopted

4.1.1 Design Standards

Bridges and other structures shall be designed by basically applying RDA Standards and the British Standard (BS). However, reference will also be made to Japanese bridge/structural design standards and other manuals when appropriate. Due consideration should be given to local conditions such as live loads, temperature, earthquake, and clearance. Design standards for this Project are listed below.

Main Standards from RDA:

- Geometric Design Standards of Roads (1998)
- A Guide of the Structural Design of Flexible Pavements under Sri Lankan Conditions (1998)
- Bridge Design Manual (1997)
- Road Notes No.29 (1970) A Guide to the Structural Design of Pavements for New Roads (1970) used for design of Concrete Pavements
- Standard Specifications for Construction and Bridges (1989)
- Bridge Construction Manual (1997)
- Manual on Traffic Control Devices, National Road Safety Secretariat (2003)

Reference Standards:

- British Standard BS 5400 (1978 2000)
- Specification of Highway Bridges (Japan Road Association, 1996)

Underpass Structures:

• Design Manual for Roads and Bridges (British Highway Agency, 1989)

The items to be designed are as follows:

- Bridges and culverts
- Retaining walls and other structures on causeway roads and approach roads
- Concrete pavements and flexible pavements
- Temporary structures (if any)

4.1.2 Geometric Criteria

1) Road Classification

The bridges under this Project are categorized according to the road classification given in the "Geometric Design Standards of Roads". However, the design live loads are categorized differently as shown in the table below.

Table 4.1.1.	Road	Classification
	1.ouu	olussilloution

	Road Classification	Design Live Load
All causeways	A - Class road	HA and HB live load

2) Design Criteria for Roads

The design criteria for causeways and approach roads based on the Geometric Design Standard of Roads in 1998 RDA are summarized in Table 4.1.2.

Items		Unit	Specified Values		
Road Class			-	A (R3)	
Classification of Road Location		-	Rural		
Location			Open		
Design Speed		km/h	7	0	
Width			Komari &	Periya Kallar &	
				Panichchankeni	Koddaia Kallar
	Causeway Section Carriageway		m	2 x 3.5 = 7.0	2 x 3.5 = 7.0
		Cycle Lane	m	-	2 x 1.5 = 3.0
		Sidewalk	m	2 x 1.5 = 3.0	0, 2 x 1.8 = 3.6
	Minimum ROW		m	10.0	13.6
	Approach Road Section	Carriageway*	m	2 x 3.5 = 7.0	2 x 3.5 = 7.0
		Cycle Lane	m	-	2 x 1.5 = 3.0
		Shoulder	m	2 x 1.5 = 3.0	0, 2 x 2.0 = 4.0
		Drain	m	if needed	if needed
		Minimum ROW	~	10.0	14.0
	(w/o Drain)		111	10.0	14.0
Cross Fall Concrete Pavement		%	2.0		
		Asphalt Concrete	%	2.5	
Pavement		70	2.5		
Surface Dressing		%	3.0		
Shoulder (Gravel)		Shoulder (Gravel)	%	4.0	
Maxir	num Superelevation (Desire	ed Maximum)	%	6.0 (4.0)	
Minin	num Radius		m	185	
Minin	num Radius with	Open (Adopted)	m	11	05
Adve	rse Cross Fall	Built-up	m	81	0

 Table 4.1.2.
 Summary of Geometric Design Criteria

Pavement Widening and Radius			Widening Width	Different
Different Superelevation			widening width	Superelevation
R = 225m		m	Not required	2.5%
	R = 215m	m	Not required	3%
	R = 205m	m	Not required	4%
	R = 195m	m	Not required	5%
	R = 185m	m	Not required	6%
Minimum Length of Spiral Curve		~		0
(Desired Maximum)		m	4	0
Maximum Grade Change without Vertical Curve		%	0.	.7
Maximum Gradient		%	4.0 (2.0)	
Critical Length of Gradient i = 3.0%		m	480	
	i = 4.0%	m	33	30
Minimum Vertical Curve Length		m	60	
Minimum Vertical Curve	Crest	m	3,0	000
	Sag	m	1,3	00

3) Effective Road Width

The effective road widths on the causeways and approach roads are as listed Table 4.1.3.

Table 4.1.3. Effective Road Width's of Causeways and Approach			
Causeway	Causeway Section (m)	Approach Road Section (m)	
Komari	1.50+2 x 3.5+1.5=10.00	1.5+2 x 3.5+1.5=10.0	
Periya Kallar	1.8+1.5+2 x 3.5+1.5+1.8=13.6	2.0+1.5+2 x 3.50+1.5+2.0=14.0	
Koddaia Kallar	1.8+1.5+2 x 3.5+1.5+1.8=13.6	2.0+1.5+2 x 3.50+1.5+2.0=14.0	
Panichchankeni	1.5+2 x 3.5+1.5=10.0	1.5+2 x 3.5+1.5=10.0	

 Table 4.1.3.
 Effective Road Widths of Causeways and Approach Roads

Typical cross sections of causeways and approach road sections are shown in Figure 4.1.1.

Komari & Panichchankeni Causeways

Periya Kallar & Koddaia Kallar Causeways

Komari & Panichchankeni Approach Roads

Periya Kallar & Koddaia Kallar Approach Roads

Figure 4.1.1. Cross Sections of Causeways & Approach Roads

4) Bridge/Culvert Height & Openings for Lagoons

Each causeway crosses a lagoon dividing it into two parts: a landside and seaside part. The ground elevation of the lagoons is mostly below mean sea level with mild slopes. The discharge of catchments does not tend to flow through the bridges/culverts at a high velocity, since the lagoon itself retains a substantial quantity of water, resulting in the rise of the water level being due to the topographical characteristics of the lagoons. Note that sandbar formation obstructs flow discharges to the sea.

The required total length of openings for a bridge and causeway should be determined by hydrological and hydraulic analyses to handle the temporal variations in water level for a lagoon. Note that because of the low discharge the length of a bridge span can be adjusted, provided that the total length of openings is maintained. Based on hydraulic analysis, the required total opening lengths for bridges/culverts are given in Table 4.1.4. In these cases, the depths of flow through the structures are calculated from the existing riverbed level. Therefore, it is recommended to design the bottom level of the inner area of the culverts either at the existing riverbed level or below that. The approach and exits of culverts should be well prepared/dredged so that flows will not be obstructed. The bed slope of culverts should be 0.002.

Deparintion		Bridge/	Culvert	
Description	Komari	Periya Kallar	Koddaia Kallar	Panichchankeni
Design Water Level (m) (From MSL)	1.6	1.8	1.8	1.9
Required Total Opening Length (m)	48	136	41	127

Table 4.1.4. Required Design Height & Opening for Structures

5) Clearance under Bridge Girders for Lagoons

The flow through a bridge or culvert in a lagoon is significantly smaller than than of a flow through a bridge in a river. Therefore, a minimum 0.3m clearance under the girder or top slab of culvert from the design water level (with a 50-year return period) in lagoons is considered to be sufficient.

6) Level of Causeway Road & Approach Road Surface

The concrete slab level of a causeway road and aggregate base level of an approach road should be above the design water level.

7) Level of Footing of Bridge Foundation

Local scouring of bridge foundations should be estimated to identify the magnitude of possible erosion and thereby to decide the depth and type of foundations and to design the necessary countermeasures, if any. The modified versions of Loursen's live bed scour equation recommended by the Hydrologic Engineering Center, US Army Corps of Engineers was applied. As velocities close to the bed are not very high in lagoons, rubble masonry gabion mats can be applied to prevent riverbed erosion at bridge locations where it is necessary.

8) Results of Hydrological/Hydraulic Design for Bridges/Causeways

The design discharge hydrographs of the sub-catchment areas for a 50-year return period were determined by applying the HEC-HMS hydrological model developed by the Hydrologic Engineering Center. A detailed hydraulic analysis was carried out to determine the water levels and the required bridge openings.

gn Conditions of Structures
ydrological Desig
Table 4.1.5. H

				Bridge / C	Causeway		
Description			Komari	Periya Kallar	Koddaia Kallar	Panichchankeni	Kemarks
Catchement Characteristics							
Catchement Area		km²	173	402		381	Periya Kallar & Koddai Kallar lagoons are interconnected
Lagoon Area (Land Side)		km^{2}	4.4	30.8		28.5	
Lagoon Area (Sea Side)		km^{2}	0.0125	0.975		2.38	
Ave. Sand Bar Height at Sea outfall		ш	0.9	L L		-	Above High tide level; 0.6m
Old Bridge Opening		Е	32	103.6	11.8	35+28 nos 1.5m Dia.	According to measured data (approximate)
Observed Flood Level (By Hearing)	From MSL	ш	1.5	1.7	1.7	1.7	Under present condition
Design Conditions							
Design Return Period		yr	50	50	50	20	
Design High Water Level (From MSL)	ЧМЧ	ш	1.6	1.8	1.8	1.9	50 yr return period; 1m high sand bar
Minimum Free Board		ш	0.3	0.3	0.3	0.3	
Required Bridge/Culverts Opening		Е	48	136	41	127	
Max. Velocity through Opening		m/s	1	1.7	1.5	2	Max. velocity during the peak of flood
Local Scouring for Foundation	(estimated)	Е	0.95	1.14	1.23	1.62	Loursen's live bed scour equation

4.1.3 Structure Design Criteria

Structure design shall follow both the Bridge Design Manual, RDA (1997) and BS 5400 Part 2 (1978). The above-mentioned standards are supplemented by the following items as further detailed in the subsequent sub-clauses.

- Design Loads
- Properties of Materials
- Stability Analysis of Pile Foundation
- Culvert

1) Design Loads

Bridges shall be able to resist the effects of the loads as listed below.

- Dead loads and superimposed dead loads
- Live loads
- Braking and traction of vehicle load
- Earth pressure
- Water current
- Temperature
- Shrinkage and creep
- Buoyancy

The following loads shall be considered according to site conditions or structure type and the designer's judgment.

- Wind Loads
- Floating Debris and Log Impact

There is no record of earthquakes in Sri Lanka; therefore, it is not necessary to consider its effect in the design.

a) Dead Loads & Superimposed Dead Loads

The dead load including self weight, curb, handrails, and the superimposed dead load are calculated in Table 4.1.6.

Category	Item	Unit	Value	Remarks
Dead load	Reinforced concrete	kN/m ³	25.0	
	Pre-stressed concrete	kN/m ³	25.0	
	Plane concrete	kN/m ³	23.5	
	Asphalt pavement (if any)	kN/m ³	23.0	
	Steel	kN/m ³	78.5	
	Compact sand	kN/m ³	19.0	
	Loose sand	kN/m ³	16.0	
Super- imposed Dead load	Public utilities (telephone line)		Proper weight	Sea side of Koddaia Kallar

Table 4.1.6.	Dead Load Intensity
10010 4.1.0.	Doud Loud Intensity

b) Live Loads

HA loadings are applied in the design of all bridges and HB loadings for roads of Class A and B are combined with HA loadings.

i) HA Load

Three kinds of HA loads are considered in the design:

- Nominal uniformly distributed load (UDL)
- Nominal knife edge load (KEL)
- Single nominal wheel load alternative to UDL and KEL

ii) HB Load

Only one HB loading is required to be considered on any superstructure or on any substructure supporting two or more superstructures. According to the Bridge Design Manual, RDA, 30 units of HB loading should be applied in a design.

iii) HB and HA Loading combined

HB and HA loadings are combined and applied as specified in BS 5400 Part 2. However, the HB loading is always to straddle two (2) notional lanes in accordance with the Bridge Design Manual of RDA.

iv) Footway and Cycle Track Live Load

HB and/or HA loadings shall be applied in the design of footways and cycle track lanes on bridges, as specified in BS 5400 Part 2.

c) Braking and Traction of Vehicle Load

i) Longitudinal Force

The longitudinal load resulting from traction or braking of vehicles shall be taken as the more severe of nominal loads of HA or HB type, applied to the road surface and parallel to it in one notional lane only.

ii) Skidding Load

Horizontal load of 250 kN due to skidding shall be taken in the design with HA load.

d) Earth Pressure

Only active earth pressure acting on abutments shall be considered, without taking into account the resistance by passive earth pressure.

e) Water Current

The horizontal force generated by water current shall be calculated according to the Bridge Design Manual of RDA.

f) Temperature

i) Effective Bridge Temperature

Effective bridge temperature shall be considered in accordance with the Bridge Design Manual of RDA for continuous bridges in the calculation of temperature stress.

ii) Frictional Bearing Resistance Force from Temperature Change

Ten percent of the superstructure dead load shall be considered in the design of substructures (longitudinal direction), which is the minimum friction coefficient for gum type sliding bearings (Japanese design standards).

g) Shrinkage & Creep

Loss of pressure by shrinkage and creep shall be considered in the calculation of pre-stressing force, bending moment and deflection of girders.

h) Buoyancy

Appropriate water level shall be taken into account in computing the effect of buoyancy.

i) Differential Settlement

Potential differences in settlement between a structure having a pile foundation and a structure/approach road having a non-pile foundation shall be taken into consideration in designing.

2) Design of Structures

a) Design Class for Prestressed Concrete Structures

The bridges of this Project are located in a coastal area and are significantly affected by sea water. Hence, the bridges are to be designed as Class 1.

b) Properties of Materials

i) Concrete

Table 4.1.7. Concrete Strength

Classification	Characteristic S	trength (N/mm ²)	Young's Modu	ulus (kN/mm²)
	At transfer	Serviceability	At transfer	Serviceability
Precast PC Beam	36	50	29.8	34.0
Crossbeam	24	35	25.1	29.5
RC Slab	-	35	-	29.5
Concrete Pavement	-	35	-	29.5
Abutment, Pier	-	30	-	28.0
Cast-in-situ RC Pile	-	40	-	30.0
RC Driven Pile	-	30	-	28.0
Box Culvert	-	30	-	28.0

Poisson's Ratio: 0.20

Temperature Coefficient: 12 * 10⁻⁶

Stress-Strain Curve for Design: BS 5400 Part 4, Figure 1

ii) Steel

Table 4.1.8. Steel Strength

Classification	Characteristic Strength (N/mm ²)		Young's Modulus (kN/mm ²)	
	At transfer	Serviceability	At transfer	Serviceability
G460	-	460	200	200
12S15.2B	-	1,850	200	200
12S12.7B				
7S12.7B				
1S28.6	-	1,800	200	200
1S21.8				

Poisson's Ratio: 0.30

Temperature Coefficient: 12 * 10⁻⁶

Stress-Strain Curve for Design: BS 5400 Part 4, Figure 2 (Reinforcement), Figure 3 (PC Strand)

iii) Constants of Backfill Soil

Internal friction of angle	: $\varphi = 30$ degree
Unit weight	: $\gamma = 19 \text{ kN/m}^3$
Cohesion	: $c = 0 \text{ kN/m}^2$

c) Stability Analysis of Pile Foundation

The method of stability analysis for pile foundations is not specified in BS 5400 and BS 8004. Hence, the displacement method, which is commonly used in Japan, is adopted, to
calculate the pile reaction and amount of displacement. Stability of piles is examined to ascertain the following 3 conditions:

- The axial compressive force on the pile does not exceed the allowable axial compressive bearing capacity of the pile.
- The axial pull-out force on the pile does not exceed the allowable pull-out capacity of the pile.
- The horizontal displacement of the pile does not exceed 15 mm to avoid plasticity of ground.

i) Allowable Bearing Capacity of Piles

The allowable bearing capacity of a pile is to be calculated in accordance with the equation set up in BS 8004 as follows:

Ultimate Bearing Capacity of a Pile:

$$\mathbf{R}_{\mathrm{u}} \quad = \quad \mathbf{f} \ast \mathbf{A}_{\mathrm{s}} + \mathbf{A}_{\mathrm{b}} \ast \mathbf{q}$$

Where,

 R_u : ultimate bearing capacity (kN)

 A_s : surface of pile shaft (m²)

 A_b : area of pile tip (m²)

- f : average skin friction or adhesion per unit area of shaft in the condition of full mobilization of frictional resistance (kN)
- q: ultimate value of resistance per unit area of pile tip due to shearing stress of soil (kN/m²)

$$\mathbf{f} * \mathbf{A}_{\mathbf{s}} = \boldsymbol{\Sigma} \mathbf{f}_{\mathbf{i}} * \mathbf{U} * \mathbf{l}_{\mathbf{i}}$$

Where,

 $\begin{array}{lll} f_i & : \mbox{ skin friction } (kN/m^2) \\ Sand \ f_i & = & 5 \ * \ N \ (f_i <= 200) \\ Clay \ f_i & = & 10 \ * \ N \ (f_i <= 150) \\ Skin \ friction \ of \ soft \ soil \ (N<=2) \ is \ to \ be \ neglected. \\ N & : \ blow \ count \ of \ SPT \end{array}$

Allowable Bearing Capacity of a Pile:

Safety factor 2.5 is normally used for verification of foundation in case of standard condition, therefore n = 2.5 is used for this design (Pile Design and Construction Practice, M.J. Tomlinson)

W_s : effective weight of soil to be replaced with a pile

W : effective weight of a pile in the ground

Allowable Uplift Capacity of a Pile:

$$\mathbf{P}_{\mathbf{a}} = 1/\mathbf{n} * \mathbf{P}_{\mathbf{u}}$$

Where,

P_a : allowable uplift capacity of a pile (kN)

n : safety factor (=6)

Safety factor 6 is normally used for verification of foundation in case of standard condition, therefore n = 6 is used for this design (Pile Design and Construction Practice, M.J. Tomlinson)

 P_u : ultimate uplift resistance of a pile

$$P_u = f * A_s$$

ii) Allowable Horizontal Displacement

Horizontal displacement at the top of a pile shall be checked to avoid adverse effects on the superstructure and to avoid plasticity of the ground in front of the pile. Allowable horizontal displacement shall generally be less than 1 % of pile diameter or 15mm, whichever is bigger in order to assure safety against lateral force.

4.1.4 Design of Culverts

1) Inner Dimensions

Inner dimensions of culverts shall be decided properly in consideration of the following:

- Direction of the water course and location
- Topographical conditions of the lagoon area
- D.W.L.
- Minimum span length of the culvert is equal or wider than the existing bridge/culvert structures.
- Minimum clearance under the upper slab of the culvert is 0.3m from the applied Design Water Level (D.W.L.)
- Internal level of the lower slab of the culvert is lower than the existing concrete

2) Foundation

Spread foundations shall be adopted when settlement impacts on the inner dimensions are not considered. For most culverts sites, countermeasures for soft ground shall be taken for embankments prior to culvert construction. In general, a culvert's weight is lighter than embankment soil, and culvert stability is ensured by adopting a spread foundation. "Replacement of soft soil with sand material" and "replacement plus preloading method" are mainly applied for embankments in soft soil areas and the same method shall be adopted for both the culvert and embankment sections. Culverts planned for preloaded sections must be installed after the soil is consolidated. Surcharge fills are excavated before culverts are installed.

4.2 Outlines of Facility Designs for Emergency Recovery

4.2.1 Existing Condition of Each Causeway

In order to carry out a reasonable design, it is necessary to assess the damaged parts and existing condition of the objective four causeways (see Table 4.2.1).

	Damaged Part	Existing Condition	Remarks
Komari	Causeway Bridge Section	Causeway Bridge Section	Gabion of Bailey
	South side of bridge (approx.	Temporary bridge (bailey	bridge base is slightly
	29m) completely washed out.	bridge) built (approx. 33m	sinking.
	Remaining north side of old	long, 4.2m width). Abutment	Insufficient causeway
	bridge approx. 9m.	& pier substructures built	width
		with gabion.	
	Causeway Road Section	Causeway Road Section	
	Both northern (approx. 50m in	Temporary gabion wall (deep	
	length) & southern (approx. 5m	section) & embankment	
	long) causeways completely	(shallow section)	
	damaged.	constructed.	
Periya Kallar	Causeway Bridge Section	Causeway Bridge Section	Insufficient causeway
	No significant damage.	Existing short bridge still	width
		usable.	
	Causeway Road Section	Causeway Road Section	
	Central section of causeway road	Detour constructed for	
	completely washed out &	washed out section &	
	retaining walls on north side	retaining wall section under	
	causeway road collapsed.	reconstruction.	
Koddaia Kallar	Causeway Bridge Section	Causeway Bridge Section	Telephone line and
	No significant damage.	Existing causeway bridge	electric line were
		still usable.	collapsed.
	Causeway Road Section	Causeway Road Section	Insufficient causeway
	Causeway of Ondachchimadam	Temporary bridge (approx.	width

 Table 4.2.1.
 Existing Condition of Damaged Parts

	side completely washed out & embankment on south side of causeway collapsed.	30m) built at Ondachchimadam. Lagoon side of embankment under construction.	
Panichchankeni	Causeway Bridge Section Behind both abutments area washed out & pier caisson foundation tilted from scouring. Causeway Road Section Some pipe culverts (1.5m diameter) & masonry wall washed out & damaged.	Causeway Bridge Section Temporary bridge (bailey bridge) set (approx. 37m) on existing superstructure. Causeway Road Section Temporarily repaired.	Insufficient causeway width

4.2.2 Design Policy for Each Causeway

According to Table 4.2.1, some parts of the causeways were either washed out or damaged by the tsunami. Furthermore, the width of the objective causeways is insufficient for a two-lane road. The design policy for the causeways and the approach roads are as described as below.

- Causeway facilities shall be planned economically, meaning that local materials and manufactured goods shall be used whenever possible.
- Causeways shall be planned with the proper elements and cross-section width and alignment to satisfy Class A road standards and present traffic conditions.
- The road elevation for all causeway bridge and road sections (including approach roads) shall be higher than the high water level of the lagoons. This means that vehicles and pedestrians will be able to use the causeways throughout the year.
- Openings for causeways connecting the seaside and landside of lagoons shall be sufficient in terms of hydrologic engineering requirements.
- The alignment and width of approach roads shall be planned without extra land acquisition on the basis of present land use conditions.
- Mounted up sidewalks, handrails, road markings and reflective road studs shall be used to ensure pedestrian and vehicle safety.

4.2.3 Preliminary Design of Causeway Facilities

1) Komari Causeway:

- The new causeway centerline is same as that of the existing causeway, as the new causeway road will use the existing embankment and riverbed.
- The bridge length is to be 53m, which has been determined on the basis of a required

opening width of 48m.

• The causeway road is to use random rubble masonry casted on riverbed sediment of sand and filled with crushed stone.

2) Periya Kallar Causeway

- The same centerline is applied for the new causeway.
- Bridge length has been determined to be 160m on the basis of a required opening width of 136m, consisting of 12 span and 28 span slab bridges each 4m in length.
- The causeway road is to use concrete retaining walls casted on a riverbed sandstone layer.

3) Koddaia Kallar Causeway

- The same centerline including some improvement to the curve radius is applied for the new causeway.
- Bridge length has been determined to be 56m on the basis of a required opening width of 41m, consisting of 14 span slab bridges 4m in length.
- The causeway road is to use concrete retaining walls casted on a riverbed sandstone layer.

4) Panichchankeni Causeway

- The new causeway centerline is the same as the existing one.
- The bridge length has been determined to be 142m on the basis of a required opening width of 127m.
- Five of the seven new pile bent type piers will be installed between the abutments and piers of the existing bridge, with a span length of 17.5m. Therefore, the existing caisson foundations don't become the obstacles for the new structure foundations.
- The causeway road is to use random rubble masonry with crushed stone filling and casted on riverbed sediment of sand.

4.2.4 Preliminary Plan for Bridges & Causeway Roads

1) Bridge Type

a) Superstructure

The type of bridge structure for the openings on the Komari and Panichchankeni causeways is determined via the depth of the base layer and existing conditions. Bridge lengths will be more than 50m for the Komari and 140m for the Panichchankeni causeways, respectively, and bridge spans will be more than 10m. The following alternative plans for the superstructure are taken into consideration as shown in Table 4.2.2.

i) Reversed T-Shaped Pre-Tensioned PC Beam

In the construction of a pre-tensioned PC bridge, beams are produced in a factory in Colombo and transported to site by trailer. Typical PC beams from 9.5m to 19m in length are designed by RDA and available for use for causeway opening structures. The low height of a beam is to minimize the elevation of a causeway road. Note that the construction period using pre-tensioned beams is shorter than that for post-tensioned girders, as the latter can be built during the rainy season in a factory, which also minimizes site work.

ii) T-Shaped Post-Tensioned PC Girder

The economical span length of a post-tensioned PC girder is more than 25m. Generally, post-tensioned PC girders are fabricated on site in a wide opening/flat area, and many facilities are required such as truck cranes or launching girders. As the erection of a post-tensioned girder requires a longer time than a pre-tensioned beam, there must be a sufficient number of girders for the operation to be economical. For this Project, on-site manufacturing is not practical.

iii) I-Shaped Steel Girder

Steel I-girders are not manufactured in Sri Lanka and have to be transported here. As fabrication and transportation costs are high, this plan is also not appropriate.

iv) Overall Evaluation

In conclusion, the reversed T-shaped pre-tensioned PC beam is the most reasonable for the Project.

	Table 4.2.2. (Comparative Study for bridge Superstruct	ures
Description	Alternative-A Pre-tensioned PC Beam	Alternative-B Post-tensioned PC Girder	Alternative-C I-shaped Steel Girder with RC Slab
Plan View of Cross Section			
Construction Condition	 Precast PC beams are fabricated in a factory and transported to the site, then erected by track crane. There are some precast fabrication factory for maximum length of 17.5m or 19m long of beam as typical type. Some fabrication factories are constantly operating and has own trailer for transporting of beams to the site. 	 Post-tension PC girder is applied for the span of 25~40m Post-tension PC girder is fabricated and stressed in the construction site and then erected by track cranes. 	 Steel girders are procured from the third countries, so the transport cost is relatively high.
Construction Period	 PC beams are minimized the fabrication period and effectively fabricate in the west coast side in dry season while the site are rainy season. 	 Fabrication of PC girder are required the construction yard at the site and shall be fabricated in the dray season. 	 Steel girder is fabricated in third countries in rainy season and transport at the site through Colombo port.
Procurement of Material and Erection	 One or two track carne of 40~50ton lifting capacity is required for erection. 	 Procurement of high strength concrete for girder at the temporary site plant is difficult. Two track cranes of around 100ton lifting capacity are required for erection and difficult to lent. 	- Two track cranes of around 30ton lifting capacity is required for erection.
Maintenance	 Maintenance of bridge is not necessary exception of cleaning of drain, expansion joint, bearing and incidentals. 	 Maintenance of bridge is not necessary exception of cleaning of drain, expansion joint, bearing and incidentals. 	- it is required to inspect and maintenance periodically for the painting. $\hfill \bigtriangleup$
Economical Aspects	 It is economical because typical type of beams are used usually in Sri Lanka. 	 To fabricate a few numbers of girders at not maintained site is costly. 	- Steel material and fabrication cost of steel girder is extremely high compared with concrete girder mainly consists of local product material
Overall Evaluation	- Some fabrication factory are constantly operating and has trailer for transport of beams $\hfill \bigtriangleup$	Due to installation of cofferdam, cost up and construction period is extended. \bigcirc	The steel girder use is not reasonable for high cost and main material imported from third countries. $\hfill \bigtriangleup$

 \triangle : Poor

O : Good

O: Very Good

b) Substructure/Foundation

i) Komari

A spread foundation on a gneiss rock base is used for the bridge abutment and piers as a foundation type.

ii) Panichchankeni

A cast-in-situ RC concrete pile of the bent type is selected for the bridge pier taking into consideration construction cost and time as shown in Table 4.2.3. For the pile bent type, horizontal displacement at the bearing in the direction of the bridge axis and in the transverse direction tends to be large because the top structure is heavy. To address this problem, the number of pile bents at each pier will be three and their diameter will be 1200mm in order to give bridge piers high strength.

2) Short Bridge Type

Periya Kallar and Koddaia Kallar causeways are located at the same lagoon, and their topographical/geological conditions are similar. The opening structure of the causeway sections shall be economically designed on a sandstone layer of the riverbed as short-span bridges or box culverts. A comparison between the bridge and culvert alternatives is shown in Table 4.2.4. Note that a slab bridge is better in terms of construction cost and time.

Description	Alternative-A	Alternative-B
	Slab Bridge	Box Culvert
Ground	- in the case of stone layer riverbed	
Condition		
Plan		
View of Cross Section		
Structure	 Concrete wall type pier and cast-in-situ RC concrete slab Same as existing bridge in Periya Kallar causeway 	- 3 or 4 continuous span of culvert box
Construction Period	 Piers and slabs are possible to construct individually 	- Construction period is long due to continuous culvert with re-bar is casted step by step
Fanction as Road	- Every span of slab appears construction or expansion joint	- Surface of road is smooth with continuous top slab
Maintenance	-	- Maintenance is difficult due to continuous structure
and Repair	0	with re-bar
Economical	- 100%	- 120% of slab bridge
Aspects	<u> </u>	0
Overall	- It is a suitable structure aiming at cost down and	
Evaluation	shorten the construction period.	0
		\bigcirc : Very Good \bigcirc : Good \land : Poor

Table 4.2.4. Comparative Study for Short Bridge on the Rock Laye

3) Causeway Road Type

Either an embankment or wall type for the causeway road section shall be selected for the causeways of Komari, Periya Kallar, Koddaia Kallar and Panichchankeni, depending upon the geological condition of the riverbed and the traffic volume of the road (see Table 4.2.5).

a) Periya Kallar & Koddaia Kallar Causeways

As the existing retaining concrete wall, which is set on a sandstone layer, is stable, a new and higher concrete retaining wall on the same location is appropriate for the expected higher traffic volumes to ensure durability and reliability.

b) Komari and Panichchankeni Causeways

These causeways are located on sand sediment and there is a medium amount of traffic. Random rubble masonry on an embedded gabion base placed in the riverbed is appropriate for the causeway roads in terms of construction cost. Note that all causeway road sections shall be paved with concrete slabs for a longer life period in view of the difficulty of reconstruction in a lagoon area.

4) Length of Approach Roads

The elevation of an approach road shall be higher than the design water level for lagoon causeways. The length of an approach road is therefore adjusted to satisfy this elevation and to smoothly interface with the existing road.

Comparative Study for Causeway Road

Note that this result is for cost estimation purposes and would have to be re-examined when detailed design work is carried out.

CHAPTER 5

Construction Planning and Cost Estimate for Emergency Recovery

Chapter 5 Construction Planning & Cost Estimate for Emergency Recovery

5.1 Construction Planning

5.1.1 General

Construction planning mainly consists of establishing a construction method and preparing a construction time schedule. The results of this work are utilized in estimating construction costs and establishing the Project implementation schedule.

5.1.2 Construction Area

The Project area is located on the East Coast of Sri Lanka and requires a full day's travel (approximately 10 to 12 hrs) to reach from Colombo via either the AA004 or A011 road. The surface conditions of these roads are not good in some of the urban areas and in most parts of the Eastern Province. Hence, the haulage of construction materials and equipment to the Project area is somewhat difficult.

The climatic condition of the Project area can be divided into two seasons as follows:

Rainy Season:From mid October to mid JanuaryDry Season:From mid January to mid October

Water levels at causeways exceed normal water levels during the rainy season by 1.0m to 1.5m, and rise to about 30cm above the road surface during the period of mid-December to mid-January every year. Therefore, construction work on causeways should be planned so no major work is carried out during times of flooding.

The elevation of the foundation for structures shall be determined based on geological conditions. It is a distinct feature of each site that a medium to hard rock surface exists at the ground level and at shallow depths under the riverbed.

It should be noted that a limited number of boring/geological surveys were conducted during the pre-tender stage. It is the sole responsibility of the contractor to carry out additional investigations to determine the foundation depth/types for the four causeways.

5.1.3 Major Work Item

Major construction works based on the results of this preliminary design of each causeway are as shown Table 5.1.1.

Komari	Periya Kallar	Koddaia Kallar	Panichchankeni
Temporary Work	Temporary Wrk	Temporary Work	Temporary Work
Diversion Road	 Diversion Road 	 Diversion Road 	 Diversion Road
 Filling Cofferdam 			
Removal Work	Removal Work	Removal work	Removal Work
Removal of Bailey	 Removal of Existing 	 Removal of Bailey 	 Removal of Bailey
Bridge	Structure	Bridge	Bridge
 Removal of Existing 		 Removal of Existing 	 Removal of Existing
Structure		Structure	Structure
Structure Work CW	Structure Work CW	Structure Work CW	Structure Work CW
PC Girder Bridge	 Slab Bridge/Box 	 Slab Bridge/Box 	PC Girder Bridge (pile
Riprap Retaining Wall	Culvert	Culvert	foundation)
	 Concrete Retaining 	 Concrete Retaining 	 Riprap Retaining Wall
Road Surfacing Work	Wall	Wall	Road Surfacing Work
<u>CW</u>	Road Surfacing Work	Road Surfacing Work	<u>CW</u>
Concrete Pavement	<u>CW</u>	<u>CW</u>	 Concrete Pavement
 RDA type Handrail 	 Concrete Pavement 	 Concrete Pavement 	 RDA Type Handrail
Road Studs	 RDA Type Handrail 	 RDA Type Handrail 	Road Studs
Approach Rad	 Road Studs 	 Road Studs 	Approach Road
• DBST	Approach Road	Approach Road	• DBST
Side Ditch	• DBST	• DBST	Side Ditch
Road	Side Ditch	Side Ditch	 Road Marking
Marking	 Road Marking 	 Road Marking 	 Road Sign
Road Sign	 Road Sign 	Road Sign	 Grouted Riprap
 Guard Railing 	 Guard Railing 	 Grouted Riprap 	
 Embankment Grassing 	 Grouted Riprap 		

 Table 5.1.1.
 Major Construction Works for Each Causeway

5.1.4 Construction Method

1) Diversion Road & Temporary Cofferdam Plan

During construction any hindrance to public traffic should be avoided, and it is therefore necessary to build diversion routes. There is also the intention of building cofferdams in order to construct the retaining walls and bridge substructures of the causeways. Taking into consideration existing road width and the required width of the new structures, the diversion roads and temporary cofferdams planned are as follows:

a) Periya Kallar & Koddaia Kallar

The road section of the Periya Kallar and Koddaia Kallar causeways shall be built via staged construction. That is, each half of a causeway's road section shall be constructed in two separate stages as shown below, and diversion roads are to be provided at locations where work on a structure is taking place:

Figure 5.1.1. Staged Construction for Periya Kallar & Koddaia Kallar

b) Komari & Panichchankeni

Due to the existing width of the causeways and the pilling work involved in the Panichchankeni Causeway, diversion roads have to be provided for the entire length of these two causeways as shown below, with these diversion roads also serving as cofferdams.

Figure 5.1.2. Diversion & Cofferdam Plan for Komari/Panichchankeni

2) PC Girder Bridge Construction Plan

For bridges to be constructed with PC girders, the girders will be transported to site by an approved supplier and stocked in accordance with specifications. The pre-tensioned type of PC girder is produced only in the Colombo area. The main PC supplier in Colombo (State Development & Construction Corporation (Semi-governmental Corporation)) has experience in transporting PC girders of this type and is doing so for some of the ongoing construction on the East Coast. The weight of the girders to be used in the Project is approximately 7 tons and will be erected using about a 35 ton class mobile crane.

Figure 5.1.3. Erection of PC I-girder by Mobile Crane

3) Slab Bridge/Box Culvert Construction Plan

For cast-in-situ slabs, the superstructure is constructed over a working platform as long and wide as the superstructure shown in Figure 5.1.4. This platform is supported by a scaffolding system placed underneath and anchored at ground level. The scaffolding system shall consist of a coated plywood deck over a series of wooden/steel beams.

4) Piling

Bored piling foundations are to be used for the PC girder bridge of the Panichchankeni Causeway. According to geological data gathered from investigations, it is intended to adopt an all casing method for piling works. Note that the piling machine has to be carried from Colombo, and an earth platform has to be constructed prior to the commencement of the piling work in order to set-up the piling apparatus.

5.1.5 Construction Schedule

Taking into account the weather, water levels at causeways, and the urgency of rehabilitation, the construction period was set at 15 months for the Project as shown in Table 5.1.2. As this table indicates, detailed design will require a net period of about four months and at least one month for the procurement of the design consultant, unless a design-build contract is adopted. Without a design-build system, there would be a delay of at least five months in the start of the tender process (from tender call to commencement of work) for contractors. Accordingly, in order for preparatory works such as diversion roads, temporary cofferdams, removal of existing structures, earthworks, etc. to be carried out as quickly as possible, a design-build system is necessary.

	Months					1	2	3		4	5		6	7		8	9	10	11	12	13	14	15		
	Year			_			2005												2006						
It	em Month	6	;	7	1	8	9	10	1	.1	12		1	2		3	4	5	6	7	8	9	10		11
1 <u>5</u>	Tender Call	T																							
Ę.	Tender			V						Г		1001												1000	
5	Evaluation of Tender			, 1	▼						Rain	У	seaso	n					Dry s	eason					
1 ×	Contract		-	-	-													-						1000	
ler	Contract		\neg	\vdash	4				-			-				+	\rightarrow	_			+				
Ĭ	Commencement of work		\neg	\vdash					-			_				+	\rightarrow	_			\vdash	\vdash			
E.	Taking Over			\vdash	_				-			_				+		_			\vdash			▼	
				\vdash																					
	Preliminary Work																							1 100 10	
	Site Establishment																								
	Geotechnical Investigation and To	pogr	apł	nical	l Su	irvey			1000.00	1011001															
	Detailed Design		Ť	\square																				1000	
	Adjustment Design for the Site Co	nditi	ion	$ \rightarrow$																					
	Precast PC Beam Fabrication and	Fran	snc	vrtati	ion																			1 1 1 1	
	Precast Verb Handrail Production	and	Tre	nen	ort	ation									16	<u> </u>		Ŧ			++				-
	Freeast Kerb, Handrah Froduction		-112	unsp								1		- -	- F	1 T	- V	V Con	Deniah	- In a section		\vdash		1.000	-
				\vdash	_				-			-			-	+		10	Panici					-	
				\vdash	_							_				+	Ior	Koma	r1		\vdash				
	Komari Causeway			ĻĻ				\downarrow	-								+		\vdash	\vdash	\vdash		\vdash		
	Geotechnical Investigation and To	pogr	aph	lical	I Su	rvey		• • • •			-										\vdash				
	Diversion Road & Temporary Coff	ferda	am										-												
	Removal of Bailey Br. and Existin	g Sti	ruct	ures	s																				
	Sub Structure (Abutments and Pier	s)		\square																					
	Super Structure (Erection for PC B	eam	1 an	d Cr	asti	ng De	ck Slab																		
	Random Rabble Masonry Wall of	Can	sew	av F	Roa	d		1																1 100 1	
	Farth Work (Filling and Backfilling	a)	1	<u>- 1</u>		-										T						++	+		
	Davement Work	5/	-	\vdash	_	\vdash		++								+							+		
	Pavement work	Ļ		<u> </u>		\vdash	++	+	1						-	+	\rightarrow	_							
	Approach Road Work (Earth Work	t, Pa	ven	nent	t)							_						_						1.001	-
	Surfacing Work (Handrail, Kerb, F	Load	M	arkir	ng,	Traffi	c Sign,	etc.)																1001	
	Removal of Temporary Cofferdam	and	l Fi	nish	W	ork																			
	Periya Kallar Causeway																								
	Geotechnical Investigation and To	pogr	apl	nical	l Su	rvev																			
	Diversion Road & Temporary Coff	ferd	am			Í			10000																
	Retaining Wall of Causeway Road		_	$ \rightarrow$	-				100000																
	Removal of Existing Structures (SI	ah F	 2ri/	laes																	\vdash				
	Sub Structure (Abutments and Dier			iges)	/							-									\vdash			-	
	Sub Structure (Abutifents and Pier	s)	\neg	+	_							_				- F								1000	-
	Super Structure (Concrete Slab)	Ļ		\vdash	_							_													
5	Earth Work (Filling and Backfillin	<u>g)</u>		\vdash	_			-																	
Ē	Pavement Work on Causeway Roa	d																							
Ę.	Approach Road Work (Earth Work	c, Pa	ver	nent	t)																				
E S	Surfacing Work (Handrail, Kerb, F	Load	l M	arkir	ng,	Traffi	c Sign,	etc.)																	
Ŭ	Removal of Temporary Cofferdam	and	l Fi	nish	W	ork																			
				\square																				1 000 0	
	Koddaia Kallar Causeway			$ \rightarrow$	_																				
	Geotechnical Investigation and To	noor	rank	nical	l Su	ITVEV						.												-	-
	Diversion Road & Temporary Coff	erde	m	al	54			Ĩ				-									\vdash				
	Pataining Wall of Caugement Day		ш	\vdash	_	\vdash																+	+	1 100 10	
	Retaining wan of Causeway Road	Ļ	Ļ	<u> </u>			++	LT.	10000												1	\vdash	+		
	Removal of Existing Structures (B	ridg	e, E	alle	y E	sildge)									100					\vdash	\vdash	\vdash	\vdash		
	Sub Structure (Abutments and Pier	'S)		\vdash				+													\vdash		\vdash		
l	Super Structure (Concrete Slab)	Ļļ		Щ			++	$\downarrow \downarrow$															\vdash		
	Earth Work (Filling and Backfillin	g)		\square																					
	Pavement Work on Causeway Roa	d																							
	Approach Road Work (Earth Work	, Pa	ver	nent	t)																				
	Surfacing Work (Handrail, Kerb. F	Load	M	arkir	ng.	Traffi	c Sign.	etc.)																	
	Removal of Temporary Cofferdam	and	l Fi	nish	W	ork	TŤ	Γ́Γ	1																
			Ĩ													+									
	Panichchankeni Causeway		\neg	$ \rightarrow$	_											+									
	Geotechnical Investigation and To		rani	nicel	Su							,				+	+			++	++				
	Renairing Access Dead		api	Incal	54		F T		L			-				+	+		++	++	\vdash	++	++		
	Diversion Road & Temperate Coff	brde	_	+	_	\vdash			F												++		++	-	-
	Demovel of Evicting Structures (D)	oiua	<u></u>) nide c			-				-	E I						I ⊢	++	\vdash	+		
	Removal of Existing Structures (B	aney	/ BI	lage	с, E	singe)	1		1										_	\vdash	\vdash	\vdash	+		
	Pliing Work	Ļ		\vdash				\downarrow												\vdash	\vdash		\vdash		
	Sub Structure (Abutments and Pier	's)																			\vdash				
	Super Structure (Erection for PC B	eam	ı an	d Ca	asti	ng Dee	ck Slab)																	
	Random Rabble Masonry Wall of	Caus	sew	ay F	Roa	d																			
	Earth Work (Filling and Backfillin	g)																							
	Pavement Work	r		\neg																					
	Approach Road		\neg	$ \dashv$					1							+								10010	
	Surfacing Work (Handrail Kerb R	heo (IM	arkii	nø	Traffi	c Sign	etc.)								+	+				╘╧╧╸				
	Removal of Temporary Coffordam	and	1 E	nich	W/-	ork										+	+								
	iconovar or reinporary concidant	and	1.11				++		1							+	+		\vdash					7	

Table 5.1.2. Construction Time Schedule

5.2 Cost Estimate

5.2.1 General

Project cost is estimated for the Emergency Recovery Project based on the results of the preliminary design and construction implementation plan for the four causeways. To arrive at total Project cost, unit rate components were prepared applying the Sri Lanka Highway Schedule of Rates (HSR) and the Japanese Cost Estimation Standard. When these two were not applicable, consultations were held with relevant contractors to obtain unit-cost information. In addition, costs were compared with those for recent major road construction projects funded by international donor agencies in Sri Lanka to confirm their reliability. Note that the total construction cost includes costs for the relocation of public utilities on the causeways (electricity and telephone lines) as the provisional sums item. The basic assumptions and methods for estimating Project costs are as follows:

- Private contractor(s) carry out all construction work.
- The unit cost of each cost component is estimated by applying the HSR for fiscal year 2003, the Japanese Civil Work Estimate Standard of 2004, the Japanese Bridge Erection Cost Estimates of 2003, and information collected from interviews with relevant contractors.
- When the HSR and Japanese standards are inadequate for providing the unit cost for a particular item, then interviews are h eld with local contractors to gather the necessary data to determine the appropriate cost.
- Currency exchange rate: JPY 1 = Rs. 0.921 (average for April 2005)
- Taxation: 15% VAT

5.2.2 Procurement

1) Labor Force

Local contractors carry out most of the general road work in Sri Lanka and hence there is an ample labor pool with skills in civil works, except when special skills are required for work such as post-tension type of pre-stressed concrete. Note that the bridges in this Project are a pre-tension type of pre-stressed concrete and there are local construction firms capable of undertaking this work.

2) Supply of Machinery

As it is difficult to procure special/heavy construction machinery or large numbers of regular machinery on the East Coast, machinery will be carried from the Colombo area to ensure the smooth implementation of the Project.

3) Supply of Construction Materials

The major materials required for the Project and their availability in Sri Lanka are as shown in Table 5.2.1.

Material	Production &	Market Availability	Price for
	Supply in Sri Lanka		Cost Estimation
Cement	Sufficient	Available	Market price
Reinforcement	Diameter (D≦32mm)	Available	Market price
Shape steel	Not Produced	Only small size	Market price
		available	
Bridge bearing	Not Produced	Not available	Imported price
Expansion joint	Not Produced	Not available	Imported price

 Table 5.2.1.
 Availability of Material in Sri Lanka

a) Borrow Material

The earthwork volumes necessary for the construction of the causeways could be obtained from the borrow pits shown in Table 5.2.2. The borrow pits are located at distances between 1km and 20km from the relevant sites. Details on existing borrow pits are as shown in Table 5.2.2.

No.	Borrow Pit 1 (for Komari)	Borrow Pit 2 (for Periva & Koddaia)	Borrow Pit 3
	(ioi Roman)	(IOI T EIIya & Roddaia)	(IOF F AIRCHEIRARKEIR)
Name	AA004 Road Sta. 334km	Owner's name :	Navalady, Korale Pattu
		Mr. Thirucheheivam	
Location	Near Komari causeway	Virachenai, Palugumun,	A11 Sta.129+500
		Periyaporathivu	
Contact	Mr. Mijwad	Mr. Mathivannan	RDA Operation borrow pit
Tel. No.	Office : 067-2278793	Mob. : 077-6990426	RDA Batticaloa
	Mob. : 077-6060180		Office : 065-2224455
Distance from	1 km	20 km	23 km
each causeway			
Type of Site	Operation pit	Operation pit	Operation pit
Quantity	100,000m ³	1,000,000m ³	2,000,000m ³
(approx.)			
Previous Project	RDA road project	RDA road project	RDA road project
(used this site)	World Vision road project		
Type of Material	Lateritic soil	Tropical red soil	Gravelly soil

|--|

b) Quarry Material

There are several operating quarry sites from which the required quarry material could be obtained, which are located at distances between 125km and 30km from the construction sites. Details on these quarry sites are given in Table 5.2.3.

	No.	Quarry site 1 (for Komari)	Quarry site 2 (for Komari)	Quarry site 3 (for Komari)	Quarry site 4 (for Periya Kallar & Koddaia Kallar)	Quarry site 5 (for Periya Kallar & Koddaia Kallar) (for Panichchankeni)	Quarry site 6 (for Periya Kallar & Koddaia Kallar) (for Panichchankeni)
Name and	Location	Valanda Metal Crusher	Pavillian Metal Crusher	Nithe Crusher Plant	T. Pahnitharan	Priyantha Enterprises	Kapila Metal Crusher
		Weliyaya, Obbegoda, Monaragala	Monaragala	5 mile post, Nithe	Ammankulam, Wellavli, Mandur	Kalahagala, Pollonnaruwa, 15km from A11 Sta.69	Lakshanyana, Pollonnaruwa, 5km from A11 Sta.68
Contact Tel	1.No.	Mr. W.T Daynanda (055-2276552, 072- 2585091)	Mr. H.R. Wickremasinghe (055-2276127)	Mr. Mijwad (Office 067-2278793, Mob 077-6060180)	Mr. K.Madhivannan (Mob 077-6990426)	(Office 078-8752127, Mob 077- 7771785)	(Office 027-2225981, Mob 077- 223020)
Distance fr (approx.)	om each causeway	80 km	80 km	35 km	30 km	135 km (for Periya & Koddaia) 100 km (for Panichchankeni)	125 km (for Periya & Koddaia) 90km (for Panichchankeni)
Type of Sit	e	Operation pit	Operation pit	Operation pit	Operation pit	Operation pit	Operation pit
Capacity		300m3/month	53 m3/month	1400 m3/month	1100 m3/month	1200 m3/month	2800 m3/month
Quantity (a	tpprox.)	60,000m3	38,000m3	250,000m3	100,000m3	200,000m3	180,000m3
Type of M:	aterial	Granite Gneiss	Granite Gneiss	Granite Gneiss	Granite Gneiss	Granite Gneiss	Granite Gneiss
Previous P	Project (used this site)	RDA road project		RDA road projects	RDA road project	RDA road project	RDA road project, UDA project, ADB project
	250mm-500mm		9	Available	Available	9	Available
Available	150mm-225mm			Available	Available		Available
size	100mm	I		Available	1		Available
	50mm	I	I.	Available	1		Available
	37.5mm			I	Ξ	Available	Available
	19mm	Available	T	ı	Ľ	Available	Available
	12.5mm	Available	T	r	r	Available	Available
	6.3mm.DOWN WARDS	Available	u a		ı	Available	Available
	Graded : 37.5mm	Available	Available	н	1		Available
	Graded : 19mm	T	ı	1	н		Available
	Graded : 12.5mm	3	J	J	,	1	Available

Table 5.2.3. Quarry Sites

c) River Sand

There are several river sand pits from which river sand could be obtained and they are located at distances between 70km and 15km from the construction sites (see Table 5.2.4 for details).

No.	River Sand Pit 1	River Sand Pit 2	River Sand Pit 3
	(for Komari)	(for Periva & Koddaia)	(for Panichchankeni)
Location	Supeweva, Pottuvil	Wellavali, Manuor	Devala Junction,
	(from Pottuvil police		Manampitiva A11 Sta.83
	station 4.5km)		
Contact	Mr. Mijwad	Mr. K.Madhivannan	Mr. W.P.Premuda
Tel. No.	Office : 067-2278793	Mob. : 077-6990426	071-2540306
	Mob. : 077-6060180		
Distance from	15 km	25 km	70 km
each causeway			
Type of Site	Operation pit	Operation pit	Operation pit
Previous Project	RDA road project	RDA road project	RDA road project, Mahaveli
(used this site)	. ,		project
()			1

Table	5.2.4.	River	Sand	Pits

5.2.3 Unit Cost

1) Labor

Table 5.2.5 shows the labor unit rates on the East Coast (data from RDA) used in estimating the construction cost, which are based on an eight-hour workday.

Classification	Unit rate (Rs.)			
Engineer (10 years experience)	60,000/month			
Skilled Labor (technician)	650/day			
Semi-Skilled Labor	550/day			
Unskilled Labor	475/day			

Table 5.2.5. Unit Rates for Labor

2) Materials

Table 5.2.6 indicates the unit costs for major construction materials on the East Coast. The costs for imported materials are estimated using the CIF for Colombo, including port handling and clearance charges. The costs for local materials are based on market prices in the East Coast area.

Unit Rate (Rs.)	
550	
80,000	
30	
70	
48	
-	

Table 5.2.6. Unit Rates for Major Materials

5.2.4 Total Project Cost

After the completion of the preliminary design, construction plan, and cost estimate, total project cost and its breakdown has been estimated and is as shown in Table 5.2.7.

Item	Cost
Earth work and Removal Existing	40.1
Structures	
Pavement and Base	80.7
Structures (including temporary work)	489.2
Incidentals (Road furniture and Drainage)	52.0
Preliminaries and Provisional sums	150.0
Construction Cost Total (JPY million)	812.0

 Table 5.2.7.
 Total Project Cost (JPY million)

CHAPTER 6

Preparation of Draft Tender Documents for Emergency Recovery Project

Chapter 6 Preparation of Draft Tender Documents for Emergency Recovery Project

6.1 General

In accordance with the Scope of Work agreed upon between RDA and JICA on 21st March 2005, the preparation of draft tender documents for the emergency recovery of four tsunami-damaged causeways as outlined in Chapter 3 is one of the major components to be addressed by the Study Team in its work.

In view of the urgency, nature, and scale of the Emergency Recovery Project, the Study Team proposed to apply a simple tendering procedure based mainly on JICA's guidelines for procurement. Several discussions were held between the Project's implementing agencies, who are RDA and JICA, and the Study Team to confirm the implementation system and the basic tendering conditions in order to prepare the appropriate draft tender documents. As a result, the principles for the preparation of these documents were established and are described in the following section of this chapter.

6.2 Principles for Preparation of Draft Tender Documents

1) Implementation System

The Project is to be implemented as a design-build system, which will enable the contractor to proceed in parallel with preparations for construction while carrying out the necessary detailed design work and thereby expedite the emergency recovery process.

2) Tender Forms, Conditions of Contract & Specifications

- The Instructions to Tenderers, Tender Forms and Contract Forms provided in JICA's sample tender documents will be used.
- The Conditions of Contract will be mainly based on the FIDIC Short Form of Contract (Green Book) Edition 1999, which is applicable for small-scale and design-build projects, with additions or modifications based on JICA's guidelines for procurement in order to satisfy the Project's requirements.
- Specifications will essentially refer to the Standard Specifications for Road and Bridge Works published by RDA Edition 2003, as the general or base specifications, and will be supplemented by other specifications as needed by the Study Team in order to satisfy the Project's requirements.

6.3 Composition of Draft Tender Documents

A set of draft tender documents prepared on the basis of the above-mentioned principles consists of the following documents and were compiled into a single volume:

Part 1: Invitation for Tenders

Section 1: Instructions to Tenderers

Section 2: Tender Forms

- Form T1: Form of Tender and Appendix to Tender
- Form T2: General Information on Tenderer
- Form T3: Financial Statement
- Form T4: General Experience
- Form T5: Particular Experience
- Form T6: List of Proposed Major Construction Plant and Equipment
- Form T7: Detailed Explanations on Design of Major Structures
- Form T8: Construction Method Statement
- Form T9: Construction Schedule
- Form T10: Organization Chart and Manning Schedule
- Form T11: Quality Control Plan
- Form T12: Safety Plan
- Form T13: Environment Control Plan

Section 3: Contract Forms

- Form C1: Contract Agreement
- Form C2: Performance Security
- Form C3: Advance Payment Security
- Part 2: Conditions of Contract
- Part 3: Bill of Quantities
- Part 4: Design Criteria
- Part 5: Specifications
- Part 6: Drawings

CHAPTER 7

Community Support Program and Social Environmental Considerations for Emergency Recovery

Chapter 7 Community Support Program & Social Environmental Considerations for Emergency Recovery

7.1 Rationale for Incorporating Community Support to the Tsunami Victims in the Emergency Recovery Project

The overall impact of the Indian Ocean tsunami of December 26, 2004 was undoubtedly very severe on most coastal areas in Sri Lanka. In terms of lives lost and properties destroyed, the East Coast appears to have been hit the hardest with nearly 150,000 persons having been displaced due to the complete or partial destruction of their houses. Many households lost their principal income earner while others lost their means of income generation, particularly in the fishing industry. The response to this tragedy from the international donor community has been prompt and substantial. However, a significant majority of those affected still continue to live in refugee camps until permanent shelters are provided. The donor community, mostly international NGOs and bilateral and multi-lateral aid agencies, has on the other hand poured in substantial amounts of material goods and food rations. It is unclear although as to how these unfortunate households will sustain their livelihoods in the future. It is in this context that the Community Support Program has been conceived for the Eastern Trunk Roads Project.

It should be noted that in the original proposal developed for the Eastern Trunk Roads Recovery, Rehabilitation and Development, the community support component considered constituted the following two elements:

- The Study Team will devise a mechanism to employ as many local residents as possible who were affected by the tsunami and who lost their means of earning a living as workers for the emergency recovery works (second stage), which is to be contained in statement of prioritized employment in the draft tender documents.
- The Study Team will develop a mechanism to revitalize communities via the implementation of the "Michinoeki" concept in the third stage.

However, following two field visits and Study Team deliberations, it was decided that the element concerning "Michinoeki" was not within the scope of the Project and impractical to be implemented. Thus, the Project has pursued only the element concerning the employment of tsunami-affected local residents for the emergency recovery works.

7.2 Objectives of Support Program of the Emergency Recovery Project

The support program conceived for this Project has the following objectives:

- Giving those eligible and willing tsunami victims in the vicinity of the four causeway Project sites in need of immediate income support an opportunity to earn such income by having them provide skilled or unskilled labor.
- Providing an opportunity for members of the community to make an investment through labor (skilled/unskilled) in the development of the physical infrastructure of the community.
- Injecting of financial resources into the local economy that has been seriously affected by the tsunami.

In order to achieve the above objectives, an appropriate implementation mechanism has been devised taking into consideration local conditions prevalent at the moment. It must be noted that although the target communities experienced severe losses and hardships following the tsunami, since then an unprecedented level of support and goodwill through material and non-material assistance from the international and national donor communities has poured in. Consequently, the need for livelihood assistance within the target communities may have decreased to some extent.

It also must be noted that, unlike the direct assistance provided to individuals and households by most other projects and programs involved in the tsunami relief activities, this particular project (Eastern Trunk Roads) is mainly focused on recovering and rehabilitating tsunami-damaged infrastructure, which is to be implemented through one or more contractual agreements with the private sector. As such, the proposed assistance to the target communities would be channeled through the contractors undertaking the construction projects.

7.3 Method of Recruiting Tsunami Victims in Emergency Recovery Works

With due consideration for the objectives and local conditions outlined above, an appropriate method has been formulated for the recruitment of able and willing tsunami victims in the emergency recovery works.

Step 1 - Assessment of Labor Availability:

Efficient and effective announcements intimating the need for casual labor in the proposed construction works would be made in all refugee camps in close proximity to the construction sites and interested individuals would be invited to register at a nominated office. The nominated office for this purpose could be that of a "Facilitator" (e.g. Sevalanka or any other active CBO in the region) invited to participate in this project. JICA's Planning Coordination Officer for tsunami affected areas in the North and East, Ms Isa IMAZATO, should be drawn into this process. [Let us assume the number registering to be X.]

Step 2 - Assessment of Labor Requirements:

The contractor/sub-contractor would endeavor to estimate its requirements for skilled and unskilled labor at each of the four construction sites on a daily/weekly basis. [Let us assume this number to be Y.]

Step 3 - Assessment of Labor Suitability:

With the use of a "checklist of criteria" specifically developed for this purpose (see below), the "Facilitator" in conjunction with the contractor's representative would assess the suitability of those who have registered to work for the Emergency Recovery Project. [Let us assume the number suitable to be Z.]

Checklist of Criteria for Assessing Suitability

To be eligible for work in the Emergency Recovery Project a person needs to be:

- Registered with the relevant Gramasevaka Niladhari (GN) as a tsunami victim
- An employable adult (students and the aged are not eligible)
- In good health (those with physical disabilities and/or other illnesses would be ineligible)
- In a position to his/her dedicate full-time to emergency recovery work (i.e., be free of any other obligations that would constrain working full-time)

Step 4 - Recruitment of Labor for Emergency Recovery Works:

The contractor would be required to recruit a certain number of registered persons from amongst the tsunami victims found suitable using the following simple formula, which should/could be used every time recruiting is initiated - whether, daily, weekly or on a longer basis.

If **Y** (no. of jobs) > **X** (no. of registered applicants) > **Z** (no. of suitable applicants), **then 100% of Z should be recruited.** (That is, when the required number of jobs is MORE than the number of registered applicants and the number of suitable persons is LESS than the number of persons required, ALL suitable persons should be employed)

If, **Y** (no. of jobs) < **X** (no. of registered applicants) **and Y** (no. of jobs) > **Z** (no. of suitable applicants) **then 100% of Z should be recruited.** (That is, when the required number of jobs is LESS than the number of registered applicants but MORE than the number of suitable applicants, then ALL suitable persons should be employed)

If, \mathbf{Y} (no. of jobs) < \mathbf{X} (no. of registered applicants) and \mathbf{Y} (no. of jobs) < \mathbf{Z} (no. of suitable applicants) then 100% of \mathbf{Y} should be recruited. (That is, when the number of registered applicants AND the number of suitable applicants is MORE than the required number of jobs, then ALL required labor should be employed from among the tsunami victims community.)

7.4 Potential Risks & Risk Management

As highlighted earlier, for the humanitarian aspects of the Project to succeed, a few highly fragile and risky conditions need to be recognized and overcome. These include:

Pricing of Labor

Some INGOs currently operating in the region have already implemented "cash-for-work" projects involving tsunami-affected communities. These INGOs may have already established a basic daily wage for casual unskilled labor. If this wage is higher than what contractors would be offering in the emergency recovery works, there would either be no significant response from the community or a feeling of vulnerable communities being exploited would prevail. Such a situation could have a negative social impact on the overall Project.

To ensure that the above does not occur, contractors bidding for the emergency recovery works should be appropriately directed in the draft tender documents to give due consideration to the above and price labor accordingly. Some guidelines on existing conditions may be provided as appropriate.

External Influence while Engaging Labor

As is a common practice in Sri Lanka, there is likely to be undue pressure brought upon the contractor by special interest groups for particular individuals or segments of the community to be given preferential treatment when selecting required labor. Such practices, if not prevented, is likely to cause unnecessary animosity within the community towards the Project.

This situation could be prevented by engaging the services of an appropriate Facilitator well respected within the community to mediate and negotiate on behalf of the community.

7.5 Intended Community Support in the Emergency Recovery Project

The Emergency Recovery Project focus is almost entirely on the reconstruction and recovery of four tsunami ravaged causeways – Komari, Periya Kallar, Koddaia Kallar and Panichchankerni. However, the devastating effect of the tsunami, particularly on the Eastern Coast, was such that, in addition to the loss of several thousand lives and extensive property destruction, there has been a significant loss of livelihood for those who were fortunate enough to survive the tsunami. The international and national response towards this has been overwhelming, yet has fallen short of what was required to put all affected families on the path to rebuilding their lives. This Project too has explored ways and means of developing a component within the Project intended to contribute towards the community rebuilding process.

A vast majority of those affected belonged to the fishing community who had been living in the coastal belt when the tsunami hit. Most had lost their means to livelihood with the destruction of fishing boats, gear, associated implements and facilities. The international and national donor communities active in the region have been slowly but steadily providing material assistance to get several households to recommence their economic activities. However, there are those who either do not belong to the fishing community or those whose traumatic experience had been such that the sea poses more a threat than a hope and, consequently, have been seeking alternative employment. It is those households that this Project has targeted in the community support component of the Project.

The approach adopted in this Project is to provide for those willing and able amongst the tsunami-affected, opportunities in the construction sector. This is perceived as not only providing livelihood opportunities in the short-term, but also the acquisition of relevant skills used in the construction industry.

7.6 Instruction on Community Support in Draft Tender Documents

In order to ensure that maximum exposure is given to these opportunities, appropriate clauses had been included in the draft tender documents for the construction of the four causeways. The clauses included as "Instructions to the Tenderers" in the draft tender documents stipulates thus:

"The Contractor will be required in particular to use local labor from among tsunami victims, and products and services that meet the requirements and stipulations of the Tender Documents, to the maximum extent possible in the execution of the Works."

Further, in providing a safeguard against exploitation of the tsunami victims in these construction projects, the draft tender documents stipulate that:

"To encourage local tsunami victims to participate in the Project construction works as much as possible, the wage rates to be paid to them shall be equal to or higher than those being applied by international relief organizations and agencies in the sites concerned."

7.7 Monitoring of Community Support

In order to ensure that the community support component of the Project is implemented as intended, appropriate monitoring and evaluation mechanisms have been incorporated in the Project. Monitoring is expected to be an ongoing activity focusing on the extent to which the contractor is able to adopt the community support policies as highlighted in the draft tender documents.

For monitoring purposes, the contractor provided the Study Team through the employer the following information:

- 1. Actions taken or to be taken for maximizing the involvement of tsunami victims in the construction works:
 - An offer of priority to tsunami victims declared at the beginning of a recruitment interview

- Recruitment of common labor at construction sites
- Announcement of labor vacancies around refugee camps
- Advertisement of available labor vacancies in newspapers
- Priority to relatives of employed tsunami victim workers under consideration
- Monitoring of employment status
- 2. The contractor's statement about the responses received so far (how successful was the contractor) with respect to the above is as follows:

"Major works have not started yet due to a two-month delay caused by social, contractual and technical problems, and so the recruitment of labor has not progressed as expected. The contractor also reported that the average wage level demanded by tsunami victims for work was almost double that of non-victims, and recruitment negotiations have till now been mostly unsuccessful. In addition, most tsunami victims with a certain skill level required by the contractor are already employed in other projects. In conclusion, the effort to employ large numbers of tsunami victims is proceeding poorly."

3. The number and percentage of tsunami victims employed by contractor is given below, with actual and planned employment shown in Tables 7.7.1. and 7.7.2, respectively.

			•		,
Employer		Hazama	Subcontractor A	Subcontractor B	Total
Skilled	Total	0	12	12	24
	Tsunami Victims	0	0	0	0
		0%	0%	0%	0%
Semiskilled	Total	0	12	6	18
	Tsunami Victims	0	3	0	3
		0%	25%	0%	17%
Unskilled	Total	0	0	3	3
	Tsunami Victims	0	0	3	3
		0%	0%	100%	100%
Total	Total	0	24	21	45
	Tsunami Victims	0	3	3	6
		0%	13%	14%	13%

 Table 7.7.1.
 Actual Employment of Labor (As of 20 January 2006)
Employer		Hazama	Subcontractor A	Subcontractor B	Total
Skilled	Total	0	60	12	72
	Tsunami Victims	0	10	3	13
		0%	17%	25%	18%
Semiskilled	Total	0	60	6	66
	Tsunami Victims	0	20	3	23
		0%	33%	0%	35%
Unskilled	Total	10	30	3	43
	Tsunami Victims	7	20	3	30
		70%	67%	100%	70%
Total	Total	10	100	21	181
	Tsunami Victims	7	50	9	66
		70%	33%	43%	36%

Table 7.7.2. Planned Employment of Labor at Peak Time

- 4. Wage rates paid or to be paid for each of the above categories:
 - Skilled Labor Rs.600 per day as planned, actually Rs.490 to Rs.750
 - Semiskilled Labor Rs.400 per day as planned, actually Rs.480
 - Unskilled labor Rs.300 per day as planned, actually Rs.300

The contractor is reported to expect to employ around 150 persons at any one time during the construction. The selection of this labor force would follow the policy mentioned below as agreed between the contractor and the sub-contractor.

- Every month the contractor would confirm the proportion of tsunami victims among the available labor pool.
- The assertion of one being a tsunami victim would be made on the basis of self-declaration by the applicant during the recruiting process.
- The application process would give priority to tsunami victims.
- However, skills to meet specific labor demands would be given the highest priority.

The contractor stated that he would hold to the standpoint that because of the emergency nature of the Project, no extra effort would be taken to identify tsunami victims if that would delay the process of recruitment and, consequently, the construction work. Rather, the responsibility to ensure a reasonable level of participation of tsunami victims is with the sub-contractor while the contractor would only be monitoring the situation and, if necessary, recommend to the sub-contractor strategies to improve the situation. The contractor also emphasized that although there is an intention to recruit labor in and around the Project site, no under-qualified

persons would be employed whether or not that person is a tsunami victim. The Japanese Embassy is said to have concurred with this position

7.8 Evaluation of Community Support

While monitoring would be an on-going activity, a Project-life evaluation has been designed to be conducted to assess if the intended objectives are achieved and whether there are any unintended impacts arising out of the Project. In order to facilitate the monitoring and evaluation, a set of indicators to be assessed at the end of the Project have been suggested. These indicators are grouped under the following five categories

Economic, Social, Operating or Organizational, Technical and Environmental.

Economic Indicators will assess the increased level of earnings of the tsunami victims engaged in the Emergency Recovery Project and estimate to what extent this income has impacted on their lifestyles. The spin-off effect on the local economy would also be monitored and estimated. Most importantly, this indicator would assess whether those employed in the Project are receiving wages and concessions in keeping with GOSL's labor policies/laws/regulations.

Social Indicators will inform if the program is being implemented without any bias towards or against any particular groups (ethnic, gender, religious or any other local classification). It would also indicate if any segment(s) of the local population have been marginalized due to Emergency Recovery Project activities. Information on hardships experienced by families owing to a family member being engaged in the Project would also be collected.

Operating & Organizational Indicators are required to monitor if the engagement of tsunami victims in Project are according to the recruitment guidelines outlined above and are consistently applied across all four Project sites at all times. It would also provide an insight into the working arrangements offered to those engaged on the Project and maintained during construction activities. This indicator would also be relevant and useful in negotiations between the community "facilitator" and contractor.

Technical Indicators will be useful in assessing work progress; especially, with respect to the quantity and quality of work provided by the tsunami victims engaged. The impact of working conditions on the progress of the overall Project would

determine if the conditions under which the original recruitment was made would have to be renegotiated.

Environmental Indicators will be required to monitor what health and psycho-social impacts the Project has on tsunami victims employed on the Project as well as their families. On the other hand, any impact on the environment brought about by the work ethics and practices of the tsunami victims on the Project would also be monitored. While the Project does have a major component on social-environmental consideration, which is dealt with in the next section, the environmental indicators referred to in this section deal with only those aspects that relate to the community support element of the Project.

7.9 Social Environmental Consideration for Emergency Recovery

7.9.1 General

An environmental study for the Project has not been carried out in detail due to the urgency of the Project. However, given the vulnerability of the ecosystem of seaside lagoons through which the causeways pass, construction activities should be conducted carefully with appropriate mitigation measures for anticipated negative impacts. From the viewpoint of social impacts, involuntary resettlement can be avoided via sufficient consideration in the design stage of the approach roads. Therefore, in this section, social environmental considerations for the Project will highlight the items that need to be addressed during the construction stage.

7.9.2 Anticipated Negative Impacts and Mitigation Measures

1) Degradation of aquatic fauna

The construction activities have the potential to degrade aquatic fauna in the lagoon due to a deterioration in water quality and to the disturbance or destruction of the habitat. The mitigation measures proposed are as follows:

- Avoid sedimentation caused by earthworks as much as possible
- Site construction camps should be at least 50 m far away from water bodies
- Discharge of waste into waterways is prohibited
- Keep oil, grease and fuel oil in closed containers with sufficient volume

of secondary containment.

2) Interference of local transportation

The rehabilitation of the causeways includes the replacement of bridges. As a result, construction activities might interfere with local traffic flows. The mitigation measures proposed are as follows:

- Provide a temporary bypass or allow passage through the construction area
- Provide enough edge space for one-way traffic flow

3) Air Quality

Transportation, loading and unloading of material generates dust particles and emission from vehicles and heavy equipment. The following mitigation measures are proposed:

- Regular maintenance of vehicle and equipment to minimize emission of pollutants
- Cover put on top of truck loads

4) Noise

As site preparation and the transportation of construction materials generate noise, the following mitigation measures are proposed:

- Speed limit to be applied to all trucks
- Regular maintenance of vehicles and equipment to minimize noise generation