APPENDIX

CHAPTER 10

TECHNOLOGY TRANSFER

MANUAL

for

ENERGY AND POWER DEMAND FORECASTING

Sep 2005

Japan International Cooperation Agency

CONTENTS

Chapter 1. Model Structure	5
1.1 Concept of the Power Demand Forecast	5
1.2 The Structure of Power Demand Forecasting Model	7
1.3 The Structure of Daily Load Curve Forecasting	9
Chapter 2. Functions and operation of power demand forecasting model	11
2.1 The function of the sheets	11
2.2 Power sheet	12
2.3 Data Sheet	15
2.4 Model sheet	51
2.5 Simulation sheet	89
2.6 Growth sheet	105
2.7 Adjust sheet	107
2.8 ExImport sheet	112
2.9 Summary sheet	
Chapter 3. Functions and operation of daily load curve forecasting model	114
3.1 The function of the results	114
3.2 Data Sheet	115
3.3 Model sheet	130
3.4 Simulation sheet	139
3.5 Data analysis	140
3.6 Whole sheet	147
3.7 North sheet	149
3.8 Center sheet	150
3.9 South sheet	151
3.10 Load factor sheet	152
Chapter 4. Social Economic Development Scenario Setting	154
4.1 Social Economic Forecast	154
4.2 Economic Development Scenarios4.1Social Economic Plan	154
4.3 Social Economic Development plan by Scenario	156
Chapter 5. Data Collection	163
+	

Chapter 1 Model Structure

1.1 Concept of the Power Demand Forecast

(1)Viewpoint of the Forecasting

The power demand of Vietnam displays a characteristic of favorable economic growth since the year 2000, difference of demand types by region, and a rapid increase of day time demand. The JICA Team will analyze the past changes of power demand trends and the actual facts, and grasp its constitutional factors for forecasting the future power demand of this country.

These changes of power demand can be considered to reflect the changes of social economic structure following the economic development of Vietnam, as power demand means the results of economic and social activities. In this connection, the JICA team will study the development stages of Vietnam and analyze the actual situation of the power demand structure as the results of the social economic activities. The power demand forecasting models to be developed are as stated below.

① The models linked to the social economic development plan

"Economic Development Forecast Serving Study on Energy Development for The Period up to 2050" in the previous session is considered as the preconditions for the models. The models forecast the power demand in line with "High Case", "Base Case" and "Low Case" in the development plan.

② Power demand forecast by region and its characteristics

Vietnam lies long from north to south, and has regionally different power demand characteristics. The Team will grasp these characteristics, and implement power demand forecast by dividing Vietnam into the northern part, the central part and the southern part.

③ Power demand forecast incorporating energy price effects

The crude oil price hike brings about the price hikes of natural gas and petroleum products. General speaking, saving of energy is done when the prices of fuel oil products and gas rise. The saving effects following these energy price hikes will be reflected in the power demand forecast.

④ The power demand forecasted by the total energy consumption in sectors

This power demand forecast study is also responsible for relating electric power to the primary energy. Therefore, the model does not only forecast power demand, but also forecasts the demand volume of the whole energy by sector, and calculates the power demand by sector from the proportion of the power occupying in the total energy. At the time of calculation, the

electricity shares by sector of the neighboring countries are adopted for reference.

5 Daily load curve

Daily load curve and peak demand are important information for making power development plan, The JICA team will take the data of neighboring countries as reference, and establish a forecast model by using the present daily load curves of Vietnam, Asian countries (Malaysia, Thailand, the Philippines and Indonesia) and Japan on the assumption that the Vietnamese daily load curve will follow those of these countries.

6 Matching the primary energy supply and energy consumption in power stations

Compatibility of energy supply with the primary energy consumption in power stations is sought in this Study. Accordingly, this is a model which can forecast the consumption trends and import and export trends of the primary energies in order to facilitate analyses to be done after the power demand forecasts. Introduction of oil refinery plants is closely related with the supply of fuel oil and diesel to be used for thermal power generation. This model can also analyze the trends of these matters from the power demand forecasts.

(2) Output from the power demand forecasting model

- ① Energy and power demand forecast by economic scenario (High, Base, Low cases) and by region (North, Central, South). The time span is from 2005 to 2025.
- ② Power demand forecast by sector (Agriculture, forestry and fishery sector, Transportation sector, Commercial & transportation sector, Residential use)
- ③ Daily load curve, load factor and peak demand are forecasted by region
- ④ Import and export of the energies are forecasted by energy

1.2 The Structure of Power Demand Forecasting Model

(1) Annual Power Consumption Forecast

The functions of the model are follows;

- ① To simulate the relations among economy, energy and power demand
- ② To analyze the policy agendas including energy price impact, increasing electrification ratio and fuel conversion of power stations
- ③ To evaluate energy conservation
- ④ To analyze the differences of north, central and south regions.
- (5) To make the energy balance between power demand and primary energy

In the model, the economic indicators that are expressed by the Government and the related organizations are used as external variables, and the other indicators that are not expressed are calculated as internal variables in the model. In the power demand forecasting block of the model, the power demand is forecasted as one of the energy demand in the sectors. After that, power generation and fuel consumption for power supply and power capacities are estimated.

Energy data and economic data are selected from the sources that the Institute of Energy can collect. And the data such as real GDP and relative energy prices required in the model are calculated in the model. By doing so, the data formatted by the primary data are stored.

Generally speaking, econometric models are built up as the aggregate of regression and definition equations. And the statistic and economic logical tests are examined. For building the model, the following tests are executed;

- ① The evaluation of power demand forecasting equations
 - Determination coefficient(more than 0.85)
 - T-value test of regression coefficient (More than 2.0)
 - Durbin Watson ratio (1 < DW<3)
 - Sign test of the regression coefficient
- ② The evaluation of macro economic forecast
 - Real GDP growth rate
 - GDP per person (US\$ base)
 - · Labor productivity growth rate
 - Unemployment rate
- ③ The evaluation of the energy demand forecast
 - Energy demand growth rate
 - Energy consumption per GDP (GDP elasticity)
 - · Energy consumption per person
 - Electrification ratio

For building the above model, econometric method is applied according to the above outline, the model can be classified to two blocks, macro economic block and power demand block. The classification clarifies the relation between economic trends and power demand trends.

Figure 1-2-1 Outline of the Power Demand Forecasting Model

1.3 The structure of Daily Load Curve Forecasting

The daily load curve in Vietnam is going the middle way from the night time peak demand to the daytime peak demand. The neighbor countries such as Thailand and Japan have already moved to the developed country type which has peak demand in the daytime in summer season instead of developing country type which has peak demand in the evening. In Vietnam, the daily load curve is shifting from the daytime type to the nighttime type, and the power consumption characteristic is expected to change into a developed country type with economic development.

The procedures of the daily load curve forecasting built by JICA team are as follows;

- ① Collection of the daily load curve data to be forecasted
 - The power dispatched data classified by North, Center and South regions
 - The hourly data from 1996 to 2004
- ② Explanation variable data
 - Population by region
 - GDP by region
 - · Temperature by region
 - Humidity by region
 - Electrification ratio by region
- ③ Classification of daily load curve data as a unit in forecasting
 - 3 days peak data in a month
 - Weekday data (From Monday to Saturday)
 - Holiday data (Sunday and national holidays)
- ④ Making forecasting equations by regression analysis

Annual daily load curve forecasted by regression analysis

Daily load curve forecasted for weekdays and holidays

Daily load curve forecasted for peak demand days,

region	Explanation	Dependent	Forecast result of
	variable	variable	daily load curve
North	GDP by region	3 day peak demand type	DLC of the whole country
Central	Temp By region	Weekday demand type	DLC of three regions
South	Humidity by region	Holiday demand type	DLC of types
	Electrification		

 Table 1-3-1
 Number of the Data Required for Forecasting Daily Load Curve

Figure 1-3-1 Outline of Daily Load Curve Forecasting Model

Chapter 2. Functions and operation of power demand forecasting model

2.1 The functions of the sheets

Power demand forecasting model consists of 8 work sheets including SimpleE sheets. The functions and its roles are as the following table.

	Functions and roles
Power sheet	Input the future power development plan
	Calculate generation share of thermal power plants
	Show generation by generator
	Calculate operation load by generator
Data Sheet	Input actual values on Economy, Power, Energy, Prices and Efficiency
	Input political and exogenous variables
	Calculate total and evaluation values
	Describe variable names and comments.
Model sheet	Build structure equations (Definition and Regression)
	Evaluate regression equations
	Define the data used in the model
Simulation sheet	Show the data used in the model
	Show the forecasting values
Growth sheet	Calculate growth rates
	Calculate elasticity
Adjust sheet	Set estimation values
	Recalculate forecasting values based on the estimation values
ExImport sheet	Set oil refinery plants
I	Calculate petroleum product production
	Calculate the balance of export and import of petroleum products
Summary sheet	Summarize power demand
2	Compare the power demand forecasting among other organizations

Table 2-1-1 The functions of the sheets

2.2 Power sheet

(1) Power generation (Base Load) table

The future installed hydro, nuclear importation and renewable energy power stations are described in "Power generation (Base Load) table" in Power sheet. The time schedules and the capacities of the power stations are input in the table.

		Hower generation (Base Load)											
3				2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
4	Building	5 1	MW	400	599	239	72		370	393	470	260	435
5		Nuclear power	MW										
6													
7	Capacity	Hydropower	MW	3,300	3,899	4,137	4,209	4,209	4,579	4,972	5,442	5,702	6,137
8		Nuclear power	MW										
9		Foreigntrade	MW										
10			MW										
11	Generation	Hydropower	GWh	14,551	18,210	18,198	18,986	18,435	20,056	21,777	23,836	24,975	26,880
12		Nuclear power	GWh										
13		Foreigntrade	GWh										
14		Renewable	GWh					0	201	436	715	999	1,344
15													

 Table 2-2-1
 Power generation (Base Load) table in Power sheet

 constrain (Base Load)
 constrain (Base Load)

a. Building

In the area, the planned capacities of hydro and nuclear power stations are input in the years (2000 to 2025).

b. Capacity

In the area, the accumulative capacities of hydro and nuclear are calculated.

When power is imported, the imported capacities are described in the foreign trade area.

c. Generation

The power generation of hydro, nuclear and importation are calculated by using the capacity data. The power generation from renewable energies is set in the Renewable area.

The power generation data in the future send to "Data sheet" as the future data of the exogenous variables.

(2) Power generation (Thermal) table

The future installed thermal power stations are described in "Power generation (Thermal) table" in Power sheet. The time schedules and the capacities of the thermal power stations are input in the table.

	Power generation (Thermal)											
			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Building	Thermal(Coal)	MW		600.0	100.0	100.0	110.0	110.0	300.0	30.0	1,230.0	1,010.0
	Thermal(FO)	MW					300.0					
	Gasturbine(FO)	MW										
	Gasturbine(GAS)	MW	720.0	740.0	431.0	480.0	480.0	660.0	360.0	360.0	360.0	360.0
	Gas steam(GAS)	MW			56.0	566.0						
	Diesel generator	MW										
	Power from Fossil	MW										
Capacity	Thermal(Coal)	MW	450	1,050	1,150	1,250	1,360	1,470	1,770	1,800	3,030	4,040
	Thermal(FO)	MW	300	300	300	300	600	600	600	600	600	600
	Gasturbine(FO)	MW	300	300	300	300	300	300	300	300	300	300
	Gasturbine(GAS)	MW	720	1,460	1,891	2,371	2,851	3,511	3,871	4,231	4,591	4,951
	Gas steam(GAS)	MW	50	50	106	672	672	672	672	672	672	672
	Diesel generator	MW	30	30	30	30	30	30	30	30	30	30
	Power from Fossil	MW	1,850	3,190	3,777	4,923	5,813	6,583	7,243	7,633	9,223	10,593
Load	Power from Thermal(Coal)	%	66.5	31.7	33.9	52.0	65.0	65.0	65.0	65.0	65.0	65.0
LUau	Power from Thermal(COal)	%	49.6	50.2	43.3	46.0	46.0	46.0	46.0	46.0	46.0	46.0
	Power from Gasturbine(FO)	⁷⁰	57.4	54.0	45.2	62.0	62.0	62.0	62.0	62.0	62.0	62.0
	Power from Gasturbine(FO)	⁷⁰	64.3	31.4	34.5	33.4	65.0	65.0	65.0	65.0	65.0	65.0
	Power from Gas steam	⁷⁰	68.5	92.5	279.8	60.8	65.0	65.0	65.0	65.0	65.0	65.0
	Power from Diesel	⁷⁰	90.4	36.3	33.6	17.8	05.0	05.0	05.0	05.0	05.0	05.0
	Power from Fossil	⁷⁰	90.4 61.9	36.4	42.7	44.3						
	Power from Possii	%	01.9	30.4	42.7	44.3						
Geneartion	Power from Thermal(Coal)	GWh	2,621	2,919	3,419	5.698	7,749	8,376	10.085	10.256	17,264	23,019
Geneartion	Power from Thermal(FO)	GWh	1,303	1,319	1.137	1,210	2,420	2,420	2,420	2,420	2,420	2,420
	Power from Gasturbine(FO)	GWh	1,503	1,319	1,137	1,210	1,630	1,630	1,630	1.630	1,630	1,630
	Power from Gasturbine(GAS)	GWh	4,056	4,017	5,715	6,945	16,234	19,992	22,041	24,091	26,141	28,191
	Power from Gas steam	GWh	300	405	2,598	3,578	3,826	3,826	3,826	3,826	3,826	3,826
	Power from Diesel	GWh	238	95	2,598	47	3,020	47	3,820	3,820 47	47	47
	Power from Fossil	GWh	10.026	10.174	14.144	19.108	31,905	36,290	40.049	42,270	51.328	59.133
			- 0,0=0		,				,	,	,	.,
Shares	Power from Thermal(Coal)	S%	26.1	28.7	24.2	29.8	24.3	23.1	25.2	24.3	33.6	38.9
	Power from Thermal(FO)	S%	13.0	13.0	8.0	6.3	7.6	6.7	6.0	5.7	4.7	4.1
	Power from Gasturbine(FO)	S%	15.1	13.9	8.4	8.5	5.1	4.5	4.1	3.9	3.2	2.8
	Power from Gasturbine(GAS)	S%	40.5	39.5	40.4	36.3	50.9	55.1	55.0	57.0	50.9	47.7
	Power from Gas steam	S%	3.0	4.0	18.4	18.7	12.0	10.5	9.6	9.1	7.5	6.5
	Power from Diesel	S%	2.4	0.9	0.6	0.2	0.1	0.1	0.1	0.1	0.1	0.1
	Power from Fossil	S%	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

 Table 2-2-2
 Power generation (Thermal) table in Power sheet

a. Building

In the area, the capacities of coal fired thermal, fuel oil fired thermal, fuel oil fired turbine, gas fired turbine, gas steam and diesel generator are set in the years when installed.

b. Capacity

In the area, the accumulative capacities of the thermal power stations are calculated in the area.

c. Load

In the area, the loads of the thermal power stations except diesel engines are input in the area. Regarding diesel engines, the generation of the engines are input in Generation area directly.

d. Generation

In the Generation line, the power generation of the thermal generators except diesel engines are calculated by using the above capacities. The generation of diesel engines is input in the area directly.

e. Shares

In the Share area, the generation shares of the thermal generators are calculated.

The generation shares are sent to Data sheet as future values of exogenous variables.

(3) Forecasted power supply table

The forecasted power generation by power generator are arranged in the forecasted power supply table. The data are sent from Simulation sheet.

	Power supply forecasted											
			2000	2001	2002	2003	2004	2005	2006	2007	2008	200
Generation	Power from Hydro	GWh	14,550.7	18,209.6	18,197.7	18,986.1	18,435.4	20,056.0	21,777.4	23,8360	24,974.8	26,880.1
	Power from Fossil	GWh	10,375.3	10,271.3	15,485.8	20,374.0	27,170.2	31,943.6	39,765.6	45,604.4	53,381.9	61,3280
	Power foreign trade balance	GWh	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0
	Power from Renewable energy	GWh	0.0	0.0	0.0	0.0	0.0	2006	435.5	715.1	9999.0	1,344.0
	Power from Nuclear	GWh	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0
	Total of power generation	GWh	24,9260	28,480.9	33,683.5	39,360.1	45,605.6	52,200.2	61,978.5	70,155.4	79,355.7	89,552.1
Shares	Power from Hydro	%	584	63.9	54.0	482	40.4	384	35.1	34.0	31.5	30.0
	Power from Fossil	%	41.6	361	460	51.8	59.6	61.2	64.2	65.0	67.3	685
	Power foreign trade balance	%	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0
	Power from Newenergy	%	0.0	0.0	0.0	0.0	0.0	04	0.7	1.0	1.3	1.5
	PowerfromNuclear	%	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0
	Total of power generation	%	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Load	PowerfromHydro	%	50.3	53.3	50.2	51.5	50.0	500	50.0	50.0	50.0	50.0
	PowerfromNuclear	%	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0

Table 2-2-3Forecasted power supply table in Power sheet

a. Generation

The forecasted power generation of Hydro, Fossil, Foreign trade, Renewable energy and Nuclear power stations are arranged in the generation area.

b. Shares

The generation shares by power generator are calculated in the Share area.

c. Load

The operation load of hydro and nuclear stations are calculated in the Load area.

(4) Thermal power supply forecasted table

The forecasted power generation by thermal power generator are arranged in the forecasted thermal power supply table. The data are sent from Simulation sheet.

76	Thermal power supply forec	asted										
77			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
78 Generation	n Power from Thermal (Coal)	GWh	2,620.9	2,919.5	3,418.6	4,829.3	6,598.8	7,372.4	10,013.4	11,064.8	17,954.7	23,873.2
79	Power from Thermal (FO)	GWh	1,302.7	1,318.8	1,137.3	1,209.9	2,060.7	2,130.0	2,402.7	2,610.8	2,516.7	2,509.7
80	Power from Gasturbine(FO)	GWh	1,509.0	1,418.0	1,187.0	1,630.0	1,388.1	1,434.8	1,618.5	1,758.6	1,695.2	1,690.5
81	Power from Gasturbine(GAS)	GWh	4,056.0	4,017.2	5,714.9	6,945.5	13,824.3	17,597.2	21,885.3	25,991.6	27,187.1	29,237.6
82	Power from Gas steam	GWh	300.0	405.0	2,598.0	3,578.0	3,258.5	3,368.1	3,799.3	4,128.2	3,979.5	3,968.4
83	Power from Diesel	GWh	237.5	95.5	88.2	46.8	39.8	41.2	46.4	50.5	48.6	48.5
84	Power from Fossil	GWh	10,026.1	10,174.0	14,144.1	18,239.6	27,170.2	31,943.6	39,765.6	45,604.4	53,381.9	61,328.0
85												
86 <mark>Shares</mark>	Power from Thermal(Coal)	S%	26.1	28.7	24.2	26.5	24.3	23.1	25.2	24.3	33.6	38.9
87	Power from Thermal(FO)	S%	13.0	13.0	8.0	6.6	7.6	6.7	6.0	5.7	4.7	4.1
88	Power from Gasturbine(FO)	S%	15.1	13.9	84	8.9	5.1	4.5	4.1	3.9	3.2	28
89	Power from Gasturbine(GAS)	S%	40.5	39.5	40.4	38.1	50.9	55.1	55.0	57.0	50.9	47.7
90	Power from Gas steam	S%	3.0	4.0	18.4	19.6	12.0	10.5	9.6	9.1	7.5	6.5
91	Power from Diesel	S%	2.4	0.9	0.6	0.3	0.1	0.1	0.1	0.1	0.1	0.1
92	Power from Fossil	S%	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
93												
94 Load	Power from Thermal(Coal)	%	66.5	31.7	33.9	44.1	55.4	57.3	64.6	70.2	67.6	67.5
95	Power from Thermal(FO)	%	49.6	50.2	43.3	46.0	39.2	40.5	45.7	49.7	47.9	47.7
96	Power from Gasturbine(FO)	%	57.4	54.0	45.2	62.0	52.8	54.6	61.6	66.9	64.5	64.3
97	Power from Gasturbine(GAS)	%	64.3	31.4	34.5	33.4	55.4	57.2	64.5	70.1	67.6	67.4
98	Power from Gas steam	%	68.5	92.5	279.8	60.8	55.4	57.2	64.5	70.1	67.6	67.4
99	Power from Diesel	%	90.4	36.3	33.6	17.8	15.2	15.7	17.7	19.2	18.5	18.5
100	Power from Fossil	%	61.9	36.4	42.7	42.3	53.4	55.4	62.7	68.2	66.1	66.1
101												

 Table 2-2-4
 Thermal power supply forecasted table in Power sheet

a. Generation

The forecasted power generation of coal fired thermal, fuel oil fired thermal, fuel oil gas-turbine, gas fired gas-turbine, gas steam and diesel engine are arranged in the generation area. The data are sent from Simulation sheet.

b. Shares

The generation shares by power generator are calculated in the Share area.

<u>c. Load</u>

The operation load of the thermal power stations are calculated in the Load area.

2.3 Data sheet

Data sheet is created by SimpleE. The actual values for all kinds of variables and future values in exogenous variables are set in the sheet. There are two kinds of actual data in the Data sheet, one is an input data, another is calculation data. In the model, the actual data are basically created from 1990 to 2003 and the future values are forecasted from 2004 to 2025. The variables in the model have actual data that the values are input or calculated. And the future values for some variables are given as political or economical assumptions. The variables are called "Exogenous variables". Other words, the future values of the other variables are calculated in the model, the variables are called "Endogenous variables".

If the forecasting cells are blank in the model, the variables are endogenous. Other words, the variables that the future data are given are exogenous variables.

For making endogenous variable changes to exogenous variable, we set the future values in the forecasting terms of the variable. The future values given are used preferentially in the model, even though expressions are defined for the variable in Model sheet.

The variables are arranged in line with the model structure orders. Then calculation of the model is basically performed from the upper variables to below variables. But it is possible that the upper variables are calculated by using the results of the below variables. And if the model contains the simultaneous equations, the SimpleE can solve the simultaneous equations.

The model has the following function blocks as model structures.

NO.	Function blocks	Line numbers
1	Social forecasting	5~30
2	Economic forecasting	30~120
3	Coefficient& Energy prices	121~163
4	Power demand forecasting in Africulture.Forestry.Fishry sector	164~376
5	Power demand forecasting in Industry sector	
6	Power demand forecasting in Transportation sector	
7	Power demand forecasting in Commercial & Services sector	
8	Power demand forecasting in Residential	
9	Power demand forecasting in Other sector	
10	Power supply forecasting	377~422
11	Energy balance	423~462
12	Power demand in North region	
13	Power demand in Center region	
14	Power demand in South region	463~637

Table 2-3-1Function blocks in Data sheet

(1) Social data forecasting

In the social forecasting block, the social values required for energy and power demand

forecasting are calculated. For setting the social indicators and the growth rates from the social economic development plan as the preconditions of the model, the future values are calculated by using the above data.

	High case			TREND	1	2	13	14	15	16	35	36
F	Н	Ι	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
5	Economic data	Exchange rate	Dn/US\$	ECEXC	5,588.0	9,628.0	15,400.0	15,700.0	15,785.0	16,077.0	21,168.0	21,168.0
6												
- 7	Population	Country number	Million pers		66.0	67.2	79.7	80.8				
8		Growth rate	G%	POPNGR		1.9	1.3	1.3	1.4	1.40	0.75	0.75
9		Urban number	Million pers	POPUBN	12.9	13.2	20.0	20.8				
10		Urban population share	S%	POPUGR	19.5	19.7	25.1	25.8	26.1	26.3	31.8	32.1
11												
12	Household	County Number	Million HH	HHNUM	13.3	13.6	17.5	17.8				
13		Growth rate	G%	HHNGR		2.3	1.2	1.7	1.5	1.5	1.5	1.5
14		Urban number	Million HH	HHUBN	2.6	2.7	4.4	4.6				
15		Urban HH rate	S%	HHUGR	19.5	19.7	25.1	25.8				
16												
17	Labor number	Agriculture	Million pers		21.2	21.6	23.3	23.1				
18		Manufacturing & Mining	Million pers		2.6	2.7	4.5	4.9				
19		Services & Others	Million pers		5.6	5.8	12.7	13.2				
20		Unemployed	Million pers		1.0	1.1	0.7	0.7				
21		Total	Million pers	LABTOT	30.4	31.2	41.2	41.9				
22												
23		Labor force share to Pop	%	LABSHP	46.0	46.4	51.7	51.9				
24												
25	Labor shares	Agriculture & Forestry	S%	LASAGR	69.7	69.2	56.6	55.1				
26		Manufacturing & Mining	S%	LASMAN	8.6	8.7	10.9	11.7				
27		Services & Others	S%	LASOTH	18.4	18.6	30.8	31.5				
28		Unemployed	S%	LASUNE	3.3	3.5	1.7	1.7	1.7	1.7	1.7	1.7
29		Total	S%	LASTOT	100.0	100.0	100.0	100.0				
30												

 Table 2-3-2
 Social data forecasting block in Data sheet

a. Exchange rate

The actual exchange rates are set in the area. The variable is exogenous and the future values from social economic development plan are set in the future area.

b. Population

The actual data on the number of the population in whole country are set.

The annual growth rates on the population are calculated.

The actual data on the number of the urban population are set.

The shares of the urban population to the total population are calculated.

The annual growth rates of the total population are exogenous. The future annual growth rates are set from the social economic development plan.

The shares of the urban population to the total population are exogenous.

The future shares of the urban population are set with the assumption after referring the latest value.

c. Household

The actual data on the number of the households in the whole country are set.

The annual growth rates on the households are calculated.

The number of the household in urban area is calculated with the shares of the urban population to the total. The shares are input.

The annual growth rates on the household in urban area are calculated.

The annual growth rates on the household in urban area are exogenous.

The annual growth rates on the household in urban area are set, but it is desirable that the growth rates of the urban households are greater than the growth rates of the total population.

d. Labor number

The number of the labor by sector(Agriculture, Manufacturing & Mining, Services & Others, Unemployed) are input.

The labor share to the total population is calculated.

e. Labor shares

The shares of the labor by sector(Agriculture, Manufacturing & Mining, Services & Others, Unemployed) are calculated.

The future labor shares are set with the same values as the latest value.

(2) Economic forecasting

In the economic forecasting block, the forecasting values required for forecasting energy and power demand are calculated. For setting the economic indicators and the growth rates from the social economic development plan as the preconditions of the model, the future values are calculated by using the above data.

H GDP	I nGDP at current price Growth rate	J Billion Dn G%	TIME GDNOM GDNGR	1990 41,855.0	1991 76,707.0 82.8	2002 535,762.0 10.6	2003 605,586.0 13.0	2004	2005	2024	20
	uGDP on US \$ base Growth rate		GDDOL GDDGR	7,508.1	7,967.1	34,789.7 8.1	38,572.4 10.8				
	uGDP per capita on US\$ base Growth rate	US\$ per cap. G%		113.7	118.5 4.2	436.4 7.7	477.4				
	rGDP at 1994 price Growth rate	Billion Dn G%	rgdp Rgdpgr	131,968.0	139,634.0 5.8	313,247.0 6.4	335,989.0 7.3	8.0	8.0	8.0	8
	GDP deflator 1994 price Growth rate	1994=100 G%	GDFLT GDFGR	31.8	54.9 72.8	171.0 4.0	180.2 5.4	6.0	6.0	6.0	6
	rGross Domestic Savings Share to GDP Elasticity to Private Con	Billion Dn %	GDSAV GDSHA	3,834.3 2.9	14,104.1 10.1	89,820.8 28.7 2.3	94,798.7 28.2 1.4	28.2	28.2 1.9	28.2	28 1
	rLabor productivity in Manufa Growth rate	1000 Dn /pei G%	GDEVPC LAPMAN LAPMGR	4,488.7	4,639.0	7,734.5	8,155.1	1.0	1.0	1.0	
nGDE at the cu	Final consumption Gross fixed capital formation Exports of goods and services Import of goods and services Statistical discrepancy Total	Billion Dn Billion Dn Billion Dn Billion Dn Billion Dn Billion Dn	NGEFC NGEGF NGEEX NGEIM NGESD NGETOT	40,736.0 6,025.0 15,120.0 18,996.0 -930.0 41,955.0	68,959.0 11.506.0 23,714.0 27,639.0 167.0 76,707.0	382,137.0 177,983.0 304,262.0 331,946.0 3,326.0 535,762.0	434,721.0 212,480.0 365,394.0 411,119.0 4,110.0 605,586.0				
rGDE at 1994 pi	Final consumption Gross fixed capital formation Exports of goods and services Import of goods and services Statistical discrepancy Total	Billion Dn Billion Dn Billion Dn Billion Dn Billion Dn Billion Dn	RGEFC RGEGF RGEEX RGEIM RGESD RGETOT	128,133.7 18,951.4 47,559.4 59,751.3 -2,925.3 131,968.0	125,529,9 20,945,0 43,167,9 50,312,8 304,0 139,634,0	223,426,2 104,062,3 177,894,6 194,080,7 1,944,6 313,247,0	241.190.3 117.887.4 202.726.6 228.095.5 2.280.3 335.989.0				
Shares of rGDE	Final consumption Gross fixed capital formation Exports of goods and services Import of goods and services Statistical discrepancy Total	% % % % % %	RREFC RREGF RREEX RREIM RRESD RRETOT	97.1 14.4 38.0 45.3 -2.2 100.0	89.9 15.0 30.9 36.0 0.2 100.0	71.3 33.2 56.8 62.0 0.6 100.0	71.8 35.1 60.3 67.9 0.7 100.0				
nGDP at the cu	Agriculture & Forestry Manufacturing & Mining Commercial & Trade Transport and communications Service & Others Total	Billion Dn Billion Dn Billion Dn Billion Dn Billion Dn Billion Dn	NGPAGR NGPMAN NGPTRA NGPTRN NGPSER NGPTOT	16,252.0 9,513.0 5,460.0 1,449.0 8,281.0 41,955.0	31.058.0 18.252.0 9.742.0 2.860.0 14.785.0 76.707.0	123,383,0 206,197,0 75,617,0 21,095,0 109,470,0 535,762,0	132,183.0 241,933.0 83,387.0 22,589.0 125,474.0 605,586.0				
rGDP at 1994 pr	Agriculture & Forestry Manufacturing & Mining Commercial & Trade Transport and communications Service & Others Total	Billion Dn Billion Dn Billion Dn Billion Dn Billion Dn Billion Dn	RGPAGR RGPMAN RGPTRA RGPTRN RGPSER RGPTOT	51,120.1 28,822.8 17,174.2 4,557.8 29,193.1 131,968.0	56,536.6 33,225.1 17,733.9 5,206.2 26,932.2 139,634.0	72,139.0 120,558.4 44,211.4 12,333.7 64,004.4 313,247.0	73,342.8 134,228.4 46,270.0 12,532.7 69,615.0 335,989.0				
Shares of rGDP	Agriculture & Forestry Manufacturing & Mining Commercial & Trade Transport and communications Service & Others Total	S% S% S% S% S% S% S%	SHPAGR SHPMAN SHPTRA SHPTRN SHPSER SHPTOT	38.7 22.7 13.0 3.5 22.1 100.0	40.5 23.8 12.7 3.7 18.3 100.0	23.0 38.5 14.1 3.9 20.4 100.0	21.8 40.0 13.8 3.7 20.7 100.0				
Sector growth 1	Agriculture & Forestry Manufacturing & Mining Commercial & Trade Transport and communications Service & Others Total		RRPAGR RRPMAN RRPTRA RRPTRN RRPSER RRPTOT			3.9 10.2 4.2 6.1 4.1 8.3	3.1 11.1 4.1 5.6 4.9 8.8	3.4 10.5 7.7 7.7 7.7 7.7 8.0	3.4 10.5 7.7 7.7 7.7 7.7 8.0	2.5 10.0 8.0 8.0 8.0 8.0 8.0	2 10 8 8 8 8 8 8 8
Elasticity	Agriculture & Forestry Manufacturing & Mining Commercial & Trade Transport and communications Service & Others Total		ELAAGR ELAMAN ELATRA ELATRN ELASER ELATOT			0.8 1.6 0.7 1.0 0.7 1.0	0.5 1.7 0.8 0.9 0.8 1.0				
rGDP by Elastic	Agriculture & Forestry Manufacturing & Mining Commercial & Trade Transport and communications Service & Others Total		WRKAGR WRKMAN WRKTRA WRKTRN WRKSER WRKSTOT			70,982.6 124,417.6 43,139.2 12,630.5 62,802.6 313,972.5	74,590.1 135,314.6 46,233.6 13,100.8 67,497.2 336,736.3				

 Table 2-3-2 Economic forecasting block in Data sheet

a. nGDP at current price

The data of nominal GDP are set from nominal GDP by sector. The annual growth rates are calculated.

b. uGDP on US \$ base

The data of \$ based GDP are calculated by using nominal GDP and exchange rate.

c. uGDP per capita on US\$ base

The data of \$ based GDP per capita are calculated by using \$ based GDP and total population.

d. rGDP at 1994 price

The data of real GDP are calculated by using nominal GDP and GDP deflator. The constant price of the deflator is 1994.

The annual growth rates of the rGDP are exogenous.

The future growth rates of the rGDP are given from the real GDP growth rates in the scenarios of The Social Economic Development Plan.

e. GDP deflator 1994 price

The data of GDP deflators are set. The constant price of the deflator is 1994.

The growth rate of the GDP deflator is exogenous.

The future growth rates of GDP deflator are given from the GDP deflator growth rates in the scenarios of The Social Economic Development Plan.

f. rGross Domestic Savings

The data of the real gross domestic savings are calculated by using the real GDP and the ratios to the gross domestic savings.

The ratios to the gross domestic savings are input.

The future growth rates of the savings are exogenous.

The future growth rates of the savings are given with the same values as one of the latest year.

g. rLabor productivity in Manufacturing at 1994 price

The data of the real labor productivity in manufacturing are calculated by using the real GDP and the number of labor.

The annual growth rates of the labor productivity are calculated.

h. nGDE at the current price

The components of nGDE at the current price are Final consumption, Gross fixed capital formation, Exports, Import and Statistical discrepancy. The all above data are input.

i. rGDE at 1994 price

The components of rGDE at 1994 price are calculated by the components of nGDE and GDP deflator.

j. Shares of rGDP

The component shares of rGDP are calculated with "The component of rGDE / rGDE *100".

k. nGDP at the current price

The nGDP by sector (Agriculture & Forestry, Manufacturing & Mining, Commercial & Trade, Transport and Communications and Service & Others) are input.

l. rGDP at 1994 price

The rGDP by sector, (Agriculture & Forestry, Manufacturing & Mining, Commercial & Trade, Transport and Communications and Service & Others) are calculated with "nGDP by sector / GDP deflator".

m. Shares of rGDP

The sector shares of rGDP are calculated with "The sector of rGDP / rGDP *100".

n. Sector growth rate in 5 years

The annual growth rates of the sectors are calculated.

The annual growth rates of the sectors are exogenous.

The future growth rates of the sector are given from the social economic development plan.

o. Elasticity

The sector elasticity to rGDP are calculated with "The annual growth rate of the sector / the annual growth rate of rGDP".

P. rGDP by Elasticity

The sector rGDP are calculated with "the rGDP growth rate * sector elasticity * the previous sector rGDP"

(3) Coefficient and Energy prices

In the block, energy conversion factors, power efficiencies, energy prices and power tariffs that are needed for energy forecasting are input and forecasted.

F	Н	I	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
122	Coversion factor to KTOE	Standard OII(10000Kcal/kg)		COFASCO	1.0	1.0	1.000	1.000	1.000	1.000	1.000	1.000
123		Ccal(5600Kcal/kg)		COFACOA	0.6	0.6	0.560	0.560	0.560	0.560	0.560	0.560
124		Gasoline(10500Kcal/kg)		COFAGAS	1.1	1.1	1.050	1.050	1.050	1.050	1.050	1.050
125		Kerosene (10320Kcal/kg)	10,320	COFAKER	1.0	1.0	1.032	1.032	1.032	1.032	1.032	1.032
126		Diesel (10150Kcal/kg)		COFADIE	1.0	1.0	1.015	1.015	1.015	1.015	1.015	1.015
127		Petroluem Products		COFAPET	1.1	1.1	1.050	1.050	1.050	1.050	1.050	1.050
128		Fuel oil (9910Kcal/Kg)		COFAFUE	1.0	1.0	0.991	0.991	0.991	0.991	0.991	0.991
129		Natural gas (9000Kcal/m3)		COFANAG	0.9	0.9	0.900	0.900	0.900	0.900	0.900	0.900
130		Renewable energy (3302Kcal/Kg)			0.3	0.3	0.330	0.330	0.330	0.330	0.330	0.330
131		Electricity (860Kcal/KWh)	860	COFAELE	0.1	0.1	0.086	0.086	0.086	0.086	0.086	0.086
132												
133	Power efficiency	Power from Thermal(Coal)		COPOCOA	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
134		Power from Thermal(FO)		COPOFOT	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
135		Power from Gasturbine(FO)	48%	COPOFOB	5.5	5.5	5.5	5.5	5.8	5.8	5.8	5.8
136		Power from Gasturbine(GAS)		COPOGAB	5.0	5.0	5.0	5.0	5.2	5.2	5.2	5.2
137		Power from Gas steam		COPODAS	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
138		Power from Diesel	36%	COPODIE	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
139												
140	Energy price		US\$/bbl	EPRCWTI	24.5	21.5	28.1	31.2	40.0	50.0	40.0	40.0
141		Crude oil Price in Vietnam	1000Dn/bb1	EPRCRD	137.0	207.0	401.7	489.2				
142			\$/MMBTU	EPRNG	0.0	0.0	4.0	4.0				
143			Dong/kg	EPRGAS	840.0	3,220.0	6,933.3	6,933.3				
144			Dong/kg	EPRKER		2,353.1	5,051.1	5,051.1				
145			Dong/kg	EPRDIE	630.0	2,200.0	4,408.0	4.408.0				
146			Dong/kg	EPRFO	732.4	1,108.7	2.147.7	2.615.3				
147		Electricity for Agriculture us		EPRELA	450.4	473.5	604.3	700.0				
148		Electricity for Residential us		EPRELR	386.8	401.9	668.9	899.7				
149			Dn/KWh	EPREL I	657.0	677.2	762.0	656.6				
150		Electricity for Commercial use	Dn/KWh	EPRELC	922.0	963.4	1,342.9	1,400.0				
151	0 B 0 B 1	//sms.w		00000071				10.1				
152	G.R of Eneergy prices	WTI crude oil price	%	GRPRWTI		-12.3	0.7	19.4				
153		Crude oil Price in Vietnam	%	GRPRCRD		51.1	2.1	21.8				
154		NG price in Vietnam	%	GRPRNG		0.0	2.0	2.0				
155		Gasoline price in Vietnam	%	GRPRGAS		283.3	4.0	0.0				
156		Kerosene price in vietnam		GRPRKER		0.0	4.0	0.0				
157		Diesel price in Vietnam	%	GRPRDIE		249.2	7.6	0.0				
158		Fuel oil price in Vietnam	%	GRPRFO		51.1	2.1	21.8				
159		Electricity for Agriculture us		GRPRAGR		5.1	6.0	15.8				
160		Electricity for Residential us	76	GRPRELR		3.9	10.2	34.5				
161		Electricity for Industry use	70	GRPREL I		3.1	7.0	-13.8				
162		Electricity for Commercial use	76	GRPRELC		4.5	3.3	4.3				
163												

Table 2-3-3 Coefficient and Energy prices forecasting block in Data sheet

a. Conversion factor to KTOE

Physical energy units such as kg, m3 and kWh are converted to KTOE. The factors are used during the starting year(1990) and final year(2025) The calories of the energies in the conversion factor table are set as follows;

 Table 2-3-4 Conversion factor block in Data sheet

Energies	Calorie	KTOE
Standard Oil	10,000Kcal/kg	1000t=1KTOE
Coal	5,600Kcal/kg	1000t=0.56KTOE
Gasoline	1,0500Kcal/kg	1000t=1.05KTOE
Kerosene	10,320Kcal/kg	1000t=1.032KTOE
Diesel	10,150Kcal/kg	1000t=1.015KTOE
Fuel oil	9,910Kcal/Kg	1000t=0.991KTOE
Natural gas	9,000Kcal/m3	Million m3=0.9KTOE
Renewable energy	3,300cal/Kg	1000t=0.3300
Electricity	860Kcal/KWh	1GWh=0.086KTOE

The future conversion factor is exogenous.

b. Power efficiency

Thermal power efficiencies are given by thermal power generation types such as coal fired power generator, fuel oil fired power generator, fuel oil gas turbine, gas turbine, gas steam and diesel. The efficiencies are used at calculating the energies used in the generators.

Thermal power generator	Efficiency	Expressions
Power from Thermal(Coal)	35%	2.28(GWh/1000t)=5600*0.35/860
Power from Thermal(FO)	35%	4.03(GWh/1000t)=9910*0.35/860
Power from Gas-turbine(FO)	48%	5.53(GWh/1000t)=9910*0.48/860
Power from Gas-turbine(GAS)	48%	5.02(GWh/1000t)=9000*0.48/860
Power from Gas steam	40%	4.19(GWh/Mil m3)=9000*0.40/860
Power from Diesel	36%	4.25(GWh/1000t)=10,150*0.36/860

Table 2-3-5Power efficiency block in Data sheet

The future power efficiencies are exogenous.

c. Energy price

The actual petroleum prices and electricity tariffs are input in the table. As WTI(West Texas Index) is often used for forecasting oil prices in the world, it is prepared for forecasting Vietnam crude oil price forecasting.

In Vietnam, petroleum products are mainly imported from Asian oil market. The purchasing costs depend on international market prices. It is considered that the future petroleum prices depend on international crude oil prices.

The electricity tariffs by category are input in the table. The future electricity tariffs are decided not only petroleum prices, but also energy policy. In the model, it is assumed that the future electricity tariffs by category depend on the production costs, then the power tariffs are effected by the imported fuel oil prices of Vietnam. It can be considered that the fuel oil prices in Vietnam are decided in market mechanisms.

d. Growth rate of Energy prices

The annual growth rates of the energy prices are calculated for energy demand forecasting, especially the annual growth rate s of the energy prices affect to energy conservation indices.

(4) Power demand forecasting in Agriculture & Forestry & Fishery sector

In the block, the energy and power demand are forecasted by sector. The sector consists of Agriculture, Forestry and Fishery. As dependent variable, energy conservation factor is set in energy demand forecasting equations of the sector. The factor is affected by technical improvement and energy price such as petroleum products, natural gas, renewable energies and electricity are used in the sector. In the energy demand forecasting model, the sectoral total energies are forecasted at first, next, electricity demand is forecasted by using the power ratio to sectoral total energy demand.

The fossil energies including petroleum products and natural gas are forecasted by the deference of subtracting the electricity demand from the sectoral total energy demand.

F	II	I	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
164	Agriculture.Forestry.& Fish	Energy conservation rate	S%	PAENCOR	100.0	100.0	100.0	100.0				
165		Technical Improvement	%	PAENTEC	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0
166		Elasticity to Energy price		PAENEVP		-0.14	2.92	-0.07	0.00	0.00	-0.01	-0.01
167		Energy intensity to GDP	TOE/Bil Don		1.7	1.6	1.4	1.4				
168		Energy demand before E.save	KTOE	PAENDEM	225.3	221.6	452.4	4/8.1				
169		Energy demand after E.save	KTOE	PAENDEA	225.3	221.6	452.4	478.1				
170		Electricity ratio	S%	PAENELR	7.2	7.5	9.1	9.2	10.0	11.0	13.0	13.0
171		Power demand (k TOE)	KTOE	PAENELT	16.3	16.6	41.4	44.1	47.4	56.6		
172		Power demand (GWh)	G₩h	PAENELE	189.8	193.4	480.9	512.8	551.0	657.7		
173												
174		Coal demand	KTOE	PADMCOA	64.0	69.0	25.0	24.0				
175		LPG demand	KTOE	PADMLPG	0.0	0.0	0.0	0.0				
176		Gasoline demand	KTOE	PADMGAS	45.0	40.0	82.0	84.0				
177		Jetfuel demand	KTOE	PADMJET	0.0	0.0	0.0	0.0				
178		Kerosene demand	KTOE	PADMKER	0.0	0.0	0.0	0.0				
179		Diesel demand	KTOE	PADMDIE	97.0	93.0	289.0	309.0				
180		Fuel oil demand	KTOE	PADMFUL	3.0	3.0	15.0	17.0				
181		Natural gas demand	KTOE	PADMNG	0.0	0.0	0.0	0.0				
182		Renewable energy demand	KTOE	PADMREW	0.0	0.0	0.0	0.0				
183		Total	KTOE	PADMTOT	209.0	205.0	411.0	434.0				
184												
185		Coal demand	S%	PASMCOA	30.6	33.7	6.1	5.5	6.1	6.1	6.1	6.1
186	0.0	LPG demand	S%	PASMLPG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
187		Gasoline demand	S%	PASMGAS	21.5	19.5	20.0	19.4	20.0	20.0	20.0	20.0
188		Jetfuel demand	S%	PASMJET	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
189		Kerosene demand	S%	PASMKER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
190		Diesel demand	S%	PASMDIE	46.4	45.4	70.3	71.2	70.3	70.3	70.3	70.3
191		Fuel oil demand	S%	PASMFUL	1.4	1.5	3.6	3.9	3.6	3.6	3.6	3.6
192		Natural gas demand	S%	PASMNG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
193		Renewable energy demand	S%	PASMREW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
194	0.0	Total	S%	PASMTOT	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
195												

Table 2-3-6 Power demand forecasting block in Data sheet (Agriculture & Forestry & Fishery sector)

a. Energy conservation rate

Energy conservation in the actual terms is 100%. It means that energy conservation in the past years, especially in 2002 and 2003 are starting position. The future energy conservation is compared to the starting position. The energy conservation rate is affected by changes of energy prices and technical improvement.

b. Technical Improvement

Energy consumption is conserved by all kinds of technical improvement. In 30 years after the first oil crisis, Japan had energy conservation improvement with 2% per year. Most of the reasons

are improvement of the production line and installation of new equipment. Both of them are included in technical improvement in the model. Such kinds of technical improvement are a major factor for energy conservation.

c. Elasticity to Energy price

Another factor as energy conservation is energy price hikes. When energy prices and electricity tariffs increases, all kinds of energies in the sector are usually saved.

According to Japanese experiences, energy demand elasticity to energy price is the ranges from -0.1 to -1.0. In the model, For Agriculture sector, the assumption of energy demand elasticity to energy price is -0.01, it is very small

d. Energy intensity to GDP

Energy intensity in Agriculture sector to GDP is calculated by using energy demand in Agriculture sector and GDP in the whole country. It is used for the evaluation of the future energy demand in Agriculture sector.

e. Energy demand before Energy saving

Energy demand in Agriculture sector is forecasted in the area. First, the energy demand before making energy conservation is calculated in the area.

f. Energy demand after energy saving

Energy demand after making energy conservation in Agriculture sector is forecasted in the area. It is calculated by the energy demand forecasting value before energy conservation and energy conservation rate.

g. Electricity ratio

Electricity ratio is an electricity share of the energy demand in Agriculture sector. The ratio is exogenous. The values are exogenously estimated after referring other countries' electricity ratio.

Agricultur	e sector		%			
	1995	1996	1997	1998	1999	2000
Japan	2.7	2.8	2.9	3.0	3.2	2.1
Taiwan	1.7	1.8	2.1	2.3	2.3	2.1
Australia	1.5	1.5	1.5	1.5	1.5	1.5
Indonesia	0.0	0.0	0.0	0.0	0.0	0.0
Korea	0.9	1.0	0.9	1.0	1.1	1.2
China	12.8	13.2	13.5	12.8	13.7	13.7
Vietnam	6.0	6.4	6.7	7.1	8.5	9.2
Thailand	0.6	0.6	0.5	0.7	0.5	0.5
Pilippines	19.8	16.7	18.1	13.8	20.1	10.1

Table2-3-7 International Electricity ratio of Agriculture sector

Source: APERC Energy Data Base

h. Power demand (k TOE)

Power demand is forecasted with "Energy demand forecasting value * Power ratio". The power demand unit forecasted is kTOE, not GWh.

i. <u>Power demand</u> (GWh)

Power demand with GWh is calculated by "Energy demand forecasting value with kTOE * 0.086".

j. Fossil energy demand

As fossil energies used in Agriculture sector, Coal, LPG, Gasoline, Jet-fuel, Kerosene, Diesel demand, Fuel oil, Natural gas and Renewable energy are calculated with total energy demand and fossil energy ratio in Agriculture sector.

k. Fossil energy demand ratio

Fossil energy demand ratios are exogenous. The future values of fossil energy demand ratio are decided by the energy supply policies of Vietnam.

(5) Power demand forecasting in Industry sector

As dependent variable of Industry sector, energy conservation factor is set in energy demand forecasting structure of the sector. The factor is affected by technical improvement and energy price such as petroleum products, natural gas, renewable energies and electricity are used in the sector. In the energy demand forecasting model, the sectoral total energies are forecasted at first, next, electricity demand is forecasted by using the power ratio to sectoral total energy demand. The fossil energies including petroleum products and natural gas are forecasted by the deference of subtracting the electricity demand from the sectoral total energy demand.

	L UK	102-3-01 0wer uer	inana i				•			Sheet		
F	Н	Ι	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
196	Industry	Energy conservation rate	S%	MANNCOR	100.0	100.0	100.0	100.0				
197		Technical Improvement	%	MANNTEC	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0
198		Elasticity to Energy price		MANNEVP		-0.01	0.75	-0.08	0.00	0.00	-0.30	-0.30
199		Energy intensity to GDP	TOE/Bil Don	MANNEFF	34.2	34.0	29.6	29.0				
200		Energy demand before E.save	KTOE	MANNDEM	4,510.3	4,745.9	9,259.3	9,749.6				
201		Energy demand after E.save	KTOE	MANNDEA	4,510.3	4,745.9	9,259.3	9,749.6				
202		Electricity ratio	S%	MANNELR	5.5	5.6	11.8	13.5	14.6	15.7	34.0	34.0
203		Power demand (kTOE)	KTOE	MANNELT	247.3	264.9	1,088.3	1,316.6	1,538.9	1,798.1		
204		Power demand (GWh)	GWh	MANNELE	2,875.6	3,080.2	12,654.3	15,309.7	17,894.0	20,908.6		
205												
206		Coal demand	KTOE	MANIMCOA	1,020.0	1,142.0	2,944.0	3,113.0				
207		LPG demand	KTOE	MANMLPG	0.0	0.0	57.0	87.0				
208		Gasoline demand	KTOE	MANMGAS	0.0	0.0	0.0	0.0				
209		Jetfuel demand	KTOE	MANMJET	0.0	0.0	0.0	0.0				
210		Kerosene demand	KTOE	MANMKER	4.0	4.0	11.0	10.0				
211		Diesel demand	KTOE	MANMDIE	233.0	223.0	695.0	896.0				
212		Fuel oil demand	KTOE	MANMFUL	211.0	243.0	1,168.0	1,172.0				
213		Natural gas demand	KTOE	MANMNG	0.0	9.0	19.0	18.0				
214		Renewable energy demand	KTOE	MANMREW	2,795.0	2,860.0	3,277.0	3,137.0				
215		Total	KTOE	MANMTOT	4,263.0	4,481.0	8,171.0	8,433.0				
216												
217	0.0	Coal demand	S%	MASMCOA	23.9	25.5	36.0	36.9	38.0	39.0	39.0	39.0
218	0.0	LPG demand	S%	MASMLPG	0.0	0.0	0.7	1.0	1.1	1.1	2.9	3.0
219	0.0	Gasoline demand	S%	MASMGAS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
220	0.0	Jetfuel demand	S%	MASMJET	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
221	0.0	Kerosene demand	S%	MASMKER	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2
222	0.0	Diesel demand	S%	MASMDIE	5.5	5.0	8.5	10.6	10.0	8.8	8.8	8.8
223	0.0	Fuel oil demand	S%	MASMFUL	4.9	5.4	14.3	13.9	15.3	17.5	36.8	37.6
224	0.0	Natural gas demand	S%	MASMNG	0.0	0.2	0.2	0.2	0.2	0.2	0.6	0.6
225	0.0	Renewable energy demand	S%	MASMREW	65.6	63.8	40.1	37.2	35.3	33.2	11.7	10.8
226	0.0	Total	S%	MASMTOT	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
227												

Table2-3-8 Power demand forecasting in Industry sector in Data sheet

a. Energy conservation rate in Industry sector

Energy conservation rate in the actual terms is 100%. It means that energy conservation in the past years, especially in 2002 and 2003 are starting position. The future energy conservations are compared to the starting position. The energy conservation rate is affected by changes of energy prices and technical improvement.

Ex Energy conservation rate in 2004 2025

2004	2005	2010	2015	2020	2025
100	98	93	88	83	78

Energy consumption decreases with 22% in 2025 when compared to 2004.

b. Technical Improvement

Energy consumption is conserved by all kinds of technical improvement. In 30 years after the first oil crisis, Japan had energy conservation improvement with 2% per year. Most of the reasons are improvement of the production line and installation of new equipment. Both of them are included in technical improvement in the model. Such kinds of technical improvement are a major factor for energy conservation.

c. Elasticity to Energy price

Another factor as energy conservation is energy price hikes. When energy prices and electricity tariffs increases, all kinds of energies in the sector are saved.

According to Japanese experiences, energy demand elasticity to energy price is the ranges from -0.1 to -1.0. In the model, For Industry sector, the assumption of energy demand elasticity to energy price is -0.3.

d. Energy intensity to GDP

Energy intensity in Industry sector to GDP is calculated by using energy demand in Industry sector and GDP in the whole country. It is used for the evaluation of the future energy demand in Industry sector.

e. Energy demand before Energy saving

Energy demand in Industry sector is forecasted in the area. First, the energy demand before making energy conservation is calculated in the area.

f. Energy demand after energy saving

Energy demand after making energy conservation in Industry sector is forecasted in the area. It is calculated by the energy demand forecasting value before energy conservation and energy conservation rate.

g. Electricity ratio

Electricity ratio is an electricity share of the energy demand in Industry sector. The ratio is exogenous. The values are exogenously estimated after referring other countries' electricity ratio.

Industry		%				
	1995	1996	1997	1998	1999	2000
Japan	26.5	26.8	27.1	27.4	26.7	26.6
Taiwan	22.1	22.2	22.9	23.3	24.4	26.2
Australia	20.3	19.9	20.0	21.4	21.9	22.0
Indonesia	12.4	11.9	14.3	13.8	13.9	12.9
Korea	19.0	19.6	19.4	19.2	19.4	20.0
China	5.1	5.3	5.5	5.8	6.0	6.1
Vietnam	12.8	14.1	13.4	14.0	15.1	17.0
Thailand	22.7	20.6	22.5	22.4	23.9	25.4
Malaysia	18.0	19.8	21.4	21.4	23.1	22.2
Pilippines	19.7	19.7	20.2	26.9	20.4	31.7

 Table 2-3-9 International Electricity ratio of Industry sector

h. Power demand (k TOE)

Power demand is forecasted with "Energy demand forecasting value * Power ratio". The power demand unit is kTOE, not GWh.

i. Power demand (GWh)

Power demand with GWh is calculated by "Energy demand forecasting value with kTOE * 0.086".

j. Fossil energy demand

As fossil energies used in Industry sector, Coal, LPG, Gasoline, Kerosene, Diesel, Fuel oil, Natural gas and Renewable energy are calculated with total energy demand and fossil energy ratio in Industry sector.

k. Fossil energy demand ratio

Fossil energy demand ratios are exogenous. The future values of fossil energy demand ratio are decided by the energy supply policies of Vietnam.

(6) Power demand forecasting in Transportation sector

As dependent variable of Transportation sector, energy conservation factor is set in energy demand forecasting equations of the sector. The factor is affected by technical improvement and energy price such as petroleum products, natural gas, renewable energies and electricity are used in the sector.

F	Н	I	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
228	Transportation	Energy conservation rate	S%	TRENCOR	100.0	100.0	100.0	100.0				
229		Technical Improvement	%	TRENTEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
230		Elasticity to Energy price		TRENEVP		-0.21	7.14	0.22	0.00	0.00	-0.10	-0.10
231		Energy intensity to GDP	TOE/Bil Don		10.7	9.5	15.8	16.6				
232		Energy demand before E.save	KTOE	TRENDEM	1,408.0	1,330.0	4,943.0	5,561.0				
233		Energy demand after E.save	KTOE	TRENDEA	1,408.0	1,330.0	4,943.0	5,561.0				
234		Electricity ratio	S%	TRENELR	0.36	0.38	0.53	0.49	0.55	0.62	1.93	2.00
235		Power demand (k TOE)	KTOE	TRENELT	5.0	5.0	26.0	27.0	28.0	29.0		
236		Power demand (GWh)	GWh	TREENELE	58.1	58.1	302.3	314.0	325.6	337.2		
237												
238		Coal demand	KTOE	TREMCOA	14.0	23.0	0.0	0.0				
239		LPG demand	KTOE	TREMLPG	0.0	0.0	0.0	0.0				
240		Gasoline demand	KTOE	TREMGAS	601.0	532.0	2,063.0	2,148.0				
241		Jetfuel demand	KTOE	TREMJET	100.0	111.0	284.0	263.0				
242		Kerosene demand	KTOE	TREMKER	0.0	0.0	0.0	0.0				
243		Diesel demand	KTOE	TREMDIE	659.0	625.0	2,378.0	2,880.0				
244		Fuel oil demand	KTOE	TREMFUL	34.0	39.0	218.0	270.0				
245		Natural gas demand	KTOE	TREMNG	0.0	0.0	0.0	0.0				
246		Renewable energy demand	KTOE	TREMREW	0.0	0.0	0.0	0.0				
247		Total	KTOE	TREMTOT	1,408.0	1,330.0	4,943.0	5,561.0				
248												
249	0.0	Coal demand	S%	TRSMCOA	1.0	1.7	0.0	0.0	0.0	0.0	0.0	0.0
250	0.0	LPG demand	S%	TRSMLPC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
251	0.0	Gasoline demand	S%	TRSMGAS	42.7	40.0	41.7	38.6	41.7	41.7	43.7	43.9
252	0.0	Jetfuel demand	S%	TRSMJET	7.1	8.3	5.7	4.7	5.7	5.7	4.3	4.2
253	0.0	Kerosene demand	S%	TRSMKER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
254	0.0	Diesel demand	S%	TRSMDIE	46.8	47.0	48.1	51.8	48.1	48.1	48.7	48.7
255	0.0	Fuel oil demand	S%	TRSMFUL	2.4	2.9	4.4	4.9	4.4	4.4	3.3	3.3
256	0.0	Natural gas demand	S%	TRSMNG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
257	0.0	Renewable energy demand	S%	TRSMREW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
258	0.0	Total	S%	TRSMTOT	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
259												

In the energy demand forecasting model, the sectoral total energies are forecasted at first, next, electricity demand is forecasted by using the power ratio to sectoral total energy demand. The fossil energies including petroleum products and natural gas are forecasted by the deference of subtracting the electricity demand from the sectoral total energy demand.

a. Energy conservation rate in Transportation sector

Energy conservation rate in the actual terms is 100%. It means that energy conservation in the past years, especially in 2002 and 2003 are starting position. The future energy conservations are compared to the starting position. The energy conservation rate is affected by changes of energy prices and technical improvement.

Ex	Energy	conservation	rate in	2004 2	2025

2004	2005	2010	2015	2020	2025
100	98	93	88	83	78

Energy consumption decreases with 22% in 2025 when compared to 2004.

b. Technical Improvement

Energy consumption is conserved by all kinds of technical improvement. In 30 years after the first oil crisis, Japan had energy conservation improvement with 2% per year. Most of the reasons are improvement of the production line and installation of new equipment. Both of them are included in technical improvement. Such kinds of technical improvement are a major factor for energy conservation.

c. Elasticity to Energy price

Another factor as energy conservation is energy price hikes. When energy prices and electricity tariffs increases, all kinds of energies in the sector are saved.

According to Japanese experiences, energy demand elasticity to energy price is the ranges from -0.1 to -1.0. In the model, For Transportation sector, the assumption of energy demand elasticity to energy price is -0.1.

d. Energy intensity to GDP

Energy intensity in Transportation sector to GDP is calculated by using energy demand in Transportation sector and GDP in the whole country. It is used for the evaluation of the future energy demand in Transportation sector.

e. Energy demand before Energy saving

Energy demand in Transportation sector is forecasted in the area. First, the energy demand before making energy conservation is calculated in the area.

f. Energy demand after energy saving

Energy demand after making energy conservation in Transportation sector is forecasted in the area. It is calculated by the energy demand forecasting value before energy conservation and energy conservation rate.

g. Electricity ratio

Electricity ratio is an electricity share of the energy demand in Transportation sector. The ratio is exogenous. The values are very small. In the future, subway is planned in Ho-Chi-Min city. The electricity for transportation sector will be supplied to the subway.

h. Power demand (k TOE)

Power demand is forecasted with "Energy demand forecasting value * Power ratio". The power demand unit is kTOE, not GWh.

i. Power demand (GWh)

Power demand with GWh is calculated by "Energy demand forecasting value with kTOE * 0.086".

j. Fossil energy demand

As fossil energies used in Transportation sector, Gasoline, Jet-fuel, Diesel, Fuel oil are calculated with total energy demand and fossil energy ratio in Transportation sector.

k. Fossil energy demand ratio

Fossil energy demand ratios are exogenous. The future values of fossil energy demand ratio are decided by the energy supply policies of Vietnam.

(7) Power demand forecasting in Commercial & Services sector

As dependent variable of Commercial & Services sector, energy conservation factor is set in energy demand forecasting equations of the sector. The energy conservation factor is affected by technical improvement and energy price such as petroleum products, natural gas, renewable energies and electricity are used in the sector. In the energy demand forecasting model, the sectoral total energies are forecasted at first, next, electricity demand is forecasted by using the power ratio to sectoral total energy demand. The fossil energies including petroleum products and natural gas are forecasted by the deference of subtracting the electricity demand from the sectoral total energy demand.

F	Н	Ι	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
260	Commercials & Service	Energy conservation rate	S%	COMNCOR	100.0	100.0	100.0	100.0				
261		Technical Improvement	%	COMNTEC	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0
262		Elasticity to Crude oil price		COMNEVP		-0.01	-1.79	-0.22	0.00	0.00	-0.20	-0.20
263		Energy intensity to GDP	TOE/Bil Don	COMNEFF	2.2	2.2	4.0	3.8				
264		Energy demand before E.save	KTOE	COMNDEN	295.1	310.4	1,240.2	1,267.0				
265		Energy demand after E.save	KTOE	COMNDEA	295.1	310.4	1,240.2	1,267.0				
266		Electricity ratio	S%	COMNELR	3.8	3.7	9.9	10.5	11.6	12.3	33.2	35.0
267		Power demand (kTOE)	KTOE	COMNELT	11.1	11.4	122.2	133.4	153.2	173.9		
268		Power demand (GWh)	G₩h	COMNELE	128.9	132.9	1,421.1	1,550.8	1,781.0	2,022.0		
269												
270		Coal demand	KTOE	COMMCOA	19.0	30.0	291.0	295.1				
271		LPG demand	KTOE	COMMLPG	0.0	0.0	121.0	122.7				
272		Gasoline demand	KTOE	COMMGAS	0.0	0.0	0.0	0.0				
273		Jetfuel demand	KTOE	COMMJET	0.0	0.0	0.0	0.0				
274		Kerosene demand	KTOE	COMMKER	147.0	151.0	247.0	250.5				
275		Diesel demand	KTOE	COMMDIE	87.0	82.0	325.0	329.6				
276		Fuel oil demand	KTOE	COMMFUL	31.0	36.0	134.0	135.9				
277		Natural gas demand	KTOE	COMMING	0.0	0.0	0.0	0.0				
278		Renewable energy demand	KTOE	COMMREW	0.0	0.0	0.0	0.0				
279		Total	KTOE	COMMTOT	284.0	299.0	1,118.0	1,133.7				
280												
281	0.0	Coal demand	S%	COSMCOA	6.7	10.0	26.0	26.0	26.0	26.0	26.0	26.0
282	0.0	LPG demand	S%	COSMLPG	0.0	0.0	10.8	10.8	10.8	10.8	10.8	10.8
283	0.0	Gasoline demand	S%	COSMGAS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
284	0.0	Jetfuel demand	S%	COSMJET	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
285	0.0	Kerosene demand	S%	COSMKER	51.8	50.5	22.1	22.1	22.1	22.1	22.1	22.1
286	0.0	Diesel demand	S%	COSMDIE	30.6	27.4	29.1	29.1	29.1	29.1	29.1	29.1
287	0.0	Fuel oil demand	S%	COSMFUL	10.9	12.0	12.0	12.0	12.0	12.0	12.0	12.0
288	0.0	Natural gas demand	S%	COSMNG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
289	0.0	Renewable energy demand	S%	COSMREW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
290	0.0	Total	S%	COSMTOT	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
291												

 Table 2-3-11 Power demand forecasting in Commercial sector in Data sheet

a. Energy conservation rate in Commercial & Services sector

Energy conservation rate in the actual terms is 100%. It means that energy conservation in the past years, especially in 2002 and 2003 are starting position. The future energy conservations are compared to the starting position. The energy conservation rate is affected by changes of energy prices and technical improvement.

b. Technical Improvement

Energy consumption is conserved by all kinds of technical improvement. In 30 years after the first oil crisis, Japan had energy conservation improvement with 2% per year. Most of the reasons are improvement of the production line and installation of new equipment. Both of them are included in technical improvement. Such kinds of technical improvement are a major factor for energy conservation.

c. Elasticity to Energy price

Another factor as energy conservation is energy price hikes. When energy prices and electricity tariffs increases, all kinds of energies in the sector are saved.

According to Japanese experiences, energy demand elasticity to energy price is the ranges from -0.1 to -1.0. In the model, For Commercial & Services sector, the assumption of energy demand elasticity to energy price is -0.2.

d. Energy intensity to GDP

Energy intensity in Commercial & Services sector to GDP is calculated by using energy demand in Commercial & Services sector and GDP in the whole country. It is used for the evaluation of the future energy demand in Commercial & Services sector.

e. Energy demand before Energy saving

Energy demand in Commercial & Services sector is forecasted in the area. First, the energy demand before making energy conservation is calculated in the area.

f. Energy demand after energy saving

Energy demand after making energy conservation in Commercial & Services sector is forecasted in the area. It is calculated by the energy demand forecasting value before energy conservation and energy conservation rate.

g. Electricity ratio

Electricity ratio is an electricity share of the energy demand in Commercial & Services sector. The ratio is exogenous. The values are exogenously estimated after referring other countries' electricity ratio.

Commerci	al & Resider	ntial	%			
	1995	1996	1997	1998	1999	2000
Japan	43.9	43.9	45.4	47.1	47.8	44.8
Taiwan	64.5	63.6	65.9	66.2	65.8	67.2
Australia	52.3	53.0	53.7	54.4	55.3	55.5
Indonesia	3.8	4.3	4.8	5.3	5.4	5.8
Korea	18.0	19.3	21.0	25.7	24.0	27.6
China	6.3	7.0	0.8	9.5	10.0	10.0
Vietnam	30.5	29.9	33.5	35.9	35.7	35.6
Thailand	70.5	70.3	72.6	75.0	72.2	71.2
Malaysia	55.2	49.7	65.0	68.2	61.0	63.4
Pilippines	39.0	40.6	47.2	45.2	43.7	40.0

Table2-3-12 International Electri	city ratio of Commercial & Residential sector
ammaraial & Paaidantial	0/

h. Power demand (k TOE)

Power demand is forecasted with "Energy demand forecasting value * Power ratio". The power demand unit is kTOE, not GWh.

i. <u>Power demand (GWh)</u>

Power demand with GWh is calculated by "Energy demand forecasting value with kTOE * 0.086".

j. Fossil energy demand

As fossil energies used in Commercial & Services sector, Coal, LPG, Gasoline, Kerosene, Diesel, Fuel oil, Natural gas and Renewable energy are calculated with total energy demand and fossil energy ratio in Commercial & Services sector.

k. Fossil energy demand ratio

Fossil energy demand ratios are exogenous. The future values of fossil energy demand ratio are decided by the energy supply policies of Vietnam.

(8) Power demand forecasting in Residential sector

As dependent variable of Residential sector, energy conservation factor is set in energy demand forecasting structure of the sector. The factor is affected by technical improvement and energy price such as petroleum products, natural gas, renewable energies and electricity are used in the sector.

	Н	Ι	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
	Residentials	Energy conservation rate	S%	RESNCOR	100.0	100.0	100.0	100.0				
293		Technical Improvement	%	RESNTEC	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0
294		Elasticity to Energy price		RESNEVP		-0.04	-2.14	-0.04	0.00	0.00	-0.10	-0.10
295		Energy intensity to GDP	TOE/Bil Don	RESNEFF	76.9	75.3	43.1	42.7				
296		Energy demand before E.save	KTOE	RESNDEM	10,146.9	10,516.3	13,502.7	14,352.1				
297		Energy demand after E.save	KTOE	RESNDEA	10,146.9	10,516.3	13,502.7	14,352.1				
298		Electricity ratio	S%	RESNELR		2.4	8.7	9.5	10.4	11.3	29.1	30.0
299		Power demand (kTOE)	KTOE	RESNELT	238.9	254.3	1,177.7	1,361.1	1,518.4	1,734.9		
300		Power demand (GWh)	GWh	RESENELE	2,778.0	2,957.5	13,693.7	15,826.8	17,656.0	20,173.5		
301												
302		Coal demand	KTOE	REDMCOA	207.0	336.0	756.0	892.0	892.0			
303		LPG demand	KTOE	REDMLPG	0.0	0.0	263.0	367.0	367.0			
304		Gasoline demand	KTOE	REDMGAS	0.0	0.0	0.0	0.0	0.0			
305		Jetfuel demand	KTOE	REDMJET	0.0	0.0	0.0	0.0	0.0			
306		Kerosene demand	KTOE	REDMKER	61.0	63.0	151.0	151.0	151.0			
307		Diesel demand	KTOE	REDMDIE	11.0	10.0	22.0	20.0	20.0			
308		Fuel oil demand	KTOE	REDMFUL	3.0	3.0	11.0	4.0	4.0			
309		Natural gas demand	KTOE	REDMNG	0.0	0.0	0.0	0.0	0.0			
310		Renewable energy demand	KTOE	REDMREW	9,626.0	9,850.0	11,122.0	11,557.0	11,557.0			
311		Total	KTOE	REDMTOT	9,908.0	10,262.0	12,325.0	12,991.0	12,991.0			
312												
313		Coal demand	S%	RESMCOA	2.1	3.3	6.1	6.9	7.4	8.1	13.3	14.2
314	0.0	LPG demand	S%	RESMLPG	0.0	0.0	2.1	2.8	3.9	5.0	13.2	12.5
315	0.0	Gasoline demand	S%	RESMGAS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
316		Jetfuel demand	S%	RESMJET	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
317		Kerosene demand	S%	RESMKER	0.6	0.6	1.2	1.2	1.2	1.2	1.2	1.2
318	0.0	Diesel demand	S%	RESMDIE	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2
319	0.0	Fuel oil demand	S%	RESMFUL	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.1
320	0.0	Natural gas demand	S%	RESMING	0.0	0.0	0.0	0.0	0.0	0.0	28.0	30.0
321		Renewable energy demand	S%	RESMREW	97.2	96.0	90.2	89.0	87.2	85.4	44.0	41.8
322	0.0	Total	S%	RESMTOT	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
323												

 Table2-3-13 Power demand forecasting in Residential sector in Data sheet

In the energy demand forecasting model, the sectoral total energies are forecasted at first, next, electricity demand is forecasted by using the power ratio to sectoral total energy demand. The fossil energies including petroleum products and natural gas are forecasted by the deference of subtracting the electricity demand from the sectoral total energy demand.

a. Energy conservation rate in Residential sector

Energy conservation rate in the actual terms is 100%. It means that energy conservation in the past years, especially in 2002 and 2003 are starting position. The future energy conservations are compared to the starting position. The energy conservation rate is affected by changes of energy prices and technical improvement.

b. Technical Improvement

Energy consumption is conserved by all kinds of technical improvement. In 30 years after the first oil crisis, Japan had energy conservation improvement with 2% per year. Most of the reasons are improvement of the production line and installation of new equipment. Both of them are included in technical improvement. Such kinds of technical improvement are a major factor for energy conservation.

c. Elasticity to Energy price

Another factor as energy conservation is energy price hikes. When energy prices and electricity tariffs increases, all kinds of energies in the sector are saved.

According to Japanese experiences, energy demand elasticity to energy price is the ranges from -0.1 to -1.0. In the model, For Residential sector, the assumption of energy demand elasticity to energy price is -0.1.

d. Energy intensity to GDP

Energy intensity in Residential sector to GDP is calculated by using energy demand in Residential sector and GDP in the whole country. It is used for the evaluation of the future energy demand in Residential sector.

e. Energy demand before Energy saving

Energy demand in Residential sector is forecasted in the area. First, the energy demand before making energy conservation is calculated in the area.

f. Energy demand after energy saving

Energy demand after making energy conservation in Residential sector is forecasted in the aea It is calculated by the energy demand forecasting value before energy conservation and energy
conservation rate.

g. Electricity ratio

Electricity ratio is an electricity share of the energy demand in Residential sector. The ratio is exogenous. The values are exogenously estimated after referring other countries' electricity ratio.

Commerci	al &Resider	ntial	%			
	1995	1996	1997	1998	1999	2000
Japan	43.9	43.9	45.4	47.1	47.8	44.8
Taiwan	64.5	63.6	65.9	66.2	65.8	67.2
Australia	52.3	53.0	53.7	54.4	55.3	55.5
Indonesia	3.8	4.3	4.8	5.3	5.4	5.8
Korea	18.0	19.3	21.0	25.7	24.0	27.6
China	6.3	7.0	0.8	9.5	10.0	10.0
Vietnam	30.5	29.9	33.5	35.9	35.7	35.6
Thailand	70.5	70.3	72.6	75.0	72.2	71.2
Malaysia	55.2	49.7	65.0	68.2	61.0	63.4
Pilippines	39.0	40.6	47.2	45.2	43.7	40.0

 Table2-3-14
 International Electricity ratio of Commercial & Residential sector

h. Power demand (k TOE)

Power demand is forecasted with "Energy demand forecasting value * Power ratio". The power demand unit is kTOE, not GWh.

i. <u>Power demand (GWh)</u>

Power demand with GWh is calculated by "Energy demand forecasting value with kTOE * 0.086".

j. Fossil energy demand

As fossil energies used in Residential sector, Coal, LPG, Gasoline, Kerosene, Diesel, Natural gas and Renewable energy are calculated with total energy demand and fossil energy ratio in Residential sector.

k. Fossil energy demand ratio

Fossil energy demand ratios are exogenous. The future values of fossil energy demand ratio are decided by the energy supply policies of Vietnam.

(9) Power demand forecasting in Other sector

As dependent variable of Other sector, energy conservation factor is set in energy demand forecasting structure of the sector. The factor is affected by technical improvement and energy price such as petroleum products, natural gas, renewable energies and electricity are used in the sector. In the energy demand forecasting model, the sectoral total energy demand equals to electricity demand, it means that only electricity demand appears in the sector. the power demand in the sector is forecasted.

F	Н	Ι	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
324	Others	Energy conservation rate	S%	NONNCOR	100.0	100.0	100.0	100.0				
325		Technical Improvement	%	NONNTEC	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0
326		Elasticity to Energy price		NONNEVP		-0.03	25.41	0.62	0.00	0.00	-0.10	-0.10
327		Energy intensity to GDP	TOE/Bil Don	NONNEFF	0.101	0.100	0.304	0.345				
328		Energy demand before E.save	KTOE	NONNDEM	13.3	13.9	95.1	115.8				
329		Energy demand after E.save	KTOE	NONNDEA	13.3	13.9	95.1	115.8	134.5	153.8		
330		Electricity ratio	<mark>S%</mark>	NONNELR	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
331		Power demand (kTOE)	KTOE	NONNELT	13.3	13.9	95.1	115.8	119.5	136.2		
332		Power demand (G₩h)	GWh	NONNELE	154.9	161.7	1,106.3	1,346.5	1,389.4	1,583.3		
333												
334		Ccal demand	KTOE	NONMCOA	0.0	0.0	0.0	0.0				
335		LPG demand	KTOE	NONMLPG	0.0	0.0	0.0	0.0				
336		Gasoline demand	KTOE	NONMGAS	0.0	0.0	0.0	0.0				
337		Jetfuel demand	KTOE	NONMJET	0.0	0.0	0.0	0.0				
338		Kerosene demand	KTOE	NONMKER	0.0	0.0	0.0	0.0				
339		Diesel demand	KTOE	NONMDIE	0.0	0.0	0.0	0.0				
340		Fuel oil demand	KTOE	NONMFUL	0.0	0.0	0.0	0.0				
341		Natural gas demand	KTOE	NONMING	0.0	0.0	0.0	0.0				
342		Renewable energy demand	KTOE	NONMREW	0.0	0.0	0.0	0.0				
343		Total	KTOE	NONMTOT	0.0	0.0	0.0	0.0				
344												
345	0.0	Ccal demand	S%	NOSMCOA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
346	0.0	LPG demand	S%	NOSMLPG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
347	0.0	Gasoline demand	S%	NOSMGAS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
348	0.0	Jetfuel demand	S%	NOSMJET	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
349	0.0	Kerosene demand	S%	NOSMKER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
350	0.0	Diesel demand	S%	NOSMDIE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
351	0.0	Fuel oil demand	S%	NOSMFUL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
352	0.0	Natural gas demand	S%	NOSMNG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
353	0.0	Renewable energy demand	S%	NOSMREW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
354	0.0	Total	S%	NOSMTOT	0.0	0.0	0.0	100.0	100.0	100.0	100.0	100.0
355												

Table2-3-15 Power demand forecasting in Other sector in Data sheet

a. Energy conservation rate in Residential sector

Energy conservation rate in the actual terms is 100%. It means that energy conservation in the past years, especially in 2002 and 2003 are starting position. The future energy conservations are compared to the starting position. The energy conservation rate is affected by changes of energy prices and technical improvement.

b. Technical Improvement

Energy consumption is conserved by all kinds of technical improvement. In 30 years after the first oil crisis, Japan had energy conservation improvement with 2% per year. Most of the reasons are improvement of the production line and installation of new equipment. Both of them are included in technical improvement. Such kinds of technical improvement are a major factor for energy conservation.

c. Elasticity to Energy price

Another factor as energy conservation is energy price hikes. When energy prices and electricity tariffs increases, all kinds of energies in the sector are saved. According to Japanese experiences, energy demand elasticity to energy price is the ranges from -0.1 to -1.0. In the model, For Other sector, the assumption of energy demand elasticity to energy price is -0.1.

d. Energy intensity to GDP

Energy intensity in Other sector to GDP is calculated by using energy demand in Other sector and GDP in the whole country. It is used for the evaluation of the future energy demand in Other sector.

e. Energy demand before Energy saving

Energy demand in Other sector is forecasted in the area. First, the energy demand before making energy conservation is calculated in the area.

f. Energy demand after energy saving

Energy demand after making energy conservation in Other sector is forecasted in the area. It is calculated by the energy demand forecasting value before energy conservation and energy conservation rate.

g. Electricity ratio

Electricity ratio is an electricity share of the energy demand in Other sector. The ratio is 100%. It is exogenous.

h. Power demand (k TOE)

Power demand is forecasted with "Energy demand forecasting value * Power ratio". The power demand unit is kTOE, not GWh.

i. <u>Power demand</u> (GWh)

Power demand with GWh is calculated by "Energy demand forecasting value with kTOE * 0.086".

(10) Power supply forecasting

By the above procedures, power demand and energy demand by sector are forecasted. In the block, it is calculated how to supply the power meeting to the power demand. At first, the total power demand and energy demand in the whole country is calculated. Next, power supply is calculated, Hydro power, Nuclear power, Renewable energy power and Purchasing power from

abroad are exogenous variable. The values of the exogenous variables are already calculated in Power sheet. In the power supply block, thermal power supplies are mainly calculated. After that, fossil energies consumed in the thermal stations are calculated.

Н	I	J	TIME	1990	1991	2002	2003	2004	2005	2024	202
Power demand in final use	Agriculture.Forestry.Fishery	GWh	PWDMPA	189.8	193.4	480.9	512.8	551.0	657.7	1,027.9	1,032.8
	manufacturing	GWh	PWDMMN	2,875.6	3,080.2	12,654.3		17,894.0	20,908.6	175,920.9	188,275.0
	Transportation	GWh	PWDMTR	58.1	58.1	302.3	314.0	325.6	337.2	6,521.6	6,928.4
	Commercials.BankingServices	GWh	PWDMCM	128.9	132.9	1.421.1	1.550.8	1.781.0	2.022.0	25.002.9	27,960.0
	Residentials	Gwh	PWDMRE	2,778.0	2,957.5	13,693.7		17,656.0	20,173.5	121,380.5	131,756.2
	Other	GWh	PWDMNO	154.9	161.7	1,106.3	1,346.5	1,389.4	1,583.3	6,724.5	7,184.1
	Total	GWh	PWDMTOT	6,185.3	6,583.8	29,658.6	34,860.6	39,597.0	45,682.3	336,578.3	363,137.1
Energy Demand	Coal demand	KTOE	DEDCOA	1,324.0	1,600.0	4,016.0	4,685.0	5,798.0			
	LPG demand	KTOE	DEDLPG	0.0	0.0	441.0	576.7				
	Gasoline demand	KTOE	DEDGAS	646.0	572.0	2,145.0	2,232.0				
	Jetfuel demand	KTOE	DEDJET	100.0	111.0	284.0	263.0				
	Kerosene demand	KTOF.	DEDKER	212.0	218.0	409.0	411.5				
	Diesel demand	KTOE	DEDDIE	1,087.0	1,033.0	3,709.0	4,434.6				
	Fuel oil demand	KTOE	DEDFUE	282.0	324.0	1,546.0	1,598.9				
	Petroleum total	KTOE	DEDSTO	2,327.0	2,258.0	8,534.0	9,516.6				
	Natural gas demand	KTOE	DEDNG	0.0	9.0	19.0	18.0				
	Renewable energy demand	KTOE	DEDREW	12,659.9	12,964.3	15,576.7	16,055.1				
	Power	KTOE	DEDPOW	531.9	566.2	2,550.6	2,998.0				
	Total(Coal+Petro+Renew+Power)	KTOE	DEDTOT	16,842.8	17,388.6	30,677.3	33,254.7				
Power supply	Power distribution loss	S%	PWGELOR	25.4	25.5	16.7	14.1	12.1	11.5	8.5	7.
	Power distribution loss (GWh)	GWh	PWLOSSG	2,204.5	2,348.3	5,621.9	5,530.7				
	Own use in Power sector(GWh)	GWh	PWOWNG	289.4	276.9	515.3	532.8				
	Power distribution loss (KTOE)	KTOE	PWLOSST	189.6	202.0	483.5	475.6				
	Own use in Power sector(KTOE)	KTOE	PWOWNT	24.9	23.8	44.3	45.8				
	Power from Hydro	GWh	PWGEHYD	5,368.7	6,316.7	18,197.7	18,988.1	18,435.4	20,058.0	59,270.2	59,270.2
	Power from Fossil	GWh	PWGEFOS	3,310.6	2,892.3	15,485.8		10,400.4	20,000.0	00,410.4	00,210.2
	Power foreign trade balance	GWh	PWGEBAL	0.0	0.0	0.0	0.0	0.0	0.0	27,716.6	28,575.1
	Power from Renewable energy	GWh	PWGENEW	0.0	0.0	0.0	0.0	0.0	200.6	3,556.2	3,556.2
	Power from Nuclear	GWh	PWGENCL	0.0	0.0	0.0	0.0	0.0	0.0	49.050.0	49,050.0
	Total of power generation	GWh	PWGETOT	8,679.3	9,209.0			0.0	0.0	40,000.0	40,000+0
	Power from Thermal(Coal)	GWh	PWGECOA	2,023.8	1,226.1	3,418.6	4,829.3				
	Power from Thermal(FO)	GWh	PWCEFOT	988.1	1,222.0	1,137.3	1,209.9				
	Power from Gasturbine(FO)	GWh	PWGEFOB	53.0	53.0	1,187.0	1,630.0				
	Power from Gasturbine(GAS)	G₩h	PWGEGAB	6.0	48.0	5,714.9	6,945.5				
	Power from Gas steam	GWh	PWGEGAS	0.0	0.0	2,598.0	3,578.0				
	Power from Diesel	GWh	PWGEDIE	410.8	366.5	88.2	46.8				
	Power from Fossil	GWh	PWGEFTT	3,481.7	2,915.7	14,144.1	18,239.6				
Power resources	Coal consumption for Thermal	KTOE	PWCCCCOA	888.0	538.0	1,500.0	2,119.0	2,172.0			
	FO consumption for Thermal	KTOE	PWCCFOT	245.0	303.0	282.0	300.0				
	FO consumption for Gasturbine	KTOE	PWCCFOB	9.0	9.0	214.0	294.7				
	NG & AG consumption for Turbin	KTOE	PWCCGAT	1.2	9.6	1,137.7	1,382.7				
	NG & AG consumption for Gas s	KTOE	PWCCGAB	0.0	0.0	620.6	854.7				
	Diesel consumption for Diesel	KTOE	PWCCDIE	96.7	86.3	20.8	11.0				
	Total	KTOE	FWCCTOT	1,240.5	946.4	3,775.7	4,962.1				
0.0	Power from Thermal(Coal)	S% of KTOE	PWSCCOA	58.1	42.1	24.2	26.5	24.3	23.1	36.9	34.8
	Power from Thermal(FO)	S% of KTOE	PWSCFOT	28.4	41.9	8.0	6.6	7.6	6.7	1.3	1.3
	Power from Gasturbine(FO)	S% of KTOE	PWSCFOB	1.5	1.8	8.4	8.9	5.1	4.5	0.9	0.8
	Power from Gasturbine(GAS)	S% of KTOE	PWSCGAT	0.2	1.6	40.4	38.1	50.9	55.1	58.8	61.1
	Power from Gas steam	S% of KTOE	PWSCGAB	0.0	0.0	18.4	19.6	12.0	10.5	2.1	2.0
	Power from Diesel	S% of KTOE	PWSCDIE	11.8	12.6	0.6	0.3	0.1	0.1	0.0	0.0
	Power from Fossil	S% of KTOE	PWSCTOT	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
The lustion factors	Enormy downed new conits	KOE /nemana -	EDDEDCAD	966 1	9E0 P	204.0	ALLP				
Evaluation factors	Energy demnad per capita	KOE/persons KOE/US\$		255.1	258.6	384.8	411.6				
anana a-ana mana ma-ara ao ao	Energy demnad per uGDP		EDPERGDP	2.2	2.2	0.9	0.9				
	Power demand per capita	KWh/person	POPERCAP	93.7	97.9	372.0	431.4			an an ann a' s	
	Power demand per uGDP	KWh/US\$	POPERGDP	0.8	0.8	0.9	0.9				
LF	Load Factor(Demand / Peak demand)		PINLOADF			63.2	63.5	64.0	64.2	69.0	69.
Lr											
Pmax	Peak demand (Total gen / (365*24)/LF	MW	PINPMAX			6552	7408	8283			

 Table 2-3-16 Power supply forecasting block in Data sheet

a. Power demand in final use

The power demands by sector are already forecasted in power demand forecasting blocks. For making the total power demand in a country, the power demand of all sectors such as Agriculture&Forestry&.Fishery, Industry, Transportation, Commercial&Banking&Services, Residential and other sector are summed up. The power demand of all sectors is power demand in final use.

b. Energy Demand

The energy demands by sector are already forecasted in power demand forecasting blocks. For making the total energy demand in a country, the energy demand of all sectors are summed up by energy. The energies are Coal, LPG, Gasoline, Jet-fuel, Kerosene, Diesel, Fuel oil, Natural gas and Renewable energy.

c. Power distribution loss & Own use in Power sector

The relation of Generation, Dispatch, Demand, Transmission & Distribution loss rate (T/D loss rate) and Own use rate are follow;

Dispatch = Generation *(1 – Own use rate) Demand = Generation *(1 – Own use rate)* (1 – T/D loss rate) = Dispatch(1 – T/D loss rate)

T/D loss are calculated by using T/D lose rate and power demand. The T/D lose rate is exogenous and the future rates planned by EVN are selected.

The actual values of T/D loss are input in the actual term. The future power distribution losses are calculated by the following expression.

T/Dloss = f(Power demand, Power loss rate) T/Dloss is shown in the units of TOE and GWh.

The actual values of power own use are input in the actual term. The future power own-use is calculated by the following table.

Power consumed in the generators are decided by the generation types:

Hydro power plant is 0.5% of the generation

Nuclear power plant is 5.0% of the generation

Coal fired Power plant is 7.0% of the generation.

Fuel oil fired power plant is 5.0% of the generation.

Gas turbine power plant is 4.5% of the generation.

Gas steam power plant is 5.0% of the generation

Diesel engine is 5.0% of the generation

The power generation by generator is calculated under the estimated future capacities.

			2005	2010	2015	2020	2025
Generation	Power from Hydro	0.5	20,056	28,282	45,933	59,270	59,270
	Nuclear power	5.0				24,528	49,056
	Power from Thermal(Coal	7.0	8,376	29,856	43,074	48,772	48,772
	Power from Thermal(FO)	5.0	2,420	2,420	2,420	2,420	2,420
	Power from Gasturbine(FC	5.0	1,630	1,630	1,630	1,630	1,630
	Power from Gasturbine(G.	4.5	19,992	29,899	46,640	69,081	101,503
	Power from Gas steam	5.0	3,826	3,826	3,826	3,826	3,826
	Power from Diesel	5.0	47	47	47	47	47
	Total generation		56,346	95,960	143,570	209,575	266,524
	Total own use		1,982	3,973	5,740	8,442	11,127
	Own use rate		3.5	4.1	4.0	4.0	4.2

Table 2-3-17	Own use	rate cal	culation	block ir	Power	sheet
--------------	---------	----------	----------	----------	--------------	-------

The own use rates calculated are 3.5 in 2005, 4.1 in 2010, 4.0 in 2015, 4.0 in 2020 and 4.2 in 2025. The power own use is shown in the units of TOE and GWh

d. Power supply

At first, the total power generation is calculated by the following expression.

The total power generation = the power demand + Power distribution loss + Power own use As Hydro power, Nuclear power, Renewable energy power and Purchasing power from abroad are exogenous, thermal power generation is calculated by the following expression. Thermal power generation = Total power generation - hydro power generation

- Nuclear power generation
- Renewable energy power generation
- Purchasing power from abroad

e. Thermal power generation by generator

Thermal power generation by generator is calculated by using the thermal power generation and the shares of the thermal power generators. As the thermal power generator, the six thermal power generators that are Coal fired power station, Fuel oil fired power station, Fuel oil gas –turbine, Gas turbine, Gas steam and Diesel engine are prepared.

f. Shares of Thermal power generation by generator

The shares of thermal power generator are already calculated in Power sheet. And the values are set in the future area. The thermal power generation is shared in line with the share of the thermal power generators.

g. Evaluation factors

As evaluation factors, energy demand per capita, energy demand per uGDP, power demand per capita and power demand per uGDP are prepared.

Energy demand per capita = Energy demand in whole / Population

Energy demand per uGDP = Energy demand in whole / GDP based on \$

Power demand per capita = Power demand in whole / Population

Power demand per uGDP = Power demand in whole / GDP based on \$

h. Load factor and Peak demand(P-max)

Load factor is exogenous. The load factor is input after referring daily load curve forecasting model. Peak demand is calculated by "Power demand/(365*24) /Load factor".

(11) Energy balance

Final demands of Coal, LPG, Gasoline, Jet-fuel, Kerosene, Diesel, Fuel oil, Natural gas, Renewable energy, Fuel consumption in power sector and domestic demand are calculated.

F	Н	I	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
423	Coal total demand	Final demand	KTOE	COACDEM	1,324.0	1,600.0	4,016.0	4,685.0	5,798.0			
424		Consumption in Power sector	KTOE	COVCLOA	888.0	538.0	1,500.0	2,110.0	2,172.0			
425		Domestic total	KTOE	COACDTO	2.212.0	2.138.0	5,516.0	6.804.0	7.970.0			
426												
427	LPG demand	Final demand	KTOE	LPGCDEM	0.0	0.0	441.0					
428		Consumption in Power sector	KTOE	LPGCP0#	0.0	1.0	12.0					
429		Domestic total	KTOE	LPGCTOT	0.0	1.0	453.0					
430												
431	Gasol ine demand	Final demand	KTOE	GASCDEM	646.0	572.0	2,145.0					
432		Consumption in Power sector	KTOE	GASCPOW	0.0	0.0	0.0					
433		Domestic total	KTOE	GASCTOT	646.0	572.0	2,145.0					
434												
435	Jetfuel demand	Final demand	KTOE	JETCDEM	100.0	111.0	284.0					
436		Consumption in Power sector	KTOE	JETCPOW	0.0	0.0	0.0					
437		Domestic total	KTOE	JETCTOT	100.0	111.0	284.0					
438												
439	Kerosene demand	Final demand	KTOE	KERCDEM	212.0	218.0	409.0					
440		Consumption in Power sector	KTOE	KERCPO#	0.0	0.0	0.0					
441		Domestic total	KTOE	KERCTOT	212.0	218.0	409.0					
442												
443	Diesel demand	Final demand	KTOE	DIECDEM	1,087.0	1,033.0	3,709.0					
444		Consumption in Power sector	KTOE	DIECPOW	410.8	366.5	88.2					
445		Domestic total	KTOE	DIECTOT	1,497.8	1,399.5	3,797.2					
446												
447	Fuel oil demand	Final demand	KTOE	FULCDEM	282.0	324.0	1,546.0					
448		Consumption in Power sector	KTOE	FULCPOW	254.6	312.6	496.6					
449		Domestic total	KTOE	FULCTOT	536.6	636.6	2,042.6					
450												
451	NG & AG demand	Final demand	KTOE	NAGCDEM	0.0	9.0	19.0					
452		Consumption in Power sector	KTOE	NAGCPOW	0.0	0.0	620.6					
453		Domestic total	KTOE	NAGCTOT	0.0	9.0	639.6					
454												
455	Renewable & Other Energy	Final demand	KTOE	OTHCDEM	12,659.9	12,964.3	15,576.7					
456		Consumption in Power sector	KTOE	OTHCPO#	0.0	0.0	0.0					
457		Domestic total	KTOE	OTHCTOT	12.659.9	12,964.3	15.576.7					
458												
459	Energy Demand	Domestic final demand	KTOE	EGSCDFD	16,310.9		28,145.7					
460		Consumption in Power sector	KTOE	EGSCP0#	2,015.1	1,761.3	4,282.5					
461		Domestic Energy Demand	KTOE	EGSCTOT	18,326.0	18,592.7	32,428.1					
462												

Table 2-3-18 Energy balance table in Data sheet

(12) Power demand forecast in North region

The future power demand in whole country is shared to North, Center and South regions by regional GDP. The regional GDP and sector GDP are exogenous. Sectoral nominal GDP is calculated by the sectoral real GDP and GDP deflator. The shares of sectoral nominal GDP are calculated, and regional power demands are calculated by the sectoral nominal GDP shares.

	Н	T	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
65	Northern region >		T				2002			2000		
66	(1) Census	Population	Million	NPOP	30.0	30.9	37.1	37.5				
67		G.R. of Population	G%	NPOPX		3.0	1.3	1.3	1.4	1.40	0.75	0.75
68			070	IN OLD		0.0	1+0	1.0	1+1	1+10	0.10	0.10
69	(3) NGDP nominal	NGDP	Million Dong	NGNTI	15,537.9	28,676.3	193,991.3	218,926.5				
70		Industry	Million Dong		3,312.4	6,470.2	63,674.6	74,073.2				
71		Commercial	Million Dong	NGNCO	6,911.9	13,085.4	86,001.5	96,585.1				
72		Agriculture	Million Dong	NGNAG	5,313.7	9,120.7	44,315.2	48,268.2				
73		1151 1041 6410		manna	0,010,1	0,120.1	11,010+0	10,000+0				
74		Share of NGDP	%	NGNTLX	37.0	37.4	36.2	36.2				
75		Share of Industry	%	NGNINX	31.4	32.9	31.8	31.8				
76		Share of Commercial	1/0 1/2	NGNCOX	38.3	39.1	39.4	39.4				
.77		Share of Agriculture	170 1%	NGNAGX	39.8	38.7	37.9	37.9				
78			1/0	NUMBER	00+0	0011	01+0	01.0				
.79	(4) RGDP 1994 price	RGDP	Million Dong	NGRTI	48,874.0	52,201.0	113,422.0	121,464.0				
80	(i) nobi 1004 pi 105	Industry	Million Dong	NGRIN	10,419.0	11,778.0	37,229.0	41,097.0				
.81		Commercial	Million Dong		21,741.0	23,820.0	50,283.0	53,587.0				
.82		Agriculture	Million Dong		16.714.0	16.603.0	25.910.0	26,780.0				
.83		Ingiliouliule	MITTION DONE	NUINU	10,114.0	10,000.0	20,010+0	20,100.0				
184 184		G.R. of RGDP	<u>%</u>	NGRTLX		6.8	6.5	7.1	7.9	7.9	8.2	8.
85		G.R. of Industry	1/0 1/2	NGRINX		13.0	12.1	10.4	11.5	11.5	8.8	8.
30 86		G.R. of Commercial	_/∪ √	NGROOX		9.6	3.8	6.6	7.7	7.7	8.4	8.
87 87		G.R. of Agriculture	_/0 /	NGRAGX		-0.7	4.1	3.4	2.3	2.3	2.1	2.
.88		d.N. OI Agriculture	/0	NORMON		-U+I	4+1	0.4	2+0		6.1	<i>L</i> .
89		GDP E.V. to RGDP		NEVTLX		1.2	1.0	1.0	1.00	1.00	1.03	1.03
190 190		Industry E.V. to RGDP		NEVILA		2.2	1.9	1.0	1.46	1.46	1.00	1.0
.91		Commercial E.V. to RGDP		NEVCOX		1.6	0.6	0.9	0.98	0.98	1.06	1.00
92		Agriculture E.V. to RGDP		NEVAGX		-0.1	0.6	0.5	0.29	0.29	0.30	0.3
93		INSTITUTION C 1.1. W MUDI		NETINGA		0.1	0+0	0.0	0+20	0+20	0.00	0.0
94	(5) Power demand in final (uN-total	GWh	NWDTOT	3.162.5	3,290.4	11,421.4	13,572.9				
.95		Agriculture.Forestry.Fishery	GWh	NWDMAG	139.9	144.8	279.9	286.0				
.96		Industry & Construction	GWh	NWDMIN	1,468.6	1,444.9	4,380.8	5,232.3				
.97		Commercials & Services.	GWh	NWDMCO	31.1	33.0	365.4	401.4				
98		Office & Residentials	Gwh	NWDMRE	1,443.7	1.585.7	5.835.9	6,981.3				
99		Others	GWh	NWDMOT	79.2	82.0	559.4	671.9				
00		Vuici 5	Umii	INMUNIVI	10+4	02.0	000+4	011.0				
01	(6) Power demand in final (N-totol	GWh	NADTOT	3,162.5	3,290.4	11,421.4	13,572.9				
i01 i02	Adjusted	Agriculture.Forestry.Fishery	GWh	NADNAG	139.9	144.8	279.9	286.0				
02	ກັບງາວ ເອັນ	Industry & Construction	GWh	NADMIN	1,468.6	1,444.9	4,380.8	5,232.3				
03 04		Commercials & Services.	GWh	NADMIN	31.1	1,444.8	4,000.0	401.4				
04 05		Office & Residentials	GWh	NADMCO	1,443.7	1,585.7	5,835.9	6,981.3				
00 06		Others	GWh	NADMAL	1,445.7	1,000.7	559.4	671.9				
uo 07		Vuiers	UWII	INDMOT	18.2	04.U	008.4	6,110				
	(7) Lood footor	LF	0/	NLOADF			57.0	E0 0	58.3	58.5	60 7	01.4
08	(7) Load factor	· · · · ·	/0 Jum					58.0		0,80	63.7	64.0
09		Peak demand	MW	NPMAX			2,880.0	3,221.0	3,494.0			
510 511												

a. Census

Population in North region is calculated by the growth rate of the population in North region. The Growth rate is exogenous.

b. NGDP nominal

Nominal GDP is calculated by real GDP and GDP deflator. The sectoral nominal GDP are

consisted of Industry, Commercial and Agriculture sector. The sectoral GDP also are calculated by sectoral real GDP and GDP deflator. The share of the sectoral nominal GDP are calculated.

c. RGDP 1994 price

Real GDP and sectoral real GDP in North region are exogenous. The actual data are input and the growth rates of the real GDP are calculated. The growth rates of the real GDP are exogenous. The growth rates are referred to Social Economic Development Plan.

d. Power demand in final use

Power demand in final use in North region are input. The power demand is classified to Agriculture & Forestry & Fishery, Industry & Construction, Commercials & Services Office & Residential and Other sectors.

The power demand in Agriculture & Forestry & Fishery sector in North region is calculated by The following expression.

The power demand in Agriculture sector in North

= The power demand in Agriculture sector in the whole country

* Agriculture GDP share in North

The power demand in Industry & Construction sector in North region is calculated by the following expression.

The power demand in Industry & Construction sector in North

= The power demand in Industry & Construction sector in whole country

* Industry & Construction GDP share in North

The power demand in Commercial & Service sector in North region is calculated by the following expression.

The power demand in Commercial & Service sector in North

= The power demand in Commercial & Service sector in whole country

* Commercial & Service GDP share in North

The power demand in Industry & Construction sector in North region is calculated by the following expression.

The power demand in Office & Residential sector in North

= The power demand in Office & Residential sector in whole country

* GDP share in North

The power demand in Other sector in North region is calculated by The following expression.

The power demand in Other sector in North

= The power demand in Other sector in the whole country

* GDP share in North

(Other sector in North region included transportation demand.)

e. Power demand in final use Adjusted

When summing sectoral power demands by region, the total of the sectoral power demands do not meet to the power demand in sectoral forecasting. Therefore, the sector power demands by region have to be adjusted by the following expressions.

Power demand in Agriculture sector in North

Power demand in Agriculture in North / Power demand in Agriculture in regional total
 * power demand in Agriculture in sector forecasting

Power demand in Industry sector in North

Power demand in Industry in North / Power demand in Industry in regional total
 * power demand in Industry in sector forecasting

Power demand in Commercial sector in North

= Power demand in Commercial in North / Power demand in Commercial in regional total
 * power demand in Commercial in sector forecasting

Power demand in Residential sector in North

Power demand in Residential in North / Power demand in Residential in regional total
 * power demand in Residential in sector forecasting

Power demand in Other sector in North

= Power demand in Other in North / Power demand in Other in regional total * power demand in Other in sector forecasting

Agriculture means Agriculture & Forestry & Fishery

Industry means Industry & Construction

Commercial means Commercials & Services.

Residential means Office & Residential

(13) Power demand forecast in Center region

The future power demand is shared to North, Center and South regions by regional GDP. The regional GDP and sector GDP are exogenous. Sectoral nominal GDP are calculated by the sectoral real GDP and GDP deflator. The shares of sectoral nominal GDP are calculated and power demand are shared by the sectoral nominal GDP shares.

E	H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
512	Central region >	1	J	LIME	1990	1991	2002	2003	2004	2005	2024	2025
513	(1) Census	Population	Milliom	CPOP	9,632.5	9,925.1	12,608.6	12,772.5				
514	(1) oonsus	G.R. of Population	G%	CPOPX	8,002.0	3.0	12,000.0	12,112.0	1.4	1.40	0.75	0.75
515			0/0			0.0	1.0	1.0	1.4	1.40	0.10	0.10
515 516	(3) GDP nominal	NGDP	Million Dong	(Y WIT	3.646.2	6.662.4	51.893.7	58.186.8				
517		Industry	Million Dong		628.5	1,131.6	13,202.2	15,358.2				
518		Commercial	Million Dong	CONCO	1,467.2	2,697.3	20,197.5	22,685.0				
519		Agriculture	Million Dong		1,550.5	2,833.5	18,494.0	20,143.6				
520		Agriculture	MILLION DONE	UUIWU	1,000.0	2,000.0	10,484.0	20,140.0				
520		Share of NGDP	0/	CGNTLX	8.7	8.7	9.7	9.6				
522		Share of Industry	/0	CGNILX	6.0	5.8	6.6	6.6				
522 523		Share of Commercial	/0	CGNCOX	8.1	8.1	9.2	9.2				
524		Share of Agriculture	/0	CGNAGX	11.6	12.0	9.2 15.8	15.8				
525		Share of Agriculture	/0	COINHOA	11.0	14.0	10.0	10.0				
526	(4) RGDP 1994 price	RGDP	Million Dong	ודסייי	11.469.0	12,128.0	30,341.0	32,283.0				
520 527	(4) NGDF 1004 price	Industry	Million Dong		11,400.0	2.060.0	7.719.0	8.521.0				
528		Commercial	Million Dong		4,615.0	4,910.0	11,809.0	12,586.0				
520 529		Agriculture	Million Dong		4,015.0	4,910.0 5,158.0	10,813.0	12,000.0				
530		Agriculture	million tons	UNTIGHUT	4,0rr.U	0,100.U	10,010.0	11,170.0				
531		G.R. of RGDP	0/	CGRTLX		5.7	6.8	6.4	8.2	8.2	9.3	9.3
532		G.R. of Industry	/0	CGRINX		4.2	14.0	10.4	11.2	11.2	10.8	10.8
533		G.R. of Commercial	/0	CGROOX		6.4	4.5	6.6	8.0	8.0	9.5	9.5
534		G.R. of Agriculture	70 @/	CGRAGX		5.8	4.0	3.4	5.7	5.7	3.8	9.5 3.8
535		d.R. OI Agriculture	/0	COUNDY		0.0	4.0	0.4	0.1	0.1	0.0	0.0
536		GDP E.V. to RGDP		CEVTLX		1.0	1.1	0.9	1.04	1.04	1.18	1.18
537		Industry E.V. to RGDP		CEVILA		0.7	2.2	1.4	1.04	1.04	1.10	1.10
538		Commercial E.V. to RGDP		CEVINA		1.1	0.7	0.9	1.42	1.42	1.38	1.38
539		Agriculture E.V. to RGDP		CEVOON		1.0	0.7	0.9	0.72	0.72	0.54	0.54
540		USITCUICULE D.4. CO NODI		CEAUQY		1.0	0+1	0.0	0.12	0.14	0.04	0.04
540 541	(5) Power demand in final u	(C-totol	G₩h	CWDTOT	434.2	469.1	3,095.0	3,512.3				
542		Agriculture.Forestry.Fishery	GWh	CWDIOI	11.4	12.4	85.8	73.5				
543		Industry & Construction	GWh	CWDMIN	179.4	187.2	1.058.3	1,250.2				
544		Commercials & Services.	GWh	CWDMIIN	29.5	32.7	1,000.0	1,200.2				
545		Office & Residentials	Gwh	CWDMCO	206.5	228.9	1,636.4	1,867.8				
546		Others	GWh	CWDMINE	7.4	7.9	200.9	1,001.0				
540 547		o uters	GWII	CWDHOI	r.4	1.8	200.9	190.1				
548	(6) Power demand in final u	(C-toto)	G₩h	CADTOT	434.2	469.1	3,095.0	3,512.3				
040 549	Adjusted	Agriculture.Forestry.Fishery	GWh	CADIOI	404.2	12.4	85.8	73.5				
550 b	nujusteu	Industry & Construction	GWh	CADMAG	11.4	12.4	00.0	1,250.2				
550 551		Commercials & Services.	GWh	CADMIN	29.5	32.7	1,000.0	1,250,2				
552		Office & Residentials	Gwh	CADMCO	29.5	228.9	1.636.4	1.867.8				
553		Others	GWh	CADMINE	7.4	7.9	200.9	1,007.0				
554		oulers	G#II	CADHOI	r.4	1.8	200.8	190.7				
555 555	(7) Load factor	LF	¢/	CLOADF			58.0	61.0	61.1	61.3	63.9	64.0
556	(1) LUBU ISCIOL	Peak demand	№ ₩	CLUADF			684.0	773.0	853.0	01.3	05.8	04.0
000 557		rean dellatid	四 冊	ULHUY			004.U	0.611	0.000			
558												
000					I			I I		1	1	

Table 2-3-20 Power demand forecast in Center region in Data sheet

a. Census

Population in Center region is calculated by the growth rate of the population in Center region. The Growth rate is exogenous.

b. NGDP nominal

Nominal GDP is calculated by the variables of Real GDP and GDP deflator. The sectoral Nominal GDP is consisted of Industry, Commercial and Agriculture sector. The sectoral GDP

also is calculated by the variables of Sectoral Real GDP and GDP deflator. The shares of the sectoral nominal GDP are calculated.

c. RGDP 1994 price

Real GDP and sectoral real GDP in Center region are exogenous. The actual data are input and the growth rates of the actual real GDP are calculated. The growth rates of the future real GDP are exogenous. The growth rates are input after referring Social Economic Development Plan.

d. Power demand in final use

Power demand as final use in Center region are input, The power demand is classified to Agriculture & Forestry & Fishery, Industry & Construction, Commercials & Services Office & Residential and Other sector.

The power demand in Agriculture & Forestry & Fishery sector in Center region is calculated by the following expression.

The power demand in Agriculture sector in Center

= The power demand in Agriculture sector in the whole country

* Agriculture GDP share in Center

The power demand in Industry & Construction sector in Center region is calculated by the following expression.

The power demand in Industry & Construction sector in Center

= The power demand in Industry & Construction sector in the whole country

* Industry & Construction GDP share in Center

The power demand in Commercial & Service sector in Center region is calculated by the following expression.

The power demand in Commercial & Service sector in Center

= The power demand in Commercial & Service sector in the whole country

* Commercial & Service GDP share in Center

The power demand in Industry & Construction sector in Center region is calculated by the following expression.

The power demand in Office & Residential sector in Center

= The power demand in Office & Residential sector in the whole country

* GDP share in Center

The power demand in Other sector in Center region is calculated by the following expression.

The power demand in Other sector in Center

= The power demand in Other sector in the whole country

* GDP share in Center

e. Power demand in final use Adjusted

When summing sector power demands by region, the total of the sector power demands do not meet to the power demand in sector forecasting. Therefore, the sector power demands by region have to be adjusted by the following expressions.

Power demand in Agriculture sector in Center

Power demand in Agriculture in Center / Power demand in Agriculture in regional total
 * Power demand in Agriculture in whole country

Power demand in Industry sector in Center

= Power demand in Industry in Center / Power demand in Industry in regional total
 * Power demand in Industry in whole country

Power demand in Commercial sector in Center

Power demand in Commercial in Center / Power demand in Commercial in regional total
 * Power demand in Commercial in whole country

Power demand in Residential sector in Center

= Power demand in Residential in Center / Power demand in Residential in regional total
 * Power demand in Residential in whole country

Power demand in Other sector in Center

Power demand in Other in Center / Power demand in Other in regional total
 * Power demand in Other in whole country

(14) Power demand forecast in South region

The future power demand is shared to North, Center and South regions by regional GDP. The regional GDP and sectoral GDP are exogenous. Sectoral nominal GDP are calculated by the variables of the sectoral real GDP and GDP deflator. The shares of sectoral nominal GDP are calculated, and the power demands are shared by the shares of the sectoral nominal GDP.

= H	I	J	TIME	1990	1991	2002	2003	2004	2005	2024	2025
559 <southern region=""></southern>											
560 (1) Census	Population	Milliom	SPOP	24.5	24.6	29.2	29.5				
561	Population share	S%	SPOPX		0.5	1.3	1.3	1.4	1.40	0.75	0.75
562											
563 (3) GDP nominal	NGDP	Million Dong	SGNTL.	22,770.9	41,368,3	289,683.7	328,472.7				
564	Industry	Million Dong	SGNIN	6,620.6	12,055.3	123,374.4	143,523.2				
565	Commercial	Million Dong	SGNCO	9,660.9	17,691.1		126,157.1				
500	Agriculture	Million Dong		6,489.3	11,021.9	53,970.9	58,792.4				
567	inge rout out o			0,10010	11,00110						
568	Share of NGDP	%	SGNTLX	54.3	53.9	54.1	54.2				-
569	Share of Industry	%	SGNINX	62.7	61.3	61.6	61.6				
570	Share of Commercial	%	SGNCOX	53.6	52.9	51.4	51.4				
571	Share of Agriculture	%	SGNAGX	48.6	49.3	46.2	46.2				
572	Shore of horeareare	/*	outiloit.	.010			1015				
573 (4) RGDP 1994 price	RGDP	Million Dong	SGRTL	71.625.0	75,305.0	169.371.0	182.242.0				
574	Industry	Million Dong		20,825.0	21,945.0	72.134.0	79.629.0				
575	Commercial	Million Dong		30,388.0	32,204.0	65,678.0	69,994.0				
576	Agriculture	Million Dong	SGRAG	20,412.0	21,156.0	31,559.0	32,619.0				
577	ing, i bar sarto										
578	G.R. of RGDP	%	SGRTLX		5.1	7.5	7.6	7.7	7.7	7.8	7.6
579	G.R. of Industry	1%	SGRINX		5.4	7.7	10,4	9.8	9.8	7.9	7.9
580	G.R. of Commercial	%	SGRCOX		6.0	9.1	6.6	7.3	7.3	8.0	8.0
581	G.R. of Agriculture	%	SGRAGX		3.6	3.9	3.4	3.9	3.9	2.1	2.1
582	same of high four our o	10	Dormon .		0.0		011	0.0			2.1
583	GDP E.V. to RGDP		SEVTLX		0.9	1.2	1.0	0.98	0.98	0.94	0.94
584	Industry E.V. to RGDP		SEVINX		0.9	1.2	1.4	1.24	1.24	0.99	0.99
585	Commercial E.V. to RGDP		SEVCOX		1.0	1.4	0.9	0.92	0.92	1.00	1.00
586	Agriculture E.V. to RGDP		SEVAGX		0.6	0.6	0.5	0.50	0.50	0.30	0.30
587	Information period in the line of						0.0	0.00			
588 (5) Power demand in final	uS-total	G₩h	SWDTOT	2,588.7	2,824.3	15,142.3	17,775.3				
589	Agriculture.Forestry.Fishery	GWh	SWDMAG	38.5	36.2	115.3	153.3				
590	Industry & Construction	GWh	SWDMIN	1,227.6	1,448.1	7.215.2	8,827.2				
591	Commercials & Services.	G₩h	SWDMCO	68.3	67.2	942.1	1.025.2				
592	Office & Residentials	Gwh	SWDMRE	1.127.8	1.142.9	6.221.4	6.977.7				
593	Others	G₩h	SWDMOT	126.5	129.9	648.3	791.9				
594				100.0	10010	0.0.0					
595 (6) Power demand in final	uS-total	G₩h	SADTOT	2,588.7	2,824.3	15,142.3	17,775.3				
596 Adjusted	Agriculture.Forestry.Fishery	G₩h	SADMAG	38.5	36.2	115.3	153.3				
597	Industry & Construction	GWh	SADMIN	1,227.6	1,448.1	7,215.2	8,827.2				
598	Commercials & Services.	GWh	SADINCO	68.3	67.2	942.1	1.025.2				
599	Office & Residentials	Gwh	SADMRE	1,127.8	1,142.9	6,221.4	6,977.7				
600	Others	Gwh	SADNOT	126.5	129.9	648.3	791.9				
601			See the first of the	10010	10010	01010	10210				
602 (7) Load factor	IF	8	SLOADF			69.0	69.0	69.1	69.3	71.9	72.0
603	Peak demand	MW	SPMAX			3,112.0	3,529.0	4.073.0		11.0	1210
604	. cost domosta		~1 00.01			0,110+0	0,000+0	1,010+0			
605											
000				I		1	I		1	1	

 Table 2-3-21 Power demand forecast in South region in Data sheet

<u>a. Census</u>

Population in South region is calculated by the growth rate of the population in South region. The Growth rate is exogenous.

b. NGDP nominal

Nominal GDP is calculated by the variables of real GDP and GDP deflator. The sectoral Nominal GDP is consisted of Industry, Commercial and Agriculture sector. The sectoral GDP also are calculated by the variables of sectoral real GDP and GDP deflator. The shares of the

sectoral nominal GDP are calculated.

c. RGDP 1994 price

Real GDP and sectoral real GDP in South region are exogenous. The actual data are input and the growth rates of the real GDP are calculated. The growth rates of the real GDP are exogenous. The v growth rates are input after referring Social Economic Development Plan.

d. Power demand in final use

Power demand as final use in South region are input. The power demand is classified to Agriculture & Forestry & Fishery, Industry & Construction, Commercials & Services Office & Residential and Other sector.

The power demand in Agriculture & Forestry & Fishery sector in South region is calculated by the following expression.

The power demand in Agriculture sector in South

= The power demand in Agriculture sector in whole country

* Agriculture GDP share in South

The power demand in Industry & Construction sector in South region is calculated by the following expression.

The power demand in Industry & Construction sector in South

= The power demand in Industry & Construction sector in whole country

* Industry & Construction GDP share in South

The power demand in Commercial & Service sector in South region is calculated by the following expression.

The power demand in I Commercial & Service sector in South

= The power demand in Commercial & Service sector in whole country

* Commercial & Service GDP share in South

The power demand in Industry & Construction sector in South region is calculated by the following expression.

The power demand in Office & Residential sector in South

= The power demand in Office & Residential sector in whole country

* GDP share in South

The power demand in Other sector in South region is calculated by the following expression.

The power demand in Other sector in South

= The power demand in Other sector in whole country * GDP share in South

e. Power demand in final use Adjusted

When summing sectoral power demands by region, the total of the sectoral power demands do not meet to the power demand in whole country. Therefore, the sectoral power demands by region have to be adjusted by the following expressions.

Power demand in Agriculture sector in South

Power demand in Agriculture in South / Power demand in Agriculture in regional total
 * power demand in Agriculture in whole country

Power demand in Industry sector in South

Power demand in Industry in South / Power demand in Industry in regional total
 * power demand in Industry in whole country

Power demand in Commercial sector in South

Power demand in Commercial in South / Power demand in Commercial in regional total
 * power demand in Commercial in whole country

Power demand in Residential sector in South

```
    Power demand in Residential in South / Power demand in Residential in regional total
    * power demand in Residential in whole country
```

Power demand in Other sector in South

= Power demand in Other in South / Power demand in Other in regional total * power demand in Other in whole country

2.4 Model sheet

Model sheet is created by SimpleE. The model structures consisted of definition equation and regression equations are set in the Model sheet.

"=" in Option type means Definition equation. Variable names in "Internal Y" are defined by the expressions in X1 area.

"\$CA" in Option type means a regression equation. \$CA is a command to keep the

continuation of the forecasting values and the latest actual values. Examples;

Variable name YY in Internal Y"

Variable name AA in X1 area, BB in X2 area

"YY = a*AA + b*BB + c" is defined as regression equation by "\$CA".

("\$CA" means "\$CA \$LS", \$LS is a command to make a regression analysis, it can be omitted, then \$CA" and "\$CA \$LS" are same meaning.)

The variables are arranged in line with the data processing orders (model structure orders). Then calculation of the model is basically performed from the upper variables to below variables. It is possible that the upper variables are calculated by using the results of the below variables. Especially, if the model contains the simultaneous equations in the model structure, the SimpleE can solve the equations.

The Model sheet has the following model structures

NO.	CONTENTS	Line numbers
1	Social forecasting	5~30
2	Economic forecasting	30~120
3	Coefficient& Energy prices	121~163
4	Power demand forecasting in Africulture.Forestry.Fishry sector	164~376
5	Power demand forecasting in Industry sector	
6	Power demand forecasting in Transportation sector	
7	Power demand forecasting in Commercial & Services sector	
8	Power demand forecasting in Residential	
9	Power demand forecasting in Other sector	
10	Power supply forecasting	377~422
11	Energy balance	423~462
12	Power demand in North region	
13	Power demand in Center region	
14	Power demand in South region	463~637

 Table 2-4-1 Model structure in Model sheet.

(1) Social indicator forecasting

Social indicators are forecasted by the following expressions.

G	Н	I	J	Y	Type	XI	X2	X3	X4	Х5
5 IE data	Economic data	Exchange rate	Dn/US\$	ECEXC	=	ECEXC				
6										
7 IE data	Population	Country number	Million pe	POPNUM	=	Lag1.POPNUM*(1+POPNGR/100)			
8		Growth rate	G%	POPNGR		POPNGR				
9		Urban number	Million pe	POPUBN	=	POPNUM*POPUGR/100				
10		Urban population share		POPUGR	-	POPUGR				_
11 12 IE data	Household	County Number	Million HH		-	Lag1.HHNUM*(1+HHNGR/100)				
13 12 ua ta		Growth rate	G%	HHNGR	-					
13		Urban number	Million HH		-	HHNUM*HHUGR/100				
14		Urban HH rate	S%	HHUGR	-	POPUGR				
16				ппоак		FUFUGR				
17 ADB	Labor number	Agriculture	Million pe	I LABAGR	-	POPNUM*LABSHP/100*LASAGR/	/100			
18 ADB		Manufacturing & Mining	Million pe	LABMAN	=	POPNUM*LABSHP/100*LASMAN	/100			
19 ADB		Services & Others	Million pe	LABOTH	=	POPNUM*LABSHP/100*LASOTH/	100			
20 ADB		Unemployed	Million pe	LABUNE	=	POPNUM*LABSHP/100*LASUNE/	100			
21		Total	Million pe	LABTOT	=	LABAGR+LABMAN+LABOTH+LA	BUNE			
22				-						
23		Labor force share to Pop	<u>%</u>	LABSHP	\$DL	POPNUM				
24	Labor shares	Agriculture & Forestry		LASAGR	-	100-LASMAN-LASOTH-LASUNE				
26		Manufacturing & Mining	S%	LASMAN	\$CA	RGPMAN/RGDP	DUM2002Z	DUM2003T		
27		Services & Others	S%	LASOTH	\$CA	(RGPTRA+RGPTRN+RGPSER)/F		DUM2003T		
28		Unemployed		LASUNE	=	LASUNE		2 011120001		
29		Total	S%	LASTOT	-	100				
30										

 Table 2-4-2 Social indicator forecasting in Model sheet

a. Exchange rate

The exchange rates are exogenous.

b. Population

Population in whole country = Population in whole country(1)* (1+ GR of population) The GR of population are exogenous.

(Population in whole country(1) means Population in whole country in the previous year)

Urban population = Population in whole country* Share of Urban population

Shares of Urban population are exogenous.

c. Household

Households in whole country = Households in whole country $(1)^{*}(1+GR \text{ of Households})$ GR of Households is exogenous.

Household in urban = Households in whole country * Shares of Households in urban GR of Households in urban are exogenous.

d. Labor number

Agriculture labor force = Population in whole country* Share of Labor force

* Share of Agriculture labor force Manufacturing & Mining = Population in whole country* Share of Labor force * Share of Manufacturing & Mining labor force Services & Other labor force = Population in whole country* Share of Labor force * Share of Services & Other labor force Unemployed = Population in whole country* Share of Labor force * Share of Unemployed

e. Labor shares

Agriculture labor share = The total - Manufacturing - Services - Unemployed Manufacturing labor share = f(Manufacturing GDP / real GDP) Services & Others=f((Transportation+Services+Trade)/ real GDP) Unemployed is exogenous. (f(Manufacturing GDP / real GDP) means regression analysis.)

(2) Economic forecasting

In the economic forecasting block, the forecasting values required for energy and power demand forecasting are calculated. For setting the economic indicators and the growth rates from the Social Economic Development Plan as the preconditions of the model, the endogenous variables are calculated by using the economic indicators and the growth rates.

a. nGDP at current price

Nominal GDP = Real GDP * GDP deflator

b. uGDP on US \$ base

GDP on US\$ base = Nominal GDP / Exchange rate.

c. uGDP per capita on US\$ base

GDP per capita on US\$ base = GDP on US\$ base / Population.

d. rGDP at 1994 price

Real GDP = Real GDP(1) * (1+ GR of real GDP) GR of real GDP is exogenous. (GDP(1) is GDP in the previous year)

e. GDP deflator 1994 price

GDP deflator 1994 price = GDP deflator 1994 price(1) * (1+ GR of GDP deflator) GR of GDP deflator is exogenous.

3	Н	1	J	Y	Type	X1	X2
IE data	GDP	nGDP at current price	Billion Dn	GDNOM	=	RGDP*GDFLT/100	
		Growth rate	G%	GDNGR	=	(GDNOM/Lag1.GDNOM-1)*100	
		uGDP on US \$ base	Million US\$	GDDOL	=	GDNOM/ECEXC*1000	
		Growth rate	G%	GDDGR	=	(GDDOL/Lag1.GDDOL-1)*100	
		uGDP per capita on US\$ base	US\$ per capita	GDPDOL	=	GDDOL/POPNUM	
		Growth rate	G%	GDPDGR	=	(GDPDOL/Lag1.GDPDOL-1)*100	
				and the second second			
		rGDP at 1994 price	Billion Dn	RGDP	-	Lag1.RGDP*(1+RGDPGR/100)	
E data		Growth rate	G%	RGDPGR	-	RGDPGR	
		drow dr Ta te	0/0	habran		KODIOK	
DB		GDP deflator 1994 price	1994=100	GDFLT	=	Lag1.GDFLT*(1+GDFGR/100)	
עע		Growth rate	G%	GDFGR	-	GDFGR	
			0,0	abrar	-	GDFGK	
DD		"Cusas Descatio Caulans	Dillion Dr	000011	-	GDSHA*RGDP/100	
IDB		rGross Domestic Savings	Billion Dn	GDSAV			
		Share to GDP	76	GDSHA	=	GDSHA	
		Elasticity to Private Con		GDEVPC	=	GDEVPC	
	-	rLabor productivity in Manuf			-	(RGDP)/(LABAGR+LABMAN+LABOTH)	
		Growth rate	G%	LAPMGR	=	(LAPMAN/Lag1.LAPMAN-1)*100	
				-			
E data	nGDE at the current p	Final consumption	Billion Dn	NGEFC	=	RGEFC*GDFLT/100	
E data		Gross fixed capital formatic	Billion Dn	NGEGF	=	RGEGF*GDFLT/100	
E data		Exports of goods and service		NGEEX	-	RGEEX*GDFLT/100	
E data	1	Import of goods and services		NGEIM	=	RGEIM*GDFLT/100	
E data	1	Statistical discrepancy	Billion Dn	NGESD	-	RGESD*GDFLT/100	
		Total	Billion Dn	NGETOT	-	NGEFC+NGEGF+NGEEX-NGEIM+NGESD	
			Ph				
	rGDE at 1994 price	Final consumption	Billion Dn	RGEFC	\$CA	RGDP/POPNUM*1000	LABMAN+LABOT
		Gross fixed capital formatic		RGEGF	\$CA	GDSAV+0.4*(Lag1.RGEEX-Lag1.RGEIM)	
		Exports of goods and service		RGEEX	=	RGDP-RGEFC-RGEGF+RGEIM-RGESD	
		Import of goods and services		RGEIM	\$CA	RGDP	
		Statistical discrepancy	Billion Dn	RGESD	=	0.9*Lag1.RGESD	
		Total	Billion Dn	RGETOT	-	RGEFC+RGEGF+RGEEX-RGEIM+RGESD	
		10041	DITITION DI	RGETOT	-	KGEF GERGEGEFRGEDER-RGEIMERGEGE	
	Shares of rGDE	Final consumption	¢/	RREFC	-	RGEFC/RGETOT*100	
	Shares Of TODE	Gross fixed capital formatic	/0	RREGF	-		
						RGEGF/RGETOT*100	
		Exports of goods and service		RREEX	=	RGEEX/RGETOT*100	
		Import of goods and services		RREIM	=	RGEIM/RGETOT*100	
	-	Statistical discrepancy	%	RRESD	=	RGESD/RGETOT*100	
		Total	%	RRETOT	=	RGETOT/RGETOT*100	
				_			
E data	nGDP at the current p	Agriculture & Forestry	Billion Dn	NGPAGR	=	RGPAGR*GDFLT/100	
E data		Manufacturing & Mining	Billion Dn	NGPMAN	=	RGPMAN*GDFLT/100	
E data		Commercial & Trade	Billion Dn	NGPTRA	=	RGPTRA*GDFLT/100	
E data		Transport and communications	Billion Dn	NGPTRN	-	RGPTRN*GDFLT/100	
E data		Service & Others	Billion Dn	NGPSER	=	RGPSER*GDFLT/100	
		Total	Billion Dn	NGPTOT	=	RGPTOT*GDFLT/100	
	rGDP at 1994 price	Agriculture & Forestry	Billion Dn	RGPAGR	=	WRKAGR/WRKTOT*RGDP	
		Manufacturing & Mining	Billion Dn	RGPMAN	=	WRKMAN/WRKTOT*RGDP	
		Commercial & Trade	Billion Dn	RGPTRA	-	WRKTRA/WRKTOT*RGDP	
		Transport and communications		RGPTRN	-	WRKTRN/WRKTOT*RGDP	
		Service & Others	Billion Dn	RGPSER	-	WRKSER/WRKTOT*RGDP	
		Total	Billion Dn	RGPTOT	-	WRKTOT/WRKTOT*RGDP	
		10.001		- NGETUT	-		
	Shares of rGDP	Agriculture & Forestry	S%	SHPAGR	-	RGPAGR/RGPTOT*100	
	Inites of IdDI	Manufacturing & Mining	5%	SHPAGR	-	RGPMAN/RGPTOT*100	
		Commercial & Trade	5% S%			RGPTRA/RGPTOT*100	
		Transport and communications	5% CV	SHPTRA			
					-	RGPTRN/RGPTOT*100	
		Service & Others	S%	SHPSER	-	RGPSER/RGPTOT*100	
		Total	S%	SHPTOT	-	RGPTOT/RGPTOT*100	
	Castan manth and	1 au 1 4		-	122	BBBACB	
	bector growth rate in	Agriculture & Forestry		RRPAGR	-	RRPAGR	
		Manufacturing & Mining		RRPMAN	=	RRPMAN	
		Commercial & Trade		RRPTRA	-	RRPTRA	
		Transport and communications		RRPTRN	=	RRPTRN	
		Service & Others		RRPSER	-	RRPSER	
		Total		RRPTOT	=	RRPTOT	
	Elasticity	Agriculture & Forestry		ELAAGR	=	RRPAGR/RGDPGR	
	5	Manufacturing & Mining		ELAMAN	-	RRPMAN/RGDPGR	
		Commercial & Trade		ELATRA	=	RRPTRA/RGDPGR	
		Transport and communications		ELATEN	-	RRPTRN/RGDPGR	
		Service & Others		ELASER	-	RRPSER/RGDPGR	
		Total		ELASER	-	RRPTOT/RGDPGR	
		10.001					
	rGDP by Elasticity	Agriculture & Forestry	2 ¹	WRKAGR	-	Lag1.RGPAGR*(1+ELAAGR*RGDPGR/100	n
	TODE DY ETASCICITY						
		Manufacturing & Mining		WRKMAN		Lag1.RGPMAN*(1+ELAMAN*RGDPGR/100	
		Commercial & Trade		WRKTRA	-	Lag1.RGPTRA*(1+ELATRA*RGDPGR/100)	
****				WRKTRN	.=	Lag1.RGPTRN*(1+ELATRN*RGDPGR/100)	
		Transport and communications					
		Transport and communications Service & Others Total		WRKSER		Lag1.RGPSER*(1+ELASER*RGDPGR/100 WRKAGR+WRKMAN+WRKTRA+WRKTRN)

Table 2-4-3 Economic forecasting block in Model sheet

f. rGross Domestic Savings

rGross Domestic Saving = Real GDP * Shares of rGross Domestic Saving Shares of rGross Domestic Saving is exogenous.

g. rLabor productivity in Manufacturing at 1994 price

rLabor productivity in Manufacturing

= Real GDP / (Agriculture labor force + Manufacturing labor force + Other labor force) GR of rLabor productivity in Manufacturing

=. rLabor productivity in Manufacturing /. rLabor productivity in Manufacturing(1) -1

h. nGDE at the current price

Final consumption = Real Final consumption * GDP deflator Gross fixed capital formation = Real Gross fixed capital formation * GDP deflator Exports = Exports * GDP deflator Import = Import * GDP deflator Statistical discrepancy = Statistical discrepancy* GDP deflator Nominal GDE= Final consumption +Gross fixed capital formation + Exports - Import + Statistical discrepancy

i. rGDE at 1994 price

Real Final consumption = f(Real GDP / Population, Manufacturing and Other labor force) Real Gross fixed capital formation =f(Saving + 0.4*(Export(1)- Import(1)) Real Exports = Real GDP- Real Final consumption

- Real Gross fixed capital formation + Real Import

Real Import = f(Real GDP) Real Statistical discrepancy = 0.9* Real Statistical discrepancy(1)

j. Shares of rGDP

Share of Real Final consumption = Real final consumption / Real GDP Share of Real Gross fixed capital formation = Real Gross fixed capital formation / Real GDP Share of Real Exports = Exports / Real GDP Share of Real Import = Import / Real GDP Share of Real Statistical discrepancy = Real Statistical discrepancy / Real GDP

k. nGDP at the current price

Nominal GDP of Agriculture & Forestry

= Real GDP of Agriculture & Forestry * GDP deflator

Nominal GDP of Manufacturing & Mining = Real GDP of Manufacturing & Mining * GDP deflator Nominal GDP of Commercial & Trade = Real GDP of Commercial & Trade * GDP deflator Nominal GDP of Transport and communications = Real GDP of C Transport and communications * GDP deflator Nominal GDP of Service & Others = Real GDP of C T Service & Others * GDP deflator Nominal GDP is the summation of the above items.

l. rGDP at 1994 price

Real GDP of Agriculture & Forestry = Real GDP of Agriculture & Forestry in work area / Real GDP in work area * Real GDP Real GDP of Manufacturing & Mining = Real GDP of Manufacturing & Mining in work area / Real GDP in work area * Real GDP Real GDP of Transport & Communication= Real GDP of Transport & Communication in work area / Real GDP in work area * Real GDP Real GDP of Service & Others = Real GDP of Service & Others in work area / Real GDP in work area * Real GDP Real GDP is the summation of the above items.

(Sector GDP in work area are calculated in the below.)

m. Shares of rGDP

The share of Agriculture & Forestry = Real GDP of Agriculture & Forestry / Real GDP The share of Manufacturing & Mining = Real GDP of Manufacturing & Mining / Real GDP The share of Commercial & Trade = Real GDP of Commercial & Trade / Real GDP The share of Transport & Communication

= Real GDP of Transport & communication / Real GDP The share of Service & Others = Real GDP of Service & Others / Real GDP

n. Sector average growth rate in 5 years

GR of Agriculture & Forestry is exogenous.GR of Manufacturing & Mining is exogenous.GR of Commercial & Trade is exogenous.GR of Transport & Communication is exogenous.GR of Service & Others is exogenous

o. Elasticity

Elasticity of Agriculture & Forestry = GR of Agriculture & Forestry / GR of Real GDP Elasticity of Manufacturing & Mining = GR of Manufacturing & Mining / GR of Real GDP Elasticity of Commercial & Trade = GR of Commercial & Trade / GR of Real GDP Elasticity of Transport & Communication = GR of Transport & Communication / GR of Real GDP

Elasticity of Service & Others = GR of Service & Others / GR of Real GDP

P. rGDP by Elasticity

Real GDP of Agriculture & Forestry in work area = Real GDP of Agriculture & Forestry in work(1) (1+ Elasticity of Agriculture & Forestry * GR of Real GDP)

Real GDP of Manufacturing & Mining in work area

= Real GDP of Manufacturing & Mining in work(1)

(1+ Elasticity of Manufacturing & Mining * GR of Real GDP)

Real GDP of Commercial & Trade in work area

= Real GDP of Commercial & Trade in work(1)

(1+ Elasticity of Commercial & Trade * GR of Real GDP)

Real GDP of Transport & Communication in work area

= Real GDP of Transport and Communication in work(1)

(1+ Elasticity of Transport and Communication * GR of Real GDP)

Real GDP of Service & Others in work area

= Real GDP of Service & Others in work(1)

(1+ Elasticity of Service & Others * GR of Real GDP

Real GDP in work area is the summation of the above items.

(3) Coefficient and Energy prices

In the block, energy conversion factors, power efficiencies, energy prices and power tariffs that are needed for energy forecasting are calculated.

F	G	Н	I	J	Y	Type	X1	X2	X3	X4	X5
122	IE data		Standard OI1(10000Kcal/kg)		COFASCO		COFASCO				
	IE data		Coal (5600Kcal/kg)		COFACOA		COFACOA				
124	IE data		Gasol ine(10500Kcal/kg)	10500	COFAGAS	-	COFAGAS				
125	IE data		Kerosene (10320Kcal/kg)	10320	COFAKER	-	COFAKER				
128	IE data		Diesel (10150Kcal/kg)	10150	COFADIE	=	COFADIE				
127	IE data		Petroluem Products	11500	COFAPET	=	COFAPET				
128	IE data		Fuel oil (9910Kcal/Kg)	9910	COFAFUE	=	COFAFUE				
129	IE data		Natural gas (9000Kcal/m3)	9000	COFANAG	=	COFANAG				
130	IE data		Renewable energy (3302Kcal/K	3302	COFAREW	=	COFAREW				
131	IE data		Electricity (860Kcal/KWh)	860	COFAELE	-	COFAELE				
132											
133	IE data	Power efficiency	Power from Thermal(Coal)		COPOCOA	-	COPOCOA				
134	IE data		Power from Thermal(FO)		COPOFOT	=	COPOFOT				
135	IE data		Power from Gasturbine(FO)		COPOFOB	-	COPOFOB				
136	IE data		Power from Gasturbine(GAS)		COPOGAB	=	COPOGAB				
	IE data		Power from Gas steam		COPODAS	=	COPODAS				
	IE data		Power from Diesel		COPODIE	-	COPODIE				
139											
	IEEJ	Energy price	WTI crude oil price	US\$/bbl	EPROWTI	=	EPRCWTI				
	IE data		Crude oil Price in Vietnam			-	EPRCWTI*ECEXC/1000				
	IE data		NG price in Vietnam		EPRNG	-	Lag1.EPRNG*1.02*IF(EPRCWTI/Lag1.EPRC			Lag1.EPRC	WTI-1.02
	IE data		Gasoline price in Vietnam	<u> </u>	EPRGAS	-	LAg1.EPRGAS*(1+0.70*(GRPRCRD/100)+0.	.30*(LAPMG	R/100))		
	IE data		Kerosene price in vietnam	Dong/kg	EPRKER	-	LAg1.EPRKER*(1+0.70*(GRPRCRD/100)+0.				
	IE data		Diesel price in Vietnam		EPRDIE	-	LAg1.EPRDIE*(1+0.70*(GRPRCRD/100)+0.3				
	IE data				EPRFO	-	LAg1.EPRFO*(1+0.70*(GRPRCRD/100)+0.3				
	IE data		Electricity for Agriculture		EPRELA	-	Lag1.EPRELA*(1+0.60*GRPRFO/100+0.40*	LAPMGR/10	0)		
	IE data		Electricity for Residential		EPRELR	-	Lag1.EPRELR*(1+0.60*GRPRFO/100+0.40*				
	IE data		Electricity for Industry use		EPRELI	-	Lag1.EPRELI*(1+0.60*GRPRFO/100+0.40*L		/		
	IE data		Electricity for Commercial u	Dn/KWh	EPRELC	=	Lag1.EPRELC*(1+0.60*GRPRFO/100+0.40*	LAPMGR/10	3)		
151											
152		G.R of Eneergy prices		%	GRPRWTI		IF(Lag1.EPRCWTI>0,(EPRCWTI/Lag1.EPRC	/	.0)		
153			Crude oil Price in Vietnam	%	GRPRCRD		IF(Lag1.EPRCRD>0,(EPRCRD/Lag1.EPRCR				
154			NG price in Vietnam	%	GRPRNG		IF(Lag1.EPRNG>0,(EPRNG/Lag1.EPRNG-1)				
155			Gasoline price in Vietnam	%	GRPRGAS		IF(Lag1.EPRGAS>0,(EPRGAS/Lag1.EPRGA				
158			Kerosene price in vietnam	%	GRPRKER		IF(Lag1.EPRKER>0,(EPRKER/Lag1.EPRKE				
157			Diesel price in Vietnam	%	GRPRDIE		IF(Lag1.EPRDIE>0,(EPRDIE/Lag1.EPRDIE-	/ //			
158			Fuel oil price in Vietnam	%	GRPRFO		IF(Lag1.EPRFO>0,(EPRFO/Lag1.EPRFO-1)				
159			Electricity for Agriculture		GRPRAGR		IF(Lag1.EPRELA>0,(EPRELA/Lag1.EPRELA				
160			Electricity for Residential		GRPRELR		IF(Lag1.EPRELR>0,(EPRELR/Lag1.EPRELR				
161			Electricity for Industry use		GRPRELI		IF(Lag1.EPRELI>0,(EPRELI/Lag1.EPRELI-1				
162			Electricity for Commercial u	%	GRPRELC	=	IF(Lag1.EPRELC>0,(EPRELC/Lag1.EPRELC	C-1)*100,0)			
163											

a. Conversion factor to KTOE

Physical energy units such as kg, m3 and kWh are converted to KTOE. The factors are exogenous.

Energies	KTOE	Exogenous value
Standard Oil	1000t=1KTOE	1.000
Coal	1000t=0.56KTOE	0.560
Gasoline	1000t=1.05KTOE	1.05
Kerosene	1000t=1.032KTOE	1.032
Diesel	1000t=1.015KTOE	1.015
Fuel oil	1000t=0.991KTOE	0.991
Natural gas	Million m3=0.9KTOE	0.900
Renewable energy	1000t=0.3300KTOE	0.330
Electricity	1GWh=0.086KTOE	0.086

Table 2-4-5 Conversion factor table in Model sheet

b. Power efficiency

Thermal power efficiencies are given by thermal power generation types such as coal fired power generator, fuel oil fired power generator, fuel oil gas turbine, gas turbine, gas steam and diesel. The efficiencies are used at time of calculating the energies used in the generators.

Thermal power generator	Fuels	Efficiency	Expressions
Power from Thermal(Coal)	Coal	35%	2.28(GWh/1000t)=5600*0.35/860
Power from Thermal(FO)	Fuel oil	35%	4.03(GWh/1000t)=9910*0.35/860
Power from Gas-turbine(FO)	Fuel oil	48%	5.53(GWh/1000t)=9910*0.48/860
Power from Gas-turbine(GAS)	NG	48%	5.02(GWh/1000t)=9000*0.48/860
Power from Gas steam	NG	40%	4.19(GWh/Mil m3)=9000*0.40/860
Power from Diesel	Diesel	36%	4.25(GWh/1000t)=10,150*0.36/860

Table 2-4-5 Power efficiency table in Model sheet

c. Energy price

WTI crude oil price is exogenous.

Crude oil price in Vietnam = WTI crude oil price is exogenous * Exchange rate / 1000

NG price in Vietnam

GR of WTI crude oil price > 2%,

NG price in Vietnam= NG price in Vietnam(1)*(1+ GR of WTI crude oil price)

GR of WTI crude oil price <= 2%,

NG price in Vietnam= NG price in Vietnam(1)*1.02

Gasoline price in Vietnam

= Gasoline price in Vietnam(1)*((1+0.7*GR of Crude oil price in Vietnam) + 0.3 *GR of Labor productivity))

Kerosene price in Vietnam

= Kerosene price in Vietnam(1) *((1+0.7*GR of Crude oil price in Vietnam) + 0.3 *GR of Labor productivity))

Diesel price in Vietnam

=Diesel price in Vietnam(1) *((1+0.7*GR of Crude oil price in Vietnam) + 0.3 *GR of Labor productivity))

Fuel oil price in Vietnam

=Fuel oil price in Vietnam(1) *((1+0.7*GR of Crude oil price in Vietnam) + 0.3 *GR of Labor productivity))

Electricity for Agriculture use

=Electricity for Agriculture use(1) *((1+0.6*GR of Fuel oil price in Vietnam)

+ 0.3 *GR of Labor productivity))

Electricity for Residential use

=Electricity for Residential use(1) *((1+0.6*GR of Fuel oil price in Vietnam) + 0.3 *GR of Labor productivity))

Electricity for Industry use

=Electricity for Industry use (1) *((1+0.6*GR of Fuel oil price in Vietnam) + 0.3 *GR of Labor productivity))

Electricity for Commercial use

=Electricity for Commercial use (1)*((1+0.6*GR of Fuel oil price in Vietnam) + 0.3 *GR of Labor productivity))

d. Growth rate of Energy prices

The annual growth rate of the energy prices are calculated for energy demand forecasting, especially those have the relation to energy conservation indices.

(4) Power demand forecasting in Agriculture & Forestry & Fishery sector

Table 2-4-6 Power demand forecasting in Agriculture sector in Model sheet

IB& Agriculture.Forestry.Energy conservation rate SX PARINE				C	,	8			
186 Elasticity to Energy price PAENEVP =			S%			o () (PRFO>0, (1+P)	AENEVP*GRPRFO/10)0), (1+(P/
167 Energy intensity to GIP T0E/Bil Don 189 PARPUEFF = PAENDEA/RGDP*1000 188 Energy demand before E.save (T0E PAENDEA SCA RGPAGR DUM1994Z 189 Energy demand before E.save (T0E PAENDEA PAENDEM*PAENCOR/100 Image: Constraint of the state of the s		Technical Improvement	%	PAENTEC	=				
186 Energy denand before E.save KTOE PAENDEM \$CA RGPAGR DUM1994Z 186 Energy denand after E.save KTOE PAENDEA = PAENDEN/PAENCOR/100 170 Electricity ratio SX PAENEL F PAENEL F PAENELR = 171 Power denand (kTOE) KTOE PAENEL F PAENDEA/PAENELR/100 = = 172 Power denand (kTOE) KTOE PAENLE = PAENDEA/PAENELR/100 = </th <th></th> <th></th> <th></th> <th></th> <th>=</th> <th>PAENEVP</th> <th></th> <th></th> <th></th>					=	PAENEVP			
188 Energy demand after E.save KTOE PAENDEA = PAENDEM = PADMTOT*PAEMAEMEM = PADMTOT*PAEMAEMEM = PAENDEM = PADMTOT*PASMEMEMIDO = PAENDEM = PADMTOT*PASMEMEMIDO = PADMTOT*PASMEMEMIDO = PADMTOT*PASME		Energy intensity to GDP	TOE/Bil Don 199	PAENEFF	-	PAENDEA/RGDP*1000			
170 Electricity ratio SX PAPNELR = PAENELR = PAENELR = PAENELR/100 Image: State Sta		Energy demand before E.save		PAENDEM	\$CA	RGPAGR	DUM1994Z		
171 Power demand (k TOE) KTOE PAENELT = PAENDEA*PAENELR/100 172 Power demand (GWh) GWh PAENELE = PAENELT/0.086 173 - - - - - 174 Coal demand KTOE PADMOA = PADMTOT*PASMCOA/100 - 175 LFG demand KTOE PADMAGS = PADMTOT*PASMCAS/100 - 176 Gasol ine demand KTOE PADMAGS = PADMTOT*PASMCAS/100 - 177 Jetfuel demand KTOE PADMAET = PADMTOT*PASMCER/100 - 178 Kerosene demand KTOE PADMET = PADMTOT*PASMCER/100 - 178 Kerosene demand KTOE PADMET = PADMTOT*PASMCE/100 - 179 Diesel demand KTOE PADMUE = PADMTOT*PASMCE/100 - 180 Hutural gas demand KTOE PADMUE = PADMTOT*PASMCI/100 - 181 Natural gas demand KTOE PADMET = PADMTOT*PASMCE/100<		Energy demand after E.save		PAENDEA	-	PAENDEM*PAENCOR/100			
172 Power demand (GW h) GWh PAENELE = PAENELE = PAENELT/0.086 = = 173	170	Electricity ratio		PAENELR	-	PAENELR			
173 Coal demand KT0E PADMOOA = PADMTOT*PASMCOA/100 176 LFG demand KT0E PADMAPG = PADMTOT*PASMLPG/100 176 Gasol ine demand KT0E PADMAPG = PADMTOT*PASMLPG/100 177 Jetfuel demand KT0E PADMAPE = PADMTOT*PASMLPG/100 177 Jetfuel demand KT0E PADMAPE = PADMTOT*PASMLPG/100 178 Kerosene demand KT0E PADMAPE = PADMTOT*PASMLPG/100 178 Kerosene demand KT0E PADMAPE = PADMTOT*PASMLPG/100 179 Diesel demand KT0E PADMAPE = PADMTOT*PASMLPG/100 180 Fuel oil demand KT0E PADMAPE = PADMTOT*PASMLPG/100 181 Natural gas demand KT0E PADMAPE = PADMTOT*PASMLPG/100 182 Renewable energy demand KT0E PADMAPE = PADMTOT*PASMLPG/100 183 Total KT0E PADMAPE = PADMTOT*PASMLPG/100 = 184 Intermane <		Power demand (kTOE)		PAENELT	-	PAENDEA*PAENELR/100			
174 Coal demand KTOE PADMOOA = PADMTOT*PASMCOA/100 175 LPG demand KTOE PADMEPG = PADMTOT*PASMLPG/100 176 Gasoline demand KTOE PADMGAS = PADMTOT*PASMGAS/100 177 Jetfuel demand KTOE PADMEE = PADMTOT*PASMJET/100 178 Kerosene demand KTOE PADMEE = PADMTOT*PASMLET/100 178 Kerosene demand KTOE PADMEE = PADMTOT*PASMLET/100 179 Diesel demand KTOE PADMEE = PADMTOT*PASMDET/100 180 Fuel oil demand KTOE PADMEU = PADMTOT*PASMUE/100 181 Natural gas demand KTOE PADMEW = PADMTOT*PASMNG/100 182 Renewable energy demand KTOE PADMEW = PADMTOT*PASMNG/100 183 Total KTOE PADMEW = PADMTOT*PASMNG/100 = 184		Power demand (GWh)	GWh	PAENELE	-	PAENELT/0.086			
175LPG demandKTOEPADMLPG=PADMTOT*PASMLPG/100176Gasol ine demandKTOEPADMGAS=PADMTOT*PASMGAS/100177Jetfuel demandKTOEPADMLET=PADMTOT*PASMJET/100178Kerosene demandKTOEPADMCE=PADMTOT*PASMLET/100179Diesel demandKTOEPADMEE=PADMTOT*PASMLET/100180Fuel oil demandKTOEPADMFQ=PADMTOT*PASMG1/100181Natural gas demandKTOEPADMFQ=PADMTOT*PASMG1/100182Renewable energy demandKTOEPADMFQ=PADMTOT*PASMREW/100183TotalKTOEPADMFOT=PASMCOA184InternationalS%PASMCOA=PASMCOA185Coal demandS%PASMCA=PASMLPG186LPG demandS%PASMCA=PASMLPG187Gasol ine demandS%PASMCA=PASMGAS188Jetfuel demandS%PASMER=PASMGAS189Kerosene demandS%PASMER=PASMGAS180Diesel demandS%PASMER=PASMGAS181fuel oil demandS%PASMER=PASMGAS182Kerosene demandS%PASMER=PASMGE183Jetfuel demandS%PASMER=PASMGAS184Loresene demandS%PASMER=PASMGAS <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									
176 Gasol ine demand KTOE PADMGAS = PADMTOT*PASMGAS/100 177 Jetfuel demand KTOE PADMTET = PADMTOT*PASMJET/100 178 Kerosene demand KTOE PADMTET = PADMTOT*PASMJET/100 179 Diesel demand KTOE PADMTOT = PADMTOT*PASMJET/100 180 Fuel oil demand KTOE PADMFUL = PADMTOT*PASMJET/100 181 Natural gas demand KTOE PADMTOT*PASMJET/100 182 Renewable energy demand KTOE PADMTOT*PASMTOT*PASMREW/100 183 Total KTOE PADMTOT = PABMTOT*PASMREW/100 184	174			PADMCO A	-	PADMTOT*PASMCOA/100			
177 Jetfuel demand KTOE PADMUET = PADMTOT*PASMJET/100 178 Kerosene demand KTOE PADMCET = PADMTOT*PASMKER/100 179 Diesel demand KTOE PADMTOE = PADMTOT*PASMDIE/100 180 Fuel oil demand KTOE PADMTOE = PADMTOT*PASMFUL/100 181 Natural gas demand KTOE PADMTOE = PADMTOT*PASMFUL/100 182 Renewable energy demand KTOE PADMTOT = PADMTOT*PASMREW/100 183 Total KTOE PADMTOT = PASMCOA 184		LPG demand	KTOE	PADMLPG	-	PADMTOT*PASMLPG/100			
178Kerosene demandKTOEPADMKER=PADMTOT*PASMKER/100179Diesel demandKTOEPADMDIE=PADMTOT*PASMDIE/100180Fuel oil demandKTOEPADMFUL=PADMTOT*PASMFUL/100181Natural gas demandKTOEPADMTOT=PADMTOT*PASMREW/100182Renewable energy demandKTOEPADMFEW=PADMTOT*PASMREW/100183TotalKTOEPADMTOT=PADMTOT*PASMREW/100184=PASMCOA=185Coal demandS%PASMCOA=PASMCOA186LPG demandS%PASMLPG=PASMGAS187Gasoline demandS%PASMGAS=PASMGAS188Jetfuel demandS%PASMJET=PASMGAS189Kerosene demandS%PASMJET=PASMKER190Diesel demandS%PASMDE=PASMLPG191Fuel oil demandS%PASMDE=PASMDIE192Natural gas demandS%PASMFUL=PASMFUL193Renewable energy demandS%PASMFW=PASMREW				PADMGAS	=	PADMTOT*PASMGAS/100			
179Diesel demandKTOEPADMDIE=PADMTOT*PASMDIE/100180Fuel oil demandKTOEPADMFUL=PADMTOT*PASMFUL/100181Natural gas demandKTOEPADMTOT=PADMTOT*PASMRG/100182Renewable energy demandKTOEPADMFEW=PADMTOT*PASMREW/100183TotalKTOEPADMTOT=PADMTOT*PASMREW/100184185Coal demandS%PASMCOA=PASMCOA186LPG demandS%PASMLPG=PASMGAS187Gasoline demandS%PASMGAS=PASMGAS188Jetfuel demandS%PASMJET=PASMGAS189Kerosene demandS%PASMJET=PASMKER190Diesel demandS%PASMDE=PASMDIE191Fuel oil demandS%PASMDE=PASMFUL192Natural gas demandS%PASMFUL=PASMFUL193Renewable energy demandS%PASMFW=PASMREW		• • • • • • • • • • • • • • • • • • • •		PADMJET	=	PADMTOT*PASMJET/100			
180 Fuel oil demand KTOE PADMFUL = PADMTOT*PASMFUL/100 181 Natural gas demand KTOE PADMYG = PADMTOT*PASMRG/100 182 Renewable energy demand KTOE PADMFEW = PADMTOT*PASMREW/100 183 Total KTOE PADMTOT = PAENDEA-PAENELT 184		Kerosene demand		PADMKER	-	PADMTOT*PASMKER/100			
181 Natural gas demand KTOE PADMYG = PADMTOT*PASMRG/100 = 182 Renewable energy demand KTOE PADMFEW = PADMTOT*PASMREW/100 = 183 Total KTOE PADMTOT = PAENDEA-PAENELT = 184		Diesel demand		PADMDIE	=	PADMTOT*PASMDIE/100			
182 Renewable energy demand KTOE PADMFEW = PADMTOT*PASMREW/100 Image: Constraint of the second sec									
183 Total KTOE PADMTOT = PAENDEA-PAENELT Image: Constraint of the state of the				PADMNG	=				
184 Image: Construction of the second se				PADMREW	=	PADMTOT*PASMREW/100			
185 Coal demand S% PASMOOA = PASMCOA = PASMCOA 186 LFG demand S% PASMLPG = PASMLPG = PASMGAS 187 Gasoline demand S% PASMGAS = PASMGAS = PASMGAS 188 Jetfuel demand S% PASMJET = PASMJET = PASMJET 189 Kerosene demand S% PASMKER = PASMKER = PASMDE 190 Diesel demand S% PASMDE = PASMDIE = PASMDIE 191 Fuel oil demand S% PASMFUL = PASMFUL = PASMFUL 192 Natural gas demand S% PASMY3 = PASMRG = = 193 Renewable energy demand S% PASMFEW = PASMREW = PASMREW		Total	KTOE	PADMTOT	=	PAENDEA-PAENELT			
186 LFG demand S% PASMLPG = PASMLPG = PASMGAS 187 Gasoline demand S% PASMGAS = PASMGAS = PASMGAS 188 Jetfuel demand S% PASMJET = PASMJET = PASMJET 189 Kerosene demand S% PASMKER = PASMKER = PASMKER 190 Diesel demand S% PASMDE = PASMDIE = PASMDIE 191 Fuel oil demand S% PASMFUL = PASMFUL = PASMFUL 192 Natural gas demand S% PASMY3 = PASMRG = = 193 Renewable energy demand S% PASMFEW = PASMREW =									
187 Gasoline demand S% PASMGAS = PASMGAS = PASMGAS 188 Jetfuel demand S% PASMJET = PASMJET = PASMJET 189 Kerosene demand S% PASMKER = PASMKER = PASMKER 190 Diesel demand S% PASMDE = PASMDIE = 191 Fuel oil demand S% PASMFUL = PASMFUL = 192 Natural gas demand S% PASMRG = PASMRG = 193 Renewable energy demand S% PASMFEW = PASMREW =				PASMOOA	=	PASMCOA			
188 Jetfuel demand S% PASMJET = PASMJET 189 Kerosene demand S% PASMKER = PASMKER 190 Diesel demand S% PASMDE = PASMDIE 191 Fuel oil demand S% PASMFUL = PASMFUL 192 Natural gas demand S% PASMVG = PASMNG 193 Renewable energy demand S% PASMFEW = PASMREW		LPG demand	S%	PASMLPG	=	PASMLPG			
189 Kerosene demand S% PASMKER = PASMKER 190 Diesel demand S% PASMDE = PASMDIE 191 Fuel oil demand S% PASMFUL = PASMFUL 192 Natural gas demand S% PASMNG = PASMNG 193 Renewable energy demand S% PASMFEW = PASMREW			S%	PASMGAS	=	PASMGAS			
190 Diesel demand S% PASMDIE = PASMDIE 191 Fuel oil demand S% PASMFUL = PASMFUL 192 Natural gas demand S% PASMNG = PASMNG 193 Renewable energy demand S% PASMFEW = PASMREW			S%	PASMJET	=	PASMJET			
191 Fuel oil demand S% PASMFUL = PASMFUL 192 Natural gas demand S% PASMNG = PASMNG 193 Renewable energy demand S% PASMREW = PASMREW			<u>S%</u>	PASMKER	=	PASMKER			
192 Natural gas demand S% PASMING = PASMING 193 Renewable energy demand S% PASMREW = PASMREW			S%	PASMDIE	=	PASMDIE			
193 Renewable energy demand S% PASMREW = PASMREW			<u>S%</u>	PASMFUL	=	PASMFUL			
194 Total S% PASMTOT = PASMTOT				PASMREW	=				
		Total	S%	PASMTOT	=	PASMTOT			
	195								

a. Energy conservation rate

Energy conservation rate in the sector

- GR of fuel oil price >0
- = Energy conservation rate in the sector (1)*(1+Technical improvement in the sector)

```
*(1+ Elasticity of energy price in the sector * GR of fuel oil price)
```

GR of fuel oil price < 0

= Energy conservation rate in the sector (1)*(1+Technical improvement in the sector)*(1+ Elasticity of energy price in the sector /2 * GR of fuel oil price)

b. Technical Improvement

Technical Improvement in the sector is exogenous.

c. Elasticity to Energy price

Technical Improvement in the sector is exogenous.

d. Energy intensity to GDP

Energy intensity to GDP in the sector = Energy demand in the sector / Real GDP

e. Energy demand before Energy saving

. Energy demand before Energy saving in the sector = f (Agriculture GDP)

f. Energy demand after energy saving

Energy demand after energy saving in the sector

=Energy demand before Energy saving in the sector* Energy conservation rate in the

sector

g. Electricity ratio

Electricity ratio is exogenous.

h. Power demand (k TOE)

Power demand in the sector = Energy demand after energy saving in the sector * Power ratio.

i. <u>Power demand</u> (GWh)

Power demand with (GWh)= Energy demand (kTOE)* 0.086.

j. Fossil energy demand

Coal demand = Total fossil energy demand * Coal demand share

LPG demand= Total fossil energy demand * LPG demand share

Gasoline demand= Total fossil energy demand * Gasoline demand share Jet-fuel demand= Total fossil energy demand * Jet-fuel demand share Kerosene demand= Total fossil energy demand * Kerosene demand share Diesel demand= Total fossil energy demand * Diesel demand share Fuel oil demand= Total fossil energy demand *Fuel oil demand share Natural gas demand =Total fossil energy demand * Natural gas demand share Renewable energy demand= Total fossil energy demand * Renewable energy demand share Total fossil energy demand = Energy demand in agriculture – Power demand

k. Fossil energy demand ratio

Coal demand ratio is exogenous. LPG demand ratio is exogenous Gasoline demand ratio is exogenous Jetfuel d demand ratio is exogenous Kerosene demand ratio is exogenous Diesel demand ratio is exogenous Fuel oil demand ratio is exogenous Natural gas demand ratio is exogenous Renewable energy demand ratio is exogenous

(5) Power demand forecasting in Industry sector

196 Industry	Energy conservation rate	S%	MANNCOR	=	Lag1.MANNCOR*(1+MANNTEC/100)*IF(GRPRFO>0, (1+MANNEVP*GRPRFO/100), (1+
197	Technical Improvement	%	MANNTEC	=	MANNTEC
198	Elasticity to Energy price		MANNEVP	=	MANNEVP
199	Energy intensity to GDP	TOE/Bil Don	MANNEFF	=	MANNDEA/RGDP*1000
200	Energy demand before E.save	KTOE	MANNDEM	\$CA	RGPMAN
201	Energy demand after E.save	KTOE	MANNDEA	=	MANNDEM*(MANNCOR/100)
202	Electricity ratio	S%	MANNELR	=	MANNELR
203	Power demand (k TOE)	KTOE	MANNELT	-	MANNDEA*MANNELR/100
204	Power demand (GWh)	GWh	MANNELE	=	MANNELT/0.086
205					
206	Coal demand	KTOE	MANMCOA	=	MANMTOT*MASMCOA/100
207	LPG demand	KTOE	MANMLPG	=	MANMTOT*MASMLPG/100
208	Gasoline demand	KTOE	MANMGAS	=	MANMTOT*MASMGAS/100
209	Jetfuel demand	KTOE	MANMJET	=	MANMTOT*MASMJET/100
210	Kerosene demand	KTOE	MANMKER	=	MANMTOT*MASMKER/100
211	Diesel demand	KTOE	MANMDIE	=	MANMTOT*MASMDIE/100
212	Fuel oil demand	KTOE	MANMFUL	=	MANMTOT*MASMFUL/100
213	Natural gas demand	KTOE	MANMNG	=	MANMTOT*MASMNG/100
214	Renewable energy demand	KTOE	MANMREW	=	MANMTOT*MASMREW/100
215	Total	KTOE	MANMTOT	=	MANNDEA-MANNELT
216					
217	Coal demand	S%	MASMCOA	=	MASMCOA
218	LPG demand	S%	MASMLPG	=	MASMLPG
219	Gasoline demand	S%	MASMGAS	=	MASMGAS
220	Jetfuel demand	S%	MASMJET	=	MASMJET
221	Kerosene demand	S%	MASMKER	=	MASMKER
222	Diesel demand	S%	MASMDIE	=	MASMDIE
223	Fuel oil demand	S%	MASMFUL	=	MASMFUL
224	Natural gas demand	S%	MASMNG	=	MASMNG
225	Renewable energy demand	S%	MASMREW	=	MASMREW
226	Total	S%	MASMITOT	=	MASMTOT
227					

Table 2-4-7 Power demand forecasting in Industry sector in Model sheet

a. Energy conservation rate

Energy conservation rate in the sector

GR of fuel oil price >0

= Energy conservation rate (1)*(1+Technical improvement)

*(1+ Elasticity of energy price * GR of fuel oil price)

GR of fuel oil price < 0

= Energy conservation rate $(1)^*(1+\text{Technical improvement})$

*(1+ Elasticity of energy price /2 * GR of fuel oil price)

b. Technical Improvement

Technical Improvement is exogenous.

c. Elasticity to Energy price

Technical Improvement is exogenous.

d. Energy intensity to GDP

Energy intensity to GDP = Energy demand in Industry / Real GDP

e. Energy demand before Energy saving

. Energy demand before Energy saving = f (Industry GDP)

f. Energy demand after energy saving

Energy demand after energy saving =Energy demand before Energy saving

* Energy conservation rate

g. Electricity ratio

Electricity ratio is exogenous.

h. Power demand (k TOE)

Power demand (kTOE)= Energy demand after energy saving * Power ratio.

i. Power demand (GWh)

Power demand with (GWh) = Energy demand f(kTOE) * 0.086.

j. Fossil energy demand

Coal demand = Total fossil energy demand * Coal demand share LPG demand= Total fossil energy demand * LPG demand share Gasoline demand= Total fossil energy demand * Gasoline demand share Jet-fuel demand= Total fossil energy demand * Jet-fuel demand share Kerosene demand= Total fossil energy demand * Kerosene demand share Diesel demand= Total fossil energy demand * Diesel demand share Fuel oil demand= Total fossil energy demand *Fuel oil demand share Natural gas demand =Total fossil energy demand * Natural gas demand share Renewable energy demand= Total fossil energy demand * Renewable energy demand share Total fossil energy demand = Energy demand in Industry – Power demand

k. Fossil energy demand ratio

Coal demand ratio is exogenous. LPG demand ratio is exogenous Gasoline demand ratio is exogenous Jet-fuel d demand ratio is exogenous Kerosene demand ratio is exogenous Diesel demand ratio is exogenous Fuel oil demand ratio is exogenous Natural gas demand ratio is exogenous Renewable energy demand ratio is exogenous

(6) Power demand forecasting in Transportation sector

F	Н	I	J	Y	Type	XI	X2	Х3	X4	X5
228	Transportation	Energy conservation rate	S%	TRENCOR	=	Lag1.TRENCOR*(1+TRENTEC/100)*IF(GRPF	RFO>0, (1+	TRENEVP*GR	PRFO/100	J), (1+(TF
229		Technical Improvement	%	TRENTEC	=	TRENTEC				
230		Elasticity to Energy price		TRENEVP	=	TRENEVP				
231		Energy intensity to GDP	TOE/Bil Don	TRENEFF	=	TRENDEA/RGDP*1000				
232		Energy demand before E.save	KTOE	TRENDEM	\$CA	Lag1.TRENDEM*(1+2*(RGPTRN/Lag1.RGFD	UM2003T	DUM2002Z		
233		Energy demand after E.save	KTOE	TRENDEA	=	TRENDEM*(TRENCOR/100)				
234		Electricity ratio	S%	TRENELR	=	TRENELR				
235		Power demand (k TOE)	KTOE	TRENELT	=	TRENDEA*TRENELR/100				
236		Power demand (GWh)	G₩h	TREENELE	=	TRENELT/0.086				
237										
238		Coal demand	KTOE	TREMOOA	=	TREMTOT*TRSMCOA/100				
239		LPG demand	KTOE	TREMLPG	=	TREMTOT*TRSMLPG/100				
240		Gasoline demand	KTOE	TREMGAS	=	TREMTOT*TRSMGAS/100				
241		Jetfuel demand	KTOE	TREMJET	=	TREMTOT*TRSMJET/100				
242		Kerosene demand	KTOE	TREMKER	=	TREMTOT*TRSMKER/100				
243		Diesel demand	KTOE	TREMDIE	-	TREMTOT*TRSMDIE/100				
244		Fuel oil demand	KTOE	TREMFUL	=	TREMTOT*TRSMFUL/100				
245		Natural gas demand	KTOE	TREMNG	=	TREMTOT*TRSMNG/100				
246		Renewable energy demand	KTOE	TREMREW	=	TREMTOT*TRSMREW/100				
247		Total	KTOE	TREMIT	=	TRENDEA-TRENELT				
248		1								
249		Coal demand	S%	TRSMOOA	=	TRSMCOA				
250		LPG demand	S%	TRSMLPG	=	TRSMLPG				
251		Gasoline demand	S%	TRSMGAS	=	TRSMGAS				
252		Jetfuel demand	S%	TRSMJET	=	TRSMJET				
253		Kerosene demand	S%	TRSMKER	=	TRSMKER				
254		Diesel demand	S%	TRSMDIE	=	TRSMDIE				
255		Fuel oil demand	S%	TRSMFUL	=	TRSMFUL				
256		Natural gas demand	S%	TRSMNG	=	TRSMNG				
257		Renewable energy demand	S%	TRSMREW	=	TRSMREW				
258		Total	S%	TRSMTOT	=	TRSMTOT				
259		1								

Table 2-4-8 Power demand forecasting in Transportation sector in Model sheet

a. Energy conservation rate

Energy conservation rate in the sector

GR of fuel oil price >0

= Energy conservation rate (1)*(1+Technical improvement)

*(1+ Elasticity of energy price * GR of fuel oil price)

GR of fuel oil price < 0

= Energy conservation rate $(1)^*(1+\text{Technical improvement})$

*(1+ Elasticity of energy price /2 * GR of fuel oil price)

b. Technical Improvement

Technical Improvement is exogenous.

c. Elasticity to Energy price

Technical Improvement is exogenous.

d. Energy intensity to GDP

Energy intensity to GDP = Energy demand in Transportation / Real GDP

e. Energy demand before Energy saving

. Energy demand before Energy saving

= f (Energy demand before Energy saving $(1)^*(1+2^*GR \text{ of Transportation GDP})$

f. Energy demand after energy saving

Energy demand after energy saving =Energy demand before Energy saving

* Energy conservation rate

g. Electricity ratio

Electricity ratio is exogenous.

h. Power demand (k TOE)

Power demand (kTOE)= Energy demand after energy saving * Power ratio.

i. <u>Power demand</u> (GWh)

Power demand with (GWh) = Energy demand f(kTOE) * 0.086.

j. Fossil energy demand

Coal demand = Total fossil energy demand * Coal demand share LPG demand= Total fossil energy demand * LPG demand share