JAPAN INTERNATIONAL COOPERATION AGENCY MINISTRY OF INDUSTRY, MINES AND ENERGY PHNOM PENH WATER SUPPLY AUTHORITY

THE STUDY ON THE MASTER PLAN OF GREATER PHNOM PENH WATER SUPPLY (PHASE 2) IN THE KINGDOM OF CAMBODIA

FINAL REPORT

VOLUME III

SUPPORTING REPORT PART A

FEBRUARY 2006

NJS CONSULTANTS CO., LTD. CTI ENGINEERING INTERNATIONAL CO., LTD.

Supporting Report Part A

Report <u>No.</u>	Referring <u>Page</u>	Title of Supporting Report
Supporting	Report – 1	Population Projections
SR 1.1	A-36	Existing and Future Population Distribution based on the Urbanization Policies for Communes
SR 1.2	A-36	Future Population Growth by District and Commune, 2000-2020
SR 1.3	A-38	Future Number of Household and Household Size by District and Commune, 2000-2020
SR 1.4	A-57	Served Population in Peri-Urban Area ($2005 \sim 2020$)
Supporting	Report – 2	Review of Water Supply System
SR 2.1	A-78	Raw Water Sources
SR 2.2	A-73	Existing Water Treatment Plants
SR 2.3	B-5	Filter Operation Test
SR 2.4	B-7	Reservoir Storage Simulation
Supporting	-	Water Demand Projection
SR 3.1	A-62	Water Demand Projections – Scenarios
SR 3.2	A-65	Water Demand Projections – Water Use
Supporting	Report – 4	Proposed Water Treatment Plants - Alternative
SR 4.1	A-77	Alternative Study on Water Treatment Plant
SR 4.2	A-82	Distance for Water Distribution
SR 4.3	B-9	Capacity Calculation – Chrouy Changva WTP Stage II
SR 4.4	B-9	Hydraulic Calculation – Chrouy Changva WTP Stage II
Supporting	Report – 5	Transmission/Distribution Network Analysis
SR 5.1	B-25	Transmission/Distribution Network Analysis
SR 5.2	B-25	Distribution Pipeline Analysis (Pipeline Route Indicators)
SR 5.3	B-25	Distribution Pipeline Analysis (Network Junction Indicators)
SR 5.4	B-25	Pressure Pipes and Junctions in the Water CAD System
SR 5.5	B-25	Connecting Pipe to T1 « Olympic Water Tank »
SR 5.6	B-25	Water Demand Input
Supporting	Report – 6	Present Conditions of Drainage and Sewerage Systems
SR 6.1	A-125	Present Conditions of Study Area in Drainage and Sewerage Aspects
SR 6.2	A-126	Result of Satellite Image Analysis
SR 6.3	A-127	Extract from Unofficial Translation of Sub-Decree on Water Pollution Control
Supporting	-	Study on Development of Drainage/Sewerage/Sanitation Systems
SR 7.1	A-135	Simulated Outflow Water Quality Marsh/ Lake
SR 7.2	A-139	Recommendation for Development of Sewerage/Sanitation System
Supporting	Report – 8	Institutional Development
SR 8.1	B-93	Project Formation Note: Institutional Development Project for Stage I (2006 - 2010)
Supporting	Report – 9	Institutional Strengthening of Water Supply Services in Siem Reap
SR 9.1	A-172	Options for Institutional Strengthening of Water Supply Services in Siem Reap
Supporting	Report – 10) Note on Private Sector Participation
SR 10.1	A-169	Note on Private Sector Participation

Report	Referring	Title of Supporting Report
<u>No.</u>	Page	The of Supporting Report

Supporting Report – 11 Engineer's Cost Estimates

- SR 11.1 A-200 Unit Price for Civil Work
- SR 11.2 A-203 Breakdown of Construction Cost for Master Plan
- SR 11.3 A-208 Breakdown of Operation and Maintenance Cost for Master Plan
- SR 11.4 B-113 Breakdown of Construction Cost for Priority Projects

Supporting Report – 12 Financial Plan

SR 12.1	A-225	PPWSA Summary of Key Financial Indicators
SR 12.2	A-225	PPWSA Income Statement
SR 12.3	A-225	PPWSA Funds Flow Statement
SR 12.4	A-225	PPWSA Balance Sheet
SR 12.5	A-225	PPWSA Investment Program
SR 12.6	A-225	PPWSA Borrowing Summary
SR 12.7	A-225	PPWSA Water Demand and Production
SR 12.8	A-225	PPWSA Operating Costs
SR 12.9	A-230	Peri-Urban WS Income Statement
SR 12.10	A-230	Peri-Urban WS Cash Flow Statement
SR 12.11	A-230	Peri-Urban WS Balance Sheet

Supporting Report – 13 Financial/Economical Analysis

SR 13.1	A-234	PPWSA FIRR & Sensitivity Analysis – Master Plan
SR 13.2	A-236	PPWSA EIRR & Sensitivity Analysis – Master Plan
SR 13.3	A-235	Peri-Urban WS EIRR & Sensitivity Analysis – Master Plan
SR 13.4	B-123	PPWSA FIRR & Sensitivity Analysis – Priority Projects
SR 13.5	B-124	PPWSA EIRR & Sensitivity Analysis – Priority Projects
SR 13.6	B-129	Peri-Urban WS EIRR & Sensitivity Analysis – Priority Projects

Supporting Report – 14 Environmental Impact Assessment

	-	-
SR 14.1	B-57	Pipe Laying Procedures
SR 14.2	B-61	Photos of Around the Water Tower and Booster Pump Project Sites
SR 14.3	B-61	Typical Images from the Target Areas for Pipeline Construction
SR 14.4	B-74	Cambodian Environmental Standards
SR 14.5	B-81	Results of Field Study of the Target Villages for Well Construction Project
SR 14.6	B-81	Typical Images from the Target Villages for Well Construction Project
SR 14.7	B-84	Attendants at 1 st Seminar on the Master Plan Study
SR 14.8	B-87	Attendants at 2 nd Seminar on the Master Plan Study

Supporting Report – 1 Population Projections

Census	Province/	Total	Land	Water	20	05)20	
Code	District/	Area	Area	Surface	Population	Density (L)	Population	Density (L)	Basic Urbanization Policies for Districts and Communes
No.	Commune	(ha)	(ha)	(ha)		(pers/ha)		(pers/ha)	
120000	Phnom Penh	38,190	34,201	3,989	1,334,892	39.0			
	Phnom Penh Central	2,708	2,428		715,532	294.7			
	Phnom Penh Suburbs	35,482	31,773	3,709	619,360	19.5			
	Chamkar Mon	959	897	62	237,822	265.1			Government Offices, Embassies, Generally Stable
120101	TonleBasak	316	283	33	55,719	196.9			(Government offices, embassies) Stable
	Boeng Keng Kang Muoy	100	100	0	18,032	180.3			Densification
	Boeng Keng Kang Pir	34	34	0	15,915	468.1	13,600		Commercialization
	Boeng Keng Kang Bei	64	64	0	29,969	468.3			Commercialization
	Oulampik	30	30	0	12,937	431.2	,		Commercialization
	Tuol Svay Prey Muoy	56	56	0	17,463	311.8			Stable
	Tuol Svay Prey Pir	38	38	0	15,300	402.6			Commercialization
120108	Tumnob Tuek	82	82	0	17,175	209.5			Stable
120109	Tuol Tumpung Pir	45	45	0	10,453	232.3			Densification
120110	Tuol Tumpung Muoy	59	59	0	12,677	214.9			(Russian Market) Densification
	Boeng Trabaek	49	41	8	11,832	288.6			Stable
	Phsar Daeum Thkov	86	65	21	20,350	313.1	20,150		Stable
	Doun Penh	734	539	195	156,691	290.7	141,380		Commercialization
	Phsar Thmei Muoy	18	18	0	9,058	503.2			(Central Market) Commercialization
	Phsar Thmei Pir	11	11	0	9,451	859.2			Commercialization
	Phsar Thmei Bei	34	34	0	15,998	470.5			Commercialization
	Boeng Reang	38	38	0	9,657	254.1	9,880		Stable
120205	Phsar Kandal Muoy	41	27	14	13,242	490.4			Commercialization
	Phsar Kandar Pir	15	15	0	9,384	625.6			Commercialization
120207	Chakto Mukh	111	86	25	14,750	171.5			(Large detached houses) Commercialization
	Chey Chumneah	77	50	27	14,929	298.6			(Royal Palace) Stable
120209	Phsar Chas	10	10	0	9,624	962.4	8,000	800	Commercialization
120210	Srah Chak	315	195	120	40,253	206.4	40,950		Stable
120211	Voat Phnum	64	55	9	10,345	188.1	10,450		(Wat) Infrastructure, Stable
	Prampir Meakkara	220	214	6	,	554.5			Commercialization
	Ou Ruessei Muoy	8	8	0	11,093	1386.6			(Ou Ruessei Market) Commercialization
	Ou Ruessei Pir	8	8	0	13,041	1630.1	8,000		Commercialization
	Ou Ruessei Bei	5	5	0	10,362	2072.4	,		Commercialization
120304	Ou Ruessei Buon	10	10	0	11,096	1109.6	7,000	700	Commercialization
120305	Monourom	16	16	0	15,788	986.8			Commercialization
120306	Mittakpheap	40	40	0	14,312	357.8	14,400	360	(Min. Defense) Infrastructure, Stable
120307	Veal Vong	96	91	5	27,522	302.4	28,210		Stable
120308	Boeng Prolit	37	36	1	15,450	429.2		430	(Monivong) Stable

Supporting Report 1.1 Existing and Future Population Distribution Based on the Urbanization Policies for Communes (1)

Census	Province/	Total	Land	Water	20	05	20	20	
Code	District/	Area	Area	Surface	Population	Density (L)	Population	Density (L)	Basic Urbanization Policies for Districts and Communes
No.	Commune	(ha)	(ha)	(ha)		(pers/ha)		(pers/ha)	
120400	Tuol Kouk	795	778	17	202,355	260.1	213,110		Densification
120401	Phsar Depou Muoy	32	32	0	13,016	406.8	13,120	410	(Railways) Stable
120402	Phsar Depou Pir	20	20	0	12,449	622.5	12,600	630	Stable
120403	Phsar Depou Bei	30	30	0	12,389	413.0	12,600	420	Stable
120404	Tuek L'ak Muoy	91	89	2	16,538	185.8	17,800	200	Densification
120405	Tuek L'ak Pir	44	44	0	13,880	315.5	14,080	320	Stable
120406	Tuek L'ak Bei	113	111	2	21,019	189.4			Densification
120407	Boeng Kak Muoy	160	157	3	25,697	163.7	31,400	200	Densification
	Boeng Kak Pir	169	168	1	35,678	212.4	36,960	220	Densification
120409	Phsar Daeum Kor	47	47	0	21,121	449.4			Stable
	Boeng Salang	89	80	9	30,568	382.1	31,200		Stable
	Dangkao	18,791	18,094	697	118,466	6.5			Extension of Industrial Development
120501	Dangkao	1,383	1,194	189	13,289	11.1	23,876		(Cheung Aek Lake and industries) Densification
120502	Trapeang Krasang	905	905	0	4,016	4.4	13,575	15	North of Route 4
	Kouk Roka	3,267	2,999	269	6,174	2.1	44,978		North-west
120504	Phleung Chheh Roteh	963	961	2	4,852	5.0	9,610	10	West agricultural
	Chaom Chau	2,260	2,260	0	26,308	11.6	,		(Industrial route)
120506	Kakab	1,342	1,342	0	22,063	16.4	67,100	50	(Airport)
	Pong Tuek	1,114	1,114	0	7,413	6.7	16,710		South agricultural
	Prey Veaeng	907	902	5	3,578	4.0	13,530		South agricultural
120509	Samraong Kraom	1,219	1,219	0	5,090	4.2	18,285	15	West agricultural
	Prey Sa	1,323	1,315	8	6,247	4.8	19,725		Center south
	Krang Thnong	660	660	0	3,605	5.5	9,900		Freight station
	Krang Pongro	696	653	43	2,438	3.7	3,265		Preaek Thnot south-west
120513	Prateah Lang	842	832	10	4,791	5.8	8,320	10	South-west agricultural
120514	Sak Sampov	586	544	42	2,281	4.2	8,160	15	South agricultural
120515	Cheung Aek	1,324	1,194	130	6,321	5.3	17,915	15	South villags

Supporting Report 1.1 Existing and Future Population Distribution Based on the Urbanization Policies for Communes (2)

Census	Province/	Total	Land	Water	20	05	20)20	
Code	District/	Area	Area	Surface	Population	Density (L)	Population	Density (L)	Basic Urbanization Policies for Districts and Communes
No.	Commune	(ha)	(ha)	(ha)		(pers/ha)		(pers/ha)	
120600	Mean Chey	5,086	3,910	1,176	233,348	59.7	395,779	101.2	Densification
120601	Stueng Mean Chey	1,200	1,153	47	55,441	48.1	98,005	85	Densification and industries
120602	Boeng Tumpun	443	404	39	49,286	122.0	60,600	150	Densification
120603	Preaek Pra	839	610	229	15,354	25.2	24,400	40	South-east Bassac River: Long term extension
120604	Chbar Ampov Muoy	49	41	8	13,702	334.2	14,350	350	Densification
120605	Chbar Ampov Pir	132	90	42	32,785	364.3	31,500	350	Commercialization
120606	Chak Angrae Leu	309	192	117	21,354	111.3	24,934	130	North Bassac River: Densification
120607	Chak Angrae Kraom	953	679	274	27,453	40.4	67,910	100	South of Bassac River
120608	Nirouth	1,161	741	420	17,973	24.3	74,080	100	Chaktomuk and north-east Bassac River: Center
120700	Ruessei Kaev	11,605	9,770	1,835	267,546	27.4	538,922	55.2	Densification and Housing Development (subdivisions)
120701	Khmuonh	1,991	1,863	129	8,399	4.5	37,250		Squatters town
120702	Tuol Sangkae	276	252	24	35,047	139.1	50,400	200	North of Tuol Kouk and east of Pumpeay Lake
120703	Svay Pak	397	341	56	16,506	48.3	27,312	80	Di Po general: Housing development
120704	Kiloumaetr Lekh Prammuoy	564	511	53	23,357	45.7	25,545	50	Route 5 center Sap River: Densification
120705	Phnom Penh Thmei	2,055	1,887	168	26,238	13.9	150,889	80	West of Tuol Kouk: Densification
120706	Ruessei Kaev	518	420	98	31,812	75.7	37,800	90	South of Route 5:
120707	Tuek Thla	674	674	0	56,251	83.5	67,400	100	West Phnom Penh, Northbridge
120708	Praek Lieb	2,013	1,396	617	14,629	10.5	27,916	20	North of Chrouy Changva: Densification, restaurant
120709	Praek Ta Sek	1,511	1,309	202	6,035	4.6	26,172	20	North of Chrouy Changva, South Sap: Slow densification
120710	Chrouy Changva	962	530	432	21,840	41.2	53,000		Chrouy Changva public space and river
120711	Chrang Chamreh Muoy	230	217	13	9,788	45.0	13,038	60	Route 5 + Sap: Densification
120712	Chrang Chamreh Pir	414	370	44	17,644	47.7	22,200	60	Route 5 + Sap: Densification

Supporting Report 1.1 Existing and Future Population Distribution Based on the Urbanization Policies for Communes (3)

Source: Study Team Estimates based on the Land Data from Transport Master Plan and the BAU's Targeted Population Density by Commune

Census	Province/District/	Area		Projected	∣Mid-year F	opulation		Annu	al Average	Growth Ra	te (%)	Density (pers/ha)
Code	Commune	(ha)	2000	2005	2010	2015	2020	2000-05	2005-10	2010-15	2015-20	2005	2020
	Study Area Total	58,430	1,306,633	1,529,999	1,774,891	2,034,868	2,303,826	3.21	3.01	2.77	2.51	26.2	39.4
120000	Phnom Penh	38,190		, ,	1,551,479			3.32					52.5
	Phnom Penh Central	2,708		715,532	704,810		683,360				-0.31	264.2	252.3
	Phnom Penh Suburbs	35,482		619,360	,			4.92	6.45				37.3
120100	Chamkar Mon	959	212,104	237,822	235,775		231,680			-0.17	-0.18		241.6
120200	Doun Penh	734	149,556	156,691	151,587	146,483			-0.66	-0.68	-0.71	213.5	192.6
	Prampir Meakkara	220	109,057	118,664	111,507	104,350				-1.32	-1.41	539.4	441.8
120400	Tuol Kouk	795	175,695	,	205,941	209,527	213,110		0.35				268.1
120500	Dangkao	18,791	104,827	118,466	206,458	296,599	387,948	2.48	11.75		5.52		20.6
120501	Dangkao	1,383	11,958	13,289	16,670	20,232	23,876		4.64	3.95	3.37	9.6	17.3
120502	Trapeang Krasang	905	3,416	4,016	7,139	10,336	13,575	3.29	12.19	7.68	5.60	4.4	15.0
120503	Kouk Roka	3,267	5,842	6,174	18,940	31,894	44,978	1.11	25.13				13.8
120504	Phleung Chheh Roteh	963	4,127	4,852	6,381	7,979	9,610	3.29	5.63	4.57	3.79	5.0	10.0
120505	Chaom Chau	2,260	22,378	26,308	54,719	83,689	113,000	3.29	15.77	8.87	6.19	11.6	50.0
120506	Kakab	1,342	20,044	22,063	36,748	51,818	67,100	1.94	10.74	7.11	5.30	16.4	50.0
120507	Pong Tuek	1,114	6,305	7,413	10,419	13,537	16,710	3.29	7.05	5.38	4.30	6.7	15.0
120508	Prey Veaeng	907	3,416	3,578	6,835	10,162	13,530	0.93	13.82	8.26	5.89	3.9	14.9
120509	Samraong Kraom	1,219	4,774	5,090	9,405	13,817	18,285	1.29	13.07	8.00	5.76	4.2	15.0
120510	Prey Sa	1,323	4,786	6,247	10,645	15,154	19,725	5.47	11.25	7.32	5.41	4.7	14.9
120511	Krang Thnong	660	3,382	3,605	5,653	7,761	9,900	1.29	9.41	6.54	4.99	5.5	15.0
120512	Krang Pongro	696	2,286	2,438	2,690	2,971	3,265	1.30	1.99	2.01	1.91	3.5	4.7
	Prateah Lang	842	4,075	4,791	5,915	7,103	8,320	3.29	4.31	3.73	3.21	5.7	9.9
120514	Sak Sampov	586	2,177	2,281	4,203	6,169	8,160	0.94	13.00	7.98	5.75	3.9	13.9
120515	Cheung Aek	1,324	5,861	6,321	10,096	13,977	17,915	1.52	9.82	6.72	5.09	4.8	13.5

Supporting Report 1.2 Future Population Growth by District and Commune, 2000-2020 (1)

Census	Province/District/	Area		Projected	Mid-year Po	opulation		Annu	al Average	Growth Rat	te (%)	Density (pers/ha)
Code	Commune	(ha)	2000	2005	2010	2015	2020	2000-05	2005-10	2010-15	2015-20	2005	2020
120600	Mean Chey	5,086	178,125	233,348	285,361	339,983	395,779	5.55	4.11	3.56	3.09	45.9	77.8
120601	Stueng Mean Chey	1,200	35,985	55,441	69,010	83,349	98,005	9.03	4.48	3.85	3.29	46.2	81.7
120602	Boeng Tumpun	443	32,921	49,286	52,590	56,480	60,600	8.41	1.31	1.44	1.42	111.3	136.8
120603	Preaek Pra	839	12,863	15,354	18,207	21,260	24,400	3.60	3.47	3.15	2.79	18.3	29.1
120604	Chbar Ampov Muoy	49	11,766	13,702	13,918	14,134	14,350	3.09	0.31	0.31	0.30	279.6	292.9
120605	Chbar Ampov Pir	132	27,467	32,785	32,357	31,929	31,500	3.60	-0.26	-0.27	-0.27	248.4	238.6
120606	Chak Angrae Leu	309	18,819	21,354	22,349	23,593	24,934	2.56	0.92	1.09	1.11	69.1	80.7
120607	Chak Angrae Kraom	953	22,464	27,453	40,578	54,134	67,910	4.09	8.13	5.93	4.64	28.8	71.3
120608	Nirouth	1,161	15,840	17,973	36,352	55,104	74,080	2.56	15.13	8.68	6.10	15.5	63.8
120700	Ruessei Kaev	11,605	204,161	267,546	354,850	445,976	538,922	5.56	5.81	4.68	3.86	23.1	46.4
120701	Khmuonh	1,991	6,788	8,399	17,857	27,497	37,250	4.35	16.28	9.02	6.26	4.2	18.7
120702	Tuol Sangkae	276	30,888	35,047	39,811	45,014	50,400	2.56	2.58	2.49	2.29	127.0	182.6
120703	Svay Pak	397	13,828	16,506	19,931	23,573	27,312	3.60	3.84	3.41	2.99	41.6	68.8
120704	Kiloumaetr Lekh Prammuoy	564	15,160	23,357	23,874	24,659	25,545	9.03	0.44	0.65	0.71	41.4	45.3
120705	Phnom Penh Thmei	2,055	20,102	26,238	67,191	108,818	150,889	5.47	20.69	10.12	6.76	12.8	73.4
120706	Ruessei Kaev	518	21,249	31,812	33,510	35,583	37,800	8.41	1.05	1.21	1.22	61.4	73.0
120707	Tuek Thla	674	37,573	56,251	59,439	63,291	67,400	8.41	1.11	1.26	1.27	83.5	100.0
120708	Praek Lieb	2,013	12,037	14,629	18,890	23,355	27,916	3.98	5.25	4.33	3.63	7.3	13.9
120709	Praek Ta Sek	1,511	5,596	6,035	12,635	19,364	26,172	1.52	15.93	8.91	6.21	4.0	17.3
120710	Chrouy Changva	962	18,624	21,840	31,943	42,385	53,000	3.24	7.90	5.82	4.57	22.7	55.1
120711	Chrang Chamreh Muoy	230	8,200	9,788	10,775	11,882	13,038	3.60	1.94	1.98	1.87	42.6	56.7
120712	Chrang Chamreh Pir	414	14,116	17,644	18,994	20,555	22,200	4.56	1.49	1.59	1.55	42.6	53.6

Supporting Report 1.2 Future Population Growth by District and Commune, 2000-2020 (2)

Census	Province/District/	Area		Projected	Mid-year P	opulation		Annu	al Average	Growth Ra	te (%)	Density (pers/ha)
Code	Commune	(ha)	2000	2005	2010	2015	2020	2000-05	2005-10	2010-15	2015-20	2005	2020
080000	Kandal within Study Area	20,240	173,108	195,107	223,412	258,222	297,817	2.42			2.89	9.6	14.7
080100	Kandal Stueng (part)	3,195	13,977	16,068	18,726	21,926	25,459	2.83	3.11	3.21	3.03	5.0	8.0
080110	Kong Noy	321	1,337	1,518	1,745	2,014	2,307	2.57	2.83	2.91	2.75	4.7	7.2
080114	Preaek Kampis	1,122	6,350	7,341	8,607	10,140	11,841	2.94	3.23	3.33	3.15	6.5	10.6
080119	Roluos	450	2,039	2,368	2,790	3,303	3,875	3.04	3.33	3.43	3.25	5.3	8.6
080124	Spean Thma	783	2,377	2,725	3,166	3,695	4,277	2.77	3.05	3.14	2.97	3.5	5.5
080126	Tien	519	1,874	2,116	2,418	2,774	3,159						6.1
080200	Kien Svay (part)	6,711	53,042	57,765	63,382	69,666	76,093	1.72	1.87	1.91	1.78	8.6	11.3
080205	Kbal Kaon	3,191	16,174	17,619	19,338	21,262	23,230			1.92	1.79	5.5	7.3
	Preaek Aeng	860	14,065	15,341	16,861	18,564	20,309	1.75	1.91	1.94	1.81	17.8	23.6
080210	Preaek Thmei	1,966	15,258	16,592	18,176	19,945	21,751	1.69	1.84	1.87	1.75	8.4	11.1
080212	Veal Sbov	694	7,545	8,213	9,007	9,895	10,803	1.71	1.86	1.90			15.6
080800	Angk Snuol (part)	6,511	29,892	37,892	49,314	64,930	84,546			5.66			13.0
080801	Baek Chan	1,359	9,105	11,289	14,261	18,091	22,588	4.39	4.78	4.87			16.6
080802	Boeng Thum	1,647	5,522	6,466	7,670	9,116	10,696	3.21	3.47	3.51	3.25	3.9	6.5
080805	Kamboul	1,845	6,008	8,607	12,744	19,055	27,837	7.45	8.17	8.38	7.88	4.7	15.1
080806	Kantaok	1,660	9,257	11,530	14,639	18,668	23,425	4.49	4.89	4.98	4.64	6.9	14.1
080900	Ponhea Lueu	656	12,964	14,427	16,215	18,276	20,451	2.16	2.36	2.42	2.27	22.0	31.2
080909	Preaek Pnov	656	12,964	14,427	16,215	18,276	20,451	2.16				22.0	
081100	Ta Khmau	3,167	63,233	68,955	75,775	83,424	91,268	1.75	1.90	1.94	1.81	21.8	28.8
081101	Ta Kdol	248	4,615	5,027	5,517	6,066	6,628	1.72	1.88	1.92	1.79	20.3	26.7
081102	Preaek Ruessei	212	8,162	8,900	9,780	10,767	11,779	1.75	1.90	1.94	1.81	42.0	55.6
081103	Daeum Mien	319	11,872	12,940	14,212	15,638	17,100	1.74	1.89	1.93	1.80	40.6	53.6
081104	Ta Khmau	1,023	24,648	26,906	29,601	32,627	35,733	1.77	1.93	1.97	1.84	26.3	34.9
081105	Preaek Hour	1,013	6,356	6,921	7,593	8,345	9,115	1.72	1.87	1.91	1.78	6.8	9.0
081106	Kampong Samnanh	352	7,580	8,261	9,072	9,981	10,913	1.74	1.89	1.93	1.80	23.5	31.0

Appendix 1.2 Future Population Growth by District and Commune, 2000-2020 (3)

Source: Study Team Estimates based on the NIS Projections and BAU's Targeted Population Density by Commune

Census	Province/	20	00	20	05	20	10	20	15	20	20
Code	District/	Number of	Household	Number of	Household		Household	Number of	Household	Number of	Household
No.	Commune	Households	Size								
	Study Area Total	230,936	5.66	275,154	5.56	324,111	5.48	374,961	5.43	428,433	5.38
120000	Phnom Penh	198,472	5.71		5.61			325,161	5.46		5.41
	Phnom Penh Central	111,643	5.79	-				126,890		126,081	5.42
	Phnom Penh Suburbs	86,829	5.61					198,271	5.46		5.41
	Chamkar Mon	37,140									5.33
120200	Doun Penh	25,476	5.87								5.49
120300	Prampir Meakkara	18,965	5.75				5.49				5.40
120400	Tuol Kouk	30,062	5.84				5.58		5.53		5.48
	Dangkao	19,967	5.25								5.14
120501	Dangkao	2,313	5.17	,	5.11	<i>'</i>		,		,	5.03
120502	Trapeang Krasang	630	5.42		5.36					2,574	5.27
120503	Kouk Roka	1,214	4.81	1,298		,				9,611	4.68
120504	Phleung Chheh Roteh	790	5.22		5.16	· · · ·		,		1,892	5.08
120505	Chaom Chau	3,859	5.80					14,730		,	5.64
120506	Kakab	3,620	5.54		5.47			,			5.39
120507	Pong Tuek	1,197	5.27		5.21	2,008		,	5.16	,	5.12
120508	Prey Veaeng	640	5.34								5.19
120509	Samraong Kraom	921	5.18		5.13		5.11	2,720			5.04
120510	Prey Sa	1,014	4.72		4.67		4.65	,		4,297	4.59
	Krang Thnong	641	5.28		5.22		5.20		5.17	1,928	5.13
120512	Krang Pongro	524	4.36		4.31	626				769	4.25
	Prateah Lang	870	4.68	,			4.62		4.59	,	4.56
120514	Sak Sampov	468	4.65		4.59		4.57	1,357	4.55		4.51
120515	Cheung Aek	1,266	4.63	1,382	4.57	2,214	4.56	3,083	4.53	3,980	4.50

Appendix 1.3 Future Number of Households and Household Size by District and Commune, 2000-2020 (1)

Census	Province/	20	00	20	05	20	10	20	15	20	20
Code	District/	Number of	Household								
No.	Commune	Households	Size	Households	Size	Households		Households		Households	Size
120600	Mean Chey	31,196	5.71	41,363	5.64	50,654	5.63	60,624	5.61	71,009	5.57
120601	Stueng Mean Chey	6,311	5.70	9,840	5.63	12,289	5.62	14,929	5.58	17,680	5.54
120602	Boeng Tumpun	5,854	5.62	8,867	5.56	9,492	5.54	10,254	5.51	11,080	5.47
120603	Preaek Pra	2,238	5.75	2,703	5.68	3,215	5.66	3,776	5.63	4,364	5.59
120604	Chbar Ampov Muoy	1,994	5.90	2,349	5.83	2,394	5.81	2,445	5.78	2,500	5.74
	Chbar Ampov Pir	5,034	5.46	6,078	5.39	6,018	5.38	5,973	5.35	5,935	5.31
120606	Chak Angrae Leu	3,311	5.68	3,801	5.62	3,991	5.60	4,238	5.57	4,511	5.53
120607	Chak Angrae Kraom	3,582	6.27	4,429	6.20	6,567	6.18	8,812	6.14	11,133	6.10
120608	Nirouth	2,872	5.52	3,296	5.45	6,688	5.44	10,197	5.40	13,806	
120700	Ruessei Kaev	35,666	5.72	47,220	5.67	63,286	5.61	80,348	5.55	98,061	5.50
120701	Khmuonh	1,273	5.33	1,594	5.27	3,400	5.25	5,266	5.22	7,184	5.19
120702	Tuol Sangkae	5,333	5.79	6,121	5.73	6,975	5.71	7,933	5.67	8,945	5.63
120703	Svay Pak	2,455	5.63	2,965	5.57	3,592	5.55	4,273	5.52	4,986	5.48
120704	Kiloumaetr Lekh Prammuoy	2,690	5.64	4,192	5.57	4,298	5.55	4,465	5.52	4,658	5.48
120705	Phnom Penh Thmei	3,627	5.54	4,790	5.48	12,305	5.46	20,044	5.43	27,991	5.39
120706	Ruessei Kaev	3,762	5.65	5,697	5.58	6,020	5.57	6,430	5.53	6,879	5.49
120707	Tuek Thla	6,246	6.02	9,460	5.95	10,028	5.93	10,740	5.89	11,519	5.85
120708	Praek Lieb	1,970	6.11	2,422	6.04	3,137	6.02	3,901	5.99	4,696	5.94
120709	Praek Ta Sek	1,039	5.39	1,134	5.32	2,382	5.30	3,672	5.27	4,998	5.24
120710	Chrouy Changva	3,381	5.51	4,011	5.45	5,885	5.43	7,854	5.40	9,891	5.36
120711	Chrang Chamreh Muoy	1,487	5.51	1,795	5.45	1,982	5.44	2,198	5.41	2,429	5.37
120712	Chrang Chamreh Pir	2,403	5.87	3,039	5.81	3,282	5.79	3,572	5.75	3,885	5.71

Appendix 1.3 Future Number of Households and Household Size by District and Commune, 2000-2020 (2)

Census	Province/	20	00	20	05	20	010	20	15	20	20
Code	District/	Number of	Household								
No.	Commune	Households	Size	Households	Size	Households		Households	Size	Households	Size
080000	Kandal within Study Area	32,464	5.33	37,115				49,800			
080100	Kandal Stueng (part)	2,888	4.84	3,360	4.78		4.77	4,627	4.74	5,401	4.71
	Kong Noy	260	5.14	299	5.08	345	5.06	400	5.04	461	5.00
080114	Preaek Kampis	1,228	5.17	1,437	5.11	1691	5.09		5.06	2,354	5.03
080119	Roluos	462	4.41	543	4.36	641	4.35	765	4.32	901	4.30
080124	Spean Thma	513	4.63	596	4.57	694	4.56	816	4.53	950	4.50
080126	Tien	425	4.41	485	4.36	556	4.35		4.32	735	4.30
080200	Kien Svay (part)	10,200	5.20		5.14		5.12	13,688	5.09	15,047	5.06
080205	Kbal Kaon	3,069	5.27	3,382	5.21	3726	5.19	4121	5.16	4,537	5.12
080209	Preaek Aeng	2,726	5.16	,	5.10	3319	5.08	3676	5.05	,	5.02
080210	Preaek Thmei	2,917	5.23	3,209	5.17	3522	5.16	3896	5.12	4,273	5.09
	Veal Sbov	1,488	5.07	1,639	5.01	1805	4.99		4.96	,	4.93
080800	Angk Snuol (part)	5,770	5.18	7,384	5.13	9,621	5.13	12,713	5.11	16,644	5.08
080801	Baek Chan	1,686	5.40	,	5.34	2681	5.32	3420	5.29	4,302	5.25
080802	Boeng Thum	1,208	4.57	1,434	4.51	1704	4.50	2039	4.47	2,409	4.44
080805	Kamboul	1,129	5.32	1,636	5.26	2432	5.24	3657	5.21	5,384	5.17
080806	Kantaok	1,747	5.30		5.24		5.22		5.19	,	
080900	Ponhea Lueu	2,396	5.41	2,697	5.35	3042	5.33	3448	5.30	3,888	5.26
	Preaek Pnov	2,396	5.41	2,697	5.35		5.33		5.30		
081100	Ta Khmau	11,210	5.64		5.54	13806	5.49	15,324	5.44	16,890	5.40
	Ta Kdol	851	5.42		5.36		5.34		5.31	1,258	5.27
	Preaek Ruessei	1,465	5.57	1618	5.50	1781	5.49	1,976	5.45		5.42
	Daeum Mien	2,162	5.49		5.42		5.41	2,912	5.37		5.34
081104	Ta Khmau	4,149	5.94		5.79				5.60		5.55
	Preaek Hour	1,177	5.40		5.34		5.32	1,578	5.29		
	Kampong Samnanh	1,406	5.39	1550	5.33	1708	5.31	1,890	5.28	2,083	5.24

Appendix 1.3 Future Number of Households and Household Size by District and Commune, 2000-2020 (3)

Source: Study Team Estimates

Supporting Report 1.4.1	Served Population in	Pari Urban in 2005
Supporting Report 1.4.1	Serveu ropulation in	ren-orban in 2005

District	Commune	2005	Piped wat		y piped and Served pops.	Total	Total	Remainin non-serv
District	Commune	Population	population	aovaraga	By JICA	served	coverage	populati
			•••	ē	wells	population	(%)	
tudy Area (Phno	om Penh + Kandal)	1,529,999	1,035,932	67.7%	34,650	1,070,582	70.0%	459,41
Iunicipality of P	huom Dauh	1,334,892	1,024,789	76.8%	34,650	1,059,439	79.4%	275,4
iunicipainy of F	Phnom Penh Central	715,532	715.532	100.0%	34,030	715,532	100.0%	273,4
	Phnom Penh Suburbs	619,360	309,257	49.9%	34,650	343,907	55.5%	275,4
	(excluding Ta Khmau)							
Chamkar Mon		237,822	237,822	100.0%	0	237,822	100.0%	
Doun Penh		156,691	156,691	100.0%	0	156,691	100.0%	
Prampir Meakk Tuol Kouk	ara	118,664 202,355	118,664 202,355	100.0% 100.0%	0	118,664 202,355	100.0% 100.0%	
Dangkao		118,466	30,506	25.8%	25,410	55,916	47.2%	62,5
o ungino	Dangkao	13,289	5,979	45.0	0	5,979	45.0	7,3
	Trapeang Krasang	4,016		0.0	2,100	2,100	52.3	1,9
	Kouk Roka	6,174		0.0	5,460	5,460	88.4	
	Phleung Chheh Roteh Chaom Chau	4,852	11,189	0.0 42.5	1,470 1,470	1,470 12,659	30.3 48.1	3,3
	Kakab	26,308 22,063	11,189	42.5	1,470	12,659	48.1	13,0
	Pong Tuek	7,413	10,022	0.0	0	0	0.0	7,4
	Prey Veaeng	3,578		0.0	840	840	23.5	2,
	Samraong Kraom	5,090		0.0	5,040	5,040	99.0	
	Prey Sa	6,247	2,393	38.3	2,940	5,333	85.4	
	Krang Thnong Krang Pongro	3,605	923	25.6 0.0	0 420	923 420	25.6 17.2	2,
	Prateah Lang	2,438		0.0	1,050	1,050	21.9	2,
	Sak Sampov	2,281		0.0	2,100	2,100	92.1	5,
	Cheung Aek	6,321		0.0	840	840	13.3	5,
Iean Chey		233,348	128,957	55.3%	840	129,797	55.6%	103,
	Stueng Mean Chey	55,441	33,265	60.0	840	34,105	61.5	21,
	Boeng Tumpun Preaek Pra	49,286	29,572 3,552	60.0 23.1	0	29,572 3,552	60.0 23.1	19,
	Chbar Ampov Muoy	13,334	8,221	60.0	0	8,221	60.0	5.
	Chbar Ampov Pir	32,785	19,671	60.0	0	19,671	60.0	13.
	Chak Angrae Leu	21,354	12,812	60.0	0	12,812	60.0	8,
	Chak Angrae Kraom	27,453	16,472	60.0	0	16,472	60.0	10,
	Nirouth	17,973	5,392	30.0	0	5,392	30.0	12,
luessei Kaev	Khmuonh	267,546 8,399	149,794 2,520	56.0% 30.0	8,400 4,620	158,194 7,140	59.1% 85.0	109 ,
	Tuol Sangkae	35,047	21,028	60.0	4,020	21.028	60.0	14
	Svay Pak	16,506	9,904	60.0	0	9,904	60.0	6
	Kiloumaetr Lekh Prammuoy	23,357	14,014	60.0	0	14,014	60.0	9,
	Phnom Penh Thmei	26,238	15,743	60.0	3,780	19,523	74.4	6,
	Ruessei Kaev Tuek Thla	31,812 56,251	19,087 33,751	60.0 60.0	0	19,087 33,751	60.0 60.0	12,
	Praek Lieb	14,629	8,777	60.0	0	8,777	60.0	5
	Praek Ta Sek	6,035	1,811	30.0	0	1,811	30.0	4,
	Chrouy Changva	21,840	11,993	54.9	0	11,993	54.9	9,
	Chrang Chamreh Muoy	9,788	5,873	60.0	0	5,873	60.0	3,
	Chrang Chamreh Pir	17,644	5,293	30.0	0	5,293	30.0	12,
ndal Province	in the Study Area	195,107	11,143	5.7%	0	11,143	5.7%	183,9
110		1(0(0		0.00/			0.00/	10
andal Stueng	Kong Noy	1,518	U	0.0%	U	U	0.0%	16,0
	Preaek Kampis	7,341						
	Roluos	2,368						
	Spean Thmei	2,725						
· · · · · ·	Tien	2,116		0.00/			0.00/	
lien Svay	Khal Kaor	57,765 17,619	0	0.0%	0	0	0.0%	57,7
	Kbal Kaon Preaek Aeng	17,619						
		16,592						
	Preaek Thmei							
	Preaek Thmei Veal Sbov	8,213					0.0%	37,8
ngk Snuol	Veal Sbov	8,213 37,892	0	0.0%	0	0	0.070	
ngk Snuol	Veal Sbov Baek Chan	8,213 37,892 11,289	0	0.0%	0	0	0.070	
ngk Snuol	Veal Sbov Baek Chan Boeng Thum	8,213 37,892 11,289 6,466	0	0.0%	0	0	0.0%	
ngk Snuol	Veal Sbov Baek Chan	8,213 37,892 11,289	0	0.0%	0	0	0.076	
8	Veal Sbov Baek Chan Boeng Thum Kamboul	8,213 37,892 11,289 6,466 8,607	0	0.0%	0	0	0.0%	14,4
onhea Lueu	Veal Sbov Baek Chan Boeng Thum Kamboul	8,213 37,892 11,289 6,466 8,607 11,530 14,427 14,427	0	0.0%	0	0	0.0%	
onhea Lueu	Veal Sbov Baek Chan Boeng Thum Kamboul Kantaok Preaek Pnov	8,213 37,892 11,289 6,466 8,607 11,530 14,427 14,427 68,955						
onhea Lueu	Veal Sbov Baek Chan Boeng Thum Kamboul Kantaok Preaek Pnov Ta Kdol	8,213 37,892 11,289 6,466 8,607 11,530 14,427 14,427 68,955 5,027	0	0.0%	0	0	0.0%	
onhea Lueu	Veal Sbov Back Chan Boeng Thum Kamboul Kantaok Preaek Pnov Ta Kdol Preaek Ruessei	8,213 37,892 11,289 6,466 8,607 11,530 14,427 14,427 68,955 5,027 8,900	0	0.0%	0	0	0.0%	
onhea Lueu	Veal Sbov Baek Chan Boeng Thum Kamboul Kantaok Preaek Pnov Ta Kdol	8,213 37,892 11,289 6,466 8,607 11,530 14,427 14,427 68,955 5,027	0	0.0%	0	0	0.0%	
onhea Lueu	Veal Sbov Baek Chan Boeng Thum Kamboul Kantaok Preaek Pnov Ta Kdol Preaek Ruessei Daeum Mien	8,213 37,892 11,289 6,466 8,607 11,530 14,427 14,427 68,955 5,027 8,900 12,940	0	0.0%	0	0	0.0%	
ingk Snuol Ionhea Lueu Ta Khmau	Veal Sbov Baek Chan Boeng Thum Kamboul Kantaok Preaek Pnov Ta Kdol Preaek Ruessei Daeum Mien Ta Khmau	8,213 37,892 11,289 6,466 8,607 11,530 14,427 14,427 68,955 5,027 8,900 12,940 26,906	0	0.0%	0	0	0.0%	
onhea Lueu 'a Khmau	Veal Sbov Baek Chan Boeng Thum Kamboul Kantaok Preaek Pnov Ta Kdol Preaek Ruessei Daeum Mien Ta Khmau Preaek Hour	8,213 37,892 11,289 6,466 8,607 11,530 14,427 68,955 5,027 8,900 12,940 26,906 6,921	0	0.0%	0	0	0.0%	14,4 57,8

*1: Served population; coverage to all population in commune or district UNICEF/NGO well: a few, one in one village and detriolated in 2020; negligible UWC for rural area: 40 l/c/d, Supply population by one well: 210 persons/well

Supporting Report 1.4.2	Served Population	in Pari Urban in 2010
Supporting Report 1.4.2	Serveu ropulation	III I CH-UIDan III 2010

					y piped and		-	New wel	l up to 2010		
District	Commune	2010	Piped wat	er supply	Served	Total	Total	Number	Served	TTL served	
		Population	population	coverage	pops. by	served	coverage	of well		population	covera
				č		population			by new		
udy Area (Phno	om Penh + Kandal)	1,774,891	1,244,738	70.1%	34,650	1,279,388	72.1%	201	42,210	1,321,598	74.:
unicipality of P		1,551,479	1,200,056	77.3%		1,234,706		0		1 1	79.
	Phnom Penh Central	704,810	704,810	100.0%	0	1 11 1	100.0%	0		1 92 1	100.
	Phnom Penh Suburbs	846,669	495,246	58.5%	34,650	529,896	62.6%	0	0	529,896	62.
	(excluding Ta Khmau)			100.00/			100.00/				100
Chamkar Mon Doun Penh		235,775	235,775	100.0% 100.0%	0		100.0%			235,775	100.
Doun Penn Prampir Meakk	hana	151,587 111,507	151,587 111,507	100.0%	0	-)	100.0%			151,587 111,507	100. 100.
Frampir Meaks		205,941	205,941	100.0%	0		100.0%			205,941	100
Dangkao		205,941	82,583	40.0%	25,410		52.3%	0	0	107,993	52
Jangkau	Dangkao	16,670	8,335	50.0	23,410		50.0	0	U	107,555	32
	Trapeang Krasang	7,139	714	10.0	2,100		39.4				
	Kouk Roka	18,940	3,343	17.7	5,460		46.5				
	Phleung Chheh Roteh	6,381	5,515	0.0	1,470	1,470	23.0				
	Chaom Chau	54,719	38,303	70.0	1,470		72.7				
	Kakab	36,748	25,724	70.0	1,680	27,404	74.6				
	Pong Tuek	10,419		0.0	0						
	Prey Veaeng	6,835		0.0	840						
	Samraong Kraom	9,405	941	10.0	5,040	5,981	63.6				
	Prey Sa	10,645	1,065	10.0	2,940	4,005	37.6				
	Krang Thnong	5,653	1,131	20.0	0	1,131	20.0				
	Krang Pongro	2,690		0.0	420						
	Prateah Lang	5,915		0.0	1,050	1,050					
	Sak Sampov	4,203		0.0	2,100	2,100	50.0				
	Cheung Aek	10,096	3,029	30.0	840		38.3				
lean Chey		285,361	199,753	70.0%	840	200,593	70.3%	0	0	200,593	70
	Stueng Mean Chey	69,010	48,307	70.0	840		71.2				
	Boeng Tumpun	52,590	36,813	70.0	0		70.0				
	Preaek Pra	18,207	12,745	70.0	0		70.0				
	Chbar Ampov Muoy	13,918	9,743	70.0	0		70.0				
	Chbar Ampov Pir	32,357	22,650	70.0	0						
	Chak Angrae Leu	22,349	15,644	70.0	0		70.0				
	Chak Angrae Kraom	40,578	28,405	70.0	0		70.0				-
	Nirouth	36,352	25,446	70.0	0	,	70.0				(
luessei Kaev	141 1	354,850	212,910	60.0%	8,400		62.4%	0	0	221,310	62
	Khmuonh	17,857	10,714	60.0	4,620		0.9 60.0				
	Tuol Sangkae Svay Pak	39,811 19,931	23,887 11,959	60.0 60.0	0		60.0				
	Kiloumaetr Lekh Prammuov	23,874	14,324	60.0	0	j	60.0				
	Phnom Penh Thmei	67,191	40,315	60.0	3,780		65.6				
	Ruessei Kaev	33,510	20,106	60.0	3,780						
	Tuek Thla	59,439	35,663	60.0	0		60.0				
	Praek Lieb	18,890	11,334	60.0	0)	60.0				
	Praek Ta Sek	12,635	7,581	60.0	0		60.0				
	Chrouy Changva	31,943	19,166	60.0	0						
	Chrang Chamreh Muoy	10,775	6,465	60.0	0		60.0				
	Chrang Chamreh Pir	18,994	11,396	60.0	0		60.0				
ndal Province		223,412	44,682	20.0%	0	44,682	20.0%	201	42,210	86,892	38
		10			<u>^</u>						
andal Stueng		18,726		0.0%	0	0	0.0%	0	0	0	(
	Kong Noy	1,745	ļ				ļ	ļ	ļ		<u> </u>
	Preaek Kampis	8,607									
	Roluos Secon Therei	2,790						l			
	Spean Thmei	3,166									
ien Svay	Tien	2,418 63,382		0.0%	0	0	0.0%	201	42,210	42,210	66
ach Svay	Kbal Kaon	19,338		0.0 %	0	0	0.0 %	201	42,210	42,210	00
	Preaek Aeng	19,338						1			
	Preaek Thmei	18,176									
	Veal Sbov	9,007						ł			
ngk Snuol		49,314	4,931	10.0%	0	4,931	10.0%	0	0	4,931	10
8	Baek Chan	14,261	.,	2010/0	,	.,				.,,,,,1	
	Boeng Thum	7,670						1			
	Kamboul	12,744									
	Kantaok	14,639									
onhea Lueu		16,215		0.0%	0	0	0.0%	0	0	0	0
	Preaek Pnov	16,215									
	•	75,775	39,751	52.5%	0	39,751	52.5%	0	0	39,751	52
a Khmau											
a Khmau	Ta Kdol	5,517		1							
a Khmau	Ta Kdol Preaek Ruessei	9,780						1			
`a Khmau		9,780 14,212									
'a Khmau	Preaek Ruessei Daeum Mien Ta Khmau	9,780 14,212 29,601									
'a Khmau	Preaek Ruessei Daeum Mien	9,780 14,212 29,601 7,593									
'a Khmau	Preaek Ruessei Daeum Mien Ta Khmau	9,780 14,212 29,601									
	Preaek Ruessei Daeum Mien Ta Khmau Preaek Hour Kampong Samnanh	9,780 14,212 29,601 7,593 9,072									
ri-urban area (Preaek Ruessei Daeum Mien Ta Khmau Preaek Hour	9,780 14,212 29,601 7,593 9,072 1,070,081	539,928	50.5%	34,650	574,578	53.7% ed Pops by	201	42,210 76,860	616,788	57

UNICEF/NGO well: a few, one in one village and detriolated in 2020; negligible UWC for rural area: 40 l/c/d, Supply population by one well: 210 persons/well

Supporting Report 1.4.3	Served Population	in Peri-Urban in 2015
Supporting Report 1.4.5	Sci veu i opulation	m r cri-Orban m 2013

		<u></u>	D 1		y piped and			New wel	up to 2015		
District	Commune	2015	Piped wat	er supply	Served	Total	Total	Number	Served	TTL	TTL
		Population	population	coverage	pops. By	served	coverage	of well	population	served	serve
			• •	,		population	(%)		by new	population	covera
tudy Area (Phno	om Penh + Kandal)	2,034,868	1,491,114	73.3%	34,650	1,525,764	75.0%	552	115,920	1,641,684	80.
lunicipality of P			1,426,558	80.3%		1,461,208	82.2%	0	0	1 1	82.
	Phnom Penh Central	694,088	694,089	100.0%	0	694,089	100.0%	0	0		100.
	Phnom Penh Suburbs	1,082,558	732,469	67.7%	34,650	767,119	70.9%	0	0	767,119	70.
Chamber Men	(excluding Ta khmau)	222 720	222 729	100.00/	0	222 729	100.00/			222 729	100
Chamkar Mon Doun Penh		233,728 146,483	233,728 146,484	100.0%	0	233,728 146,484	100.0% 100.0%			233,728 146,484	<u>100.</u> 100.
Prampir Meakl	zara	104,350	104,350		0	104,350	100.0%		-	104,350	100
Fuol Kouk		209,527	209,527	100.0%	0	209,527	100.0%			209,527	100
Dangkao		296,599	148,300	50.0%	25,410	173,710	58.6%	0	0		58
Jungkuo	Dangkao	20,232	10,116	50.0	0	10,116	50.0	U	v	170,710	
	Trapeang Krasang	10,336	2,067	20.0	2,100	4,167	40.3				
	Kouk Roka	31,894	9,654	30.3	5,460	15,114	47.4				
	Phleung Chheh Roteh	7,979	798	10.0	1,470	2,268	28.4				
	Chaom Chau	83,689	66,951	80.0	1,470	68,421	81.8				
	Kakab	51,818	41,454	80.0	1,680	43,134	83.2				
	Pong Tuek	13,537	1,354	10.0	0	1,354	10.0				
	Prey Veaeng	10,162		0.0	840	840	8.3				
	Samraong Kraom	13,817	2,763	20.0	5,040	7,803	56.5	I			
	Prey Sa	15,154	2,273	15.0	2,940	5,213	34.4			 	
	Krang Thnong	7,761	3,881	50.0	0	3,881	50.0	l		 	
	Krang Pongro Prateah Lang	2,971 7,103		0.0	420	420	14.1			┣───┤	
	Sak Sampov	6,169		0.0	2,100	2,100	14.8 34.0			├ ──┤	
	Cheung Aek	13,977	6,989	50.0	2,100	7,829	56.0	ł		┟──┤	
Aean Chey	choung nor	339,983	271,985	80.0%	840 840	272,825	80.2%	0	0	272,825	80
- Chey	Stueng Mean Chey	83,349	66,679	80.0	840	67,519	81.0	0	0	272,023	00
	Boeng Tumpun	56,480	45,184	80.0	0+0	45,184	80.0	l		 	
	Preaek Pra	21,260	17,008	80.0	0	17,008	80.0	1			
	Chbar Ampov Muoy	14,134	11,307	80.0	0	11,307	80.0				
	Chbar Ampov Pir	31,929	25,543	80.0	0	25,543	80.0				
	Chak Angrae Leu	23,593	18,874	80.0	0	18,874	80.0				
	Chak Angrae Kraom	54,134	43,307	80.0	0	43,307	80.0				
	Nirouth	55,104	44,083	80.0	0	44,083	80.0				
Ruessei Kaev	171 1	445,976	312,183	70.0%	8,400	320,583	71.9%	0	0	320,583	71
	Khmuonh Tual Sanahaa	27,497	19,248	70.0	4,620	23,868	86.8 70.0				
	Tuol Sangkae Svay Pak	45,014 23,573	31,510 16,501	70.0	0	31,510 16,501	70.0				
	Kiloumaetr Lekh Prammuov	23,573	17,261	70.0	0	17,261	70.0				
	Phnom Penh Thmei	108,818	76,173	70.0	3,780	79,953	73.5				
	Ruessei Kaev	35,583	24,908	70.0	0	24,908	70.0				
	Tuek Thla	63,291	44,304	70.0	0	44,304	70.0				
	Praek Lieb	23,355	16,349	70.0	0	16,349	70.0				
	Praek Ta Sek	19,364	13,555	70.0	0	13,555	70.0				
	Chrouy Changva	42,385	29,670	70.0	0	29,670	70.0				
	Chrang Chamreh Muoy	11,882	8,317	70.0	0	8,317	70.0				
	Chrang Chamreh Pir	20,555	14,389	70.0	0	14,389	70.0				
andal Province		258,222	64,556	25.0%	0	64,556	25.0%	552	115,920	180,476	69
		21.026	0	0.00/	0		0.00/	07	20.270	20.270	02
andal Stueng	Kana Mara	21,926	0	0.0%	0	0	0.0%	97	20,370	20,370	92
	Kong Noy Broook Kompie	2,014						l		├ ──┤	
	Preaek Kampis Roluos	10,140 3,303								┣───┤	
	Spean Thmei	3,303						ł		┟──┤	
	Tien	2,774						I			
tien Svay		69,666	0	0.0%	0	0	0.0%	254	53,340	53,340	76
	Kbal Kaon	21,262									
	Preaek Aeng	18,564									
	Preaek Thmei	19,945									
	Veal Sbov	9,895									
ngk Snuol	P. 1. 01	64,930	12,986	20.0%	0	12,986	20.0%	201	42,210	55,196	85
	Baek Chan Boeng Thum	18,091						L			
	BORDO I DIIM	9,116								┠───┤	
		10.055								├ ──┤	
	Kamboul	19,055						0		1,516	8
onhea Lueu		18,668	1.516	8.3%	A	1.516	8.3%		0		0
'onhea Lueu	Kamboul Kantaok	18,668 18,276	1,516	8.3%	0	1,516	8.3%	0	0	1,510	
	Kamboul	18,668	1,516 50,054	8.3% 60.0%	0	1,516 50,054	8.3% 60.0%	0	0	50,054	60
Ponhea Lueu Fa Khmau	Kamboul Kantaok	18,668 18,276 18,276									60
	Kamboul Kantaok Preaek Pnov	18,668 18,276 18,276 83,424									60
	Kamboul Kantaok Preaek Pnov Ta Kdol	18,668 18,276 18,276 83,424 6,066									60
	Kamboul Kantaok Preaek Pnov Ta Kdol Preaek Ruessei Daeum Mien Ta Khmau	18,668 18,276 18,276 83,424 6,066 10,767									60
	Kamboul Kantaok Preaek Pnov Ta Kdol Preaek Ruessei Daeum Mien Ta Khmau Preaek Hour	18,668 18,276 18,276 83,424 6,066 10,767 15,638 32,627 8,345									60
	Kamboul Kantaok Preaek Pnov Ta Kdol Preaek Ruessei Daeum Mien Ta Khmau	18,668 18,276 18,276 83,424 6,066 10,767 15,638 32,627									60
a Khmau	Kamboul Kantaok Preaek Pnov Ta Kdol Preaek Ruessei Daeum Mien Ta Khmau Preaek Hour Kampong Samnanh	18,668 18,276 18,276 83,424 6,066 10,767 15,638 32,627 8,345 9,981	50,054	60.0%	0	50,054	60.0%	0	0	50,054	
a Khmau ri-urban area (Kamboul Kantaok Preaek Pnov Ta Kdol Preaek Ruessei Daeum Mien Ta Khmau Preaek Hour	18,668 18,276 18,276 83,424 6,066 10,767 15,638 32,627 8,345 9,981 1,340,780	50,054 	60.0%		50,054 831,675		0 			60 70

UNICEF/NGO well: a few, one in one village and detriolated in 2020; negligible UWC for rural area: 40 l/c/d, Supply population by one well: 210 persons/well

				Served by	piped and	well water		New wel	l up to 2020	Served	in 2020
District	C	2020	Piped water supply		Served	Total	Total	Numbe	Served	TTL	TTL
District	Commune	Population			pops. by	served	coverage	r of	population	served	served
		•	population	coverage	JICA	population	(%)	well	by new	population	coveras
Study Area	(Phnom Penh + Kandal)	2.303.826	1,866,102	81.0%	34,650	1,900,752	82.5%	867	182,070	2,082,822	90.4
<i>y</i>		, ,				, , .			-)	1 1-	
Municipalit	ty of Phnom Penh	2,006,009	1,776,757	88.6%	34,650	1,811,407	90.3%	156	32,760	1,844,167	91.9
·	Phnom Penh Central	683,360	683,360	100.0%	0		100.0%	0	0	683,360	100
	Phnom Penh Suburbs		1,093,397	82.7%	34,650		85.3%	156	•	1,160,807	88
	(excluding Ta khmau)	1,012,012	1,020,027	021770	0 1,000	1,120,017	00.070	100	02,100	1,100,007	
Chamkar		231,680	231,680	100.0%	0	231,680	100.0			231,680	100
Doun Pen		141.380	141,380	100.0%	Ů		100.0			141,380	10
Prampir N		97,190	97,190	100.0%	Ů	1	100.0			97,190	100
Tuol Koul		213,110	213,110	100.0%	Ů	213,110	100.0			213,110	100
Dangkao	•	387,948	252,166	65.0%	25,410	277,576	71.5%	156	32,760	310,336	80.0
Dunghuo	Dangkao	23,876	19,101	80.0	0	19,101	80.0	100	02,100	010,000	001
	Trapeang Krasang	13,575	8,145	60.0	2,100	10,245	75.5		0	10,245	75.
	Kouk Roka	44,978	23,031	51.2	5,460	28,491	63.3		0	28,491	63.
	Phleung Chheh Roteh	9,610	961	10.0	1,470	2,431	25.3	16	3,360	5,791	60.
	Chaom Chau	113,000	101,700	90.0	1,470	103,170	91.3	10	5,500	5,771	00.
	Kakab	67,100	60,390	90.0	1,680	62,070	92.5				
	Pong Tuek	16,710	1,671	10.0	0	1,671	10.0	40	8,400	10,071	60.
	Prey Veaeng	13,530	1,071	0.0	840	840	6.2	35	7,350	8,190	60.
	Samraong Kraom	18,285	10,971	60.0	5,040	16,011	87.6	55	,,550	0,190	00.
	Prey Sa	18,285	3,945	20.0	2,940	6,885	34.9	24	5,040	11,925	60.
	Krang Thnong	9,900	7,920	80.0	2,940	7,920	80.0	∠4	5,040	11,723	00
	Krang Pongro	3,265	7,920	0.0	420	420	12.9	8	1,680	2,100	64
										2,100	
	Prateah Lang	8,320		0.0	1,050	1,050	12.6	19	3,990		60
	Sak Sampov	8,160	14 222	0.0	2,100	2,100	25.7	14	2,940	5,040	61
M	Cheung Aek	17,915	14,332	80.0	840	15,172	84.7		^	255 0 44	00
Mean Che		395,779	356,201	90.0%	840	357,041	90.2%	0	0	357,041	90.
	Stueng Mean Chey	98,005	88,205	90.0	840	89,045	90.9				
	Boeng Tumpun	60,600	54,540	90.0	0		90.0				
	Preaek Pra	24,400	21,960	90.0	0	j	90.0				
	Chbar Ampov Muoy	14,350	12,915	90.0	0		90.0				
	Chbar Ampov Pir	31,500	28,350	90.0	0		90.0				
	Chak Angrae Leu	24,934	22,441	90.0	0	3	90.0				
	Chak Angrae Kraom	67,910	61,119	90.0	0	61,119	90.0				
	Nirouth	74,080	66,672	90.0	0	66,672	90.0				
Ruessei K	aev	538,922	485,030	90.0%	8,400	493,430	91.6%	0	0	493,430	91.
	Khmuonh	37,250	33,525	90.0	4,620	38,145	102.4				
	Tuol Sangkae	50,400	45,360	90.0	0	45,360	90.0				
	Svay Pak	27,312	24,581	90.0	0	24,581	90.0				
	Kiloumaetr Lekh Prammu	25,545	22,991	90.0	0	22,991	90.0				
	Phnom Penh Thmei	150,889	135,800	90.0	3,780	139,580	92.5				
	Ruessei Kaev	37,800	34,020	90.0	0	34,020	90.0				
	Tuek Thla	67,400	60,660	90.0	0	,	90.0				
	Praek Lieb	27,916	25,124	90.0	0		90.0				
	Praek Ta Sek	26,172	23,555	90.0	0		90.0				
	Chrouy Changva	53,000	47,700	90.0	0		90.0				
	Chrang Chamreh Muoy	13,038	11,734	90.0	0		90.0				
	Chrang Chamreh Pir	22,200	19,980	90.0	0	j	90.0				
	emang enament in	22,200	17,700	20.0	•	17,700	20.0				
andal Pro	wince	297,817	89,345	30.0%	0	89,345	30.0%	711	149,310	238,655	80.
	1										
Kandal St	tueng	25,459	0	0.0%	0	0	0.0%	97	20,370	20,370	80.
	Kong Noy	2,307	0	5.070	0	0	3.0 /0	,,	20,070	_0,070	00.
	Preaek Kampis	11,841						<u> </u>			
	Roluos	3,875						<u> </u>			
	Spean Thmei	4,277									
	Tien	3,159									
Kien Svay		76,093	7,609	10.0%	0	7,609	10.0%	254	53,340	60,949	80.
isten svay	Kbal Kaon	23,230	7,009	10.0 /0	0	7,009	10.0 /0	234	55,540	00,749	00.
	Preaek Aeng	23,230									
	U	· · · · · ·									
	Preaek Thmei Veal Sboy	21,751			ļ						
Angle		10,803	25.264	20.00/	0	25 264	20.00/	201	43 310	(7 57 4	70
Angk Snu		84,546	25,364	30.0%	0	25,364	30.0%	201	42,210	67,574	79.
	Baek Chan	22,588									
	Boeng Thum	10,696									
	Kamboul	27,837									
	Kantaok	23,425									
Ponhea Lu		20,451	1,611	7.9%	0	1,611	7.9%	71	14,910	16,521	80.
	Preaek Pnov	20,451									
Ta Khmai		91,268	54,761	60.0%	0	54,761	60.0%	88	18,480	73,241	80.
	Ta Kdol	6,628									
	Preaek Ruessei	11,779									
	Daeum Mien	17,100									
	Ta Khmau	35,733									
	Preaek Hour	9,115									
	Kampong Samnanh	10,913									
			1								
eri-urban a	urea (P.P. suburbs +Kandal)	1,620,466	1,182,742	73.0%	34,650	1,217,392	75.1%	867	182,070	1,399,462	86.

Supporting Report 1.4.4 Served Population in Peri-Urban Area in 2020

UNICEF/NGO well: a few, one in one village and detriolated in 2020; negligible UWC for rural area: 40 l/c/d, Supply population by one well: 210 persons/well

TTL Nos. of Wells 1,032

Supporting Report – 2

Review of Water Supply System

Supporting Report 2.1 Raw Water Sources

1 Raw Water Sources of PPWSA

1.1 Water Level and Flow

In Phnom Penh, there are three river water sources, namely, the Mekong River, the Tonle Sap and the Tonle Basak. These three rivers are confluent at Phnom Penh, and the largest, Mekong River, affects the flow and water levels of the two other rivers.

PPWSA has three water treatment plants, each drawing water from each of the three rivers. The Phum Prek Treatment Plant takes water from Tonle Sap; Chrouy Changva Treatment Plant, from, Mekong River; and Chamkar Mon Treatment Plant, from Tonle Basak.

The Mekong River Committee implemented a study named "Consolidation of Hydro-Metrological Data and Multi-Functional Hydrologic Roles of Tonle Sap Lake and its Vicinities (Basinwide)" in 2003. Applying the study results, flows and water levels of three rivers from 1993 to 2004 are shown in the following chart.

The Mekong River seasonally changes the flow and water level. During rainy season (July to October), the flow increases to a maximum discharge of about 35,000 m³/sec. During the dry season (November to June), flow reduces to 2,000 m³/sec. This high difference between the maximum and the minimum flow and water levels along the Mekong causes flow reversal of the Tonle Sap along the section between the confluence point to the Tonle Sap Lake during the rainy season from July to October.

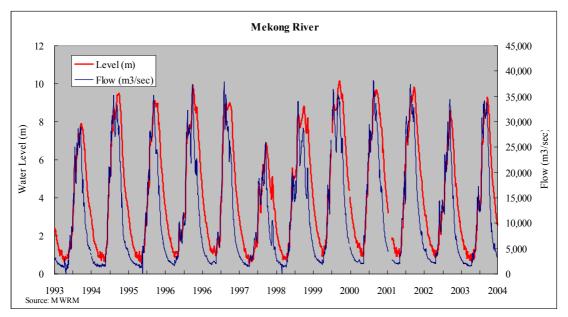


Figure SR2.1.1 Mekong River – Water Level and Flow

During Phase 1 Master Plan Study gauge height was applied to evaluate water level, but Hatien sea level is applied as the standard level. Hatien sea level is 1.08 m lower than gauge level at Chrouy Changva. The record from 1993 to 2004 shows maximum water level was 10.13 m on September 21, 2000 and minimum was 0.57 m on April 11, 1998.

The following figure shows the flow and water level the Tonle Sap. The river flows normally from the Tonle Sap Lake to the Mekong River during most of the year. However, its flow reverses from end of dry season to the middle of rainy season. The relationship between the river water level and actual flow of the Tonle Sap is still under study, but the intermediate results are indicated in the following figure.

Normal flow rises to about 10,000 m^3 /sec in October, subsides, and then reverses from May to August with flow of about -8,000 m^3 /sec.

The record from 1993 to 2004 at Phnom Penh Port shows maximum water level was 10.09 m and minimum was 0.45 m by Hatien sea level.

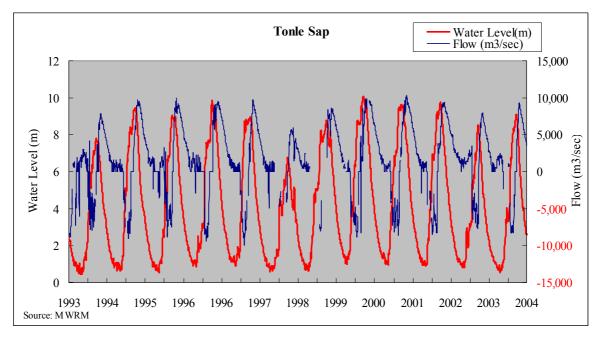


Figure SR2.1.2 Tonle Sap – Water Level and Flow

Tonle Basak generally has the same water level and flow characteristics as those of the Mekong River, but the flow is much small.

The record from 1993 to 2004 at Chakto Mukh shows maximum water level was 10.18 m and minimum was 0.5 m by Hatien sea level.

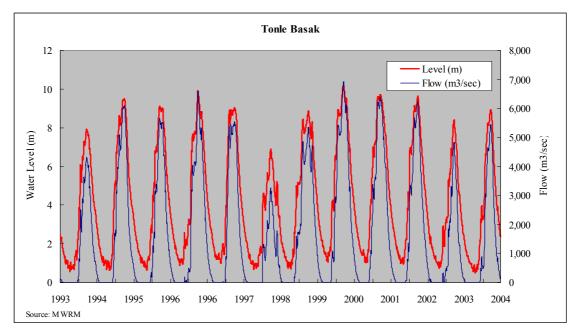


Figure SR2.1.3 Tonle Basak – Water Level and Flow

1.2 River Water Quality

As for the river water quality, the pH level of raw water from Mekong River (for Chrouy Changva), at 8.0, is significantly higher than that of the other two rivers (Tonle Sap, for Phum Prek and Tonle Basak, for Chamkar Mon), at about 7.0. During the rainy season, the three rivers have similar pH due to mixing of the water. The three sources also have similar turbidity characteristics during the rainy season. However, there is a significant difference in turbidity during the dry season and the rainy season.

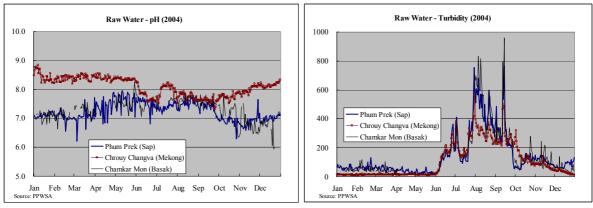


Figure SR2.1.4 pH in Rivers

Figure SR2.1.5 Turbidity in Rivers

During the dry season from November to June, turbidity levels average about NTU 56. During the rainy season from July to October, it rose to NTU 281 in 2004. Turbidity and pH at three raw water sources in 2004 are shown in the following figures. This pattern recurs every year.

Since population and human activities in Phnom Penh have been rapidly increasing in last decade, some water contamination can be expected in this area. BOD and COD levels in three

rivers recorded by the Ministry of Environment for last two and half years are shown in the following figures.

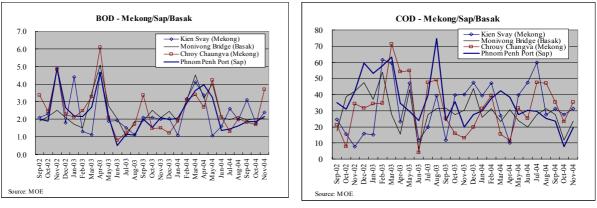
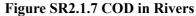
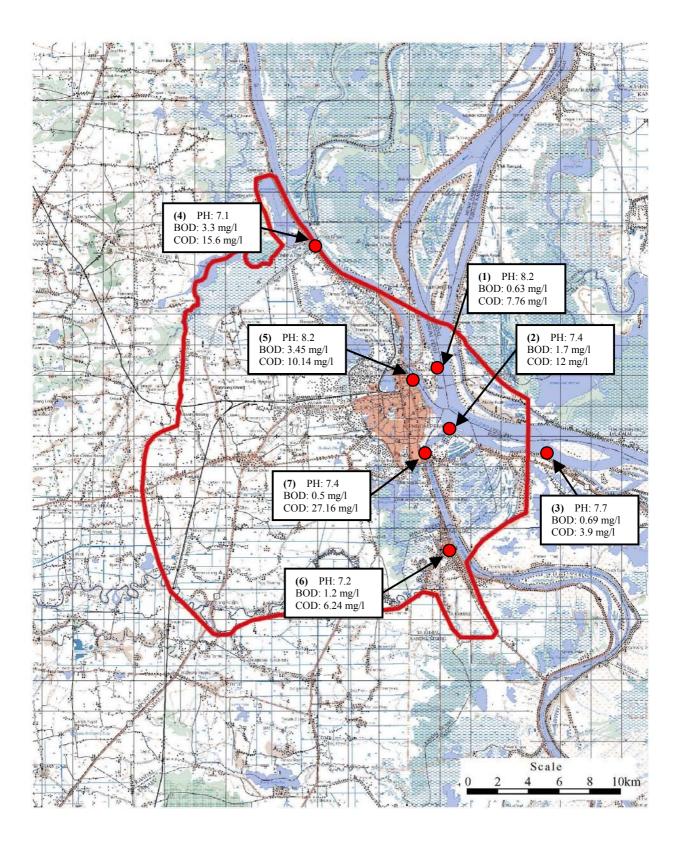



Figure SR2.1.6 BOD in Rivers

Differences in BOD levels among the water sources are more significant during the dry seasons than during the rainy seasons at all sampling points. BOD raises 4 to 5 mg/l during dry season and it drops 1 to 2 mg/l. BOD of 4 to 5 mg/l are almost upper limitation of water sources for water supply.

Data from the Ministry of Water Resources & Meteorology on NH_4 in three rivers shows a slight increase of NH_4 in last four years at Phnom Penh Port and Chakto Mukh. Chrouy Changva shows a relatively lower value than the other two locations. This characteristic indicates some contamination in the Tonle Sap and the Tonle Basak in Phnom Penh.




Figure SR2.1.8 NH₄ in Rivers

A water quality survey was implemented in December 2004 and January 2005. Three sampling points were located along the Mekong River; and two each along Tonle Sap and Tonle Basak. The survey covers microbial aspects, chemicals, organic matter etc.

The following figure summarizes BOD and COD at seven sampling points on the rivers.

The Mekong River shows the better quality based on BOD and COD compared with the other two rivers. This finding clearly indicates some contamination by the population and its activities in Phnom Penh. It also requires conserving the existing water sources from contamination by human activities.

In the light of both quantity and quality for the water source of water supply the Mekong River is the best option for the future water source.

Supporting Report 2.2 Existing Water Treatment Plants

1. Water Treatment Plants in Phnom Penh

The facilities in the three treatment plants – Phum Prek, Chamkar Mon and Chrouy Changva – are relatively new or recently rehabilitated.

Water production from 2000 to 2004 is illustrated in Figure SR2.2.1. Water production was rapidly increased in the last five years to keep pace with the increase of population and extension of service area. Especially after construction of new plant in Phum Prek in 2003, water production shows significant fluctuation between dry and rainy seasons. It seems the production met actual water demand in 2004.

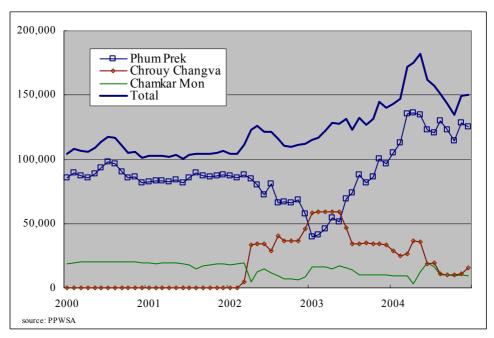


Figure SR2.2.1 Water Production 2000 – 2004

1,2 Phum Prek WTP

Phum Prek Water Treatment Plant was constructed in two stages. The old plant, with production capacity of 100,000 m³/day, was constructed 1965, and rehabilitated in 1988 and in 1995. New treatment facilities with additional production capacity of 50,000 m³/day was constructed in 2003. Raw water is taken from Tonle Sap near Phnom Penh Port

The plant has rapid mixing, flocculation, sedimentation, filtration and chlorination facilities and detail are shown in the following table.

In general, both old and new plants are properly operated. All treatment processes were designed following appropriate technical standards and criteria with same allowances. Therefore, facilities and equipment are easy to operate and maintain.

As for the old plant, six sets of vertical flocculators were not replaced during the rehabilitation in 1995. Parts of the driving gears have since worn out and required replacement.

All equipment in the new plant are properly operated except filters. Influent and effluent control system of the filters does not seem to be properly adjusted, causing significant flow imbalance and shortening filtration period. Presently, filters run about 24 hours in dry season and 12 hours in rainy season, which is only half of the filtration period expected.

During dry seasons, raw water is slightly poorer. Smell and algae, which are removed by pre-chlorination, can be detected.

This plant is operating in three shifts and each shift consists of an operator at intake station and five operators at treatment plant.

Layout, hydraulic profile, outline and process analysis of Phum Prek Water Treatment Plant are shown in Figures SR2.2.3, SR2.2.4, Tables SR2.2.5 and SR2.2.6, respectively.

1.3 Chamkar Mon WTP

Chamkar Mon Water Treatment Plant was also constructed in two stages. The old plant, with a production capacity of 10,000 m³/day, was constructed 1957 and rehabilitated in 1988. Additional treatment facilities was constructed 1995 raising production capacity to 20,000 m³/day.

Raw water intake pump station is located near the Thai Embassy along Tonle Basak. The plant has rapid mixing, flocculation, sedimentation, filtration and chlorination facilities and detail are shown in the following table.

The Chamkar Mon Plant follows a modular water treatment process and requires more complicated operations to maintain the quality of treated water. Eight (8) small filters require laborious daily washing of the filters. Operators are facing difficulties for proper operation and good maintenance.

This plant operation consists of three shifts and each shift has three operators for the treatment plant an intake station.

Layout, hydraulic profile, outline and process analysis of Chamkar Mon Water Treatment Plant are shown in Figures SR2.2.5, SR2.2.6, Tables SR2.2.7 and SR2.2.8, respectively.

1.4 Chrouy Changva WTP

The following table shows outline of Chrouy Changva Water Treatment Plant.

Chrouy Changva Water Treatment Plant was constructed in 2002 with a production capacity of $65,000 \text{ m}^3/\text{day}$. Land is available for future expansion of capacity by another $65,000 \text{ m}^3/\text{day}$.

Intake pump station is located just in front of the plant along the Mekong River.

This plant has better raw water quality than others, but it has some difficulties due to algae growth in the sedimentation tanks because of exposure to sunlight.

This plant operation consists of three shifts and each shift has three operators for the treatment plant an intake station.

Layout, hydraulic profile, outline and process analysis of Chrouy Changva Water Treatment Plant are shown in Figures SR2.2.7, SR2.2.8, Tables SR2.2.9 and SR2.2.10, respectively.

2. Water Treatment Plant Operation

Figure 9-11 shows water production in 2004. After construction of new plant in Phum Prek, water production matched water demand. Annual fluctuation of water demand is clearly indicated in the figure. During the dry season from March to June, the production increases to over $180,000 \text{ m}^3/\text{day}$ in April, and in other months, it decreases to around $145,000 \text{ m}^3/\text{day}$.

Operation records indicate a daily average production of $155,124 \text{ m}^3/\text{d}$ and a daily maximum production of $192,951 \text{ m}^3/\text{d}$. Peak-day factor is 1.24.

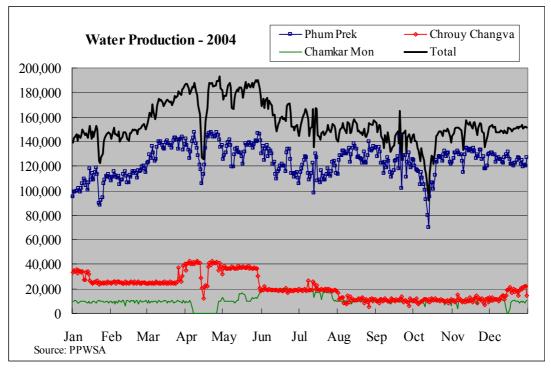


Figure SR2.2.2 Water Production in 2004

As for raw water intake pump stations, low water levels of intake pump stations at Phum Prek and Chamkar Mon are set 1.58 m and 1.5 m respectively, but the record from 1993 to 2004 shows minimum water level of 0.45 m at Phnom Penh Port and minimum water level of 0.5 m at Chakto Mukh. Since design low water level at these pump stations are lower than the actual low water level, the design capacities of the intake pump stations cannot be supplied when the

Tonle Sap and Tonle Basak is lower than the design low water levels.

All treatment processes were designed appropriate technical standards and criteria.

The following table summarized typical criteria for water treatment process, and they are reasonable range of the design.

	e SR2.2.1 Typical Design C		
Process	Phum Prek	Chamkar Mon	Chrouy Changva
Sedimentation			
Tuna	Harizontal Flow	Up Flow	Up Flow with
Type Horizontal Flow	Horizontai Flow	Sludge Blanket	Inclined Tube
Retention Time	2.1 hrs & 2.4 hrs	1.6 hrs	1.7 hrs
Filter	· · ·		
Trues	Gravity,	Pressured	Gravity,
Туре	Single Media	Single Media	Single Media
Filtration Speed	6.5 m/hr & 5.3 m/hr	6.9 m/hr	5.9 m/hr

Table SR2.2.1 Typical Design Criteria of Treatment Process

There is no critical problem for three treatment plants, but same adjustment are required for filters in Phum Prek new treatment plant. Influent and effluent control system of the filters does not seem to be properly adjusted, causing significant flow imbalance and shortening filtration period.

The existing treatment plants do not equip any waste water and sludge treatment facilities, such as backwash water recovery tank, sludge lagoon, sludge drying bed etc. It is preferable to provide those facilities to minimize high turbid water or sludge discharging streams or rivers.

In 2004, only Phum Prek Plant was operated with full capacity, and Chamkar Mon and Chrouy Changva Plant were operate at the half of the original production capacity, possibly to reduce overall production cost.

The following table shows power consumption of three plants during high capacity operation.

Table SK2.2.2 Average 1 ower Consumption											
Plant	Power Consumption (W/m3)	Production (m3/day)	Month/Year								
Phum Prek	211	136,008	March/2004								
Chamkar Mon	391	16,649	January/2003								
Chrouy Changva	300	59,514	January/2003								

Table SR2.2.2 Average Power Consumption

Turbidity of raw water varies each plant due to different water source. Turbidity for each plant in 2004 are summarized in the following table.

Plant	Maximum	Average	Median	Minimum						
Phum Prek	766	141	80.0	13.0						
Chamkar Mon	960	153	76.3	15.0						
Chrouy Changva	562	108	42.8	9.8						

Table SR2.2.3 Turbidity in 2004

Chrouy Changva Plant which takes from the Mekong River has better raw water quality than others with respect to turbidity. Chemical consumption depends on raw water turbidity. The following table shows average chemical consumption in 2004.

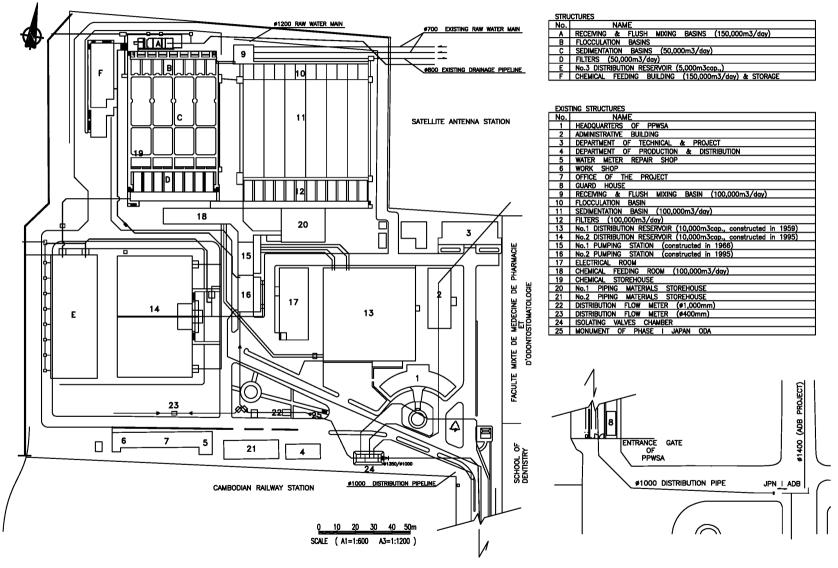
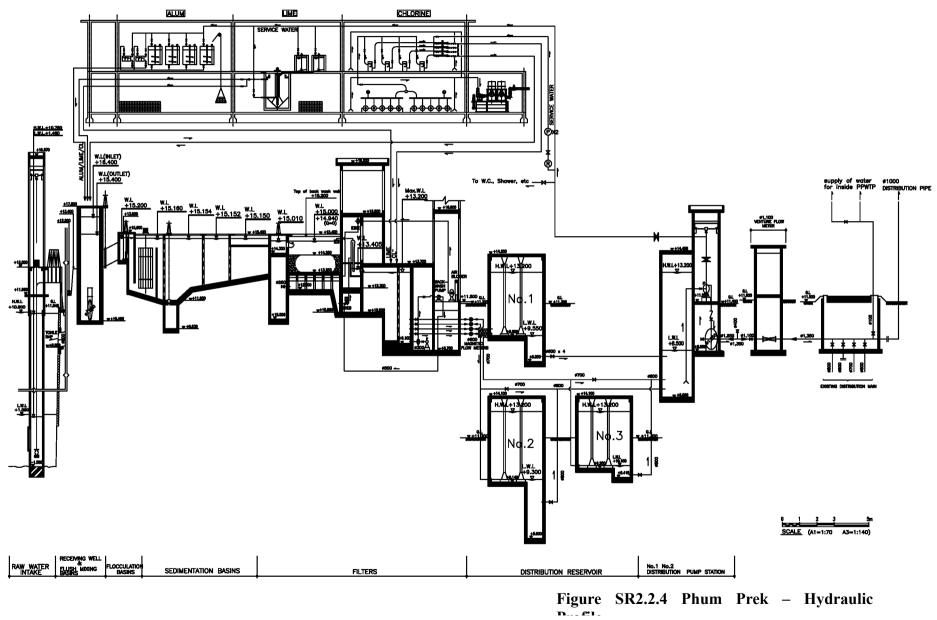

Tuble SIC2.2.1 Chemical Consumption								
Plant/Ri	vor	Alum	Lime	Chlorine				
Flait/Kivei		(g/m3)	(g/m3)	(g/m3)				
Phum Prek	Sap	22.37	6.76	3.08				
Chamkar Mon	Basak	45.83	7.06	2.36				
Chrouy Changva	Mekong	17.06	0.00	1.80				

Table SR2.2.4 Chemical Consumption

Chrouy Changva Plant consumes less alum and chlorine than other plants and no lime, due to better raw water quality. Chamkar Mon has biggest consumption due to higher turbidity and difficulties in operation of the chemical dosing equipment.

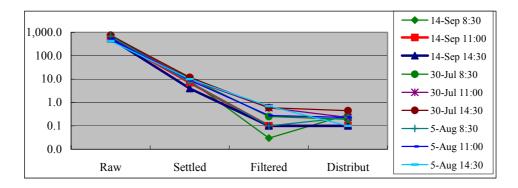

It is expected that deterioration of raw water quality will require more consumption of chemicals for Phum Prek and Chamkar Mon Plants in future.

Supporting Report.2.2-6

Figure SR2.2.3 Phum Prek - Layout

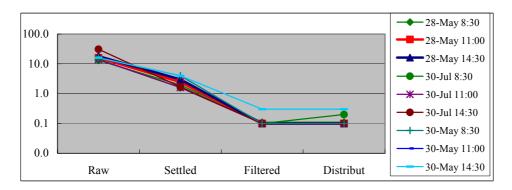
Table SR2..2.5 Phum Prek Water Treatment Plant

Capacity	100,000 m3/d (Old) 50,000 m3/d (New)							
Water Source	$\frac{158,400 \text{ m}^3/\text{d}}{158,400 \text{ m}^3/\text{d}} \frac{(\text{Vid})}{\text{Tonle Sap}} + \frac{350,000 \text{ m}^3/\text{d}}{1000 \text{ m}^3/\text{d}} \frac{(\text{Vid})}{(\text{View})}$							
Construction	$1965 \qquad \text{costruction of old plant}$							
Construction	1988, 1995 rehabilitation of old plant							
	2003 construction of new plant							
Intake Facilities	Tonle Sap $HWL = 10.78 \text{ m}, LWL = 1.46 \text{m}$							
	Raw Water Pumping							
Type Intoleo Dumo								
Intake Pump								
Receiving Well	(new) : 36.7 m3/min x 21 m x 2 units							
	Deputer maler							
Type Retention Time	Recutangular							
	4.1 min							
Size & Q'ty	5.3 mW x 15 mL x 5.3 mD x 1 unit							
Name of Water Treatment I								
Capacity Treatment Process	100,000 m3/d (Old)							
Treatment Process	<u> </u>							
 Rapid Mixing Flocculation 								
3. Sedimentation								
4 Filtration								
5 Disinfection								
Flocculation								
Type	Horizontal Flow							
Retention Time	24.8 min.							
Size	8.0 mW x 11.0 mL x 3.27 mD							
<u>Q'ty</u>	6 units							
Equipment	Vertical Flocculator 6 units							
Sedimentation Tank								
Туре	Horizontal Flow							
Retention Time	126.8 min 2.1 hr							
Size	11 mL x 53 mW x 2.52 mD							
<u>Q'ty</u>	6 units							
Flow Velocity	0.52 m/min							
Surface Load	119.2 mm/min							
Trough/Pipe	Orifice Trough							
Sludge Removal	Sludge Extraction Valve (Manual)							
Equipment	Sludge Extraction Valve							
Operation	Sludge Removal - Manual							
Filter								
Туре	Gravity, Single Media, Constant Flow, Level Control							
Filtration rate	156 m/d (6.50 m/hr) 170 m/hr at washing							
Filter Bed Area	53.6 m2							
Size & Q'ty	4.5 mW x 11.9 mL x 12 filters							
Filter Media	Sand : 0.8-1.0 mm x 1000 mm							
Washing Rate	Air Scour : 0.934 m/min Wash : 0.342 m/min Rincing : 0.342 m/min							
Washing System	Air Scouring (4 - 5 min), Air Scouring + Backwashing (4 - 7 min), Rincing (15 - 20 min)							
Wash Trough	None							
Equipment	Inlet Gate, Outlet Valve, Level Control Siphon, Siphon Regulation System							
	Washwater Inlet Valve, Washwater Discharge Gate, Washwater Pump							
	Scour Air Inlet Valve, Air Blower							
Operation	Manual(Original-Automatic & Step-by-step)							
Operation Sludge Disposal								


Name of Water Treatment Plant : Phum Prek

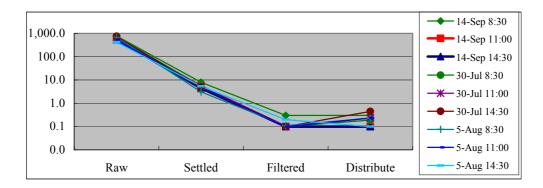
Name of Water Treatment	Plant : Phum Prek - New					
Capacity	50,000 m3/d					
Treatment Process	50,000 m5/u					
1. Rapid Mixing						
2. Flocculation						
3. Sedimentation						
4 Filtration						
5 Disinfection						
Rapid Mixing	1					
Туре	Weir					
Retention Time	73 sec					
Size & Q'ty	1.8 mW x 5.0 mL x 4.7 mD x 1 unit					
Equipment	None					
Flocculation						
Туре	Horizontal Flow					
Retention Time	26.2 min.					
Size	11.3 mW x 7.0 mL x 2.9 mD					
Q'ty	4 units					
Equipment	Vertical Flocculator 8 units					
Sedimentation Tank						
Туре	Horizontal Flow					
Retention Time	145.7 min 2.4 hr					
Size	43.4 mL x 11.3 mW x 2.6 mD					
Q'ty	4 units					
Flow Velocity	1.19 m/min					
Surface Load	71.4 mm/min					
Trough/Pipe	Orifice Trough					
Sludge Removal	Sludge Extraction Valve (Manual)					
Equipment	Sludge Extraction Valve					
Operation	Sludge Removal - Manual					
Filter						
Туре	Gravity, Single Media, Constant Flow, Level Control					
Filtration rate	128 m/d (5.33 m/hr) 146 m/hr at washing					
Filter Bed Area	48.8 m2					
Size & Q'ty	4.5 mW x 10.85 mL x 8 filters					
Filter Media	Sand : 0.8-1.0 mm x 1000 mm					
Washing Rate	Air Scour : 1.024 m/min Wash : 0.375 m/min Rincing : 0.42 m/min					
Washing System	Backwashing (0.5 min), Air Scouring + Backwashing (4 - 7 min), Rincing (10 - 15 min)					
Wash Trough	None					
Equipment	Inlet Gate, Outlet Valve, Level Control Siphon, Siphon Regulation System					
	Washwater Inlet Valve, Washwater Discharge Gate, Washwater Pump					
	Scour Air Inlet Valve, Air Blower					
Operation	Automatic & Step-by-step					
Sludge Disposal						
	Direct Discharge to the river					
Chemicals						
Alum	Tank + Mixer : 4, Dosing Tank : 2 (1)					
Lime	Tank + Mixer : 2, Lime Saturator : 1, Flowmeter : 4 (2)					
Chlorine	Chlorinator -Pre : 2(1), -Post : 3(1)					
Clear Water Reservoir	HWL = 13.2 m, LWL = 9.3 m					
<u>No. 1</u>	10,000 m3					
No. 2	10,000 m3					
No. 3	5,000 m3					
Clear Water Pump	HWL = 13.2 m, LWL = 8.5 m					
Transmission	(1 to 2) 17.5 m3/min x 42 m x 180 kW x 2 units					
Distribution-1	(1 to 4) 35.0 m3/min x 42 m x 320 kW x 4 units					
Distribution-2	(5 to 7) 17.5 m3/min x 42 m x 180 kW x 3 units					

Phum Prek - Old Plant (100,000 m3/day)

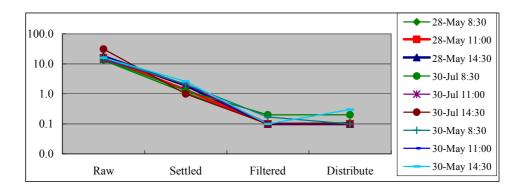

	Date	Time	Item	Raw	Settled	Filtered	Distribut	
1	14-Sep	8:30	Turbidity	766	8.70	0.03	0.30	
		11:00	Turbidity	595	7.00	0.10	0.10	
		14:30	Turbidity	545	4.00	0.10	0.10	
2	30-Jul	8:30	Turbidity	756	11.00	0.25	0.19	
		11:00	Turbidity	614	9.80	0.60	0.23	
		14:30	Turbidity	727	12.00	0.60	0.45	
1	5-Aug	8:30	Turbidity	680	7.20	0.10	0.23	
		11:00	Turbidity	515	8.90	0.28	0.23	
		14:30	Turbidity	423	10.00	0.70	0.10	
I		Average	Average	625	8.73	0.31	0.21	
Re		Removal	Removal	100%	1.4%	0.05%	0.03%	

High Turbidity

Low Turbidity


	Date	Time	Item	Raw	Settled	Filtered	Distribut
1	28-May	8:30	Turbidity	13	1.95	0.11	0.11
		11:00	Turbidity	16	2.45	0.10	0.10
		14:30	Turbidity	18	3.00	0.10	0.10
2	30-Jul	8:30	Turbidity	14	1.60	0.10	0.20
		11:00	Turbidity	14	1.60	0.10	0.10
		14:30	Turbidity	31	1.70	0.10	0.10
1	30-May	8:30	Turbidity	16	4.00	0.10	0.10
		11:00	Turbidity				
		14:30	Turbidity	16	4.00	0.30	0.30
		Average	Average	17	2.54	0.13	0.14
Remo		Removal	Removal	100%	14.7%	0.7%	0.8%

Phum Prek - New Plant (50,000 m3/day)


High	Turbidity
------	-----------

	Date	Time	Item	Raw	Settled	Filtered	Distribute
1	14-Sep	8:30	Turbidity	766	8.00	0.30	0.30
		11:00	Turbidity	595	5.40	0.10	0.10
		14:30	Turbidity	545	4.40	0.10	0.10
2	30-Jul	8:30	Turbidity	756	5.30	0.10	0.19
		11:00	Turbidity	614	5.20	0.10	0.23
		14:30	Turbidity	727	4.80	0.10	0.45
1	5-Aug	8:30	Turbidity	680	3.10	0.11	0.23
		11:00	Turbidity	515	5.20	0.10	0.23
		14:30	Turbidity	423	5.40	0.20	0.10
		Average	625	5.20	0.13	0.21	
			Removal	100%	0.83%	0.02%	0.03%

Low Turbidity

	Date	Time	Item	Raw	Settled	Filtered	Distribute
1	28-May	8:30	Turbidity	13	1.10	0.10	0.11
		11:00	Turbidity	16	1.37	0.10	0.10
		14:30	Turbidity	18	1.90	0.10	0.10
2	30-Jul	8:30	Turbidity	14	1.30	0.20	0.20
		11:00	Turbidity	14	2.10	0.10	0.10
		14:30	Turbidity	31	1.00	0.10	0.10
1	30-May	8:30	Turbidity	16	2.10	0.17	0.1
		11:00	Turbidity				
		14:30	Turbidity	16	2.60	0.10	0.30
			Average	17	1.68	0.12	0.14
			Removal	3%	90.2%	99.3%	99.2%

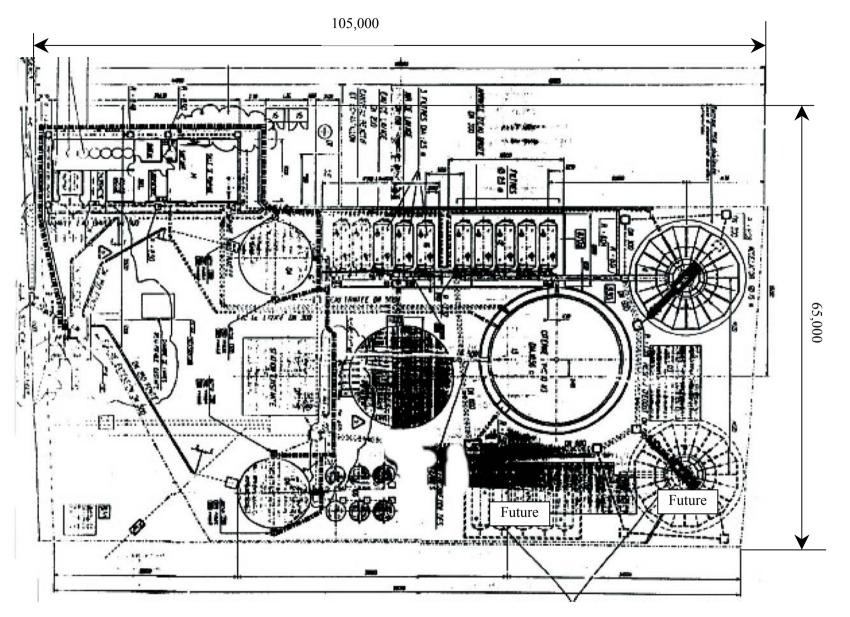
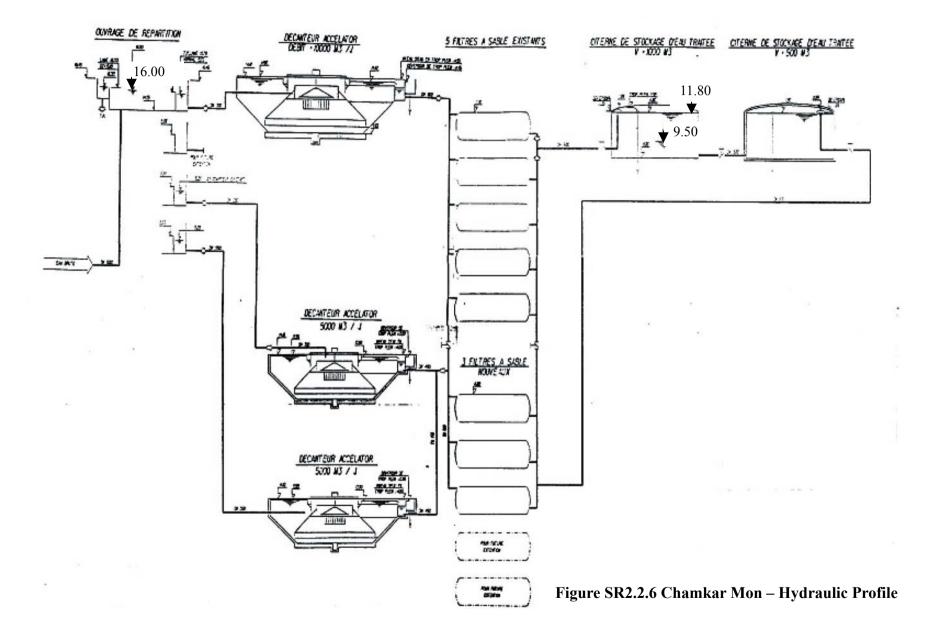



Figure SR2.2.5 Chamkar Mon – Layout

Table SR2.2.7 Chamkar Mon Water Treatment Plant

Name of Water Treatment Plant : Chamkar Mon

Capacity	20,000 m3/d
Water Source	Tonle Basak HWL = 10.7 m, LWL = 1.5m
Construction	1957 costruction of old plant
	1988 rehabilitation of old plant
	1995 construction of new plant
Treatment Process	
1. Rapid Mixing	•
2. Flocculation	
3. Sedimentation	
4 Filtration	
5 Disinfection	
Intake Facilities	Tonle Bassac
Туре	Raw Water Pumping
Equipment	Intake Pump: $7.65 \text{ m}3/\text{min x} 28 \text{ m x} 55 \text{ kW x} 3 (1)$
Receiving Well	
Туре	Recutangular
Retention Time	19 sec
Size & Q'ty	3 mW x 1 mL x 1.5 mD x 1 unit
Rapid Mixing	Urdenijo Jama
Type	Hydraulic Jamp
Size & Q'ty	3 mW x 0.5 mD x 3 unit
Equipment	None
Sedimentation Tank-1	Accelator (5,000 m3/d x 2 sets)
Туре	Up-flow, Sludge Blanket, Circular
Retention Time	1.68 hr
Capacity	350 m3
Size & Q'ty	10 m dia(4 m dia) 4.9 mD x 2 sets
Surface Load	0.9 mm/min
Trough/Pipe	Radiate Orifice Trough
Sludge Removal	Sludge Wihtdrawal Valve
Equipment	Sludge Wihtdrawal Valve
Operation	Sludge Removal-Mamual
Sedimentation Tank-2	Accelator (10,000 m3/d x 1 set)
Туре	Up-flow, Sludge Blanket, Circular Type with Inclined Plate
Retention Time	1.56 hr
Capacity	650 m3
Size & Q'ty	15 m dia(5.5 m dia) 4.9 mD x 1 set
Surface Load	0.8 mm/min
Trough/Pipe	Radiate Orifice Trough
Sludge Removal	Sludge Wihtdrawal Valve
Equipment	Sludge Wintdrawal Valve
Operation	Sludge Removal-Automatic
Filter	Horizontal Cylindrical Pressured Filter
Туре	Pressured, Single Media, Declining Flow
Filtration rate	167 m/d (6.944 m/hr) 190 m/hr at washing
Filter Bed Area	15.00 m2 x 8 filters
Size & Q'ty	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Filter Media	Sand : 0.95 mm x 800 mm
Washing System	Air Scouring (5-8 min) + Backwashing (10-15 min)
Washing Rate	Air Scour : 0.9167 m/min Backwash : 0.25 m/min
Trough	1 no/filter
Equipment	Inlet Valve, Outlet Valve, Washwater Valve, Washwater Drain Valve
	Washwater Pump, Air Scouring Valve, Air Blower, Flow Meter, Headloss Meter
Operation	Manual

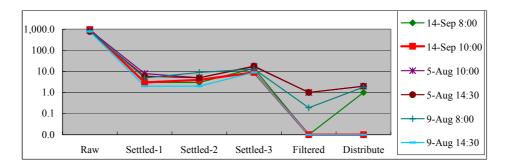
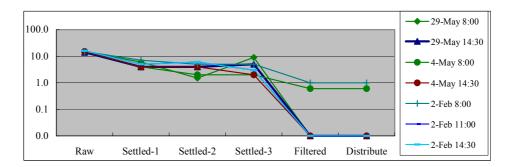
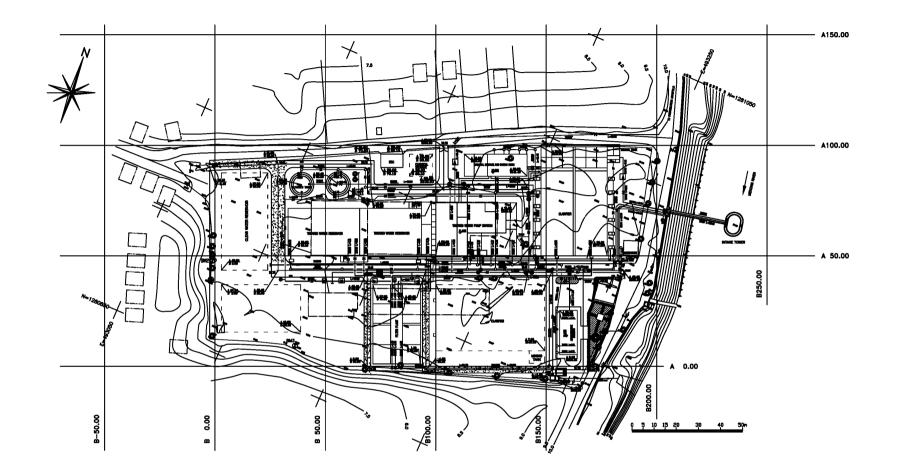

Chemicals							
Alum	Tank + Mixer : 2, Dosing Pump : 2 (1)						
Lime	Tank + Mixer : 4, Dosing Pump -Pre : 2 (1), -Post : 2 (1)						
Chlorine	Chlorinator -Pre : 2 (1), -Post : 3 (1)						
Sludge Disposal							
	Direct Discharge to the river						
Clear Water Reservoir	HWL = 9.7 m, LWL = 7.0 m						
No. 1	1,000 m3						
No. 2	500 m3						
Clear Water Pump							
Transmission	7.0 m3/min x 60 m x 110 kW x 2 units						
Distribution	7.3 m3/min x 30 m x 55 kW x 2 units						

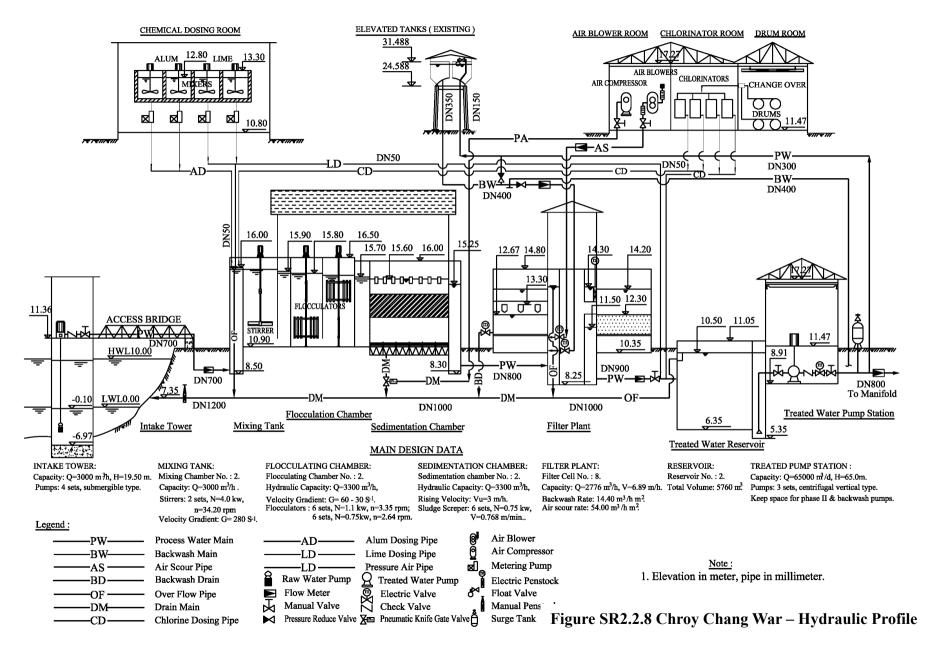
Table SR2.2.8 Chamkar Mon Water Treatment Plant – Process Analysis


Chamkar Mon


High	Turbidity
пічі	

ing										
	Date	Time	Item	Raw	Settled-1	Settled-2	Settled-3	Filtered	Distribute	
1	14-Sep	8:00	Turbidity	950	3.00	3.00	14.00	0.01	1.00	
		10:00	Turbidity	970	3.00	4.00	9.00	0.01	0.01	
		14:30	Turbidity							
2	5-Aug	8:00	Turbidity							
		10:00	Turbidity	900	8.00	5.00	17.00	1.00	2.00	
		14:30	Turbidity	770	6.00	5.00	18.00	1.00	2.00	
3	9-Aug	8:00	Turbidity	864	4.90	9.00	13.10	0.19	1.8	
		10:00	Turbidity							
		14:30	Turbidity	771	2.00	2.00	9.00	0.01	0.01	
			Average	871	4.48	4.67	13.35	0.37	1.14	
			Removal	100%	0.51%	0.54%	1.53%	0.04%	0.13%	

	Low	Turbid i	ity							
ſ		Date	Time	Item	Raw	Settled-1	Settled-2	Settled-3	Filtered	Distribute
ſ	1	29-May	8:00	Turbidity	15.00	6.00	1.50	9.00	0.01	0.01
			11:00	Turbidity						
			14:30	Turbidity	14.00	4.00	4.00	5.00	0.01	0.01
ſ	2	4-May	8:00	Turbidity	15.00	4.00	2.00	2.00	0.60	0.60
			11:00	Turbidity						
			14:30	Turbidity	15.00	4.00	4.00	2.00	0.01	0.01
ſ	3	2-Feb	8:00	Turbidity	15.00	7.00	5.00	5.00	1.00	1.00
			11:00	Turbidity	16.00	5.00	6.00	3.00	0.01	0.01
			14:30	Turbidity	16.00	5.00	6.00	3.00	0.01	0.01
				Average	15.14	5.00	4.07	4.14	0.24	0.24
				Removal	100%	33%	27%	27.4%	1.56%	1.56%

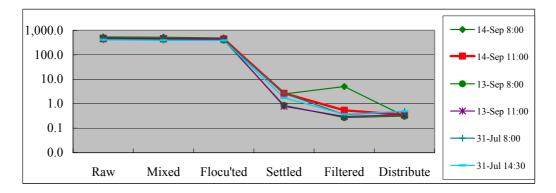

	!	BUILDING AND STRUCTURE SCHEDULE		
No.	ITEN .	DESCRIPTION	REMARK	
0	INTAKE TOWER		EXISTING, RETAINED & REHABILITATED	NEW WORK
0	MDDING TANKS	5.20m X 2.50m X 5.10m X 2	NEW WORK	PRIVATE HOUSIN
3	CLARIFIERS	49.30m X 14.30m X 4.45m X 2	NEW WORK	EXISTING - RET/
۲	FILTER PLANT	8.60m X 7.90m X 3.85m X 8	NEW WORK	
6	TREATED WATER RESERVOIRS	32.30m X 21.50m X 4.15m X 2, 5500m 3	NEW WORK	PV PRO
6	TREATED WATER PUMP STATION	36.60m X 24.00m	NEW WORK	BW BAC
Ø	CHEMICAL STORAGE AND DOSING BUILDING	28.50m X 10.00m	NEW WORK	
8	ADMINISTRATIVE BUILDING	20.00m X 8.00m, 320m ²	NEW WORK	BD BAC
۲	ELEVATED WATER TANK	625m ³ EACH	EXISTING, RETAINED & REHABILITATED	
0	guardhouse	6.36m X 5.50m, 70m ²	EXISTING, RETAINED & REHABILITATED	AD ALUI

BACKWAS AIR SCOL AIR SCOL SERVICE BACKWAS COVER FLO CHLORINI	HED WATER MAIN IR PIPE WATER PIPE HI DRAIN W PIPE E DOSING PIPE SING PIPE	DRAIN MAIN SEWER PIPE FLOW METER & CHAMBER VALVE & CHAMBER VALVE (UNDER GROUND) HYDRAINT SURGE TANIK MANHOLE SEPTIC GWERZYDILET PRISTOK CHAMER SEPTIC GWERZYDILET PRISTOK CHAMER ELETTIK CHAE, DOSIG PRE DUCT MD MWRAE	

LEGENDS:

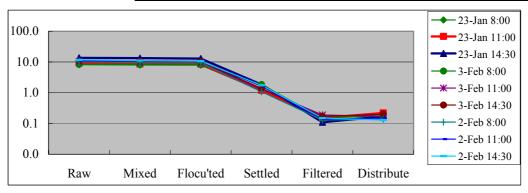
Figure SR2.2.7 Chroy Chang War – Layout

Table SR2.2.9 Chrouy Changva Water Treatment Plant


Name of Water Treatment Plant : Chrouy Changva

Capacity	65.000 m3/d
Water Source	72,000 m3/d Mekong River HWL = 10.0 m, LWL = 0.0m
Construction	2002 costruction of first stage
e onstitue non	future costruction of second stage
Treatment Process	
1. Rapid Mixing	
2. Flocculation	
3. Sedimentation	
4 Filtration	
5 Disinfection	
Intake Facilities	Pump Pit $HWL = 10.0 \text{ m}, LWL = -0.10 \text{m}$
Туре	Raw Water Pumping
Intake Pump	16.7 m3/min x 19.5 m x 75 kW x 4 units
Piping	Raw Water Transmission Pipe : 700 mm * DI
Rapid Mixing	
Туре	Mechnical Mixing
Retention Time	85 sec
Size & Q'ty	2.5 mW x 2.5 mL x 5.1 mD x 2 units
Equipment	Vertical Mixer 2 units
Flocculation	
Туре	Horizontal Flow
Retention Time	27.6 min.
Size	4.6 mW x 4.6 mL x 4.9 mD
Q'ty	12 units
Equipment	Vertical Flocculator 6 units
Sedimentation Tank	
Туре	Up Flow with Inclined Tube
Retention Time	104.8 min 1.7 hr
Size	38.4 mL x 13.1 mW x 4.7 mD
<u>Q'ty</u>	2 units
Surface Load	44.9 mm/min
Trough/Pipe	Orifice Trough
Sludge Removal	Sludge Scraper 12 units, Sludge Extraction Valve
Equipment	Inclined Tube, Sludge Scraper 6 units, Sludge Extraction Valve
Operation	Sludge Collection - Automatic, Sludge Removal - Automatic
Filter	
Type	Gravity, Single Media, Declining Flow
Filtration rate	141 m/d (5.87 m/hr) 188 m/d at washing
Filter Bed Area	57.67 m2 x 8 filters
Size & Q'ty	3.65 mW x 7.9 mL x 2 beds
Filter Media	Sand : 0.9 - 1.2 mm x 950 mm
Washing System	Air Scouring (54 m/hr) + Backwashing (14.4 m/hr)
Equipment	Inlet Gate, Outlet Valve, Washwater Valve, Air Scouring Valve, Washwater Drain Gate
Onerting	Washwater Pump, Air Scouring Valve, Air Blower
Operation	Manual
Chemicals	Alum Tank + Miyor · 2 sots Alum Dooing Dump · 2 (1)
Alum	Alum Tank + Mixer : 2 sets, Alum Dosing Pump : 2 (1) Lime Tank + Mixer : 2 sets, Lime Dosing Pump : 2 (1)
Lime Chlorine	Chlorinator -Pre : 2 (1) -Post : 2 (1), Pressure Pump : 4 (2)
Clear Water Reservoir	1000000000000000000000000000000000000
Elevated No. 1	625 m3
Elevated No. 1 Elevated No. 2	625 m3
Reservoir No. 1	2,880 m3
Reservoir No. 2	2,880 m3
Clear Water Pump	2,000 mJ
Distribution	22.58 m3/min x 65 m x 315 kW x 3 units
Distribution	

Table SR2.2.10 Chrouy Changva Water Treatment Plant


Chrouy Changva

Hig	gh Turbidi	ty							
	Date	Time	Item	Raw	Mixed	Flocu'ted	Settled	Filtered	Distribute
1	14-Sep	8:00	Turbidity	540	525	490	2.50	5.00	0.31
		11:00	Turbidity	451	443	441	2.66	0.54	0.35
		14:30	Turbidity						
2	13-Sep	8:00	Turbidity	468	437	398	0.85	0.27	0.31
		11:00	Turbidity	485	463	442	0.78	0.30	0.35
		14:30	Turbidity						
3	31-Jul	8:00	Turbidity	413	404	393	2.67	0.36	0.48
		11:00	Turbidity						
		14:30	Turbidity	411	392	384	1.74	0.37	0.49
			Average	461	444	425	1.87	1.14	0.38
			Removal	100%	96%	92%	0.40%	0.25%	0.08%

Low Turbidity

	Date	Time	Item	Raw	Mixed	Flocu'ted	Settled	Filtered	Distribute
1	23-Jan	8:00	Turbidity	8.20	8.02	7.94	1.18	0.15	0.20
		11:00	Turbidity	9.18	8.64	8.50	1.20	0.15	0.22
		14:30	Turbidity	13.70	13.40	12.90	1.85	0.11	0.17
2	3-Feb	8:00	Turbidity	8.30	8.25	8.24	1.85	0.15	0.18
		11:00	Turbidity	10.20	9.70	9.50	1.30	0.19	0.17
		14:30	Turbidity	10.80	10.70	10.30	1.38	0.17	0.20
3	2-Feb	8:00	Turbidity	10.20	9.50	9.30	1.08	0.13	0.14
		11:00	Turbidity	11.00	11.00	10.80	1.63	0.14	0.15
		14:30	Turbidity	11.70	11.10	10.70	1.75	0.15	0.13
			Average	10.36	10.03	9.80	1.47	0.15	0.17
			Removal	100%	97%	95%	14.2%	1.44%	1.67%

Supporting Report 2.3 Filter Operation Test

1. Filter Test Procedure

The production capacity of Chrouy Changva will be expanded from $65,000 \text{ m}^3/\text{d}$ to $130,000 \text{ m}^3/\text{d}$. In this expansion project, the existing plant has limited space available so the expansion needs to minimize the usage of space. This test was undertaken to confirm if a higher filtration speed can be applied to the existing filters to increase output.

The designs of the existing and proposed filters are summarized as follows:

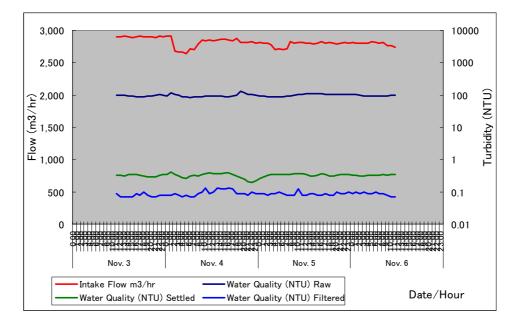
Item	Existing	Expansion
Production capacity	$65,000 \text{ m}^3/\text{d}$	$130,000 \text{ m}^3/\text{d}$
No. of filters	8	12
Area of one filter	57.67 m ²	57.67 m ²
Area of all filter	461 m ²	692 m^2
Filtration speed per day	$141 \text{ m}^3/\text{m}^2/\text{d}$	$188 \text{ m}^3/\text{m}^2/\text{d}$
Filtration speed per hour	$5.87 \text{ m}^3/\text{m}^2/\text{hr}$	$7.83 \text{ m}^3/\text{m}^2/\text{hr}$

The following procedures were applied for the test:

- a. The operation was carried out on the same six (6) filters for three days (72 hrs) at full production capacity (2710 m3/hr).
- b. Every hour all the following data were recorded.
 - Raw water intake flow (m³/hr)
 - Water quality (turbidity: NTU raw water, settled water filtered water)
 - Water levels (filter and effluent weir)
- c. Water quality (NTU) of Filtered Water was measured for each filter.
- d. Filter In/Out were the water levels (m) at filter and effluent channel.

2. Test Results s

Test results are described as follows:


2.1 River Water Intake Flow

Raw water intake flow can be set by the speed control system of the raw water pumps. The flow is approximately 2,900 m³/hr (69,600 m³/d), which is about 7 % larger than planned production capacity considering wastage for desludging of sedimentation tanks and backwashing of filters.

The intake flow is shown in Figure SR2.3.1.

2.2 Water Quality

Turbidity (NTU) is measured hourly for raw water, settled water and filtered water. Raw water is similar to annual average raw water turbidity. Filtered water of Filter No. 1 is monitored.

The water quality is shown in Figure SR2.3.1.

Figure SR2.3.1 Raw Water Flow and Water Quality

Turbidity of raw water is about NTU 100, settled water ranges from NTU 0.3 to 0.4, and filtered water is NTU 0.07 to 0.13. Filtered water is far below the national standard of drinking water NTU 5.

2.3 Water Level

Water level over the filter media (In) and water level at effluent weir (Out) are continuously measured by ultrasonic level sensors in each filter. In automatic filtration operation, motorized effluent valves control the opening to keep the above water level difference (In - Out) to 2.5 m, and maintain the water level over the filter media and filtration flow.

Water level over the filter media (In) varies over a range of 2.65 to 2.81 m, and water level at the effluent weir (Out) varies over a range of 0.14 to 0.28 m. The water level (Out) is altered by filtration flow of each filter and the range of 0.14 to 0.28 m translates into 259 to 751 m³/hr, while the filters are planned to treat 677 m³/hr or a filtration rate of 7.83 m³/m²/d.

Some filters show sudden reduction of the water level, which indicates backwashing at that time.

The following figure shows the fluctuation of water levels in each filter.

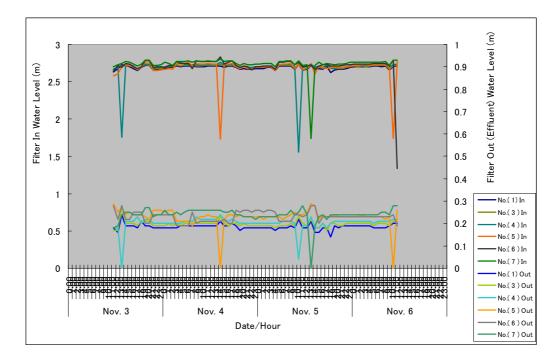
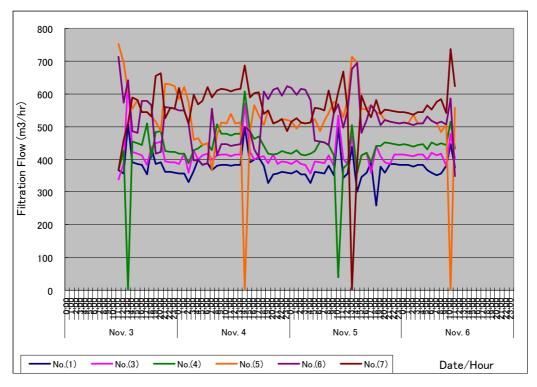
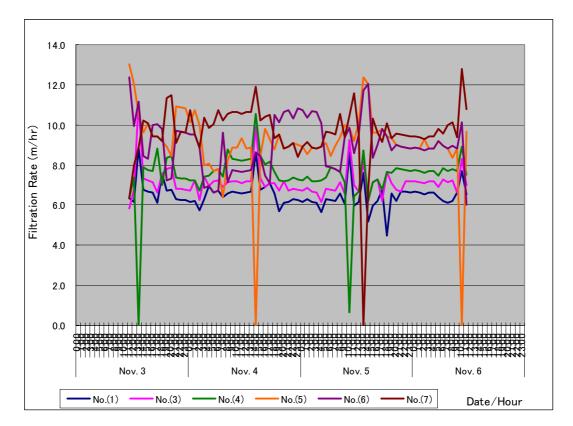


Figure SR2.3.2 Water Levels in Filters

2.4 Filtration Flow and Filtration Rate

As explained in the above section, filtration flow of each filter is calculated by water level at the effluent weir (Out). Figure SR2.3.3 shows filtration flow (m^3/hr) of each filter during 72 hours test operation.




Figure SR2.3.3 Filtration Flow

The following table summarizes total filtration volume for each filter.

Filter	No.1	No. 2	No. 4	No. 5	No. 6	No. 7
Volume (m ³)	27,035	29,628	30,929	37,630	37,682	39,831
Ratio (%)	80 %	88 %	92 %	111 %	112 %	118 %
Volume (m ³)		87,592			115,143	
Ratio (%)		43 %			57 %	

 Table SR2.3.1
 Volume of Filtration for Each Filter

Settled water is flowed through an 800 mm pipe, then it is divided into two channels. One channel is connected to filters 1 to 4, and the other is connected to filters 5 to 8. The results clearly show that nos. 1, 2 and 4 treat less water than the others, due mainly to uneven division of the flow of settled water to the filter inflow channels.

A design change should be made to prevent the uneven flow division of the channels.

Figure SR2.3.4 Filtration Rate

Figure SR2.3.4 shows the filtration rate fluctuation of each filter. Rapid decrease of flow rate indicates filter washing in progress (e.g., No. 5 Filter at 14:00 hours on Nov. 4); while at the same hour two other filters (Nos. 6 and 7) increase their flow to accommodate the settled water diverted from filter No. 5.

Except for the above rapid and irregular fluctuations, filters are normally operated within a range

of 6 to 11 m/hr, while planned flow is 7.83 m/h. The range is 76 to 140 % of the planned rate. The original design of the filter set a filtration rate of 5.87 m/d. 11 m/hr is 1.87 times faster than the original rate.

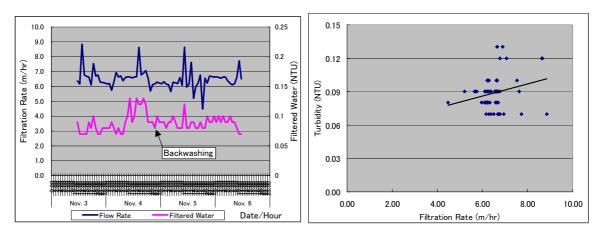


Figure SR2.3.5 Filtration Rate/Turbidity A Figure SR2.3.6 Filtration Rate/Turbidity B

The above Figure SR2.3.5 indicates filtration rate and filtered water quality (NTU) during 72 hours of operation. Figure SR2.3.6 shows the correlation between filtration rate and turbidity. While it is not a strong correlation, the trend logically suggests that higher filtration rates result in higher turbidity.

Therefore, it is recommended to regulate the excessive inflow to the filters.

2.4 Backwashing

During the 72 hour test operation, Filter Nos. 4, 5 and 6 were backwashed twice. The filtration rates, filtered water volumes and durations were analyzed for the periods between the backwashings.

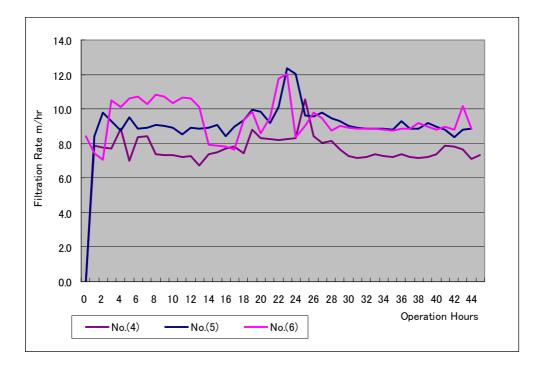


Figure SR2.3.7 Filtration Rate after Backwashing

No significant tendency was observed with respect to the variation of filtration rates before and after backwashing.

Table SR2.3.2 Filtration Period

Filter	No.4	No. 5	No. 6
Filtration Period (hrs)	45	44	44
Filtered Volume (m ³)	19,668	22,918	24,046

Table SR2.3.2 shows the filtration period and filtered volume of Filter Nos. 4, 5 and 6. In general, the filters can treat for 45 hours and approximately 20,000 m^3 after backwashing. 45 hours is considered to be a reasonable filtration period.

2.5 Hydraulic Conditions

During the filtration test operation, the hydraulic status of the existing facilities was roughly measured, with results as summarized in Table SR2.3.3.

Location	Design	No.1	No. 2	No. 4	No. 5	No. 6	No. 7	No. 7	No. 8	
Sedimentation Tank Effluent	15.25				14.69 -	- 14.73				
Filter Inflow Channel	14.30		14.30 14.34							
Operation		0	_	0	0	0	0	0	_	

Table SR2.3.3 Hydraulic Status

Filter Effluent Channel	11.50	11.20	11.45 - 11.50	11.50	11.35 - 11.40
Clear Water Tank Water Level (HWL)	10.50		10.15 -	- 10.19	

There is some allowance of 0.5 m between Sedimentation Tank Effluent Pits to Filter Inflow Channels. However, very small or no allowance is found within the filter facility and between the filters and Clear Water Tank.

Detailed hydraulic calculations should be carried out to solve the above problems. Improvement of the existing filters should also be considered during the detailed design stage.

3. Conclusion

For the expansion of water production from 65,000 m^3/d to 130,000 m^3/d ., it is acceptable to construct four more filters connecting to the existing filters, subject to the following points:

- a. Re-design and improvement of the hydraulic profile should be considered.
- b. Steady operation of sedimentation tanks should be secured for high turbidity of raw water in rainy season.
- c. If necessary, proper washing arrangements (washing/air scouring rate and period) and regular washing (once a day) should be considered.

Supporting Report 2.4 Reservoir Storage Simulation

1. Chrouy Changva Water Treatment Plant

1.1 Existing Plant and Clear Water Reservoir

The existing Chrouy Changva Water Treatment plant has a maximum production capacity of $65,000 \text{ m}^3/\text{d}$, with total clear water reservoir storage capacity of $5,800 \text{ m}^3$. Since current water demand does not require the full production of the plant so the record of actual operation at full production capacity is not available, the fluctuation of clear water tank storage is simulated. The result of simulation is shown in the following figure.

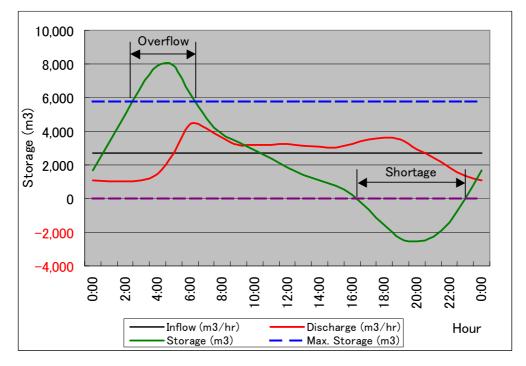


Figure SR2.4.1 Operational Simulation of Chrouy Changva Plant (65,000 m³/d)

The figure indicates that the reservoirs will overflow early in the morning, but fall short in the evening. It is clearly demonstrated that the clear water reservoirs have far smaller capacity than needed.

1.2 Required Storage of Clear Water Reservoir for Expansion of Plant

Basically constant operation or constant production flow is one of the most important objectives for water treatment plant operation.

For the expansion of water production from $65,000 \text{ m}^3/\text{d}$ to $130,000 \text{ m}^3/\text{d}$., it is necessary to examine how much storage capacity will be required using simulation. The result of simulation is shown in the following figure.

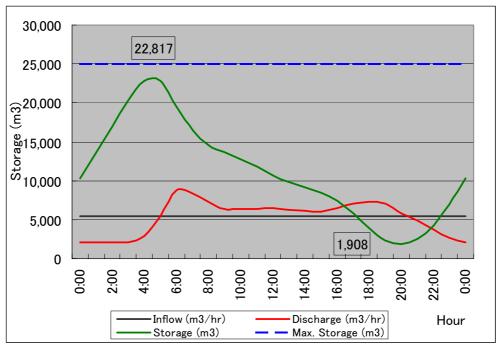


Figure SR2.4.2 Operational Simulation of Chrouy Changva Plant (130,000 m³/d)

The figure indicates that storage will reach the maximum at 5:00 AM, and the minimum at 8:00 PM. Total storage capacity of 25,000 m³ will support constant production of 5,420 m³/hr or 130,000 m³/d.

1.3 Recommendation

It is strongly recommended to construct clear water reservoirs with an additional capacity of $19,2000 \text{ m}^3$, increasing the total storage capacity of the plant to $25,000 \text{ m}^3$.

2. Phum Prek Water Treatment Plant

2.1 Current Operation

Through observation of the current operation and interviews with the operating staff of Phum Prek Water Treatment Plant, it was observed that the plant is not producing at its full capacity of $150,000 \text{ m}^3/\text{d}$ due to overflowing of the clear water reservoirs.

Therefore, operational data for a week was collected to evaluate the storage capacity of the reservoirs.

2.2 Operation Record

The following operation record was collected:

Date	September 1 to 7, 2005
Production (m ³ /hr)	3,170 to 6,900 m ³ /hr (76,000 to 165,000 m ³ /d)
Reservoir Water Level (m)	2.0 to 4.0 m

A flow meter is available at the main transmission/distribution header from the clear water pump station. A flow meter located on the intake pipe from the intake tower is not operational. Therefore, hourly production is assumed from the number of pumps in operation. For example, two pumps run at midnight, one pump runs at 4:00 AM, three pumps run at 06:00 AM, etc. The data is adjusted with respect to daily production, flow-head of intake pump and system loss curve of raw water transmission pipeline as follows:

1 pump operation	3,167 m ³ /hr
2 pumps operation	5,542 m ³ /hr
3 pumps operation	6,904 m ³ /hr

2.3 Fluctuation of Water Level Clear Water Reservoir

Figure 2.4.1 shows the hourly fluctuation of clear water production, distribution and reservoir storage of Phum Prek Water Treatment Plant.

Water production varied over a range of 3,100 to 6,900 m³/hr, which is directly related to how many raw water intake pumps were operated. Operators decide to start and stop the pumps considering water consumption and water levels in the clear water reservoirs. In general, early in the morning only one pump is operated. Then, three pumps are started around 06:00 hours continuing until 20:00 hours. In the evening, two pumps are operated until the next morning.

Although average hourly water consumption is $6,108 \text{ m}^3/\text{hr}$, the actual water consumption fluctuates within a range of 1,570 to 10,750 m³/hr, which is 26 % to 176 % of the average.

Maximum daily water consumption occurs in the morning. The water level in the reservoirs is full early in the morning but decreases rapidly until 9:00 AM. It then recovers slightly but falls

again in the afternoon through the evening, reaching its lowest level around 9:00 PM. The level varies over a range of 12,000 m^3 to 25,000 m^3 , and the available storage capacity is not fully utilized.

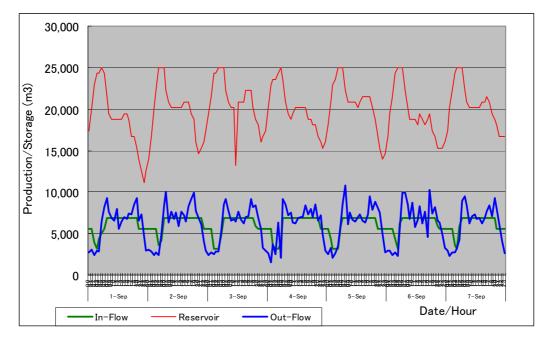


Figure SR2.4.3 Operation of Phum Prek Plant

Figure SR2.4.2 shows the water storage fluctuation in the clear water reservoirs with constant production.

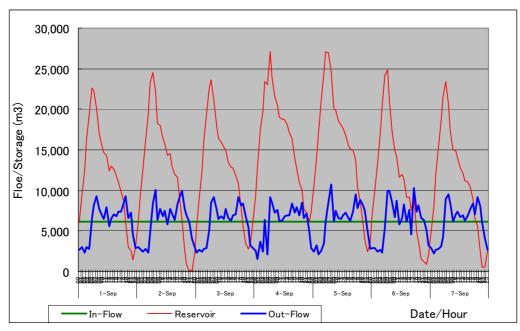


Figure SR2.4.4 Constant Production Operation of Phum Prek Plant

Clear water storage varies over a much wider range from almost no storage to more than $25,000 \text{ m}^3$, which means overflowing. This means that the existing three reservoirs, with total capacity

of 25,000 m³, are not enough for constant operation at full production capacity of 150,000 m³/d (or 6,250 m³/hr).

2.4 Recommendation

Three water towers are being constructed under on-going projects. Also, an additional water tank is proposed at Ta Khmau as part of the Stage 1 Priority Projects. Each of the water towers has a storage capacity of 1,500 m³, providing a total capacity of 6,000 m³. It is expected that some clear water produced during the night will be stored in these water towers and the water will be supplied to the distribution network during periods of peak water demand.

It is therefore recommended to monitor the fluctuation of the clear water reservoirs at the plant after the construction of the water towers. Construction of an additional clear water reservoir with a storage capacity of $5,000 \text{ m}^3$ should be considered if the plant is unable to operate at its full production capacity due to inadequate clear water storage capacity.

Supporting Report – 3 Water Demand Projection

Supporting Report 3.1 Water Demand Projection - Scenarios

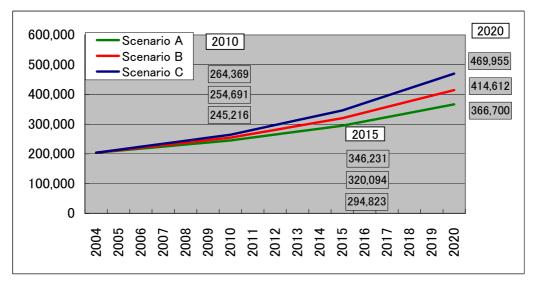

Districts	Dlannad		Dom	lestic		Non-Domestic				
Districts	Planned		lp	cd		Incrase Ratio				
Scenario	Coverage	Present	S-A	S-B	S-C	S-A	S-B	S-C		
Chamcar Mon	100%	80	85	90	95					
Doun Penh	100%	80	90		110					
7 Meakkara	100%	80	95	100 110	135	2% (ADM	3% (ADM	4% (ADM		
Tuol Kouk	100%	80	(1%/year)	(2%/year)	(3%/year)	and	and	and		
Dangkao	40-65%	70	80	80	80	Autonomy	Autonomy	Autonomy		
Mean Chey	70-90%	80	85	90	95	are 1%)	are 1%)	are 1%)		
Ruessei Kaev	60-90%	80	90	100	110	Í Í				
Kandal	20-30%	70	(1%/vear)	(2%/year)	(3%/vear)					

1.Applied Scenario in Unit Water Consumption Rate Increase

Applied Peak Factor (Max/Ave)1.30Applied NRW Ratio15%

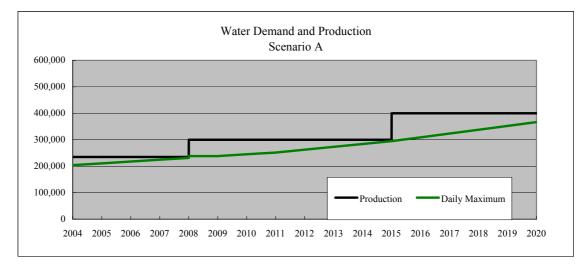
2. Ave. Day Demand by Scenario

Scenario	Served	Coverage	To	tal		Domestic		No	on-Domes	tic
	Population		Demand	lpcd	Demand	lpcd	increase	Demand	lpcd	increase
Present	1,035,931	67.7%	133,402	128.8	82,676	79.8		50,726	49.0	
Scenario A	4									
- 2010	1,244,738	70.1%	160,334	128.8	103,103	82.8	0.6%	57,230	40.8	-3.0%
- 2015	1,491,113	73.3%	192,769	129.3	130,215	87.3	1.1%	62,554	42.0	0.6%
- 2020	1,866,102	81.0%	239,766	128.5	171,366	91.8	1.0%	68,400	36.7	-2.7%
Scenario I	3									
- 2010	1,244,738	70.1%	166,529	133.8	106,627	85.7	1.2%	59,901	48.1	-0.3%
- 2015	1,491,113	73.3%	209,292	140.4	141,141	94.7	2.0%	68,151	45.7	-1.0%
- 2020	1,866,102	81.0%	271,093	145.3	193,444	103.7	1.8%	77,649	41.6	-1.9%
Scenario (C				· · · · · ·		-			
- 2010	1,244,738	70.1%	172,856	138.9	110,151	88.5	2.1%	62,705	50.4	0.6%
- 2015	1,491,113	73.3%	226,382	151.8	152,067	102.0	2.9%	74,315	49.8	-0.2%
- 2020	1,866,102	81.0%	307,278	164.7	218,938	117.3	2.8%	88,340	47.3	-1.0%

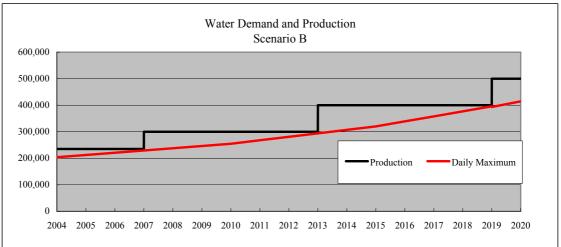


3. Peak Day Demand by Scenario (Daily Max/Daily Ave=

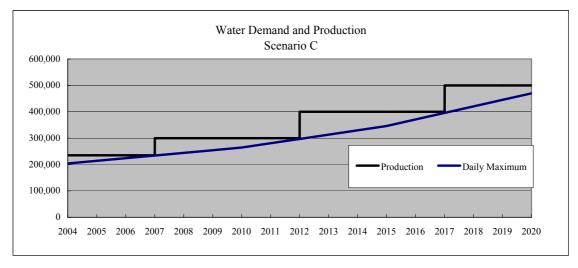
Scenario	То	tal		Domestic		N	on-Domest	tic
Scenario	Demand	lpcd	Demand	lpcd	increase	Demand	lpcd	increase
Present	173,423	167.4	107,479	103.8		65,944	63.7	
Scenario A	L							
- 2010	208,434	160.7	134,034	107.7	0.6%	74,400	53.0	-3.0%
- 2015	250,600	168.1	169,280	113.5	1.1%	81,320	54.5	0.6%
- 2020	311,695	167.0	222,776	119.4	1.0%	88,920	47.6	-2.7%
Scenario B								
- 2010	216,487	173.9	138,615	111.4	1.2%	77,872	62.6	-0.3%
- 2015	272,080	182.5	183,483	123.1	2.0%	88,596	59.4	-1.0%
- 2020	352,420	188.9	251,477	134.8	1.8%	100,943	54.1	-1.9%
Scenario C	r Z							
- 2010	224,713	180.5	143,197	115.0	2.1%	81,517	65.5	0.6%
- 2015	294,297	197.4	197,687	132.6	2.9%	96,610	64.8	-0.2%
- 2020	399,461	214.1	284,620	152.5	2.8%	114,841	61.5	-1.0%


4. Max. Day Demand (Applied Peak Factor and NRW)

4. Max. Da	y Demand	(Applied	Peak Fact	or and NR	W)	15%			
Scenario	Tot	tal		Domestic		Non-Domestic			
Scenario	Demand	lpcd	Demand	lpcd	increase	Demand	lpcd	increase	
Present	204,027	197.0	126,446	122.1		77,581	74.9		
Scenario A									
- 2010	245,216	189.0	157,687	126.7	0.6%	87,529	62.3	-3.0%	
- 2015	294,823	197.7	199,152	133.6	1.1%	95,671	64.2	0.6%	
- 2020	366,700	196.5	262,089	140.4	1.0%	104,611	56.1	-2.7%	
Scenario B									
- 2010	254,691	204.6	163,077	131.0	1.2%	91,614	73.6	-0.3%	
- 2015	320,094	214.7	215,863	144.8	2.0%	104,231	69.9	-1.0%	
- 2020	414,612	222.2	295,855	158.5	1.8%	118,757	63.6	-1.9%	
Scenario C	2								
- 2010	264,369	212.4	168,467	135.3	2.1%	95,902	77.0	0.6%	
- 2015	346,231	232.2	232,573	156.0	2.9%	113,658	76.2	-0.2%	
- 2020	469,955	251.8	334,847	179.4	2.8%	135,108	72.4	-1.0%	



1.30


5. Comparison of Water Production Scenarios a. Scenario A

b. Scenario B

Suppoering Report			-	ection by	Scenario)				
District	Present		Scenario A			Scenario B		1	Scenario C	
Year	2004	2010	2015	2020	2010	2015	2020	2010	2015	2020
1 Chamkar Mon										
Domestic	19,334	20,041	21,036	22,010		23,373	25,485	22,399	25,710	30,118
Commercial etc.	10,556	11,719	12,791	13,968	12,258	13,910	15,809	12,824	15,142	17,939
Total	29,890	31,760	33,827	35,977	33,478	37,282	41,294	35,222	40,852	48,057
2 Doun Penh										
Domestic	11,024	12,885	13,183	13,431	13,643	14,648	15,552	14,401	16,113	18,379
Commercial etc.	13,128	14,451	15,665	16,990	14,992	16,788	18,839	15,561	18,026	20,979
Total	24,152	27,336	28,848	30,421	28,635	31,436	34,391	29,961	34,139	39,358
3 7 Meakkara										
Domestic	8,573	9,478	9,392	9,233	10,036	10,435	10,691	10,593	11,479	12,635
Commercial etc.	5,332	5,920	6,462	7,057	6,193	7,028	7,989	6,479	7,652	9,067
Total	13,905	15,398	15,854	16,290	16,228	17,463	18,680	17,072	19,131	21,702
4 Tuol Kouk										
Domestic	18,530		18,857	20,245	18,535	20,953	23,442	19,564	23,048	27,704
Commercial etc.	7,671	8,558	9,379	10,281	8,994	10,284	11,772	9,452	11,282	13,496
Total	26,200	26,063	28,236	30,527	27,529	31,237	35,214	29,017	34,330	41,200
5 Dangkao		_								
Domestic	2,135	6,607	12,605	22,695	6,607	13,347	25,217	6,607	14,088	27,738
Commercial etc.	4,257	4,789	5,274	5,808	5,062	5,841	6,742	5,349	6,465	7,821
Total	6,392	11,395	17,879	28,503	11,669	19,187	31,958	11,956	20,554	35,560
6 Mean Chey										
Domestic	10,317	15,980	23,119	32,058	15,980	24,479	35,620	15,980	25,839	39,182
Commercial etc.	4,820	5,427	5,984	6,599	5,746	6,645	7,687	6,080	7,373	8,945
Total	15,136	21,407	29,103	38,657	21,726	31,124	43,307	22,060	33,212	48,127
7 Ruessei Kaev										
Domestic	11,983	17,033	26,536	43,653	17,033	28,096	48,503	17,033	29,657	53,353
Commercial etc.	4,692	5,256	5,780	6,356	5,546	6,381	7,346	5,850	7,043	8,491
Total	16,675	22,289	32,315	50,009	22,579	34,477	55,849	22,883	36,701	61,844
8 Kandal										
Domestic	780	3,575	5,487	8,041	3,575	5,810	8,935	3,575	6,133	9,828
Commercial etc.	271	1,110	1,220	1,341	1,110	1,275	1,465	1,110	1,332	1,602
Total	1,051	4,685	6,707	9,382	4,685	7,085	10,400	4,685	7,465	11,430
TOTAL										
Domestic	82,676	103,103	130,215	171,366	106,627	141,141	193,444	110,151	152,067	218,938
Commercial etc.	50,726	57,230	62,554	68,400	59,901	68,151	77,649	62,705	74,315	88,340
Total	133,402	160,334	192,769	239,766	166,529	209,292	271,093	172,856	226,382	307,278
Served Population	1,035,931	1,244,738	1,491,113	1,866,102	1,244,738	1,491,113	1,866,102	1,244,738	1,491,113	1,866,102
Coverage	67.7%	70.1%	73.3%	1,800,102 81.0%	1,244,738 70.1%	73.3%	1,000,102 81.0%	70.1%	73.3%	1,800,102 81.0%
lpcd	128.8	128.8	129.3	128.5	133.8	140.4	145.3	138.9	151.8	164.7
PHNOM PENH	120.0	120.0	129.5	120.3	133.0	140.4	143.5	130.9	151.0	104.7
Domestic	81,896	99,529	124,728	163,325	103,053	135,331	184,509	106,577	145,934	209,110
Commercial etc.	50,455	56,120	61,334	67,059	58,791	66,876	76,183	61,595	72,983	86,738
Total	132,351	155,649	186,062	230,384	161,844	202,207	260,693	168.172	218,917	295,848
Served Population	1,024,789	1,200,056	1,426,557	1,776,757	1,200,056	1,426,557	1,776,757	1,200,056	1,426,557	1,776,757
Coverage	1,024,789 76.8%		80.3%	1,770,737 88.6%		80.3%	1,770,737 88.6%	77.3%	80.3%	88.6%
lpcd	129.1	129.7	130.4	88.0% 129.7		80.3% 141.7	88.0% 146.7	140.1	153.5	166.5
PHNOM PENH CENTER	147.1	127.1	150.4	149.1	154.9	141./	140.7	140.1	155.5	100.5
Domestic	57,461	59,909	62,468	64,919	63,433	69,409	75,170	66,957	76,350	88,837
Commercial etc.	36,687	53,533	62,468 57,480	61,727	56,080	69,409	69,961	58,717	68,215	88,837 79,860
	36,687 94,148	53,533	57,480	,	119,513	132,067	145,131	58,717	144,564	168,697
Total Served Population				126,646		,	,	704,810	144,564 694,088	
Coverage	715,532	704,810	694,088	683,360	704,810	694,088	683,360		,	683,360
U	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
lpcd	131.6	161.0	172.8	185.3	169.6	190.3	212.4	178.3	208.3	246.9

Suppoering Report 3.2 Total Water Demand Projection by Scenario

Suppoering Report 3.2 Domestic Water Demand Projection by Scenario

District	Present		Scenario A			Scenario B			Scenario C	
		lpcd increa		1.0%	lpcd increa		2.0%	lpcd increa	-	3.0%
Year	2004	2010	2015	2020	2010	2015	2020	2010	2015	2020
1 Chamcar Mon			1						1	
Population	237,822	235,775	233,728	231,680	235,775	233,728	231,680	235,775	233,728	231,680
Coverage	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Served Population	237,822	235,775	233,728	231,680	235,775	233,728	231,680	235,775	233,728	231,680
UCR (lpcd)	80.0	85.0	90.0	95.0	90.0	100.0	110.0	95.0	110.0	130.0
Demand (m3/d)	19,334	20,041	21,036	22,010	21,220	23,373	25,485	22,399	25,710	30,118
2 Doun Penh	1.00								ا مدر در ا	
Population	156,691	151,587	146,483	141,380	151,587	146,483	141,380		146,483	141,380
Coverage	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Served Population	156,691	151,587	146,483	141,380	151,587	146,483	141,380		146,483	141,380
UCR (lpcd)	80.0	85.0	90.0	95.0	90.0	100.0	110.0	95.0	110.0	130.0
Demand (m3/d)	11,024	12,885	13,183	13,431	13,643	14,648	15,552	14,401	16,113	18,379
3 7 Meakkara										
Population	118,664	111,507	104,350	97,190	111,507	104,350	97,190	111,507	104,350	97,190
Coverage	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Served Population	118,664	111,507	104,350	97,190	111,507	104,350	97,190		104,350	97,190
UCR (lpcd)	80.0	85.0	90.0	95.0	90.0	100.0	110.0	95.0	110.0	130.0
Demand (m3/d)	8,573	9,478	9,392	9,233	10,036	10,435	10,691	10,593	11,479	12,635
(m.) W.)										
4 Tuol Kouk			I							
Population	202,355	205,941	209,527	213,110	205,941	209,527	213,110		209,527	213,110
Coverage	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Served Population	202,355	205,941	209,527	213,110	205,941	209,527	213,110	205,941	209,527	213,110
UCR (lpcd)	80.0	85.0	90.0	95.0	90.0	100.0	110.0	95.0	110.0	130.0
Demand (m3/d)	18,530	17,505	18,857	20,245	18,535	20,953	23,442	19,564	23,048	27,704
5 Dangkao		A. C. 180			A AC (F A			2 06 (170	a a c a a a	
Population	118,466	206,458	296,599	387,948	206,458	296,599	387,948		296,599	387,948
Coverage	25.8%	40%	50%	65%	40%	50%	65%	40%	50%	65%
Served Population	30,506	82,583	148,300	252,166	82,583	148,300	252,166	82,583	148,300	252,166
UCR (lpcd)	70.0	80.0	85.0	90.0	80.0	90.0	100.0	80.0	95.0	110.0
Demand (m3/d)	2,135	6,607	12,605	22,695	6,607	13,347	25,217	6,607	14,088	27,738
6 Mean Chey			i						i	
Population	233,348	285,361	339,983	395,779	285,361	339,983	395,779	285,361	339,983	395,779
Coverage	55.3%	70%	80%	90%	70%	80%	90%	70%	80%	90%
Served Population	128,957	199,753	271,986	356,201	199,753	271,986	356,201	199,753	271,986	356,201
UCR (lpcd)	80.0	80.0	85.0	90.0	80.0	90.0	100.0	80.0	95.0	110.0
Demand (m3/d)	10,317	15,980	23,119	32,058	15,980	24,479	35,620	15,980	25,839	39,182
7 Ruessei Kaev			i							
Population	267,546	354,850	445,976	538,922	354,850	445,976	538,922	354,850	445,976	538,922
Coverage	56.0%	60%	70%	90%	60%	70%	90%	60%	70%	90%
Served Population	149,793	212,910	312,183	485,030	212,910	312,183	485,030	212,910	312,183	485,030
UCR (lpcd)	80.0	80.0	85.0	90.0	80.0	90.0	100.0	80.0	95.0	110.0
Demand (m3/d)	11,983	17,033	26,536	43,653	17,033	28,096	48,503	17,033	29,657	53,353
8 Kandal										
Population	195,107	223,412	258,222	297,817	223,412	258,222	297,817		258,222	297,817
Coverage	5.7%	20%	25%	30%	20%	25%	30%		25%	30%
Served Population	11,143	44,682	64,556	89,345	44,682	64,556	89,345	44,682	64,556	89,345
UCR (lpcd)	70.0	80.0	85.0	90.0	80.0	90.0	100.0	80.0	95.0	110.0
Demand (m3/d)	780	3,575	5,487	8,041	3,575	5,810	8,935	3,575	6,133	9,828
TTL of Study Area										
Population	1,529,999	1,774,891	2,034,868	2,303,826	1,774,891	2,034,868	2,303,826	1,774,891	2,034,868	2,303,826
Coverage	67.7%	70.1%	73.3%	81.0%	70.1%	73.3%	81.0%		73.3%	81.0%
Served Population	1,035,931	1,244,738	1,491,113	1,866,102	1,244,738	1,491,113	1,866,102	1,244,738	1,491,113	1,866,102
UCR (lpcd)	79.8	82.8	87.3	91.8	85.7	94.7	103.7	88.5	102.0	117.3
Demand (m3/d)	82,676	103,103	130,215	171,366	106,627	141,141	193,444	110,151	152,067	218,938
TTL of Municipality of PP	,	,	,		,	,		,	,	,
Population	1,334,892	1,551,479	1,776,646	2,006,009	1,551,479	1,776,646	2,006,009	1,551,479	1,776,646	2,006,009
Coverage	76.8%	77.3%	80.3%	88.6%	77.3%	80.3%	88.6%	77.3%	80.3%	88.6%
Served Population	1,024,789	1,200,056	1,426,557	1,776,757	1,200,056	1,426,557	1,776,757		1,426,557	1,776,757
UCR (lpcd)	79.9	1,200,030 82.9	87.4	1,770,757 91.9	85.9	1,420,337 94.9	1,770,737		1,420,337	1,770,737
Demand (m3/d)	81,896	82.9 99,529	87.4 124,728	163,325	103,053	135,331	103.8	88.8 106,577	145,934	209,110
Central 4 Districts of PP	01,070	11,329	127,/20	103,323	105,055	100,001	107,509	100,577	175,754	207,110
Population	715,532	704,810	694,088	683,360	704,810	694,088	683,360	704,810	694,088	683,360
-	-	100.0%	100.0%		100.0%	694,088 100.0%	-	-	694,088 100.0%	-
Coverage	100.0%			100.0%			100.0%	100.0%		100.0%
Served Population	715,532	704,810	694,088	683,360	704,810	694,088	683,360	704,810	694,088	683,360
UCR (lpcd)	80.3 57,461	85.0	90.0	95.0	90.0	100.0	110.0	95.0	110.0	130.0
Demand (m3/d)		59,909	62,468	64,919	63,433	69,409	75,170	66,957	76,350	88,837

Notes:

Population in 2004 is based on the trend analysis of city planning.
 Population rate in 2004 is assumed to be 70 or 80 lpcd, dependent on the area.
 Demand (m3/d) in 2004 is based on the actual data provided by the Comercial Department of PPWSA
 Served population in 2004 is computed based on the assumed unit consumption rate and demand recorded in 2004.
 Coverage in 2004 is calculated based on the calculated served pops and population data in 2004.

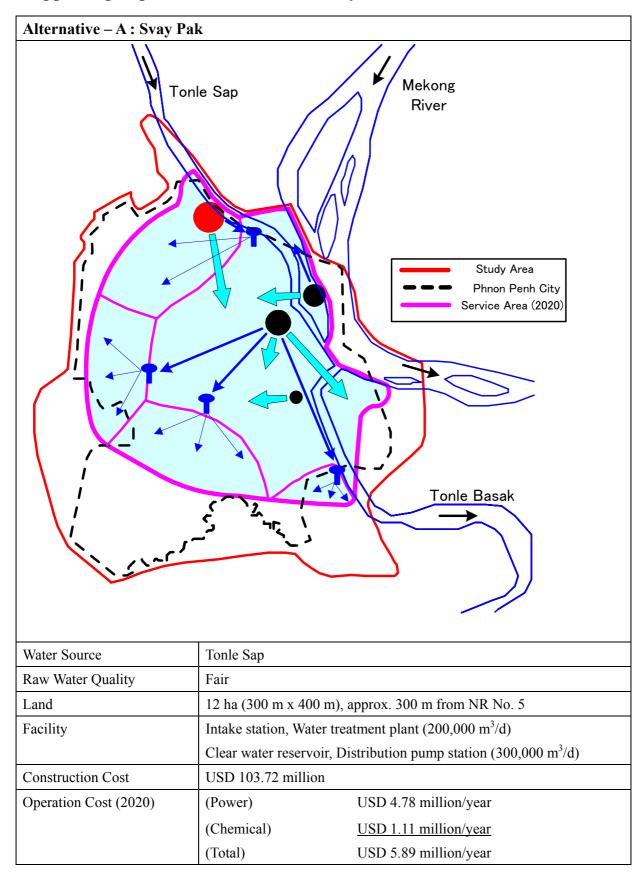
Supporting Report 5.2			cenario A		•	cenario I	•	Scenario C			
District	Present										
			ercial =	2.0%		nercial =	3.0%			4.0%	
Year	2004	2010	2015	2020	2010	2015	2020	2010	2015	2020	
1 Chamkar Mon	7 0 0 0	0.041	0.070	10.000	0.400	10.000	10 7 4 1	10.046	10.000	14071	
Commercial	7,939	8,941	9,872	10,899	9,480	10,990	12,741			14,871	
ADM	2,562	2,719	2,858	3,004	2,719	2,858	3,004	2,719	2,858	3,004	
Autonomy	55	58	61	65	58	61	65	58	61	65	
Total	10,556	11,719	12,791	13,968	12,258	13,910	15,809	12,824	15,142	17,939	
2 Doun Penh	7.074	0.000	0.01.5	10.047	0.500	11.020	10 70 (10.000	10.07/	14.025	
Commercial	7,974	8,980	9,915	10,947	9,522	11,038	12,796			14,935	
ADM	4,883	5,183	5,448	5,726	5,183	5,448	5,726	5,183	5,448	5,726	
Autonomy	271	287	302	318	287	302	318	287	302	318	
Total	13,128	14,451	15,665	16,990	14,992	16,788	18,839	15,561	18,026	20,979	
3 7 Meakkara	4.010	4.50	4 007	5 51 5	4 700	col	6.4.40	5 005	6 107	-	
Commercial	4,019	4,526	4,997	5,517	4,799	5,563	6,449		6,187	7,528	
ADM	1,194	1,267	1,332	1,400	1,267	1,332	1,400	1,267	1,332	1,400	
Autonomy	119	127	133	140	127	133	140	127	133	140	
Total	5,332	5,920	6,462	7,057	6,193	7,028	7,989	6,479	7,652	9,067	
4 Tuol Kouk	(107	7 000	7.001	0.000	7 (74	0.000	10 212	0.122	0.004	10.020	
Commercial	6,427	7,238	7,991	8,823	7,674	8,896	10,313		9,894	12,038	
ADM	1,234	1,310	1,377	1,447	1,310	1,377	1,447	1,310	1,377	1,447	
Autonomy	10	10	11	11	10	11	11	10	11	11	
Total	7,671	8,558	9,379	10,281	8,994	10,284	11,772	9,452	11,282	13,496	
5 Dangkao	4.025	4 522	5 00 4	5 505	4.000	c . c . 1	(150	5 002	(10(7 520	
Commercial	4,025	4,533	5,004	5,525	4,806	5,571	6,459	5,093	6,196	7,538	
ADM	232	246	259	272	246	259	272	246	259	272	
Autonomy Total	0	10	5 274	5 909	10	5.941	11	<u> </u>	11	7 921	
	4,257	4,789	5,274	5,808	5,062	5,841	6,742	5,349	6,465	7,821	
6 Mean Chey	4,690	5,281	5 021	6 120	5 600	6,491	7 5 2 5	5 024	7,219	0 702	
Commercial ADM	4,090	136	5,831 143	6,438 150	5,600 136	143	7,525	5,934 136	143	8,783 150	
	128	130			130			130			
Autonomy Total	4,820	5,427	11 5,984	11 6,599	5,746	11 6,645	11 7,687	6,080	11 7,373	11 8,945	
7 Ruessei Kaev	4,820	3,427	3,984	0,399	3,740	0,043	/,08/	0,080	1,575	8,943	
Commercial	4,268	4,806	5,306	5,859	5,096	5,908	6,849	5,400	6,570	7,994	
ADM	4,208	4,800	460	484	438	460	484	438	460	484	
	12	12	13	14	12	13	14	12	13		
Autonomy Total	4,692	5,256	5,780	6,356	5,546	6,381	7,346	5,850	7,043	8,491	
8 Kandal	4,072	5,250	5,780	0,550	5,540	0,501	7,540	5,650	7,045	0,471	
Commercial	216	1,000	1,104	1,219	1.000	1,159	1 3/4	1,000	1,217	1,480	
ADM	55	1,000	1,104	1,219	1,000	1,139	1,544	1,000	1,217	1,480	
Autonomy	0	100	103	110	100	103	110	100	103	110	
Total	271	1,110	1,220	1,341	1,110	1,275	1,465	1,110	1,332	1,602	
	211	1,110	1,220	1,541	1,110	1,275	1,703	1,110	1,552	1,002	
TTL of Study Area	20 550	15 205	50.021	55 227	47.076	55 (10	61 170	50 700	61 700	75 1 (7	
Commercial	39,558	45,305	50,021	55,227	47,976	55,618	64,476		61,782	75,167	
ADM	10,700	11,400	11,982	12,593	11,400	11,982	12,593		11,982	12,593	
Autonomy	468	525	552	580	525	552	580	525	552	580	
Total	50,726	57,230	62,554	68,400	59,901	68,151	77,649	62,705	74,315	88,340	

Suppoering Report 3.2 Non-Domestic Water Demand Projection by Scenario

Notes: In preparation of non-domestic water demand projection, the following is assumed:

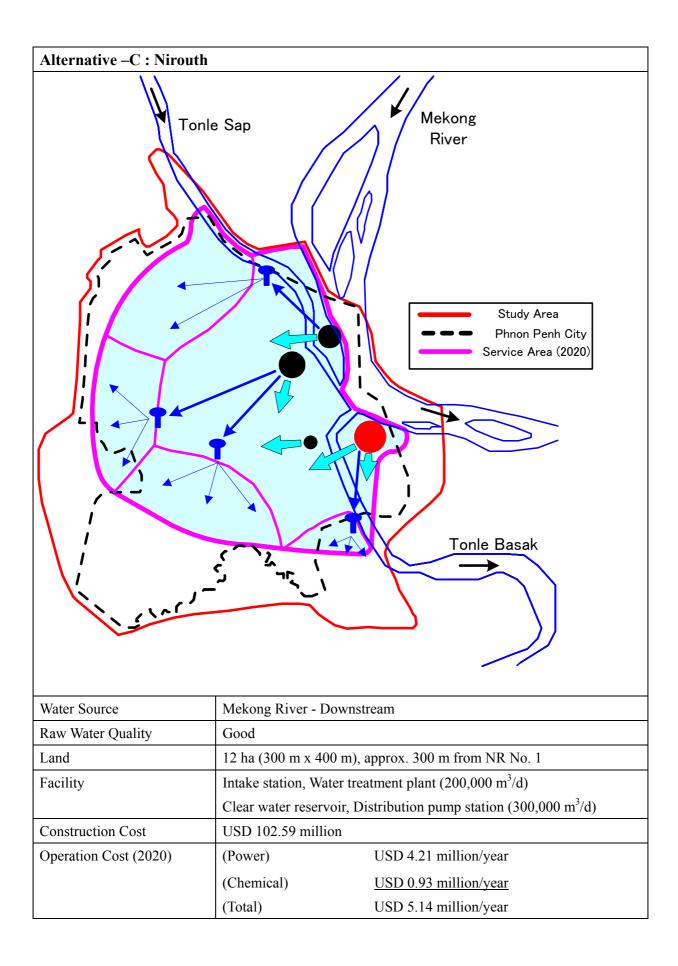
1) Commercial water demand wil be increased enotinuously in accordance with the GDP growth scenarios, 1%, 2%, or 3%.

2) Administration and autonomy water consumptions will be increased continuously at annual rate of 1%.


3) The water demand will be continuously increased based on the present water consumption recorded in 2004.

4) The autonomy water demand in Dangkao, Mean Chey, and Kandal will be started from 10 m3/d.

5) The commercial and administration water demands of kandal will be started from 1,000m3/d and 100m3/d in 2005.


Supporting Report – 4

Proposed Water Treatment Plants - Alternative

Supporting Report 4.1 Alternative Study on Water Treatment Plant

Supporting Report 4.2 Distance for Water Distribution

			Altenati	ive A - Sv	yay Pak					Altenati	ve B - Cl	hrouy Ch	angva					Altenati	ive C - I	Nirouth	l				
Census	Province/District/	Demand	Demand (Average D	aily: m3/da	ay)	Dimand x	Distance (m3/day	x km)	Demand (Average D	aily: m3/da	ay)	Dimand x	Distanc	e (m3/da	y x km)	Demand (Average	Daily: m	3/day)	Dimand x	Distance	e (m3/day x	x km)
Code	Commune	2020	271,093				1,675,848	6.18	km/m3	271,093				1,703,273]	6.28	km/m3	271,093				1,472,165		5.43 kı	.m/m3
	Study Area Total	271,093					6.18	1.00 4.54	8.47					8.04	1.00	4.89	6.40					3.17	1.00	7.26	7.08
			149,592	19,882	116,545	128,593	924,542	19,882 529,422	1,089,216	147,558	19,882	121,474	125,699	1,186,306	19,882	594,001	804,816	149,535	19,882	121,807	123,388	474,385	19,882	884,091	873,189
			150,000	20,000	130,000	200,000	150,000	20,000 130,000	200,000	150,000	20,000	130,000	200,000	150,000	20,000	130,000	200,000	150,000	20,000	130,000	200,000	,	,	,	200,000
			PP	СМ	CC-1	SP	PP	CM CC-1	SP	PP	СМ	CC-1	CC-2	PP	CM	CC-1		PP	СМ	CC-1	Ν	PP	СМ	CC-1	Ν
	enh Central Zone	217,372	97,810		76,203	84,080		13,000 346,160	712,180	96,480	13,000	79,425	82,188			388,385		97,773	13,000	79,643	80,677	310,175	13,000	578,059	570,931
	Chamkar Mon	41,294	28,294				84,881		0		13,000		28,294	0	13,000		212,203		13,000		28,294		13,000		198,057
	Doun Penh	34,391	4,500		29,891		5,400	0 125,543	0			34,391		0	0	144,443	0	16,391		18,000		19,669	0	75,600	0
	Prampir Meakkara	18,680				18,680	0	0 0	186,799				18,680	0	0	0	102,739	18,680				18,680	0	0	0
	Tuol Kouk	35,214			35,214	5.000	0	0 176,069	0			5 000	35,214	0	0	0	211,283	35,214				70,428	0	0	
	Tuol Sangkae	5,223				5,223	0	0 0	31,338			5,223		0	0	15,669	0	5,223				10,446	0	0	
	Kiloumaetr Lekh Prammuoy	2,647				2,647	0	0 0	11,913			2,647		0	0	11,913	0	2,647		2.0(0		10,589	0	0	0
	Khmuonh-1	2,860				2,860	0	0 0	11,441			2,860		0	0	22,882	0			2,860		0	0	22,882	0
120705	Phnom Penh Thmei	15,637	┣───┥			15,637	0	0 0	109,457			15,637		0	0	109,457	0			15,637	┥──┤	0	0	109,457	0
	Ruessei Kaev	3,917 6,985				3,917	0		25,462	6 005		3,917		21 421	0	13,710	0	6 005		3,917	┥──┤	21.421	0	13,710	0
	Tuek Thla Chrang Chamreh Muoy	6,985 1,351				6,985 1,351	0		69,847 3,378	6,985		1,351		31,431	0	10.809	0	6,985		1,351	<u> </u>	31,431	0	10,809	0
	Chrang Chamreh Pir	2,301				2,301	0		6,902			2,301		0	0	10,809	0			2,301	┨	0	0	10,809	0
120712	Ŭ	7,654				7,654	0	0 0	76,535	7,654		2,501		61,228	0	14,904	0			7,654	┝──┤	0	0	84,189	0
	Chaom Chau-1	9,889				9,889	0	0 0	123,612	9,889				89,000	0	0	0			9.889		0	0	118,667	0
	Stueng Mean Chey	10,724	10,724			,,	53,619	0 0	0	10,724				53,619	0	0	0			2,007	10,724	0	0	,	107,239
	Boeng Tumpun	6,631	6,631				29,839	0 0	0	6,631				29,839	0	0	0			1	6,631	0	0	0	49,732
120606	Chak Angrae Leu	2,728	2,728				15,006	0 0	0	2,728				15,006	0	0	0				2,728	0	0	0	13,642
120607	Chak Angrae Kraom	7,431	7,431				55,731	0 0	0	7,431				55,731	0	0	0				7,431	0	0	0	59,447
120515	Cheung Aek	1,816	1,816				16,347	0 0	0	1,816				16,347	0	0	0				1,816	0	0	0	18,163
Chrouy (Changva Zone	11,098																							
120708	Praek Lieb	2,893			2,893		0	0 17,358	0			2,893		0	0	17,358	0			2,893		0	0	17,358	0
	Praek Ta Sek	2,712			2,712		0	0 21,698	0			2,712		0	0	21,698	0			2,712		0	0	21,698	0
120710	Chrouy Changva	5,492			5,492		0	0 5,492	0			5,492		0	0	5,492	0			5,492		0	0	5,492	0
Kien Sva	-	16,679					0	0 0	0																
	Preaek Pra	2,670	2,670				21,359	0 0	0	2,670				21,359	0	0	0				2,670	0	0	0	10,680
	Chbar Ampov Muoy	1,570	1,570				9,421	0 0	0	1,570				9,421	0	0	0				1,570	0	0	0	6,281
	Chbar Ampov Pir	3,447	3,447				20,681	0 0	0	3,447				20,681	0	0	0				3,447	0	0	0	13,787
120608		8,106	8,106				64,848	0 0	0	8,106				64,848	0	0	0				8,106	0	0	0	24,318
	Kien Svay (part)	886	886				11,515	0 0	0	886				11,515	0	0	0				886	0	0	0	2,657
	hamers Water Tank Zone	<u>6,937</u>				2 0 2 0			15.567	2.020				05.470	0	0	0			2.020			0	26.000	
120703	Svay Pak	2,830 1,000				2,830			15,567	2,830				25,473	0	0	0			2,830		0	0	26,888	0
	Khmuonh-2 Kouk Roka	2,919				1,000 2,919			7,500 30,648	1,000 2,919				11,000 40,864	0	0	0			1,000 2,919		0	0	11,500 42,323	0
	Ponhea Lueu	188				2,919			1,781	188				2,438	0	0	0			2,919		0	0	2,532	0
	Water Tank Zone	6,379				100			1,/01	100				2,430	0	0	0			100	<u> </u>	0	0	2,332	0
	Krang Thnong	1,004	1,004				13,550	├──		1,004				13,550	0	0	0	1,004				13,550	0		0
	Samraong Kraom	1,004	1,004				17,380			1,004				17,380	0	0	0	1,004		 	┥ ┥	17,380	0	0	0
	Trapeang Krasang	1,032	1,032				12,387			1,032				12,387	0	0	0	1,032				12,387	0	0	0
080800	Angk Snuol (part)	2,952	2,952				39,857			2,952				39,857	0	0	0	2,952		1		39,857	0	0	0
	ng Water Tower Zone	6,254	-,				,			_,					Ť			_,		<u> </u>		,		` -	
120505	Chaom Chau-2	3,000	3,000				27,000			3,000				27,000	0	0	0	3,000		<u> </u>		27,000	0	0	0
120504	Phleung Chheh Roteh	122	122				1,705			122				1,705	0	0	0	122		İ		1,705	0	0	0
120507	Pong Tuek	212	212				2,753			212				2,753	0	0	0	212		1		2,753	0	0	0
120501	Dangkao	2,421	2,421				29,049			2,421				29,049	0	0	0	2,421				29,049	0	0	0
120510	Prey Sa	500	500				5,250			500				5,250	0	0	0	500		Ī		5,250	0	0	0
120508	Prey Veaeng	0	0				0			0				0	0	0	0	0				0	0	0	0
120513	Prateah Lang	0	0				0			0				0	0	0	0	0				0	0	0	0
120514	Sak Sampov	0	0				0			0				0	0	0	0	0				0	0	0	0
	Krang Pongro	0	0				0			0				0	0	0	0	0				0	0	0	0
Ta Khma		6,374																							
080100	Kandal Stueng (part)	0	0				0			0				0	0	0	0				0	0	0	0	0
081100	Ta Khmau	6,374	6,374				66,930			6,374				66,930	0	0	0				6,374	0	0	0	66,930

Supporting Report 4.3 Capacity Calculation

Item	Stage I + II	Stage I (Existing)
Plant Capacity	Q= 130,000 cu m/day	Q= 65,000 cu m/day
Plant Capacity	Q = 136,500 cu m/day	Q = 68,250 cu m/day
(Daily Max)	= 5,688 cu m/hour	= 2,844 cu m/hour
	= 94.8 cu m/min	= 47.4 cu m/min
(1) D · · · W II	= 1.580 cu m/sec	= 0.790 cu m/sec
(1) Receiving Well		
Criteria	Retention Time $T = 1.0 \text{ min}$	
Dimension	Rectangular 1 units	
	Lm x W mx Dm x units	
	13.0 5.0 4.0 1	
	V= 260.0 cu m	
	T= 2.6 min	
(2) Mixing Chamber		
Criteria	Retention Time T= 1 - 5 min	Retention Time T= 1 - 5 min
Dimension	Rectangular 4 units	Rectangular 2 units
Dimension	L m x W m x D m x units	L m = x W = m x D m x units
	3.7 2.5 5.1 4	3.7 2.5 5.1 2
	5.7 2.5 5.1 T	5.7 2.5 5.1 2
Unit Volume	UV = 47.2 cu m/unit	UV = 47.2 cu m/unit
Total Volume	V = 188.7 cu m	V = 94.35 cu m
Retention Time		T = 2.0 min
Mixing	Hydraulic Mixing	Mechanical Mixing
(3) Flocculation Basin	, , , , , , , , , , , , , , , , , , , ,	
Criteria	Retention Time $T = 20 - 40 \min$	Retention Time $T = 20 - 40 \min$
	Required Volume $V = 1,896$ cu.m to	Required Volume $V = 948$ cu.m to
	3,792 cu.m	1,896 cu.m
Unit Flow	q = 23.7 cu m/min/basin	q = 23.7 cu m/min/basin
Dimension	4 units	2 units
	W m x L m x D m x No.of Chambers	W m x L m x D m x No.of Chambers
Step 1	4.6 4.6 4.7 1	4.6 4.6 4.7 1
Sten 2	2 W m x L m x D m x No.of Chambers	W m x L m x D m x No.of Chambers
Step 2	4.6 4.6 4.7 2	4.6 4.6 4.7 2
Sten 3	W m x L m x D m x No.of Chambers	W m x L m x D m x No.of Chambers
Step 3	4.6 4.6 4.7 2	4.6 4.6 4.7 2
Sten 4	W m x L m x D m x No.of Chambers	W m x L m x D m x No.of Chambers
Step 4	4.6 4.6 4.7 1	4.6 4.6 4.7 1
Volume	Step 1 99.5 cu m/unit	Step 1 99.5 cu m/unit
	Step 2 198.9 cu m/unit	Step 2 198.9 cu m/unit
	Step 3 198.9 cu m/unit	Step 3 198.9 cu m/unit
	Step 4 99.5 cu m/unit	Step 4 99.5 cu m/unit
	Volume / Unit 596.7 cu m/unit	Volume / Unit 596.7 cu m/unit
Total Volume	V = 2,387 cu m	V = 1,193 cu m
Retention Time	e 25.2 minutes	25.2 minutes
(4) Sedimentation Basin		
Туре	Rectangular, Up-flow with Inclined Tube	Rectangular, Up-flow with Inclined Tube
Unit Flow	q = 1,422 cu m/hr/basin	q = 1,422 cu m/hr/basin
C-iti	Tank Potention Time T = 1.0 how	Tank Potention Time T = 1.0 how
Criteria	Tank Retention Time $T =$ 1.0 hoursPlate Potention Time $T =$ 15.0 min	Tank Retention Time $T =$ 1.0 hoursPlate Retention Time $T =$ 15.0 min
	Plate Retention Time $T = 15.0 \text{ min}$	
	Tank Surface Load $a = 80 \text{ mm/min}$	Tank Surface Load $a = 80 \text{ mm/min}$
	Plate Surface Load $a = 7 - 14 \text{ mm/min}$ Depth $D = 3 - 4 \text{ m}$	Plate Surface Load $a = 7 - 14 \text{ mm/min}$ Depth $D = 3 - 4 \text{ m}$
	- · · · · · · · · · · · · · · · · · · ·	- F
	Deput of 50 cm of more is provided for studge settleme	en Depth of 30 cm or more is provided for sludge settleme

	Stage I + II	Stage I (Existing)
Dimension	No. 4 basins	No. 2 basins
Dimension	W m x L m x D m x N	W m x L m x D m x N
	14.3 38.4 4.5 4	14.3 38.4 4.5 2
Inclined Tube	60 degree, Height = 0.75 m	60 degree, Height = 0.75 m
	Clearance = 25 mm	Clearance = 25 mm
Volume	V = 2,444 cu m/basin	V = 2,444 cu m/basin
Tank Retention Time	T = 1.7 hours	T = 1.7 hours
Plate Retention Time	T = 10.1 min	T = 10.1 min
Tank Surface Load	a = 43.2 mm/min	a = 43.2 mm/min
Plate Surface Load	a = 2.9 mm/min	a = 2.9 mm/min
Hor. Flow Velocity	v = 0.372 m/min	v = 0.372 m/min
Overflow Weir	Load = 500 m3/m/day	Load = 500 m3/m/day
Trough Length	L = 68.25 m or longer	L = 68.25 m or longer
	No. 40 troughs	No. 40 troughs
	Lm xN	Lm xN
	5.75 40	5.75 40
	I – 220.0 m	I = 220.0 m
	L = 230.0 m	L = 230.0 m
Sludge Removal	Cable-operated underwater bogie sludge collector or	Cable-operated underwater bogie sludge collector or
Sludge Kellioval	Travelling bridge sludge collector	Travelling bridge sludge collector
	Travening bridge sludge conceror	Travening bruge sludge conceror
Sludge Amount	So = Q * (K*(T1-T2)+B*C*156/102)*10^-6	
Solid Amount	where So:Sludge dry weight(ton)	
(ton-DS)		
(1011 205)	K :Coefficient converting turbidity	
	to SS $(0.8-1.5 \rightarrow >1.0)$	
	T1 :Turbidity in raw water (rainy ave=	300)
	T2 :Turbidity after Sedimentation (ave	,
	B : Alum dosage rate (rainy ave.=	35)
	C :Concentration of AL20 17%	
	So = 41.51 ton-DS/day	So = 24.78 ton-DS/day
	Water Contents of Drained Sludge	Water Contents of Drained Sludge
	(with wash-out water)	(with wash-out water)
	(with wash-out water) w = 98.0 %	(with wash-out water) w = 98.0 %
	(with wash-out water)	(with wash-out water)
Challer V 1	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous
Sludge Volume	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075$ cu.m/day	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$
	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous
(5) Rapid Sand Filter	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day
	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075$ cu.m/day	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$
(5) Rapid Sand Filter Type	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media
(5) Rapid Sand Filter	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day
(5) Rapid Sand Filter Type No.	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units)	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit)
(5) Rapid Sand Filter Type	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media
(5) Rapid Sand Filter Type No. Unit Flow	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu.m/day/unit
(5) Rapid Sand Filter Type No.	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$
(5) Rapid Sand Filter Type No. Unit Flow	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour
(5) Rapid Sand Filter Type No. Unit Flow	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$
(5) Rapid Sand Filter Type No. Unit Flow	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour
(5) Rapid Sand Filter Type No. Unit Flow Criteria	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units	(with wash-out water) $w = 98.0 \%$ Frequency of Cleaning :ContinuousTotal $v = 1,239 \text{ cu.m/day}$ $So = 24.78 \text{ ton-DS/day}$ Down Flow, Single Media8 units (wasl 1 unit) $q = 8,531 \text{ cu m/day/unit}$ Filtration Rate $Fr = 150 - 200 \text{ m/day}$ $= 6.25 - 8.33 \text{ m/hour}$ Filter Area per Unit $A < 150 \text{ sq m}$
(5) Rapid Sand Filter Type No. Unit Flow Criteria	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units
(5) Rapid Sand Filter Type No. Unit Flow Criteria	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units
(5) Rapid Sand Filter Type No. Unit Flow Criteria	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units 7.3 7.9 12 (12 filters/group)	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units 7.3 7.9 8 (8 filters/group)
(5) Rapid Sand Filter Type No. Unit Flow Criteria	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units 7.3 7.9 12 (12 filters/group)	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units 7.3 7.9 8 (8 filters/group)
(5) Rapid Sand Filter Type No. Unit Flow Criteria Dimension	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075$ cu.m/day So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200$ m/day = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150$ sq m W m x L m x N units 7.3 7.9 12 (12 filters/group) A = 57.67 sq m/unit Fr = 197.2 m/day	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units 7.3 7.9 8 (8 filters/group) A = 57.67 sq m/unit Fr = 147.9 m/day
(5) Rapid Sand Filter Type No. Unit Flow Criteria Dimension Filtration Rate Filtration Rate	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075$ cu.m/day So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200$ m/day = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150$ sq m W m x L m x N units 7.3 7.9 12 (12 filters/group) A = 57.67 sq m/unit Fr = 197.2 m/day Fr'= 215.2 m/day	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu.m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units 7.3 7.9 8 (8 filters/group) A = 57.67 sq m/unit Fr = 147.9 m/day Fr'= 169.1 m/day
(5) Rapid Sand Filter Type No. Unit Flow Criteria Dimension Filtration Rate Filtration Rate	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 2,075 \text{ cu.m/day}$ So = 41.51 ton-DS/day Down Flow, Single Media 12 units (wasl 1 units) q = 11,375 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units 7.3 7.9 12 (12 filters/group) A = 57.67 sq m/unit Fr = 197.2 m/day	(with wash-out water) w = 98.0 % Frequency of Cleaning : Continuous Total $v = 1,239 \text{ cu.m/day}$ So = 24.78 ton-DS/day Down Flow, Single Media 8 units (wasl 1 unit) q = 8,531 cu m/day/unit Filtration Rate $Fr = 150 - 200 \text{ m/day}$ = 6.25 - 8.33 m/hour Filter Area per Unit $A < 150 \text{ sq m}$ W m x L m x N units 7.3 7.9 8 (8 filters/group) A = 57.67 sq m/unit Fr = 147.9 m/day

Item	Stage I + II	Stage I (Existing)
Filter Washing		
	Once a day for each filter	Once a day for each filter
Rate	Backwashing (Step 1) rate = 0.24 m3/m2/min duration = 4.5 min	Air Scouring (Step 1)rate = 0.90 m3/m2/min Backwashing (Step 1)rate = 0.24 m3/m2/min duration = 4.5 min
	Backwashing (Step 2) rate = 0.36 m3/m2/min duration = 4.5 min	Backwashing (Step 2) rate = 0.36 m3/m2/min duration = 4.5 min
Water Amount for washing	Backwashing (Step 1) $Vs = 62.3$ cu m/unit Backwashing (Step 2) $Vb = 93.4$ cu m/unit $\overline{Vs + Vb} = 155.7$ cu m/unit	Backwashing (Step 1) $Vs = 62.3$ cu m/unit Backwashing (Step 2) $Vb = 93.4$ cu m/unit $\overline{Vs + Vb} = 155.7$ cu m/unit
for Total Units	Total Amount for Washing1,868.5 cu m/dayPercentage for Planned Flow1.4 %	Total Amount for Washing1,245.7 cu m/dayPercentage for Planned Flow1.8 %
Solid Amount in Wastewater (ton-DS)	, , , , , , , , , , , , , , , , , , ,))
	So = 0.82 ton-DS/day	So = 0.41 ton-DS/day
SS Contents	s = 438 mg/l	s = 329 mg/l
(6) Clear Water Reservoir Criteria	Retention Time $T > 6.0$ hours	Retention Time $T > 6.0$ hours
Required Volume	V = 32,500 cu m	V = 16,300 cu m
Reservoir-1 Dimension	No. 2 units L m x W m x D m m x N units 32.0 21.5 4.2 2 V1 = 5.710 cu m	No. 2 units L m x W m x D m m x N units 32.0 21.5 4.2 2 V1 = $5,710$ cu m
Reservoir-A Dimension	No. 2 units L m x W m x D m m x N units 45.0 20.0 5.0 1 VA = 4,500 cu m	5,770 cu m
Reservoir-B Dimension	No. 1 units L m x W m x D m m x N units 50.0 30.0 5.0 2 VB = 15,000 cu m	
Total Volume	V = 25,210 cu m	V = 5,710 cu m
Retention Time	T = 4.65 hours	T = 2.11 hours

Supporting Report 4.3 Capacity Calculation

Item	Stage I + II	Stage I (Existing)
Plant Capacity	Q = 130,000 cu m/day	Q= 65,000 cu m/day
(Daily Max)		
Planned Flow	Q = 136,500 cu m/day	Q= 68,250 cu m/day
	= 5,688 cu m/hour	= 2,844 cu m/hour
	= 94.8 cu m/min	= 47.4 cu m/min
	= 1.580 cu m/sec	= 0.790 cu m/sec
(1) Alum Dissolving Tar		
Coagulant	Solid Aluminum Sulphate (Al2(SO4)3) containing 15 % Al2-O3	Solid Aluminum Sulphate (Al2(SO4)3) containing 15 % Al2-O3
Criteria	Dosage Rate : 10-50 mg-solid alum/l	Dosage Rate : 10-50 mg-solid alum/l
	- Maximum 50 mg/l	- Maximum 50 mg/l
	- Average 30 mg/l (monthly max.)	- Average 30 mg/l (monthly max.)
	- Minimum 10 mg/l	- Minimum 10 mg/l
	Coagulant Solution : 3% sg = 1.0152	Coagulant Solution : 3% sg = 1.01.
	Retention Time 24 hours	Retention Time 24 hours
	Dissolving Time 2 hours	Dissolving Time 2 hours
Dosage Amount	Wt = 4,095 kg-Alum/day (Ave dosage)	Wt = 2,048 kg-Alum/day (Ave dosage)
Coagulant Solution	Vmax = 224.1 cu m/day (Max dosage)	Vmax = 112.0 cu m/day (Max dosage)
	Vave = 80.7 cu m/day (Ave dosage)	Vave = 40.3 cu m/day (Ave dosage)
Solution Tank	Square 4 units	Square 2 units
Dimension	Lm xW mxDm x units	Lm xW mxDm x units
	3.5 3.5 2.5 4	3.5 3.5 2.5 2
Total Volume	V = 122.5 cu m	V = 61.3 cu m
Retention Time	T = 13.1 hours for maximum dosing	T = 13.1 hours for maximum dosing
Retention Time	1 – 15.1 hours for maximum dosing	
Alum Pump	1 units each (excl. 1 unit stand-by)	1 units (excl. 1 unit stand-by)
Capacity	$Qmax = 155.6 liter/min \qquad 9.34 cu m/hr$	Qmax = 77.8 liter/min 4.67 cu m/hr
- np	Qmin = 31.1 liter/min 1.87 cu m/hr	Qmin = 15.6 liter/min 0.93 cu m/hr
(Existing)		Qmax = 2.30 cu m/hr (excl. 1 unit stand-by)
(8)		
Storage	Period 30 days	Period 30 days
ç	Bulk s. g. 0.60	Bulk s. g. 0.60
Storage Area	A = 102 m2 at 2.0 m height	A = 51 m2 at 2.0 m height
2) Chlorination Equipm		
Injection Point	Pre-Chlorine at the Inlet of Distribution Chamber	Pre-Chlorine at the Inlet of Distribution Chamber
	Post-Chlorine and outlet of Filter	Post-Chlorine and outlet of Filter
Туре	Liquid Chlorine (900 kg-cylinder)	Liquid Chlorine (900 kg-cylinder)
Dosage Rate	e	Maximum Average Minimun
	Pre (1.0-3.0 mg/l 3.0 2.0 1.0	Pre (1.0-3.0 mg/ 3.0 2.0 1.0
	Post (0.5-1.0 mg/l 2.0 1.0 0.5	Post (0.5-1.0 mg/l 2.0 1.0 0.5
Dosage Amount	Wt = 410 kg- Cl gas/day (Average)	Wt = 205 kg- Cl gas/day (Average)
Dosage Amount	or 17.1 kg- Cl gas/hour (Average)	or 8.5 kg- Cl gas/hay (Average)
Chlorinator	Vacuum Type	Vacuum Type
Capacity	Pre- 1 units each (excl. 1 unit stand-by)	Pre- 1 units each (excl. 1 unit stand-by)
	Qmax = 17.1 kg/hr 409.50 kg/day	$Qmax = 8.5 \text{ kg/hr} \qquad 204.75 \text{ kg/day}$
	Qmin = 5.7 kg/hr 136.50 kg/day	$Qmin = 2.8 kg/hr \qquad 68.25 kg/day$
	Post- 2 units each (excl. 1 unit stand-by)	Post- 1 units each (excl. 1 unit stand-by)
	Qmax = 5.7 kg/hr 136.50 kg/day	Qmax = 5.7 kg/hr 136.50 kg/day
	$Qmin = 1.4 \text{ kg/hr} \qquad 34.13 \text{ kg/day}$	Qmin = 1.4 kg/hr 34.13 kg/day
(Existing Pre)		$Qmax = 20.0 \text{ kg/hr} \qquad (excl. 1 unit stand-by)$
(Existing Post)	5	Qmax = 20.0 kg/hr (excl. 1 unit stand-by)
(
Storage	Period 30 days	Period 30 days
No. of Container	16 units	9 units
	$A = 32 m^2$ as $2.0 m^2/container$	A = 18 m2 as $2.0 m2/contain$

Chemical Capacity Calculation - Chrouy Chamgva Water Treatment Plant - Stage II (65,000 cu m/day)

Supporting Report 4.4 Hydraulic Calculation

Cambodia - Chrouy Chamgva Water Treatment Plant - Stage II Hydraulic Calculation for Cambodia - Chrouy Chamgva Water Treatment Plant - Stage II (65,000 cu m/day)

No.	Descriptions			
	Production rate	Total Q =	130,000 m ³ /day	Note: Receiving well for 130,000 m3/d will be
	Production loss	(5%)	constructed in Stage II.
3	Planned Flow Rate	=	136,500	
		=	5,688 m ³ /hour	
		=	94.8 m ³ /min	
		=	1.580 m ³ /s	
No.	Descriptions			
	Production rate	Total $Q =$	$65,000 \text{ m}^3/\text{day}$	Note: Stage II
	Production loss	(5 %)	
3	Planned Flow Rate	=	68,250	
		=	2,844 m ³ /hour	
		=	47.4 m ³ /min	
		=	0.790 m ³ /s	
			Summary of Designed	Water Level
	Design Raw Water Receiving Level	WL0 = +	17.000 m	
01	Receiving Well	SL10 = +	17.500 m	(structure top)
	Receiving Chamber	WL11 = +	16.670 m	
	Weir	WL12 = +	16.610 m	
	Chamber to Mixing Tank Distribution Weir Crest	WL13 = +	16.160 m 16.300 m	(oten ot uno)
02	Mixing Tank	HW11 = + SL20 = +	0.060 m	(structure) (structure top)
02	Inflow Chamber	WL21 = +	15.900 m	(structure top)
	Mixing Chamber	WL22 = +	15.840 m	
	Effluent Chamber	WL23 = +	15.820 m	
	Inflow Conduit	WL24 = +	15.800 m	
	Overflow Level	H2over = +	16.050 m	(overflow weir at Mixing Tank)
03	Flocculation/Sedimentation Tank	SL30 = +	16.500 m	(Flocculation Tank - structure top)
		SL31 = +	16.000 m	(Sedimentation Tank - structure top)
	Inflow Conduit	WL31 = +	15.750 m	
	Flocculation Channel			
	Start	WL32 = +	15.730 m	
	End Sedimentation Tank Inflow Chamber	WL33 = + WL34 = +	15.550 m	
	Sedimentation Tank Inflow Chamber Sedimentation Basin	WL34 = + WL34 = +	15.550 m 15.550 m	
	Outlet Channel to Filter		15.310 m	(ordinal operation)
			15.310 m	(during backwashing)
	Flloculation Tank Weir-1 Crest	Hw31 = +	15.500 m	(structure)
	Flloculation Tank Weir-2 Crest	Hw32 = +	15.090 m	(structure)
	Trough Orifice Center	Hw33 = +	15.500 m	(structure)
	Trough Top		15.700 m	(structure)
	Trough bottom		15.300 m	(structure)
04	Sand Filter	SL40 = +	14.800 m	(structure top)
	Inflow Conduit	WL41 = +	14.450 m	(ordinal operation)
	Inflow Gate to Filter	WL42 = +	14.470 m 14.360 m	(during backwashing) (ordinal operation)
	Innow Gale to Filler	WL42 - +	14.300 m 14.370 m	(during backwashing)
	Inflow Weir to Filter	WL43 = +	14.370 m	(ordinal operation)
	millow wen to i nei	WE45 -	14.000 m	(during backwashing)
	Filter : HWL	WL44 = +	14.200 m	······································
	Filter : LWL	WL45 = +	14.000 m	
	Effluent Conduit	WL46 = +	11.750 m	ordinal operation
			11.760 m	during backwashing
	Effluent Water Level to Resevoir	WL47 = +	11.210 m	
		Hw41 = +	14.250 m	(structure)
		Hw42 = +	11.550 m	(structure)
04	Clear Water Reservoir	WT 41 ·	m	
	Reservoir : HWL Reservoir : LWL	WL41 = + WL42 = +	10.500 m 5.500 m	
	Overflow Crest Level		5.500 m 10.660 m	(overflow weir at clearwater tanks)
	Overnow Clest Level	1150ver - 7	10.000 III	(overnow wen at creatwater talks)

00	Initial Water Level		WL0 = + 17.000 m AMSL
00	in Receiving Well		WL0 - + 17.000 III AMSL
01	Inlet Facilities Receiving Well	(Stage I + II) No. of Unit = 1	SL10 = + 17.500 m (structure)
	Receiving wen	Flow rate Q = original +5%) $136,500 \text{ m}^3/\text{day}$	Water Level in the Receiving Well Chamber
		1.580 m ³ /s	WL11 = + 16.670 m < 17.000
1)	Perfolated Buffle	Wall Width = 5.30 m Depth = 5.70 m	(1) Head Loss through baffle wall
		$Area = 30.21 \text{ m}^2$	(1) Head Loss through barne wait $h = (1/c^2)^* (v^2/(2^*g))$
		Holes Diameter = 0.10 m	where, $c = 0.600$
		No. = 336 No. Area = 2.64 m ²	= 0.051 m
		Area = 2.64 m2 Pitch = 0.30 m	say = 0.060 m
	Open Ratio	8.73 %	
2)	Distribution Weir	Velocity in Hole: v = 0.60 m/s	Hw11 = + 16.300 m
2)		No. = 2 trains	(1) Weir Loss
		Unit q = $0.790 \text{ m}^3/\text{s}$	$hw = (q/(C*b))^{2/3} \qquad say$
		Width of weir $b =$ 2.500 mHight of crest $W =$ 4.600 m	= 0.307 m 0.310 where, C = 1.785+(0.00295/h+0.237*h/W)*(1+e)
		$W \le 1 m$ $e= 0$	= 1.861
		W>1m e=0.55*(W-1) 1.980	
3)	Weceiving Well to Mixing Tank	<u>hw = 0.307 m (trial)</u> No. = 2 lines	WL12 = + 16.610 m WL13 = + 16.160 m
- /	0	Unit Q = $0.790 \text{ m}^3/\text{s}$	(1) Friction Loss (pipe)
		Dia : D = 1.00 m	$hf = f^{*}(L/D)^{*}(v^{2}/(2*g))$
		Length: L = 100.0 m Area : A = 0.79 m^2	= 0.159 m where, f = (20+(1/(2*D)))*1.5/1000
		Velocity in Pipe : $v = 1.01 \text{ m/sec}$	where, $I = (20 + (1/(2 + D)))^{-1.3/1000}$ = 0.031 m
		(3) In-Out Loss assumption	(2) Bend Loss (bend)
		hio = $f^*(v^2/(2^*g))$ where, f = 1.5 = (0.5 + 1)	hb = $f^*(v^2/(2*g))$ 00 dog Pard = 2 (f = 0.17)
		where, $f = 1.5 = (0.5 + 1)$ = 0.077 m	90 deg. Bend = $2 (f = 0.17)$ = 0.018 m
			Total Loss : $hf + hb + hio$
			= 0.254 m say 0.260 m
02	Mixing Tank	(Stage II)	54y 0.200 m
		No. of Unit = 2	SL20 = + 16.500 m
		Flow rate Q = original +5%) $68,250 \text{ m}^3/\text{day}$ 0.790 m ³ /s	Water Level in the Mixing Tank WL21 = $+$ 15.900 m
	Mixing Tank	0.790 m /s	WE21 - 1 13,700 m
1)	Mixing Tank Inflow Gate	No. = 2 trains	(1) Gate Orifice Loss $\frac{2}{(2\pi)^2}$
		Unit q = $0.395 \text{ m}^3/\text{s/train}$ Inflow gate W = 800 mm	$ht = v^2 / (2*9.8*C^2)$ C = 0.60 say
	Inflow gate velocity;	H = 800 mm	hw(7)= 0.054 m 0.060
	1.0 m/sec>	Inflow velocity v= 0.617 m/s No. = 2 outlets	WL22 = + 15.840 m
2)	Dowfinow	$Unit q = 0.395 \text{ m}^3/\text{s}$	WL22 = + 15.840 m (1) Orifice Loss
		Openning Width = 2.50 m	$ht = v^2 / (2^* 9.8^* C^2)$
	Inflow gate velocity;	Depth = 0.45 m	C = 0.60 say
3)	1.0 m/sec> Mixing Tank Effluent Gate	Inflow velocity v = 0.351 m/s No. = 2 trains	$\begin{array}{ccc} hw = & 0.017 \text{ m} & 0.020 \\ WL23 = + & 15.820 \text{ m} \end{array}$
5)		Unit $q = 0.395 \text{ m}^3/\text{s/train}$	(1) Gate Orifice Loss
		Inflow gate W = 1200 mm	$ht = v^2/(2*9.8*C^2)$
	Inflow gate velocity; 1.0 m/sec>	H = 1000 mm Inflow velocity v = 0.329 m/s	$\begin{array}{ccc} C = & 0.60 & \text{say} \\ hw(7) = & 0.015 & \text{m} & 0.020 \end{array}$
4)	Inflow Conduit	No. Channels = 1	Water level at the distribution channel of filter
		Unit q = $0.790 \text{ (m}^3/\text{s/channel)}$	WL24 = + 15.800 m
		Width of inflow channel W= 0.70 m D = 1.20 m	(1) Friction Loss (open channel) $hf = n^{2} * v^{2} * L/R^{4/3}$
		L = 36 m	where, $n = 0.015$
	1.0 m/sec>	Velocity in Channel : v = 0.94 m/s	R = W*D/(2*D+W)
			= 0.271 m = 0.0409 m 0.050
5)	Overflow Weir	Overflow Weir Crest Level	H2over = + 16.050 m
		No. = 1 trains	(1) Weir Loss $(1000000000000000000000000000000000000$
		Unit $q = 0.790 \text{ m}^3/\text{s}$ Width of weir $b = 2.500 \text{ m}$	$hw(14) = (q/(C*b))^{2/3} say = 0.302 m 0.310$
		Hight of crest W = 4.600 m	where, $C = 1.785 + (0.00295/h + 0.237*h/W)*(1+e)$
		$W \le 1 m$ $e = 0$ $W \ge 1m$ $e = 0.55*(W-1)$ 1.980	= 1.908
		W>1m e=0.55*(W-1) 1.980 hw = 0.079 m (trial)	WL25 = + 16.360 m
03	Flocculation/Sedimentation Tank		
		No. of Unit = 2 Flow rate Q = original +5%) 34,125 m ³ /day	SL30 = + 16.500 m Water Level in the Inflow Conduit
		Flow rate Q = original +5%) $34,125 \text{ m/day}$ 0.395 m ³ /s	Water Level in the Inflow Conduit WL31 = $+$ 15.750 m
·····	Flocculation/Sedimentation Tank		
1)	Flocculation Tank Inflow Gate	No. = 2 trains Unit q = $0.395 \text{ m}^3/\text{s/train}$	(1) Gate Orifice Loss $ht = v^2/(2*9.8*C^2)$

		Inflow gate	W =	1200	mm		C =	0.60	691/	
	Inflow gate velocity;	mnow gate	W = H =	1000		hw(7)=	0.015 m	0.00	say	0.020
		Inflow velocity v=	11	0.329						0.020
2)	Flocculation Tank Weir/Downflow	Weir Crest Level o	f Effluent			WL32 = +	15.730 m			
_,		No. =	4 trains			Hw31 = +	15.500 m			
		Unit q =	0.197 m ³ /s			(1) Weir Loss				
		Width of weir b =		4.625	m		$q/(C*b))^{2/3}$		say	
		Hight of crest W =		4.600		=	0.079 m		Suy	0.080
		W<=1 m	e=0				.785+(0.00295/h+(0.237*h/	W)*(1+	
			55*(W-1)	1.980		where, c 1	=	1.908) (1	•)
		··· ···· • • •	hw =		m (trial)	(2) Orifice Loss	3	1.900		
	Downflow	No =	4 outlet		()		$v^{2}/(2*9.8*C^{2})$			
	Inflow gate velocity;		$0.197 \text{ m}^3/\text{s}$			iit v	C =	0.60	691/	
	1.0 m/sec>		Width =	4.60	m	hw =	0.013 m	0.00	say	0.020
	1.0 III/sec-	Openning	Depth =	0.20		IIW -	0.015 III			0.020
		Inflow velocity v =	•	0.215		Hw32 = +	15.090 m			
		No. of Opennings =		0.215		(3) Weir Loss	15.090 III			
		rvo. or opennings		2			$q/(C*b))^{2/3}$		0.017	
						nw2 = (0.080 m		say	0.080
								0 227*L/	₩ <u></u>	
						where, C = 1	785+(0.00295/h+0	1.908	w) (17	0)
						Total Loss:	0.180 m	1.908		
						Total Loss.	0.180 III			
3)	Flocculation Channel Effluent Baffle Wa	No =	2 trains			Flocculation les	vel before buffle wa	a]]		
5)	Tiocediation Channel Efficient Barrie Wa		0.395 m ³ /sec	/train		WL33 = +	15.550 m	411		
	Inlet Baffle wall	Unit q = Wall	Width =	14.30	m		it the Inlet difuser v	vall hefor	·e	
	to Sedimentation Basin	vv all	Depth =			sedimentatio		vali beloi	C	
	to Sequineination Basili		•		m(approx)					
		Holes	Area = Width =	80.08		n = ($1/c^{2}$ (v ² /(2*g))	0.600		
		Holes	Width =	0.20		_	where, $c = 0.0013 \text{ m}$	0.600	noora	ribla
			Height = No. =		m Nos.	=	0.0013 m		negreg	sible
		On an Datia -	Area =	4.08						
	approx. 6%	Open Ratio =	_	5.1						
	0.23 m/sec >	Velocity in Hole: v	-	0.10						
<i>л</i>	Loss of head Sedimentation Tank Trough	for floc protection No. =	2 trains	~10	mm	Sedimentation	Structure Level			
4)	Soumentation rank Hough		2 trains	0 41 4	m ³ /s/train	Sedimentation S				
		Unit q =				SL31 = +	16.000 m	k		
		No. : n =			No./train	Water Level in $WL34 = +$	Sedimentation Tan 15.550 m	ĸ	Orifia	e level
		Length : $L =$		40 6.6		WL34 = + Hw33 = +	15.500 m		onne	0.3
		Width : $B =$		150		(1) Trough Loss				0.5
							$v^{2}/(2*9.8*C^{2})$		aax-	
		Depth : $h =$		400		ht = v	(say	0.050
		Orifice size d= Pitch of orifice		25 345	mm	= C =	0.044 m 0.60			0.050
		Clearance from WI		0.15		Trough Top Lev				
		Nos of orrifice	-		per trough	Hw34 =	15.700 m			
		TTL Nos of orifice			per basin		it the Trough End: 1	hc		
		TTL area of orifice		0.746			$1.1*q^2/(g*B^2))^{1/3}$		cov	
	Trough Flow	Passing velocity of		0.746		nc = (0.081 m		say	0.090
	110ugh Flow			0.555				ha		0.090
	1	Unit Flow : per trou	U 1				ggining of Trough:	10	aax-	
	1	Total Trough Leng			m/train	$ho = \sqrt{1}$			say	0.100
					m³/m/day	=	(1) [] / m			0.120
		Overflow Load :			ma hal)		0.117 m			
		(Trough Bott	om -	0.160	m below)	Trough Bottom	Level : Htb			
	Outlow Observed	(Trough Bott (baffle wall loss wi	om - ll be absorbed w	0.160	m below) allowances.)	Trough Bottom Hw35 =	Level : Htb 15.300 m			
5)	Outflow Channel	(Trough Bott <mark>(baffle wall loss wi</mark> No. =	om - ll be absorbed wa 2 trains	0.160 ith this a	m below) allowances.)	Trough Bottom Hw35 = Channel Top Le	Level : Htb 15.300 m evel			
5)	Outflow Channel	(Trough Bott (baffle wall loss wi	om - ll be absorbed w	0.160 ith this a	m below) allowances.)	Trough Bottom Hw35 = Channel Top Le Hw32 =	Level : Htb 15.300 m evel 16.000 m			
5)	Outflow Channel	(Trough Bott <mark>(baffle wall loss wi</mark> No. = Unit q =	om - 11 be absorbed w 2 trains 0.395 m ³ /sec	0.160 ith this a t/train	allowances.)	Trough Bottom Hw35 = Channel Top Le Hw32 = Critical Depth a	Level : Htb 15.300 m evel 16.000 m tt the Channel End:	: hc		
5)	Outflow Channel	(Trough Bott <mark>(baffle wall loss wi</mark> No. =	om - <u>ll be absorbed w</u> 2 trains 0.395 m ³ /sec annel W=	0.160 ith this a :/train 0.80	allowances.) m	Trough Bottom Hw35 = Channel Top Le Hw32 = Critical Depth a hc = (Level : Htb 15.300 m evel 16.000 m at the Channel End: $1.1*q^2/(g*B^2))^{1/3}$	hc	say	
5)	Outflow Channel	(Trough Bott <mark>(baffle wall loss wi</mark> No. = Unit q =	om - 2 trains 0.395 m ³ /sec annel W= D =	0.160 ith this a c/train 0.80 2.14	m m	Trough Bottom Hw35 = Channel Top Lo Hw32 = Critical Depth a hc = (=	Level : Htb 15.300 m evel 16.000 m tt the Channel End: $1.1^*q^2/(g^*B^2))^{1/3}$ 0.301 m		say	0.310
5)	Outflow Channel	(Trough Bott (baffle wall loss wi No. = Unit q = Width of inflow ch	om - 11 be absorbed w 2 trains 0.395 m ³ /sec annel W= D = L =	0.160 ith this a c/train 0.80 2.14 38.4	allowances.) m m m	Trough Bottom Hw35 = Channel Top Lo Hw32 = Critical Depth a hc = (= Depth at the Be	Level : Htb 15.300 m vel 16.000 m it the Channel End: $1.1*q^2/(g*B^2))^{1/3}$ 0.301 m ggining of Channel		say	0.310
5)	Outflow Channel	(Trough Bott (baffle wall loss wi No. = Unit q = Width of inflow ch Channl Area =	om - 2 trains 0.395 m ³ /sec annel W= D =	0.160 ith this a c/train 0.80 2.14 38.4 0.84	m m m m ²	Trough Bottom Hw35 = Channel Top L Hw32 = Critical Depth a hc = (= Depth at the Be ho =	Level : Htb 15.300 m evel 16.000 m the Channel End: $1.1*q^2/(g*B^2))^{1/3}$ 0.301 m ggining of Channel 73*hc		say say	0.310
5)		(Trough Bott (baffle wall loss wi No. = Unit q = Width of inflow ch Channl Area = Discharge q =	om - 11 be absorbed w 2 trains 0.395 m ³ /sec annel W= D = L = approx.	0.160 ith this a c/train 0.80 2.14 38.4	m m m m ²	Trough Bottom Hw35 = Channel Top L Hw32 = Critical Depth a hc = (Depth at the Be ho = $$	Level : Htb 15.300 m evel 16.000 m at the Channel End: $1.1^{q^2/(g^{*}B^2))^{1/3}}$ 0.301 m ggining of Channel 7^{3} hc 0.435 m			0.310
5)		(Trough Bott (baffle wall loss wi No. = Unit q = Width of inflow ch Channl Area =	om - 11 be absorbed w 2 trains 0.395 m ³ /sec annel W= D = L = approx.	0.160 ith this a c/train 0.80 2.14 38.4 0.84	m m m m ² m ³ /s	Trough Bottom Hw35 = Channel Top L Hw32 = Critical Depth a hc = (= Depth at the Be ho =	Level : Htb 15.300 m evel 16.000 m at the Channel End: $1.1^{q^2/(g^{*}B^2))^{1/3}}$ 0.301 m ggining of Channel 7^{3} hc 0.435 m			
5)		(Trough Bott (baffle wall loss wi No. = Unit q = Width of inflow ch Channl Area = Discharge q =	om - 11 be absorbed w 2 trains 0.395 m ³ /sec annel W= D = L = approx.	0.160 ith this : /train 0.80 2.14 38.4 0.84 0.395	m m m m ² m ³ /s	Trough Bottom Hw35 = Channel Top L Hw32 = Critical Depth a hc = (Depth at the Be ho = $$	Level : Htb 15.300 m evel 16.000 m at the Channel End: $1.1^{q^2/(g^{*}B^2))^{1/3}}$ 0.301 m ggining of Channel 7^{3} hc 0.435 m			

6)) Sedmentation Basin Outlet	No. =	2 lines $0.700 \text{ m}^3/\text{s}$	WL $35 = +$ 15.290 m (ordinal operation)	
	to Filter Inflow Channel	Unit Q =	$0.790 \text{ m}^3/\text{s}$	15.310 m (during washing) (1) Friction Loss (pipe)	
		Dia : D =	0.80 m		
		Length: L =	100.0 m	$hf = f^{*}(L/D)^{*}(v^{2}/(2^{*}g))$	
		Area : A =	0.50 m^2 1.57 m/sec	= 0.487 m	
		Velocity in Pipe : v = (4) Bend Loss (branch)	1.5 / m/sec	where, $f = (20+(1/(2*D)))*1.5/1000$ = 0.031 m	
		$hb = f^*(v^2/(2^*g))$			
		$(\sqrt{2^2g})$ where, f = 0.9		(2) Bend Loss (confluence) hc = $f^*(v^2/(2*g))$	
		0.113 m		where, $f = 0.35$	
			sumption	= 0.044 m	
		hio = $f^*(v^2/(2^*g))$		Total Loss : $hf + hb + hc + hio$	
		where, $f =$	1.5 = (0.5 + 1)	= 0.834 m	
		= 0.189 m		say 0.840 m	
)4	Filter Units	(Stage I + II)			
	i nei ento	No. of Unit =	12	SL40 = + 14.800 m	
		Flow rate $Q = original +5\%$)	$136,500 \text{ m}^3/\text{day}$		
			1.580 m ³ /s		
	Filter Units				
1)	Inflow Channel	No. Channels =	2	Water level at the distribution channel of filter	
			³ /s/channel)	WL41 = + 14.450 m (ordinal operation)	
		Width of inflow channel W= D =	0.80 m 1.20 m	14.470 m (during washing)	
		D = L =	1.20 m 55 m	(1) Friction Loss (open channel) $hf = n^2 * v^2 * L/R^{4/3}$	
		Velocity in Channel : v =	0.82 m/s	$m = n + \sqrt{k} L/R$ where, $n = 0.015$	
		velocity in chamer : v	0.02 11/5	R = W*D/(2*D+W)	
				= 0.300 m	
					050
2)	Inflow gate	Inflow gate W =	500 mm	WL42 = + 14.400 m (during ordinal opertio	in)
		H =	500 mm	14.420 m (during backwashing)	
	0 ,	Inflow velocity $v(12) =$	0.527 m/s	(1) Gate Orifice Loss $\frac{2}{2}$	
	1.0 m/sec>	Inflow velocity v (11) =	0.574 m/s	$ht = v^2 / (2^*9.8^*C^2)$ C = 0.60 say	
					040
					050
3)	Inflow Weir	Weir Crest Level of Each Filter	Effluent	Hw41= 14.250 m	
		During Filtration	12 filters	(1) Weir Loss durinf ordinal filtration	
		Flow rate Q =	130,000 m ³ /day	$hw(12) = (q/(C*b))^{2/3}$ say	
		per basin q=	0.125 m ³ /sec	= 0.105 m 0.1	10
		Width of weir $b =$	2.000 m	where, $C = 1.785 + (0.00295/h + 0.237*h/W)*(1+e)$	
		Hight of crest $W = W \le 1 m$ $e= 0$	1.000 m	= 1.838	
			0.000	(2) Weir loss during washing $(2)^{1/2} = (11)^{1/2} (11)^{1/2}$	
		W>1m e=0.55*(W-1) hw(12) =	0.000 0.105 m (trial)	hw (11)= $(q/(C*b))^{2/3}$ say = 0.111 m 0.11	20
		During Washing	11 filters	where, $C = 1.785 + (0.00295/h + 0.237*h/W)*(1+e)$	20
		per basin q=	$0.137 \text{ m}^3/\text{sec}$	= 1.838	
		hw (11)=	0.111 m (trial)	WL43 = + 14.360 m (during ordinal opertio	in)
				14.370 m (during backwashing)	
4)	Filter Bed			HW 44 = + 14.200 m (HWL)	
4)	(a) Loss of head between filter		a. 195 - ³ .	HW 44 = + HW 45 = + 14.000 m (HWL) m (LWL)	
4)	(a) Loss of head between filter and Effluent Pipe	12 filters q (per filter) =	0.125 m ³ /s	$\begin{array}{c} HW 44 = + & 14.200 & m (HWL) \\ HW 45 = + & 14.000 & m (LWL) \\ (1) Friction loss of effluent pipe \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec	d=	350 mm	$\begin{array}{c} HW 44 = + & 14.200 & m (HWL) \\ HW 45 = + & 14.000 & m (LWL) \\ (1) Friction loss of effluent pipe \\ hf (12) = f^{*}(L/D)^{*}(v^{2}/(2^{*}g)) \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	d= actual v=	350 mm 1.303 m/s	$\begin{array}{c} HW 44 = + & 14.200 & m \ (HWL) \\ HW 45 = + & 14.000 & m \ (LWL) \\ (1) \ Friction \ loss of effluent pipe \\ hf \ (12) = \ f^*(L/D)^*(v^2/(2^*g)) \\ where, \ f = \ (20+(1/(2^*D)))^{*1.5/1000} \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec	d= actual v= 11 filters q (per filter) =	350 mm 1.303 m/s 0.137 m ³ /s	$\begin{array}{rcl} HW 44 = + & 14.200 & m (HWL) \\ HW 45 = + & 14.000 & m (LWL) \\ (1) Friction loss of effluent pipe \\ hf (12) = f^{*}(L/D)^{*}(v^{2}/(2^{*}g)) \\ where, f = (20+(1/(2^{*}D)))^{*}1.5/1000 \\ = & 0.032 \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	d= actual v= 11 filters q (per filter) = d=	350 mm 1.303 m/s 0.137 m ³ /s 350 mm	$\begin{array}{rcl} HW 44 = + & 14.200 & m (HWL) \\ HW 45 = + & 14.000 & m (LWL) \\ (1) Friction loss of effluent pipe \\ hf (12) = f^{*}(L/D)^{*}(v^{2}/(2^{*}g)) \\ where, f = (20+(1/(2^{*}D)))^{*}1.5/1000 \\ &= & 0.032 \\ = & 0.020 & m \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	d= actual v= 11 filters q (per filter) = d= actual v=	350 mm 1.303 m/s 0.137 m ³ /s 350 mm 1.422 m/s	$\begin{array}{rcl} HW 44 = + & 14.200 & m (HWL) \\ HW 45 = + & 14.000 & m (LWL) \\ (1) Friction loss of effluent pipe \\ hf (12) = f^{*}(L/D)^{*}(v^{2}/(2^{*}g)) \\ where, f = (20+(1/(2^{*}D)))^{*}1.5/1000 \\ & = & 0.032 \\ = & 0.020 & m \\ hf (11) = f^{*}(L/D)^{*}(v^{2}/(2^{*}g)) \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	d= actual v= 11 filters q (per filter) = d=	350 mm 1.303 m/s 0.137 m ³ /s 350 mm	$\begin{array}{rcl} HW 44 = + & 14.200 & m (HWL) \\ HW 45 = + & 14.000 & m (LWL) \\ (1) Friction loss of effluent pipe \\ hf (12) = f^{*}(L/D)^{*}(v^{2}/(2^{*}g)) \\ where, f = (20+(1/(2^{*}D)))^{*}1.5/1000 \\ & = & 0.032 \\ & = & 0.020 & m \\ hf (11) = f^{*}(L/D)^{*}(v^{2}/(2^{*}g)) \\ & = & 0.024 & m \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	d= actual v= 11 filters q (per filter) = d= actual v= pipe length L=	350 mm 1.303 m/s 0.137 m ³ /s 350 mm 1.422 m/s	$\begin{array}{rcl} HW 44 = + & 14.200 & m \ (HWL) \\ HW 45 = + & 14.000 & m \ (LWL) \\ (1) \ Friction \ loss of effluent pipe \\ hf \ (12) = \ f^*(L/D)^*(v^2/(2^*g)) \\ where, \ f = \ (20+(1/(2^*D)))^{*1.5/1000} \\ & = & 0.032 \\ & = & 0.020 & m \\ hf \ (11) = \ f^*(L/D)^*(v^2/(2^*g)) \\ & = & 0.024 & m \\ (2) \ In-Out \ Loss \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	d= actual v= 11 filters q (per filter) = d= actual v= pipe length L= (5) Fair Hatch Formula:	350 mm 1.303 m/s 0.137 m ³ /s 350 mm 1.422 m/s	$\begin{array}{rcl} HW 44 = + & 14.200 & m \ (HWL) \\ HW 45 = + & 14.000 & m \ (LWL) \\ (1) \ Friction \ loss \ of effluent pipe \\ hf \ (12) = \ f^*(L/D)^*(v^2/(2^*g)) \\ where, \ f = \ (20+(1/(2^*D)))^{*1.5/1000} \\ & = & 0.032 \\ & = & 0.020 \ m \\ hf \ (11) = \ f^*(L/D)^*(v^2/(2^*g)) \\ & = & 0.024 \ m \\ (2) \ In-Out \ Loss \\ ho = \ f^*(v^2/(2^*g)) \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	d= actual v= 11 filters q (per filter) = d= actual v= pipe length L=	350 mm 1.303 m/s 0.137 m ³ /s 350 mm 1.422 m/s	$\begin{array}{c} HW 44 = + & 14.200 & m \ (HWL) \\ HW 45 = + & 14.000 & m \ (LWL) \\ (1) Friction loss of effluent pipe \\ hf (12) = f^*(L/D)^*(v^2/(2^*g)) \\ where, f = (20+(1/(2^*D)))^{*1.5/1000} \\ &= & 0.032 \\ = & 0.020 & m \\ hf (11) = f^*(L/D)^*(v^2/(2^*g)) \\ &= & 0.024 & m \\ (2) In-Out Loss \\ ho = f^*(v^2/(2^*g)) \\ &= & 1.5 \ (=0.5+1) \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	$\begin{array}{c} d=\\ actual v=\\ 11 \text{ filters} q \text{ (per filter)} =\\ d=\\ actual v=\\ pipe \text{ length} \qquad L=\\ (5) \text{ Fair Hatch Formula:}\\ \text{ Ree } p_F*D*v/m\\ = 2.275 >1 \end{array}$	350 mm 1.303 m/s 0.137 m ³ /s 350 mm 1.422 m/s 2.500 m	$\begin{array}{rcl} HW 44 = + & 14.200 & m \ (HWL) \\ HW 45 = + & 14.000 & m \ (LWL) \\ (1) Friction loss of effluent pipe \\ hf \ (12) = \ f^*(L/D)^*(v^2/(2^*g)) \\ where, \ f = \ (20+(1/(2^*D)))^{*1.5/1000} \\ &= & 0.032 \\ &=$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	d= actual v= 11 filters q (per filter) = d= actual v= pipe length L= (5) Fair Hatch Formula: Re= p_F *D*v/m	350 mm 1.303 m/s 0.137 m ³ /s 350 mm 1.422 m/s 2.500 m	$\begin{array}{c} HW 44 = + & 14.200 & m \ (HWL) \\ HW 45 = + & 14.000 & m \ (LWL) \\ (1) Friction loss of effluent pipe \\ hf (12) = f^*(L/D)^*(v^2/(2^*g)) \\ where, f = (20+(1/(2^*D)))^{*1.5/1000} \\ &= & 0.032 \\ = & 0.020 & m \\ hf (11) = f^*(L/D)^*(v^2/(2^*g)) \\ &= & 0.024 & m \\ (2) In-Out Loss \\ ho = f^*(v^2/(2^*g)) \\ &= & 1.5 \ (=0.5+1) \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	$d=$ actual v= 11 filters q (per filter) = d= actual v= pipe length L= (5) Fair Hatch Formula: Re= p _F *D*v/m = 2.275 >1 C_d= 24/Re+3/\sqrt{Re+0} = 12.9	350 mm 1.303 m/s 0.137 m ³ /s 350 mm 1.422 m/s 2.500 m	$\begin{array}{rcl} HW 44 = + & 14.200 & m \ (HWL) \\ HW 45 = + & 14.000 & m \ (LWL) \\ (1) \ Friction \ loss of effluent pipe \\ hf \ (12) = f^*(L/D)^*(v^2/(2^*g)) \\ where, \ f = \ (20+(1/(2^*D)))^{3/1.5/1000} \\ & = & 0.032 \\ = & 0.020 & m \\ hf \ (11) = \ f^*(L/D)^*(v^2/(2^*g)) \\ & = & 0.024 & m \\ (2) \ In-Out \ Loss \\ ho \ = \ f^*(v^2/(2^*g)) \\ & where, \ f = & 1.5 \ (=0.5+1) \\ ho \ (12) = & 0.130 & m \\ ho \ (11) = & 0.155 & m \\ (3) \ Valve \ Loss(butterfly \ valve) \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	d= actual v= 11 filters q (per filter) = d= actual v= pipe length L= (5) Fair Hatch Formula: Re= p _F *D*v/m = 2.275 >1 C_d= 24/Re+3/\sqrt{Re+0}	350 mm 1.303 m/s 0.137 m ³ /s 350 mm 1.422 m/s 2.500 m	$\begin{array}{rcl} HW 44 = + & 14.200 & m (HWL) \\ HW 45 = + & 14.000 & m (LWL) \\ (1) Friction loss of effluent pipe \\ hf (12) = f*(L/D)*(v^2/(2*g)) \\ & & = & 0.032 \\ & = & 0.020 & m \\ hf (11) = f*(L/D)*(v^2/(2*g)) \\ & & = & 0.024 & m \\ (2) In-Out Loss \\ ho = f*(v^2/(2*g)) \\ & & & where, f = & 1.5 & (=0.5+1) \\ ho (12) = & 0.130 & m \\ ho (11) = & 0.155 & m \end{array}$	
4)	(a) Loss of head between filter and Effluent Pipe 1.5 to 0.6 m/sec Effluent Pipe Size	$\begin{array}{c} d=\\ actual v=\\ 11 \ filters \\ q \ (per \ filter) =\\ d=\\ actual v=\\ pipe \ length \\ L=\\ (5) \ Fair \ Hatch \ Formula:\\ Re= \ p_{F}*D*v/m\\ = 2.275 > 1\\ C_{d}= 24/Re+3/\sqrt{Re+0}\\ = 12.9\\ h(12) = 0.178*C_{d}*L*v^2/g \end{array}$	350 mm 1.303 m/s 0.137 m ³ /s 350 mm 1.422 m/s 2.500 m	$\begin{array}{rcl} HW 44 = + & 14.200 & m (HWL) \\ HW 45 = + & 14.000 & m (LWL) \\ (1) Friction loss of effluent pipe \\ hf (12) = f*(L/D)*(v^2/(2*g)) \\ where, f = (20+(1/(2*D)))*1.5/1000 \\ & = & 0.032 \\ = & 0.020 & m \\ hf (11) = f*(L/D)*(v^2/(2*g)) \\ & = & 0.024 & m \\ (2) In-Out Loss \\ ho = f*(v^2/(2*g)) \\ & where, f = & 1.5 & (=0.5+1) \\ ho (12) = & 0.130 & m \\ ho (11) = & 0.155 & m \\ (3) Valve Loss(butterfly valve) \\ hv = f*(v^2/(2*g)) \end{array}$	

		Media size	D=	1.2	mm	(4) Bend Loss	(blanch)		
	(b) Initial Loss of Head		-						
	through Filter	Thickness of 1			mm	hb =	$f^*(v^2/(2^*g))$		
		Void ratio	e=	0.45	1	1 (10)	where, $f = 1.5$		
		Filtration rate	v(12) =	187.9		h(12) =	0.130 m		
				2.174E-03		h(11)=	0.155 m		
			v (11) =	204.9					
			0-	2.372E-03					
		Viscosity m=		1.146E-03			h = (1)+(2)+(3)+(4)+(5)) say	
		Density of wa		999.1	kg/m²	h (12)=	0.406 m		0.410
		Coefficient of		5.5		h (11)=	0.483 m		0.490
5)	Effluent Weir		vel of Each Filter			Hw42=	11.550 m		
		During Filtrat	ion		filters		durinf ordinal filtration		
		Flow rate Q =		130,000	m ³ /day	hw(12) =	$(q/(C*b))^{2/3}$	say	
		per basin q=		0.125	m ³ /sec	=	0.193 m		0.200
		Width of weir	b =	0.800	m	where, C =	1.785+(0.00295/h+0.23	7*h/W)*(1	+e)
		Hight of crest	W =	3.300	m	í.	= 1	.851	<i>,</i>
		W<=1 m	e= 0			(2) Weir loss d	luring washing		
		W>1m	e=0.55*(W-1)	1.265		· /	$(q/(C*b))^{2/3}$	say	
		W - 1111	hw(12) =		m (trial)	=		Suy	0.210
		During Washi			filters		1.785+(0.00295/h+0.23	7*h/W)*(1	
		per basin q=	115		m ³ /sec	where, c		.851	(0)
		per basin q-	hw (11)=		m (trial)	WL46 = +			antiain)
			IIW (11)-	0.204	m (u lai)	WL40 = +	11.750 m (durin 11.760 m (durin		
6	Filtered Water Effluent Channel	No. =		······	lines	(1) Friction Lo	(uurin	g Dackwasi	iiig)
0)				0.790					
	to Clear Water Reservoir	Unit Q =	Dia : D =	0.790		ni = =	$f^{*}(L/D)^{*}(v^{2}/(2^{*}g))$		
							0.135 m	0	
			Length: L =	50.0		where, i =	(20+(1/(2*D)))*1.5/100		
			Area : A =	0.64			= 0	.031 m	
			ty in Pipe : $v =$		m/sec	(2) Bend Loss	2		
			0 deg. Bend =		(f = 0.17)	hb =	$f^{*}(v^{2}/(2^{*}g))$		
			5 deg. Bend =		(f = 0.12)		where, $f = 0.17 * 2 - $		
		(4) In-Out Los		sumption				.580	
		hio =	$f^{*}(v^{2}/(2^{*}g))$			=	0.046 m		
			where, f =	1.5	=(0.5+1)	(3) Bend Loss	(confluence)		
		=	0.118 m			hc =	$f^{*}(v^{2}/(2^{*}g))$		
		(5) Valves					where, f =	5.0	
		hv=	$f^{*}(v^{2}/(2^{*}g))$			=	0.393 m		
			where, fv=	0.200		Total Loss : hf	+ hb + hc + hio + hv	say	
			0.016 m			=	0.707 m	5	0.710
						WL47 = +	11.210 m		
05	Clear Water Reservoir								
		Overflow pipe	will not be applied	cable but or	ifice.	WL 51 = +	10.500 m (HWL	.)	
						WL 52 = +	5.500 m (LWL)	
1)	Overflow Weir	Weir Crest Le	vel			Hw5over	10.660 m		
Í		No. =	5 tra	ins					
		Unit q =	0.316 m ³	/s		(1) Weir Loss			
1		Dia. of pipe m		0.900	m		$(q/(C*b))^{2/3}$	say	
		Width of weir		2.827		=	0.153 m	Suy	0.160
l l		Hight of crest		5.000			1.785+(0.00295/h+0.23	7*h/W)*(1	
l l		W<=1 m	e= 0	2.000				.870	-,
		W>1m	e=0.55*(W-1)	2.200			1		
			hw =		m (trial)	WL12 = +	10.660 m		
L	ļ		11 11	0.155	(u iui)	11 E I E	10.000 III		