APPENDIX 5

PRELIMINARY DESIGN OF ROAD AND BRIDGE

APPENDIX 5 PRELIMINARY DESIGN OF ROAD AND BRIDGE

AP5.1 Road Design Standard and Criteria

	Table AP.5.1.1 The	Major I)esign F	clements Ado	pted in	Major	Improve	ment/Re	habilit	ation Projects	
NR	Section	Length	Fund	Year of	Design Speed	Lane Width	Shoulder Width**	Foot- path***	Type of	Remarks	
No.		(km)	Source*	Implementation	(km/h)	(m)	(m)	(m)	Pavement		
-	(i)Phnom Penh ~ Neak Loueng	55	•		80	3.5	(2.5)+1.0	2.5(1.0)	AC	B/D was conducted by GOJ	
-	(ii) Neak Loueng ~ Vietnam Border	105	ADB	1999 ~ 2003	100	3.8	[1.5]+0.5		DBST		
2	Takeo Center ~ Vietnam Border	52	GOJ	2003 ~ 2005						Counterpart Fund for Non-Project Grant Aid by GOJ	
ç	(i) Kampot ~ Trapeang Ropov	32.8	GOK							Loan Project, Under Construction	-
°	(ii) Trapeang Ropov ~ Veal Rinh	21.5	WB	$2001 \sim 2003$		10****	0.5		DBST		
4	(Sihanouk Ville) ~ Phnom Penh	(220)	USAid	$1994 \sim 1995$							-
	(i) Phnom Penh ~ Kampong	50	RGC								-
	(ii) Kampong Chhnang ~ Krakor	50	ADB	$2001 \sim 2003$						Loan No. 1824	
ц	(iii) Krakor ~ Svay Doun Keo	80	ADB	$2000 \sim 2003$	09	3.5	[1.5]+0.5		DBST	Loan No. 1697	
n	(iv) Svay Doun Keo ~ Battambang	50	ADB	$2000 \sim 2003$	09	3.5	[1.5]+0.5		DBST	Loan No. 1697	
	(v) Battambang ~ Sisophon	83	ADB	$2001 \sim 2003$	09	3.5	[1.5]+0.5		DBST	Loan No. 1824	
	(vi) Sisophon ~ Poipet	48.5	ADB	ı		3.5				Contractor selecting	
	(i) Phnom Penh ~ Skun	73	ADB	$2000 \sim 2003$		3.5				Emergency repair	
	(ii) Phnom Penh ~ Chueng Chhnok	44	GOJ	1994 ~ 1995	60	3.5	1.5		AC	(Skun-Kampong Cham)	
	(iii) Chueng Chhnok ~ Skun	29	GOJ	1998 ~ 1999	60	3.5	1.5-2.0		AC	Together with NR-7	
ų	(iv) Kampong Thom ~ Skun	88	ADB	$2001 \sim 2003$		3.5				Loan No. 1824	
2	(v) Prey Romeas ~ Kampong	70	ADB	2000 ~ 2003	60	3.5	[1.5]+0.5		DBST	Loan No. 1697	
	(vi) Roluos ~ Prey Romeas	61.1	WB	$2001 \sim 2004$	ı	10****	0.5		DBST		
	(vii) Siem Reap ~ Roluos	17.5	GOJ	$2000 \sim 2002$	60	3.5	0.5-2.0-2.5		AC		
	(viii) Siem Reap ~ Sisophon	100	ADB			3.5				Contractor selecting	
	(i) Skun ~ Kampong Cham	49	GOJ	1998 ~ 1999	60	3.5	1.5-2.0		AC	Together with NR-6	
	(ii) Mekong (Kizuna) Bridge	3.34	GOJ	1999 ~ 2002	80	3.5	(1.5)	1.0 (0.9)	AC	Bridge: 1,360 m	
	(iii) Kizuna Bridge ~ Thnal Totueng	12	GOJ	2000 ~ 2003	60	3.5	1.0		AC		
~	(iv) Thnal Totueng ~ Memot	72	ADB	2000 ~ 2003	60	3.5	[1.5]+0.5		DBST	Loan No. 1697	
	(v) Memot ~ Snuol	45	ADB	2001 ~ 2003	60	3.5	[1.5]+0.5		DBST	Loan No. 1824, OPEC Fund extended through ADB	
	(vi) Snuol ~ Kratie	83	ADB	2000 ~ 2003	60	3.5	[1.5]+0.5		DBST	Loan No. 1697	
	(vii) Kratie ~ Laos Border	198	GOC	$2004 \sim 2007$						Loan Project	_
*	: Fund Source	ADB: Asia	n Develop	ment Bank		WB: Worl	d Bank				r
		GOJ: Gov	ernment o	f Japan		GOK: Gov	/ernment of	Korea			
		RGC: Roy	al Govern	ment of Cambodi	a.	GOC: Gov	/ernment of	China			
*	: () shows Motorbike lane width. []	shows hard	d shoulder	width .							
* * *	: () shows Footpath width on										
	TIDIA VENERGIZIES SNOWS CALIFICATION										

AP5.1.1 Major Design Elements and Cross-Section Adopted to Various Projects in Cambodia

: () shows Footpath width on : Figure shows carriageway width.

Source: Prepared by JICA Study Team

Source: prepared by JICA Study Team.

Ñ	tandards	Camb	odian	Asian Highway	Japa	anese	AAS	НТО
		Rural Highway	Urban Arterial	Class II	Rural Arterial	Urban Arterial	Rural Arterial**	Urban Arterial***
Highwa	y Classification	R5	U5 (Area Type I)		Category 3, Class 1	Category 4, Class 1		
	Terrain	Flat	Flat	Level	Flat	I	Level	Level
Number of	Lanes	2	2	2	Depend c	n Capacity	Depend or	n Capacity
Access Col	ntrol	Partial	Partial	-	Non / Partial	Non / Partial	-	Partial
Design Sp∈	∋ed (km/hr)	100	80	80	80	60	100 - 110	60-100
	Lane	3.	5	3.5	3.5	3.25	8	6
	Shoulder	3.	0	3.0	1.25 (0.75)*	0.5	2.4	1.8
	Marginal Strip	0.	5	ı	ı	I	ı	•
	Footpath			•	2.0 (1.5-1.0)*	3.5-2.75 (3.0-1.5)*	·	2.4
Pavement	Slope (%)	2.5 – 3.0 (Bitumi	nous Concrete)	2.0	v	.5	1.5 - 2.0	1.5 - 3.0
Shoulder S	lope (%)	3.0 – 4.0 (seale	ed), 6.0 (earth)	3.0 – 6.0	1.5 (sealed), 3	3.0 - 5.0 (earth)	1.5 - 2.0	1.5 - 3.0
Min. Horizo	intal Curve (m)	395 - 415	240 - 255	215	280	150	330	280
Max. Supei	relevation (%)	6.0 –	- 7.0	10.0	9	.0	12.0	4.0
Max. Vertic	al Grade (%):	3.0 - 5.0	4.0 – 6.0	4.0	4.0	6.0	3.0	6.0
Type of Par	vement	1		AC/CC	1	VC VC	Pa	/ed
*: Figures a **: Element ***: Elemer	are applied former ts shows on design tts shows on designer	standard, and () n speed of 100km jn speed of 80km	shows on bridge /h. /h.	e section.				

Table AP.5.1.2 The Major Design Elements by Donors

Source: Prepared by JICA Study Team

Source: prepared by JICA Study Team.

Figure AP.5.1.2 Typical Cross Section of Major Bridges

AP5.1.2 Sight Distance

Stopping sight distance is the sum of two distances:

- The distance traversed by the vehicles from the instant that the driver sights as object necessitating a stop to the instant that the brakes are applied (Brake Reaction Time); and
- The distance required to stop the vehicle the brake from the instant that brake application begins (Braking Distance).

2.5 seconds is used for the former and the later is dependent on the initial speed and the coefficient of friction between tires and pavement.

The following equation is used for the calculation of stopping sight distance:

$$D = 0.694 \text{ x V} + 0.00394 \text{ x V}^2 / \text{ f}$$

where D: Stopping Sight Distance (m)

V : Initial Speed (km/h)

f: Coefficient of Friction between Tires and Pavement

Stopping sight distances by each design speeds on the wet condition are shown in Table AP.5.1.3.

Table AP.5.1.3 Stopping Sight Distance on Wet Pavement

Design Speed	Initial	Speed	Friction Coefficient on	Stopping Sigh	t Distance (m)
(km/h)	%	km/h	Wet Pavement	Calculated	Rounded
80	87.5	70	0.31	110.9	110
100	85.0	85	0.30	153.9	160

Source: JICA Study Team.

Sight distance is defined as the distance along a roadway that as object of specified height is continuously visible to the driver with eye-height above the road surface. The height of 1.15 m of driver's eye height on a passenger car is adopted by the Cambodian Standard. The object height on road ranges from 0.1m to 0.2m in international standards. 0.15 m is used as the object height for the Study, which is specified by AASHTO.

Table AP.5.1.4 tabulates the object and driver's eye height specified in the Cambodian Standard and other standards. As far as the Study may concern, only the design element of minimum vertical curve length is affected by this value.

Nations	Japan	AASHTO	Cambodia	The Study
Driver's Eye Height for Stopping (m)	1.2	1.07	1.15	1.15
Object Height (m)	0.1	0.15	0.2	0.15

Fable	AP.	5.1.3	Summar	y of	Object	t and E	ye He	eight S	pecified

Source: prepared by JICA Study Team.

Vehicles frequently overtake slower moving vehicles on 2-lane two ways highway such as the study road. The passing must be accomplished on lanes regularly used by opposing traffic. Accordingly, passing sight distance for use in design should be determined on the basis of the length to safely complete normal passing maneuvers.

AASHTO recommends the minimum passing sight distance of 538 m for Vd = 80 km/h. If the design speed should increase up to 100 km/h, it would have to extend to 727 m or more.

Either passing sight distances could not be applicable on 2nd Mekong Bridge, because the bridge length should extend considerably due to applying lager vertical curve, and accordingly no passing / overtaking is allowed.

AP5.1.3 Horizontal Alignment

(1) Maximum Superelevation (i_{max})

As for typical cross section of the study road, a sidewalk physically separated from traveled way is not composed.

Taking every factor into consideration such as traffic features, roadside condition and cross section configuration, maximum superelevation $i_{max} = 6.0$ % is adopted to the study road.

(2) Minimum Radius (R_{min})

These three factors, i_{max} , R_{min} and i are related each other together with the design speed. The design speeds of 80 km/h is recommended as discussed previously to the study road.

The relation between minimum radius and maximum superelevation is calculated from the following formula.

$$R = \frac{Vd^2}{127 x (i + f)}$$

where R : Radius (m) Vd : Design Speed (km/h) i : Superelevation (m/m) f : Side Friction Factor The side friction factors of 0.14 for 80 km/h are accepted as the maximum value in AASHTO, considering comfort of drivers and traffic safety, while the side friction factors of 0.12 are applied in Japanese Standard. In consideration of a lot of vehicles which wears a worn tire, the side friction factors of 0.12 for 80 km/h are selected for the study road.

Absolute maximum side friction factor of 0.4 may be used in order to check the safety on curves assuming that a vehicle is being operated at an excessive speed (20 km/h higher than the design speed i.e. Vd = 100 km/h, when design speed is 80 km/h) as shown in Table AP.5.1.5.

Design Speed (km/h)	80
Max. Allowable Side Friction Factor (f)	0.12
Max. Superelevation (i _{max} : %)	6.0
Minimum Radius (m)	280
Side Friction Factor if 20 km/h higher than Vd	0.22
Absolute Max. Side Friction Factor	0.4

Table AP.5.1.5 Maximum Superelevation and Minimum Radius

Source: JICA Study Team.

The side friction factors f = 0.12 and resulting maximum superelevation $i_{max} = 6.0$ % are also justified to be applicable to the study road.

(3) Sharpest Curve without Superelevation

Crossfall of 2.0 % applicable to traveled way is mainly determined by drainage requirements. The minimum curvature, which requires superelevation, is determined by setting consistently low friction factor values, considering the effect of crossfall. Side friction factor of 0.035 recommended in the Japanese Standard are used to determine sharpest curve without superelevation as shown in Table AP.5.1.6.

80
0.035
- 2.0
3,500

 Table AP.5.1.6 Sharpest Curve without Superelevation

Source: JICA Study Team.

(4) Value of Superelevation on Curvature (i)

Table AP.5.1.7 shows value of radius and the resulting superelevation for the design speed.

	Horizontal C	Curvatur	e radius (m)
Superelevation (%)	Design	Speed: 8	30km/h
6.0	280	-	Under 340
5.0	Over 340	-	Under 540
4.0	Over 540	-	Under 850
3.0	Over 850	-	Under 1,500
2.0	Over 1,500	-	Under 3,500

Table AP.5.1.7 Superelevation related to design speed and horizontal curvature

Source: JICA Study Team.

(5) Minimum Transition Curve Length

Transition curves are desirable on high speed roads between circular curves of substantially different radii and between tangents and circular curves.

The length necessary for controlling the steering on a curve is calculated from the following formula, which provides required length for a natural and easy-to-follow path for drivers.

$$L = \frac{Vd}{3.6} x t$$

where L: Minimum Transition Curve Length (m)

Vd : Design Speed (km/h)

t : Running Time through the Transition Curve (sec.)

Desirable running time through the curve to allow control of the steering is reported to be 3 to 5 seconds. The minimum transition curve length is set 70 m using the running time through the transition curve t = 3 sec and the design speed Vd = 80 km/h.

To make the change of centrifugal acceleration tolerable, the rate of increase of centripetal acceleration (P m/sec³) is examined by Short's equation where $Pmax = 0.56 \text{ m/sec}^3$.

$$P = \frac{\left[\frac{Vd}{3.6}\right]^3}{L x R}$$

where P: Rate of Increase of Centripetal Acceleration (m/sec³)

Vd : Design Speed (km/h)

L : Minimum Transition Curve Length (m)

R : Minimum Curve Radius (m)

Design Speed (km/h)	80
Running Time (sec.)	3
Minimum Transition Curve Length (m)	70
Minimum Curve Radius (m)	280
Rate of Increase of Centripetal Acceleration (m/sec ³)	0.55 < 0.56

Table AP.5.1.8 Minimum Transition Curve Lengths and Its Rate of Acceleration

Source: JICA Study Team.

(6) Minimum Horizontal Curve Length

The following values are designated to cover all the horizontal curve lengths, including transition curves if any, and to be of sufficient length for drivers to comfortably adjust their steering to allow for the change in curvature.

Rider Comfort (tolerable limit)

L = 0.278 x Vd x t

where L: Minimum Horizontal Curve Length (m)

Vd : Design Speed (km/h)

t : Minimum Required Steering Time on Curve (sec), t = 6 sec

Table AP.5.1.9 Minimum Horizontal Curve Length (tolerable limit)

Design Speed (km/h)	80
Min. Length Calculated (m)	133
Adopted Value (m)	140

Source: JICA Study Team.

In the cases where the intersection angle (θ) is small, 7° or less, it is desirable to use a longer horizontal curve length than the minimum value. Minimum horizontal curve length is calculated as follows:

Minimum Secant Length, Nmin

$$N_{min} = \theta_0 \ge L / 6 = 0.020 \ge L$$

Where

 $\theta_{\underline{0}}$: Intersection Angle to Govern Min. Secant Length, $\theta_{\underline{0}}=7^{\circ}=0.122$ rad.

L : Minimum Transition Curve Length (m)

Design Speed (km/h)	80
Min. Transition Curve Length (m)	70
Min. Secant Length (m)	1.40

Table AP.5.1.10 Minimum Horizontal Curve Length (N_{min})

Source: JICA Study Team.

Minimum Horizontal Curve Length, Lmin

$L_{min} = 12 \text{ x } N_{min} / \theta$ (rad.) = 688 x N_{min} / θ (degree)

Table AP.5.1.11 Minimum Horizontal Curve Length (N_{min})

Design Speed (km/h)	80
Min. Secant Length (m)	1.40
Min. Curve Length (m)	1,000/0
Source: IICA Study Teem	

Source: JICA Study Team.

(7) Minimum Radius of Curve not Required Transition Curve

The minimum radius of curve for which no transition curves are required is calculated by using the following formula:

$$R = \frac{1}{24} \quad x \quad \frac{L^2}{S}$$

where S: Shift in Meters between Curve and Tangent (m)

•

L: Transition Curve Length (m)

R : Radius of Circular Curve (m)

Maximum shift $S_{max} = 0.20$ applied to the above formula and then minimum radius R_{min} is calculated as follows:

Table AP.5.1.12 Minimum Radius of Curve not Required Transition Curve

Design Speed (km/h)	Min. Transition Curve	Min. Radius (m)		
	Length (m)	Calculated	Rounded	
80	70	1,021	1,000	

Source: JICA Study Team.

(8) Superelevation Runoff

For added comfort and safety, the superelevation runoff should be effected uniformly over a length adequate for the design speed. In other words the length of superelevation runoff should exceed what is specified by the maximum relative slope mentioned below.

$$Q = \frac{3.6 \text{ x B x W}}{\text{Vd}}$$

where B: Traveled Way Width from Axle of Rotation (m)

W: Rolling Speed of Vehicle for Profiles (radian/sec.)

Q : Equivalent Maximum Relative Slopes for Profiles (m/m)

At this point, W is applied 6.0m to the calculation, because a motorbike lane width should be contained in a traveled way width.

De	sign Speed (km/h)	80
	B (m)	6.0
	0.042	
Q	Calculated	1:88
	Adopted Value	1:90

 Table AP.5.1.13 Equivalent Maximum Relative Slopes for Profiles

Note: The axle of rotation is located at the centerline. Source: JICA Study Team.

On the contrary, for the requirements of pavement drainage, the length of superelevation runoff in between -2 % and 2 % should not exceed what is computed by the minimum relative slope of 1/300.

The length of 1.2 times as long as the maximum length of superelevation runoff obtained by the minimum relative slope of 1/300 is applied for the study by same reason as previously discussed.

AP5.1.4 Vertical Alignment

(1) Maximum Grade

For design speed of 80 km/h, a maximum grade applied in U.S.A., Japan and Cambodia on flat terrain are compared in Table AP.5.1.14.

Taking into account of traffic characteristics such as over-laden trucks, old vintage trucks and buses and other slow-moving vehicles, maximum grade of 4.0% is adopted for the study road.

Nations	U.S.A.	Japan	Cambodia
Maximum Grade	4.0 %	4.0 %	4.0 - 6.0 %

Table AP.5.1.14 Comparison of Maximum Grade for Design Speed 80 km/h

Note: Value of U.S.A. is applied for a rural arterial road. Source: Prepared by JICA Study Team.

(2) Minimum Vertical Curve Length and Radius

Vertical curves effect gradual change between tangent grades in crest and sag curves and should result in a design that is safe, comfortable in operation, pleasing in appearance and adequate for drainage.

The major control for safe operation on crest vertical curves is the provision of ample sight distance for the design speed and rider comfort, while headlight sight distance and rider comfort govern the length of sag vertical curve.

The following equations are used for the calculation of required vertical curve length and radius of vertical curve, of which longer length is applicable.

A. Rider Comfort (Tolerable Limit)

 $L = \frac{Vd}{3.6} \times t$ where L : Vertical Curve Length (m) Vd : Design Speed (km/h) t : Minimum Required Time, t = 3 sec.

Table AP.5.1.15 Minimum Vertical Curve Length (tolerable limit)

Min. Length Calculated (m) 67	Design Speed (km/h)	80
	Min. Length Calculated (m)	67
Rounded Value (m) 70	Rounded Value (m)	70

Source: JICA Study Team.

B. On Crest Curve (Object height: 0.15 m, Eye Height: 1.15 m)

$$L = \frac{D^2 x i}{426} OR R = \frac{100 x D^2}{426}$$

where L : Vertical Curve Length (m)

D : Sight Distance (m)

R : Radius of Vertical Curve (m)

i : Algebraic Difference in Grade (%)

As discussed previously, the design speed of 80 km/h is recommended to the study road. However, the following comparison may ascertain its justification.

Table AP.5.1.16 Minimum Vertical Curve Radius on Crest Curve

Design Speed	Sight Distance	On Crest Curve (m)			
(km/h)	(m)	Min. Vertical Curve Length	Min. Radius		
80	110	230	2,850		

Note: The computation is made on the condition that the algebraic difference of maximum grades. Source: JICA Study Team.

C. On Sag Curve

(Headlight Sight Distance: Headlight Height = 0.75m, Angle = 1°)

$$L = \frac{D^2 x i}{150 + 3.5 x D} OR R = \frac{100 x D^2}{150 + 3.5 x D}$$

where L : Vertical Curve Length (m)

D : Sight Distance (m)

- R : Radius of Vertical Curve (m)
- i : Algebraic Difference in Grade (%)

Table AP.5.1.17 Minimum Vertical Curve Radius on Sag Curve

Design Speed	Sight Distance	On Crest Curve (m)			
(km/h)	(m)	Min. Vertical Curve Length	Min. Radius		
80	110	190	2,300		

Note: The computation is made on the condition that the algebraic difference of maximum grades. Source: JICA Study Team.

The calculation result of minimum vertical curve length for the major algebraic difference in grade is shown Table AP.5.1.18. As understood from this calculation result, minimum vertical curve length is determined by the rider comfort. Therefore, minimum vertical curve length of 70m is adopted for the study road.

Algebraic	Minimum Vertical Length (m)						
Difference in	C	n Crest Curve		On Sag Curve			
Grade (%)	Rider Comfort	Sight Distance	Adopt Value	Rider Comfort	Sight Distance	Adopt Value	
8.0	70	227	230	70	181	190	
7.5	70	213	220	70	170	170	
7.0	70	199	200	70	158	160	
6.5	70	185	190	70	147	150	
6.0	70	170	180	70	136	140	
5.5	70	156	160	70	124	130	
5.0	70	142	150	70	113	120	
4.5	70	128	130	70	102	110	
4.0	70	114	120	70	90	100	
3.5	70	99	100	70	79	80	
3.0	70	85	90	70	68	70	
2.5	70	71	80	70	57	70	
2.0	70	57	70	70	45	70	
1.5	70	43	70	70	34	70	
1.0	70	28	70	70	23	70	
0.5	70	14	70	70	11	70	

 Table AP.5.1.18 Calculation Result of Minimum Vertical Curve Length

Source: JICA Study Team.

	Table AP.5.1.19 Co	mparison of Ma	ajor Geometri	ic Design Crite	eria between St	tudy Recomm	endation, Rela	ited Projects a	nd Donors
				Project			Donor 8	x Nation	
	ltems	Study	Phnom Penh ~ Neak Louend	Neak Loueng ~ Vietnam Border	Mekong (Kizuna)	Asian Highway	AASHTO	Japanese	Cambodian
		Recommendation	Sta.23+900 ~ Sta.53+400	KM62+010 ~ KM167+470	Bridge	Class II	Rural Arterial (Level)	Category 3, Class 1	U5
Numbe	r of Lanes	2	2	2	2	2	Depend on Capacity	Depend on Capacity	2
Design	Speed (km/hr)	80	08	100	08	80	08	08	80
	Lane	3.50	3.50	3.75	3.50	3.50	3.60	3.50	3.50
+U	Motorbike	2.50	2.50	1	1.50	ı	I	ı	ı
July	Shoulder	1.00	1.00	1.50 ³⁾ +0.50	1.50	3.00	2.40	1.25	3.00
uo qu	Marginal Strip	0.25	0.25		0.10		·	ı	0.50
-⊐ (ɯ	Sidewalk	I	ı	ı	I	ı	-	1.50 ⁷⁾	I
) yıp	Total	14.00	14.00	11.50	13.00	13.00	12.00	12.50	13.00
biW	Lane	3.50	3.50		3.50			3.50	
-	Motorbike	1.50	2.50		1.50				
-vhi1	Shoulder	0.25 ¹⁾	ı	N.A.	I	N.A.	N.A.	0.75	N.A.
	Sidewalk	0.75 ²⁾	1.00		0.90			1.00 ⁷⁾	
	Total	12.00	14.00		11.80			10.50	
Pavem	ent Slope (%)	2.0	3.0	3.0	2.0 (1.5 ⁵⁾)	2.0	1.5 - 2.0	1.5 - 2.0	2.5 – 3.0
Soft Sh	ouler Slope (%)	4.0	4.0	6.0	2.0	3.0 – 6.0	1.5 - 2.0	3.0 - 5.0	6.0
Max. Sı	perelevation (%)	6.0	4.0	5.5 ⁴⁾	4.0 ⁴⁾	10.0	6.0	6.0	6.0 - 7.0
Abs. Mi	n. Horizontal Curve (m)	280	280	500	250	215	250	280	240 - 255
Min. Tr	anssition Curve Length (m)	70	20	ı	I	70	Computing	70	45 - 90
Max. Vt	ertical Grade (%)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0 - 6.0
Min. Ve	rtical Crest Curve (m)	2,850	ı	5,500	I	ı	4,900 ⁶⁾	3,000	3000 ⁶⁾
Min. Ve	rtical Sag Curve (m)	2,300	I	2,000	I	I	3,200 ⁶⁾	2,800	2800 ⁶⁾
Type of	Pavement	AC	AC	DBST	AC	AC/CC	Paved	AC	Bituminous
Note: 1): 5):	: Marginal Strip On bridge	2): Space for inspe 6): R=100xK	ection & utilities	3): Hard shoulder 7): Figures are ap	plied former standa	p	4): Applied at Min.	horizontal curve in	actural

AP5.1.5 Comparison of Major Design Criteria with Related Projects and of Cross-Section over the Mekong River

Source: Prepared by JICA Study Team

Figure AP.5.1.3 Bridge Cross Section over the Mekong River

AP 5.2 Scrutiny of the Selected Route and the Location of the Bridge

16 and 17

25

27 and 28

30

31, 32 and 33

53 and 54

Source: JICA Study Team.

AP5.3 Highway Engineering Design

AP5.3.1 Type and Location of Intersections

(1) Traffic Control Method at Major Intersections

Traffic control method is studied for major intersections of the west and east intersections, Memorial Park Intersection and Toll Gate Intersection. Traffic control Method is divided broadly into two types, that is a signalized intersection and an un-signalized intersection. As the result of the study, all the intersections on the project road are recommended to apply the un-signalized TWSC (Two-Way Stop-Controlled) method. At first, it is examined whether or not the un-signalized intersection is applicable for the major intersections.

Unsignalized intersection is classified into three types as follows:

- Two-Way Stop-Controlled Intersections (TWSC Intersections)
- All-Way Stop-Controlled Intersections (AWSC Intersections) and
- Roundabout

TWSC Intersection is suitable for the major intersection in the Study, because the relationship between major road and minor road is clear. Therefore, the major intersections are examined as TWSC Intersections.

The capacity of TWSC Intersections is calculated based on the sum of the following two traffic volumes:

- General traffic volumes of the major or priority road and,
- Maximum traffic volume of the minor or non-priority road that at the same time possibly can pass through the intersection after one stopping.

Accordingly, the usage of headways in priority traffic flow by vehicles of non-priority traffic flow is generally treated under the "gap-acceptance". The simple model equation is given by Poisson distribution:

 $Q_{max} = Q e^{-\mu t_1} / (1 - e^{-\mu t_2})$

where, $Q_{max} = Maximum$ volume of minor road vehicles that can pass (veh/h)

Q = Given volume of major road (veh/h), both directions

 $\mu = Q/3600$

 t_1 = Minimum time gap necessary in a major traffic flow to allow crossing by minor road vehicles

t₂= Average headway between minor road vehicles which cross as platoons

Figure AP5.3.1, based on the above equation, is used in England for examination of traffic capacity at an unsignalized intersection.

Source: The Planning and Design of At-Grade Intersections, Japan Society of Traffic Engineers.

Figure AP5.3.1 Traffic Capacity at TWSC Intersections

Based on Figure AP5.3.1, the relationship between traffic capacity and traffic volume at each major intersections is identical as shown in Figure AP5.3.1. The following conditions underlie Figure AP5.3.1.

- Future traffic volume in year 2020,
- Good visibility from minor road,
- Major road with 2 lane and,
- Applying left turning traffic only from minor road of channelized intersection.

Traffic volume of right turning from minor road is ignored at channelized intersection because traffic movement of right turning from minor road is similar to interchange ramp terminals and unsuitable to apply.

According to Figure AP5.3.2, the traffic volume at each intersection is less than the traffic capacity. Therefore, major intersections will be operated as unsignalied intersection (TWSC Intersection).

Figure AP5.3.2 Comparison between Traffic Capacity and Traffic Volume at Major Intersections

Note: Assumed priority of heavy direction: To Phnom Penh \rightarrow To Vietnam \rightarrow To Neak Loeung

Source: JICA Study Team.

Figure AP.5.3.3 Map of Major Intersections

				Uni	t: Vehicle/day
Intersection	Direction	MC	LV	HV	Total
	A1	2,198	814	30	3,042
East	A2	4,496	3,904	718	9,118
	A3	237	205	38	480
	B1	4,805	455	78	5,338
West	B2	142	123	23	288
	B3	5,534	3,453	633	9,620
Mamarial	C1	6,429	1,306	585	8,320
Park	C2	2,552	863	156	3,572
Tark	C3	0	0	0	0
	D1	3,928	3,411	627	7,967
Toll Gate	D2	1,748	165	28	1,941
	D3	804	698	128	1,631

 Table AP.5.3.1
 Traffic Volume at Major Intersections

Source: JICA Study Team.

Table AP.5.3.2 Traffic Volume by Peak Hour

				Uni	t: Vehicle/hour
Intersection	Direction	MC	LV	HV	Total
	A1	264	98	4	366
East	A2	539	468	86	1,093
	A3	28	25	5	58
	B1	577	55	9	641
West	B2	17	15	3	35
	B3	664	414	76	1,154
Managial	C1	771	157	70	998
Memoriai Park	C2	306	104	19	429
I dIK	C3	0	0	0	0
	D1	471	409	75	955
Toll Gate	D2	210	20	3	233
	D3	96	84	15	195

Note: Peak hourly ratio of 0.12 is applied.

Source: JICA Study Team.

					U	nit: Vehicle/h	our/direction
Heavey Direction	Intersection	Intersection Direction	МС	LV	HV	Total	Code No.
		A1	149	55	2	206	A1-M
	East	A2	305	264	49	618	A2-M
		A3	16	14	3	33	A3-M
West		B1	326	31	5	362	B1-M
	West	B2	10	8	2	20	B2-M
		B3	375	234	43	652	B3-M
10 FF	То РР	C1	436	89	40	565	C1-M
Memorial Park Toll Gate	C2	173	59	11	243	C2-M	
	C3	0	0	0	0	C3-M	
	D1	266	231	42	539	D1-M	
	Toll Gate	D2	119	11	2	132	D2-M
		D3	54	47	8	109	D3-M
		A1	115	43	2	160	A1-S
	East	A2	234	204	37	475	A2-S
		A3	12	11	2	25	A3-S
-		B1	251	24	4	279	B1-S
	West	B2	7	7	1	15	B2-S
		B3	289	180	33	502	B3-S
PIOIIIFF	Mamarial	C1	335	68	30	433	C1-S
	Park	C2	133	45	8	186	C2-S
	T unx	C3	0	0	0	0	C3-S
		D1	205	178	33	416	D1-S
	Toll Gate	D2	91	9	1	101	D2-S
		D3	42	37	7	86	D3-S

Table AP.5.3.3 Traffic Volume by Direction

Note: Heavy direction ratio of 0.565 is applied. Source: JICA Study Team.

Table AP.5.3.4 Traffic Volume for Intersection Analysis

Source: JICA Study Team.

Note:

Major road traffic without turning traffic

Traffic entering junction from side road

: Major Direction

: Minor Direction

<u>South</u>

241

AP5.3.2 Pavement

- (1) Main Road (NR-1)
 - 1) Design Criteria

"Design Guide for Pavement Structure" of AASHTO is adopted as the design criteria for the Study, because AASHTO Standard is widely accepted in many countries. Other relevant standards/manuals, such as "Manual for Asphalt Pavement" of Japan Road Association (JRO) and "Road Design Standard; Part II Pavement" of Cambodia are referred as appropriate.

2) Methodology of Pavement Design

Outline procedure of pavement design for the Study using "Design Guide for Pavement Structure" is shown in Figure AP5.3.4.

Source: JICA Study Team

Figure AP5.3.4 General Flow of Pavement Design

In AASHTO Standard, required Structure Number (SN) which means required pavement strength is calculated by the following formula:

$$Log_{10} W_{18} = Z_{R} * S_{0} + 9.36 * log_{10} (SN+1) - 0.20 + \frac{Log_{10} \{ \angle PSI/(4.2 - 1.5) \}}{0.40 + 1094/(SN+1)^{5.19}} + 2.32 * log_{10} M_{R} - 8.07$$

Where;

 W_{18} = predicted number of 18-kip equivalent single axle load applications,

- Z_R = standard normal deviate,
- S_0 = combined standard error of the traffic prediction and performance prediction,
- $\angle PSI =$ difference between the initial design serviceability index, p_0 , and the design terminal serviceability index, p_t , and

 M_R = resilient modulus (psi) (of subgrade).

3) Setting of Alternatives of Design Period

The design period of the pavement is applied 10 years as the standard value in the Manual of JRO. For the Life Cycle Cost Analysis (LCC Analysis), three alternatives of design period were set as shown in Table AP5.3.5.

Alternatives	Design Period
ALT-1	7 years
ALT-2	10 years
ALT-3	13 years

 Table AP5.3.5
 Alternatives of Design Period

Source: JICA Study Team

4) Estimation of Equivalent Single Axle Load (W_{18})

Number of 18 kips single axle load application, W_{18} , was estimated from cumulative future traffic volume and Axle Load Equivalency Factor (ALEF).

 W_{18} = Cumulative Traffic Volume (for design period) x ALEF Future traffic volume forecasted in Chapter 3 was used to calculate the cumulative traffic volume.

Values of ALEF for type of vehicles were applied as same as values of the Basic Design on the Project for the Improvement of National Road No.1 conducted by JICA. Applied ALEF for light vehicles and heavy vehicles are as shown in Table AP5.3.6.

Table AP5.3.6 Applied Values of ALEF

Vehicle Type	Light Vehicle	Heavy Vehicle	
ALEF	0.0036	1.89	

Source: Basic design study report on the project for the improvement of NR-1, JICA

Using these data, the following values were obtained as the design EASL.

Items		ALT-1	ALT-2	ALT-3	Remarks
Design Deried (Veer)	From		2013		
Design Feriod (Tear)	То	2019	2022	2025	
Cumulative Traffic	LV	8.235	12.970	18.412	
Volume (Million)	HV	1.609	2.472	3.441	
ESAL (Million)	LV	0.030	0.047	0.066	
	HV	3.042	4.672	6.503	
Total ESAL (Million)		3.071	4.719	6.569	2 Direction
		1.735	2.666	3.712	1 Direction
Design ESAL (Millio	n)	1.74	2.67	3.71	

Table AP5.3.7 Design EASL by Alternative

Source: JICA Study Team

5) Design CBR and M_R

As described in Section 5.3.5, it is assumed that filling material for subgrade and embankment is brought from outside of the study area. And, the material of borrow pits is estimated as silty sand with gravel or sandy silt with gravel. The range of design CBR for this material will be expected about 5-10%. Therefore, design CBR for the Study was assumed to be 7.0. This value was used for whole section of the Study.

Using Design CBR, value of M_R was calculated by the following formula.

$$M_R = CBR \times 1,500 = 7 \times 1,500 = 10,500 \text{ (psi)}$$

6) Determination of Z_R , S_0 , and $\angle PSI$

Values of Z_R , S_0 , and \angle PSI were assumed at the standard values shown in AASHTO Design Guide as shown in Table AP5.3.8.

Z _R :	- 0.674	(R = 75 %: typical value shown in AASHTO Design Guide)	
S ₀ :	0.450	(typical value shown in AASHTO Design Guide)	
∠PSI:	1.9	(= 4.4 – 2.5: typical value shown in AASHTO Design Guide)	
Source: Design Guide for Pavement Structure, AASHTO			

Table AP5.3.8 Values of Z_R , S_0 , and $\angle PSI$

7) Calculation of Required Structure Number (SN)

Using the formula and the values described above subsections, required SN for each alternative was calculated as shown in Table AP5.3.9.

Items	ALT-1	ALT-2	ALT-3
Design ESAL (Million)	1.74	2.67	3.71
Design CBR		7	
Required SN	2.971	3.181	3.352

 Table AP5.3.9
 Required SN by Alternative of NR-1

Source: JICA Study Team

8) Establishment of Pavement Structure for Each Alternative

To establish the pavement structure, the minimum thickness of each layer shall be fulfilled. These criteria are adopted from JRO standard with reference with AASHTO Design Guide.

These alternatives were selected to satisfy the required SN and also to satisfy the requirement for minimum thickness of each layer.

The structures of the alternatives are shown in Table AP5.3.10.

Item	S	ALT-1	ALT-2	ALT-3
Required	1 SN	2.971	3.181	3.352
Surface and	Thickness	10 cm	10 cm	10 cm
Binder Course	SN	1.654	1.654	1.654
Pasa Course	Thickness	15 cm	15 cm	20 cm
Base Course	SN	0.614	0.614	0.819
Subbase	Thickness	20 cm	26 cm	25 cm
Course	SN	0.724	0.942	0.906
Tetal	Thickness	45 cm	51 cm	55 cm
Total	SN	2.992	3.209	3.378

Table AP5.3.10 Alternatives of Pavement Structure for NR-1

Source: JICA Study Team

9) Life Cycle Cost Analysis (LCC Analysis)

To verify the economic justification, life cycle costs (LCC) of Alternatives are compared. Prior to LCC analysis, maintenance scenario was assumed as shown in Table AP5.3.11. The period from 1st to 3rd year after construction was applied "No maintenance work", because the maintenance scenario exclude operation cost such as the electricity charges for lighting.

 Table AP5.3.11
 Maintenance Scenario

Period	Maintenance Work
$1^{st} - 3^{rd}$ year after construction	No maintenance work
4 th – End year of design period	Repair of pot holes etc: Cost is 1 % of new construction
Next year after design period	Overlay implemented: Thickness is 5cm.
Two years after design period	Repeat the cycle between 1 st year and next year after design period above
C	

Source: JICA Study Team

The result of the analysis is summarized in Table AP5.3.12. Cost index of which 1.0 was assumed overlay cost was applied to the cost comparison, and costs per square meter was compared at the analytical period of 20 years

LCCs of ALT-1 and ALT-3 are higher than that of ALT-2 by 4.683 % and by 0.326 %. Consequently, from economic viewpoint, ALT-2 is desirable among alternatives. And, it is recommended to adopt 10 years as design period.

Itoma	Cost Index		
nems	ALT-1	ALT-2	ALT-3
Construction Cost	2.6826	2.7716	2.8473
Maintenance Cost	0.6690	0.4008	0.3291
Salvage Cost	0.2781	0.2873	0.2952
Total	3.6297	3.4597	3.4715
Ratio against ALT-1 (%)	100.000%	95.317%	95.643%

 Table AP5.3.12
 Summary of LCC Analysis

Source: JICA Study Team

10) Comparison with Adjacent Section

Comparison of pavement structure with adjacent section is shown in Table AP5.3.13. The total thickness of the proposed pavement is almost the same as JICA Section. And, the proposed pavement was evaluated by JRO Standard. Therefore, the proposed pavement structure is clarified to be appropriate.

	Project	JICA B/D Section Study Sect		ADB Section
Cun	nulative ESAL	2.18x10 ⁶	2.67x10 ⁶	2.0-3.0x10 ^{6*}
D	esign CBR	7 (after replacement)	7	-
Pave	ment Structure			
	Surfce Course	9.0	10.0	7.5
Thickness	Base Course	15.0	15.0	16.0
(cm)	Subbase Course	28.0	26.0	12.0
	Total	52.0	51.0	35.5
	Surfce Course	AC	AC	DBST
Material	Base Course	Mechanically Stabilied	Crusher-run	Crushed Rock
	Subbase Course	Stabilized Sand	Granular Material	Gravel

 Table AP5.3.13
 Comparison of Pavement with Adjacent Section

*: 50% is used for Heavy Direction Ratio. Source: Prepared by JICA Study Team

11) Motorbike Lane

In the view of cost minimizing, the pavement thickness on motorbike lane was modified and examined as follows, because ALEF of motorbike is small as it is possible to disregard it. Vehicles, however, pass through motorbike lane to stop in the roadside or to turn at intersection. On the other hand, great change of the pavement thickness causes the rise of cost and the error during construction due to complex of works.

Considering above mentions, modification of pavement thickness was conducted on the following conditions.

- Cumulative EASL of motorbike lane is assumed 20 percentage of the one of the carriageway.
- Total thickness is adjusted only by surface course, No change is other layers.
- Design period is applied 10 years as well as the one for vehicle lane.

According to the above conditions, pavement thickness for motorbike lane was modified as shown in Table AP5.3.14, and 6 cm in thickness of surface course was recommended for motorbike lane.

Design ESAL (Million)	Vehicle Lane	2.67
	Motorbike Lane	0.53
Design CBR		7
Required SN		2.457
Pavement Structure	Thickness	SN
Surface and Binder Course	6 cm	0.992
Base Course	15 cm	0.614
Subbase Course	26 cm	0.942
Total	47 cm	2.548

 Table AP5.3.14
 Modification of Pavement for Motorbike Lane

Source: JICA Study Team

(2) NR-11 Bypass

1) Required SN

Using future traffic demand on NR-11 bypass, the required SN for NR-11 bypass is calculated in the same procedure and same conditions as for NR-1 in the Study.

The result of the calculation is summarized in Table AP5.3.15.

	From	То	Period
Design Period	2013	2022	10 years
	LV	HV	Total
Cumulative Traffic Volume (Million)	2.725	0.512	3.237
ESAL (Million)	0.010	0.967	0.977
	Vehicle	Motorbike	Remarks
Design ESAL	0.55	0.11	1-Direction
Required SN	2.471	1.892	

Table AP5.3.15Required SN of NR-11 Bypass

Source: JICA Study Team

2) Pavement Structure

According to the future traffic demand of NR-11 bypass in 2020, Number of the heavy vehicles pre day per direction was few 100 or less. Alternatives were established so that applying the modification of pavement thickness on motorbike lane as well as main road verify appropriate from an economical viewpoint.

Each Alternatives and the result of the estimation is summarized in Table AP5.3.16. Cost index of which 1.0 was assumed the cost of overlay with 5 cm in thickness was applied to the cost comparison as well as main road, and costs per cross section was compared.

Construction cost (initial cost) of ALT-b is higher than that of ALT-a by 8.05 %. Consequently, from economic viewpoint, ALT-a is recommended as the appropriate pavement structure for NR-11 bypass. Pavement structure of car lane and motorbike lane become the same.

Items			AL	ALT-b	
		AL1-a	Vehicle	MC	
Require	d SN	2.471	2.471	1.892	
Surface and	Thickness	6 cm	8 cm	4 cm	
Binder Course	SN	0.992	1.323	0.661	
Paga Course	Thickness	19 cm	15 cm	15 cm	
Base Course	SN	0.778	0.614	0.614	
Subbase	Thickness	20 cm	18 cm	18 cm	
Course	SN	0.724	0.652	0.652	
Total	Thickness	45 cm	41 cm	37 cm	
Total	SN	2.494	2.589	1.928	
Widt	Width		6.5	3.0	
Unit Cost Index		1.943	2.300	1.664	
Total Cost Index		18.458	19.9	943	
Cost Raito (AL	T-b/ALT-a)	1.0000	1.08	805	

 Table AP5.3.16
 Comparison with Alternatives of Pavement Structure for NR-11 Bypass

Source: JICA Study Team

(3) Minimum Thickness by Layer

Table AP.5.3.17 Minimum Thickness (AASHTO) (inches)

Traffic, ESAL	Asphalt Concrete	Aggregate Base
Less than 50,000	1.0 (or surface treatment)	4
50,001 - 150,000	2.0	4
150,001 - 500,000	2.5	4
500,001 - 2,000,000	3.0	6
2,000,001 - 7,000,000	3.5	6
Greater than 7,000,000	4.0	6

Source: Design Guide for Pavement Structure, AASHTO

Table AP.5.3.18	Class	of Design	Traffic	Volume	(JRO)
------------------------	-------	-----------	---------	--------	-------

Class of Design Traffic Volume	Traffic Volume of Heavy Vehicles (Vehicle/day/direction)
L	Less than 100
А	100 - 249
В	250 - 999
C	1,000 – 2,999
D	3,000 or more

Source: Manual for Asphalt Pavement, JRO

Table AP.5.3.19 Minimum Thickness of Surface Course (JRO)

Class of Design Traffic Volume	Thickness (cm)
L, A	5
В	10 (5)*
С	15 (10)*
D	20 (15)*

Note: Thickness in () can be used where the base course material is asphalt-stabilized. Source: Manual for Asphalt Pavement, JRO

Fable AP.5.3.20	Minimum	Thickness	of Base	Course and	Subbase	Course	(JRO)
------------------------	---------	-----------	---------	------------	---------	--------	-------

Material/Construction Method	Minimum Thickness of Layer
Asphalt-stabilized	2 times of the maximum grain size and 5 cm
Other than above	3 times of the maximum grain size and 10 cm

Source: Manual for Asphalt Pavement, JRO

Table AP.5.3.21	Traffic of NR-1	by Alternative
-----------------	-----------------	----------------

Items	ALT-1	ALT-2	ALT-3
Cumulative ESAL	1.76 million	2.67 million	3.71 million
Heavy Vehicle (veh./day/lane)	409	463	518

Source: JICA Study Team.

(4) Calculation of Pavement Structure for NR-1

1) Calculation of Pavement Structure for NR-1 by AASHTO

Estimated SN is calculated by following formula in AASHTO Standard:

Estimated SN = $T_1 \times SC_1 \times DF1 + T_2 \times SC_2 \times DF_2 + \dots + T_i \times SC_i \times DF_i + \dots + T_n \times SC_n \times DF_n$

Where: $T_1, T_2, \dots, T_i, \dots, T_n$: Thickness of each layer (inch)

 $SC_1, SC_2, \cdots, SC_i, \cdots, SC_n$: Structural coefficient of each layer

 DF_1 , DF_2 , ..., DF_i , ..., DF_n : Drain Factor of each layer

Table AP.5.3.22 Structural Coefficient and Drain Factor of Each Layer

Louon	Structural Coefficient	Drain Factor
Layer	(per inch)	(per inch)
Surface Course (AC)	0.42	1.0
Base Course (Stabilized Gravel)	0.13 (CBR = 80)	0.8
Subbase Course (Crushed Stone)	0.115 (CBR = 30)	0.8

Source: Design Guide for Pavement Structure, AASHTO

	Target SN		2.971	Target SN - E	stimated SN	imated SN -0.021	
	Laurana	Thic	kness	Structural	Drain	Estimated	
	Layers	(cm) (inch)		Coefficient	Factor	SN	
Γ-1	Surface Course	4	1.575	0.420	1.0	0.661	
AL	Binder Course	6	2.362	0.420	1.0	0.992	
	Base Course	15	5.906	0.130	0.8	0.614	
	Subbase Course	20	7.874	0.115	0.8	0.724	
	Total	45	17.717			2.992	
	Binder Cou	irse	3.181	Target SN - Estimated SN		-0.028	
	Lavara	Thic	kness	Structural	Drain	Estimated	
	Layers	(cm)	(inch)	Coefficient	Factor	SN	
Γ-2	Surface Course	4	1.575	0.420	1.0	0.661	
AL'	Binder Course	6	2.362	0.420	1.0	0.992	
	Base Course	15	5.906	0.130	0.8	0.614	
	Subbase Course	26	10.236	0.115	0.8	0.942	
	Total	51	20.079			3.209	
	Subbase Co	urse	3.352	Target SN - E	stimated SN	-0.026	
	Lavana	Thic	kness	Structural	Drain	Estimated	
	Layers	(cm)	(inch)	Coefficient	Factor	SN	
I-3	Surface Course	4	1.575	0.420	1.0	0.661	
AL'	Binder Course	6	2.362	0.420	1.0	0.992	
	Base Course	20	7.874	0.130	0.8	0.819	
	Subbase Course	25	9.843	0.115	0.8	0.906	
	Total	55	21.654			3.378	

 Table AP.5.3.23
 Establishment of Pavement Structure of NR-1 by Alternative

Source: JICA Study Team.

Alter	natives	A	LT-1	ALT-2		AI	LT-3
Year	Discount Rate	Nominal	Discounted	Nominal	Discounted	Nominal	Discounted
0	1.0000	2.6826	2.6826	2.7716	2.7716	2.8473	2.8473
1	0.8929	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.7972	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.7118	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	0.6355	0.0268	0.0170	0.0277	0.0176	0.0285	0.0181
5	0.5674	0.0268	0.0152	0.0277	0.0157	0.0285	0.0162
6	0.5066	0.0268	0.0136	0.0277	0.0140	0.0285	0.0144
7	0.4523	0.0268	0.0121	0.0277	0.0125	0.0285	0.0129
8	0.4039	1.0000	0.4039	0.0277	0.0112	0.0285	0.0115
9	0.3606	0.0000	0.0000	0.0277	0.0100	0.0285	0.0103
10	0.3220	0.0000	0.0000	0.0277	0.0089	0.0285	0.0092
11	0.2875	0.0000	0.0000	1.0000	0.2875	0.0285	0.0082
12	0.2567	0.0268	0.0069	0.0000	0.0000	0.0285	0.0073
13	0.2292	0.0268	0.0061	0.0000	0.0000	0.0285	0.0065
14	0.2046	0.0268	0.0055	0.0000	0.0000	1.0000	0.2046
15	0.1827	1.0000	0.1827	0.0277	0.0051	0.0000	0.0000
16	0.1631	0.0000	0.0000	0.0277	0.0045	0.0000	0.0000
17	0.1456	0.0000	0.0000	0.0277	0.0040	0.0000	0.0000
18	0.1300	0.0000	0.0000	0.0277	0.0036	0.0285	0.0037
19	0.1161	0.0268	0.0031	0.0277	0.0032	0.0285	0.0033
20	0.1037	0.0268	0.0028	0.0277	0.0029	0.0285	0.0030
Salvage Value	0.1037	2.6826	0.2781	2.7716	0.2873	2.8473	0.2952
Total	1.0000		3.6297		3.4597		3.4715

Table AP.5.3.24 LCC Analysis

Source: JICA Study Team.

2) Check the Selected Pavement Structure for NR-1 by JRO Standard

According to the JRO Standard, pavement structure is evaluated by the value of T'_A and H of total pavement thickness. T_A represents the pavement thickness required if the entire depth of the pavement were to be constructed of hot asphalt mixture, used for binder and surface courses.

Estimated SN is calculated by following formula in JRO Standard:

 $T'_{A} = \ a_{1} \ x \ T_{1} + a_{2} \ x \ T_{2} + \cdots \ a_{i} \ x \ T_{i} + \cdots + a_{n} \ x \ T_{n}$

Where: $a_1, a_2, \dots, a_i, \dots, a_n$: Conversion coefficient of each layer

 $T_1, T_2, \dots, T_i, \dots, T_n$: Thickness of each layer (cm)

Design	Target Value (cm)									
CDD	L Tr	affic	A Tı	affic	B Tı	affic	C Tı	affic	D Tr	affic
CDK	TA	Н	TA	Η	TA	Η	TA	Η	TA	Н
2	17	52	21	61	29	74	39	90	51	105
3	15	41	19	48	26	58	35	70	45	90
4	14	35	18	41	24	49	32	59	41	70
6	12	27	16	32	21	38	28	47	37	55
8	11	23	14	27	19	32	26	39	34	46
12	-	-	13	21	17	26	23	31	30	36
20	-	-	-	-	-	-	20	23	26	27

Table AP.5.3.25	Target	Value for T _A	and Total	Thickness H
------------------------	--------	--------------------------	-----------	--------------------

Source: Manual for Asphalt Pavement, JRO

|--|

Layer	Conversion Coefficient (per cm)
Surface and Binder Course (AC)	1.00
Base Course (Stabilized Gravel)	0.35 (CBR = 80)
Subbase Course (Crushed Stone)	0.25 (CBR = 30)

Source: Manual for Asphalt Pavement, JRO

Based on traffic volume, ALT-2 was classified into "B Traffic". And, Design CBR of 7.0 was applied. Therefore, required T_A and H are 21 cm and 38 cm respectively.

Table AP.5.3.27	Evaluation of Selected	Pavement Structure of	of NR-1 by RJO
-----------------	-------------------------------	------------------------------	----------------

Layers	Thickness (cm)	Conversion Coefficient	T _A (cm)
Surface Course	4.0	1.00	4.00
Binder Course	6.0	1.00	6.00
Base Course	15.0	0.35	5.25
Subbase Course	26.0	0.25	6.50
Total (A)	51.0	2.60	21.75
Target Value (B)	38.0		21.00
A-B	13.0		0.75

Source: JICA Study Team.

(5) Motorbike Lane on NR-1

Table AP.5.3.28 Evaluation of Motorbike Lane by AASHTO

Target Sl	N	2.457	Target SN - E	-0.091		
Lavors	Thickness		Structural	Drain	Estimated	
Layers	(cm)	(inch)	Coefficient	Factor	SN	
Binder Course	6 2.362		0.420	1.0	0.992	
Base Course	15	5.906	0.130	0.8	0.614	
Subbase Course	26	10.236	0.115	0.8	0.942	
Total 47					2.548	

Source: JICA Study Team.

(6) National Road NR-11 Bypass

1) Calculation of Pavement Structure for NR-11 Bypass by AASHTO

Items	Vehicle
Cumulative ESAL	3.237 million
Heavy Vehicle (veh./day/lane)	96

Table AP.5.3.29 Traffic of NR-11 Bypass

Source: JICA Study Team.

		Target S	N	2.471	Target SN - Est	imated SN	-0.023
-a		Layers (cm)		kness (inch)	Structural Coefficient	Drain Factor	Estimated SN
E	יי דו	Surface Course	6	2.362	0.420	1.0	0.992
- -	R	Base Course	19	7.480	0.130	0.8	0.778
		Subbase Course	20	7.874	0.115	0.8	0.724
		Total	45	17.717			2.494
		Target S	N	2.471	Target SN - Est	imated SN	-0.118
	le	Lovors	Thickness		Structural	Drain	Estimated
		Layers	(cm)	(inch)	Coefficient	Factor	SN
	ehic	Surface Course	8	3.150	0.420	1.0	1.323
	V,	Base Course	15	5.906	0.130	0.8	0.614
		Subbase Course	18	7.087	0.115	0.8	0.652
T-b		Total	41	16.142			2.589
AL'		Target SN		1.892	Target SN - Estimated SN		-0.036
		Lovora	Thic	kness	Structural	Drain	Estimated
	ike	Layers	(cm)	(inch)	Coefficient	Factor	SN
	torb	Surface Course	4	1.575	0.420	1.0	0.661
	Moï	Base Course	15	5.906	0.130	0.8	0.614
		Subbase Course	18	7.087	0.115	0.8	0.652
		Total	37	14.567			1.928

Source: JICA Study Team.

2) Check the Selected Pavement Structure for NR-11 Bypass by JRO Standard

Based on traffic volume, ALT-a was classified into "L Traffic". And, Design CBR of 7.0 was applied. Therefore, required T_A and H are 12 cm and 27 cm respectively.

Table AP.5.3.31 Evaluation of Selected Pavement Structure of NR-11 Bypass by RJO

Lavers	Thickness	Conversion	T_A
Layers	(cm)	Coefficient	(cm)
Surface Course	6.0	1.00	6.00
Base Course	19.0	0.35	6.65
Subbase Course	20.0	0.25	5.00
Total (A)	45.0		17.65
Target Value (B)	27.0		12.00
A-B	18.0		5.65

Source: JICA Study Team.

AP 5.3.3 Road Safety and Road Management Facilities

(1) Safety Measure on Bridge

The necessity of countermeasures against the traffic accident on the bridge should rise in consideration of traffic characteristics in Cambodia as described in Section 5.1.3. Though there are various types of devices as countermeasures to separate car lane and motorbike lane such as rubber posts, delineator and so forth, the devices should be selected considering the following points:

- No additional space for the installation
- Not breakable even if the heavy vehicle steps on
- Prerequisite to install traffic signs and ordinary road markings

Major devices that meet the above requirement and applied in Japan are introduced as follows.

- Road studs with reflector (normal size: size W150xB130xH20~30mm)
- Mounted pavement strips (size H10~30mm)
- Ramble strips (size W350xB80xH9~12mm in 150mm Intervals)
- Road markings with ribs (size H7mm)
- Centralized road markings (size W300~450mm)
- Color pavement (size H10mm)

A. Road studs with reflector

B. Mounted pavement strips

C. Ramble Strips D. Details of Ramble Strips E. Road markings with ribs

F. Centralized road markings

G. Color pavement

Source:

- A. http://www.azuma-syokai.co.jp/safty/index.htm
- B. http://www.azuma-syokai.co.jp/safty/goods-m.htm
- C. http://www.e-nexco.co.jp/service/challenge/traffic.shtml
- D. http://www.hokuhoku.ne.jp/rmec/15pdf/22-24.pdf
- E. http://www.cbr.mlit.go.jp/mie/q-a/road/road22.html
- F. http://www.kotuanzenyanen.com/sisetu/romen/index_romen.html
- G. http://www.tottori-mlit.go.jp/koge/construct/anzentaisaku/otiori-wakasa.html

Photograph AP5.3.1 Sample of Safety Devices

Road studs with reflector have the possibility that the motorbike slips in the section with the steep vertical grade, because it is made of the metal. Mounted pavement strips might disturb smooth drain. As for road markings with ribs, the abrasion of the rib is assumed so fast. On the other hand, the abrasion resistance of the ramble strips is assumed to be higher than the road markings with ribs. Centralized road markings are useful to draw motorbike driver's attention, and there is an effect of concentration to the center of the lane in visual. There are some types of color pavement, and one of them has the slipping prevention function.

Considering the above features of the devices and the traffic characteristics in Cambodia, it is proposed to compound the following devices.

- Ramble strips (size W350xB80xH9~12mm in 150mm Intervals)
- Centralized road markings (size W300~450mm)
- Color pavement (size H10mm)

Moreover, the effect will increase, if the road studs on the curb are installed.

Source: http://www.koutsukikaku.co.jp/eigyo2.html

Photograph AP5.3.2 Sample of Road Studs on the Curb

(2) Traffic Signs

The traffic sign is one of the traffic control devices, which is used to regulate, warn or guide road users. Traffic signs are stipulated in Cambodian Standard and shall be installed to satisfy the requirements.

1) Regulatory and Warning Signs

Regulatory signs inform road users of traffic rules and regulations and indicate the applicability of legal requirements that would not otherwise be apparent.

Warning signs are used when it is deemed necessary to warn traffic of existing or potentially hazardous condition on or adjacent to a road.

Principal regulatory and warning signs are planned to install at the following locations in the Study:

- Horizontally sharp curve (R < 500 m)
- Intersection and toll plaza
- 2) Guide Signs

Guide signs are to convey to drivers information such as destination and distance, service facilities and route confirmation. These signs play an important role in informing drivers in advance of correct traffic lane for marking an exit or entry at merging/diverging points and roadside facilities.

Principle guide signs are planned to install at major intersections and toll plaza in the Study.

(3) Road Markings

Road markings include all traffic lines, symbols, words and object marks. Road markings are particularly important to help in regulating traffic, warning or guiding road users. Road markings, like other traffic control devices, should be uniform in design, position and application so that they may be recognized and understood immediately by all road users.

Cambodian standard of road markings are not established. In reality, a foreign standard has been applied in each project. Therefore, Japanese Standard is proposed to apply for this project, because it is introduced at "Safety Measure on Bridge". Road markings shall be installed to satisfy the requirements. And, the installation plan should be consulted with MPWT as the responsible authority during the detailed design stage.

Principal road markings will be painted on the pavement and be consisted of the following type in the Study:

- Centerline
- Lane markings at the boundary of a car lane and a motorbike lane
- Road edge
- Pedestrian crossing

Other types of road markings should be considered in the detailed design stage depending on the actual site condition.

(4) Kilometer Posts

Kilometer posts are to function as informing road users as well as to locate and orient them. Besides, it is useful for maintenance because the location of repair work become clear.

Kilometer posts are planned to install at 1 km interval.

(5) Guard Posts

Guard posts are to function as redirecting errant vehicles away from the roadside hazard and decelerating errant vehicle to a stop. Guard posts are delineated in term of geometry and location of roadside features.

Guard posts are planned to set up at the following locations in the Study:

- High embankment section (H > 4.0 m)
- Horizontally sharp curve (R < 500 m)
- Bridge and culvert approaches
- (6) Road Lightings

Since there are comparatively, many objects that become troubles on the road with low reflectivity, the discovery probability of such obstacles by the road lightings is generally higher than by the car lightings. In addition, the road lightings have an excellent effect such as the expansion of driver's sight, the improvement of an unobstructed driver's view and the guidance of driver's eyes. The road lightings are planned at the following locations in the Study to maintain smooth and safe traffic at nigh:

- Major intersections and toll plaza
- Bridge and its approach
- (7) Road Studs

As discussed above, road studs have the possibility that the motorbike will easily slip in the section with the steep vertical grade. However, a high effect can be expected for the 4-wheel vehicles. Road studs are particularly important to help in regulating traffic, warning or guiding road users like road markings. Road studs with reflector have a function of guidance of driver's eyes.

The road studs with reflector are planned on the centerline in every 25-meter in this Study.

AP 5.5 Selection of Bridge Type

AP 5.5.1 Evaluation of Six bridge alternatives by AHP

Two Bridge types be selected as the candidates of the main bridge for the Project. Following two procedures are carried out for the selection of the optimal bridge type.

(1) Process-1

Optimal bridge type should be selected from the engineering point of view referring to evaluation criteria.

(2) Process-2

Result of engineering judgment should be checked utilizing the AHP (the Analytic Hierarchy Process)

1) Evaluation criteria

Evaluation criteria are as follows.

- 1. Construction Cost:
- 2. Property of structure
 - a. Contribution to Cambodian Economy, opportunities of working and technical transfer.
 - b. Past record, technical assurance and stability and suitability to the natural condition
- 3. Construction method
 - a. Construction term
 - b. Safety for construction
- 4 Maintenance
- 5 Aesthetic point of view

2) Process-1

Construction cost should have first priority among items in the criteria. Both Cable Stayed Bridges, i.e., Type-4 and Type-6, are most reasonable cost rather than others. Cost of Cable Stayed Bridges are twenty (20) percent lower than the cost of steel bridge alternatives of Type1, Type2 and Type-3 and fifteen (15) percent lower than Composite Extra-Dosed bridge (Type-5).. As far as concern for the cost, Type-4 or Type-6 may be selected.

One of contribution to Cambodian economy, opportunities of working and technical transfer may use material produced in Cambodia, fabricate structures in the site and more Cambodian engineers are involved in the work. That means concrete structures would be suitable rather than steel structures because aggregates for concrete are typical material to be produced in Cambodia. For this point of view, Type-5 and Type-6 bridges may be favorable.

These six type bridges have safely constructed in the world and the bridge for the Project is within past record of dimension. However, wind induced vibration must be considered for lightweight and sensitive structures. Cable Stayed bride, especially Type-4, has sensitive property to wind action. Therefore wind tunnel tests must be performed to confirm the wind stability before Detailed Design.Type-6 bridge is also necessary to be carried out wind tunnel test. But Actual example similar to the bridge indicate that fatal behavior such as flatter and galloping will not occur and if wind vortex oscillation occur, aerodynamic countermeasure will be easily generated through the wind tunnel examination.

From Type-1 to Type-3 and Type-5 will be constructed in a shorter period if suitable construction yard will be prepared to assemble the bridge because of application of the lifting method that enable rapid construction. It seems difficult to prepare it near the site along the Mekong River.

Cable Stayed Bridge, Type-4 and Type-6, will be constructed adopting balanced-cantilever method. Its cyclic procedure of construction is recognized rational and safety.

Maintenance will be needed for every type of bridges but bridges made of concrete are able to minimize its cost.

Aesthetic aspect of the bridge should be important issue to select bridge type. Cable Stayed Bridge is generally recognized elegant and symbolic structure of the area and can become the landmark there.

Accordingly, Cable Stayed Bridge, Type-4 and Type-6, should be selected for the candidates of the bridge for the Project.

3) Process-2

Check to result of Process-1 should be confirmed utilizing AHP (Analytic Hierarchy Process)

PROPERTY OF STRUCTURE (A)

CONSTRUCTIBILITY

MAINTENANCE

Figure AP5.5.3 Results of AHP (2)

Results of evaluation by AHP are same as the results of the engineering judgment through Pprocess-1. Therefore Cable Stayed Bridges i.e., Type-4 and Type-6, are selected for the next evaluation stage.

AP 5.5.2 Comparison of Steel Girder and Concrete Girder for Cable Stay Bridge

There are two type of main girder, concrete girder and steel girder are commonly utilized for the Cable Stay Bridge. Comparison to select optimal type of cable stay bridge is carried out and result is summarized in Figure AP5.5.4 and Table AP5.5.1

Figure AP5.5.4 Comparison of Cable Stayed Bridges

		DESCRIPTION								
					Quantities of	Main Br.				Cost
			Concrete	m ³	4,868		Concrete	m ³	2,121	1,521x10 ⁶ (JPY)
		Girder	Rebar	t	874	Pylon	Rebar	t	728	, , ,
			PC-tendon	t	605		steel	t	104	【13.8(USD)】
	COST	Stay cable	Stay cable t 240							
	COST	-	Foundation 1,419x10 ⁶ (JPY)							
er)			Concrete	m ³		Type :	Cast on plac	e Conc	rete Pile	
ird		Pile cap	Rebar	t		Diameter	x Length	m	2.5 x 60m	[12.9(USD)]
e O						Number o	f Pile	nr		
ret		Total 1,5	$21 \times 10^{\circ} + 1,4$	19 x	$10^{\circ}=2,940 \text{ x } 1$	$0^{\circ}(JPY)$	26.7 x 1	$0^{\circ}(US)$	D)	
onc		Aggregat	es for concre	ete are	e procured in (Cambodia	. Other m	ateria	ls, such as cer	nent, rebar, PC-
Ŭ		tendon, s	teel plate, sta	ay cat	oles, shall be in	mported.	Girder wi	ll be o	constructed by	cast in place
-	PROPERTY	concrete	so that oppo	rtunit	y for local lab	or to parti	cipate the	proje	ct and technic	cal transfer will
VE	OF	large con	nparing to A	Iterna	tive-2	· · ·	1 . 1 . 1			
T	SIRUCIURE	This type	of bridge m	ay ha	ve good aerod	lynamic st	ability be	cause	OHSHIBA B	ridge, similar
Z		type of bi	ridge, constr	ucted	in Japan in 19	997, has ez	xcellent ac	erody:	namic stability	y. However,
ER		After the		of Du	Ined out for u	antilovor	mathod u	uill be	applied for a	onstruction of
ΓT	CONST	main gird	completion	of	rdor is constru	cantilever	met in situ		e applied for c	onstruction of
A	RUCTION	from Pyle	on It is need	led lo	ager construct	ion term f	asi III situ han Δlteri	natibe	~ 2 Length of	each segment is
	Rechord	4m and c	onstruction (rvele	of the segmen	t is six (6)) davs	latio	-2. Length of	each segment is
		Concrete	Cable Stave	d Bri	dge may need	s least mat	intenance	work	within tens v	ears after
	MAINTENANCE	completion except ancillary facilities								
		Slenderness and simplicity of main girder show elegant feature than Alternative 2. This type of								
	AESTHETICS	bridge is	recommende	ed fro	m the aestheti	c point of	view.			
		Quantities of Main Br.							Cost	
		Girder	Concrete	m ³	2 822		Concret	m ³	2,121	1,724x10 ⁶ (JPY)
		and	P.1		2,022	Pvlon	e D 1		(2)	
		Slab	Rebar Steel	t	805		Steel	t t	030	[15.7(USD)]
	COST	Stay cable	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					100	-	
	COST	Stuy cubic	$\frac{5 \text{ avecause}}{\text{Foundation}} = \frac{1.272 \times 10^6 \text{ (IDV)}}{1.272 \times 10^6 \text{ (IDV)}}$							
			Concrete	m ³	1 ound	Type :	Cast on pl	lace Co	oncrete Pile	1,270110 (011)
der		Pile cap	Rebar	t		Diamete	Diameter x Length m 2.5 x 60m		【11.6(USD)】	
E.		-				Number	r of Pile	nr		
el e		Total 1,7	$24x \ 10^{6} + 1,2^{6}$	73 x 1	$0^6 = 2,997 \times 10^6$) ⁶ (JPY)	27.2 x 10	⁶ (US	D)]	
Ste		Steel-girder will be fabricated in Japan and/or in third countries and transported to the								to the
2 (construct	ion site. Gire	der is	erected by ele	ction gird	er or cable	e lifti	ng method. De	eck slab will be
Æ	OF STRUCTURE	Pre-cast of	concrete.							
H	OF STRUCTURE	Wind tun	nel test shall	l be ca	arried out and	confirmed	d its aerod	ynam	ic stability.	
ΝA'										
R		Balanced Cantilever Method will be applied for the construction of main girder. Length of steel-								
T.	CONST-	girder seg	girder segment will be 12 meters and girders and precast-concrete slabs are erected by traveler							
AI	RUCTION	crane on the deck. Cycle time for the erection of each segment will be 12 days and total								
		construction term will be shorter than Alternative 1.								
		In case no	ormal painti	ng app	olied, repaintin	ng will be	required a	after t	en or fifteen y	ears from the
	MAINTENANCE	time brid	ge is opened	to tra	ttic. If paintir	ng with lo	ng-term di	urabil	ity such as Flu	uorocarbon
		Resin Co	ating is used	l, tern	tor the repair	nting will	be more t	han ty	venty (20) yea	ars.
		Girder he	eight is highe	er and	structure of g	irder is co	mplicated	than	Alternative 1	. It will cause
	AESTHETICS	slightly d	ull image. A	lesthe	tic image will	be contro	lied by co	lor pa	unting to the g	girder and be
	able to harmonize to the circumstance and nature.									

Table AP5.5.1 Comparison of Cable Stayed Bridges

The concrete cable stay bridge is recommended for the Second Mekong Bridge based on the results of study mentioned above.

Description	 Note Minimum requirement of the navigation width 180m are kept and approach bridge with span length 40m is constructed in the river. Number of pier in the river is 8 and high possibility of the collision of local ship into the piers is noticed. Construction Cost Construction cost of bridge in the river (720m) is 26.9 mill US\$ Total Bridge Construction cost 60.0 mill US\$ Recommendation Considering the high risk of the waterway accident, case 1 shall be avoided. 	 Note Minimum requirement of the navigation width 180m are kept and approach bridge with span length 80m is constructed in the river. Number of pier in the river is 4 and navigation width for the local ship is less than that of Kizuna bridge. Construction Cost Construction cost of bridge in the river (720m) is 31.4 mill US\$ Total Bridge Construction cost 64.5 mill US\$ Recommendation Risk of the waterway accident is higher than Kizuna bridge, and case 2 is not recommended. 	 Note Note Bridge with center span length 320m and approach span length 140m is constructed in the river. Number of pier in the river is 2 and possibility of the collision of local ship into the piers is minimized. Construction Cost Construction cost of bridge in the river (720m) is 34.2 mill US\$ Total Bridge Construction cost 67.4 mill US\$ Recommendation Considering the safety for the local ship, case 3 is recommended.
Profile			
	Casel Center Span 40m Center Span 40m	Case2 Center Span 80m 	

KINGDOM OF CAMBODIA Nation Religion King

Ministry of Public Works and Transport

No. / 834 MPWT/MBSC

Date 07 OCT 2005

To: JICA Study Team for the Construction of the Second Mekong Bridge

Subject: Alternative Type of Bridge for Neak Leoung Bridge.

As discussed in the steering committee meeting for the Construction of the Neak Leoung Bridge which held at Ministry of Public Works and Transport of Cambodia on September 20, 2005, I recommended the horizontal navigation clearance of the main-span of the bridge shall be wider than the alternatives proposed by the Study Team. I do not deny that the future traffic demand of the international cargos which navigate under the bridge is not clear, however the alternatives shown by the study team has several defect as follows;

- Based on the Article 9, Freedom of Navigation in the MRC Agreement on the Cooperation for the Sustainable Development of the Mekong River Basin 1995. The Mekong River shall be kept free from obstruction, measure, conduct and actions that might directly or indirectly impair navigability, interfere with this right or permanently make it more difficult. The infrastructure constructed in the river shall be designed to minimize the disturbance to the river traffic.
- 2. Majority of the vessels which are used for the Mekong River haulage are regional vessels and the piers out side of the main-span can be hazardous for the regional vessels. Several collision accidents occurred between the local ship and the pier of KIZUNA bridge in recent years shall be noted.

The workers engaged in inland water transportation business are important stake holders for the Neak Leoung Bridge Construction Project and I believe that the safety of the peoples shall be taken into considered for the design of the bridge as much as possible. I would like to recommend to choose a **Bridge** alternative which has minimum number of the piers in the Mekong River.

H.E. Mr Tram I Tek
 Secretary of State, Ministry of Public Works and Transport
 Hairman of the Steering Committee of the Second Mekong Bridge Construction Project
 106, Norodom Boulevard
 Phnom Penh, Cambodia

Norodorn Boulevard Phnom Penh

rai

Tel: (855) 23 430595 Fax: (855) 23 723515

AP 5.5.5 A Letter from MRC to CMRC (Carbon Copy to MPWT)

Vientiane, 5 October 2005

Your Excellency,

Subject: Feasibility Study for the Construction of the Neak Leoung Bridge

On September 20, 2005, the Stakeholder Meeting 3-2 for the Construction of the Neak Leoung Bridge was held in Phnom Penh. One of the matters to be discussed was the horizontal clearance between the bridge piers. Representatives of the Mekong River Commission Secretariat attended this important Meeting.

On this occasion, H.E. Mr. Tram Iv Tek, Secretary of State of the Ministry of Public Works and Transport, requested the Mekong River Commission Secretariat to give technical advice regarding the navigation clearance. Because the Pacific Consultants International, co-responsible for the feasibility study, are gathering advice and recommendations before moving into the final stage of the study, the Ministry of Public Works and Transport asked MRCS to have a reply ready by the beginning of October 2005

We are honored to be able to assist the Cambodian Government in this matter, In view of the limited time available however, we are not able to carry out in-depth technical investigations. Yet, we would like to forward some technical considerations which we hope can assist you in making your final decision.

In general we would recommend to choose the second of the three options, namely the cable stayed bridge (L320) with a horizontal clearance of 300m between the piers. The rationale for this is set out in the following considerations:

H.E. Mr. Hou Taing Eng Alternate Member of MRC Joint Committee for Cambodia Secretary-General Cambodia National Mekong Committee 23 Mao Tse Toung Road Phnom Penh, Cambodía

Cc: H.E. Mr. Tram Iv Tek

Secretary of State, Ministry of Public Works and Transport Vice-Chairman of Cambodia National Mekong Committee and Alternate Member of the MRC Council for Cambodia 106, Norodom Boulevard Phnom Penh, Cambodia (fax 023 724713 and 023 427 802)

- Article 9, Freedom of Navigation in the MRC Agreement on the Cooperation for the Sustainable Development of the Mekong River Basin (1995) states that "... The Mekong River shall be kept free from obstructions, measures, conduct and actions that might directly or indirectly impair navigability, interfere with this right or permanently make it more difficult." Although the rule is not quantified, it is clear that permanent structures should be planned in such a way that navigability is not impaired. In this respect, the infrastructure design has to be optimally chosen to cause least disturbances to its waters, and water related resources and activities,
- 2. In 1994, MRC has conducted a Study on the My Thuan Bridge, over the Mekong River in Vict Nam, and after consultations between the Governments of Cambodia and Viet Nam, guided by working groups and consultants, the plans were made. The design was concluded to have a vertical clearance of 37,5m and horizontal clearance of at least 300m. These clearances have left an important opportunity for future shipping not only within Viet Nam but also for shipping bound for Cambodia. Rationally speaking, these opportunities should be continued for as far as maritime accessibility extends, including the Mekong River stretch at the selected site of the Neak Leoung bridge.
- 3. Safety aspects: In Option 2 (L320) two-way shipping would be possible (one sea-going ship and one barge) between the main piers. Moreover, this option would imply an important clearance for country craft and barges outside the main piers. In Option 1 on the other hand, the passage clearance between the smaller (and more numerous) piers can be hazardous for local traffic using the passage way between the smaller piers,
- 4. The river is used for regional carriage of dangerous and hazardous cargo. Safety thresholds have to be increased for river haulage of such cargo as more cleatance is required.
- The Mekong River has nautical particularities such as very high currents and morphological changes which make navigation more challenging than most other rivers in the world,
- The World Bank is currently investigating the investment of 150 mio USD to develop a new access channel from the sea into the Bassac Rivar – to also benefit the ports on the Mekong river system in Cambodia.
- The reference ship design of DWT 5,000 is valid for 15-20 years. The long term prospects could easily change. (40 years ago, the accessibility to the Mississippi river was only 3.5m deep. Now the Least Available Depth is more than 14m)
- 8. The standards that have been used in the report have to be cross-checked with other international standards. According to the Permanent International Association of Navigational Congresses (PIANC), the length over all (LOA) of a 5000 DWT vessel is 108 m. The Bridge Protection Planning Guidelines of the American Association of State Highway and Transportation Officials (AASHTO) state the following: Bridges with main spans, S, less than 2 or 3 times the design vessel length, LOA, are particularly vulnerable to vessel collision.
- Hydraulic and morphological impacts. The option 1 (180m) bridge design plans for 8 piers in the water - of which the two main set of piers have a diameter of 30 m.
 - Back water effect: rough calculations have shown that the back water effect (or head loss) in option 1 can mount up to 3 - 4 cm, for well designed piers. Less favorable design can double these values.

1....

AP5-57

Morphological and scouring impacts: there will be some erosion in the bridge opening due to increased velocities and scouring around the foundations. The extent of this will depend on how much the river is constricted by the bridge, and the sedimentation/erosion effects can easily be modeled. In any case, Option 2 has only 2 piers which significantly reduces these impacts.

Your Excellency, please allow me to add a further point for consideration by the decisionmakers: during the stakeholder meeting, one participant asked why the bridge carriage way only consists of one car lane for each direction even though the bridge is a link of a major regional highway, connecting Cambodia, Thailand and Viet Nam. The consultant replied that, if road traffic picks up at a rate higher than predicted, for example 30 years from now, another bridge can be constructed next to it provide an additional lane. Unfortunately, such an option cannot be provided for horizontal clearance of the bridge in case shipping to and from Cambodia increases more significantly than predicted: the horizontal width can never be changed. The decision of the Cambodian Government would therefore also need to take into account future growth potential beyond the medium term transportation requirements.

Your Excellency, we hope to have provided you with some valid arguments for the decisionmakers and stand reacy to provide further advice if required.

Please accept the renewed assurances of my highest consideration.

. 1 s.

Dr Olivier Cogels

Dr Olivier Cogels Chief Executive Officer *I*...,

AP 5.5.6 Protection for Foundation in the River

APPENDIX 6

CONSTRUCTION, OPERATION AND

MAINTENACE OF THE PROJECT

APPENDIX 6 CONSTRUCTION, OPERATION AND MAINTENANCE OF THE PROJECT

AP6.3 Operation and Maintenance System of the Project

AP6.3.1 Current Situation of Road/Bridge Operation and Maintenance System

No.	Туре	Team 1	Team 2	Team 3	Tem 4	Com mune Team	PWT Dep.	Stone Crush er Team	Total
1	Bulldozer	1	1	1	1				4
2	Excavator	1	1						2
3	Motor grader	1	1	1	1				4
4	Wheel loader	1	1	1	1			2	6
5	Vibration roller	1	1	1	1				4
6	Macadam roller	1	1						2
7	Dump truck	3	3	3	3	2			14
8	Water tanker	1	1	1	1				4
9	Fuel tanker	1	1	1	1				4
10	Water pump	1	1	1	1				4
11	Pickup	1	1	1	1		5		9
12	Station wagon	1	1	1	1	1			5
13	Movable crusher							1	1
14	Dozer shovel							1	1
15	Generator							1	1
16	Crawler drill							1	1
17	Air compressor							1	1
18	Asphalt distributor					2			2
19	Asphalt kettle					2			2
20	Asphalt sprayer					4			4
21	Air compressor					2			2
22	Hand guide roller					4			4
23	Concrete cutter					1			1
24	Line maker					1			1
25	Rammer					4			4
26	Chip spreader					2			2
27	Flatbed truck					2			2
Total		14	14	12	12	27	5	7	91

Table AP6.3.1 Details of Equipment of RCC

Source: RCC

No.	Туре	Year	Made	Capacity	Weight/Vol ume	Quality	Remarks
1	Back Hoe	1987	USSR	180 hp	2.4 - 0.4 m3	60%	Working
2	Crane Kras	1985	USSR	240 hp	12 T	40%	Not working
3	Dump Truck Kamaz	1984	USSR	210 hp	7 m3	40%	Not working
4	Dump Truck Maz	1987	USSR	180 hp	6 m3	70%	Working
5	Dump Truck Maz	1987	USSR	180 hp	6 m3	70%	Working
6	Lorry Truck Kamaz	1987	USSR	210 hp	12 T	70%	Working
7	Lorry Truck Kamaz	1987	USSR	210 hp	12 T	65%	Working
8	Motor Grader	1987	USSR	130 hp	3.2 m	70%	Working
9	Roller	1984	USSR	48 hp	6 T	40%	Not working
10	Roller	1989	USSR	48 hp	6 T	80%	Working
11	Water Tank Maz	1987	USSR	180 hp	8000 L	70%	Working
12	Wheel Loader	1987	USSR	140 hp	2.2 m3	75%	Working

Table AP6.3.2 Equipment of Prey Veaeng Province

Source: MPWT surveyed in 2003

Table AP6.3.3 Equipment of Svay Rieng Province

No.	Туре	Year	Made	Capacity	Weight/Vol ume	Quality	Remarks
1	Bulldozer	1986	USSR	140 hp	17 T	70%	Working
2	Bulldozer	1987	USSR	140 hp	17 T	70%	Working
3	Crane Kras	1987	USSR	240 hp	12 T	80%	Working
4	Dump Truck Kamaz	1987	USSR	210 hp	7 m3	70%	Working
5	Dump Truck Maz	1986	USSR	180 hp	6 m3	70%	Working
6	Dump Truck Maz	1986	USSR	180 hp	6 m3	70%	Working
7	Dump Truck Maz	1986	USSR	180 hp	6 m3	80%	Working
8	Dump Truck Maz	1986	USSR	180 hp	6 m3	70%	Working
9	Dump Truck Maz	1986	USSR	180 hp	6 m3	70%	Working
10	Excavator	1987	USSR	140 hp	0.7 m3	60%	Working
11	Excavator	1986	USSR	140 hp	0.7 m3	40%	Not Working
12	Fuel Truck	1987	USSR		1000 L	80%	Working
13	Fuel Truck Maz	1986	USSR	180 hp	8000 L	70%	Working
14	Generator	1986	USSR	25 hp		80%	Working
15	Generator	1986	USSR	25 hp		80%	Working
16	Lorry Trucl Kamaz	1988	USSR	210 hp	12 T	70%	Working
17	Motor Grader	1986	USSR	130 hp	3.2 m	70%	Working
18	Roller	1987	USSR	48 hp	6 T	70%	Working
19	Roller	1984	Denmark	44 hp	8 T	70%	Working
20	Truck Trailer Kras	1987	USSR	240 hp	22 T	80%	Working
21	Water Truck Maz	1986	USSR	180 hp	8000 L	80%	Working
22	Welding Engine	1987	USSR	160 hp		80%	Working
23	Wheel Loader	1987	USSR	140 hp	2.2 m3	70%	Working

Source: MPWT surveyed in 2003

No.	Туре	Year	Made	Capacity	Weight/Volume	Quality	Remarks
1	Bulldozer	1998	USSR	140 hp	17 T	70%	Working
2	Concrete Mixer	1989	USSR	25 hp	0.1 T	80%	Working
3	Crane Zil	1987	USSR	160 hp	5 t	70%	Working
4	Crane Zil	1987	USSR	160 hp	5 t	70%	Working
5	Cut Machine	1998	USSR	12 hp	0.2 T	80%	Working
6	Dump Truck	1986	USSR	210 hp	7 m3	70%	Working
7	Dump Truck	1986	USSR	210 hp	7 m3	70%	Working
8	Dump Truck	1986	USSR	210 hp	7 m3	70%	Working
9	Dump Truck	1986	USSR	210 hp	7 m3	70%	Working
10	Dump Truck	1986	USSR	210 hp	7 m3	70%	Working
11	Dump Truck	1987	USSR	180 hp	6 m3	80%	Working
12	Dump Truck	1987	USSR	180 hp	6 m3	60%	Working
13	Dump Truck	1987	USSR	180 hp	6 m3	60%	Working
14	Dump Truck	1987	USSR	180 hp	6 m3	70%	Working
15	Dump Truck	1987	USSR	180 hp	6 m3	60%	Working
16	Dump Truck	1987	USSR	160 hp	5 m3	70%	Working
17	Dump Truck	1987	USSR	160 hp	5 m3	70%	Working
18	Dump Truck	1987	USSR	160 hp	5 m3	70%	Working
19	Excavotor	1987	USSR	140 hp	0.7 m3	70%	Working
20	Excavotor	1987	USSR	140 hp	0.7 m3	70%	Working
21	Lorry Truck	1987	Germany	160 hp	8 T	75%	Working
22	Lorry Truck	1986	USSR	210 hp	12 T	20%	Not Working
23	Lorry Truck	1983	USSR	210 hp	12 T	20%	Not Working
24	Lorry Truck	1986	USSR	210 hp	12 T	70%	Working
25	Lorry Truck	1986	USSR	210 hp	12 T	70%	Working
26	Lorry Truck	1986	USSR	210 hp	12 T	70%	Working
27	Motor Grader	1987	USSR	130 hp	3.2m	70%	Working
28	Pickup Truck	1989	USSR	60 hp	0.4 T	20%	Not Working
29	Roller	1989	USSR	62 hp	9 T	80%	Working
30	Roller	1987	USSR	48 hp	6 T	70%	Working
31	Roller	1989	USSR	62 hp	9 T	80%	Working
32	Roller	1987	USSR	48 hp	6 T	70%	Working
33	Touris Laz	1983	USSR	60 hp	0.4 T	20%	Not Working
34	Water Truck	1986	USSR	180 hp	8000 L	70%	Working
35	Water Truck	1986	USSR	180 hp	8000 L	70%	Working
36	Wheel Loader	1989	USSR	140 hp	2.2 m3	60%	Working

Table AP6.3.4 Equipment of Kandal Province

Source: MPWT surveyed in 2003

AP6.4 Application of Toll System for the Project

(1) Traffic Demand by Toll Level

- 1) Assumptions
 - a. Annual Traffic Volume

As analyzed in Chapter 3 of the main text, the annual traffic volume is calculated as follows:

Annual traffic volume = average weekday traffic (from traffic survey) x 0.97 x 365

b. Estimation for toll free case

Elasticity between the toll and the traffic volume is analyzed, based on the results of "willingness to pay survey", which was conducted by the Study Team in May 2004. In every case, it is assumed that the traffic demand in "Base Case¹" could increase as little as by 5%, when the toll is set free. This is because most of the ferry users at Neak Loeung are medium and long distance travelers and the traffic demand at Neak Loeung could be hardly restricted by a change in the current tariff level, accordingly.

2) Elasticity Analysis

a. Motorcycle (MC)

The survey reveals the following relationship between the toll and the motorcycle traffic.

Source: JICA Study Team

¹ "Base Case" is defined that the existing ferry keeps operating in future

Traffic demand elasticity straightly decreases from 500 Riel to 1000 Riel and the current 500 Riel toll gives the maximum revenue.

Toll	Expectatio	Revenue				
(Riel)	n	(Riel)				
500	1.00	500				
600	0.80	482				
700	0.61	426				
800	0.41	330				
900	0.22	194				
1000	0.02	20				
Source: IICA Study Team						

Table AP6.4.1 Change of Revenue (MC)

Note: Revenue=Toll x Expectation ratio

b. Light Vehicle (LV)

The survey reveals the following relationship between the toll and the light vehicle traffic.

Source: JICA Study Team

Although the elasticity changes at 6000 Riel, 5800 Riel gives the maximum revenue.

Table AP6.4.2 Change of Revenue (LV)

Toll	Expectatio	Revenue
(Riel)	n	(Riel)
5,800	0.99	5,756
6,000	0.92	5,523
7,000	0.59	4,154
8,000	0.31	2,481
9,000	0.06	542

Source: JICA Study Team

Note: Revenue=Toll x Expectation ratio, As the utilization is obtained by regression equation, that of toll 5800 Riel is not 1.0.

c. Truck (HV)

The survey reveals the following relationship between the toll and the heavy vehicle traffic.

Source: JICA Study Team

Figure AP6.4.3 Demand Elasticity by Toll (HV)

The elasticity changes at 40,000 Riel. The current toll, 39,600 Riel gives the maximum revenue though the expectation ratio is not 1.0 as the traffic consists of both, short and long trucks, and semi and full trailers.

Toll	Expectatio	Revenue
(Riel)	n	(Riel)
39,600	0.97	38,410
40,000	0.93	37,168
42,500	0.68	29,046
45,000	0.45	20,327
47,500	0.23	11,045
50,000	0.025	1,229
Source: JIC	A Study Team	

Table AP6.4.3 Change of Revenue (HV)

Note: Revenue=Toll x Expectation ratio

(2) Unified Vehicle Types, Toll Rates and Revenue

- 1) Current Tariff of Neak Loeung Ferry
 - a. Tariff by Vehicle Category

Ferry users buy tickets prior to boarding. The current fare is categorized into 11 types based on size and weight of vehicles. There are many pedestrian and pedal-cycle users. The current ferry tariff is tabulated in Table AP6.4.4.

	Category	Riel	US\$
1	Passenger only	100	0.02
2	Bicycle and passenger with luggage	200	0.05
3	Motorcycle	500	0.12
4	Ox-cart / trailer	1,000	0.25
5	Sedan 1 (5 and less seats)	5,800	1.43
6	Sedan 2 (6-12 seats)	8,500	2.09
7	Sedan 3 (13-30 seats and less than 5 tons)	12,600	3.10
8	Truck 1 (more than 21 passengers and 6-8 tons)	23,600	5.80
9	Truck 2 (9-15 tones)	39,600	9.74
10	Truck 3 (16-18 tons)	45,500	11.19
11	Truck 4 (more than 18 tones)	52,800	12.98

Table AP6.4.4 Current Ferry Tariff in 2004

Source: MPWT

b. Revenue

The past annual revenue by the ferry operation is set forth as follows:

Year	Income	Income
	(Million	(1000 US\$)
	Riel)	
1998	2,851	0.70
1999	3,266	0.80
2000	3,640	0.90
2001	3,665	0.90
2002	3,380	0.83
2003	3,475	0.85

 Table AP6.4.5 Past Revenue by Ferry

Source: MPWT

c. Estimated Fare Collecting Ratio

As mentioned before, AADT (Annual Average Daily Traffic) is estimated to be almost the same as the result of average weekday traffic volume, obtained by the traffic survey in 2004. According to the analysis by the Study Team, the effective fare collection ratio falls in around 80% of the total traffic volume using the ferry.

2) Unification of Vehicle Categories

The tariff of the current ferry is divided into 11 categories. All ferry users get a ticket in advance when they are on board. This enables the ferry ticket-operators to deal with many ticket-categories. It is necessary to unify toll categories for the toll road with a view to shortening the toll collecting time and easily managing toll collection. Otherwise serious traffic jam may happen. The following toll categories are practically considered:

- Motorcycle (Motorcycle, Motorcycle trailer);
- Light Vehicle (Sedan Jeep, Wagon, Pick up);
- Minibus(6-12 seater);
- Bus and Truck (Large bus, 3 axles and less-truck); and
- Heavy Truck (4 axles and more, semi and full-trailer).

Based on the current ferry tariff, new toll rates corresponding to the unified five (5) vehicle categories are derived as shown in Table AP6.4.6.

Туре	Riel	US\$
Motorcycle	500	0.12
Light Vehicle	5,800	1.43
Minibus	8,500	2.09
Bus and Truck	25,000	6.15
Heavy Truck	49,000	12.05

Table AP6.4.6 Tariff Equivalent to Current Ferry Service

Source: JICA Study Team

3) Revenue at Equivalent Toll to Ferry

Based on the forecast of future traffic demand (Base Case), the annual revenue from the toll bridge operation is estimated as shown in Table AP6.4.7.

Table AP6.4.7 Estimated Annual Revenue at Toll Equivalent to Ferry Tariff

Year	2012	2013	2014	2015	2016	2017
\$ Million	3.03	3.21	3.38	3.55	3.78	4.01

Source: JICA Study Team

Note: Toll collecting ratio is reasonably assumed at 80%, Constant price in 2005

Owing to the above estimate, considerable amount of \$3.03 million revenue is expected in 2012, opening year of the bridge under the condition that the same toll as the ferry is applied to the bridge users.