MINISTRY OF AGRICULTURE, RURAL DEVELOPMENT AND SEA FISHERIES REGIONAL AGENCY FOR RURAL DEVELOPMENT OF THE TAFILALET
THE KINGDOM OF MOROCCO

THE DEVELOPMENT STUDY
 ON RURAL COMMUNITY DEVELOPMENT PROJECT IN SEMI-ARID EAST ATLAS REGIONS WITH KHETTARA REHABILITATION IN THE KINGDOM OF MOROCCO
 MANUAL FOR KHETTARA REHABILITATION AND MAINTENANCE WORKS

NIPPON GIKEN Inc. NIPPON KOEI Co.,Ltd.

Contents

Page

1. General Description
1.1 Objectives of the Manual 1
1.2 Scope of Manual 1
1.3 Basic Consideration in Investigations 1
1.4 Basic Consideration in Design 1
1.5 Basic Consideration of Material Supply Plan. 2
1.6 Basic Consideration of Reconstruction Plan for Decrepit Structures 2
1.7 Basic Consideration of Construction Planning 2
1.8 Basic Consideration in Maintenance 3
2. Investigation
2.1 Plan of Investigations 4
2.1.1 General Items 4
2.1.2 Stages of Investigation 4
2.2 Items for Investigations 6
2.3 Investigations 7
2.3.1 Topographical Investigations and Surveys 7
2.3.2 Soil and Geological Investigations 8
2.3.3 Meteorological and Hydrological Investigations 8
2.3.4 Investigations of Site Conditions 8
3. Basic Design Concepts
3.1 General 11
3.1.1 General Concepts 11
3.1.2 Procedure of Design 11
3.1.3 Design Discharge and Designed Water Level 13
3.1.4 Selection of Canal Type 13
3.1.5 Canal Structural Selection for Open Excavation. 13
3.1.6 Canal Structural Selection for Tunnel Type 15
3.1.7 Particulars to be considered in Selection of Canal Route and Structure 16
3.2 Hydraulic Design 16
3.2.1 Flow Velocity 16
3.2.2 Flow Formula 20
3.3 Structural Design 23
3.3.1 General. 23
3.3.2 Load 23
3.3.3 Plain Concrete and Reinforced Concrete 25
3.4 Load Design 28
3.5 Case Study 32
3.6 Structural design of conduits (Flexible conduits) 40
3.7 Bed Slope of Gallery 49
4. Material Supply Plan
4.1 Concrete Works 51
4.2 Concrete Aggregates 52
4.3 Reinforcing Bar 53
4.4 Other Conduits Materials 55
5. Reconstruction Plan for Decrepit Structures
5.1 General 57
5.2 Results of Investigations 57
5.3 Rehabilitation Plan 58
6. Construction Planning 60
7. Maintenance of Khettaras
7.1 General 63
7.2 Rehabilitation of Khettaras 64
7.2.1 Preliminary Survey. 64
7.2.2 Detailed Survey. 68
7.2.3 Periodical Inspection and Maintenance. 74
8. Rehabilitation of Khettaras
8.1 Rehabilitation Records 76
8.2 Analysis of Rehabilitation History 76
9. Design Standard and Interpretations 86
10. Standard Drawing 92
Tables
Table 2.2.1 Investigation Items for Preliminary Design. 6
Table 2.2.2 Survey Items for Designs and Construction 6
Table 2.2.3 Investigation Items for Maintenance 6
Table 2.3.1 Survey Maps 7
Table 3.1.1 Flow Type 13
Table 3.1.2 Canal Structural Selection for Open Channel Type 14
Table 3.1.3 Canal Structural Selection for Tunnel Work 15
Table 3.2.1 Grain Size 17
Table 3.2.2 Calculation of Tractive Force. 18
Table 3.2.3 Maximum Allowable Velocity 20
Table 3.2.4 Roughness Coefficient 20
Table 3.2.5 Velocity Coefficient (C) 21
Table 3.3.1 Load Selection 23
Table 3.3.2 Unit Weight of Materials 23
Table 3.3.3 Load Conditions 24
Table 3.3.4 Soil Constant 24
Table 3.3.5 Allowable Stress of Plain Concrete 25
Table 3.3.6 Allowable Stress of Reinforced Concrete 25
Table 3.3.7 Classification of Concrete 25
Table 3.3.8 Allowable Stress of Steel Bar. 25
Table 3.6.1 Applicable Formula for Conduits Calculation 41
Table 3.6.2 Moment under Various Load Conditions 43
Table 3.6.3 Design Support Angles of Compacted Soil Foundation (unit : ${ }^{\circ}$) 44
Table 3.7.1 Re-profiling of Galley 45
Table 3.7.2 Hydraulic Loss Calculation 50
Table 4.1.1 Standard Mix Proportion for Concrete 51
Table 4.1.2 Field Tests for Quality Control of Concrete 52
Table 4.2.1 Coarse Aggregate Classifications 53
Table 4.2.2 Grading of Fine Aggregate 53
Table 4.3.1 Specification of Fe E 40 54
Table 4.3.2 Length of Overlapping 54
Table 4.3.3 Coverage of Reinforcing Bars 54
Table 4.4.1 Specification of Reinforced Concrete Pipe 55
Table 4.4.2 Specification of Reinforced Half Concrete Pipe 55
Table 7.2.1 Preliminary Survey Items 64
Table 7.2.2 Hearing Sheet for Khettara 65
Table 7.2.3 Summery Sheet of Preliminary Survey 66
Table 7.2.4 Survey Items and Methods for Detailed Survey 67
Table 7.2.5 Evaluation Standard (Survey Unit basis) 68
Table 7.2.6 Inspection Sheet on Concrete (Detailed Survey) 70
Table 7.2.7 Inspection Sheet on Masonry (Detailed Survey) 71
Table 7.2.8 Inspection Sheet on Earth Section (Detailed Survey) 72
Table 7.2.9 Summary Sheet of Detailed Survey 73
Table 7.2.10 Recording Form for Periodical Inspection and Maintenance Works 75
Table 8.2.1 Rehabilitation Rate by Zone 77
Table 8.2.2 Rehabilitation Records (191 Khettaras) 78

Figures

Figure 2.1.1 Outline of Investigation Stages 5
Figure 2.3.1 Location of Satellite Images 9
Figure 2.3.2 Location of Aerial Photographs 10
Figure 3.1.1 Overall design Flow Chart 12
Figure 3.6.1 Varying Condition of Conduits 42
Figure 7.1.1 Flow of Inspection and Rehabilitation Works 63

Definition

Definitions	Descriptions
Mother well	Shaft which yields groundwater located at most upstream of a khettara in general.
Vertical shaft	Shaft to remove excavated materials and to provide ventilation and access for maintenance works.
Khettara gallery	Tunnel portion of a khettara, which transports water from groundwater yield portion to the surface.
Outlet	Downstream end of gallery tunnel
Regulating basin	Water storage basin to control water delivery to the command area. It is constructed of concrete and located at immediately downstream of a khettara in general.
Recharge and yield zone	Zone located at upstream of khettara at where rainfall or stream flow infiltrates into aquifers to replenish them.
Water conveyance zone (Gallery)	Gallery (or tunnel) portion to convey water to downstream, at where infiltration loss may observed.
Water conveyance zone (Open canal)	Open channel portion to convey water to downstream.
Intake zone of domestic water	Located at immediately upstream of regulating basin at where inhabitant takes water for potable, domestic and livestock use.
Intake zone of irrigation water	Located at downstream of regulating basin to transport irrigation water to the command area.
Aquifer	Aquifers are rock or sediment that act as storage reservoirs for groundwater and are typically characterized by high porosity and permeability.
Settling basin	Basin for accumulating flow materials such as earth materials along the khettara gallery.

Digging down of gallery base to settle gallery base under the groundwater level aiming at increase of khettara discharge.

Definitions	Descriptions
Open canal or open channel	Canal structure open to the sky
Culvert	A transverse waterway by means of enclosed channel
Frame structure	All members are connected in rigid joint.
Flume structure	Member is composed of base slab and side walls
PVC pipe	Plyvinyl chloride pipe
FRP pipe	Fiber-reinforced plastics pipe
Hydraulic gradient	The decrease in hydraulic head per unit distance in the direction of flow
Leakage, seepage	Uncontrolled loss of water from artificial hydraulic structure due to hydrostatic pressure
Climatic year	A continuous twelve-month during which occurs a complete annual
climatic cycle	

1. General Description

1.1 Objectives of the Manual

This manual defines the general and basic technical terms relating to the planning, standard design, construction or rehabilitation, as well as maintenance works of the khettaras in the Tafilalet regions in Morocco. Therefore for the design and construction of individual khettara in different conditions, technical and economic criteria shall be considered according to the principals set out in the manual, taking account of field conditions such as topography, hydro-geological condition, etc.

In addition, inspection and maintenance procedures are introduced in the manual giving a reference for further rehabilitation works.

1.2 Scope of Manual

The manual is applied to the planning, design and construction of the khettaras as detailed below:

1) Investigation
2) Design
3) Construction and supervisory works
4) Maintenance

1.3 Basic Consideration in Investigations

Investigations are required to collect the necessary basic data and information for determination of khettaras alignment, selection of rehabilitation types such as concrete culvert, concrete flume, pipe installation, as well as construction methods and maintenance activities from the technical, economical and social points of views. Investigations are therefore conducted and controlled systematically from the commencement by an experienced engineer with sufficient knowledge in planning, design, construction, operation and maintenance.

1.4 Basic Consideration in Design

The design for the khettara rehabilitation work shall be carried out in consideration of rehabilitation purposes, efficiency for a budget distribution, minimizing construction costs as well as operation and maintenance costs.

In designing khettara rehabilitation section, accurate information shall be collected as follows:
(1) Information necessary for design
(a) Discharge

Discharge data (including seasonal fluctuation), water use (domestic water use, etc.)
(b) Present conditions of command area of khettara

Extent of command area, topography, geology, climate, hydrology, land use, farm management
(water distribution, cropping pattern, etc.)
(c) Present conditions of khettara routes

Topography, geology, land use and other rights along the khettara routes, location of aquifers, drainage conditions, etc.
(d) Operation and maintenance

Organization (traditional khettara users' groups, etc.) and maintenance cost after completion of the rehabilitation works.
(2) Basic considerations in design of khettaras

The design of the khettara shall be made to fulfill their functions for minimizing water leakage and laborious works for maintenance with effective use of allocated budget for the khettara rehabilitation works. In this respect, it is basically considered in design to keep 1) appropriate selection of standard section of a gallery so as to maximize project benefits, 2) extent for rehabilitation works1, 3) easiness of maintenance activities, etc.

1.5 Basic Consideration of Material Supply Plan

The grain size distribution is most important factor to maintain a concrete quality, especially compressive strength. Coarse aggregate is supplied from the crushing plant, while fine aggregate is produced bt a wire sieve in most cases. Standardization of aggregates is explained in the manual. In addition conduits (PVC pipe, prefabricated concrete products) are introduced in the manual.

1.6 Basic Consideration of Reconstruction Plan for Decrepit Structures

Khettara has its function of 1) structural function, 2) hydraulic function, 3) water use function, etc. Deterioration is categorized into physical deterioration caused by aging, and economical deterioration, for example increase of maintenance cost due to collapse of gallery wall, as well. It is necessary to survey the cause of such deterioration when decrepit structure is a subject for rehabilitation. Deterioration related to structural and hydraulic condition is discussed, and proper countermeasures are proposed in the manual.

1.7 Basic Consideration of Construction Planning

To achieve appropriate construction works of the khettara rehabilitation works, it is important to properly supervise the construction works as well as design work. The following are the points found during the rehabilitation works.

1) Earth work (Open excavation and tunnel works)
2) Dewatering

1 Master plan report indicates that 30% of total length of each khettara shall be rehabilitated considering cost - benefit analysis. In this respect, rehabilitation shall be conducted at where higher benefit is expected.
3) Construction machinery and equipment
4) Prefabricated concrete

The manual indicates necessary points for the supervisory works.

1.8 Basic Consideration of Maintenance

It is conceivable that serious damages in the gallery by floods and spontaneous collapse of gallery wall cause a decline of the khettara flow. In the manual, periodical inspection method and maintenance work are discussed to make necessary countermeasures before some damages occur.

2. Investigation

2.1 Plan of Investigations

2.1.1 General Items

Proper investigation plan in terms of investigation scope, methods, precision and other conditions shall be made in order to collect the data necessary for the khettara rehabilitation works.

Investigations for the khettara rehabilitation works may include those necessary for 1) planning, 2) design, 3) construction and 4) operation and maintenance. In addition, methods of investigations may include 1) data collection, 2) reconnaissance, 3) field investigations, 4) topographic survey, 5) field and laboratory tests, 6) trial construction and observation during and after construction works.

In this manual, these investigations are divided into these for 1) preliminary design, 2) basic design, 3) detailed design and 4) supplementary investigation during and after construction works.

2.1.2 Stages of Investigation

(1) Investigation for preliminary design

The objectives of the investigations are to broadly evaluate available data on meteoro-hydrology, topography, topography, geology and site conditions, also to reconnoiter a site and other necessary studies with a view to establishing a basic plan of the khettara rehabilitation. Usually, several alternatives in terms of rehabilitation section, routes are proposed during a preliminary design stage.

(2) Investigation for basic design

The investigations provide basic data used for determining rehabilitation section, extent of rehabilitation length, temporary work plan, e.g. drainage and dewatering plan, as well as estimates for a rehabilitation cost. The investigation consists of data collection, topographic survey, cost estimates, etc.
(3) Investigation for detailed design

The investigations provide necessary data for a detailed design. Additional field tests such as soil tests and supplementary topographic survey shall be conducted as required. In addition, necessary data for construction planning including construction schedule, temporary work planning are collected.
(4) Supplementary investigation

The investigation ate to obtain supplementary data during a construction stage.
The outline of these investigation stages is shown on Fig. 2.1.1.

2.2 Items for Investigations

Investigation items shall be properly determined in accordance with the rehabilitation purposes, local conditions and other factors so as to rationally and effectively complete investigations.

Survey items necessary for a rehabilitation of the khettaras are selected from the list in Tables 2.2.1 to 2.2.3 in each implementation stage.

Table 2.2.1 Investigation Items for Preliminary Design

	Survey items	Remarks
1.	Project area	Name of ksar: Name of commune rural:
2.	Present condition of khettara	Discharge, total length of khettara, rehabilitation records (materials, completion date, etc.), section of gallery, structural information, water use, land use, existing water use facilities (canals, pipelines, etc.)
3.	Social information	Population, water users' associations, organizations of farmers
4.	Agricultural information	Farmland area, irrigable area, cropping pattern, water rights, other irrigation source (flood irrigation, pump stations, etc.)
5.	Natural conditions	River conditions (drainage, flood)
6.	Local development plan	Relation with other projects, water resources development plan

Table 2.2.2 Survey Items for Designs and Construction

	Survey items	Remarks
1.	Topography	Topographic survey
2.	Geological condition	(including engineering soil properties)
3.	Meteorology, hydrology	Temperature, precipitation, khettara discharge, river condition (drainage, flood),
4.	Site conditions	Social conditions, construction conditions, environmental conditions, road condition

Table 2.2.3 Investigation Items for Maintenance

	Survey items	Remarks
1.	Local conditions	Activities of water users' associations
2.	Water distribution system	Water rights, activities of water users' associations
3.	Others	Compensatory investigation, environmental investigations

2.3 Investigations

2.3.1 Topographical Investigations and Surveys

Topographical investigations and survey include preparation of topographical maps along the proposed khettara routes.
(1) GIS map

GIS maps (satellite images) of their resolution of 2.5 m pixel and 5.0 m pixel are available for a preparation of topographical maps.
(2) Route survey

Route survey is conducted based on available maps and aerial photographs as well as satellite images. The ground survey is the actual survey in the field to obtain data for the basic and detailed design. The satellite images and aerial photographs are available as shown on Figures 2.3.1 and Figure 2.3.2.
(3) Center line survey

This is the survey to locate the center line of the khettaras on the ground. Center stakes are driven from the starting point at specified intervals and precision. Additional stakes such as intersection point (IP) (point of intersection; PI) are placed at where necessary.
(4) Longitudinal survey

Longitudinal survey provides stake level, ground and gallery bed elevation in order to plot a longitudinal section along the center line of the khettara gallery. Bench marks (BM) used for reference are placed at specified intervals along the routes.
(5) Cross section survey

Cross sections are plotted for a center stake positions. These sections are filled in with the sections of excavation and embankment, and are used in khettara rehabilitation design.
(6) Land survey

Land survey is carried out for land compensation when required.
Table 2.3.1 Survey Maps

Survey map	Method of survey	Scope of survey	Scale	Survey station interval	Necessity
Topographic map	Aerial/satellite images	Along route	$\begin{gathered} 1 / 5,000 \\ -1 / 2,500 \end{gathered}$	---	\triangle
Plane map Profile map Section map	Route survey Centerline survey Longitudinal and cross section survey	One side of route Approx. 30-100m	$\begin{gathered} 1 / 1,000- \\ 1 / 200 \\ 1 / 500-1 / 100 \\ 1 / 200-1 / 100 \end{gathered}$	Approx. 50-100m	$\begin{aligned} & \bigcirc \\ & \bigcirc \\ & \triangle \end{aligned}$
Cadastral map	---	---	---	---	\triangle

2.3.2 Soil and Geological Investigations

Soil and geological investigations including the collection of geological data reconnaissance, are conducted along the proposed khettara gallery to survey the physical properties of the soil, groundwater level and other conditions.

2.3.3 Meteorological and Hydrological Investigations

Items to be investigated in meteoro-hydrological data are temperature, precipitation, discharge of khettara, water level, and flood records in case khettara is located along or near the river and drainage ditch. Discharge and water level data are inevitable for the construction planning, especially drainage and dewatering planning. Interviews or other means are applicable to get past data, such as flood records.

2.3.4 Investigations of Site Conditions

For the rehabilitation of the khettaras, since social and environmental conditions are important, these conditions are investigated as required.
(1) Investigation on social conditions
(a) Land use, irrigation and drainage systems
(b) River structures and water rights
(c) Construction conditions

Figure 2.3.1 Location of Satellite Images

3. Basic Design Concepts

3.1 General

3.1.1 General Concepts

Proper khettara rehabilitation works shall be proposed taking account of economy and safety, proper water management, reduction of maintenance laborious works, etc.

3.1.2 Procedure of Design

The procedures of the overall design are shown on Figure 3.1.1.

Figure 3.1.1 Overall design Flow Chart

3.1.3 Design Discharge and Designed Water Level

(1) Design discharge

Discharge of the khettara varies by 1) seasonal fluctuation of rainfall, 2) consecutive drought, 3) flood occurrence, in addition hydraulic condition of the yield section of the khettara, e.g., canal bed elevation, extension of gallery and influence by excessive pumpage surrounding to the khettara. With due consideration of these factors, design discharge shall be properly determined to estimate canal dimensions, canal bed slope taking account of an economical aspect.

(2) Design water level

The design water level is an important value to determine canal section and function of the facilities. As shown on schematic diagram in the opening page, there exist regulating basins at the most downstream of the khettara galleries aiming at water storage for irrigation. In the case the khettara gallery is situated in gentle slope, water level controlled in the regulating basin affects the water level in the gallery, i.e. "back water". Design water level is determined in consideration of the back water effect from the operation and maintenance points of views.

3.1.4 Selection of Canal Type

The selection of the canal type significantly affects the rehabilitation costs of the khettara. It is therefore necessary to consider the rehabilitation cost and future maintenance cost in the selection of the canal type. Types of canal are classified into two types, i.e. open flow type (gravity flow) and pipe flow type (pressure flow). The former consists of culvert, flume structures and conduits, and the latter is generally composed of conduits, etc. Open flow type is selected in general taking account of the cleaning of the canal itself. The following shows characteristic points of each type. The selection of most appropriate water conveyance facilities must take into account the canal type to maintain all functions of entire system.

Table 3.1.1 Flow Type

Canal type	General descriptions	Special considerations
Open channel (Open flow)	- Open channel type generally has higher flexibility in flow capacity than pipe flow type.	- When conduits are used, fluctuation of the discharge causes both open and pipe flow conditions.
Pipeline (Pipe flow)	- Pipeline is generally requires lower cost. - Deposits in a pipe cause reduction of its conveyance capacity. Settling basin is necessary to prevent intrusion of floating materials	- Since pipe materials are standardized, especially their length, pipe installation along serpentine gallery is unfavorable when pipe diameter is equal 200 mm or larger.

3.1.5 Canal Structural Selection for Open Excavation

When gallery is rehabilitated with open excavation method, culvert type by rigid frame structure or by flume structure is applied to the section. Rigid structure is selected when external load such as soil
pressure is considerably large. The following table indicates comparison of both structures:
Table 3.1.2 Canal Structural Selection for Open Channel Type

No.	Descriptions	Figure
1.	Culvert type section (frame structure) is proposed to attain firm structure against larger soil pressure, especially when the gallery is constructed with open excavation. When the gallery is considerably deep from the ground surface, cost for earth works is excessively high. Culvert type have been applied at where open excavation was carried out.	Culvert type (Frame structure)
2.	As described above, culvert type has firm structure against load. In this regard, culver type (frame structure) is applicable to road bridge, etc.	
3.	Small load with shallow embedded condition allows flume type structure. Concrete cover is effective to prevent surface soil deposit in the canal. This type is proposed at where canal top is embedded less than 1 m or less.	

3.1.6 Canal Structural Selection for Tunnel Type

In the case the gallery is installed about 5 m deep from the ground surface or more, gallery construction is carried out in the tunnel (Tunnel work). Culvert type (or open channel with concrete cover) is selected to prevent collapsed material accumulated in the gallery canal when gallery was constructed along unconsolidated gravel/sand layers which are susceptible to collapse. Contrary to this, concrete flume canal is applied when the gallery wall is composed of rock or consolidated layer and not easily failures.

It is necessary to install drainage devices such as pumping and dewatering by pipe in the tunnel because continuous flow shall be diverted to the irrigation use at the downstream of the khettara, otherwise relocation of existing galley is proposed.

Several sections are proposed as below:
Table 3.1.3 Canal Structural Selection for Tunnel Work

No.	Descriptions
1.	Culvert type section is applicable to install in the existing tunnel section. With respect to the structure, flume structure needs less reinforcing bar due to small load of soil pressure. In case large load acts on the gallery section, frame structure is selected. Concrete cover is effective to prevent wall materials fall into the gallery canal. Open space is necessary at the top of gallery for installation/ removal of form and reinforcing bar, placing top slab concrete, etc. Winding route of existing khettara accompanies severe laborious works for earth works and concrete form installation.
2.	To minimize earth work volume, wall concrete is directly placed at where soil is relatively hard. Soil support is necessary to prevent wall collapse due to soil saturation or repetition of dry and wet.
3.	Open channel type is applied to mitigate water leakage from the foundation of the gallery. Less collapse of gallery wall does not require concrete cover of the canal.
4.	PVC pipe economizes rehabilitation cost. As PVC pipe is manufactured in 6 m length in conformity to the pertinent of standards, a rectilinear portion costs less amount, however higher cost goes into meandering portion, especially for the earth work and joint work. Several opening shall be useful to remove sediment in the pipe.

3.1.7 Particulars to be considered in Selection of Canal Route and Structure

The following are considered during route selection:

1) Minimum radius of canal curvature
2) Limits of canal slope
3) Minimum earth coverage
(1) Minimum radius of canal curvature

Minimum carve radius (canal center) of more than 30 m are recommended in the case steel form are to be used for a open channel. The requirement is disregarded where they are not maintained due to topographic or other field conditions.
(2) Longitudinal slope

A open channel type must be designed so as to hydraulically stable. Excessively low velocity is not appropriate for canal since sand sedimentation or growths of aquatic plants may occur.
(3) Minimum earth coverage

The minimum earth coverage is as follows:

1) Farm land : deeper than 0.6 m
2) Public road : deeper than 1.2 m (determined through discussion with road administrative agencies)
3) River : deeper than 2.0 m (determined through discussion with administrative agencies concerned)

When the minimum coverage specified above is reduced or no earth cover is provided, specific loads such as live loads or other acting on the structure shall be considered during the structural calculation.

3.2 Hydraulic Design

3.2.1 Flow Velocity

(a) Minimum velocity

In general, it is recognized that sand deposits are not accumulated at a mean velocity of $0.45 \mathrm{~m} / \mathrm{sec}$ in a canal. Table 3.2.1 shows calculation of tractive force. Tractive force is estimated by the following equations:
$-\mathrm{u}^{2}=\mathrm{g}$ R I
u : Friction velocity $(\mathrm{cm} / \mathrm{sec})$
R : Hydraulic radius (cm)
I : Channel slope

- Critical tractive force
$\mathrm{u}_{*_{\mathrm{c}}}$: Critical friction velocity ($\mathrm{cm} / \mathrm{sec}$)
d : Average grain size (cm)
I : Channel slope

Grain size		Eqautions
	$\mathrm{d}>$	0.3030 cm
0.1180	$<\mathrm{d}<\quad 0.3030 \mathrm{~cm}$	$\mathrm{U}_{*_{\mathrm{c}}}{ }^{2}=$
0.00 d		
0.0565	$<\mathrm{d}<\quad 0.1180 \mathrm{~cm}$	$134.6 d^{31 / 22}$
0.0065	$<\mathrm{d}<\quad 0.0565 \mathrm{~cm}$	$55.0 d$
	$\mathrm{~d}<\quad 0.0065 \mathrm{~cm}$	$8.41 d^{11 / 32}$

Source: Equation of "Iwasaki, Japan"

Flow velocity of more than $0.15 \mathrm{~m} / \mathrm{sec}$ moves small particle of silt, $0.30 \mathrm{~m} / \mathrm{sec}$ moves silt, 0.50 $\mathrm{m} / \mathrm{sec}$ moves fine sand of 0.2 mm or smaller grain. It is recommended to secure large velocity with a steeper channel slope to eliminate sediment deposition in the gallery, however velocity is limited to at most $0.2 \mathrm{~m} / \mathrm{sec}$ due to present gentle slope of the khettaras. In this sense, minimum flow velocity may not be included in the design conditions.

Table 3.2.1 Grain Size

Grain size		$0.074 \mathrm{~mm} \quad 0$	$0.42 \mathrm{~mm} \quad 2$	2 mm	5 mm	20 mm	$75 \mathrm{~mm} \quad 30 \mathrm{~cm}$	
Colloid	Silt	Fine sand	Coarse sand	Fine gravel	Fine - coarse gravel	Coarse gravel	Cobble	Boulder
		Sand		Gravel				

Source: Unified soil classification system, Japan

Table 3.2.2 Calculation of Tractive Force

Calculation of Tractive Force

1. Calculation
-Tractive force
$\mathrm{u}^{2}=\mathrm{g} \cdot \mathrm{R} \cdot \mathrm{I}$
u: Friction velocity ($\mathrm{m} / \mathrm{sec}$)
R: Hydraulic radius (m)
I: Channel slope
-Critical tractive force

	$\mathrm{d} \geqq 0.303 \mathrm{~cm}$	$0.118<\mathrm{d}$ $<0.303 \mathrm{~cm}$	$0.0565<\mathrm{d}$ $<0.118 \mathrm{~cm}$	$0.0065<\mathrm{d}$ $<0.0565 \mathrm{~cm}$	$\mathrm{~d}<0.0065 \mathrm{~cm}$
	(1)	(2)	(3)	(4)	(5)
$\mathrm{u}_{\mathrm{c}}{ }^{2}=$	$80.9 d$	$134.6 d^{31 / 22}$	$55.0 d$	$8.41 d^{11 / 32}$	$226 d$

$\mathrm{u}_{*_{c}}$: Critical friction velocity
d: Average grain size (cm)
2-1 Calculation of tractive force and results
(Canal width: 0.60 m , Bed slope: $1 / 5,000$, Velocity: $0.17 \mathrm{~m} / \mathrm{sec}$)
(1) Condition of calculation

	(1)	(2)	(3)	(4)	(5)
$\mathrm{R}(\mathrm{m})$:	0.075	0.075	0.075	0.075	0.075
I:	1/5000	1/5000	1/5000	1/5000	1/5000
$\mathrm{d}(\mathrm{cm})$:	0.303	0.21	0.087	0.032	0.0065
	Fine sand			Silt	

(2) Calcultaion of tractive force

$$
\begin{aligned}
\mathrm{u}^{2} & =\mathrm{g} \cdot \mathrm{R} \cdot \mathrm{I} \\
& =9.8 * 0.075 * 1 / 5000 \\
& =0.00015 \quad \mathrm{~m}^{2} / \mathrm{sec}^{2}
\end{aligned}
$$

(3) Calcultaion of critical tractive force

	$\mathrm{u}_{*}{ }^{2}=$	80.9 d	$134.6 \mathrm{~d}^{31 / 22}$	$55.0 d$	$8.41 d^{11 / 32}$

(4) Calculation result of tractive force

$\mathrm{u}^{2}\left(\mathrm{~m}^{2} / \mathrm{sec}^{2}\right)=$	0.00245	0.00149	0.00048	0.00026	0.00015
$\mathrm{u}^{2}\left(\mathrm{~m}^{2} / \mathrm{sec}^{2}\right)=$	0.00015	0.00015	0.00015	0.00015	0.00015
Movement	not move	not move	not move	not move	move

2-2 Calculation of tractive force and results

$$
\text { (Canal width: } 0.60 \mathrm{~m} \text {, Bed slope: } 1 / 2,000 \text {, Velocity: } 0.23 \mathrm{~m} / \mathrm{sec} \text {) }
$$

(1) Condition of calculation

	(1)	(2)	(3)	(4)	(5)
$\mathrm{R}(\mathrm{m})$:	0.059	0.059	0.059	0.059	0.059
I:	1/2000	1/2000	1/2000	1/2000	1/2000
$\mathrm{d}(\mathrm{cm})$:	0.303	0.21	0.087	0.032	0.0065
	Fine sand			Silt	

(2) Calcultaion of tractive force

$$
\begin{aligned}
\mathrm{u}^{2} & =\mathrm{g} \cdot \mathrm{R} \cdot \mathrm{I} \\
& =9.8 * 0.059 * 1 / 2000 \\
& =0.00029 \quad \mathrm{~m}^{2} / \mathrm{sec}^{2}
\end{aligned}
$$

(3) Calcultaion of critical tractive force

$\mathrm{u}^{2}=$	0.00245	$134.6 \mathrm{~d}^{31 / 22}$	55.0 d	$8.41 d^{11 / 32}$	$226 d$
=	$80.9 * 0.303$	134.6 * $0.210^{\wedge} 31 / 22$	55.0 * 0.087	$8.41 * 0.032 \wedge 11 / 32$	226 * 0.007
$=\left(\mathrm{cm}^{2} / \mathrm{sec}^{2}\right)$	24.5	14.9	4.8	2.6	1.5
$=\left(\mathrm{m}^{2} / \mathrm{sec}^{2}\right)$	0.00245	0.00149	0.00048	0.00026	0.00015
(4) Calculation result of tractive force					
$\mathrm{u} *^{2}\left(\mathrm{~m}^{2} / \mathrm{sec}^{2}\right)=$	0.00245	0.00149	0.00048	0.00026	0.00015
$\mathrm{u}^{2}\left(\mathrm{~m}^{2} / \mathrm{sec}^{2}\right)=$	0.00029	0.00029	0.00029	0.00029	0.00029
Movement	not move	not move	not move	move	move

(1) Condition of calculation

	(1)	(2)	(3)	(4)	(5)
R (m):	0.049	0.049	0.049	0.049	0.049
I:	1/1000	1/1000	1/1000	1/1000	1/1000
$\mathrm{d}(\mathrm{cm})$:	0.303	0.21	0.087	0.032	0.0065
	Fine sand			Silt	

(2) Calcultaion of tractive force

$$
\mathrm{u}^{2}=\mathrm{g} \cdot \mathrm{R} \cdot \mathrm{I} \quad=9.8 * 0.049 * 1 / 1000=0.00048 \quad \mathrm{~m}^{2} / \mathrm{sec}^{2}
$$

(3) Calcultaion of critical tractive force

$\mathrm{u}^{2}{ }^{2}=$	0.00245	$134.6 \mathrm{~d}^{31 / 22}$	55.0 d	$8.41 d^{11 / 32}$	$226 d$
$=$	80.9 * 0.303	134.6 * 0.210^31/22	55.0 * 0.087	$8.41{ }^{*} 0.032 \wedge 11 / 32$	226 * 0.007
$=\left(\mathrm{cm}^{2} / \mathrm{sec}^{2}\right)$	24.5	14.9	4.8	2.6	1.5
$=\left(\mathrm{m}^{2} / \mathrm{sec}^{2}\right)$	0.00245	0.00149	0.00048	0.00026	0.00015
(4) Calculation result of tractive force					
$\mathrm{u}^{2}\left(\mathrm{~m}^{2} / \mathrm{sec}^{2}\right)=$	0.00245	0.00149	0.00048	0.00026	0.00015
$\mathrm{u}^{2}\left(\mathrm{~m}^{2} / \mathrm{sec}^{2}\right)=$	0.00048	0.00048	0.00048	0.00048	0.00048
Movement	not move	not move	move	move	move

2-4 Calculation of tractive force and results
(Canal width: 0.60 m , Bed slope: $1 / 500$, Velocity: $0.35 \mathrm{~m} / \mathrm{sec}$)
(1) Condition of calculation

	(1)	(2)	(3)	(4)	(5)
R (m):	0.041	0.041	0.041	0.041	0.041
I:	1/500	1/500	1/500	1/500	1/500
d (cm):	0.303	0.21	0.087	0.032	0.0065
	Fine sand			Silt	
(2) Calcultaion of tractive force					
$\mathrm{u}^{2}=\mathrm{g} \cdot \mathrm{R} \cdot \mathrm{I}$			$0.041 * 1 / 500=$	$0080 \mathrm{~m}^{2} / \mathrm{sec}^{2}$	
(3) Calcultaion of critical tractive force					
$\mathrm{u}^{2}{ }^{2}=$	0.00245	$134.6 \mathrm{~d}^{31 / 22}$	55.0 d	$8.41 d^{11 / 32}$	$226 d$
$=$	80.9 * 0.303	134.6 * $0.210^{\wedge} 31 / 22$	55.0 * 0.087	$8.41{ }^{*} 0.032^{\wedge} 11 / 32$	226 * 0.007
$=\left(\mathrm{cm}^{2} / \mathrm{sec}^{2}\right)$	24.5	14.9	4.8	2.6	1.5
$=\left(\mathrm{m}^{2} / \mathrm{sec}^{2}\right)$	0.00245	0.00149	0.00048	0.00026	0.00015
(4) Calculation result of tractive force					
$\mathrm{u}^{2}\left(\mathrm{~m}^{2} / \mathrm{sec}^{2}\right)=$	0.00245	0.00149	0.00048	0.00026	0.00015
$\mathrm{u}^{2}\left(\mathrm{~m}^{2} / \mathrm{sec}^{2}\right)=$	0.00080	0.00080	0.00080	0.00080	0.00080
Movement	not move	not move	move	move	move

2-5 Calculation of tractive force and results
(Canal width: 0.60 m , Bed slope: $1 / 200$, Velocity: $0.47 \mathrm{~m} / \mathrm{sec}$)
(1) Condition of calculation

$\mathrm{u}^{2}{ }^{2}=$	0.00245	$134.6 \mathrm{~d}^{31 / 22}$	55.0 d	$8.41 d^{11 / 32}$	$226 d$
$=$	80.9 * 0.303	134.6 * 0.210^31/22	55.0 * 0.087	8.41 * $0.032 \wedge 11 / 32$	226 * 0.007
$=\left(\mathrm{cm}^{2} / \mathrm{sec}^{2}\right)$	24.5	14.9	4.8	2.6	1.5
$=\left(\mathrm{m}^{2} / \mathrm{sec}^{2}\right)$	0.00245	0.00149	0.00048	0.00026	0.00015
(4) Calculation result of tractive force					
$\mathrm{u}^{2}\left(\mathrm{~m}^{2} / \mathrm{sec}^{2}\right)=$	0.00245	0.00149	0.00048	0.00026	0.00015
$\mathrm{u}^{2}\left(\mathrm{~m}^{2} / \mathrm{sec}^{2}\right)=$	0.00157	0.00157	0.00157	0.00157	0.00157
Movement	not move	move	move	move	move

(b) Maximum allowable velocity

Limited velocities found to be applicable to different types of materials are enumerated in Table 3.2.3.

Table 3.2.3 Maximum Allowable Velocity

Types	Velocity $(\mathrm{m} / \mathrm{sec})$
Sandy soil	0.45
Clayey soil	1.00
Sandy clay	1.20
Soft rock	2.00
Semi-hard rock	2.50
Hard rock	3.00

3.2.2 Flow Formula

The Manning and Hazen-Williams formula are used for determined of mean flow velocity of hydraulic gradient in uniform flow of open channel and pipe flow, respectively.
(a) Manning formula

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{AxV} \\
& \mathrm{~V}=(1 / \mathrm{n}) \times \mathrm{R}^{2 / 3} \times \mathrm{I}^{1 / 2} \\
& \text { where, } \quad \mathrm{Q}: \quad \text { Design discharge }\left(\mathrm{m}^{3} / \mathrm{sec}\right) \\
& \text { V : Mean water velocity (} \mathrm{m} / \mathrm{sec} \text {) } \\
& \mathrm{n} \text { : Roughness coefficient of Manning formula } \\
& \text { R : Hydraulic radius (m) A/P } \\
& \text { A : Flow area }\left(\mathrm{m}^{2}\right) \\
& \text { P : Wet perimeter (m) } \\
& \text { I : Hydraulic gradient of canal }
\end{aligned}
$$

The following roughness coefficients are recommended for respective canal conditions.
Table 3.2.4 Roughness Coefficient

Canal Condition	Manning's "n" = 1/K
(a) Earthen/unlined canals	
Less than $10 \mathrm{~m}^{3} / \mathrm{s}$	0.028
$1.0-5.0 \mathrm{~m}^{3} / \mathrm{s}$	0.025
$5.0-10.0 \mathrm{~m}^{3} \mathrm{~s}$	0.235
10.0 and over	0.022
(b) Lined canal/structure	
- Concrete	0.015
- Masonry	0.0167
- Steel	0.0125

(2)

Hazen-Williams formula

$$
\begin{aligned}
& \mathrm{V}=0.35464 \cdot \mathrm{C} \cdot \mathrm{D}^{0.63} \cdot \mathrm{I}^{0.54} \\
& \mathrm{Q}=0.27853 \cdot \mathrm{C} \cdot \mathrm{D}^{2.63} \cdot \mathrm{I}^{0.54} \\
& \mathrm{D}=1.6258 \cdot \mathrm{C}^{-0.38} \cdot \mathrm{Q}^{0.38} \cdot \mathrm{I}^{0.54} \\
& \mathrm{I}=\frac{\mathrm{h}_{\mathrm{f}}}{\mathrm{~L}}=10.666 \cdot \mathrm{C}^{-1.85} \cdot \mathrm{D}^{-4.87} \cdot \mathrm{Q}^{1.85}
\end{aligned}
$$

$$
\begin{array}{llll}
\text { where, } & \mathrm{Q} & : & \text { Design discharge }\left(\mathrm{m}^{3} / \mathrm{sec}\right) \\
& \mathrm{C} & : & \text { Velocity coefficient } \\
& \mathrm{D} & : & \text { Pipe diameter }(\mathrm{m}) \\
& \mathrm{h}_{\mathrm{f}} & : & \text { Friction head loss }(\mathrm{m}) \\
& \mathrm{I} & : & \text { Hydraulic gradient of canal } \\
& \mathrm{L} & : & \text { Pipe length }(\mathrm{m})
\end{array}
$$

The following coefficients are recommended for design.
Table 3.2.5 Velocity Coefficient (C)

Canal Condition		Velocity Coefficient		
		Maximum	Minimum	Normal
1)	Cast iron pipe (with paint)	150	80	100
$2)$	Steel pipe (without paint)	150	90	100
$3)$	Concrete pipe	140	120	130
$4)$	Pre-stressed concrete pipe	140	120	130
$5)$	PVC pipe			
6)	160	140	150	
6)	Polyethylene pipe $^{(1)}$	170	130	150
$7)$	Fiber reinforced plastics pipe $^{(1)}$	160	---	150

${ }^{(1)}$: $\mathrm{C}=140$ for pipe diameter 150 mm or less

Following sheet is reference to calculate a uniform flow depth of conduits:

Calculation of Uniform flow

Uniform flow depth is estimated by following steps using discharge (Q), radius (r), bed slope (I), roughness coefficient (n).

1) \quad Calculate $\frac{Q \cdot n}{I^{1 / 2} \cdot r^{8 / 3}}$
2) \quad Calculate value of d / r
3) Uniform flow depth $=(d / r) \times r=d$

Example:

Radius $\mathrm{r}=0.4 \mathrm{~m}$, bed slope $\mathrm{I}=1 / 500$, discharge $\mathrm{Q}=0.02 \mathrm{~m}^{3} / \mathrm{sec}$, PVC pipe $\mathrm{n}=0.012$
$\frac{Q \cdot n}{I^{1 / 2} \cdot r^{8 / 3}}=\frac{0.02 \times 0.012}{(1 / 2000)^{1 / 2} \cdot 0.2^{8 / 3}}=0.7846$

$\frac{d}{r}$	$\frac{Q \cdot n}{I^{1 / 2} \cdot r^{8 / 3}}$
0.840	0.7288
$0.840+\mathrm{x}$	0.7846
0.880	0.7921

$(0.88-0.84): x=(0.7921-0.7288):(0.7846-0.7288)$
$\mathrm{x}=0.0353$
$\mathrm{d} / \mathrm{r}=0.875$
$\mathrm{d}=0.2 \times 0.875=0.175 \mathrm{~m}$
$\mathrm{A} / \mathrm{r}^{2}=1.322$
$\mathrm{A}=1.322 \times 0.2^{2}=0.053 \mathrm{~m}^{2}$
$\mathrm{V}=\mathrm{Q} / \mathrm{A}=0.02 / 0.053=0.377 \mathrm{~m} / \mathrm{sec}$

d / r	$a=A / r^{2}$	$a b^{2 / 3}=Q n / I^{1 / 2} r^{8 / 3}$
2.000	3.1416	1.9791
1.960	3.1266	2.0913
1.920	3.0994	2.1203
1.880	3.0646	2.1289
1.840	3.0239	2.1241
1.800	2.9781	2.1093
1.760	2.9281	2.0863
1.720	2.8743	2.0565
1.680	2.8171	2.0208
1.640	2.7571	1.9799
1.600	2.6943	1.9345
1.560	2.6291	1.8851
1.520	2.5618	1.8323
1.480	2.4925	1.7764
1.440	2.4215	1.7178
1.400	2.3489	1.6570
1.360	2.2749	1.5942
1.320	2.1997	1.5297
1.280	2.1234	1.4640
1.240	2.0462	1.3972
1.200	1.9681	1.3296
1.160	1.8894	1.2616
1.120	1.8102	1.1933
1.080	1.7306	1.1251
1.040	1.6508	1.0571
1.000	1.5708	0.9895
0.960	1.4908	0.9227
0.920	1.4110	0.8569
0.880	1.3314	0.7921
0.840	1.2522	0.7288
0.800	1.1735	0.6669
0.760	1.0954	0.6068
0.720	1.0182	0.5487
0.680	0.9419	0.4926
0.640	0.8667	0.4389
0.600	0.7927	0.3876
0.560	0.7201	0.3389
0.520	0.6491	0.2930
0.480	0.5798	0.2500
0.440	0.5125	0.2100
0.400	0.4473	0.1733
0.360	0.3845	0.1399
0.320	0.3245	0.1099
0.280	0.2673	0.0834
0.240	0.2135	0.0605
0.200	0.1635	0.0413
0.160	0.1177	0.0258
0.120	0.0770	0.0140
0.080	0.0422	0.0059
0.040	0.0150	0.0013
0.000	0.000	0.0000

3.3 Structural Design

3.3.1 General

In the structural design of a canal, the type of the structure, design conditions and the details of the structures are determined in consideration of the site conditions and economic in compliance with the load applied to the structures, mechanical properties of the soil and metrological conditions.

3.3.2 Load

The following loads shall be considered during structural design taking into account of an importance of the structures, types, materials to be used, site conditions, etc.

Table 3.3.1 Load Selection

1	Dead load	2	Water pressure	3	Up-lift
4	Earth pressure	5	Wheel load	6	Impact load
7	Crowed load	8	Seismic load	9	Wind load
10	Construction load	11	Temperature stress	12	Creep stress of concrete

(1) Dead weight

Table 3.3.2 shows unit weight of materials. It is however used actual unit weight obtained from experimentation or specified unit weight when available.

Table 3.3.2 Unit Weight of Materials

Materials	Unit weight $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	Materials	Unit weight $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
Steel, cast steel	77.0	Pre-stressed concrete	24.5
Cast iron	71.0	Granite	27.0
Aluminum alloy	27.5	Sand stone	26.0
Reinforced concrete	24.5	Soil (dry)	16.0
Plain concrete	23.0	Soil (wet)	18.0
Mortar	21.0	Soil (saturated)	20.0
Asphalt concrete	22.5	Soil (sub	10.0
pavement	22.5	Water	10.0
Concrete block (wet)	19.5		
Concrete block (dry)			

(2) Buoyancy and up-lift

Buoyancy or up-lift shall be considered during stability calculation in terms of overturning and sliding, but neglected for bearing capacity (stress) calculation of the foundation.

(3)

Soil pressure
Earth pressure is generally classified into horizontal and vertical pressures. Horizontal pressure acting against the canal wall is calculated by Rankin's and Coulomb's formulas. Vertical pressure acting to backfilled structures is calculated by Marton's and the Vertical Earth Pressure formula. Horizontal pressure acting against backfilled structures is calculated by earth pressure at rest, Rankin's and Spanglar's formulas.

Table 3.3.3 Load Conditions

		Ordinary	Earth quake	Angle of wall friction
1	Box culvert type (w/o movement, w/o transformation)	Earth pressure at rest	neglect	neglect
2	Flume canal type $($ w/o movement, w/ transformation)	Rankin's formula Coulomb's formula	Coulomb's formula	count
3	Retaining wall $(\mathrm{w} /$ movement, w/ transformation)			count

(4) Load applied to the canal

Loads to be considered in structural design of the canal are, in general, dead loads, water pressure (internal and external), buoyancy/ up-lift, earth pressure, live loads including impact load and ground reaction.
(5) Soil constant

For the earth pressure calculation, the soil constant such as soil unit weight, internal friction angle, cohesion and others shall be estimated though an investigation such as soil test, etc. However it requires labor and time to carry out these investigation and tests, and also requires sufficient experience and high technique to decide the proper soil constant. Therefore a standard value shown in Table below is used for the design.

Table 3.3.4 Soil Constant

		Saturated unit weight	Wet unit weight	Internal friction angle
1	Gravel or coarse sand having little fine- graded materials of less than 5%) (GP, GW, SP, SW)	$20 \mathrm{kN} / \mathrm{m}^{3}$	$18 \mathrm{kN} / \mathrm{m}^{3}$	30
2	Gravel or soil having fine- grained materials of $5-15 \%)$ (GC, GM, SC, SM)	$20 \mathrm{kN} / \mathrm{m}^{3}$	$18 \mathrm{kN} / \mathrm{m}^{3}$	25
3	Silty fine sand or gravel having clay of $15-50 \%)$ (SM, GL)	$20 \mathrm{kN} / \mathrm{m}^{3}$	$18 \mathrm{kN} / \mathrm{m}^{3}$	20

3.3.3 Plain Concrete and Reinforced Concrete

Table 3.3.5 Allowable Stress of Plain Concrete

28-day strength Allowable stress	18	21	24
Compressive	4.5	5.0	5.4
Bending tensile	0.25	0.29	0.29
Bearing	5.4	5.9	5.9

Table 3.3.6 Allowable Stress of Reinforced Concrete

						(Unit: $\mathrm{N} / \mathrm{mm}^{2}$)	
Allowable stress 28-day strength			18	21	24	30	$\begin{gathered} 40 \\ \text { or more } \end{gathered}$
Bending compressive			7	8	9	11	14
$\begin{aligned} & \text { च } \\ & \text { च } \end{aligned}$	Calculation for diagonal	Beams	0.4	0.42	0.45	0.5	0.55
	tension bars omitted	Slabs	0.8	0.85	0.9	1.0	1.1
	Calculation for diagonal tension bars made	Shear force only	1.8	1.9	2.0	2.2	2.4
$\begin{aligned} & \text { İ } \\ & \text { On } \end{aligned}$	Round bars		0.7	0.75	0.8	0.9	1.0
	Deformed bars		1.4	1.5	1.6	1.8	2.0
Bearing			5.4	6.3	7.2	9.0	12.0

Table 3.3.7 Classification of Concrete
(Unit: $\mathrm{N} / \mathrm{mm}^{2}$)

Design strength	Descriptions
Plain concrete	Lean concrete for foundation
$\sigma c k=18$	Plain concrete such as base concrete
Reinforced concrete	Canal structures such as flume, culvert, siphon
$\sigma c k=21$	
Reinforced concrete	Structures which require higher wear $\sigma c k=24$

Table 3.3.8 Allowable Stress of Steel Bar

Steel bar	(Unit: N/mm²)			
	Ordinary	Fatigue failure	Facing water	Direct load of wheel loads
Ordinary	176	157	157	137
Earthquake	264	264	264	264

(Reference)

The following are design standard on allowable stress on concrete in Morocco.

Compressive Stress of Concrete

Classifications	Allowable Compressive Stress in bars	
	Compression in test $\sigma^{\prime} \mathrm{n} 28$	Tensile stress due to bending $\sigma^{\prime} \mathrm{n} 28=\frac{3.6 \mathrm{M}}{\mathrm{a}}$
CLASS B1 High quality concrete, such as high-strength concrete, pre-tension concrete, etc.	300	24.0
CLASS B2 Concrete for ordinal concrete structures for reinforcing concrete (Large load)	270	20 in minimum
CLASS B3 Concrete for ordinal concrete structures for reinforcing concrete (Normal load)	230	not available
CLASS B4 Concrete for plain concrete structures (Low load)	180	not available
CLASS B5 Concrete for lean concrete structures	130	not available
CLASS B4 and B5 Concrete class B4 and B5 of low permeability	130 à 180	not available

Source: NORME MAROCAINE, BETONS DE CIMENTS USUELS (10-03-F-009)

Allowable Stress of Reinforced Concrete (Shearing stress)

Dosage $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Compression bars et $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$	Traction bars et $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$
250	$54(55)$	$5,3(5,4)$
300	$69(70)$	$6,2(6,3)$
350	$81(83)$	$7,0(7,1)$
400	$90(92)$	$7,5(7,7)$

Allowable Stress of Reinforced Concrete (Adhesive stress)

Compressive Stress of Concrete bars, $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	Allowable Adhesive Stress bars, (N/mm	
	Round bars	Deformed bars
$250(25)$	$11(1,1)$	$24(2,4)$
$300(30)$	$13(1,3)$	$28(2,8)$
$350(35)$	$14(1,4)$	$32(3,2)$
$400(40)$	$16(1,6)$	$36(3,6)$

Source: REGLES TECHNIQUES de CONCEPTION ET DE CALCUL DES OUVRAGES ET CONSTRUCTIONS EN BETON ARME (July, 1985)

Allowable Tensile Stress of Reinforcing Bar

Type	Classification	Yield strength (bars)	Allowable tensile stress $\bar{\sigma}_{\mathrm{a}}$ and $\bar{\sigma}_{\mathrm{a}}$ (bars)	
			Normal load (First category)	Seismic load (Second category)
彦0000	Fe E 22	$\begin{gathered} 2160 \\ \left(2200 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 1440 \\ \left(1465 \mathrm{kgf} / \mathrm{cm}^{2}\right) \end{gathered}$	$\begin{gathered} 2160 \\ \left(2200 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$
	Fe E 24	$\begin{gathered} 2350 \\ \left(2400 \mathrm{kgf} / \mathrm{cm}^{2}\right) \end{gathered}$	$\begin{gathered} 1565 \\ \left(1600 \mathrm{kgf} / \mathrm{cm}^{2}\right) \end{gathered}$	$\begin{gathered} 2350 \\ \left(2400 \mathrm{kgf} / \mathrm{cm}^{2}\right) \end{gathered}$
	Fe E 34	$\begin{gathered} 3340 \\ \left(3400 \mathrm{kgf} / \mathrm{cm}^{2}\right) \end{gathered}$	$\begin{gathered} 2220 \\ \left(2270 \mathrm{kgf} / \mathrm{cm}^{2}\right) \end{gathered}$	$\begin{gathered} 3335 \\ \left(3400 \mathrm{kgf} / \mathrm{cm}^{2}\right) \end{gathered}$
	Fe E 40A Fe E 40B	$\begin{gathered} \text { pour } \phi<=20 \mathrm{~mm} \\ 4120 \\ \left(4200 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ \text { pour } \phi>20 \mathrm{~mm} \\ 3920 \\ \left(4000 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 2745 \\ \left(2800 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ 2610 \\ \left(2665 \mathrm{kgf} / \mathrm{cm}^{2}\right) \end{gathered}$	$\begin{gathered} 4120 \\ \left(4200 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ 3920 \\ \left(4000 \mathrm{kgf} / \mathrm{cm}^{2}\right) \end{gathered}$
	Fe E 45	$\begin{gathered} 4410 \\ \left(4500 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 2940 \\ \left(3000 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 4410 \\ \left(4500 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$
	Fe E 50	$\begin{gathered} 4900 \\ \left(5000 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 3260 \\ \left(3333 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 4900 \\ \left(5000 \mathrm{kgf} / \mathrm{cm}^{2}\right) \\ \hline \end{gathered}$

Allowable tensil stress is given as follow:

$$
\begin{aligned}
& \bar{\sigma}=\rho_{\mathrm{a} \cdot \sigma_{\mathrm{en}}} \\
& \rho_{\mathrm{a}}=2 / 3 \text { when normal load (First category) } \\
& \rho_{\mathrm{a}}=1 \text { when seismic load is considered (Second category) }
\end{aligned}
$$

Design load is estimated with combination of following loads: (The following shows sample combination of load. Proper combination shall be proposed in each project.)
(G) Live loads,
(P) Additional unexpected load,
(V) Load under normal climatic condition,
(W) Load under severe climatic condition,
(T) Loads by temperature and concrete contraction,
(SI) Seismic load.
Normal condition (First category):

$$
\begin{aligned}
& \left(\mathrm{S}_{1}\right)=(\mathrm{G})+1,2(\mathrm{P})+(\mathrm{T}) \\
& \left(\mathrm{S}_{1}^{\prime}\right)=(\mathrm{G})+(\mathrm{P})+(\mathrm{V})+(\mathrm{T})
\end{aligned}
$$

Seismic condition (Second category):

$$
\begin{aligned}
& \left(\mathrm{S}_{2}\right)=(\mathrm{G})+1,5(\mathrm{P})+1,5(\mathrm{~W})+(\mathrm{T}) \\
& \left(\mathrm{S}_{2}^{\prime}\right)=(\mathrm{G})+(\mathrm{P})+(\mathrm{T})+(\mathrm{SI})
\end{aligned}
$$

3.4 Load Design

(1) Death load
(a) Vertical load
$P_{v d}=\alpha \cdot \gamma \cdot h$ \qquad
$P_{\mathrm{vd}} \quad: \quad$ Vertical load $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\alpha \quad: \quad$ Coefficient of vertical soil pressure
$\gamma \quad: \quad$ Unit weight of soil $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
h : Depth of filling soil (m)
(b) Horizontal load
$P_{\text {hd }}=K_{0} \cdot \gamma \cdot z$

$P_{\text {hd }} \quad: \quad$ Horizontal load $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\mathrm{K}_{0} \quad: \quad$ Coefficient of static soil pressure coefficient $\left(\mathrm{K}_{0}=0.5\right.$ in general)
$\gamma \quad: \quad$ Unit weight of Soil $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
z : Soil depth from ground surface to calculation point (m)
(2) Live load
$\mathrm{P}_{\mathrm{li}}=\frac{2 \times \text { Wheel } \cdot \text { load }}{\text { Vehicl } \cdot \text { width }} \times(1+$ Impact \cdot coefficient $)$

$$
\begin{array}{lll}
\text { Rear wheel } & : & \mathrm{P}_{11}=\frac{2 \times 40}{2.75} \times(1+\text { Impact } \cdot \text { coefficient }) . \\
\text { Front wheel } & : & \mathrm{P}_{12}=\frac{2 \times 10}{2.75} \times(1+\text { Impact } \cdot \text { coefficient }) . \tag{1.2.2}
\end{array}
$$

i : Impact coefficient, (when $\mathrm{h}<4.0 \mathrm{~m}$ then $\mathrm{i}=0.3$, when $\mathrm{h}>=4.0 \mathrm{~m}$ then $\mathrm{i}=0.0$)
Strength of a live load of rear and front wheels are as follows:

$$
\begin{align*}
& P_{v 11}=\frac{P_{11} \cdot \beta}{W_{1}}=\frac{P_{11} \cdot \beta}{2 h+0.2} \\
& P_{v 12}=\frac{P_{12} \cdot \beta}{W_{1}}=\frac{P_{12} \cdot \beta}{2 h+0.2} \tag{1.2.3}
\end{align*}
$$

β : Earth coverage depth (m), corresponding to inner width and height of a culvert.

$\mathrm{H}<=1 \mathrm{~m}$ and $\mathrm{B}>=4 \mathrm{~m}$	Other than the left
$\beta=1.0$	$\beta=0.9$

Equation (1.2.3) is applicable when an earth coverage depth is less than 4.0 m . In the case an earth coverage depth is higher than or equal to $4.0 \mathrm{~m}, 4.5 \mathrm{kN} / \mathrm{m}^{2}$ is applicable.
(3)

Load Combination

Culvert type structure in in-situ reinforced concrete shall be in accordance with the combination shown below:
(Earth coverage depth $\mathrm{h}<4.0 \mathrm{~m}$)

(Earth coverage depth $\mathrm{h}>=4.0 \mathrm{~m}$)
$4.5 \mathrm{kN} / \mathrm{m}^{2}$

(4) Unit Weight

Materials	Unit Weight $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	Materials	Unit Weight $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
Reinforced concrete	24.5	Sand and gravel	20.0
Plain concrete	23.0	Sandy soil	19.0
Stone masonry	(Variable)	Clayey soil	18.0
Water	9.8		
Steel	78.5		

(5) Allowable Strength of Materials

Reinforced concrete	Allowable Strength		
Compression stress	8.0	$\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	
Shearing stress	0.42	$\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	
Bond stress bar	1.5	$\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	
Steel bar			
Tensile stress $\left(\sigma_{\mathrm{sa}}\right)$	180	$\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	
Tensile stress $\left(\sigma_{\mathrm{sa} 1}\right)$	160	$\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	

(6) Shearing Stress

Additional allowable stress is applicable to the concrete member in accordance with the following equation:

$$
\begin{aligned}
& \alpha=2-\frac{\mathrm{x}}{2 \mathrm{~d}} \\
& (1 \leq \alpha \leq 2)
\end{aligned}
$$

where, $\quad \mathrm{a}:$ Additional allowable stress
$\mathrm{x}: \quad$ Distance between axis of frame member and calculation section (cm)
d : Effective height of member (cm)

(1) Gallery section with slab thickness $20 \mathrm{~cm}(\mathrm{H}=5.00 \mathrm{~m})$

Member	Length	Bend moment	Shearing	Axial
			force	force
I J	(m)	(tf $\cdot \mathrm{m}$)	(tf)	(tf)
$1-3$. 000	-. 858	3. 657	2. 688
	. 280	-. 023	2. 330	2. 688
	. 419	. 258	1. 715	2. 688
	. 838	. 616	. 036	2. 688
	1. 256	. 322	-1.415	2. 688
	1. 395	. 094	-1. 862	2. 688
	1. 675	-. 548	-2.710	2. 688
$2-4$. 000	. 858	-3. 657	2. 688
	. 280	. 023	-2. 330	2. 688
	. 419	-. 258	-1.715	2. 688
	. 838	-. 616	-. 036	2. 688
	1. 256	-. 322	1. 415	2. 688
	1. 395	-. 094	1. 862	2. 688
	1. 675	. 548	2. 710	2. 688
$1-2$. 000	. 858	-4. 188	3. 657
	. 280	. 096	-1. 256	3. 657
	. 400	. 020	. 000	3. 657
	. 520	. 096	1. 256	3. 657
	. 800	. 858	4. 188	3. 657

$3-4$
. 000
-. 548
2. 688
2. 710
.180
-. 172

1. 479
2. 710
-. 010
. 000
3. 710
4. 710
. 620 -. 172
-1. 479
5. 710

(2) Vertical shafts with slab thickness $15 \mathrm{~cm}(\mathrm{H}=5.00 \mathrm{~m})$

H	3 m				
B	0.9 m		$\mathrm{P}_{\text {hd }}$	2.700	$\mathrm{tf} / \mathrm{m}^{2}$
Tt	0.15 m		P_{hl}	0.225	$\mathrm{tf} / \mathrm{m}^{2}$
B1	1.05 m				
B0	1.2 m		Total	2.925	$\mathrm{tf} / \mathrm{m}^{2}$
Ww	$1 \mathrm{tf} / \mathrm{m}^{3}$	Input data	P	3.343	$\mathrm{tf} / \mathrm{m}^{2}$
Wc	$2.5 \mathrm{tf} / \mathrm{m}^{3}$		L	1.050	m
Wt	$1.8 \mathrm{tf} / \mathrm{m}^{3}$				
Ww	$2 \mathrm{tf} / \mathrm{m}^{3}$				
Ws	$1 \mathrm{tf} / \mathrm{m}^{3}$				
Liveload	$0.45 \mathrm{tf} / \mathrm{m}^{2}$				
Pressure coe.	0.5				

(Materials)

Material No.	Elasticity modules $(\mathrm{tf} / \mathrm{m} 2)$	Area $(\mathrm{m} 2)$	Geometrical moment of inertia $(\mathrm{m} 4)$	
1	$2.55000 \mathrm{E}+06$.15000	.0002810
2	$2.55000 \mathrm{E}+06$.15000	.0002810

(Member data)		
Member No.	Material No.	Length (m)
$1-3$		1.050
$2-4$	1	1.050
$1-2$	1	1.050
$3-4$	2	1.050

(Load data)										
Load	Load	Load	Member			Direction		Load Parameter		
No.	Type	Title	I	J			P1	P2	P3	P4
1	TP1 Unif	my verying 1	1	2		Y	. 000	. 000	-3.343	-3. 343
1	TP1 Unif	nly verying 1	ad 3	4		Y	. 000	. 000	3. 343	3. 343
1	TP1 Unif	nly verying 1	1	3		Y	. 000	. 000	3. 343	3. 343
1	TP1 Unif	nly verying 1	2	4		Y	. 000	. 000	-3.343	-3.343
(Intersectional force)										
Member	Length	Bend moment	Shearing		Axial					
			force		force					
I J	(m)	($\mathrm{tf} \cdot \mathrm{m}$)	(tf)		(tf)					
$1-3$. 000	-. 307	1. 755		1. 755					
	. 180	-. 045	1. 153		1. 755					
	. 525	. 154	. 000		1. 755					
	. 870	-. 045	-1.153		1. 755					
	1. 050	-. 307	-1. 755		1. 755					
$2-4$. 000	. 307	-1. 755		1. 755					
	. 180	. 045	-1.153		1. 755					
	. 525	-. 154	. 000		1. 755					
	. 870	. 045	1. 153		1. 755					
	1. 050	. 307	1. 755		1. 755					
$1-2$. 000	. 307	-1. 755		1. 755					
	. 180	. 045	-1.153		1. 755					
	. 525	-. 154	. 000		1. 755					
	. 870	. 045	1. 153		1. 755					
	1. 050	. 307	1. 755		1. 755					
$3-4$. 000	-. 307	1. 755		1. 755					
	. 180	-. 045	1. 153		1. 755					
	. 525	. 154	. 000		1. 755					
	. 870	-. 045	-1.153		1. 755					
	1. 050	-. 307	-1. 755		1. 755					

Calculation of allowable stress : D10 (Double reinforcing bar)

Calculation of allowable stress : D10 (Single reinforcing bar)

3.6 Structural Design of Conduits (Flexible Conduits)

(1) Earth load

Earth loads or rigid underground conduits and structures are determined by means of Marston formula. Earth load computations, based on the construction methods that influence the loads, are classified into three conditions, i.e., trench condition, projection condition and imperfect trench condition
(2) Earth load formula

Following equations are applied based on construction methods:
Table 3.6.1 Applicable Formula for Conduits Calculation

Loads	Conditions	Formulas
Vertical soil pressure	Trench fill loads	$\mathrm{W}_{\mathrm{w}}=\mathrm{C}_{\mathrm{d}} \cdot \mathrm{w} \cdot \frac{\mathrm{B}^{2}}{\mathrm{D}_{\mathrm{c}}} \quad$ (Marstone formula)
Horizontal pressure		$\mathrm{P}_{\mathrm{v}}=\mathrm{Cc} \cdot \mathrm{w} \cdot \mathrm{D}_{\mathrm{c}} \quad$ (Marstone formula) fill loads

W_{v} : Vertical load on conduit $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$
P_{h} : Horizontal load at " h " m depth from ground (or embankment) surface ($\mathrm{kgf} / \mathrm{cm}^{2}$)
B: Horizontal width of trench at top of conduit (cm)
D_{c} : \quad Outside width of conduit (cm)
w: Design unit weight of backfill materials $\left(\mathrm{kgf} / \mathrm{cm}^{3}\right)$
$\mathrm{C}_{\mathrm{d}}: \quad$ Load coefficient for trench condition

$$
\mathrm{C}_{\mathrm{d}}=\frac{1-\mathrm{e}^{\left.-2 \mathrm{~K} \cdot \mu^{(} \mathrm{H} / \mathrm{B}\right)}}{2 \mathrm{~K} \cdot \mu^{\prime}}
$$

C_{c} : Load coefficient for projecting (or negative projecting) condition
$\mathrm{H}<\mathrm{He}$ (positive projecting condition)

$$
\mathrm{C}_{\mathrm{C}}=\frac{\mathrm{e}^{2 \mathrm{~K} \cdot \mu\left(\mathrm{H} / \mathrm{D}_{\mathrm{c}}\right)}-1}{2 \mathrm{~K} \cdot \mu}
$$

$\mathrm{H}>\mathrm{He}$ (negative projecting condition)

$$
\begin{aligned}
& C_{C}=\frac{e^{2 K \cdot \mu\left(H / D_{c}\right)}-1}{2 K \cdot \mu}+\left(\frac{H}{D_{c}}-\frac{H_{e}}{D_{c}}\right) \cdot \mathrm{e}^{2 K \cdot \mu\left(H_{\mathrm{c}} / D_{c}\right)} \\
& \frac{\mathrm{e}^{2 K \cdot \mu\left(\mathrm{H}_{\mathrm{c}} / D_{\mathrm{c}}\right)}-1}{2 K \cdot \mu}\left\{\frac{1}{2 K \cdot \mu}+\left(\frac{H}{D_{c}}-\frac{H_{e}}{\mathrm{D}_{\mathrm{c}}}\right)+\frac{\gamma_{\mathrm{sd}} \cdot \mathrm{P}}{3}\right\}+\frac{1}{2}\left(\frac{\mathrm{H}_{\mathrm{c}}}{\mathrm{D}_{\mathrm{c}}}\right)^{2}+\frac{\gamma_{\mathrm{sd}} \cdot \mathrm{P}}{3}\left(\frac{H}{\mathrm{D}_{\mathrm{c}}}-\frac{\mathrm{H}_{\mathrm{e}}}{\mathrm{D}_{\mathrm{c}}}\right) \cdot \mathrm{e}^{2 K \cdot \mu\left(\mathrm{H}_{\mathrm{c}} / \mathrm{D}_{\mathrm{c}}\right)} \\
& -\frac{1}{2 \mathrm{~K} \cdot \mu} \cdot \frac{H_{e}}{\mathrm{D}_{\mathrm{c}}}-\frac{H}{\mathrm{D}_{\mathrm{c}}} \cdot \frac{\mathrm{H}_{\mathrm{e}}}{\mathrm{D}_{\mathrm{c}}}=\gamma_{\mathrm{sd}} \cdot \mathrm{P} \cdot \frac{H}{\mathrm{D}_{\mathrm{c}}}
\end{aligned}
$$

H: Height of fill above top of conduit to ground surface or embankment (cm)
H_{e} : Height of fill above top of conduit to settlement surface (cm)
K: Soil pressure coefficient of Rankin, $K=\frac{1-\sin \phi}{1+\sin \phi}$
$\mu: \quad$ Coefficient of internal friction of fill material. $\mu=\tan \phi$
$\mu^{\prime}: \quad$ Coefficient of internal friction between fill material and sides of trench $\mu^{\prime}=\tan \phi^{\prime}(=\mu)$
$\phi: \quad$ Internal friction of fill material
$\phi^{\prime}: \quad$ Internal friction of fill material and sides of trench
P: \quad Positive projection ratio, $\mathrm{P}=\mathrm{x} / \mathrm{D}_{\mathrm{c}}($ generally $\mathrm{P}=1.0)$
$\mathrm{x}: \quad$ Vertical distance between top of conduit and adjacent existing ground (cm)
$\gamma_{\mathrm{sd}}: \quad$ Settlement ratio

Soil pressure coefficient under trench condition is theoretically smaller than that under projecting condition by calculation of Marston formula. In case width of trench at top of conduit is relatively wider, coefficient under projecting condition gives smaller value, accordingly smaller coefficient among those under trench condition and projecting condition shall selected for the structural calculation.

Figure 3.6.1 Varying Condition of Conduits

Table 3.6.2 Moment under Various Load Conditions

Loads	Support angle ($2 \theta^{\circ}$)	Non-fixed support		Fixed support	
		Maximum moment	Load condition	Maximum moment	Load condition
Vertical load (uniform load)	$\begin{array}{r} 60 \\ 90 \\ 120 \\ 180 \end{array}$	$\begin{gathered} 0.377 \mathrm{WR}^{2} \\ 0.314 \mathrm{WR}^{2} \\ 0.275 \mathrm{WR}^{2} \\ \text { (*) } 0.250 \mathrm{WR}^{2} \end{gathered}$		$\begin{aligned} & \text {--- } \\ & --- \\ & --- \\ & 0.220 \mathrm{WR}^{2} \end{aligned}$	R
Load of water	$\begin{array}{r} 60 \\ 90 \\ 120 \\ 180 \end{array}$	$\begin{gathered} 0.420 \mathrm{w}_{0} \mathrm{R}^{3} \\ 0.321 \mathrm{w}_{0} \mathrm{R}^{3} \\ 0.260 \mathrm{w}_{0} \mathrm{R}^{3} \\ { }^{(*)} 0.220 \mathrm{w}_{0} \mathrm{R}^{3} \end{gathered}$		$\begin{aligned} & \text {--- } \\ & --- \\ & --- \\ & 0.055 \mathrm{w}_{0} \mathrm{R}^{3} \end{aligned}$	
Load of pipe	$\begin{array}{r} 60 \\ 90 \\ 120 \\ 180 \end{array}$	$\begin{array}{r} 0.134 \mathrm{~W}_{\mathrm{d}} \mathrm{R} \\ 0.102 \mathrm{~W}_{\mathrm{d}} \mathrm{R} \\ 0.083 \mathrm{~W}_{\mathrm{d}} \mathrm{R} \\ { }^{(*)} 0.070 \mathrm{~W}_{\mathrm{d}} \mathrm{R} \end{array}$		$\begin{gathered} --- \\ --- \\ --- \\ { }^{(*)} 0.017 \mathrm{~W}_{\mathrm{d}} \mathrm{R} \end{gathered}$	
Horizontal load	$\begin{array}{r} 60 \\ 90 \\ 120 \\ 180 \end{array}$	$\begin{array}{r} -0.166 \mathrm{PR}^{2} \\ -0.166 \mathrm{PR}^{2} \\ -0.166 \mathrm{PR}^{2} \\ \text { (*) }^{2}-0.166 \mathrm{PR}^{2} \end{array}$		$-\left(0.047 \mathrm{P}_{1}+\right.$ $\left.0.060 \mathrm{P}_{2}\right) \mathrm{R}^{2}$	

W: Vertical loads act to conduit $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$
$\mathrm{W}=$ Vertical soil load + Live loads and others
w_{0} : \quad Unit weight of water $\left(0.001 \mathrm{kgf} / \mathrm{cm}^{3}\right)$
W_{d} : Weight of conduit per $\mathrm{cm}(\mathrm{kgf} / \mathrm{cm})$
P_{1} : Horizontal loads act at top of conduit $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$
P_{2} : Horizontal loads act at bottom of conduit $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$
R: \quad Radius of conduit (center of conduit) (cm)
P: \quad Horizontal loads act at center of side wall of conduit $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$
$\mathrm{P}=$ Horizontal soil load + Weight of conduit and water inside + Horizontal live loads and others

Design support angle
(1) Soil foundation

Table 3.6.3 Design Support Angles of Compacted Soil Foundation (unit : ${ }^{\circ}$)

	Conduits	Flexible conduits		Rigid conduits
	Soil classification	Construction	larger than 120	larger than 180
	G, GS	90		
	GF	90	90	120
	SW, SW-G, SGW in S, SG	90	120	90
Sandy soil	SP, SP-G, SGP in S, SG	90	90	90
	Other soil classified in S, SG, SF	60	60	90

Notes: Design support angles of soil layer classified into ML, CL are 30° for rigid conduit and 60° for flexible conduit, respectively on condition that gravel or sandy soil materials are constructed as al foundation of conduits.
(1) Calculation of conduit thickness determined from internal/external loads

$$
\mathrm{t} \geq \frac{0.5 \mathrm{D} \cdot \mathrm{~h}+\sqrt{(0.5 \mathrm{D} \cdot \mathrm{~h})^{2}+24 \alpha \cdot \sigma_{\mathrm{a}} \cdot \mathrm{M}}+}{2 \sigma_{\mathrm{a}}}---(\text { Equation (a) }
$$

t : \quad Thickness of conduit 8 cm)
D: Inside diameter fo conduit (cm)
$\mathrm{h}: \quad$ Design water pressure $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$
M: Maximum moment by external loads ($\mathrm{kgf} \mathrm{cm} / \mathrm{cm}$)
$\alpha: \quad$ Tension stress / bend stress
PVC pipe: 0.55
Polyethylene pipe: 0.75
$\sigma \mathrm{a}: \quad$ Allowable tensile stress $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$
PVC pipe: $\quad 170 \mathrm{kgf} / \mathrm{cm}^{2}($ safety factor $=3)$
Polyethylene pipe: $\quad 65 \mathrm{kgf} / \mathrm{cm}^{2}($ safety factor $=3)$
(2) Equation to estimate necessary pipe thickness by flexure ratio

Following equation is applicable to estimate necessary pipe thickness:

$$
\frac{\Delta \mathrm{X}}{2 \mathrm{R}} \times 100=\frac{\mathrm{F}_{1}\left(\mathrm{~K} \cdot \mathrm{~W}_{\mathrm{v}}+\mathrm{K}_{0} \cdot \mathrm{w}_{0} \cdot \mathrm{R}+\mathrm{K}_{\mathrm{p}} \cdot \mathrm{~W}_{\mathrm{p}}\right)+\mathrm{F}_{2} \cdot \mathrm{~K} \cdot \mathrm{~W}_{\mathrm{w}}}{\frac{\mathrm{E} \cdot \mathrm{I}}{\mathrm{R}^{3}}+0.061 \mathrm{e}^{\prime}} \times 100(\%)
$$

$\Delta \mathrm{X}: \quad$ Flexure length in horizontal direction (cm)
$\Delta \mathrm{X}_{1}$: Flexure length by dead loads (cm)
ΔX_{2} : Flexure length by live loads (cm)
R: Radius of conduit (center of conduit) (cm)
$\mathrm{W}_{\mathrm{v}:} \quad$ Vertical loads of soil pressure, etc. $\left(\mathrm{kfg} / \mathrm{cm}^{2}\right)$
W_{w} : Vertical loads of live loads $\left(\mathrm{kfg} / \mathrm{cm}^{2}\right)$
w_{0} : Unit weight of water $\left(0.001 \mathrm{kgf} / \mathrm{cm}^{3}\right)$
$\mathrm{W}_{\mathrm{p}:} \quad$ Weight of conduit per $\mathrm{cm}\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$
PVC pipe:
1.43

Polyethylene pipe: $\quad 0.96$
Fiber reinforced pipe: 2.00
$\mathrm{K}, \mathrm{K}_{0}, \mathrm{~K}_{\mathrm{p}}$: Coefficient determined by support angle of foundation
Standard of K values

Support angle of base	0°	30°	60°	90°	120°	180°
K	0.110	0.108	0.103	0.096	0.089	0.083
$\mathrm{~K}_{0}$	0.107	0.104	0.096	0.085	0.075	0.065
$\mathrm{~K}_{\mathrm{p}}$	0.215	0.208	0.191	0.169	0.149	0.131

F_{1} : Delay coefficient of deflection by dead loads
Delay Coefficient of Deform by Dead Loads

Materials of base	Sandy materials	Gravelly soil
Materials of original layer		
Gravelly soil	1.0	1.0
Sandy soil	1.1	1.0
Cohesive soil	1.3	1.2
Others	1.5 or more	1.5

Note: $\quad F_{1}=1.0$ is applied to the conduit of diameter 300 mm or smaller.
F_{2} : \quad Delay coefficient of deflection by live loads $\left(\mathrm{F}_{2}=1.0\right.$ in general $)$
E: Modulus of elasticity: $\mathrm{E}\left(\mathrm{x} 10^{10} \mathrm{kgf} / \mathrm{m}^{2}\right)$

Conduits	E
PVC pipe	0.03
Polyethylene pipe	0.01
Fiber reinforced pipe	0.15

I: Geometrical moment of inertia of conduit wall $\left(\mathrm{cm}^{4} / \mathrm{cm}\right)$
$\mathrm{e}^{\prime}: \quad$ Coefficient of subgrade reaction $\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$

Coefficient of Subgrade Reaction

Materials of base	Sandy materials	Gravelly soil (including rock)
Materials of original layer		60
Gravelly soil	45	55
Sandy soil	40	40
Cohesive soil	30	20
Others	15	

Note: Others include organic soil or soft ground.

Giving construction condition of the conduit, and flexure length in horizontal direction (refer to table below), geometrical moment of inertia of conduit wall is estimated.

$$
\mathrm{I}=\frac{\mathrm{R}^{3}}{\mathrm{E}} \cdot\left\{\frac{\mathrm{~F}_{1}\left(\mathrm{~K} \cdot \mathrm{~W}_{\mathrm{v}}+\mathrm{K}_{0} \cdot \mathrm{w}_{0} \cdot \mathrm{R}+\mathrm{K}_{\mathrm{p}} \cdot \mathrm{~W}_{\mathrm{p}}\right)+\mathrm{F}_{2} \cdot \mathrm{~K} \cdot \mathrm{~W}_{\mathrm{w}}}{\frac{\Delta \mathrm{X}}{2 \mathrm{R}}}-0.061 \mathrm{e}^{\prime}\right\}
$$

As geometrical moment of inertia is given as $b \cdot t^{3} / 12$, thus, when $b=1.0 \mathrm{~cm}$, and necessary conduit thickness is given as $\mathrm{t} \geq \sqrt[3]{12 \cdot \mathrm{I}}$. \qquad Equation (b)

Flexure length in horizontal direction (ΔX) is below:
Flexure Length in Horizontal Direction

Compaction	D value 90\% (General)	D value 95\% (Specifically)
Allowable deflection ratio (\%)	$\mathbf{5}$	5
Dispersion of deflection ratio (\%)	$\mathbf{2 ~ (1)}$	1
Design deflection ratio (\%)	$\mathbf{3 ~ (4)}$	4

Notes: Value in () is applied to base of gravelly soil.

Conduit thickness which satisfies both "Equation (a) and (b)" is applied to the conduit.

(Example)

Necessary conduit thickness is estimated as follows:
Design conditions:
Conduit: \quad PVC pipe. diameter 400 mm
Depth: $\quad 5 \mathrm{~m}$ from the ground surface (trench condition, 120°)
Water depth in conduit is negligible.

1) Equation (a)

D (cm)	40	
R (cm)	20	
$\begin{aligned} & \mathrm{h} \\ & \left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \end{aligned}$	0	
$\mathrm{H}(\mathrm{cm})$	500	
α	0.55	
$\begin{aligned} & \sigma \mathrm{a} \\ & \left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \end{aligned}$	170	
M (kgf $\mathrm{cm} / \mathrm{cm}$)	$\begin{aligned} & 0.275 \mathrm{WR}^{2}-0.166 \mathrm{PR}^{2} \\ & =0.275 \cdot \mathrm{C}_{\mathrm{d}} \cdot \mathrm{w} \cdot \frac{\mathrm{~B}^{2}}{\mathrm{D}_{\mathrm{c}}} \cdot \mathrm{R}^{2}-0.166 \cdot \mathrm{PR}^{2} \\ & =0.275 \times 1.606 \times 0.0018 \times \frac{200^{2}}{40} \times 20^{2}-0.166 \times 0.300 \times 20^{2}=298.068 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{d}}=\frac{1-\mathrm{e}^{-2 \mathrm{~K} \cdot \mu^{\prime}(\mathrm{H} / \mathrm{B})}}{2 \mathrm{~K} \cdot \mu^{\prime}} \\ & =\frac{1-\mathrm{e}^{-2 \times 0.333 \times 0.577 \times 500 \div 200}}{2 \times 0.333 \times 0.577}=1.606 \\ & \mathrm{P}_{\mathrm{h}}=\mathrm{K} \cdot \mathrm{w} \cdot \mathrm{H}=0.333 \times 0.0018 \times 500=0.300 \end{aligned}$
t (cm)	$\begin{aligned} & \mathrm{t} \geq \frac{0.5 \mathrm{D} \cdot \mathrm{~h}+\sqrt{(0.5 \mathrm{D} \cdot \mathrm{~h})^{2}+24 \alpha \cdot \sigma_{\mathrm{a}} \cdot \mathrm{M}}}{2 \sigma_{\mathrm{a}}} \\ & =\frac{0.5 \times 20 \times 0.0+\sqrt{(0.5 \times 20 \times 0.0)^{2}+24 \times 0.55 \times 170 \times 298.068}}{2 \times 170} \\ & =2.41 \end{aligned}$	

2) Equation (b)

Symbols	Equations / values	
$R(\mathrm{~cm})$	20	Remarks
E	$0.03 \times 10^{10}\left(\mathrm{kgf} / \mathrm{m}^{2}\right)=0.03 \times 10^{6}\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$	
F_{1}	1.0	
$\mathrm{~F}_{2}$	1.0	
K	0.089	
$\mathrm{~K}_{0}$	0.075	
$\mathrm{~K}_{\mathrm{p}}$	0.149	

W_{v}	$\mathrm{W}_{\mathrm{v}}=\mathrm{C}_{\mathrm{d}} \cdot \mathrm{w} \cdot \frac{\mathrm{~B}^{2}}{\mathrm{D}_{\mathrm{c}}}=1.606 \times 0.0018 \times \frac{200^{2}}{40}=2.891$	$\begin{aligned} & \mathrm{C}_{\mathrm{d}}=\frac{1-\mathrm{e}^{-2 \mathrm{~K} \cdot \mu^{\prime}(\mathrm{H} / \mathrm{B})}}{2 \mathrm{~K} \cdot \mu^{\prime}} \\ & =\frac{1-\mathrm{e}^{-2 \times 0.333 \times 0.577 \times 500 \div 200}}{2 \times 0.333 \times 0.577}=1.606 \end{aligned}$
$\begin{aligned} & \mathrm{w}_{0} \\ & \left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \end{aligned}$	0.001	
$\begin{aligned} & \mathrm{W}_{\mathrm{p}} \\ & \left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \end{aligned}$	$0.00143 \times 1.2=0.0017$	
$\begin{aligned} & \mathrm{W}_{\mathrm{w}} \\ & \left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \end{aligned}$	0.000	
$\frac{\Delta \mathrm{X}}{2 \mathrm{R}}$	$\begin{aligned} & \frac{\Delta \mathrm{X}}{2 \mathrm{R}} \times 100(\%)=4 \\ & \frac{\Delta \mathrm{X}}{2 \mathrm{R}}=4 \times 100=400 \end{aligned}$	
I	$\begin{aligned} & \mathrm{I}=\frac{\mathrm{R}^{3}}{\mathrm{E}} \cdot\left\{\frac{\mathrm{~F}_{1}\left(\mathrm{~K} \cdot \mathrm{~W}_{\mathrm{v}}+\mathrm{K}_{0} \cdot \mathrm{w}_{0} \cdot \mathrm{R}+\mathrm{K}_{\mathrm{p}} \cdot \mathrm{~W}_{\mathrm{p}}\right)+\mathrm{F}_{2} \cdot \mathrm{~K} \cdot \mathrm{~W}_{\mathrm{w}}}{\frac{\Delta \mathrm{X}}{2 \mathrm{R}}}-0.061 \mathrm{e}^{\prime}\right\} \\ & =\frac{20^{3}}{0.03 \times 10^{6}} \cdot\left\{\frac{1.0 \times(0.089 \times 2.891+0.075 \times 0.001 \times 20+0.149 \times 0.0017)+1 .}{0.04} .\right. \\ & =0.751 \end{aligned}$	$\left.\frac{0 \times 0.089 \times 0.000}{}-0.061 \times 60\right\}$
t (cm)	$\mathrm{t} \geq \sqrt[3]{12 \cdot \mathrm{I}}=\sqrt[3]{12 \times 0.751}=2.08$	

Minimum requirement of PVC pipe thickness is calculated at 2.41 cm by equation (a) and 2.08 cm by equation (b), accordingly larger thickness of 2.41 cm is requirement for the PVC pipe.

3.7 Bed Slope of Gallery

When re-profiling the gallery base, two of alternatives are proposed, one is setting slope in certain slope and the other is setting slope horizontally. Deliberative points on gallery slope setting are discussed below considering present condition of the khettara.

The following table explains advantage and disadvantage of both ideas:
Table 3.7.1 Re-profiling of Galley

Descriptions	with slope	level
1) As groundwater level has remarkably declined due to consecutive drought year, excavation of khettara gallery bed is necessary to penetrate gallery foundation into the ground below the groundwater level. Canal bed elevation shall be set up as lower as possible for water conveyance over the whole line. As galleries are rehabilitated with concrete for permanent use, their elevations shall be established at lower elevation starting from exit of gallery as topographic or physical condition permitting.	X	\bigcirc
2) Certain canal bed slope, which is equal to the gradient of friction loss generally achieves lower construction cost in a measure by unified section, minimizing earth work volume, etc. There is few difference in quantities between khettaras with and without slope as explained below.	\bigcirc	X
3) A certain bed slope may accelerate movement of sediment in the gallery. It is therefore effective to give a bed slope as topographical conditions permitting. However, most of khettaras have a gentle slope, an incline of 1 in thousands, thus giving slope may be ineffectual for this purpose.	Effective for khettaras located in hilly area.	x Periodical maintenance is necessary.

Assuming various flow velocity (or water depth), hydraulic loss (hydraulic gradient) is estimated as shown on Table 3.5.1 on condition below:

Calculation condition: Discharge $0.01 \mathrm{~m}^{3} / \mathrm{sec}$
Canal width $\quad 0.6 \mathrm{~m}$ (Standard width of khettara)
Roughness coefficient : 0.015 (Concrete)
As is evidence from Table 3.7.2, hydraulic gradient is estimated at about $1 / 5,000$ to $1 / 100,000$ in the velocity range of 0.16 to $0.06 \mathrm{~m} / \mathrm{sec}$. This fact indicates that re-profiling of the gallery bed corresponding to the hydraulic gradient is not so economically reduce construction amount, accordingly re-profiling with horizontal shape is preferable to hold gallery base in lower elevation assuming further decline of the groundwater level.

Table 3.7.2 Hydraulic Loss Calculation

| | Water depth in average (m) | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | 0.1 | 0.15 | 0.2 | 0.3 |
| Discharge $\left(\mathrm{m}^{3} / \mathrm{sec}\right)$ | 0.01 | | | |
| Canal width (m) | 0.60 | | | |
| Roughness coefficient (n) | 0.075 | 0.100 | 0.120 | 0.150 |
| Hydraulic radius (m) | 0.167 | 0.111 | 0.083 | 0.056 |
| Velocity | 0.00020 | 0.00006 | 0.00003 | 0.00001 |
| $\frac{\mathrm{n}^{2} \cdot \mathrm{~V}^{2}}{\mathrm{R}^{4 / 3}}$ | | | | |
| Head loss when L=1000m (m) | 0.20 | 0.06 | 0.03 | 0.01 |
| Hydraulic gradient | $1 / 5,000$ | $1 / 17,000$ | $1 / 33,000$ | $1 / 100,000$ |

Note: Head loss by friction is as follows:

$$
\mathrm{h}_{\mathrm{f}}=\frac{\mathrm{n}^{2} \cdot \mathrm{~V}^{2}}{\mathrm{R}^{4 / 3}} \times \mathrm{L}
$$

$$
\text { where, } \quad \mathrm{h}_{\mathrm{f}} \quad: \quad \text { Head loss by friction }(\mathrm{m})
$$

$$
\mathrm{n}: \text { Roughness coefficient of Manning formula }
$$

$$
\mathrm{V} \quad: \quad \text { Mean water velocity }(\mathrm{m} / \mathrm{sec})
$$

$$
\mathrm{R} \quad: \quad \text { Hydraulic radius }(\mathrm{m})
$$

L : Canal length (m)

4. Material Supply Plan

4.1 Concrete works

Concrete shall be composed of cement, fine aggregate, coarse aggregate, water and admixtures, all well mixed and brought to the proper consistency.
(1) Maximum size of aggregates and mixing proportions

The maximum size of aggregates and minimum compressive strength at 28 days shall be satisfied with the specifications shown on Table 4.1.1 in principle. Practical specifications should be, however, determined at site based on the test results.

Mixing proportions, such as the amount of cement, water-cement ratio, coarse aggregate, fine aggregate and admixtures per unit volume of concrete, shall be determined on the basis of those which produce the most economic concrete having suitable workability, density, impermeability, durability and strength required for the various types of structures in which the concrete is placed.

The amount of water to be used in concrete shall be regulated as required to produce concrete of the proper consistency and shall be adjusted for any variation in the moisture content or grading of the aggregates.

(2) Tests

The Contractor shall make all necessary tests for determining the mixing proportions of each type of concrete, including tests of aggregates, so as to produce the concrete specified in this clause.

In order to control the quality of concrete to be placed, the Contractor shall perform the field tests as specified in Table 4.1.2.

Table 4.1.1 Standard Mix Proportion for Concrete

$\begin{gathered} \hline \text { Class } \\ \text { (Category) } \end{gathered}$	Max.Aggregate size (mm)	$\begin{gathered} \text { Compression } \\ \left(\mathrm{kg} / \mathrm{cm}^{2} \text {,bar }\right) \end{gathered}$	Utilization
$\begin{gathered} \text { B4E } \\ (31.5 / 150) \end{gathered}$	31.5	127 (130)	Lean concrete
$\begin{gathered} \text { B4 } \\ (63 / 250) \end{gathered}$	63	176 (180)	Plain concrete
$\begin{gathered} \text { B3 } \\ (31.5 / 300) \end{gathered}$	31.5	225 (230)	Reinforcing concrete
$\begin{gathered} \mathrm{B} 2 \\ (31.5 / 350) \end{gathered}$	31.5	265 (270)	Frame works
$\begin{gathered} \text { B1 } \\ (16 / 400) \\ \hline \end{gathered}$	16	294 (300)	Specified structures
$1.0 \mathrm{bar}=$	m^{2}		

Table 4.1.2 Field Tests for Quality Control of Concrete

Test	No. of tests	Sampling site	Method of test
Gradation test of coarse aggregate	once a month or as required	aggregate stockpile	ASTM C136
Gradation test of fine aggregate	once a month or as required	aggregate stockpile	ASTM C136
Test for compressive strength	Every $50 \mathrm{~m}^{3}$ concrete placing (6 test specimens for each time)	mixing plant or placing site directed by the Consultant	ASTM C172 ASTM C31
Slump test	more than 2 times a day	mixing plant and/or placing site directed by the Consultant	ASTM C143
Test of air content in fresh concrete	more than 2 times a day	mixing plant or placing site as directed by the Consultant	ASTM C233
Measurement of Temperature	more than 2 times a day	mixing plant or placing site as directed by the Consultant	

(3) Cement

The cement shall conform to the requirements of Portland cement. The cement shall be stored in a suitable weather-tight storage bin or warehouse that will protect the cement from absorbing moisture.

(4) Water

Water for mixing concrete and mortar shall be free from objectionable quantities of silt, organic matter, oil, alkali, acid, salt or other impurities. A turbidity of more than $2,000 \mathrm{ppm}$ shall be considered objectionable. Allowable content of chloride ion shall be limited to $0.3 \mathrm{~kg} / \mathrm{m}^{3}$ in concrete.

4.2 Concrete Aggregates

(1) Coarse Aggregate

Coarse aggregate is either natural gravel or manufactured coarse aggregate. The following are the tests for the coarse aggregate.

1) Resistance to abrasion by \qquad The loss shall not exceed 40% by weight. the Los Angeles Machine (ASTM C131)
2) Soundness by sodium sulfate. \qquad The weighted average loss, after 5 cycles, shall be less than 12% by weight.
3) Specific gravity (ASTM C127) The specific gravity shall not be less than 2.60 in saturated surface dry condition.

The coarse aggregate shall be separated into two classifications as follows:

Table 4.2.1 Coarse Aggregate Classifications

Smallest dimension of element (cm)	Index	Max. grain size Class of concrete			
		B1-B2-B3		B4-B5-B4E-B5E	
		Sharp (mm)	$\begin{gathered} \text { Round } \\ (\mathrm{mm}) \end{gathered}$	Sharp (mm)	$\begin{gathered} \text { Round } \\ (\mathrm{mm}) \end{gathered}$
5-11	1	8-20	10-25	12.5-25	16-31.5
11-22	2	12.5-25	16-31.5	25-50	31.5-63
22-44	3	20-50	25-63	50	63
44-88	4	50	63	50-100	63-120

(2) Fine Aggregate

Fine aggregate shall be either natural sand or manufactured sand. The fine aggregate shall conform to the following requirements.

1) Material passing No. 200 (75 micron) sieve, tested as delivered to the mixer in accordance with ASTM C117, shall not exceed 5.0% by weight for manufactured sand and 3% for river sand.
2) Injurious organic compounds in natural sand shall be tested in accordance with ASTM C40. The color of the supernatant liquid above the sand shall be lighter than the standard color.
3) The weighted average loss of fine aggregate, after 5 cycles of sodium sulfate test for soundness provided in ASTM C88, shall be less than 10% by weight.

The fine aggregate as batched shall be well graded, and when tested shall conform to the following limits:
Table 4.2.2 Grading of Fine Aggregate

	Screen		Percentage Passing by Weight
Round (mm)	Sharp (mm)	Minimum	Maximum
6.3	5	95	---
3.15	2.5	70	90
1.6	1.25	45	80
0.8	0.63	28	55
0.4	0.315	10	35
0.2	0.16	2	17
0.1	0.08	0	12

4.3 Reinforcing Bar

1) Materials

The reinforcing bars used for concrete structures shall be deformed bars grade Fe E 40 and dimensions, tensile strength, yield point, elongation and other properties, shall conform to the following:

Table 4.3.1 Specification of Fe E 40

Items	Unit	Specifications
Maximum diameter (d)	mm	25
Limited elastic tensile stress	$\mathrm{kgf} / \mathrm{cm}^{2}$	$\mathrm{~d}<=20: 4,200$
		$\mathrm{~d}>20: 4,000$
	bar	$\mathrm{d}<=20: 4,120$
Braking tensile stress	$\mathrm{kgf} / \mathrm{cm}^{2}$	$\mathrm{~d}>20: 3,920$
	bar	4,850
		4,760

2) Fabrication and placing of reinforcing bar
(a) Spacing

The clear distance between parallel bars in beams shall be not less than the nominal diameter of the bar or $4 / 3$ times and maximum size of coarse aggregate not less than 2.0 cm . The clear distance between vertical bars in columns shall be not less than 1.5 times the nominal diameter of the bar of $4 / 3$ times the maximum size of coarse aggregate, not less than 4 cm .

(b) Hooks

Hooks shall be provided at the ends of tensile reinforcing bars which are anchored in the fixed end of members, footings and free ends of cantilevers. For anchorage other than that specified above, hooks are not required to be provided at the ends of reinforcing bars.
(c) Splices

Where required, reinforcing bars shall be joined by splicing. Splicing of reinforcing bars at points of maximum stress and concentration of splices in the same sections shall be avoided.

Length of overlapping for splices shall be more than the value shown on Table 4.1.6, unless otherwise shown in the drawings or directed by the Consultant.

Table 4.3.2 Length of Overlapping

Diameter of Reinforcing Bar (mm)	10	12	14	16	(18)	20	(22)	25
Length of Overlapping for a Splice (cm)	30	36	42	48	54	60	66	75

Note: Reinforcing bars of diameters 18 and 22 mm is not available in Morocco.
(d) Coverage

The coverage of reinforcing bars shall be as shown in Table 4.3.3.
Table 4.3.3 Coverage of Reinforcing Bars

Location	Depth of Coverage (cm)	
	$\mathrm{D}<=18 \mathrm{~mm}$	$\mathrm{D}>20 \mathrm{~mm}$
Surface in contact with earth	9.0	10.0
Surface in contact with water	6.0	7.0

4.4 Other Conduits Materials

(1) Reinforced concrete pipe

Reinforced concrete pipe shall be installed for the conduits. Concrete pipes to be used are as follows:

Table 4.4.1 Specification of Reinforced Concrete Pipe

Diameter	Series 60 A		Series 90 A		Series 135 A	
	Thickness (mm)	B.P. $(\mathrm{kN} / \mathrm{m})$	Thickness (mm)	B.P. $(\mathrm{kN} / \mathrm{m})$	Thickness (mm)	B.P. $(\mathrm{kN} / \mathrm{m})$
300	37	38	37	38	37	41
400	43	38	43	38	45	54
500	50	40	50	45	53	68
600	56	43	58	54	62	81
700	62	46	66	63	70	95
800	68	49	74	72	80	100
1,000	80	60	90	90	100	135
1,100	86	66	97	99	110	147
1,200	92	72	105	108	120	162
1,300	98	78	112	117	130	174
1,500	113	90	128	135	148	203
1,800	130	108	150	162	170	243
2,000	140	120	160	180	180	270

(2) Reinforced half concrete pipes

Reinforced half concrete pipe is available for the gallery. The following are the specification of the Reinforced half concrete pipe.

Table 4.4.2 Specification of Reinforced Half Concrete Pipe

Diameter (mm)	Thickness (mm)	Length (mm)	Diameter (mm)	Thickness (mm)	Length (mm)
300	33	6,810	1,100	58	6,810
400	35	6,810	1,300	75	6,810
500	37	6,810	1,500	85	6,810
600	39	6,810	1,550	76	6,810
700	42	6,810	1,800	80	4,080
800	46	6,810	1,850	88	6,810
950	52	6,810	2,000	120	4,080
1,000	54	6,810			

(3) PVC Pipe

PVC pipe can be used in water conveyance system. Pipe and fittings are joined by gaskets or solvent cementing. PVC pipes have outside diameters that correspond to the outside diameter of either steel pipe or cast iron pipe.

PVC pipe and fittings are pressure rated at 6.0 bars at minimum to resist earth and live loads from the outside. Proper protection shall be taken for prolonged exposure to sunlight.

5. Reconstruction Plan for Decrepit Structures

5.1 General

Khettara rehabilitation works by concrete and masonry materials have been commenced since 1956 by the financial assistance of the local government according to the hearing from the water users groups. Since some khettara galleries have been rehabilitated 40 to 50 years before, functional disorder has been actualized caused by concrete deterioration, in addition narrower gallery section has hindered to easily repair gallery concrete.

5.2 Results of Investigations

Survey results of twelve (12) khettaras are shown on Table 5.1.1, and principal observation of these khettaras are notified as follows:

1) Narrow gallery section hinders periodical maintenance work, accordingly poor dredging work allows accumulation of the deposit and causes decrease of the khettara flow,
2) Sand dune has covered vertical shafts, and it is interfering with labors going into the khettara gallery,
3) Aged deterioration is found on the concrete surface, in addition reinforcing bar has rusted from moisture and saline water of khettara,
4) Siphon sections have been damaged by several floods,
5) Degrading of gallery bed is required to interpenetrate the upstream section of the khettara under the groundwater level since groundwater level has been depressing, especially recent two decades. In some cases, concrete base hinders digging down of the gallery, furthermore elevated concrete base prevents from water flowing towards downstream.

Taking account of the problems above, proper rehabilitation is proposed as below.

5.3 Rehabilitation Plan

(1) Enlargement of gallery

Gallery section shall ensure at least 1.2 m high and 0.6 m wide at inside. Through the Verification study, 1.5 m high is recommended to lighten the work for the maintenance in the gallery.

Extension of the vertical shaft on the existing concrete is effective to secure entering into the gallery and to protect the shaft wall itself from collapse and gully erosion. Concrete or masonry work is applicable to the rehabilitation work.

Replacement with concrete canal or culvert is highly recommendable after demolition of the decrepit structures. Reinforcing bar shall be covered with mortar to protect its surface from a corrosion after concrete chipping and filing off rust as much as possible.

In case reinforcing bar is exposed

In case reinforcing bar is not exposed

(4) Rehabilitation of siphon

Siphon structure was introduced to collect riverbed flow. Since gallery section was too narrow to carried out maintenance work, siphon shall be replaced with large section of concrete, masonry as well as conduits such as concrete pipe, PVC pipe and FRP pipe (fiber reinforced plastics pipe). Filter material shall be placed around the structure to prevent from clogging of surroundings.
(5) Degrading of gallery base

It is suggested to degrading gallery base with following two methods:
Alternative 1: break concrete base and replace with concrete canal (tunnel work), and
Alternative 2: newly construct gallery adjacent to the existing gallery (open excavation work)
Alternative 1 is quite useful as the rehabilitation method as long as its rehabilitation cost is reasonable. Alternative 2 may selected when gallery exists in shallow depth and cost for earth work is not so high. Slope of the galley base is determined considering a uniform flow depth (or hydraulic gradient). It has however higher precedence to settle the slope with a gentle slope when groundwater level is continuously depressing, especially at most upstream of the khettara.

6. Construction Planning

(1) Open excavation

In the case gallery is located in shallow depth, e.g. less than 5 m , an open excavation method is first recommended to secure the safety of labor, ease of construction, dewatering, etc.

When rock layers exist, first backhoe with breaker attachment shall be used to remove them. Explosives can not efficiently remove the rock, except outcrop of the rock according to the achievement during the Verification study.
Limestone layers and conglomerate are shown in Jorf area, and heavily cracked andesite is shown in Alnif and southern area of Tinejdad.

(2) Tunnel work

It becomes expensive to excavate more than 5 m in depth when ordinal backhoe (arem length 5 m) is used for the earth work. In this fact, tunnel work is reasonable when a gallery is located at 5 m deep or more. However it is decided after general consideration of below:

1) A barrel length of 12 m is generally applied to the gallery. In the case alignment of the existing gallery is indented and meandering complicatedly, excessive earth work may occur.

2) A certain open space is required for dewatering, mobilization of construction materials, installation/removal of concrete form, etc. When existing gallery section is small, especially upper part of the gallery, excessive earth work may occur.

Dewatering
A by-path method is first recommended for dewatering. In the case dewatering by gravity or pumpage cannot be avoided during the construction for the reasons below, proper dewatering measures shall be adopted considering the water right at the downstream farmlands in the limits of the possible.

1) a possessory title to land (land owner does not allow relocation of the khettara)
2) topographical condition (plural khettaras are adjacent each other)
3) economical reasons (a by-path construction becomes more costly)

Dewatering by pump

Pump shall be continuously operated for 24 hours a day, otherwise muddy flow may stagnant on the construction site.

- 61 -

In the case water head between up and downstream is not so high, plural conduits are required to secure flow capacity.

(4) Construction machinery and equipment

Availability of the construction machinery and equipment is most critical factor for construction scheduling, especially excavators such as bulldozer, backhoe, rock breaker include manual operation, etc. It is necessary to establish a proper construction schedule taking availability of backhoe into account in Errachidia.
(5) Pre-fabricated concrete

Pre-fabricated concrete shall be used for the vertical shaft because of its advantages of quality (compressive strength), shortening of the construction schedule. Applying pre-fabricated concrete contributes to standardization of gallery and shaft section for further rehabilitation works.

Prefabricate concrete used at khettara Oustania

7. Maintenance of Khettaras

7.1 General

As described in Sub-chapter 1.8, daily and periodical inspections are effective to prevent some damages. Inspection is carried out to prevent a deterioration of the khettara in terms of physical and hydraulic problems before irrevocable damage occurs. Inspection is categorized into daily, periodically inspections and that taken upon any failure.

A daily inspection is carried out by a round on foot to find some collapse and sediment accumulation along the gallery. A periodical inspection is carried out once a year to find deterioration of whole khettara extent. Inspection upon failure is carried out base on the inspection method of daily and periodical inspections after some floods, as well.

It is recommended to prepare inspection sheet to store basic data which are effectively used for the prospective rehabilitation planning for a long term future.

Ranking: Necessity of urgent rehabilitation is judged by opinion of engineer and technician of the ORMVA/TF and scoring of inspection shown on Table 7.2.4 to 7.2.6.

Figure 7.1.1 Flow of Inspection and Rehabilitation Works

7.2 Rehabilitation of Khettaras

7.2.1 Preliminary Survey

Hearing records form khettara water user groups are collected and sorted out to determine a necessity of a detailed survey. The following are itemized for the preliminary study:

Table 7.2.1 Preliminary Survey Items

Items	Descriptions
1) Rehabilitation records	- Data collection (Drawings, discharge, geological profile, rehabilitation year) - Other information which may obstruct structural stability
2) Obstruction defined at present	- Obstruction in terms of water use, structural requirement (concrete crack, leakage, yield, uneven settlement, etc.) - Obstruction that a safety is extremely harmed.
3) Accident records	- Accident records (cause of accident, injury accident, site condition, etc.)
4) Task analysis on maintenance	- Current problem of maintenance - Necessity of urgent rehabilitation work

Sample hearing sheet is shown on Table 7.2.2.
Hearing results are sorted in sheet (Table 7.2.3) for further investigation. In case preliminary survey results in Rank "A" or "B", detailed survey shall be conducted to accurately judge a necessity of a rehabilitation work.

Table 7.2.2 Hearing Sheet for Khettara (1/2)

Table 7.2.2 Hearing Sheet for Khettara (2/2)

Items	Descriptions
4. Accident records	
1) Accident/ disaster	- Occurrence: (DD/MM/YY) Description of accident
5. Maintenance	
1) Problem on maintenance	Yes No If yes, matter of problem
2) Cost for maintenance	■Maintenance cost $(\mathrm{MM} / \mathrm{YY})$ DH $(\mathrm{MM} / \mathrm{YY})$ DH $(\mathrm{MM} / \mathrm{YY})$ DH ■Factor when cost increased every year $($ $)$
	Necessity to solve the problem Much necessary \square Less necessary Not necessary)
7. Malfunction (present situation and countermeasures)	
1) Situation of malfunction	\square Serious \square not serious \square not observed \square Factor of malfunction (
2) Cause of malfunction	
3) Necessity of field investigation	necessary not necessary Reasons
4) Urgency for rehabilitation	urgently necessary (A) necessary within 5 years (B) necessary within 10 years(C) not urgently necessary(C) ■ Reasons (
8. Inclusive observation	

Table 7.2.3 Summery Sheet of Preliminary Survey

	1.General			2. Water use		3. Structure				8. Urgency for rehabilitation
No.	1) Khettara	2) $\mathrm{Ksar} /$ Commune rural	3)Khettara length (m)	1) Sediment	2) Water quality	1)Collapse of gallery	2) Serious crack	3) Exposure of bar	4) Leakage	
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										

Rank	Rehabilitation	Ranking rule	Others
A	Highly necessary	$\mathrm{A}>1$ mark or $\mathrm{B}>4$ marks	
B	Investigation required	between A and B	
C	Observation for the time being	$\mathrm{A}=0$ mark and $\mathrm{B}<3$ marks	

7.2.2 Detailed Survey

(1) Scope of survey

Survey method and scope of survey are determined in accordance with the results of the preliminary survey. Survey items are as follows:

Rank A: Whole line is surveyed with survey unit of 10 m to 100 m .
Rank B: At least 20% of the whole line shall be surveyed. (Sampling is 2 sites in 100 m long)
Survey sheets are shown on Table 7.2 .6 to 7.2 .8 according to a structural type of the khettara. Survey items and methods are tabulated below:

Table 7.2.4 Survey Items and Methods for Detailed Survey

Survey Items	Survey Methods
Crack on concrete and masonry	Crack width and length are measured and recorded.
Settlement	External appearances are checked by a visual observation
Separation of concrete	Shape and area of concrete separation are measured and observed.
Damage / scouring	Scale of damages and scouring depth are measured
Joint damages	Opening of joints and leakage amount are measured by scale and current meter.
Collapse of wall materials	Frequency of sediment removal is one of the effective indicator to judge a present condition of the gallery and shaft walls.
Others	Geological investigation is also effective to evaluate a susceptibility of collapse.

(2) Evaluation

Evaluation is conducted by survey unit. In the manual, survey unit is defined as follows:

Table 7.2.4 to 7.2.6 indicate "score", and necessity of rehabilitation work is determined according to this score. The following are proposed standard for the evaluation, however conclusion by engineers has higher preference to the evaluation:

Table 7.2.5 Evaluation Standard (Survey Unit basis)

Necessity of rehabilitation	Score	Rank	Evaluation
Necessary	Equal to 11 or more	A	As deterioration such as scouring, deformation has proceeded, rehabilitation works is urgently required.
Observation	3 to 10 score	B	Khettara structure is not so disturbed, however there found initial deterioration. Rehabilitation is not urgently required.
Not necessary	Equal to 2 or less	C	No rehabilitation work is required at present.

1. Concrete crack
Reinf. concrete
Table 7.2.6 Inspection Sheet on Concrete (Detailed Survey)

Date of Inspection	Name of Inspector

Commune Rura/Ksar	Name of Khettara (ID No.)	Total Length	Inspection Length	Station No.	Completion year

$$
2
$$

Rank of Deterioratio	
Rank A	Rank B

Rank A
$0.2 \mathrm{~mm}<$ Crack $<1.0 \mathrm{~mm}$ $.6 \mathrm{~mm}<$ Crack and

2	$3.0 \mathrm{~mm}<$ Crack $<5.0 \mathrm{~mm}$

\square
(below water level)
Reinf. concrete
(above water level)
Plain concrete
Descriptions

$$
\begin{array}{l|l}
\hline \text { Survey Items } & \text { Indicators }
\end{array}
$$

$$
\underline{m a x}
$$

2. Settlement	Degree	Inclined or uneven settlement
3. Deformation		
Separation of concrete surface with bar exposure	Separate portion in a barrel (9 to 12 m long)	2 portions or more
Separation of concrete surface without bar exposure	Separate portion in a barrel (9 to 12 m long)	2 portions or more
Damage / scouring	Depth and area	member thickness < Depth
Deterioration	Exposure of aggregates in a barrel (9 to 12 m long)	2 portions or more
4. Concrete joint	Separation, gaps (rate of damage)	more than 10%
Joint materials	Leakage, etc.	more than 5%
Joint		
Sub-Total		
Total		

$$
\begin{gathered}
\text { Rank B } \\
\hline \text { Descriptions } \\
\hline
\end{gathered}
$$

Partially uneven settlement

| 2 | Less than 2 portions |
| :---: | :--- | :--- |

Table 7.2.7 Inspection Sheet on Masonry (Detailed Survey)

Date of Inspection	Name of Inspector

Total Length	Inspection Length	Station No.	Completion year			
					Commune Rural/Ksar	Name of Khettara (ID No.)
:---	:---					

Rank of DeteriorationRank C
\square
\square
Table 7.2.8 Inspection Sheet on Earth Section (Detailed Survey)

Commune Rurale/Ksar	Name of Khettara (ID No.)

Date of Inspection	Name of Inspector

	\%							
	奀	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	

Table 7.2.9 Summary Sheet of Detailed Survey

Commune	Ksar	Name of kh	ttara (ID N		Total length		Inspect	length (m)	Dat		
									Insp	ctor:	
										gently reh habilitatio problem	ilitation is necessary. is necessary in the near future. present
Inspection	Category	Structure	Sectio		Length (m)	Accumulated	Rank	Ran	of deterior		Remarks
sheet No.						length (m)		Rank A	Rank B	Rank C	
	(Example)										
1-1	Gallery	Unlined	Gravel		750	750	A	750			Additional survey required
1-2	-do-	Unlined	Clayey sil		1,000	1,750	C			1,000	
1-3	-do-	Reinforced concrete	B0.6m x		300	2,050	B		300		
1-4	-do-	Masonry	B0.6m x		100	2,150	A	100			
1-5	Open channel	Plain concrete	B0.6m \times		50	2,200	C			50	Continue observation
1-6	Regulating basin	Reinforced concrete	$\text { B15.0m } x$ H1.0m	$12.0 \mathrm{~m} x$	---						
Total					2,200			850	300	1,050	
Ratio in total length					Most upstream portion requires rehabilitation in urgent.				14\%	48\%	
Evaluation			(Overall)	B	Most upstream portion requires rehabilitation in urgent.				Removal of sediment may effective for the work.		

7.2.3 Periodical Inspection and Maintenance

Many khettaras have suffered damages from natural phenomena such as heavy rainfall, floods, movement of sand dune and collapse of gallery wall due to a repeated phenomena accompanied by dryness and moisture in the gallery. Amongst these various causes, flood inflow heavily damages the galleries and vertical shafts, especially the khettaras located adjacent to the rivers. In this fact, periodical inspection and maintenance work are indispensable to keep damages in minimum. The work shall be carried out paying attention of the points below:
(1) Work plan
(a) Object of inspection (vertical shaft, gallery, embankment around shaft, water-route of the river, river dike, protection of shaft, etc.)
(b) Maintenance method (material selection, budget preparation, etc.)
(c) Inspection and maintenance schedule (prior to the season of heavy rain, and immediately after floods pass by)
(d) Responsibility (Chief of khettara, engineer and technician of the ORMVA/TF and local government staff)
(2) Recording of the work

Recording form is shown in Table 7.2.10.

Inspection items

1. Structure
Deformation, settlement, concrete and mortar cracking, exposure of bar, concrete joint damages, etc.

Permanent and temporary repair
Partial repair of gallery wall
Protection of shaft
Dredging work of gallery

2. Water use
Leakage from concrete crack and foundation

Maintenance items

Mortar plastering on surface crack
Concrete placing on the foundation
Re-profiling of gallery

3. Accident records

Flood damage (natural river, artificial drainage canal, canal network for flood irrigation systems, etc.)

Table 7.2.10 Recording Form for Periodical Inspection and Maintenance Works

	Date:	Inspector:
Commune/Ksar Name:		
Khettara Name:		
Chief of khettara:		
Inspection items		Remarkable points
1. Structure	Perm	
2. Water use	Rem Leak	foundation:
3. Accident record	Flood irriga	artificial drainage
4. Opinion of Chief of khettara		
5. Opinion of Inspector		
Maintenance items		Work items and quant
1. Structure	Remo Perm (Wor	(Work quantity)
2. Water use	Leak (Wor	d foundation: (Work quantity)

8. Rehabilitation Records of Khettaras

8.1 Rehabilitation Records

Table F.8.2 shows khettara discharge, gallery length and rehabilitated quantity of 191 productive khettaras, which are functioning at present. The following are remarks of the table:

1) Total length: Total length of khettaras based on the inventory survey and detailed survey for 37 selected khettaras.
2) Rehabilitated length: Total length of khettaras rehabilitated by concrete or masonry, based on the inventory survey and detailed survey for 37 selected khettaras. Accordingly rehabilitation length includes excessively narrow section and superannuated structures.
3) Irrigation canal length:

Total length of primary irrigation canal, composed of earth, concrete and masonry materials based on the inventory survey and detailed survey for 37 selected khettaras.
4) Rehabilitation work by ORMVA/TF

Rehabilitation works under the PDRT project from 1992 to 2002. Rehabilitation works were categorized into a) dredging and re-profiling of gallery, b) extension of gallery, c) protection, d) construction of gallery, e) coverage of gallery with concrete slab, f) revetment (extension of side wall of gallery), g) shaft protection and h) regulating basin construction.
5) Small scale grant / verification study

Rehabilitation works under the Japanese technical and financial assistances, i.e. small scale grant aid program and the Verification study by the JICA. Rehabilitation works are broadly categorized into re-profiling of gallery and construction of gallery section by concrete.

8.2 Analysis of Rehabilitation History

Rehabilitation works are summarized below:
Rehabilitation rate is estimated at average 10.2% in 191 khettaras as shown on Table 8.2.1. Rehabilitation rate of each zone has a certain dispersion. Columns g and i in the table show rehabilitation rate in length and discharge rate against total khettara discharge, respectively. Higher rehabilitation rate is shown in Zones F and G, while khettara discharge is smaller in these zones. In this fact, it is concluded that rehabilitation work has provided to these areas taking a serious view of their severe weather condition. It is expected further rehabilitation is carried out taking these rehabilitation records into account.
Table 8.2.1 Rehabilitation Rate by Zone

Zone	Khettara Length (m)	Number of khettaras	Construction by ORMVA/TF (m)	Construction by Japanese assistance (m)	Total Rehabilitation Length (m)	Rehabilitation Length per khettara (m)	Rehabilitation rates (\%)	Total khettara discharge by zone (lit/sec)	Khettara discharge rate by zone (\%)
	a	b	c	d	e	f	g	h	i
A	129,415	80	13,926	2,260	16,186	202	12.5	392	30.7
B	25,763	20	450	45	495	25	1.9	226	17.7
C	41,829	8	3,945	0	3,945	493	9.4	105	8.2
D	133,470	21	6,107	1,690	7,797	371	5.8	318	24.9
E	90,084	14	3,557	500	4,057	290	4.5	119	9.3
F	42,775	11	8,228	500	8,728	793	20.4	28	2.2
G	76,663	37	12,105	1,750	13,855	375	18.1	89	6.7
Total	539,999	191	48,318	6,745	55,063	288	10.2	1,277	100.0

Khettara Rehabilitation Records (191 Khettaras)
: Detaied survey (37 khetaras)

Zone No.*3	Khettara	Ksar	Discharge (lit/sec) (Observed discharge in 2005 multiplies 1.3)	Khettara length (m)		Irrigation Canal Length (m)				Rehabilitation Work by ORMVA/TF (1992 to 2002) *2								Small scale grant / Verification study	
				Total Length	Rehabilitated Length *1	$\begin{aligned} & \text { Total } \\ & \text { Length } \end{aligned}$	Earth	Concrete	Masonry	Reprofiling (m)	Extension (m)	Protection (m)	Const- ruction (m)	Cover (m)	Revetment (m)	Puits (no.)	Basin (no.)	Reprofiling (m)	Const- ruction (m)
A - 51	Ait Oulghoume	Dar Oumira	11.40	1,207	169	1,955	1,907	48		750			250						
A - 52	Dar Omira Lakdima	Dar Oumira	1.80	210	250	700	700												
A - 53	Ikhf Nlghir	Dar Oumira	0.70	1,000		500	500												
A - 54	Dar Omira Jdida	Dar Oumira	7.90	3,000		600		600											
A - 55	Azag N'ouchen	Azag N'ouchen	4.50	3,200	50	3,500	1,750		1,750				161						360
A - 56	Izilf	lzilf	4.50	7,005	120	6,000	2,800	3,200											
A - 58	Diba	Ksiba	4.10	1,700	700	750	710	40		500			300						300
A - 59	Ait Ben Omar	Ait Ben Amar	10.90	1,050	150	1,510	830	680		110			1,020						300
A - 60	Cheikh	Ktaa Oued	12.50	6,140		290	290												
A - 61	Tamagourte	Tamagourte	1.30	900	450	300		300					450						
A - 63	Khamssine	Assoul	1.40	900	100	600	244	356			81								
A - 64	El Mach	Ait Ben Omar	2.30	1,506	260	500	500						260						
A - 65	Ait M'hmed	Ait M'hmed	1.40	2,000	215	1,000	1,000						215						
A - 66	Ihandar	Ihandar	9.70	1,000		1,200	1,200												
A - 67	Tighfarte	Tighfarte	9.70	5,405		2,000	1,700	300											1,000
A - 68	Lakdima (Ait Maamer)	Lakdima (Ait Maamer)	2.30	3,000	620	1,060	1,000	60					440				1		
A - 70	Ami Lhoussa	Agoudime	6.80	1,500		700	300	400											
A - 73	Taghouchte	Taghouchte	5.40	1,057	422	1,412	1,227	185											
A - 74	Taghya	Taghya	8.40	1,300	63	3,000	3,000				144		123						
A - 98	Kdima Assoul	Assoul	2.30	1,200		4,000		4,000											
A - 100	Drain Tamtatouchte	Tamtatouchte	9.10	3,500															

Zone No.*3	Khettara	Ksar	Discharge (lit/sec) (Observed discharge in 2005 multiplies $1.3)$	Khettara length (m)		Irrigation Canal Length (m)				Rehabilitation Work by ORMVA/TF (1992 to 2002) *2								$\begin{aligned} & \hline \text { Small scale grant/ } \\ & \text { Verification study } \end{aligned}$	
				$\begin{aligned} & \hline \text { Total } \\ & \text { Length } \end{aligned}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Rehabilitated } \\ \text { Length } * 1 \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Total } \\ \text { Length } \end{array}$	Earth	Concrete	$\begin{gathered} \text { Masonr } \\ y \end{gathered}$	$\begin{gathered} \text { Re- } \\ \text { profili } \\ \text { ng } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \text { Exten- } \\ \text { sion } \\ (\mathrm{m}) \end{gathered}$	Protec- tion (m) 	$\begin{aligned} & \hline \text { Const- } \\ & \text { ruction } \end{aligned}$ (m)	$\begin{gathered} \text { Cover } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \text { Revet- } \\ \text { ment } \end{gathered}$ (m)	$\begin{aligned} & \text { Puits } \\ & \text { (no.) } \end{aligned}$	$\begin{array}{\|l} \hline \begin{array}{c} \text { Basin } \\ \text { (no.) } \end{array} \end{array}$	$\begin{gathered} \text { Re- } \\ \text { profiling } \\ (\mathrm{m}) \end{gathered}$	Construction (m)
A - 101	Tamajjal Nouaoulzi		0.60	750		400	80	320											
A - 102	Aoulzi Tamazirte		9.10	450		1,600	1,600												
A - 103	Tamda	Tamda	6.80	455		4,100	820	3,280											
A - 104	Drain imider	Imider	6.80	6,000															
A - 105	Idmouma	Idmouma	1.80	1,550		1,100	220	880											
A - 106	Agoudime	Agoudime	7.90	970	850	1,300	1,300			600			926				2		
A - 107	Ouj	Oje	6.20	890		700	700												
A - 108	Tasskountite	Tasskountite	2.40	144		1,200	1,200						20						
A - 109	Outalamine	Outalamine	6.30	505	105	1,800	1,800						105						
A - 110	Oukhalk	Tiguida	0.80	550		2,100	2,100			400			1,660			1			
A - 111	Ait Mkhoun	Ait Mkhoun	3.70	960		400	400												
A - 112	Idelssene	Idelssine	2.40	236		1,400	280	1,120											
A - 113	Taltafroute	Taltafrout	23.50	1,275		3,200	640	2,560											
A - 114	Laaouina	Laaouina	4.30	964		1,770	1,770			1,060		71	340		1				
A - 115	Bouhadachia	Bouhadachia	0.10	1,107		86	86												
A - 116	El Maghzen	El maghzen	4.50	1,932		750		750					300						
A - 117	Elboutahiri	El boutahiri	2.30	600		120	120												
A - 118	Chrif	Chrif	1.10	479		200	200												
A - 119	Lhaj Thami	Lhaj Tahami	2.20	971		660	660												
A - 120	El arb	El arb	1.70	900		300	300												
A - 121	El Hassania	Tilioulne	6.80	2,062	402	7,860		7,860		1,360			1,100						
A - 126	Oultamayoust	Oultamayoust	3.40	288	19	660		660		200			635						
A - 127	Tourtite	Tourtite	6.80	871		1,200	240	960											
A - 128	Taldounte	Taldounte	4.50	514		1,200	240	960											
A - 129	Imider	Imider	1.10	6,120		600	120	420	60										
A - 130	Iguerguit	Iguerguit	4.00	156		806	806						120	100			1		
A - 131	Taourirte	Taourirte	0.60	289		250	250						43		360				
A - 132	Ihouna	Ait taghi	2.30	57		160	160												
A - 134	Imider	Imider	1.70	124		200	200												
A - 135	Oul N'tnayouste	Oul N'tnayouste	1.70	288		660		660											
A - 136	Lagar	Taoudate	0.20	195		5			5										
			392.00	129,415	12,308	118,033	70,501	45,696	1,836	16,230	225	71	13,926	100	361	13	7		2,260
				(100\%)									(11\%)						(2\%)

Zone No.*3	Khettara	Ksar	Discharge (lit/sec) (Observed discharge in 2005 multiplies 1.3)	Khettara length (m)		Irrigation Canal Length (m)				Rehabilitation Work by ORMVA/TF (1992 to 2002) *2								Small scale grant / Verification study	
				$\begin{gathered} \hline \text { Total } \\ \text { Length } \end{gathered}$	Rehabilitate d Length *	$\begin{gathered} \hline \text { Total } \\ \text { Length } \end{gathered}$	Earth	Concrete	Masorry	$\begin{gathered} \text { Re- } \\ \text { profiling } \end{gathered}$ (m)	$\begin{gathered} \text { Exten- } \\ \text { sion } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \text { Protec- } \\ \text { tion } \\ (\mathrm{m}) \end{gathered}$	Construction (m)	$\begin{gathered} \text { Cover } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \text { Revet- } \\ \text { ment } \\ (\mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { Puits } \\ & \text { (no.) } \end{aligned}$	$\begin{gathered} \text { Basin } \\ \text { (no.) } \end{gathered}$	$\begin{gathered} \text { Re- } \\ \text { profiling } \\ (\mathrm{m}) \end{gathered}$	Construction (m)
B - 1	Agoummad	Ait wazag	27.30	840		3,200	1,400	1,800		800									
B - 2	Tamazaroute	Ait wazag	20.50	500	400	2,000	1,600	400											
B - 3	Ait Sbaa	Ait sbaa	1.50	44		50		50											
B - 4	EL Ain	Almou chorfa	6.80	292		150		150										850	
B - 5	Bousfssaf	Almou chorfa	11.40	1,000		3,500	2,500	1,000											
B - 6	El Majen	Almou chorfa	6.80	312		66		66											
B - 7	El Fougania	Almou Vhorfa	1.10	1,000		450	450						250						
B - 8	Ait Yakoub (2)	Ait Yaakoub	2.80	9,350		4,500	4,500			3,800									
B - 10	Roda	Sbaik	17.00	1,300		2,000		2,000											
B - 12	Beni Tajit	Beni Tajit	22.70	670		2,500		2,500											
B - 13	Ait My Hachem	Almou chorfa	20.50	657		453		453					200						
B - 14	Jdida	Zaouit El Hajoui	20.50	2,084		4,000	1,000	3,000											
B - 15	El Hajoui Sidi Abrerrahmane	Zaouit El Hajoui	4.20	135		600	600												
B - 16	Tafejjaret	Tafejaret	4.50	1,519		1,200		1,200											
B - 17	Ain Chouater	Chouater	21.90	1,160		1,500		1,500											
B - 18	Douimniaa	Chouater	11.40	2,400		1,100	500	600											
B - 19	El Hajoui	Chouater	12.30	1,700		1,500		1,500											
B - 20	Talssinte		0.60	188		1,000		1,000											
B - 22	Ait Boubker / Youssef	Talsint	10.20	402		3,000		3,000											
B - 23	Talhamsoust	Talsint	1.70	210		7		7											
				25,763	400	32,776	12,550	20,226		4,600			450					850	45
				(100\%)									(2\%)						
C - 1	Oued Naam	Beni Ouzieme	10.20	4,300		1,500	300	1,050	150				125						
C - 2	Ouled Ali	Oued Naam	16.70	9,000	800	3,700	740	2,590	370	2,500			800						
C-3	Taouz	Oued Naam	19.30	3,500	1,500	4,990	1,300	3,690					150						
C - 4	Lakbira	Labkira	10.20	5,500	200	2,000	1,000		1,000				200						
C- 5	Lakdima	Oued Naam	13.60	3,079	2,330	1,077		1,077					470						
C - 6	Jdida	Jida	22.70	5,850		2,400	480	1,680	240	1,000			300						
C-7	Torba	Torba	3.90	4,400	3,000	1,400	700		700	1,500			1,500						
C - 8	Lahcen	CR	8.40	6,200	400	1,600	160	1,440					400						
				41,829	8,230	18,667	4,680	11,527	2,460	5,000			3,945						
				(100\%)									(9\%)						

Zone No.*3	Khettara	Ksar	Discharge \quad (lit/sec) (Observed discharge in 2005 multiplies 1.3)	Khettara length (m)		Irrigation Canal Length (m)				Rehabilitation Work by ORMVA/TF (1992 to 2002) *2								Small scale grant / Verification study	
				$\begin{aligned} & \text { Total } \\ & \text { Length } \end{aligned}$	Rehabilitated Length *	Total Length	Earth	Concrete	Masonry	Reprofiling (m)	$\begin{aligned} & \text { Exten- } \\ & \text { sion } \\ & (\mathrm{m}) \end{aligned}$	Protection (m)	Const- ruction (m)	Cover (m)	Revet ment (m)	Puits (no.)	Basin (no.)		Construction (m)
D - 31	Lakbira	Taraa	9.10	9,800	7,000	3,000	2,000	1,000											
D - 34	Souihla	Oulad Ghanem	13.60	1,600	1,100	5,000	2,000	3,000					1,100						200
D - 35	Aissaouia	Oulad Ghanem	2.30	3,160		500		500											
D - 36	Saidia	Oulad Ghanem	3.90	4,360		900		900					400						
D - 41	El Aissaouia	Oulad Aissa	6.40	8,800	2,065	1,591	1,591												
D - 42	Lambarkia	Mounkara	23.40	6,200	2,200	440	440												
D - 44	Lambarkia	Oulad M'barek	19.70	7,500	390	2,468	1,287	1,181											450
D - 47	Lahloua	Mounkara	21.50	9,000	1,500	6,675	4,765	1,910											
D - 53	Kdima	Bouya	28.20	8,000	600	1,000		1,000										300	450
D - 54	Jdida	Bouya	16.50	6,200	800	2,819	829	1,878	112										
D - 55	Kdima	Krair	16.70	5,700	2,000	2,865	1,850	1,015											
D - 56	Jdida	Krair	14.00	6,000	2,000	2,331		2,331					300						
D - 58	Khtitira	Hannabou	21.00	5,000	1,170	2,460	302	2,158											
D - 59	Sayed	Hannabou	11.70	5,500	1,326	1,542	305	1,237											
D - 60	Fougania	Hannabou	50.20	7,000	1,341	2,948	932	2,016					677						
D - 61	Oustania	Hannabou	6.80	7,700	1,200	1,440		1,440					1,070					200	300
D - 62	Kdima	Krair	10.90	5,850		2,400	400	2,000											
D - 64	Lagrinia	Hannabou	6.40	6,500	2,375	1,330	470	860					500					200	290
D - 65	Laalouia (Hannabou)	Hannabou	8.20	6,500		1,900	400	1,500					810						
D - 66	Mostafia	Hannabou	5.30	6,800	1,250	800		800					1,250						
D - 69	Kdima		22.10	6,300		1,000		1,000											
				133,470	28,317	45,409	17,571	27,726	112				6,107					700	1,690
				(100\%)									(5\%)						(1\%)

Zone No.**		Khettara	Ksar	$\left[\begin{array}{l}\begin{array}{c}\text { Discharge } \\ \text { (litsec) }\end{array} \\ \text { (Observed } \\ \text { discharge in } \\ \text { 2005 } \\ \text { multiplies 1.3) }\end{array}\right.$	Khettara length (m)		Irrigation Canal Length (m)				Rehabilitation Work by ORMVA/TF (1992 to 2002) *2								Small scale grant/ Verification study		
		Total Length			Rehabilitated Length *1	Total Length	Earth	Concrete	Masorry	$\begin{array}{\|c\|} \hline \text { Re- } \\ \text { profiling } \\ (\mathrm{m}) \end{array}$	Extension (m)	Protection (m)	Const- ruction (m)	Cover (m)	Revet- ment (m)	Puits (no.)	Basin (no.)		Const- ruction (m)		
	G - 61		Afrou	Taoumart	0.60	753		1,200	1,200												
	G - 62	Tassamamte	Tassamamte	3.50	720		2,000		2,000			50									
	G - 63	Toufassamman	Toufassamame	1.50	1,600		64		64											500	
	G - 64	Timzarzit	Timarzit	2.00	2,100	290	700		700					250						450	
	G - 65	Tajohrate	Tajouhart	1.70	570	300	600	600			250	116		300							
	G - 67	Ait Mouhou	Ouihlane	0.20	1,200		2,400	2,400													
	G - 77	Izougaghine	Ramlia	0.20	1,800	500	6,000	5,500	500												
	G - 78	Tamlalt	Hsia	2.80	3,200		6,000		6,000												
	G - 80	Tissamoumine	Tissamoumine	1.80	349	300	450	450						300							
	G - 83	Takacha	Takacha	3.40	5,400	700	1,500	1,500						800							
	G-87	Aachich Ait laza	Aachich	11.40	3,465	1,700	2,879	850	2,029					1,979							
	G - 89	Fouk Talilate	Aachich	0.60	2,414	300	1,300	1,300			100			300							
	G - 94	Battou	Battou	2.30	3,000	300	160		160					300							
	G - 95	Khtart Battou	Battou	1.70	2,120		2			2											
	G - 103	Tizagarne	Tizagarne	2.30	2,160		2,000	2,000													
					76,663	15,023	48,866	26,285	22,499	82	600	386	103	12,105					300	1,750	
					(100\%)									(16\%)						(2\%)	
				1668.90	539,999	78,272	283,920	139,460	139,145	5,115	31,030	711	174	48,318	2,030	361	13	7	1,850	6,745	
												(1)	(2)	(3)	(4)	(5)			(6)	(7)	
							Rahabilitation rate :			10.2 (\%)											

9. Design Standard and Interpretations

(1) Section of gallery

Code:	Classification	Gallery
	Items	Dimension
Revision record	Date	
First copy	mm/yy	
Design standard and interpretation		

(1) For smooth maintenance works, 0.6 m width is applicable to inside of gallery.
(2) For smooth maintenance works, 1.5 m height is applicable to inside of gallery.

Inside wall height of 1.5 m is recommended to decrease the work for the maintenance such as removal of sediment, etc. When comparing 1.2 m and 1.5 m height, the latter requires additional construction cost of about 15%. In conducting a rehabilitation work, gallery height is deliberated from the view points of economical efficiency, and working environment (reducing workers' fatigue).

(2) Section of vertical shaft

Code:	Classification	Vertical shaft
	Items	Dimension
Revision record	Date	
First copy	mm/yy	
	Competent authorities	
Design standard and interpretation		

(1) Section of vertical shaft is 0.9 m square.

When comparing 0.75 m square and 0.9 m square, the latter is recommended in terms of accessibility and space for disposal of accumulated sediment in the gallery.
(2) For safety purpose, step (diameter 20 mm) is in principle installed on the inside wall of the vertical shaft.

(3) Slope of excavation (Open excavation)

Code:	Classification	Earth work
	Items	Dimension
Revision record	Date	Competent authorities
First copy	mm/yy	
Design standard and interpretation		

(1) Slope for excavation is standardize as tabulated below:

Slope of Excavation

Cutting height	less than 2 m	$2 \mathrm{~m}<\mathrm{H}<5 \mathrm{~m}$	5 m or higher
Geology	$0-0.1$	$0-0.3$	$0.3-$
Rock, firm clay	$0-0.3$	$0.2-0.5$	$0.6-$
Clayey soil	$0.2-0.4$	$03-0.6$	$1.0-$
Silt	$0.4-0.6$	$0.5-1.2$	$1.2-$
Sandy soil	1.5	$1.5-$	not applicable
Sand	$0.3-0.8$	$0.6-1.5$	not applicable
Gravel and gravel sand			

Note: In the case there exists berm of its width of more than 2.0 m on the cutting slope, slope height is estimated from the berm surface.

Vertical : 1

Horizontal : 0.1

To avoid accident by a fall of rock, guard fence shall be installed on the slope. For safety, two stage fence is applicable.

Code:	Classification	Earth work
	Items	Dimension
Revision record	Date	Competent authorities
First copy	mm/yy	
Design standard and interpretation		

Joints shall be provided at suitable positions in suitable intervals in accordance with the type and size of the structure and construction conditions.

(1) Contract joints

Contract joint is provided to prevent cracking of the concrete due to contraction, mainly by fluctuation of temperature. Generally, contract joints are mainly used in siphons, culverts and buried structure. Position of the contract joint is determined according to the type of structure, foundation and other conditions. Contraction joint is provided at standard intervals of 3 to 5 m in thin concrete linings of 10 cm or less, and in other structures at intervals of 9 to 12 m .

Pedestals or dowel bars are installed to prevent uneven settlement of the structure due to unconsolidated foundation.

(2) Expansion joints

The position of the expansion joint is determined according to the type of structure, foundations and other conditions. Expansion joint is provided at points where section and form change in principle. For a series of structures exposed above ground such as open channel, expansion joints are provided at intervals of 24 m . Expansion plates are inserted into a void of the joints. Pedestals or dowel bars are installed to prevent uneven settlement of the structure due to unconsolidated foundation.

Code:		Classification	Earth work	
		Items	Dimension	
Revision record		Date		Competent authorities
First copy		mm/yy		
Design standard and interpretation				
1)	Double	ent: 13 cm		
2)	Single	nt: 20 cm		

The minimum thickness of members used in concrete structure is generally determined in consideration of workability and water-tightness requirements. For good workability, vertical wall of 2.0 m or taller which use double reinforcement have a minimum thickness of 20 cm , and vertical wall shorter than 2.0 m using single reinforcement have a minimum thickness of 13 cm . Siphons and other structures subject to water pressure shall have a minimum thickness of 20 cm to ensure good workability and water tightness.
10. Standard Drawing

PLAN DE REHABILITATIUN DE LA KHETTARA

PLAN DE REHABILITATIDN DES KHETTARA (ZUSTANIA) \quad CP. 3

 SECTINA \rightarrow

	12	13	14	15	16	17	18	19	20	21	22
1.0 M											
1.0 M											
1.5 M											
1.5 M											
1.5 M()											
2.0 M	$12-1$						$18-1$				
2.0 M	$12-2$						$\langle 18-2)$				
2.0 MC$)$	$12-3$						$18-3$				
3.0 M		$13-1$	$14-1$	$15-1$	$16-1$	$17-1$		$19-1$	$20-1$	$21-1$	
3.0 MK$)$		$13-2$	$14-2$	$15-2$	$16-2$	$17-2$		$19-2$	$20-2$	$21-2$	

PLAN DE REHABILITATIDN DES KHETTARA (AZAG) \quad CP. 5(8) C

$\frac{\text { BETIN PGUR FIXATIDN DE CINDUIT }}{\text { SECTIDN B - B }}$

Racile Ewaip icel

