(2) 15th October- Designing and Planning of Water Supply Systems (Part.2)

4) Disinfections/ Chlorination

Injection of chlorine to water is conducted to disinfect bacteria and virus in water, and to prevent luxuriousness of algae. Liquid chlorine (contained one ton cylinder or 50kg cylinder), sodium hypochlorite (liquid) or calcium hypochlorite (solid) are used to disinfect.

Generally, because liquid chlorine is the least cost, it is usually used in large scale WTPs. However large scale fans and neutralization facilities for leaked chlorine since it is very dangerous for environment if it leaks. Sodium hypochlorite is frequently used for disinfection because of relative safety, however it cannot be stored for long time due to volatility of gas chlorine. It is usually brought in WTPs by tank trucks, but it is recently made by electrical resolution of salt water. However this method is said to be difficult operating because of the short life of its electrode.

Solid of calcium hypochlorite is only used to disinfect for small scale WTP.

The disinfection is conducted as pre-chlorination injected at inflow point of rapid mixer, intermediate-chlorination injected at outflow point of sedimentation basin and post-chlorination injected at outflow point of rapid filter.

The post-chlorination is essential to disinfect for distribution water and the pre-chlorination is conducted to prevent generation of argue in treatment basins. The intermediate-chlorination is conducted to prevent generation of argue in filters, and injection point is after sedimentation. Generation of trihalomethane can be deterred due to removal of organic materials in sedimentation basin, which generates trihalomethane to be combined with chlorine.

Fig.2-20 Chlorination Points

5) Sludge Treatment Plant

Settled sludge in sedimentation basin and washed water for filters is discharged from WTPs. The drainage water is sometimes returned in the water bodies, which raw water of WTPs is withdrawn from, and if the muddiness of drainage water affects to water usage in down stream, muddiness of drainage water needs to be conducted the sludge treatment.

The treatment includes sludge thickening for sludge withdrawn from sedimentation basin, separation of settled sludge and supernatant for washed water from rapid filters, and dewatering of thickened sludge as shown in Table 2-21. In Japan, WTPs capacity of over 10,000m3/day needs to install sludge treatment facilities.

Fig.2-21 Flow Sheet of Sludge Treatment Plant

A sample of sludge treatment amount and capacity of facilities are calculated as following:

Yearly average of treatment quantity; 100,000m³/day

Average turbidity; 20mg/L,

Average injection rate of alum (Al₂(SO₄)₃); 20mg/L

Solid generation amount; $100,000 \text{m}^3/\text{d x}$ $(20 \text{g/m}^3 + 20 \times 0.105 \text{g/m}^3 = 22 \text{g/m}^3) = 2,200 \text{kg/day}$

The Inlet solid is removed 95% in sedimentation basin and density of settled sludge is 1%.

Withdrawn sludge amount ; $2,200 \text{ kg/d} \ge 0.95/0.01/1000 = 209 \text{ m}^3/\text{day}$

The filtration speed of filters is 200m/d and the washing, water quantity is $4m^3$ /filter m², is conducted one time a day.

Filter area; $100,000 \text{ m}^3/\text{d}/200 \text{ m/d}=500 \text{ m}^2$,

Washing water quantity; $500m^2x4m^3/m^2=2,000m^3/d$

SS (Suspended Solid) concentration; 2,200kg/d x $(1-0.95)/2,000m^3/d=55mg/L$

Thickened sludge density is 3%.

Thickened sludge quantity to be dried in the sludge drying bed; $2,200 \text{kg/d}/0.03/1000 = 73.3 \text{m}^3/\text{d}$

Reuse water quantity contained drainage water; $2,000+209-73.3=2,136m^3/d$, it is equivalent to 2% of raw water.

Treatment ability of sludge drying beds is around 20 to 100 kg solid/m²/year.

Necessary area of drying bed; $2,200 \text{kg/d} \times 365 \text{d/year} / 20$ to $100 \text{ kg/m}^2/\text{year} = 8,000$ to $40,000 \text{m}^2$.

Since the area for sludge drying bed is large and much manpower is necessary to fill in beds, laying sand and carrying out of dried sludge cake, mechanical dewatering equipment is frequently introduced.

Water contents of dried sludge cake is assumed 80%.

Annual total amount of dried sludge cake; 2,200kg/d /0.2/1,000 x 365d/year = 4,015ton/year

If sludge treatment is implemented, many facilities and much manpower will be necessary and much sludge cake will be generated.

(4) Water Distribution Facilities

1) Flow Pattern of Distribution Water

Distribution System is the facility to distribute treated water in WTP to consumers in the city. Water demand of consumers decreases is in nighttime and increases in morning and evening, therefore distribution water flow pattern is commonly shown as Fig 2-22.

Figure 2-23 shows difference of hourly factor (rates of maximum/ average hourly distribution quantity) followed to difference of daily distribution quantities in Japanese City.

Since Japanese water demand in big cities is around 500L/capita, daily water distribution quantity of 1,000,000m3/day is equivalent to 2,000,000 population of city. As the figure, hourly factor is 1.4 to 1.5 in the biggest city.

Fig. 2-22 Flow Pattern of Distribution Water

2) Flow Pattern of Distribution Water in Tashkent City

The real measured data of distribution quantity in Tashkent City in end of August in 1999 is shown in Fig 2-24 (1). The fluctuation in Tashkent City was very small. It provably means huge leakage in housings and buildings, and increase of the leakage and water consumption at upper stories of apartments because of increased water pressure in the nighttime. Fig2-24 (2) shows measured records of water quantity and pressure. As shown the figure, the hourly flow was almost flat, however the pressure sharply increases in midnight.

It is very strange, because when water flow is almost flat, water pressure should be flat. In this case, the hydraulic situation of pipeline network should be as Fig. 2-25.

Topologically, ground gradient of length around 5km from kadriya WTP is gentle and that of from 5km to 10km is relatively steep. Distribution pipes should be full water, however it may not be full because of less water distribution water quantity than flow

capacity of pipes.

3) System of Distribution

When the hourly distribution water quantity fluctuates as shown in Fig.2-21, water volume control is necessary. Volume control is conducted as a control of treatment flow of WTP or a control of distribution flow. However the flow fluctuation of WTP is not suitable for stable water treatment, therefore the control should be conducted as the distribution flow.

In this case, flow regulation is necessary, and so service reservoir need to store the water volume which shows in Fig.2-21 as the volume upper the average flow line. Retention time 4 hours for reservoir is necessary to regulate fluctuating flow when hourly factor is 1.5.

Necessary flow capacity of pipes and other distribution facilities is hourly maximum flow of daily maximum flow.

There are three pattern of distribution method to cities shown as Fig.2-26; pattern-1 installs elevated tank and this can be controlled most easily, however when the difference from reservoir to city is too much, pressure fluctuation in the city is too large; pattern-2 utilizes pumps and pressure tanks, and the control of this type is relatively easy, however the cost of pressure tank is high so this pattern is only introduced for small scale water works; pattern-3 utilizes pumps, and it had been said that the control of this type was difficult, but a revolution and other volume control technologies was so

progressed that the control of this type becomes easy.

Distribution pipeline network in Tashkent input in Water CAD is shown in Fig.2-27, and in the figure, water pressure contours are drawn.

(5) Control and Monitoring Facilities for Water Supply System

1) Monitoring and control for WTP

An example of monitoring and control for WTP is shown in Fig.2-28. The monitoring items are included water quality by analyzed auto-analyzer, water levels, water pressures, head water loss of each filter, operation situation of each equipment (on/off/out of order) and situation of chemical and chlorine.

These monitoring device and controllers should be installed in control room in WTP.

These remote-Control systems with sufficient monitoring are very important to control WTP adequately and to assign suitable staff.

2) Monitoring and control for distribution system

Fig.2-29 shows a plan to monitor and control distribution system, it measures flow of the main distribution pipe for each distribution district and water pressures of distribution districts, and controls pumps and auto-valves.

Fig.2-29 Monitoring and Control for Distribution System

(3) 22nd October- Evaluation of Tashkent Water Supply system

1.Layout of System

Fig.1-1 shows the map of Tashkent City neighborhood including Chadvak Lake. The water source including surface water and groundwater is withdrawn from the basins of Chirchik River. Especially, Charvak Dam Lake is important for water source, because the valley of the river is steep and trees are relatively few on the slope. These topography feature means rapid discharge of fallen rains, therefore if the dam was not constructed, floods frequently occur in wet seasons, and flow of the river is very little in dry seasons so the available water flow is very small from Chirchik River. Because Charvak Dam was constructed in 1970, the dam can discharge plenty of water for all seasons.

The discharged water is used for water supply for cities and irrigations withdrawing from intake weirs constructed in the river. Therefore the flow water is utilized as surface water of canals and groundwater, which is provided by the stable flow in the river.

Fig.1-2 shows the location of water supply system of Tashkent City.

Water source of Tashkent City is Boz-su canal and groundwater withdrawn from neighborhood of Tashkent City. The water supply situation in the city is shown in Table1-1.

There are two surface water WTPs and six ground water WTPs for water supply system in Tashkent City, and the total nominal capacity is $2,325,900 \text{ m}^3/\text{day}$. It is almost same with the daily maximum distribution amount in 2002.

Item	Unit	1999	2002	2002/1999
Service area	km ²	340	340	1.00
Population served		2,260,000	2,260,000	1.00
Service rate	%	98.55	98.55	1.00
Number of taps		568,768	582,783	1.02
Length of pipes	Km	3,652	3,719	1.02
Total supply capacity	m ³ /day	2,296,000	2,325,900	1.01
Annual gross supply water amount	$10^{3}m^{3}$	899,706	754,111	0.84
Daily maximum water distribution amount	m ³ /day	2,830,000	2,513,600	0.89
Daily average water distribution amount	m ³ /day	2,465,000	2,066,058	0.84
Daily average water distribution per capita	L/capita	1,091	914	0.84
Average/maximum	%	87.1	89.3	1.03

 Table 1-1 Water Supply Situation in Tashkent City

The biggest feature of the city is the very large consumption per capita. It should be included in a group of city with the biggest consumption.

However the distribution amount is decreasing year by year now because various countermeasures including the commodity charge have been introduced.

2. Water Consumption in the City.

2-1 Distribution from WTP

Fig. 2-1 shows water distribution amount from WTP in the city. The total daily average distribution amount is $2,465 \times 10^3 \text{m}^3/\text{day}$.

Fig.2-1 Water Distribution Amount from WTP

The maximum monthly distribution amount was appeared in August and other lower peak was appeared in January and February. These increase of distribution quantity is copped with Kadriya and Kibray WTPs. The reason of increasing of distribution water quantity in summer season can be easily understood, however increasing of winter season does not have rational reason. It is said that the insufficient and deteriorated heating system in the city is the reason for winter season's water waste.

Shown in the Figure, the water distribution quantity from Kadriya WTP always exceeded its nominal treatment capacity of 1,375,000m³/day.

2-2 Water Consumption in the City

Assumption of water consumption in the city by the JICA Study in 2000 is shown in Fig.2-2 (1) to Fig. 2-2 (3). According to the assumption, water supply amount for individual is 61% including distribution of hot water, and that for large consumer is 30%. The rest 9% is assumed as the leakage from distribution pipes under ground as shown in Fig.2-2 (1). However, it was assumed that huge leakage and waste in housing are occurring, and these are assumed 47% out of total distribution water amount as shown in Fig.2-2 (2).

In this case, effective water supply is assumed only 44% of total amount, and per capita consumption is 236L/day.

Table 2-1 shows averages of water supply records. It shows water consumption for houses in commodity charge system is 161 L/capita/day of apartment and 203 L/capita/day of detached house.

Division	Water meter for	Population	Water consu	mption	Norma
DIVISION	each house	1 opulation	m ³ /capita/month	L/capita/day	L/capita/day
Apartment	Installed	21,056	4.8	161	330
	Uninstalled	62,162	17.5	583	550
Detached House	Installed	63,937	6.1	203	190

Table 2-1 Water Consumption Tendency for some Category of Houses

*Measured during from January to March

The table and Fig.2-2 (1) to (3) means following;

- There is very large difference (approximate 3.6 times) between houses in commodity charge system and houses without meters,
- The real water demand of individual should be less than 200 L/capita/day (161x0.75+203x0.25=172 in winter season, because population living apartment is 75% and the rest is living detached house), however people is additionally consuming hot water,
- The coldwater consumption of individual shown in Fig.2-2 (3) is too large compared with the table, and consumption of hot water should be reduced more,
- The total consumption of large consumers shown in Fig.2-2 (3) is 183 L/capita/day, and it is also considered too large because of economic and industrial situation of the city,
- Total effective consumption of 482 L/capita/day may be too large as future target of water consumption.

Assumption of real distribution quantity for each consumer is calculated in Table 2-2.

In the table, distribution water quantity to the hot water plants is divided to for individuals and large consumers, and 10% of leakage of pipes is assumed. The consumption of individual cold water is increased to meet 914L/capita/day of total consumption.

The value is 471 L/capita/day and it is very similar with the calculation result of assumption of individual consumption. Individual consumers are divided into four categories; the first is living in apartment with water-meter, the second is living in apartment without meter, the third is living detached house with meter, and the fourth is living detached house without meter. The consumption of the first to the third are

adopted the figures shown in Table2-1 and that of the fourth is adopted 300L/capita/day which is assumed figure.

Composition of consumption in the case of Table 2-2 is shown in Fig.2-3.

		Distribution		Current record	Hot water	Adjusted	
Divi	sion	condition	Annual	Daily Average	Per Capita	distribution	value
			10 ⁶ m ³ /year	m3/day	L/capita/day	L/capit	a/day
Distribution	Individual	Cold	238.8	654,247	289	289	471*1
water/ based on		Hot				110*1	110
charge on	Public	Cold	66.1	181,096	80	80	80
C	Other large	Cold	224.1	613,973	272	116*3	116
	Large	Hot				46*2	46
	Total		529	1,449,315	641	641	823
Leakage of pipes (10%)						91	
Distribution	water from V	WTP	754.1	2,066,027	914	914	914

Table 2-2 Assumption of Consumption for each Consumer

*1 : 914x12%=110 *2 : 914x5%=46 *3 : 272-(110+46)=116 *4 : 914-(80-272-91)=471

Table 2-3 Assumption of Individual Consumption

Division	Meter installation	Consumption (L/capita/day)					
Division	wheter mistanation	Each value	Rate (%)	Total value			
Apartment (75%)	Installed (12%)	161	9.0	14			
	Uninstalled (88%)	583	66.0	385			
Detached (25%)	Installed (40%)	203	10.0	20			
	Uninstalled (60%)	300	15.0	45			
Total			100.0	465			

(): Rates of population

2-3 Saving Water

Mater installation, introduction of tariff systems to exceed water saving, campaign and education for water saving will be progressed rapidly. The result of these actions, following cases will occur.

Water distribution quantity to hot water plants in the city is approximate $300,000m^3/d$ (135L/capita/d) without winter season, November, December, January, February and March. In winter season, and these in winter season is $520,000 m^3/d$ (235L/capita/d). It means that the heating water for the city is around 100,000m3/day (45L/capita/d), and most of the water is assumed to be drained by old heating equipment. Therefore countermeasures to reduce the heating hot water should be introduction in below cases, however it is very difficult.

Fig.2-3 Composition of Water Consumption

- 1) Reduction of cold water consumption for individual;
 - Progress of meter installation
 - Repair of water leakage in housing
 - Stop the water wastage
 - Saving of real water consumption
- 2) Reduction of cold water consumption for large consumer;
 - Repair of water leakage in building
 - Stop the water wastage
 - Introduction of more efficiency water consumption method
 - Saving of real water consumption
- 3) Reduction of hot water consumption including heating water;
 - Improvement of hot water supply system
 - Improvement of heating system including in housing
 - Saving of hot water consumption
- 4) Reduction of leakage from distribution pipes
 - Improvement and repair for old water distribution system

Water consumption will be reduced as the pattern shown in Table 2-4 and Fig.2-4 (1), 2-4(2).

				1					
Item	Division	2003	2004	2005	2006	2007	2008	2009	2010
Population $(x10^3)$)	2,156	2,157	2,157	2,158	2,159	2,160	2,161	2,162
Meter Installatio	nIndividual	20	30	50	75	100	100	100	100
Rate (%)	Large	95	97	99	100	100	100	100	100
Water	Individual/cold	470	395	332	279	235	223	212	201
Consumption	Individual/hot	76	74	71	69	67	65	63	61
(L/capita/d)	Heating	34	33	32	31	30	29	28	27
	Indihot total	110	107	103	100	97	94	91	88
	Large/cold	196	186	177	168	160	156	153	150
	Large/hot	46	45	43	42	40	39	38	37
	Leakage	92	91	89	88	87	85	84	83
	Total	914	823	745	677	619	598	578	559
Distribution Qua	ntity (m^3/d)	1971	1775	1607	1462	1336	1292	1250	1209

Table 2-4 Reduction of Water Consumption for each Consumer

Fig.2-4 (1) Reduction of Water Consumption for Each Consumer

Fig.2-4 (2) Population and Water Distribution Quantity in the City

3.Water Treatment Facilities

Last time, JICA team did not investigate the water supply system in Tashkent City so detailed that the team may misunderstand present system and situation. However we want to evaluate the system and situation frankly, according to our understanding of the system and situation.

3-1 Water Intake and Coagulation Sedimentation Facilities in Kadriya and Boz-su WTP

Kadriya and Boz-su WTP are withdrawing raw water from the Boz-su canal directly. Kadriya WTP has two flocculation basins and sedimentation basins; the flocculation basins are concrete structures and sedimentation basins are excavated ponds (No.1 canal is old canal).

Boz-su WTP has one flocculation channel and two sedimentation basins, and these sedimentation basins are also excavated ponds.

Withdrawn sludge generated from sedimentation basin is discharged in the Boz-su canal in both WTP.

Evaluation calculations of these facilities are shown in Table 3-1.

As shown in the table, volumes of sedimentation basin are enough for treatment, however rapid mixing of raw water should be insufficient because the mixing in the withdrawing cannels from the canal is assumed too weak for mixing and it may cause insufficient coagulation.

Additionally, the volume of flocculation basin in Kadriya WTP is too small for proper flocculation, but the volume of sedimentation basins are so huge that it may be no problem for treatment.

Facility	Item	Unit	Kadriya		Boz-su	
Design Quantity		$m^3/d(m^3/hr)$	1,375,000(57,292)		235,600(9,817)	
Rapid Mixing Tank						-
Flocculation	Dimension	m	W8xL25xh4	W6xH3xL125	W4xWh3xL150)
Basin	Volume	m ³	800	800 2250		00
	Retention time	min	3.	2	44	1
Sedimentation	Dimension	m	W50-250xh1.5-	W250xh1.5-5x	W40xH2.6x	W40mxW3.6
Basin			9xL1500	L600	L368	mxL368
	Surface area	m^2	112,500	120,000	14,000	14,720
	Volume	m ³	1,000,000	500,000	37,100	52,900
Retention time		hr	26	.2	9.1	2
	Section Velocity	mm/sec	5-	8	11	

 Table 3-1 Evaluation Calculation of Coagulation Sedimentation Facilities

3-2 Rapid Sand Filtration Facilities

Table 3-2 shows evaluation calculations for rapid filters at Kadriya and Boz-su WTP. As shown the table, the design value of the filters are similar with Japanese standard. Water consumption for washing the layer is larger than Japanese case for lack of surface washing.

Facility	Item	Unit	Kad	riya	Boz	z-su		
Design Quant	tity	$M^3/d(m^3/hr)$	1,375,000(57,292)		235,600	0(9,817)		
Туре			1	2	1	2		
Filter number			24	24	6	12		
Flocculation	Dimension	m			W6.25xL10	Dia.8.2m		
basin	Area (max150)	m^2	Average:113.4	166	60.9	52.8		
	Total area	m^2	670	5.6	9	99		
	Filtration speed $(<240^{*1})$	min	20)5	2.	36		
Layer	Gravel Layer (0.2-1.0m)	m	Lower gravel layer: total 0.5-1.0m, upper layer: three level total 0.25m, total 0.75-1.25m		Three layers to 1.5m(0.5m+0.5	otal 5m+0.5m)		
Filtration Layer r (total: 0.6-0.8)		m^2	Light media 0.5-0.7m+ Quartz sand 0.5-0.6m, total 1.0-1.1m		Light media0.2m+ Quartz sand 0.6m, total 0.8m			
Layer washing	Back wash velocity (0.6-0.8)	m/min	0.7		0.7		0	.7
	Washing time Total (8-10)	min	Approxi	mate 15	12 t	to 15		
	Water consumption (4-6)	m^3/m^2	10.5m ³ /time		8.4 to 10.5m ³ /time			

Table 3-1 Evaluation Calculation of Rapid Filter

() Japanese standard, *1: minimum 10% of stand-by filters is necessary

If the filtration speed is 200m/day and the washing layer is conducted one time a day,

the rate of washing water consumption in Kadriya WTP is $10.5m^3/m^2/d/200m/dx100 = 5.3\%$.

The design of rapid filter is sufficient as the filter which filtrates the water treated by coagulation sedimentation facility. However the coagulation (alum dosing) is not conducted in these WTP when turbidity of raw water is less than 15mg/L

It is said that the removal rate of particles (suspended solid) by the rapid filter is only around 50% when coagulation is not conducted. Therefore it is common sense for water supply engineers in many countries that coagulation is essential for rapid filter.

3-3 Other Facilities

(1) Coagulation Facilities

Because these two WTPs are using lumps of solid alum, the lumps need to dissolve in water.

Mechanical mixers and steel tanks are utilizing to dissolve in Boz-su WTP, and concrete tanks and air bubbling are also utilizing in Kadriya WTP the lumps. Some countries such as Japan use liquid alum or similar coagulant, because liquid coagulant is producing by large-scale factories in these countries industrially. In those cases, coagulant is delivered by tank-lorries and dissolving of alum does not need.

Because exact and timely injection according to decision of laboratory engineer is important, the injection facilities should regulate its discharge quantity.

Gravity distribution facilities and centrifugal pumps are utilized to inject coagulant in the both WTP. Regulation of feeding quantity needs to conduct by manual and its accuracy is not sufficient. For this purpose, adjustable constant volume pump is generally utilized.

If a WTP is introduced the progressed auto-control system, auto-adjustable constant volume pumps are used and injection volume is adjusted in proportion to treatment quantity automatically. Additionally, the injection rates can be adjusted from the control room in this case.

(2) Disinfection Facilities

The liquid chlorine charged in cylinders in used for disinfection at WTPs in Tashkent City.

The system of disinfection is almost same with other countries, and the function should be sufficient.

However, liquid chlorine such a dangerous material to utilize that a large-scale

neutralization facility should be installed. There is no facility to prevent severe leakage accident without a water pool in WTPs.

Sodium hypochlorite is better than liquid chlorine in the view of safety, however the chlorine concentration of it is maximum 12%, so the cost utilizing it is generally higher than liquid chlorine by the deliver cost.

(3) Electrical Facilities including Control Facilities

1) **Operation of Equipment**

Equipment such as pump should be able to conduct automatic or remote control. Pumps at WTPs in Tashkent City may be able to conduct such operation, however electrical facilities have already been so deteriorated that almost pumps is operated manually. Water consumption in the city will decrease in the future, and hourly flow fluctuation will expand as shown in Fig.3.3.

Fig.3.1 Flow Patten of Distribution Water

The total treatment quantity in WTPs should meet with average distribution flow, and the difference between treatment quantity and distribution flow will need to regulate in reservoirs. In that case, pumps must be operate, on and off, frequently, and auto-control for pumps will be necessary.

2) Necessity of Monitoring System and Auto-control System

Monitoring for control condition is essential to make auto-control and remote control, e.g. auto-control for pumps cannot conduct without information of water level. WTPs in Tashkent City had some monitoring and control systems, however most of these facilities have been malfunction.

System of these facilities was already mentioned in another document.

4. Water Distribution Facilities including Transmission Facilities

4-1 Pipe-line Network and transmission

Basically, treated water at WTPs is transmitted by the transmission facilities from WTPs to distribution pipelines directly in the city. The distribution pipe network in the city is huge, and each WTPs are transmitting water in network.

Water pressure control is the most important role for distribution system. The water pressure in the city should be kept within 3 kg/cm^2 to 5 kg/cm^2 , because buildings, 4 or 5 stories, should be distributed directly and too high pressure of pipelines should increase water leakage.

Large distribution networks are difficult to control these water pressures, therefore, in this case, the network should be divided several blocks as shown in Fig. 4-1.

It should be decided based on simulation of flow and pressure calculation, which will be imputed in some models formulated in this study.

4-2 Service reservoir

Shown as Fig.3-1, if the water distribution amount transmitted from WTP is daily average flow, water flow exceeding average flow need to store for volume regulations.

Reservoirs in the city are listed in Table 4-1 and located in WTPs and booster pump stations (P/S). For these WTPs and pump stations, pump pits for withdrawing water are necessary. The minimum necessary retention time should be 30 minutes, and it shows in the table as "necessary".

Therefore total effective volume for existing reservoirs is approximately 100,000m³/day.

If the flow pattern will be change as Fig,3-1 in 2010, necessary retention time will be 1.9 hrs shown as Fig.4-2. However total retention time for distribution system is commonly 4 to 12 hours for stable operation, and the total retention time should be 4 hours.

Fig.4-1 An Example of Division for Water Distribution Pipe-line Network

Name		Plant	Reserv	Reservoir volume(m3)		
		Capacity(m ³ /day)	Existing	Necessary	Effective	
WTP	Boz-su	236,600	29,900	5,000	24,900	
	Kadirya	1,375,000	30,000	30,000	0	
	Kibray	455,200	10,000	9,500	500	
	Sergeri	40,000	4,000	900	3,100	
	Bektemir	25,000	2,750	550	2,200	
	Karazov	52,000	0	1,100	0	
	South	113,200	10,000	2,400	7,600	
P/S	Mirz Uzbek	(30,000)	25,000	650	24,350	
Chiranzai	Chiranzar	(7,200)	25,000	150	24,850	
	Sergeri	(3,000)	12,000	70	11,930	
Total		*12,261,000	148,650	50,320	99,430	

Table 4-1	Volumes	of Reservoirs	in i	the	City
					•/

In this case, the total distribution flow is assumed 65% of current flow. The necessary volume of reservoirs is calculated below;

 $2,000,000 \text{m}^3/\text{d} \ge 0.65 \ge 4/24 = 1,300,000 \text{m}^3/\text{day} \ge 1/6 = 220.000 \text{m}^3$

Necessary expansion volume of reservoirs is shown below. $% \left({{{\bf{n}}_{{\rm{s}}}}} \right)$

 $220,000 \text{m}^3/\text{day} - 100,000 \text{m}^3/\text{day} = 120,000 \text{m}^3/\text{day}$

Fig.4-2 Necessary Storage Volume

4-4 Pipe Materials

Water supply pipes managed by Tashkent Vodokanal are listed Table 4-2. Shown as the table, the rate of aged pipes is high and 65% of pipe material is steel, and additionally majority of steel pipes were not installed lining. 34% of pipe material is cast iron, and most of joint for these pipes area not flexible and can become causes for leakage.

Therefore annual number of the incidents of leakage from the pipes is much, exceed 8,000 in 1998.

Currently, several material for water supply pipes, which are steel, ductile iron, vinyl chloride and polyethylene are utilized.

Comparison of these materials for pipes is shown in Table 4-3, and suitable pipe materials for water supply pipes are shown in Table 4-4.

Vinyl chloride and polyethylene pipes are used for small diameters pipes because of low cost and easy execution, and if the durability is required, lining steel pipes or stainless steel pipes.

Ductile iron pipes are mainly used for middle size of pipes because of strong and endurable features. However for large diameter pipes, the cost of ductile iron pipes are so high that lining steel pipes are utilized.

			L		11.	1		
Diameter	Length	Diameter	Total	Pi	ipe Leng	th by Pip	e Age (kr	n)
(mm)	(km)	(mm)	Length					
19 to 30	87,689		(km)	>5	>10	>20	>30	<30
38 to 150	1,567,952	<50	87	2.1	1	13.5	27.5	42.9
100 to 350	1,074,443	50	336.2	12.1	2.9	54.3	110.9	156
300 to 500	198,799	63	18.2	0.1	0.3	1.2	5.1	11.5
600 to 700	201,981	75	97.6	13.5	1.9	12.9	41.1	28.2
800 to 900	56,494	100	555.2	71.1	27.9	102.1	255.9	98.2
1000 to 1200	248,625	125	26.8	1	0.2	1.7	14.5	9.4
1400 to 1800	105,698	150	477	74.7	34.2	116.8	167.5	83.8
Total	3,541,681	200	376.5	36.5	37.8	97.8	144.2	60.2
Material	Length (km)	250	88.9	2.9	5.4	29.3	18.7	32.7
Steel	2,330,984	300	505.3	24.2	82.6	155.2	172.4	70.9
Cast iron	1,203,695	325	70	20.6	22.8	22.8	2	1.8
Others	7,002	350	22.9	0.9	3.9	7.7	3.4	7
Total	3,541,681	400	131.3	21.2	20.4	40.2	32.8	16.7
Note) Reco	rd in 1998	500	56.5	9.2	12.1	12	16	7.2
		600	173.8	7	17.5	43.5	70.4	35.4
		700	21.1	-	1.9	12.2	3.8	3.2
		800	31.3	3.9	11.3	6.3	9.4	0.4
		900	20	-	0.2	1.9	11.9	6
		1,000	86.3	14.6	3.9	27	38.7	2.1
		1,200	148.9	20	9.2	31	88.3	0.4
		1,400	91.2	2.1	17.8	39.2	29.7	2.4
		1,600	11.6	-	-	0.2	11.4	-
		1,800	3.9	-	1.7	2.2	-	-
		Total	3,437.50	337.7	316.9	831	1,275.60	676.4

Table 4-2 Composition of Water Supply Pipes

Note) Record in 1998

Material	Advantage	Disadvantage	Adoptable
			diameter
Steel	-Strong and endurable	-Weak to corrosion	15-50
	-Strongest to shock and pressure	-High cost for lining	>800
	-Easy for processing	-Easy to generate electric corrosion	
	-Stable lining for small diameter		
Ductile iron	-Strong and endurable	-Heavy	100-1000
	-Strong to shock and pressure	-Joint protection is necessary	
	-Joint is flexible and expansive	-High cost for small and large	
	-Easy for execution	diameter	
	-Relative corrosion resistance		
Vinyl	-Excellent corrosion resistance	-Weak to shock in low temperature	13-150
chloride	-Low cost for small diameter	-Weak to heating and ultraviolet	
	-Light and easy to execution	-Low strength	
	-Easy for processing	-Joint protection is necessary	
	-Stable inner roughness		
Polyethylene	-Excellent corrosion resistance	-Anstable joint for large diameter	15-500
	-Very flexible	-Relative high cost	
	-Easy for execution for small		
	diameter		
	-Stable inner roughness		
	-Relative strong and endurable		

Table 4-4 Selection of Suitable Pipe Materials for Each Diameter

Diameter range	Suitable pipes
13-25	Vinyl chloride pipe, galvanized steel pipe, polyethylene pipe, vinyl lining steel pile,
	stainless pipe,
25-75	Vinyl chloride pipe, galvanized steel pipe, vinyl lining steel pile
75-150	Vinyl chloride pipe, ductile iron pipe
150-500	Ductile iron pipe, polyethylene pipe
500-800	Ductile iron pipe
800-1500	Lining steel pipe, ductile iron pipe
>1500	Lining steel pipe

(4) 29th October- Introduction of Technology:

- 1) Introduction of Water CAD,
- 2) Design and Plan for groundwater Intake

1) Introduction to Water Cad

WaterCad: Water distribution model software developed by Haestad Methods, Inc.

1. Objectives of Using WaterCad in the Study

- To study/analyze water flow and pressure in existing distribution network of Tashkent City.
- To develop/recommend appropriate distribution network as well as system operation of Tashkent water supply though various analyses/simulations.
- To enhance technical capability of Vodokanal through the above activities together with technical workshop.

2. Feature of WaterCad

WaterCad has many powerful and versatile project tools to analyze/simulate distribution pipe network. Not only demand variation, but also operation of reservoir/tank, pump and valve can be incorporated into the model.

Water Cad supports several methods of exchanging data with external applications.

(1) Laying out the Network

- Using Pipe layout toolbar helps easily laying out the water distribution network. Reservoir/s, tank/s, pump/s, junctions, pipes and valves are placed onto drawing pane. Pipelines are automatically placed according to placing Junction.
- As an alternative, drawings of network in a .DXF format (.DWG format in the AutoCad version) can be used as a background drawing in laying out a scaled network.

(2) Easy Data Entry (add/delete/edit)

1) Entering Data through various options

Four (4) ways to enter and modify element data are provided in WaterCad:

- <u>Dialog Box</u>: enables to input required data by element; especially required parameters of related facility (reservoir/tank, pump, valve) can be entered according to dialog style.
- <u>Flex Table</u>: powerful tool as described hereafter.
- Database Connections: creates connections to import and export model data using common database and spreadsheet.

- Alternative Editors: will be used for creating alternatives from base alternatives.

2) Selective unit system and friction loss method

- Unit: SI and others
- Friction loss method: Chezy's, Colebrook-White, <u>Hazen-Williams</u>, Darcy-Weisbach and Manning Formula

(3) Performing Various Analyses/Simulations

1) Steady State Analysis

Generally, water distribution for Average Daily Demand/Maximum Daily Demand will be analyzed.

2) Extended Period Simulation (EPS)

- PS can be conducted for any duration to be specified.
- Tank levels fluctuation, pump operation, valves open/close, and demands change throughout the day can be simulated.
- Variation in demand over time can be modeled using demand patterns. Demand patterns are multipliers that vary with time. Demand patterns at each node can combine different patterns of water use (residential, commercial, fire flow, etc.).

3) Water Quality Analysis

- Computing Water Age (Travel time from source/reservoir)
- Analyzing Constituent Concentrations (Chlorine residuals in the system over time)
- Performing a Trace Analysis (Percentage of water from a specific source node)

4) Cost Estimating

Cost Manager in WaterCad is a tool for tracking the costs associated with a water distribution construction project.

(4) Powerful Reporting Tools

1) Reports by element

Every element can generate a report in the same general format, which includes the name of the calculated scenario and series of tables describing the element's properties and result in detail.

- Detailed Report
- Table
- Graph

2) Tabular Reports (Flex Tables)

Tabular Reports are an extremely powerful tool in WaterCad. These reports are not only good presentation tools, but also very helpful in data entry and analysis. When data must be entered for a large number of elements, clicking each element and entering the data are tedious and time consuming. However, using Flex tables can make it easier, since entering/editing the data is done on same tables.

- Using tabular report, elements can be changed using the global edit tool, or filtered to display only the desired elements.
- Values that are entered into the table will be automatically updated in the model.
- The tables can also be customized to contain only the desired data.
- Columns can be added or removed, or duplicates of the same column with different units can be displayed.
- The tabular reports can save an enormous amount of time and effort.
- The tables can be printed or copied into a spreadsheet program such as EXCEL.

3) Plan View (Full View/Current View)

Full View will create a plan of the entire system regardless of what the screen shows, while Current View will create a plan of exactly what is displayed in the window t that moment. These views can be printed or copied to the clipboard, and can be exported to AutoCad or other compatible software with creating a.DXF file.

4) Contouring

Contouring enables to generate contours for reporting attributes such as elevation, pressure and hydraulic grade. Contour interval as well as color code by index values or ranges of values can be specified.

5) Element Annotation

Element annotation enables to label network attributes in the plan view and control which values are displayed, how they are labeled and how units are expressed.

6) Color Coding

Color Coding enables to review results in the plan view by color-coding the elements based on attributes or range of values.

(5) Versatile Scenario Management

Scenario Management tools enable to create a New Alternative, edit and create scenarios, calculate and compare scenarios.

Scenarios can calculate multiple "What If?" situations in a single project file.

Traditionally, there have only been two possible ways of analyzing the effects of change on a software model:

- Change the model, recalculate, and review the results
- Create a copy of the model, edit that copy, calculate, and review the results

Although either of these methods may be adequate for a relatively small system, the data duplication, editing, and re-editing becomes very time-consuming and error-prone as the size of the system and the number of possible conditions increase. Additionally, comparing conditions requires manual data manipulation, because all output must be stored in physically separate data files.

Effective scenario management tools need to meet these objectives:

- Minimize the number of project files the modeler needs to maintain (one, ideally)
- Maximize the usefulness of scenario through easy access to things such as input and output data, and data comparisons
- Maximize the number of scenarios to simulate by mixing and matching data from existing scenarios (data reuse)
- Maximize the amount of data that needs to be duplicated to consider conditions that have a lot in common

A single project file enables to generate an unlimited number of "What If?" conditions, edit only the data that needs to be changed, and quickly generate direct comparisons of input and results for desired scenarios.

The process of working with scenarios is similar to the process of manually copying and editing data, but without the disadvantages of that duplications and troublesome file management. The process allows to cycle through any number of changes to the model, without fear of overwriting critical data or duplicating important information. Of course, it is possible to directly change data for any scenario, but an audit trail of scenarios can be useful for retracing the steps of a calibration series or for understanding a group of master plan updates.

There are thirteen alternative types in WaterCad Ver. 6, which comprise Physical /Active

Topology/Demand /Initial Settings/Operational/Logic Control Set/Age/Constituent/Trace/Fire Flow/Capital Cost/Energy Cost/User Data.

(6) Working with Data from External Sources

Water Cad supports several methods of exchanging data with external applications, preventing duplication effort and allowing saving time by reusing data already present in other locations. For instance, exchanging data with databases or GIS system, or converting Cad linework to pipe network.

There are multiple ways of importing data from other sources into WaterCad.

One or more database connections can be set up to bring in information stored in many standard database and spreadsheet formats. GIS information can be brought in through connections to ERSI shapefiles. Drawings of network in a .DXF format (.DWG format in the AutoCad version) can be used as a background drawing in laying out a scaled network.

Importing data available from other distribution model software are:

- Previous WaterCad/Cybernet Versions
- EPANET Files
- KYPIPE Data

3. A Simple Example Using WaterCad

A simple example using WaterCad is presented as below. Pipe network comprises six (6) junctions, ten (10) pipelines and one each of reservoir (source), tank and pressure reducing valve (refer to Figure-1). The model was calculated as [Extended Period Simulation] based on composition of the following demand patterns. Input data/outputs for junction and pipe are shown in Table-2 and 3, respectively. Some detailed results are presented hereafter.

			r in Filler			
Time fro	om	Multiplier				
Start	Resident	tial	Commercial	Fire Flow		
3:00	0	.4	0.6	0		
6:00	1	.0	0.8	0		
9:00	1	.3	1.6	0		
12:00	1	.2	1.6	0		
15:00	1	.2	1.2	0		
18:00	1	.6	0.8	1.0		
21:00	0	.8	0.6	0		
24:00	0	.5	0.4	0		

Table-1	Demand	patterns
10010 1	Donnand	parterin

Figure-1 Model Pipe Network

Label	Zone	Elevation (m)	Demand (l/min)	Туре	Pattern	Demand (Calculated) (l/min)	Calculated Hydraulic Grade (m)	Pressure (kPa)
J-1	Zone-1	184	38	Demand	Composite	54	226.89	419.55
J-2	Zone-1	185	31	Demand	Composite	43	226.24	403.36
J-3	Zone-1	184	34	Demand	Composite	48	225.99	410.74
J-4	Zone-1	183	34	Demand	Composite	48	226.01	420.68
J-5	Zone-1	185.5	350	Demand	Composite	455	225.5	391.26
J-6	Zone-2	165	2,356	Demand	Composite	486	204.81	389.45

 Table-2
 Pressure Junction Result at 9:00

Note: Figures in Italic show input data.

Table-3Link Result at 9:00

Label	From Node	To Node	Diameter (mm)	Length (m)	Material	Hazen- Williams C	Discharge (l/min)	Velocity (m/s)	Pressure Pipe Headloss (m)	Headloss Gradient (m/km)
P-1	R-1	PMP-1	1,000	0.01	Ductile Iron	130	1,028	0.02	0	0
P-2	PMP-1	J-1	150	58.5	Ductile Iron	130	1,028	0.97	0.42	7.23
P-3	J-1	J-2	150	555.5	Ductile Iron	130	386	0.36	0.66	1.18
P-5	J-3	J-4	150	521.5	Ductile Iron	130	-55	0.05	0.02	0.03
P-6	J-4	J-1	150	343.4	Ductile Iron	130	-588	0.55	0.88	2.58
P-8	J-4	PRV-1	150	500	Ductile Iron	130	486	0.46	0.9	1.81
P-9	PRV-1	J-6	150	31	Ductile Iron	130	486	0.46	0.06	1.81
P-10	J-3	T-1	150	100	Ductile Iron	130	-104	0.1	0.01	0.1

Note: Figures in Italic show input data.

Detailed Report for Tank: T-1

Scenario Summary	
Label	2000 l/min 3-Hr
	Fire Flow at J-6
Physical Alternative	Base-Physical
Demand Alternative	Average Daily with
	2000 l/min Fire
	Flow
Initial Settings Alternative	Base-Initial Settings

Scenario Summary			
Operational Alternative	Base-Operational		
Age Alternative	Base-Age		
	Alternative		
Constituent Alternative	Base-Constituent		
Trace Alternative	Base-Trace		
	Alternative		
Fire Flow Alternative	Base-Fire Flow		
Cost Alternative	Base-Cost		
User Data Alternative	Base-User Data		
Calibration Summary			
Demand	<none></none>	Roughness	<none></none>
Geometric Summary			
Х	3,060.60 m	Elevation	0.0 m
Y	3,063.19 m	Zone	Zone-1
Operating Range Summary			
Maximum Elevation	226.0 m	Maximum Level	26.0 m
Initial HGL	225.0 m	Initial Level	25.0 m
Minimum Elevation	220.0 m	Minimum Level	20.0 m
Base Elevation	200.0 m		
Storage Summary			
Section Type	Constant	Circular Tank Shape?	true
	Area		
Diameter	8.00 m	Average Area	50.3 m ²
Inactive Volume	0.00 m ³	Total Active Volume	301.59 m ³
User Data			
Date Installed		Date Retired	
Inspection Date		SCADA ID	
Observed Level	0.00 ft	Lining	
Condition		Metered	false
Clearwell Storage	false	Elevated Tank	false
User Data Existing

false

History:

Location Description:

	Calculated Results Summary											
Time	Calculated	Calculat	Pressur	Calculat	Calculat	Inflo	Outflo	Current				
	Hydraulic	ed Level	e (kPa)	ed	ed	W	W	Status				
	Grade (m)	(m)		Percent	Volume	(l/mi	(l/min					
				Full (%)	(m ³)	n))					
0.00 hr	225.00	25.00	244.55	83.3	251.33	675	-675	Filling				
1.00 hr	225.81	25.81	252.43	96.8	291.86	509	-509	Filling				
1.32 hr	226.00	26.00	254.33	100.0	301.59	0	0	Full				
2.00 hr	226.00	26.00	254.33	100.0	301.59	0	0	Full				
3.00 hr	226.00	26.00	254.33	100.0	301.59	0	0	Full				
4.00 hr	226.00	26.00	254.33	100.0	301.59	0	0	Full				
5.00 hr	226.00	26.00	254.33	100.0	301.59	0	0	Full				
6.00 hr	226.00	26.00	254.33	100.0	301.59	0	0	Full				
7.00 hr	226.00	26.00	254.33	100.0	301.59	0	0	Full				
8.00 hr	226.00	26.00	254.33	100.0	301.59	0	0	Full				
9.00 hr	226.00	26.00	254.33	100.0	301.59	-104	104	Drainin				
								g				
10.00 hr	225.88	25.88	253.12	97.9	295.36	-69	69	Drainin				
								g				
11.00 hr	225.79	25.79	252.31	96.6	291.21	-46	46	Drainin				
								g				
12.00 hr	225.74	25.74	251.77	95.6	288.42	34	-34	Filling				
13.00 hr	225.78	25.78	252.16	96.3	290.45	23	-23	Filling				
14.00 hr	225.81	25.81	252.43	96.8	291.83	15	-15	Filling				
15.00 hr	225.82	25.82	252.61	97.1	292.76	48	-48	Filling				
16.00 hr	225.88	25.88	253.17	98.0	295.65	33	-33	Filling				
17.00 hr	225.92	25.92	253.55	98.7	297.61	22	-22	Filling				
18.00 hr	225.95	25.95	253.81	99.1	298.92	-1,37	1,377	Drainin				
						7		g				

		Calcu	lated Re	sults Sum	mary			
Time	Calculated	Calculat	Pressur	Calculat	Calculat	Inflo	Outflo	Current
	Hydraulic	ed Level	e (kPa)	ed	ed	W	W	Status
	Grade (m)	(m)		Percent	Volume	(l/mi	(l/min	
				Full (%)	(m ³)	n))	
19.00 hr	224.30	24.30	237.73	71.7	216.31	-1,14	1,147	Drainin
						7		g
20.00 hr	222.93	22.93	224.34	48.9	147.49	-970	970	Drainin
								g
21.00 hr	221.78	21.78	213.02	29.6	89.30	1,032	-1,032	Filling
22.00 hr	223.01	23.01	225.07	50.1	151.23	853	-853	Filling
23.00 hr	224.03	24.03	235.03	67.1	202.43	688	-688	Filling
24.00 hr	224.85	24.85	243.07	80.8	243.71	704	-704	Filling

Figure-2 Tank Volume in Percent

Detailed Report for Pump: Pump-1

Scenario Summary Label

2000 l/min 3-Hr

Fire Flow at J-6

Scenario Summary			
Physical Alternative	Base-Physical		
Demand Alternative	Average Daily with		
	2000 l/min Fire		
	Flow		
Initial Settings Alternative	Base-Initial Settings		
Operational Alternative	Base-Operational		
Age Alternative	Base-Age		
	Alternative		
Constituent Alternative	Base-Constituent		
Trace Alternative	Base-Trace		
	Alternative		
Fire Flow Alternative	Base-Fire Flow		
Cost Alternative	Base-Cost		
User Data Alternative	Base-User Data		
Calibration Summary			
Demand	<none></none>	Roughness	<none></none>
Geometric Summary			
X	3,026.46 m	Upstream Pipe	P-1
Y	3,033.01 m	Downstream Pipe	P-2
Elevation	193.0 m		
Pump Definition Summary			
Pump Type	Standard (3		
	Point)		
Shutoff Head	30.00 m	Shutoff Discharge	0 l/min
Design Head	27.40 m	Design Discharge	3,800 l/min
Maximum Operating Head	24.80 m	Maximum Operating	7,500 l/min
		Discharge	
Initial Status			
Initial Pump Status	On	Initial Relative Speed	1.0
		Factor	
User Data			

Initial Status			
Date Installed		Date Retired	
Inspection Date		SCADA ID	
Observed Flow	0.00 gpm	Rated Power	0 Hp
Efficiency	0.00 %	Condition	
Manufacturer		Model	
Serial Number		Metered	false
Variable Speed	false	Existing	false

History:

		Calculat	ed Results Su	ımmary			
Time	Control Status	Intake Pump	Discharge	Discha	Pump	Relative	Calculated
		Grade (m)	Pump Grade	rge	Head	Speed	Water Power
			(m)	(l/min)	(m)		(kW)
0.00 hr	On	198.00	227.28	1,085	29.28	1.0	5.18
1.00 hr	On	198.00	227.39	919	29.39	1.0	4.41
1.32 hr	On	198.00	227.73	409	29.73	1.0	1.99
2.00 hr	On	198.00	227.73	409	29.73	1.0	1.99
3.00 hr	On	198.00	227.76	361	29.76	1.0	1.75
4.00 hr	On	198.00	227.76	361	29.76	1.0	1.75
5.00 hr	On	198.00	227.76	361	29.76	1.0	1.75
6.00 hr	On	198.00	227.46	819	29.46	1.0	3.93
7.00 hr	On	198.00	227.46	819	29.46	1.0	3.93
8.00 hr	On	198.00	227.46	819	29.46	1.0	3.93
9.00 hr	On	198.00	227.31	1,028	29.31	1.0	4.92
10.00 hr	On	198.00	227.29	1,063	29.29	1.0	5.08
11.00 hr	On	198.00	227.28	1,086	29.28	1.0	5.19
12.00 hr	On	198.00	227.27	1,094	29.27	1.0	5.22
13.00 hr	On	198.00	227.28	1,083	29.28	1.0	5.17
14.00 hr	On	198.00	227.28	1,075	29.28	1.0	5.14
15.00 hr	On	198.00	227.29	1,060	29.29	1.0	5.06
16.00 hr	On	198.00	227.30	1,044	29.30	1.0	4.99
17.00 hr	On	198.00	227.31	1,034	29.31	1.0	4.94
18.00 hr	On	198.00	226.73	1,875	28.73	1.0	8.79
19.00 hr	On	198.00	226.58	2,105	28.58	1.0	9.81

	Calculated Results Summary										
Time	Control Status	Intake Pump	Discharge	Discha	Pump	Relative	Calculated				
		Grade (m)	Pump Grade	rge	Head	Speed	Water Power				
			(m)	(l/min)	(m)		(kW)				
20.00 hr	On	198.00	226.45	2,282	28.45	1.0	10.59				
21.00 hr	On	198.00	226.87	1,682	28.87	1.0	7.92				
22.00 hr	On	198.00	226.99	1,503	28.99	1.0	7.11				
23.00 hr	On	198.00	227.10	1,338	29.10	1.0	6.35				
24.00 hr	On	198.00	227.26	1,114	29.26	1.0	5.32				
2400.0 2200.0 2000.0 1800.0 1600.0 0 1400.0 1000.0 800.0 600.0 400.0 0 0	Pum Discharge	p: PMP-1 Varying Time	25.0	2000 l/min 3-	Hr Fire Flow a	t J-6					

Figure-3 Pump discharge

Detailed Report for Pressure Pipe: P-6

Scenario Summary					
Label	2000 l/min 3-Hr				
	Fire Flow at J-6				
Physical Alternative	Base-Physical				
Demand Alternative	Average Daily with				
	2000 l/min Fire				
	Flow				
Initial Settings Alternative	Base-Initial Settings				
Operational Alternative	Base-Operational				

Scenario Summary			
Age Alternative	Base-Age		
	Alternative		
Constituent Alternative	Base-Constituent		
Trace Alternative	Base-Trace		
	Alternative		
Fire Flow Alternative	Base-Fire Flow		
Cost Alternative	Base-Cost		
User Data Alternative	Base-User Data		
Calibration Summary			
Demand	<none></none>	Roughness	<none></none>
Pipe Characteristics			
Material	Ductile	Hazen- Williams C	130.0
	Iron		
Diameter	150.0 mm	Minor Loss Coefficient	0.0
Check Valve?	false	Length	343.40 m
From Node	J-4	To Node	J-1
Elevations			
From Elevation	183.00 m	To Elevation	184.00 m
Initial Status			
Initial Status	Open		
User Data			
Date Installed		Date Retired	
Inspection Date		Observed Flow	0.00 gpm
Lining		Pipe Class	
Exterior Coating		Nominal Diameter	0.00 in
Condition		Skeletonized	false
Metered	false	Existing	false

History:

	Calculated Results Summary										
Time	Contr	Dischar	Velocit	Upstream	Downstream	Calculat	Calculat	Pressur	Headlo		
	ol	ge	y (m/s)	Structure	Structure	ed	ed Minor	e Pipe	SS		
	Status	(l/min)		Hydraulic	Hydraulic Grade	Friction	Headloss	Headlo	Gradie		
				Grade (m)	(m)	Headloss	(m)	ss (m)	nt		
						(m)			(m/km)		
0.00 hr	Open	-576	0.54	225.96	226.81	0.85	0.00	0.85	2.47		
1.00 hr	Open	-493	0.47	226.41	227.05	0.64	0.00	0.64	1.86		
1.32 hr	Open	-234	0.22	227.49	227.65	0.16	0.00	0.16	0.47		
2.00 hr	Open	-234	0.22	227.49	227.65	0.16	0.00	0.16	0.47		
3.00 hr	Open	-206	0.19	227.58	227.70	0.13	0.00	0.13	0.37		
4.00 hr	Open	-206	0.19	227.58	227.70	0.13	0.00	0.13	0.37		
5.00 hr	Open	-206	0.19	227.58	227.70	0.13	0.00	0.13	0.37		
6.00 hr	Open	-468	0.44	226.60	227.18	0.58	0.00	0.58	1.69		
7.00 hr	Open	-468	0.44	226.60	227.18	0.58	0.00	0.58	1.69		
8.00 hr	Open	-468	0.44	226.60	227.18	0.58	0.00	0.58	1.69		
9.00 hr	Open	-588	0.55	226.01	226.89	0.88	0.00	0.88	2.58		
10.00 hr	Open	-608	0.57	225.90	226.84	0.94	0.00	0.94	2.74		
11.00 hr	Open	-621	0.59	225.83	226.81	0.98	0.00	0.98	2.84		
12.00 hr	Open	-623	0.59	225.81	226.80	0.98	0.00	0.98	2.87		
13.00 hr	Open	-618	0.58	225.84	226.81	0.97	0.00	0.97	2.82		
14.00 hr	Open	-613	0.58	225.87	226.82	0.96	0.00	0.96	2.78		
15.00 hr	Open	-604	0.57	225.92	226.85	0.93	0.00	0.93	2.70		
16.00 hr	Open	-596	0.56	225.96	226.87	0.91	0.00	0.91	2.64		
17.00 hr	Open	-590	0.56	225.99	226.88	0.89	0.00	0.89	2.59		
18.00 hr	Open	-1,477	1.39	220.59	225.45	4.85	0.00	4.85	14.14		
19.00 hr	Open	-1,540	1.45	219.74	224.98	5.24	0.00	5.24	15.27		
20.00 hr	Open	-1,598	1.51	218.99	224.60	5.62	0.00	5.62	16.35		
21.00 hr	Open	-894	0.84	223.90	225.81	1.92	0.00	1.92	5.59		
22.00 hr	Open	-805	0.76	224.55	226.14	1.58	0.00	1.58	4.60		
23.00 hr	Open	-723	0.68	225.12	226.41	1.30	0.00	1.30	3.77		
24.00 hr	Open	-590	0.56	225.88	226.77	0.89	0.00	0.89	2.59		

Figure-4 Contouring Hydraulic Grade Level

2) Design and Plan for Groundwater Intake

1. Objectives and Flowchart of Groundwater Development

The objective of groundwater development is to achieve 'Stable Water Supply of Safe Water'.

The checkpoints of this objective are as follows:

1) To be taken stably groundwater for water supply plan

The pumping amount of the well is basically depended on the well capacity. The well capacity is affected by the distribution and permeability of aquifer and the digging technology. Even if the pumping wells have high capacity, there is impossible to take planed groundwater amount by well interference when the wells are located close to another wells.

2) To be taken safe groundwater satisfied water quality standards for human health

Water supply enterprise has obligation to supply safe water satisfied water quality standards for human health. When water is not satisfied water quality standards, residents are endangered their human health.

3) To be not impacted on surrounding environment by groundwater intake

Excessive groundwater taking destroys the water circulation in the region, and there is a possibility to generate drying up of existing wells, the subsidence, and saline water intrusion etc.

The generalized flowchart of groundwater development plan, investigation and design are as follows:

The Study on Restructuring of Water Supply System of Tashkent City in the Republic of Uzbekistan

Volume 4. Data Report March 2006

Fig-1 Flowchart of Groundwater Development Plan, Investigation and Design

2. Investigation Methods of Groundwater Development

1) Preliminary Investigation

It is important to collect the following data in the stage of the preliminary investigation (desk work).

- (1) Geological Maps
- (2) Hydro-geological Maps
- (3) Geological Logging Data
- (4) Repots of Electric Resistivity Survey
- (5) Reports of Well Construction
- (6) Contour Maps of Groundwater Level
- (7) Hydrograph of Groundwater Level and River Discharge
- (8) Distribution Maps of Existing Wells
- (9) Lists of Existing Wells
- (10) Data of Water Quality Analysis
- (11) Hydro-meteorological Data (Precipitation, Temperature, Evapo-transpiration, Snow Depth)
- 2) Field Investigation

The field investigation methods of groundwater development are as follows.

(1) Electric Resistivity Survey

Electric resistivity survey is a major geophysical method used in groundwater exploration efforts. In a resistivity survey, a direct current is sent through between two metal electrodes. Because earth materials offer resistance to passage of a current, some voltage loss will occur as current flow from one electrode to another. Measurement of earth materials by this method can be apprehended hydro-geological structure (refer to Fig-2 and 3, Tab-1).

Figure 8.14. For surface application of the electric resistivity method, a Wenner electrode arrange-ment is common for groundwater exploration. Cur-rent is induced to flow between the two current electrodes and is measured at the potential electrodes. (Minning, 1973)

Figure 8.16. Profiles, or cross sections, of corrected resistivity. The readings indicate a thick sequence of saturated sand and gravel near the eastern border of the site. (Keck Consulting Services. Inc.)

(2) Borehole Resistivity Logs

Borehole resistivity logs provide a useful tool for assuring good well design and construction. A good log gives a detailed picture of the character and thickness of variable strata at the well site and an indication of the water quality by measuring the apparent resistivity and/or self potential of the materials surrounded the well bore (refer to Fig-4 and 5).

(3) Pumping Test

Pumping tests may be conducted to determine (a) the performance characteristics of a well and (b) the hydraulic parameters of aquifer. Pumping test is included the following methods.

- (A) Step Drawdown Test to be determined appropriate pumping rate and well efficiency (refer to Tab.-2 and Fig.-6)
- (B) Continuous Time Drawdown Test To be determined hydraulic parameters of aquifer (refer to Fig.-7 and 8).
- (C) Recovery Test Same the above

Y	ield	Draw	down	
gpm	m ¹ /day	ft	m	s/Q
514	2,801	13.0	4.0	0.0253
1,066	5,810	27.0	8.2	0.0253
1,636	8,916	43.4	13.2	0.0265
1,885	10,273	61.5	18.8	0.0326
2,480	13,516	82.5	25.2	0.0333
3,066	16,710	101.5	30.9	0.0331
3,520	19,184	120.5	36.7	0.0342

Figure 16.15. Values for B and C in the step-drawdown equation can be determined from a graph where s/Q is plotted against Q.

Fig.-6

Figure 9.37. Typical drawdown and recovery plots for a well pumped for 48 hours at a constant rate of 500 gpm (2,730 m³/day) followed by a 2-day period for water-level recovery.

Fig.-7

Figure 9.40. Time-recovery plot for observation well becomes a straight line when plotted on a semilog diagram, similar to the time-drawdown diagram for the preceding pumping period.

Fig.-8

(4) Water Quality Analysis

The mainly purposes of water quality analysis are as follows.

- (a) To be confirmed of the suitability for drinking water standards
- (b) To be understood of groundwater origin and flowing process

The water quality analysis of geo-chemical items is displayed as Tri-linear diagram and a hexa diagram, and the groundwater circulation process is understood by the difference between plotted position and shape (refer to Fig-9 and 10).

(5) Groundwater Simulation

Ground water simulation is reproduced actual groundwater flow on a numeric model (refer to Fig-11), and new pumping plan is input to this model, the change in groundwater flow can be forecasted. This method is effective for well distribution planning and influence of groundwater environment (drying up of existing wells, land subsidence, saline intrusion etc.).

Fig. 8.24 Elevation of piezometric surface, December 1959, actual (a) and based on analog computer results (b) in East St. Louis, Illinois, area, (From Schicht, 1965)

Fig.-11

3. Water Well Design

Design and Plan for Groundwater Intake is executed based on the investigation result as mentioned above. The mainly items of well design are as follows.

1) Distribution of Wells

Pumping up is reduced groundwater level of the peripheral area. When plural wells are existed in

surrounding each other, well interference will be occurred (refer to Fig-12).

The radius of influence of a well can be calculated from the pumping rate, transmissibility and storage coefficient by Theis formula. When the hydraulic parameters of aquifer are not obtained, the radius of influence of a well can be generally calculated by the following experience formula.

R = 3000 - 5000 r $R = 3000 Sw K^{1/2}$ (Siechart's formula)
Where, R : radius of influence (m)
r : radius of well (m)
Sw : drawdown (m)
K : permeability (m/sec)

Practicably, the radius of influence of a well is said as 100-300m in unconfined groundwater and 500-700m in confined groundwater. The well interference is not generated when the wells are located away twice as long as the radius. In the case of Tashkent City Water Supply, the pumping wells are obviously too adjacent to each other.

2) Well Depth, Well Diameter, Position of Screen

Well depth, drilling diameter, casing diameter, screen length and position of screen are determined by planed pumping rare and hydro-geological condition.

3) Materials of Casing and Packing Gravel

The materials of casing, the slot diameter, and the packing gravel diameter are determined by the pumping rate, the grain size composition of the aquifer and the economic condition. Poor distribution of

screen openings causes excessive convergence of flow near the individual openings, and may produce twice as much drawdown as necessary (refer to Fig-13). When slot size and/or packing gravel diameter is too large, the soil particle flows in the well, and the adverse effect is caused for the pump and the water quality.

Fig.-13

4) Pump Facilities

The type, diameter and output of pump is determined by planed pumping rare and groundwater level and head (refer to Fig-14).

Fig.-14

4. Operation, Maintenance and Rehabilitation

The maintenance and management of the well is important to intake the groundwater continuously and stably. The decline of the well performance is appeared to decrease the pumping rate and reduce the groundwater level in the well. The periodical measurements of the pumping rate and groundwater level are very effective to find the decline of the well performance at the early stage.

The decline of the well performance is caused by the incrustation, the electric corrosion, the sedimentation of soil particles, etc. The methods of rehabilitation of wells are as follows (refer to Fig-15 and 16).

- (1) Surging
- (2) Swabbing
- (3) Back Washing
- (4) Jetting
- (5) Acid Treatment

The example of rehabilitation effect is shown Fig-17. Moreover, the artificial groundwater recharge is effective method for the increasing of groundwater resources (refer to Fig.-18).

Fig.-15 Equipment of Swabbing Method

Fig.-16 Equipment of Air Lift Method

Fig.-17 Example of Well Rehabilitation Effect

Fig.-18 Example of Artificial Groundwater Recharge

- (5) 5th November Introduction of Technology(2):
 - 1) Pumps and Volume Control
 - 2) Control and Monitoring System

1) Pumps and Volume Control

1. Type of pumps and Features

	Classifie	cation		Range of a	pplication	Figure
				Bore mm	Head m	
Volute pump	Horizontal	Single	Single stage	40-800	5-50	1-1
(including		suction	Multistage	40-500	20-3000	1-2
having mixed		Double	Single stage	150<	5-120	1-3
flow type impeller)		suction	Two stage	300<	60-150	
	Vertical	Single	Single stage	40-2000	5-120	1-3
		suction	suction Multistage 50-500 20-30			
		Double	Single stage	300<	5-120	
		suction	Two stage	300<	60-150	
Mixed flow	y pump	Horizontal	Single stage	300<	3-8	
		Vertical	Single stage	200<	5-50	1-4
			Two stage	200<	30-80	1-6
Axial flow	pump	Horizontal	Single stage	300<	4(5)>	1-5
		Vertical	Single stage	200<	5(6)>	1-7

Table 1-1 Classification of Pumps by Characteristics and Structues

Remark: The lift sometimes changes by the bore and frequency, refer to catalogue of every model

Figure 1.1 Horizontal Single Suction Single StageVolute Pump

Figure 1-2 Horizontal Single Suction Multistage Volute Pump

Figure 1-3 Vertical Double Suction Single Stage Volute Pump

- 1. Discharge casing 2. Suction casing 3. Impeller 4. Impeller boss 5. Impeller guide 6. Main shaft 7. Packing sleeve 8. Packing 9. Gland 10. Water slinger flange 11. Bearing case 12. Thrust collar 13. Submerged bearing shell
- 14. Submerged bearing metal
- 15. Shaft coupling

Figure 1-4 Mixed Flow Vertical Single Stage Pump

- 1. Discharge casing 2. Suction casing 3. Impeller 4. Liner ring 5. Main shaft 6. Packing sleeve 7. Packing 8. Gland 9. Water slinger flange 10. Impeller nut 11. Bearing case 12. Thrust collar 13. Submerged bearing shell 14. Submerged bearing metal
- 15.Shaft coupling

Figure 1-5 Mixed Flow Vertical Double Stage Pump

The Study on Restructuring of Water Supply System of Tashkent City

Volume 4. Data Report March 2006

Figure 1-6 Axial Flow Horizontal Single Stage Pump

Figure 1-7 Axial Flow Vertical Single Stage Pump

Figure 1-8 Installation Pattern of Axial Flow Pump

2. Flow and Pressure Control for Pumps

The water distribution quantity of the city fluctuates sharply in a day according to water consumption changes of consumers, and Vodokanal should distribute water to consumer with proper quantity and pressure. Therefore distribution flow and pressure need to control for distribution to consumers with sufficient volume and proper pressure.

Distribution pumps are installed as Fig.2-1 and pumps withdraw water from reservoirs. Basically, the influent flow for reservoir should be constant hourly, however the effluent flow must vary hourly with fluctuation of water demand of consumer.

Consequently the reservoir needs to regulate the difference of inflow and outflow volume.

Fig 2-1 Distribution Reservoir and pumps

Methods of volume control are described following:

The methods of flow control are only 3: a) operation number control, a) valve control, and c) revolution speed control.

(a) Operation number control

This control method is the simplest one, and is used in almost all facilities.

The characteristic of the method is shown in Fig 2-2. The efficiency of this method is good, facilities are simple and additionally control is easy, however distribution quantity is changed step by step as shown in fig 2-3. It is the main deficit of this method.

Fig 2-2 characteristic of operation number control

Fig.2-3 Operation Units and Flow Rate

(b) Valve control

Valve control method is also simple to regulate flow rate, however the flow rate is reduced by increasing head loss of squeezing of valve, and electricity consumption for unit discharge volume of water increase sharply. Usually, the operation number control method and the valve control method are combined to improve the deficit of previous method. Fig.2-4 shows operation characteristic of valve control.

If auto-valve and flow meter are combined and controlled by controller as Fig. 2-5, the flow rate can adjust automatically and the flow rate can be controlled linearly as Fig 2-4.

Flow meter Auto-Valve

Fig.2-5 Auto-Control for flow rate by Auto-Valve

(c) Revolution speed control

Regulation of Revolution speed can be conducted by mechanical or electrical method, and currently the electrical method is used for almost all revolution speed control.

The electrical method is to regulate the cycle frequency and the voltage in order to change the revolution speed. This method can regulate the flow rate easily and systematically, and when the flow rate is reduced, the electrical consumption is also reduced nearly in proportion to the flow rate.

Therefore this system is excellent for energy saving of water distribution.

However it is relatively high cost to install, especially for large power motors, and regulation range is limited (around 100 to 50%).

When the method is combined with the operation number control, the flow rate can be regulated linearly as shown in Fig. 2-4. Fig.2-6 shows a comparison of the revolution control and the valve control

Fig.2-6 Relation of Discharge Quantity and Head for Revolution Speed Control

2) Control and Monitoring for System

Supervisory and Control System for Water Treatment Plant

1.General

I would like to introduce a typical current supervisory and control system for a water treatment plant in Japan here in the occasion of this seminar. A highly automated operation system for the water treatment plant has been established in Japan in conjunction with development and application of instrumentation equipment, computers and communication equipment to achieve a stable water supply system.

The attached drawing is a sample of a monitoring and control system for a water treatment plant.

2. Component of Supervisory and Control System

Two personal computers (PCs) and one server are arranged in the administration building monitoring room, while PLCs (Programmable Logic Controllers) and instrumentation panels are arranged in each local control station to build up the supervisory and control equipment, which is based on the hierarchy and horizontally distributed process control system. The hierarchy system means that the supervisory control level is classified into the field level, local control station level and central supervisory station level to achieve the reliability for the supervisory and control system. These equipment are linked over an open network such as Ethernet to collect the plant loads information and to send command of start/stop to each plant load and set value to each loop control such as flow control of coagulant feeding.

The unified supervisory and control system enables efficient operation an maintenance work of the water treatment plant, because any information about the whole plant is monitored from the central supervisory station.

Operations such as unit test or adjustment test for maintenance or troubleshooting of loads will be carried out at the field level. Accordingly, for execution it is necessary to assemble with a hard relay in auxiliary relay panels for the control circuit of the site single operation even in the case that abnormal conditions happen to the PLC control unit of the upper class system. (1) Field Level

A local operation panel, comprising "LOCAL-REMOTE" change over switch, "START-STOP" or "OPEN-STOP-CLOSE" and "EMERGENCY STOP" push button is arranged at each plant load to carry out the operation of each load at the field level as follows:

- Inflow valve
- Raw pump

- screen
- sump drainage pump
- sludge collector
- settled water sampling pump
- sump drainage pumps
- de-sludge valve
- vacuum pump
- flow control valve
- backwash recovery pump
- sludge pump
- sludge thickener
- sludge feed pump
- waste water discharge pump
- coagulant transfer pump
- coagulant feed pump
- distribution pump

(2) Local control room level

At the local control room, the automatic and linked operations are provided in each PLC. One PLC is arranged in each local control station so that the PLC failure does not affect the other plant loads controlled by the other PLCs.

As a sample of automatic operation, distribution pumps are controlled directly by the PLC instead of a one-loop controller.

In this case, constant pressure control at the header pipe of the distribution pipes is applied to the distribution pumps.

The local instrumentation panel that stores the converter for the instrumentation detector, indication meter, alarm setting device, one-loop controller etc. is installed in each local control room. From the local instrumentation panel, the signal that is needed for the operation of the field level is outputted to the auxiliary relay panel and in addition the signal that is needed for automatic and linked operation is outputted to the PLC.

(3) Central supervisory level

Two personal computers (PCs) and one server, one mimic graphic panel and two printers are installed in the administration building monitoring room for the main function of the supervisory and control system. The PCs are the human-machine interface to monitor the plant loads status, failure and process values through a graphical interface at the central supervisory room level. Furthermore, set values such as intake water flow, chemical dosing rate can be set on the screen of them. Furthermore PCs collect the data from local control level over the LAN, such as plant loads status, failure, process values and the water quality.

All the PLCs are connected to optic fibre cable and communicate each other.

The server plays a role of data processing so that it can generate reports, such as daily monthly and yearly report, historical trends graph, historical process running and historical alarm.

The mimic graphic panel plays a role of demonstration tool to visitors, so it enables to show the water treatment plant in front of many visitors simultaneously.

(6) 10th Dec. and 17th Dec -Introduction of Preliminary Master Plan

Outline of Study for Technical Portion

- 1. Problems of Present System for Water Supply based on the Investigation by the Study
 - There is much leakage from housing (22-23%) and pipelines (30%, including irrigation water) (shown in Table 1-1)
 - Much equipment for water supply needs to replace urgently because it is already over its life time and deteriorated
 - Insufficient O&M (operation and maintenance) manner: shortage of budget, insufficient training for staff and lack of manuals for O&M
 - Water intake capacities of Kibray WTP (water treatment plant) and other underground water WTPs are decreasing: 1) Kibray WTP's deep wells are not suitable for its hydro-geological situation, 2) Intake capacity of Other WTP's deep well is decreasing because of deterioration, and 3) Many pumps for deep well are not match with intake capacity of these wells (for example pump discharge capacity is 600 m³/hr and well's intake capacity is 200m³/hr)
 - Insufficient control system of water supply network, (shown in Fig.1-2):
 - Basically major WTPs, such as Kadirya, Kibray and Boz-su WTPare, located at such high elevation that water head/pressure from these WTPs to the city is enough to distribute by gravity,
 - However water pressure in the city is so low to distribute consumers that many pump stations are constructed in the city because valves of distribution net work are squeezed too much to prevent destruction of facilities
 - When volume fluctuation of distribution water will be increased in the future due to saving water based on meter installation (shown in Fig.1-3), volume control facilities (e.g. service reservoir) for water distribution will need to be constructed

Fig. 1-3 Increasing of Flow Fluctuation

_					Situation	n In 2002			Evalu	ation	
Data	Area	Kind of house	Divisition	Dopulation	Consu	mption	Pata	Real con	sumption	Difference	Rate
				ropulation	L/cap/d	m ³ /d	Kate	L/cap/d	m ³ /d	m ³ /d	
By city	In City	Apartment	With meter	99.5	110	10.95					
government			Without meter	1.527.0	390	595.53					
			Sub-Total	1,612.5		606.48	29.4%	125	201.56		
		Detached	With meter	223.1	220	49.08					
		house	Without meter	364.2	330	120.19		155	56.45		
			Sub-Total	537.5		169.27	8.2%				
		Sub-Total		2,150.0		775.74	37.5%		258.01		
Large	Budgetary org	anization				181.07	8.8%	90%	162.97		
consumer	Hot water plan	nts				420.83	20.4%	90%	378.75		
Other large of		onsumer				243.20	11.8%	90%	218.88		
Total						845.10	40.9%		760.59		
Total					1,620.84	78.5%		1,018.61	602.24	29.1%	
Leakage from	pipes and irrig	gation water				445.22	21.5%			1,047.45	50.7%
Distribution and	mount from W	TP				2,066.06	100.0%				
by Vodokanal	In City	Apartment	With meter	99.5	160	15.92					
	Area K cityIn City A ent E Budgetary organ E r Hot water plants Other large cons Total from pipes and irriga E ion amount from WT E kanal In City A Budgetary organ E from pipes and irriga E ion amount from WT E kanal In City A E Budgetary organ E from pipes and irriga E E for mount from WT E E E for mount from WT E E E for mount from WT <td></td> <td>Without meter</td> <td>977.0</td> <td>580</td> <td>566.66</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Without meter	977.0	580	566.66					
			Sub-Total	1,076.5		582.58	28.2%	160	172.24		
		Detached	With meter	223.1	200	44.62					
		house	Without meter	377.8	300	113.34		200	75.56		
			Sub-Total	600.9		157.96	7.6%				
		Sub-Total		1,677.4		740.54	35.8%		247.80		
Large	Budgetary org	ganization				181.07	8.8%	90%	162.97		
consumer	Hot water plan	nts				420.83	20.4%	90%	378.75		
	Other large co	onsumer				243.20	11.8%	90%	218.88		
	Total					845.10	40.9%		760.59		
Total						1,585.64	76.7%		1,008.39	577.25	27.9%
Leakage from	pipes and irrig	gation water				480.42	23.3%			1,057.67	51.2%
Distribution a	mount from W	TP				2.066.06	100.0%				

 Table 1-1 Calculation for Loss of Distributed Water Quantity

2. Outline of Master Plan

2-1 Projection of the Future Water Distribution Quantity for the City: Table 2-1 and Fig 2-1

- To project future service population
- To decide future water demand per capita individuals and large consumer
- To project water distribution amount to the city including estimation of daily fluctuation

2-2 Formulation of Suitable System for projected Distribution Amount: Table2-2 to 2-4

- To plan necessary water treatment capacity
- To plan suitable distribution network including selection of necessary WTPs and construction of service reservoir

Distribution Amount		Unit	Year		Note
			2010	2015	
Daily	Min.	$10^{3}m^{3}/d$	1,323	1,326	
Average	Max.	$10^{3}m^{3}/d$	1,616	1,636	
Daily	Min.	$10^{3}m^{3}/d$	1,588	1,591	For WTP
Maximum	Max.	$10^{3}m^{3}/d$	1,939	1,963	capacity
Hourly	Min.	$10^3 \text{m}^3/\text{hr}$	79.4	79.6	For distribution
Maximum	Max.	$10^3 \text{m}^3/\text{hr}$	97.0	98.2	Capacity

Table 2-2 Distribution Amount to the City

 Table 2-3 Nominal Capacity of WTPs

Name	Caj	Capacity Ele		
	Each Sum-total		Reservoir	
	$10^{3} \text{m}^{3}/\text{d}$	$10^{3} \text{m}^{3}/\text{d}$	m	
Kadirya	1,375	1,375	543	
Kibray	455	1,830	485	
Boz-su	235	2,065	485	
South	143	2,208	410	
Others	100	2,308	420-400	

2-3 Formulation of replace Plan for deteriorated Facilities

- To select facilities, such as pipes, valves, pumps electrical facilities, machines and others, to replace urgently based on diagnosis including EBRD project
- To formulate replace plan for facilities of water supply until target year

Item	Name	Volume	Distribution	Necessary	Elevation
			Capacity	Volume	
		$10^{3}m^{3}$	$10^{3} \text{m}^{3}/\text{d}$	$10^{3}m^{3}$	m
Minimum	Min. flow	265.2			
requirement: 4hr	Max. flow	327.2			
Existing reservoir	Kadirya WTP	30	1375	199	453
	Kibray WTP	10	455	66	485
	Boz-su WTP	30	235	9	490
	Mirzo-Urgubek P/S	25	720		490
	South WTP	10	143	14	510
	Sergeli WTP	2	40	5	400
	Bectimir WTP	1	20	2	420
	Chilanzar P/S	25	72		440
	Sergeli P/S	12	72		400
Total		145		295	

 Table 2-4 Necessary Volumes of Reservoirs

2-4 Review and formulation of proper distribution network system: Fig. 2-2(1), 2-2(2), 2-3

- To review and evaluate for current distribution network and its operation
- To divide distribution area for network to adapt to future distribution flow pattern and to abolish booster pump stations in the city
- To plan arrangement and location for service reservoirs including newly constructed ones, which existing reservoirs located in Kadirya WTP, Kibray WTP, Boz-su WTP and Mirzo-Urgubek P/S (pump station) are new ones will be planed to constructed in these facilities and proper elevation in the city
- To plan necessary new distribution pipes to divide distribution area and to distribute by gravity
- To plan monitoring and control system for whole distribution network in the city and to plan to construct a control room at Kadirya WTP or Vodokanal head office

2-5 Reconstruction for System of Kibray WTP: Fig 2-2(2), Fig.2-4

- To reconstruct intake system for Kibray WTP: construction of underground intake infiltration pipes along Chirchik river and intake wells installed pumps
- To construct large capacity of reservoir
- To change distribution system: surrounding area of the WTP is distributed by pumps and the southern area of the city is distributed by gravity

2-6 Formulation of Proper O&M System

- To Evaluate of proper Q&M cost for planned system
- To list up for necessary manual
- To formulate necessary training program for O&M staff

Item		Division		2002	2005	2010	2015
C		Apart		1,080	1,080	1,080	1,080
Service $(x \perp 10^3)$	population	Detached		600	624	689	761
(XIU)		Total		1,680	1,704	1,769	1,841
Meter	Individual	Apart		10	30	100	100
Installation	marviauai	Detached		33	70	100	100
Rate (%)	Large			95	99	100	100
Consumption		Apartment	Min	538	454	160	160
(L/capita/d)	Individual		Max	538	466	200	200
	marviauai	Detached H	Min	334	230	200	200
			Max	334	265	250	250
Consumption	Individual	Apartment	Min	581	490	173	173
$(10^{3} \text{m}^{3}/\text{d})$			Max	581	503	216	216
		Detached H Total Badgetary and	Min	200	144	138	152
			Max	200	165	172	190
			Min	781	634	311	325
			Max	781	669	388	406
			Min	424	424	339	305
		others	Max	424	424	424	467
	Larga	Hot water	Min	421	421	337	303
	Large	plant	Max	421	421	421	421
		Total	Min	845	845	676	608
			Max	845	845	845	888
Leakage from	n pipes	and irrigation	Min	480	480	336	302
water			Max	480	480	384	384
Distribution Q	Quantity (r	n^3/d	Min	2,107	1,959	1,323	1,236
			Max	2,107	1,994	1,618	1,678

Fig.2-3 Control and Monitoring System

A Example for Structure of Infiltration Facilities

Fig.2-4 Infiltration Facilities for Kibray WTP

Note: Reduction of Electricity consumption

Table 2-2 shows the unit electricity consumption of each facility.

Shown as the table, the unit consumption of Kadirya WTP is the smallest as WTP because of gravity distribution to the city and additionally that of Kadirya will be reduced thanks to replacement of pumps.

Name	Capacity		Daily a	verage	Unit
		Year	Dis. amount	Electricity	consumption
	$10^{3}m^{3}/d$		$10^{3} \text{m}^{3}/\text{d}$	10^3 kwh/d	m ³ /kwh
Kadirya	1,375	2000	1,360	220	0.162
		2001	1,342	222	0.166
		2002	1,260	220	0.175
Kibray		2000	407	179	0.439
	455	2001	381	167	0.438
		2002	364	149	0.411
Boz-su	235	2000	255	71	0.277
		2001	250	69	0.276
		2002	233	69	0.295
South	143	2000	168	62	0.372
		2001	143	66	0.463
		2002	143	51	0.359
Others	100	2000	95	20	0.208
		2001	72	19	0.260
		2002	70	19	0.275
Booster	For all dis.	2000	2,285	207	0.090
P/Ss	water	2001	2,187	213	0.097
		2002	2,066	243	0.118

 Table 2-2 Unit Electricity Consumption

If the intake system of Kibray WTP is reconstructed and the distribution system is also improved, as before mentioned, the unit electricity consumption will be reduced sharply as shown in Table 2-3.

 Table 2-3 Reduction of Electricity Cost

		Water dis.	Electricity	Unit consum	nption	-	Electricity c	ost
	Year	amount	consumption	Total	Booster P/S	Annual	U	Jnit
		106m ³ /y	10 ⁶ kwh/y	kwH/m3	kwH/m ³	10 ⁶ Soum	Soum/m ³	Soum/ kwh
	2000	833.9	276.7	0.332	0.090	1,107	1.3	4.(
	2001	798.4	276.3	0.346	0.097	1,540	1.9	5.0
	2002	754.1	294.6	0.391	0.118	2,338	3.1	7.9
	Improved system	511	81.76	0.160	0.000	1,308	2.6	16.0
2010	Current system	511	178.85	0.350	0.000	2,862	5.6	16.0
	Difference		97.09	0.190	0.000	1,553	3.0	

(7) 30th January- Introduction of Master Plan

Outline of Master Plan

JICA Study Team

1. Major Point of Technical Issue

(1) Deterioration of Facilities

Many water supply facilities have been deteriorated, because most of them were constructed before 1980 and proper investment for replacement has not been conducted.

Some of the major facilities such as intake pumps and pipelines need to be urgently replaced.

If these replacements are not conducted, serious breakdowns will take place.

(2) Capacity Decline of Wells

There are six IPs in Tashkent City, and the intake capacities of the majority of wells are lowering and well pumps frequently break down. The condition of wells at left bank in Kibray IP is serious, and these deep wells can be judged that their type is not suitable for the location and hydro-geographical condition.

(3) Unreasonable Distribution Network and Operation

Basically, the major WTPs (Kadirya and Boz-su) and IP (Kibray) are located in high place compared with the city, thus the location of water supply system is so ideal in Tashkent City that most of distribution water should be able to supply by gravity. However while the level difference between these facilities and some part of the city are too large, valves of pipelines squeezed so that the high pressure does not breaks down the pipelines and equipment of consumers. As the result, water pressure in the city is so low that booster P/Ss, which exceed s 100, need to be constructed all around the city.

(4) Lack of Regulation Ability for Distribution System

The distribution flow from each WTP and IP is currently almost flat. However in the future, the flow fluctuation will be expanded according to decrease of water consumption in the city through the progress of meter installation and reduction of water leakage by replacing pipes.

Current retention time of reservoir in the city is too small to regulate the flow fluctuation and manual pump operation needs to be changed to automatic operation.

(5) Inappropriate Operation and Maintenance Manner

For appropriate O & M, a sufficient budget, proper manuals, proper trainings for staff and necessary number of staff are necessary. In Tashkent City the staff is working hard to carry out their responsibility, however Tashkent Vodokanal lacks sufficient budget, proper manuals and proper trainings for staff to undertake appropriate O&M.

2. Water Demand Projection

							,	
Division		2002	2005	2007	2009	2010	2011	2015
Individuals	Max	850.7	677.2	487.1	297.0	297.1	297.3	297.6
	Mid	850.7	720.8	506.3	291.7	318.4	315.1	311.8
	Min	850.7	634.2	529.2	424.1	413.6	400.1	386.5
Large	Max	896.0	841.8	805.7	769.5	751.4	706.3	661.1
Consumers	Mid	896.0	864.8	843.9	823.1	812.7	786.7	760.7
	Min	896.0	883.7	875.6	867.4	863.3	853.1	842.9
Water Loss	Max	1,153	835.5	835.5	723.9	523.4	323	323
	Mid	1,153	886.8	886.8	789.1	613.7	438	438
	Min	1,153	938.0	938.0	808.2	680.9	554	554
Total	Max	2,900	2,354	2,128	1,790	1,572	1,327	1,282
	Mid	2,900	2,472	2,237	1,904	1,745	1,540	1,511
	Min	2,900	2,456	2,343	2,100	1,958	1,807	1,783
Water Los	^{ss} Max	40	35	39	40	33	24	25
Rate(%)	Mid	40	36	40	41	35	28	29
	Min	40	38	40	38	35	31	31

Table 2-1Water Demand and Distribution Projection (10³m³/d)

Figure 2-2 Reduction of Total Distribution Quantity

3.Design Water Quantity and Selection of WTP

Division	Name	Name Supply Capacity						
		Nominal $(10^3/\text{m}^3/\text{d})$	Rate (%)	Real Max $(10^3/\text{m}^3/\text{d})$	Rate (%)	(m)		
Large scal	leKadirya WTP	1,375.0	58.5	2,200	68.6	540		
& hig	^{,h} Kibray IP	455.2	19.4	470	14.7	495		
place	Boz-su WTP	235.6	10.0	260	8.1	485		
	Sub-total	2,065.8	87.9	2,930.0	91.4			
Small scal	le South IP	143.0	6.1	160	5.0	420		
& low plac	e Sergeli IP	40.0	1.7	35	1.1	400		
	Kara-su IP	52.2	2.2	35	1.1	420		
	Kuiluk IP	25.0	1.1	31	1.0	420		
	Bactemir IP	25.0	1.1	15	0.5	400		
	Sub-total	285.2	12.1	276	8.6			
	Total	2,351.0	100.0	3,206.0	100.0			

Table 3-1List of WTPs and IPs in Tashkent City

Figure 3-2Comparison of Distribution Quantity and Water Source Capacity

WTP, IP Name	Unit cost	Staff
	(soum/m ³)	number
Kadirya WTP	1.2	180
Boz-zu WTP	2.6	140
Kibray IP	3.4	193

Table3-3 Unit Cost and Staff Number of WTPs and IPs

South IP	2.9	115
Others IPs	1.9	210

4. Replacements and Improvement of Kadirya WTP

Figure 4-11mproved Flow Sheet of Kadirya WTP

5.Reconstruction of Kibray IP

(1) Problem of Intake method in Left Bank

Figure 5-1 Present Intake Method in Left Bank

(2) Water Quality

Water quality is shown in Table 5-1.

(3) Reconstruction Plan

Structures of intake facilities are shown **Figure 5-2**, and layout of facilities is shown in **Figure 5-3**.

6. Improvement of Water Distribution Network

Figure 6-1 shows division of proposed distribution network, and pump stations are only Boz-su and Mirzo-Ulbek. **Figure 6-2** shows calculated pressure level of the city by proposed network.

	• • • •								
IP Name			ŀ	Kibray Righ	t	Kibray Left			
Analyz	ed Well N	Number	20			32			
Constituent	Unit	Standard Value	Average	Range	Out of standard	Average	Range	Out of standard	
Color	degree	20	0	0		0			
Taste	number	2	0	0		0			
Odor	number	2	0	0		0			
Turbidity	mg/l	1.5	0	0		0			
pH value		6 - 9	7.2	7.15-7.25		7.4	7.17-7.5		
Total Hardness	meq/l	7	5.9	5.75-6.4		4.0	3.1-4.5		
Ammonia (NH4)	mg/l	0	0	0		0	0		
Nitrite (NO2)	mg/l	3	0	0		0	0		
Nitrate (NO3)	mg/l	45	36.9	20-57	8	8.0	5.31-12.55		
Cloride (Cl)	mg/l	250	9.9	7.5-11		10.4	9.5-14		
Total Iron (T-Fe)	mg/l	0.3	0	0		0	0		
Sulphate (SO4)	mg/l	400	65.0	46-78.5		51.1	41.5-67		
Total Solids (TDS)	mg/l	1000	411	380-432		223	158-260		

 Table 5-1 Water Quality in Kibray IP(2003)

7. Replacement of Pipeline

 Table 7-1Diameter Range and Suitable Pipes Material for Replace

Diameter Range	Cu	rrent materia	Suitable materials	
	Steel	Cast Iron	Total	
25-150	253.4	18.6	272.0	Vinyl chloride pipe
200-600	77.4	47.3	124.7	Ductile iron pipe
700-1400	25.3	0	25.3	Steel pipe
Total	356.1	65.9	422.0	

8. Schedule of Project

Item	Facility	2004	2005	2006	2007	2008	2009	2010	2011
EBRD	Kadirya Intake P/S								
Project									
	Pipes Replacement								
Feasibility St									
Detailed Des									
Bidding									
Construction	Pipe Replacement								
	and Improvement								
	Kadiriya								
	Replacement and								
	Kibray								
	Reconstruction								
	Mirzo-Ulgbek P/S								
	Boz-su P/S								

Figure 8-1 Schedule of Project

9. Reduction of Operation Cost

	Unit cons	umption	Water Distribution		Electric	city Consu	Cost		
Name	kwh	/m ³	103m3/d		106kwh/y103kwh/d		106kwh/y	106Soum/y	
	2002	2015	2002	2015	2002	2015	2015	2002	2015
Kadirya	0.11	0.11	2100.0	1138.0	80.3	125.2	45.7	642.4	365.5
Kibray	0.34	0.11	353.5	373.0	54.6	41.0	15.0	436.8	119.8
Booster P/S	0.12	0.06	2900.0	1511.0	88.2	22.0	8.1	705.6	8.1
Others			446.5	0.0	51.0	0.0	0.0	408.0	0.0
Total			2900.0	1511.0	274.1	188.2	68.8	2192.8	493.4

Table 9-1 Electricity Cost

Table 9-2 Chemical cost

	Chemical Name	Unit consumption		Distrib	oution	Cons	umption	Cost	
Name		mg/L		103n	n3/d	t/d	t/year	106Soum/y	
		2002	2015	2002	2015	2015	2015	2002	2015
Kadirya	Coagulant	2.0	10.0	2,100.0	1,138.0	11.4	4,153.7	165.3	447.8
	Liquid Chlorine	0.7	0.7		1,138.0	0.8	282.5	83.7	45.2
Kibray	Chlorine	0.4	0.4	353.5	373.0	0.1	49.0	7.5	7.8
Others	Coagulant			446.5				113.0	0.0
	Liquid Chlorine							14.8	0.0
	Solid Chorine							9.7	0.0

The Study on Restructuring of Water Supply System of Tashkent City in the Republic of Uzbekistan

Figure 6-1 Location of Distribution Zones

Figure 6-2 Pressure Distribution in Target Year