| Japan International Co<br>The Department o<br>Ministry of Foreign Affai | SUPPORTING REPORT-2      |
|-------------------------------------------------------------------------|--------------------------|
| <b>Brd R</b><br>VOLUME FOUR : SUP                                       | 3rd Report               |
| Third F<br>The Study on Tsunami                                         | The Study or<br>and Deve |

YACHIYO ENGINEERING CO., LTD. NIPPON KOEI CO., LTD.

Tsunami Recovery, Rehabilitation lopment of Islands in Maldives

February 2006



Cooperation Agency (JICA)

of External Resources, irs, Republic of Maldives

# eport **PORTING REPORT-2**

# Report of Recovery, Rehabilitation and Development of Islands in Maldives

February 2006



# VOLUME 3:

# SUPPORTING REPORT -2

THE THIRD REPORT OF THE STUDY ON TSUNAMI RECOVERY, REHABILITATION AND DEVELOPMENT OF ISLANDS IN THE MALDIVES

# TABLE OF CONTENTS

# 3<sup>rd</sup> Report

# The Study on Tsunami Recovery, Rehabilitation and Development of Islands in the Republic of Maldives

# **VOLUME ONE: SUMMARY REPORT**

# **VOLUME TWO: MAIN REPORT**

# PART ONE: Project Finding

# Chapter 1 Introduction

| 1.1 | Background of the Study           | 1-1 |
|-----|-----------------------------------|-----|
| 1.2 | Objectives of the Study           | 1-1 |
| 1.3 | Study Area                        | 1-2 |
| 1.4 | Scope of the Study                | 1-2 |
| 1.5 | Schedule of the Study and Reports | 1-3 |
| 1.6 | Contents of the Third Report      | 1-4 |

# Chapter 2 Project Finding

| 2.1 | Method and Procedure for Project Findings2 | <u>?</u> -1 |
|-----|--------------------------------------------|-------------|
| 2.2 | Criteria for Selecting Projects            | 2-2         |
| 2.3 | Candidate Project List                     | <u>2-3</u>  |

# Chapter 3 Summary and Progress of the Study

| 3.1 | Short-term Projects              | .3-1 |
|-----|----------------------------------|------|
| 3.2 | Medium-term Projects             | 8-17 |
| 3.3 | Community Based Recovery Project | 3-27 |

# Chapter 4 National and Regional Development Context

| 4.1 | National Development Context | 4-1  |
|-----|------------------------------|------|
| 4.2 | Regional Development Context | 4-12 |

# PART TWO: Project Descriptions

| Chap | oter 5 Multi-purpose Building and Island Office  | 5-1  |
|------|--------------------------------------------------|------|
| 5.1  | Introduction                                     | 5-1  |
| 5.2  | Present Conditions of the Construction Site      | 5-2  |
| 5.3  | Planning and Design Policies                     | 5-4  |
| 5.4  | Room Requirements                                | 5-5  |
| 5.5  | Cost Estimation                                  | 5-8  |
| 5.6  | Construction and Implementation Plan             | 5-11 |
| 5.7  | Description of Solar Power Generation System     | 5-11 |
| Chap | oter 6 Island Harbours and Causeways             | 6-1  |
| 6.1  | Introduction                                     | 6-1  |
| 6.2  | Port and Harbour Development in Transport Sector | 6-3  |
| 6.3  | Planning Policy and Alternatives                 | 6-10 |
| 6.4  | Design of Marine Facilities and Structures       | 6-14 |
| 6.5  | Construction and Project Implementation          | 6-62 |
| 6.6  | Cost Estimation                                  | 6-77 |
| 6.7  | Recommendations                                  | 6-90 |
| Chap | oter 7 Power Supply                              | 7-1  |
| 7.1  | Introduction                                     | 7-1  |
| 7.2  | Present Conditions                               | 7-1  |
| 7.3  | Planning and Design Policies                     | 7-2  |
| 7.4  | Cost Evaluation                                  | 7-2  |
| 7.5  | Construction and Implementation Plan             | 7-3  |
| 7.6  | Technical Specification of Equipment             | 7-8  |
| 7.7  | Recommendations                                  | 7-11 |
| Chap | oter 8 Sewerage System                           | 8-1  |
| 8.1  | Introduction                                     | 8-1  |
| 8.2  | Present Condition in Isdhoo Island               | 8-3  |
| 8.3  | Planning and Design Policies                     | 8-5  |
| 8.4  | Cost Estimation                                  | 8-20 |
| 8.5  | Construction and Implementation Plan             | 8-24 |
|      |                                                  |      |

| Chapter | r 9 Alternative Communication and Network         | 9-1  |
|---------|---------------------------------------------------|------|
| 9.1     | Introduction                                      | 9-1  |
| 9.2     | Telecommunications in the Maldives                | 9-2  |
| 9.3     | Impact of Tsunami                                 | 9-10 |
| 9.4     | Alternative Communication and Network Development | 9-13 |
| 9.5     | Preliminary Cost Estimation                       | 9-40 |
| 9.6     | Preliminary Implementation Schedule               | 9-43 |
| 9.7     | Recommendations                                   | 9-45 |

# Chapter 10 Environmental Considerations

| 10.1 | Introduction                                                  | 10-1  |
|------|---------------------------------------------------------------|-------|
| 10.2 | Environmental Legislation in the Maldives                     | 10-2  |
| 10.3 | IEE of the Reconstruction of the 11 Island Harbours           | 10-4  |
| 10.4 | IEE of the Reconstruction of the Two Causeways in Laamu Atoll | 10-12 |
| 10.5 | EIA of the Upgrading of the Sewerage System in Ishdoo Island  | 10-17 |
| 10.6 | Recommendations                                               | 10-23 |

# Chapter 11 Economic and Financial Considerations

| 11.1 | Introduction                                  |
|------|-----------------------------------------------|
| 11.2 | Present Conditions of Economy in the Maldives |
| 11.3 | Preliminary Economic and Financial Analysis   |
| 11.4 | Recommendations                               |

Chapter 12 Community Based Recovery Project (Demonstration Project in Laamu Fonadhoo)

| 12.1 | Outline of the Project     | 12-1 |
|------|----------------------------|------|
| 12.2 | Framework of the Project   | 12-2 |
| 12.3 | Activities in the Project  | 12-6 |
| 12.4 | Supervision of the Project |      |
| 12.5 | Monitoring of the Project  |      |

# VOLUME TRHEE: SUPPORTING REPORT-1: Tender Documents for Short-term Projects

- S1-1 Rehabilitation of Power Distribution System
- S1-2 Recovery and Development of Causeways
- S1-3 Redevelopment of Administrative Facilities
- S1-4 Upgrading of Sewerage System

# VOLUME FOUR: SUPPORTING REPORT-2: Miscellaneous

- S2-1 Reference Data on Marine Transport Sector
- S2-2 Reference Data on Telecommunication Sector
- S2-3 Scope of Work
- S2-4 Minutes of Meeting
- S2-5 Requests of the Maldives Side and Changing Situation of the Study Contents
- S2-6 List of Parties Concerned
- S2-7 Study Team Member List
- S2-8 Presentation Materials at Seminar in Male'

# S2-1: REFERENCE DATA ON MARINE TRANSPORT SECTOR

# S2-1(1) : NATURAL CONDITIONS

#### 1 Introduction

This section deals with the outline of natural conditions covering Laamu Atoll and Thaa Atoll where the 14 project sites are located. Major concern is the general marine, oceanographic and geotechnical conditions, since projects are covering Coastal Protection Works, Repairing Damaged Causeways and Repairing and/or Reconstruction of Island Harbours.

Thaa Atoll is about 200 km to the south from Male and Laamu Atoll is located in about 50 km further south. These two Atolls are located the south end of an Atoll group that Male is also belonging to. Thaa and Laamu Atolls are separated by about 20 km by Veymandhoo channel.

Thaa Atoll (population is 9,305, Capital Veymandhoo, inhabited islands are 13 out of 68 islands) is a massive circular reef embracing 700 km<sup>2</sup> of ocean. Maldivians sail cautiously in these waters. Entry and exit are only through a few narrow passages. The eastern rim of the reef is dotted with many deserted islands, sandbanks and local villages, some separates only by knee-deep lagoons. Laamu Atoll (population is 11,588, Capital Fonadhoo, inhabited islands are 12 out of 83 islands) is located 25 km beyond Veymandhoo Channel and is 40 km long and 25 km wide.

#### 2 Climatic Conditions

#### (1) General Climate in Maldives

The general climatic conditions depend on the location of the site and surrounding atmosphere environment. It is no doubt that Maldives is governed more by oceanographic circumstances rather than the influence by the atmosphere of the nearby continent.

#### (2) Temperature

The daily temperatures vary little throughout the year with a mean annual temperature of 28 . The mean daily minimum temperature recorded for Male' during 2003 was 25.4 and the daily mean maximum temperature for the same year was 31.1 .

The highest temperature ever recorded in the Maldives was 36.8 , recorded on 19 May 1991 at Kadhoo Meteorological Office. Likewise, the minimum temperature ever recorded in the Maldives was 17.2 recorded on 11 April 1978at the National Meteorological Center.

#### S2.1 - 1

#### (3) Rainfall

Rainfall in Maldives varies from north to south with the amount of rainfall increasing towards the south. This difference in rainfall patterns is primarily due to the NE monsoon period and April being much drier in the north than in the south. Rainfall patterns are measured throughout the country by 8 rainfall stations and it is evident that there are variations in rainfall from north to south through the atoll chain, with the north being drier and the south wetter. Average monthly and annual rainfall for Male' are 162.4mm and 1,948.4mm respectively. There are considerable inter-annual variation in rainfall from 1,407mm to 2,707mm over the last 30 years.

#### (4) Humidity

The Maldives has a warm and humid tropical climate. The weather is dominated by two monsoon seasons: the north-east (dry) monsoon season from January to March and the south-west (rainy) monsoon season from May to November when winds blow predominantly from either of these two directions. The annual average relative humidity ranges from 73% to 85%.

#### (5) Wind Record and Data Sources

Wind directions in the area are seasonal and governed mainly by two monsoon seasons: the NE monsoon (December to March) and SW monsoon (June to September). Slightly stronger winds are associated with winds from the west, typical of the SW monsoon season. On average, wind speeds vary between 7-12 knots. The sever monsoon months are typically May, June and July during the early part of the SW monsoon, and September and October in the latter half. Squally gusty wind of 50-60 knots has been recorded at Male' (DoM, 2000).

| Unit: Khots |      |       |      |       |      |       |      |       |      |       |       |
|-------------|------|-------|------|-------|------|-------|------|-------|------|-------|-------|
| Month       | 2000 |       | 2001 |       | 2002 |       | 2003 |       | 2004 |       | Mean  |
| WOITT       | Dir  | knots | Speed |
| Jan         | NE   | 11    | NE   | 10    | ENE  | 11    | ENE  | 12    | ENE  | 12    | 11    |
| Feb         | VRB  | 6     | VRB  | 6     | ENE  | 11    | ENE  | 9     | ENE  | 8     | 8     |
| Mar         | VRB  | 6     | ENE  | 6     | ENE  | 8     | E    | 7     | Ν    | 7     | 7     |
| Apr         | W    | 10    | W    | 7     | VRB  | 5     | VRB  | 5     | W    | 6     | 7     |
| May         | W    | 10    | W    | 11    | W    | 10    | W    | 10    | W    | 14    | 11    |
| Jun         | W    | 12    | W    | 11    | WNW  | 12    | W    | 9     | W    | 10    | 11    |
| Jul         | WNW  | 10    | WNW  | 11    | WNW  | 11    | WNW  | 7     | W    | 10    | 10    |
| Aug         | W    | 10    | WNW  | 10    | W    | 10    | W    | 10    | W    | 8     | 10    |
| Sep         | W    | 10    | W    | 10    | W    | 8     | W    | 9     | W    | 9     | 9     |
| Oct         | WNW  | 10    | W    | 12    | W    | 11    | W    | 10    | W    | 6     | 10    |
| Nov         | VRB  | 8     | W    | 8     | W    | 7     | VRB  | 7     | E    | 7     | 7     |
| Dec         | ENE  | 9     | ENE  | 11    | ENE  | 9     | ENE  | 10    | ENE  | 11    | 10    |

Table 1.1 Monthly Average Wind in Hulhule

.. .. .

Note: VRB means variable directions.

Source: Department of Meteorology

|         |                                |    |    |    |    |    |    |    | ι    | init: Knots |
|---------|--------------------------------|----|----|----|----|----|----|----|------|-------------|
|         | Wind direction                 |    |    |    |    |    |    |    |      | Mean        |
|         | Percentage of observation from |    |    |    |    |    |    |    |      | wind        |
| Month   | Ν                              | NE | E  | SE | S  | SW | W  | NW | Calm | speed       |
| Jan     | 16                             | 51 | 13 | 1  | 1  | 2  | 4  | 9  | 3    | 7           |
| Feb     | 25                             | 45 | 11 | 1  | 1  | 3  | 5  | 7  | 2    | 8           |
| Mar     | 23                             | 24 | 4  | 4  | 7  | 1  | 8  | 20 | 9    | 8           |
| Apr     | 6                              | 3  | 2  | 2  | 6  | 18 | 36 | 20 | 7    | 8           |
| May     | 2                              | 2  | 2  | 1  | 6  | 25 | 46 | 12 | 4    | 9           |
| Jun     | 2                              | 2  | 1  | 6  | 13 | 29 | 29 | 12 | 6    | 8           |
| Jul     | 2                              | 1  | 2  | 9  | 17 | 33 | 23 | 7  | 6    | 8           |
| Aug     | 2                              | 1  | 1  | 7  | 9  | 17 | 42 | 13 | 8    | 7           |
| Sep     | 3                              | 1  | 1  | 4  | 7  | 21 | 36 | 19 | 8    | 8           |
| Oct     | 5                              | 1  | 1  | 5  | 8  | 13 | 37 | 23 | 7    | 9           |
| Nov     | 12                             | 3  | 2  | 1  | 5  | 14 | 28 | 29 | 5    | 8           |
| Dec     | 15                             | 30 | 6  | 8  | 1  | 6  | 9  | 20 | 5    | 7           |
| Average | 9                              | 14 | 4  | 4  | 7  | 15 | 25 | 16 | 6    | 8           |

#### Table 1.2 Wind Observations in Kulhudhuffushi

Source: West Coast of India Pilot, 1975

Compiled 1945-1965, Male' (6 Years Only)

|       |    |                                 |    |      |            |    |    |      |      | Unit: Knots |
|-------|----|---------------------------------|----|------|------------|----|----|------|------|-------------|
|       |    |                                 |    | Wine | d directio | n  |    |      |      | Mean        |
|       |    | Percentage of observations from |    |      |            |    |    | wind |      |             |
| Month | N  | NE                              | E  | SE   | S          | SW | W  | NW   | Calm | speed       |
| Jan   | 25 | 14                              | 2  | 1    | 1          | 2  | 14 | 36   | 5    | 7           |
| Feb   | 40 | 24                              | 10 | 1    | 0          | 0  | 1  | 19   | 5    | 8           |
| Mar   | 34 | 12                              | 1  | 4    | 3          | 7  | 9  | 26   | 4    | 7           |
| Apr   | 8  | 6                               | 10 | 14   | 9          | 12 | 17 | 18   | 6    | 8           |
| May   | 4  | 2                               | 3  | 21   | 20         | 14 | 21 | 7    | 8    | 9           |
| Jun   | 3  | 3                               | 7  | 25   | 29         | 16 | 8  | 5    | 4    | 8           |
| Jul   | 4  | 1                               | 3  | 27   | 27         | 20 | 8  | 4    | 6    | 7           |
| Aug   | 2  | 4                               | 17 | 24   | 25         | 11 | 12 | 3    | 2    | 7           |
| Sep   | 4  | 2                               | 4  | 27   | 24         | 14 | 12 | 7    | 6    | 8           |
| Oct   | 4  | 2                               | 3  | 8    | 15         | 26 | 25 | 14   | 3    | 9           |
| Nov   | 5  | 3                               | 5  | 7    | 6          | 19 | 26 | 24   | 5    | 8           |
| Dec   | 10 | 6                               | 1  | 1    | 7          | 8  | 26 | 35   | 6    | 7           |
| Ave.  | 12 | 7                               | 6  | 13   | 14         | 12 | 15 | 16   | 5    | 8           |

#### Table 1.3 Wind Observations in Hithadhoo

Source: West Coast of India Pilot, 1975 Compiled 1945-1965, Gan (7 Years Only)

The Department of Meteorology indicates the monthly wind data at L.Kadhoo, which is located in Laamu Atoll and closest wind observation point. The data is shown in Table 1.4.

- High wind speed is experienced in May and September at the time of seasonal changes. Among these, the winds in May present the most sever situation. The maximum wind speed is from WSW and its intensity is 22 knots or 11m/ sec or more.
- The maximum wind speed recorded should be referred to for estimation of design wave

strength. According to the Maandhoo Fishing Port design, the wind speed is 23 m/sec (or 46 knots) for estimating the design wave. Maandhoo port is located at the same inner reef flat side, like Fonadhoo Island Harbour and Causeways. Refer to Table 6.5.6.

| [     |                    |       | M/lin al Cir | (1( + - ) |       |     | M = !     |
|-------|--------------------|-------|--------------|-----------|-------|-----|-----------|
| Month | wind Speed (Knots) |       |              |           |       |     |           |
| WOITT | > 22               | 17-21 | 11-17        | 7-11      | 4-7   | 1-4 | Direction |
| Jan   |                    |       | NE           | NE        | NE    |     | NE        |
| Feb   |                    |       |              | NNE       | NNE   |     | NNE       |
| Mar   |                    |       |              | W         | W, NE |     | W         |
| Apr   |                    |       | W, WSW       | W, SW     | SW, W |     | W, WSW    |
| May   | WSW                | WSW   | W            |           |       |     | W         |
| Jun   |                    |       | WSW          | WSW, SW   |       |     | WSW, SW   |
| Jul   |                    |       | W            | WSW, W    | W     |     | W         |
| Aug   |                    |       | W            |           | SW    |     | W         |
| Sep   |                    | W     | WSW, W       | SW, W     |       |     | W         |
| Oct   |                    |       | WSW          | SW, W     | W     |     | W, SW     |
| Nov   |                    |       | WNW          | WNW, W    | W     |     | WNW, W    |
| Dec   |                    |       | NE           | NE        | NE, N |     | NE, N     |

Table 1.4 Monthly Wind Data in Kadhoo

Source: Department of Meteorology

# 3 Oceanographic Condition

(1) General Oceanographic Conditions and Data Sources

The available data is mostly belong to the reports of previous projects, including MPA ports construction projects, Study Report of Male Sea Defense Works and Maandhoo Fisheries Port Study Report.

(2) Tide and Data Sources

1) Assumed Tide at Project Site: Laamu Atoll and Thaa Atoll

Tide data are collected at four locations, namely,

- Kulhudhuffushi, Haa Dhaalu Atoll (Latitude 07.37N, Longitude 073.04E)
- Hulhule, Male' (Latitude 04.11N, Longitude 076.32E)
- Maandhoo, Laamu Atoll (Latitude 02.10N, Longitude 073.30E)
- Gan, Addu Atoll (Latitude 00.37S, Longitude 073.05E)

Among these, tidal data at Hulhule and A. Gan are given by the Department of Meteorology. Design tide data of the projects at four locations are indicated as follows:

| No. | Location       | HHWL  | HWL   | MSL   | LWL   | LLWL   | LAT*  |
|-----|----------------|-------|-------|-------|-------|--------|-------|
| 1   | Male           | -     | +1.34 | +0.64 | -     | -      | ±0.00 |
| 2   | Maandhoo       | -     | +1.20 | +0.65 | +0.10 | -      | ±0.00 |
| 3   | Kulhudhuffushi | +1.33 | -     | +0.72 | -     | ± 0.00 | -     |
| 4   | Hithadhoo      | +1.41 | -     | +0.75 | -     | ± 0.00 | -     |

# Table 1.5 Tide at Male, Maandhoo, Kulhudhuffushi and Hithadhoo

Unit: m

Note: LAT is Lowest Astronomical Tide

Male' and Maandhoo are similar in tidal conditions. Maandhoo is located in Laamu Atoll and close to the project sites. However, tide of Male' is used for the project since it has higher water rises.

# 2) Applied Tide during Site Investigation in April and May 2005

Since no survey benchmarks exist at the project site, survey by the Team was based on the sea level, variation of which is known as the Tide Table, indicating daily high water and low water with time. The Team converted this into hourly data and used it for survey purposes. Tide Table of A. Gun was used; it indicates average value.

# (3) Currents

1) General View on the Currents

It is believed that ocean current generally changes its direction by season. This current keeps its direction in the open sea then changes gradually approaching the atoll and island. The current regime in the Indian Ocean is strongly influenced by the monsoon climate. In the region of the Maldives, the currents flow westward during NE monsoon season, and they flow eastward during the SW monsoon season. The ocean currents flowing through channels between the atolls are driven by the monsoon winds. Generally, tidal currents are eastward in flood and westward in ebb. At the outer east coast of atoll, general pattern of flow is as follows:

- Offshore waves is 1.5 to 2.5 m
- Breaking at reef edge then wave height is 0.5 to 1.0 m
- Simultaneously the water level raises modifying kinetic energy to static one
- On propagating on the flat reef, the wave further losses its energy by bottom friction and the wave height became lower to 0.3 ~ 0.6 m, and this wave height is regulated with the water depth too.
- In case island is on the route, waves hit the beach and generate coastal current that further travels along the beach shallow water. And finally, it return its head to the reef edge, then ocean.
- In case flat reef and no island, waves are propagating through and changing its energy into

#### current, then to lagoon.

#### 2) In and Out Water Level Difference at Fonadhoo Causeway

Water level changes from time to time. It is observed that there is water head difference between the east side water and west side water. Observed head difference ranges between 25 to 35 cm. It is observed that the water level on outer side is always higher than that of inner side. It is the major reason why water flows always to lagoon side.

#### 3) Current Pattern by the Sea Bottom Configuration at Site

Current pattern on the sea bottom shows the general water flow. Flow goes to the back site and goes through the passage to another site. If no passage, water current will be forced to return to reef flat then the open ocean as discussed above. It is believed that the sea bottom level (if only smooth) changes before the construction of existing causeways. The Team found that there is an elevation gap of 0.5 m between the east side (outer reef) and southwest side (inner reef). It is concluded that the west side was affected by siltation and deposits by fine sand settlement due to the low speed current. Construction of causeway automatically cuts down the natural sea water passing. The western area was shaped as a catchments area of sand. This indicates the necessity of careful design of causeway taking the possible deeper water by 0.5 to 1.0 m at the west side of causeway after the openings (bridge and box culverts) are provided. This indicated necessity of deeper foundation of slope protection works.

(4) Waves

#### 1) General Conditions

The wave condition in Maldives is rather moderate. No serious cyclone is recorded. The swells and wind waves experienced by the Maldives are conditioned by the prevailing biannual monsoon wind directions, and are typically strongest during April-July in the SW monsoon season. During this season, swells generated north of the equator with heights of 2-3 m with periods of 18-20 sec have been reported in the region. However, the Maldives also experiences swells originating from cyclones and storm events occurring well south of the equator.

It is reported that the swell waves from SE to SSE occur due to strong storms in the southern hemisphere in the area west of Australia with direction towards the Maldives. The swell waves that reached Male' and Hulhule in 1987 had significant wave heights on the order of 3 m (JICA, 1987). Local wave periods are generally in the range 2-4 seconds and are easily distinguished from the swell waves.

# 2) Waves in front of Causeway Fishing Port Site at Laamu Atoll

The Study Team observed that all offshore waves are breaking at the edge to the outer reef. This is common in similar conditions. After this breaking, wave intensity is significantly decreased, then bottom friction at shallow flat reef will further consume the wave energy resulting in lower wave height.

# 3) Wave Data at Maandhoo

The Team collected the available wave data. Among these Maandhoo is the closest location to the project sites. Wave adopted in the Maandhoo fisheries port is as follows:

#### Table 1.6 Design Wave Conditions at Maandhoo; Significant Waves

|   | Study                      | Offshore Wave Height (m)<br>In Lagoon | Period<br>(sec.) | Fetch<br>(km) | Wind<br>(m/s) |
|---|----------------------------|---------------------------------------|------------------|---------------|---------------|
| 1 | Structural Stability Study | 2.3                                   | 5.0              | 21            | 23            |
| 2 | Calmness Study             | 0.8                                   | 3.3              |               |               |

Note: Calmness study is carried out to achieve 94 % utilization of harbour

# 4) Wave Data at Male Main Island

Wave data at Male Main Island constructed by MPA was collected. Wave data are presented in the following table;

| No. | Direction | Ho(m)* | T (sec) | Notes                                  |
|-----|-----------|--------|---------|----------------------------------------|
| 1   | NW        | 1.20   | 4.6     | Applied to West coast shore Protection |
| 2   | SW        | 1.60   | 6.7     |                                        |
| 3   | SE        | 2.60   | 14.5    |                                        |

Note: 1. Ho ; Significant Offshore Wave Height

2. Design Wave of North coast shore protection is H1/3=0.60 m, T=4.6 sec.

#### 5) Application to the Project

The Team estimated the design wave height using SMB system for the island harbours in the Laamu Atoll. Estimation method is SMB system. Distance on which wind blow (fetch) is fixed as 21 km of Laamu.

|   |                  |     |     | Wind Speed | m/ sec |     |
|---|------------------|-----|-----|------------|--------|-----|
|   |                  | 17  | 20  | 23         | 26     | 29  |
| 1 | Wave Height in m | 1.9 | 2.3 | 2.5        | 2.8    | 3.1 |
| 2 | Periods in sec.  | 5.1 | 5.6 | 5.9        | 6.1    | 6.4 |

#### Table 1.8 Wind Wave Estimation at Laamu Atoll

Data is similar to the wave forecast data at the Maandhoo Fishing Port. Wave data at Maandhoo Fishing Port is applied for the project site in Laamu Atoll and Thaa Atoll. Actual design wave will be reduced by seabed friction of flat reef.

# 4 Geotechnical Conditions

# (1) General Conditions

In the Maldives, the structure of the reef flats generally consists of layers of either coral sand, soft or hard coral rock and is usually overlaid with a relatively thick layer of coral sand. On the lagoon side of the reef edge the reef is mostly covered with dead corals and a few colonies of live corals. The cavities between the coral heads are constantly being filled up with coral sand and pieces of broken and dead corals and will ultimately become a substantially hard cemented material.

The Study Team is undertaking geotechnical investigation at the Causeway No.2 at Kadhoo. It is expected to complete the soil boring to assure the foundation of bridge and causeway main dike structures by the end of August 2005.

# (2) Geotechnical Data at Three Locations

Available geotechnical conditions are collected to assume the site conditions. The nearest soil data is four boring undertaken for design of the Maandhoo fisheries port located within 500m from the Causeways No.1 at Kadhoo. It shows that the general composition of layers are sandy layers and the bearing stratum is appearing at 12 m below the Datum, LAT. Table 6.5.9 shows subsoil conditions at Laamu Maandhoo.

| No. | Nature of soil     | Depth (DL. m) | N-value |
|-----|--------------------|---------------|---------|
| 1   | Soft ~ Medium sand | +2.0~ -12.0   | 5 ~ 20  |
| 2   | Hard sand          | > - 12.0      | > 40    |

 Table 1.9
 Subsoil Conditions at Laamu Maandhoo

Collected soil data other than those of the Maandhoo are as follows (Tables 1.10 ~1.11);

| No. | Nature of soil      | N-value | Unconfined<br>Compression<br>Strenath (ka/cm <sup>2</sup> ) | Limit bearing capacity<br>(tf/m <sup>2</sup> ) |        |
|-----|---------------------|---------|-------------------------------------------------------------|------------------------------------------------|--------|
|     |                     |         |                                                             | Range                                          | Design |
| 1   | Coral Sand & Gravel | 3 ~ 33  | -                                                           | 16~22                                          | 16     |
| 2   | Coral Rock          | 2 ~ 50  | 5 ~ 135                                                     | 45 ~ 60                                        | 45     |

Table 1.10 Subsoil Conditions at Male Main Island

The subsoil condition at Seem Hithadhoo for reference is shown as follows;

| Boring No. | Depth (DL.m)    | Nature of soil                                              | N-value     |
|------------|-----------------|-------------------------------------------------------------|-------------|
| 1          | - 5.8~ - 6.4 m  | White pieces of coral with coral sand                       | -           |
|            | - 6.4 ~ - 9.0 m | Whitish coral rock                                          | 28 < N < 38 |
|            | - 9.0~ - 10.0 m | White coral sand with pieces of coral                       | 17          |
| 2          | ±0.0~ - 2.0 m   | White coral rock boulders with coral sand                   | 24 < N < 28 |
|            | - 2.0~ - 4.0 m  | White fine grained coral sand with pieces of coral and rock | 9 < N < 14  |
|            | - 4.0~ - 5.0 m  | Whitish coral rock                                          | 34          |

Table 1.11 Subsoil Condition at Seem Atoll Hithadhoo

In connection with dredging works for the regional development project the coral formation have been classified as shown in Table 6.5.12. This classification is used for the present Maldives Ports Development Project for simplicity.

| Soil Class | Description                                                          | Criteria (N-value from SPT) |
|------------|----------------------------------------------------------------------|-----------------------------|
| 1          | Loose coralline sands without any cohesion,<br>Cementation etc.      | N < 10                      |
| 2          | White coral sands with inter-bedded thin<br>Layers of cemented soils | 10 < N < 30                 |
| 3          | White coral rock                                                     | 40 < N < 70 (average N=60)  |
| 4          | White coral rock                                                     | 70 > N                      |

Table 1.12 Classification of Soil

Source ; Regional Development Project (RDP)

# (3) Application to the Project

It is proposed that soil data at Maandhoo fishing port is tentatively applied to the project site. Since Maandhoo is the closest location to the project site where the data is available. Figures 6.5.1 and 6.5.2 6.4.2 show boring location and assumed soil stratum in Maandhoo fishing port. The soil properties in Maandhoo Fishing Port is assumed from surface soil to about -12 m stratum loose coralline sands and N-value average  $10 \sim 20$ , more than -12 m stratum dense white coral sands and N-value more than 40. However this data will not be applied to the Causeway No.2 which located about 4,000m north of the port. The borehole position in Maandhoo Fishing Port is shown as follows Figure 1.1.

# (4) Soil Boring for the Project

The Study Team is undertaking soil borings in three numbers at the bridge site and two box culvert sites of Causeway No.2.



Figure 1.1 Location Map of Borehole Drilled for Maandhoo Fishing Port



Figure 1.2 Boring Profiles: Maandhoo Fishing Port Site



Figure 1.3 Proposed boring Location along the Proposed Causeway No.2

# 5 Underwater Investigation

#### (1) General Descriptions and Methods

Diving investigation was conducted to survey the underwater conditions of the damaged harbour structures. The extent of the damages were photographed and analyzed by the Study Team.

#### (2) Damaged Structures

Concrete lining works were not observed below water level. The underwater section of the quay wall were made from coral rocks. Some quay walls were entirely damaged and their crown concrete has fallen down into the seabed. In other quay walls, coral rock in mid layer has collapsed making a hollow indent in the wall. Fig. 1.4 shows an example of the damaged quay walls.

# (3) Findings in Harbour Basin

Harbour basin and channel bed were also investigated. Seabed at the harbour basin could not be investigated due to bad visibility and complicated mooring ropes. Seabed of the approach channel were usually composed of sand and coral rocks. Fig. 1.5 shows a typical seabed along the approaching channel. Live and dead corals were sometimes observed at the entrance of the channel, though at very low density.

# 6 Environmental Observation

Refer to Chapter 10

Maabaidhoo



Damaged quay wall foundation at Maabaidhoo





Damaged quay wall foundation at Maavah



Damaged quay wall foundation at Kinbidhoo

Submerged pre-cast concrete blocks of suspended quay wall construction at Dhiyamigili



Figure 1.4 Diving Investigation of Damage Island Harbour Structures - 1

Channel toe with marine organism and fish at Maavah



Sandy channel bottom with sea grassesd and

marine organism at Maavah



Coral rock breakwater and sandy channel bottom at Thimarafushi



Coral rock basement covered by silty soil at Thimarafushi



Fig. 1.5 Diving investigation for Damage Island Harbour Structures - 2

# 7 Topographic Conditions

# (1) Datum

Male' sea defense report which is financed by JICA indicates the datum is the lowest possible sea level or LAT (Lowest Astronomical Tide). Theoretically the sea level does not become lower than this. It is assumed that the survey of on-land topography will be carried out by the datum of Mean Sea Level; however, the datum for the project is set as LAT as applied in the Male sea defense project since boat users of the island harbour measure the water depth at low tide ensuring safety navigation and maneuverability in the harbour basin and approaching channel. The survey to be carried out by the Study Team is based on LAT.

# (2) Base Line

Topographic maps were used by the Team to identify the location and position of the project sites. Each island office has a map that is very useful to grasp the general view of town arrangement, community center and major access. It shows the island harbour, though not to scale. No causeway is covered in the maps. MTCA and MAC are conducting surveys of island harbour and causeways at Kadhoo for their preparation of reconstruction plan of damaged island harbours and causeways. It was also very timely for the works to be carried out by the Study Team. Since no topographic data was available as of the end of April 2005, the Study Team carried out outline topographic survey indicating the layout of harbours and major structural indications.

The survey carried out by the Study Team was by relative location method not by absolute location. Thus, it is recommended that complete topographic survey be carried out before starting the actual construction works.

# 8 Water Depth

Atoll consists of several segments and zones. Two target atolls namely; Laamu and Thaa, also show typical structural constitution and configuration as follows:

- Outer reef edge
- Outer flat reef (200 to 700 m wide, -0.5 to +0.5 m deep below Datum)
- Islands (200 to 700 m wide, +1.5 to 2.5 m in altitude)
- Inner flat reef (50 to 700 m wide, -0.5 to +0.5 m deep below the datum)
- Inner reef edge
- Lagoon (about 30 km wide, 20 to 30 m deep below the datum)

Note: Datum is LAT as used in Seawall Project at Male'.

All the island harbours and causeways are located in the inner flat reef zone. Boats calling the harbour should access the port through the artificially dredged channel, approximately -2.0 m below the datum. This makes a barrier against waves propagating to the coastal area. Offshore waves break at the outer reef edge, then reducing gradually in height. The floating equipment of contractor cannot approach the site without these artificial channels. Excavation of channel bed is frequently carried out by on-land equipment, not by dredges. Thus, dredging works or excavating works are required to provide the approach channel leading to the harbour basin.

The water depth survey carried out by the Study Team at the 17 sites is based on the Datum of LAT (Possible Lowest Astronomical Tide), calculating it theoretically. The tsunami damage information given by Island indicated affected of depth of 2 to 3 feet on the route where the Tsunami current passed. However, there is little evidence to support the stories. Seabed conditions at the channels show exposed coral, rocks and seaweeds indicating little sand deposit by tsunami. Refer to Fig. 1.6 for the preliminary sounding carried out by MTCA and the Study Team.



Figure 1.6 Fonadhoo and Dhiyamigili Island Harbours, General Plan

# S2-1(2) : DESIGN CALCULATIONS

- A. Coastal Protection
- B. Causeway
- C. Island Harbour

#### DESIGN CALCULATIONS

#### A. Coastal Protection

Technical study on the coastal protection was carried out for the following aspects;

- Crown Height (Wave run up)
- Weight (Size) of armor rock

#### 1. Design Conditions

(1) Design Tidal Level

- 1) H.W.L D.L.+1.43 m
- 2) L.W.L D.L.±0.00 m
- (2) Reef Level D.L.+0.5m ~ -0.5m
- (3) Design Wave of Reef
- 1) Wave Height Hrf=0.78m~1.25m
- 2) Wave Period T=5.0 sec
- (4) Permissible value of the Rate of Wave Overtopping

q<0.005 m³/s/m

#### Permissible value of the Embankment

|                                                | Rate     |
|------------------------------------------------|----------|
| Condition of Protection                        | (m³/s/m) |
| All surfaces are concrete covered.             | 0.05     |
| The crown is paved. There is no back pavement. | 0.02     |
| The crown is not paved.*                       | < 0.005  |

(5) Gradient of slope 1:2

| 2. C                          | 2. Calculation of the Crown Height D.L.+1.92m ~ +2.25m |                           |                            |                         |        |         |                 |  |  |  |  |  |
|-------------------------------|--------------------------------------------------------|---------------------------|----------------------------|-------------------------|--------|---------|-----------------|--|--|--|--|--|
| Reef<br>Depth<br>dr DL<br>(m) | Reef<br>Water<br>Depth<br>hrf(m)                       | Rise<br>Height<br>hsu (m) | Water<br>Depth<br>h'rf (m) | Reef Wave<br>Height Hrf | Hrf/Lo | hrf/Hrf | D.W.L<br>DL (m) |  |  |  |  |  |
| -1.50                         | 2.84                                                   | 0.01                      | 2.85                       | 1.72                    | 0.0441 | 1.6570  | 1.35            |  |  |  |  |  |
| -1.25                         | 2.59                                                   | 0.04                      | 2.63                       | 1.61                    | 0.0413 | 1.6335  | 1.38            |  |  |  |  |  |
| -1.00                         | 2.34                                                   | 0.06                      | 2.40                       | 1.49                    | 0.0382 | 1.6107  | 1.40            |  |  |  |  |  |
| -0.75                         | 2.09                                                   | 0.08                      | 2.17                       | 1.37                    | 0.0351 | 1.5839  | 1.42            |  |  |  |  |  |
| -0.50                         | 1.84                                                   | 0.10                      | 1.94                       | 1.25                    | 0.0321 | 1.5520  | 1.44            |  |  |  |  |  |
| -0.25                         | 1.59                                                   | 0.13                      | 1.72                       | 1.13                    | 0.0290 | 1.5221  | 1.47            |  |  |  |  |  |
| +0.00                         | 1.34                                                   | 0.15                      | 1.49                       | 1.01                    | 0.0259 | 1.4752  | 1.49            |  |  |  |  |  |
| +0.25                         | 1.09                                                   | 0.17                      | 1.26                       | 0.90                    | 0.0231 | 1.4000  | 1.51            |  |  |  |  |  |
| +0.50                         | 0.84                                                   | 0.19                      | 1.03                       | 0.78                    | 0.0200 | 1.3205  | 1.53            |  |  |  |  |  |

| Reef Depth | a/(2 ar Harf3)05 | hc/Ho' | hc   | Height of |
|------------|------------------|--------|------|-----------|
| dr DL (m)  | q/(2g• H110)0.0  |        | (m)  | Crown (m) |
| -1.50      | 1.57E-03         | 0.75   | 1.29 | +2.64     |
| -1.25      | 1.73E-03         | 0.73   | 1.18 | +2.56     |
| -1.00      | 1.94E-03         | 0.71   | 1.06 | +2.46     |
| -0.75      | 2.20E-03         | 0.68   | 0.93 | +2.35     |
| -0.50      | 2.53E-03         | 0.65   | 0.81 | +2.25     |
| -0.25      | 2.94E-03         | 0.60   | 0.68 | +2.15     |
| 0.00       | 3.48E-03         | 0.58   | 0.59 | +2.08     |
| 0.25       | 4.14E-03         | 0.55   | 0.50 | +2.01     |
| 0.50       | 5.13E-03         | 0.50   | 0.39 | +1.92     |

Where Reef Water Depth ; hrf = H.W.L.-dr (m)
Rising Height of Reef Tide;; hsu = 0.27-0.09hrf (m)
Water Depth after Rising ; h'rf = hrf+hsu (m)
Design Water Level ; D.W.L = h'rf+dr (m)
hc/Ho'→depends on Fig.-1 Example of Diagram to Estimate the Rate
of Wave Overtopping.



3. Calculation of the Weight of Armor Rock

The weight of rubbles or concrete blocks covering the slope surface of a structure receiving the action of wave force may be calculated by the following formula. W=  $r \cdot H^{3/{K_D \cdot (Sr-1)^3 \cot }}$ 

Where W: Minimum weight of rubbles or concrete block (tf)

 $\gamma$  r: Unit weight of rubbles or block in air (tf/m<sup>3</sup>)

Sr: Specific gravity of rubble or block to sea water

: Angle of the slope to horizontal plane (degrees)

H: Wave height (m)

KD: Constant determined by the arming material and damage rate

 $K_{D=}3.2$  (Damage rate 0 ~ 1%)

r=2.65 tf/m<sup>3</sup>

Sr = r/w = 2.57

w=1.03 tf/m3

tan =2.00

| Reef Depth | Reef Wave  | W     |
|------------|------------|-------|
| dr DL (m)  | Height Hrf | (tf)  |
| -1.50      | 1.72       | 0.544 |
| -1.25      | 1.61       | 0.447 |
| -1.00      | 1.49       | 0.354 |
| -0.75      | 1.37       | 0.275 |
| -0.50      | 1.25       | 0.209 |
| -0.25      | 1.13       | 0.154 |
| 0.00       | 1.01       | 0.110 |
| 0.25       | 0.90       | 0.078 |
| 0.50       | 0.78       | 0.051 |



#### B. Causeway

#### a. Current flow study

1. Box Culvert

(1) Basic Equation

 $H_1 + \ _1 \cdot v_1^2 / (2g) + ( \ x / 2) \cdot \{ (n_1 \cdot v_1 / R_1^{2/3})^2 + (n_2 \cdot v_2 / R_2^{2/3})^2 \} = H_2 + \ _2 \cdot v_2^2 / (2g)$ 

 $v_1=Q_1/A_1$ ,  $v_2=Q_2/A_2$ 

Note; Lower figure 1 and 2 show the downstream side and the upstream side

where, H: Water Depth =(Tide Level)-(Culvert bottom Level +0.65) (m)

- v: Flow velocity (m/s)
- Q: Flowing quantity (m<sup>3</sup>/s)

R: Hydraulic mean depth (m) R=A/(2H+B)

B: Width of Box B=1.30 m

A: Cross-sectional area of stream (m<sup>2</sup>) A=H\*B

n: Manning's coefficient of roughness n=0.012

x: Distance between sections x = 23.00 m

g: Acceleration of gravity (9.8 m/s<sup>2</sup>)

: Correction coefficient of energy = 1.1

#### (2) Calculation of flow velocity

| Tide I | Tide Level |      | Water Level |       | Sectional area   |       | Mean depth |  |
|--------|------------|------|-------------|-------|------------------|-------|------------|--|
| (DI    | , m)       | Н    | (m)         | Α (   | m <sup>2</sup> ) | R     | (m)        |  |
| East   | West       | East | West        | East  | West             | East  | West       |  |
| 1.34   | 1.09       | 0.69 | 0.44        | 0.897 | 0.572            | 0.335 | 0.262      |  |
| 1.29   | 1.04       | 0.64 | 0.39        | 0.832 | 0.507            | 0.322 | 0.244      |  |
| 1.24   | 0.99       | 0.59 | 0.34        | 0.767 | 0.442            | 0.309 | 0.223      |  |
| 1.19   | 0.94       | 0.54 | 0.29        | 0.702 | 0.377            | 0.295 | 0.201      |  |
| 1.14   | 0.89       | 0.49 | 0.24        | 0.637 | 0.312            | 0.279 | 0.175      |  |
| 1.09   | 0.84       | 0.44 | 0.19        | 0.572 | 0.247            | 0.262 | 0.147      |  |
| 1.04   | 0.79       | 0.39 | 0.14        | 0.507 | 0.182            | 0.244 | 0.115      |  |
| 0.99   | 0.74       | 0.34 | 0.09        | 0.442 | 0.117            | 0.223 | 0.079      |  |
| 0.94   | 0.69       | 0.29 | 0.04        | 0.377 | 0.052            | 0.201 | 0.038      |  |

| Tide | Tide Level |                      | Flowing quantity |         | Flow velocity |       | • v²/(2g) |  |
|------|------------|----------------------|------------------|---------|---------------|-------|-----------|--|
| (D   | Lm)        | Q(m <sup>3</sup> /s) |                  | v (m/s) |               | (m)   |           |  |
| East | West       | East                 | West             | East    | West          | East  | West      |  |
| 1.34 | 1.09       | 1.333                | 1.333            | 1.486   | 2.330         | 0.124 | 0.305     |  |
| 1.29 | 1.04       | 1.145                | 1.145            | 1.376   | 2.258         | 0.106 | 0.286     |  |
| 1.24 | 0.99       | 0.966                | 0.966            | 1.259   | 2.186         | 0.089 | 0.268     |  |
| 1.19 | 0.94       | 0.794                | 0.794            | 1.131   | 2.106         | 0.072 | 0.249     |  |
| 1.14 | 0.89       | 0.627                | 0.627            | 0.984   | 2.010         | 0.054 | 0.227     |  |
| 1.09 | 0.84       | 0.471                | 0.471            | 0.823   | 1.907         | 0.038 | 0.204     |  |
| 1.04 | 0.79       | 0.322                | 0.322            | 0.635   | 1.769         | 0.023 | 0.176     |  |
| 0.99 | 0.74       | 0.1833               | 0.1833           | 0.415   | 1.567         | 0.010 | 0.138     |  |
| 0.94 | 0.69       | 0.0602               | 0.0602           | 0.160   | 1.158         | 0.001 | 0.075     |  |

| Tide Level<br>(DL m) |      | h=(n• | v/R <sup>2/3</sup> )2 | (x/2)*     | Total H<br>Wate | Water<br>level |            |
|----------------------|------|-------|-----------------------|------------|-----------------|----------------|------------|
| East                 | West | East  | West                  | (h1+h2)(m) | East            | West           | difference |
| 1.34                 | 1.09 | 0.001 | 0.005                 | 0.069      | 0.814           | 0.814          | 0.000      |
| 1.29                 | 1.04 | 0.001 | 0.005                 | 0.070      | 0.746           | 0.746          | 0.000      |
| 1.24                 | 0.99 | 0.001 | 0.005                 | 0.071      | 0.679           | 0.679          | 0.000      |
| 1.19                 | 0.94 | 0.001 | 0.005                 | 0.073      | 0.612           | 0.612          | 0.000      |
| 1.14                 | 0.89 | 0.001 | 0.006                 | 0.077      | 0.544           | 0.544          | 0.000      |
| 1.09                 | 0.84 | 0.001 | 0.007                 | 0.084      | 0.478           | 0.478          | 0.000      |
| 1.04                 | 0.79 | 0.000 | 0.008                 | 0.097      | 0.413           | 0.413          | 0.000      |
| 0.99                 | 0.74 | 0.000 | 0.010                 | 0.122      | 0.350           | 0.350          | 0.000      |
| 0.94                 | 0.69 | 0.000 | 0.015                 | 0.176      | 0.291           | 0.291          | 0.000      |



#### 2. Bridge

# (1) Design Condition

Water Depth H=(Tide Level)-(Sea bottom Level -0.50) (m) Width of Bridge B=15.00 m Distance between sections x = 13.00 m

(2) Calculation of flow velocity

| Tide Level |      | Water | Level | Section | Sectional area |       | Mean depth |  |
|------------|------|-------|-------|---------|----------------|-------|------------|--|
| (DL m)     |      | H (m) |       | A (r    | m²)            | R (m) |            |  |
| East       | West | East  | West  | East    | West           | East  | West       |  |
| 1.34       | 1.09 | 1.84  | 1.59  | 27.6    | 23.85          | 1.478 | 1.312      |  |
| 1.24       | 0.99 | 1.74  | 1.49  | 26.1    | 22.35          | 1.412 | 1.243      |  |
| 1.14       | 0.89 | 1.64  | 1.39  | 24.6    | 20.85          | 1.346 | 1.173      |  |
| 1.04       | 0.79 | 1.54  | 1.29  | 23.1    | 19.35          | 1.278 | 1.101      |  |
| 0.94       | 0.69 | 1.44  | 1.19  | 21.6    | 17.85          | 1.208 | 1.027      |  |
| 0.84       | 0.59 | 1.34  | 1.09  | 20.1    | 16.35          | 1.137 | 0.952      |  |
| 0.74       | 0.49 | 1.24  | 0.99  | 18.6    | 14.85          | 1.064 | 0.875      |  |
| 0.64       | 0.39 | 1.14  | 0.89  | 17.1    | 13.35          | 0.990 | 0.796      |  |
| 0.54       | 0.29 | 1.04  | 0.79  | 15.6    | 11.85          | 0.913 | 0.715      |  |

| Tide Level |      | Flowing quantity     |       | Flow velocity |       | • v²/(2g) |       |
|------------|------|----------------------|-------|---------------|-------|-----------|-------|
| (DL m)     |      | Q(m <sup>3</sup> /s) |       | v (m/s)       |       | (m)       |       |
| East       | West | East                 | West  | East          | West  | East      | West  |
| 1.34       | 1.09 | 96.50                | 96.50 | 3.496         | 4.046 | 0.686     | 0.919 |
| 1.24       | 0.99 | 88.00                | 88.00 | 3.372         | 3.937 | 0.638     | 0.870 |
| 1.14       | 0.89 | 80.00                | 80.00 | 3.252         | 3.837 | 0.594     | 0.826 |
| 1.04       | 0.79 | 72.00                | 72.00 | 3.117         | 3.721 | 0.545     | 0.777 |
| 0.94       | 0.69 | 64.40                | 64.40 | 2.981         | 3.608 | 0.499     | 0.731 |
| 0.84       | 0.59 | 57.00                | 57.00 | 2.836         | 3.486 | 0.451     | 0.682 |
| 0.74       | 0.49 | 50.05                | 50.05 | 2.691         | 3.370 | 0.406     | 0.638 |
| 0.64       | 0.39 | 43.30                | 43.30 | 2.532         | 3.243 | 0.360     | 0.590 |
| 0.54       | 0.29 | 36.90                | 36.90 | 2.365         | 3.114 | 0.314     | 0.544 |

| Tide | Tide Level |         | / <b>D</b> 2/3)2                  | ( , , , , 0)*           | Total Head of |           | Water      |
|------|------------|---------|-----------------------------------|-------------------------|---------------|-----------|------------|
| (DI  | , m)       | n=(n• v | V/K <sup>2/3</sup> ) <sup>2</sup> | $(X/2)^{n}$             | Wate          | Water (m) |            |
| East | West       | East    | West                              | (III+II <u>2</u> )(III) | East          | West      | difference |
| 1.34 | 1.09       | 0.001   | 0.002                             | 0.017                   | 2.526         | 2.526     | 0.000      |
| 1.24 | 0.99       | 0.001   | 0.002                             | 0.018                   | 2.378         | 2.378     | 0.000      |
| 1.14 | 0.89       | 0.001   | 0.002                             | 0.018                   | 2.234         | 2.234     | 0.000      |
| 1.04 | 0.79       | 0.001   | 0.002                             | 0.018                   | 2.085         | 2.085     | 0.000      |
| 0.94 | 0.69       | 0.001   | 0.002                             | 0.018                   | 1.939         | 1.939     | 0.000      |
| 0.84 | 0.59       | 0.001   | 0.002                             | 0.018                   | 1.791         | 1.791     | 0.000      |
| 0.74 | 0.49       | 0.001   | 0.002                             | 0.019                   | 1.646         | 1.646     | 0.000      |
| 0.64 | 0.39       | 0.001   | 0.002                             | 0.019                   | 1.500         | 1.500     | 0.000      |
| 0.54 | 0.29       | 0.001   | 0.002                             | 0.020                   | 1.354         | 1.354     | 0.000      |



| b. Size of Armour Rock               |                          |
|--------------------------------------|--------------------------|
| . Slope Protection of Causeway Mound |                          |
| 1. Design Condition                  |                          |
| (1) Design Seabed Level              | D.L0.50 m                |
| (2) Design Tide Level                |                          |
| H.W.L +hsu(Rise Height by Reef)      | D.L. +1.44 m             |
| (3) Design Wave Height               |                          |
| Reef Wave Height                     | Htf=1.25 m               |
| (4) Unit weight of rubbles           | r=2.65 tf/m <sup>3</sup> |
| (5) Density of seawater              | $w=1.03 tf/m^3$          |
|                                      |                          |

#### 2. Basic Equation

The weight of rubbles or concrete blocks covering the slope surface of a structure receiving the action of wave force may be calculated by the following formula.

W=  $r \cdot H^{3}/\{K_{D} \cdot (Sr \cdot 1)^{3}cot\}$ 

where, W: Minimum weight of rubbles or concrete block (tf)

r: Unit weight of rubbles or block in air (tf/m3)

Sr: Specific gravity of rubble or block to sea water

: Angle of the slope to horizontal plane (degrees)

H: Wave height (m) H=Htf=1.25m

 $K_{D^{*}}$  Constant determined by the arming material and damage rate  $$K_{D}\mathcal{-}3.2$ (Damage rate 0 ~ 1%)$ 

r=2.65 tf/m³ ,Sr= r/ w=2.57, w=1.03 tf/m³ , tan =1.50 W=0.279 tf

| . Seabed Protection of Box Culvert and Bridge       |
|-----------------------------------------------------|
| 1. Basic Equation                                   |
| $D_m = V_0^2 / \{E_1^2 \cdot 2g(s/-1)\}$            |
| where, V <sub>0</sub> ; Design flow velocity (m/s)  |
| D <sub>m</sub> ; Average particle size of stone (m) |
| s; Density of stone s=2.65                          |
| w; Density of seawater w=1.03                       |
| E <sub>1</sub> ; Coefficient of turbulent flow      |
| Usually $E_1=1.2$                                   |
| Turbulent flow E1=0.86                              |
| g: Acceleration of gravity (9.8 $m/s^2$ )           |

#### 2. Design of Foundation Stone Size

#### (1) Front of Box Culvert

| Tide | Tide Level |       | Depth | Flow velocity |       | Particle Size |       |
|------|------------|-------|-------|---------------|-------|---------------|-------|
| (DI  | _ m)       | H (m) |       | Vo (m/s)      |       | D(m)          |       |
| East | West       | East  | West  | East          | West  | East          | West  |
| 1.34 | 1.09       | 0.69  | 0.44  | 1.486         | 2.330 | 0.050         | 0.122 |
| 1.29 | 1.04       | 0.64  | 0.39  | 1.376         | 2.258 | 0.043         | 0.115 |
| 1.24 | 0.99       | 0.59  | 0.34  | 1.259         | 2.186 | 0.036         | 0.108 |
| 1.19 | 0.94       | 0.54  | 0.29  | 1.131         | 2.106 | 0.029         | 0.100 |
| 1.14 | 0.89       | 0.49  | 0.24  | 0.984         | 2.010 | 0.022         | 0.091 |
| 1.09 | 0.84       | 0.44  | 0.19  | 0.823         | 1.907 | 0.015         | 0.082 |
| 1.04 | 0.79       | 0.39  | 0.14  | 0.635         | 1.769 | 0.009         | 0.071 |
| 0.99 | 0.74       | 0.34  | 0.09  | 0.415         | 1.567 | 0.004         | 0.055 |
| 0.94 | 0.69       | 0.29  | 0.04  | 0.160         | 1.158 | 0.001         | 0.030 |

#### (2) Sea Bed of Bridge

| Tide | Tide Level |       | Depth | Flow velocity |       | Particle Size   |       |    |
|------|------------|-------|-------|---------------|-------|-----------------|-------|----|
| (D   | L m)       | H (m) |       | V (m/s)       |       | ) V (m/s) D (m) |       | m) |
| East | West       | East  | West  | East          | West  | East            | West  |    |
| 1.34 | 1.09       | 1.84  | 1.59  | 3.496         | 4.046 | 0.536           | 0.718 |    |
| 1.24 | 0.99       | 1.74  | 1.49  | 3.372         | 3.937 | 0.499           | 0.680 |    |
| 1.14 | 0.89       | 1.64  | 1.39  | 3.252         | 3.837 | 0.464           | 0.646 |    |
| 1.04 | 0.79       | 1.54  | 1.29  | 3.117         | 3.721 | 0.426           | 0.607 |    |
| 0.94 | 0.69       | 1.44  | 1.19  | 2.981         | 3.608 | 0.390           | 0.571 |    |
| 0.84 | 0.59       | 1.34  | 1.09  | 2.836         | 3.486 | 0.353           | 0.533 |    |
| 0.74 | 0.49       | 1.24  | 0.99  | 2.691         | 3.370 | 0.318           | 0.498 |    |
| 0.64 | 0.39       | 1.14  | 0.89  | 2.532         | 3.243 | 0.281           | 0.461 |    |
| 0.54 | 0.29       | 1.04  | 0.79  | 2.365         | 3.114 | 0.245           | 0.425 |    |
| 0.25 | 0          | 0.75  | 0.5   | 1.796         | 2.693 | 0.141           | 0.318 |    |

3. Required weight of armor rock for stabilization

Japanese design standards indicates to estimate it by hydraulic model tests or applying the following formula.

 $M = PrU^{6}/(48g^{3}y^{6}(Sr-1)^{3}(\cos -\sin )^{3})$ 

Where; M: Weight of stabilized armor rock in ton

Pr: Density of rock (t/m3)

U: Current velocity along the rock (m/s)

g: Acceleration of gravity  $m/s^2$ 

y: Constants

y = 1.20 in embedded rock

y = 0.86 in exposed rock

Sr: Specific gravity

: angle of slope on the current direction (degree)

Applied figures of the project:

 $Pr = 2.65 \text{ t/m}^3$ 

U = 2.3 m/s (Box culvert), U= 4.0 m/s (Bridge)

=0 ° ,g = 9.8 m/s<sup>2</sup>,y = 1.20 , Sr = 1.8

M = 0.018 tf=18 kgf (Box culvert)

= 0.494 tf=494 kgf (Bridge)

| c. Bridge Concrete Structures               | s Study                                                                                        |
|---------------------------------------------|------------------------------------------------------------------------------------------------|
| 1. Design Conditions                        |                                                                                                |
| (1) Load Conditions                         |                                                                                                |
| 1) Unit Weight                              |                                                                                                |
| Plain Concrete                              | 2.30 tf/m <sup>3</sup>                                                                         |
| Reinforced Concrete                         | $2.45 	ext{ tf/m}^3$                                                                           |
| 2) Wheel load                               |                                                                                                |
| Front wheel load                            | P1=1.4 tf                                                                                      |
| Rear wheel load                             | P2=5.6 tf                                                                                      |
| Impact coefficient                          | i=0.2                                                                                          |
| Distribution load                           | w= $0.245 \text{ tf/m}^2$                                                                      |
| Line load                                   | W=3.5 tf/m                                                                                     |
| (2) Size of material                        |                                                                                                |
| Thickness of Surface                        | pavement 0.03m                                                                                 |
| Thickness of Slab                           | d=0.25 m                                                                                       |
| Girder Interval                             | 1.70 m                                                                                         |
| Width                                       | 0.50 m                                                                                         |
| Thicknes                                    | ss 0.90 m (The thickness of the slab is contained)                                             |
| Length                                      | 6.00 m                                                                                         |
| Girder Receiving Be                         | am                                                                                             |
| Interval                                    | 2.55 m                                                                                         |
| Width                                       | 1.40 m                                                                                         |
| Thicknes                                    | ss 0.70 m                                                                                      |
| Length                                      | 6.30 m                                                                                         |
|                                             |                                                                                                |
| 2. Calculation of Floor Slab                |                                                                                                |
| (1) Design method                           |                                                                                                |
| 1) Slab of Edge; It calcul                  | ates as a simple beam of fixation and pins.                                                    |
| The calculation of th                       | e bending moment is as follows.                                                                |
| Concentrated load                           |                                                                                                |
| $M_C=R_A \cdot a$ , $M_B=I$                 | $P \cdot a \cdot b \cdot (a+1)/(2 \cdot 1^2)$ , $R_A = P \cdot b^2(a+2 \cdot 1)/(2 \cdot 1^3)$ |
| Distribution load                           |                                                                                                |
| M <sub>max</sub> =9• w• l <sup>2</sup> /128 | $M_{\rm B}={\rm wl^2/8}$                                                                       |
| 2) Center Slab; It calcula                  | ates as a simple beam where both ends were fixed.                                              |
| The calculation of th                       | e bending moment is as follows.                                                                |
| Concentrated load                           |                                                                                                |

|        | M <sub>C</sub> =M <sub>B</sub> =Pl/8<br>Distribution load |            |                     |       |                  |                     |          |     |         |
|--------|-----------------------------------------------------------|------------|---------------------|-------|------------------|---------------------|----------|-----|---------|
|        | $M_B=wl^2/12$ , $M_C=$                                    | wl2/24     |                     |       |                  |                     |          |     |         |
| (2) Ca | lculation of load                                         |            |                     |       |                  |                     |          |     |         |
| 1) D   | ead Load                                                  |            |                     |       |                  |                     |          |     |         |
|        |                                                           | Thickne    | ss Unit We          | aight | Lo               | ad                  |          |     |         |
|        | Item                                                      | d (m)      | (tf/m               | 3)    | n (tf            | /m²)                |          |     |         |
|        | <b>a a</b>                                                |            |                     |       |                  |                     |          |     |         |
|        | Surface pavement                                          | 0.0        | 03                  | 2.30  |                  | 0.069               |          |     |         |
|        | Slab                                                      | 0.:        | 25                  | 2.45  |                  | 0.613               |          |     |         |
|        | Total                                                     |            |                     |       | (                | 0.682               |          |     |         |
| 2) V   | /heel load                                                |            |                     |       |                  |                     |          |     |         |
|        | Concentrated load                                         | P2=6.72    | tf                  |       |                  |                     |          |     |         |
|        | Distribution load                                         | w=0.245    | 5 tf/m <sup>2</sup> |       |                  |                     |          |     |         |
|        | Line load                                                 | W=3.5 tf   | f/m                 |       |                  |                     |          |     |         |
| ) Ca   | lculation of section fo                                   | rce        |                     |       |                  |                     |          |     |         |
| 1) S   | lab of Edge                                               |            |                     |       |                  |                     |          |     |         |
|        | Kind of load                                              | Value o    | f Width o           | of    | Positio          | n of loa            | ad Mr    | nax | $M_{B}$ |
|        |                                                           | Load       | Slab 1 (            | m)    | a (m)            | b (m                | ) tf·    | m   | tf∙m    |
|        | Dead Load (tf/m <sup>2</sup> )                            | 0.68       | 82 1                | .20   | _                | -                   | 0.0      | 69  | 0.123   |
|        | Concentrated Load<br>(tf)*1                               | 6.72       | 0 1                 | .20   | 0.690            | 0.51                | 10 1.0   | 078 | 1.55    |
|        | Concentrated Load<br>(tf)*2                               | 6.72       | 1 1                 | .20   | 0.450            | 0.78                | 50 1.4   | 03  | 1.29    |
|        | Distribution<br>load(tf/m <sup>2</sup> )                  | 0.24       | 5 1                 | .20   | _                | _                   | 0.0      | 25  | 0.04    |
|        | Line Load (tf/m)                                          | 3.50       | 0 1                 | .20   | _                | _                   | 0.3      | 354 | 0.63    |
|        | Concentrated load RA                                      | =1.563 tf  | *1, Concen          | trate | d load           | R <sub>A</sub> =3.1 | 17 tf *2 | :   |         |
|        | Combination of Loads                                      | 3          | • • • • • •         |       |                  |                     |          |     |         |
|        | a) Dead Load+Concer                                       | ntrated Lo | oad                 |       |                  |                     |          |     |         |
|        |                                                           |            | Effective           | Eff   | ective l         | oad (tf•            | m/m)     |     |         |
|        | Kind of load                                              | W          | /idth B(m)          |       | M <sub>max</sub> | 1                   | MB       |     |         |
|        | Dead Load (tf/m <sup>2</sup> )                            |            | 1.000               |       | 0.06             | 9                   | 0.123    |     |         |
|        | Concentrated Load                                         | l (tf)     | 0.700               |       | 2.00             | 4                   | 2.217    |     |         |
|        | Total                                                     |            |                     |       | 2.07             | 3                   | 2.340    |     |         |
|        |                                                           |            |                     |       |                  |                     |          |     |         |

| Kind of load                          | Effective  | Effective l | oad (tf·m/m)     |
|---------------------------------------|------------|-------------|------------------|
| Kind of load                          | Width B(m) | $M_{max}$   | $M_{\mathrm{B}}$ |
| Dead Load (tf/m <sup>2</sup> )        | 1.000      | 0.069       | 0.12             |
| Distribution load(tf/m <sup>2</sup> ) | 1.000      | 0.025       | 0.04             |
| Line Load (tf/m)                      | 0.400      | 0.886       | 1.57             |
| Total                                 |            | 0.980       | 1.74             |

#### 2) Center Slab

| Vind of load                          | Value of Width of |           | $M_{\rm C}$ | $\mathbf{M}_{\mathrm{B}}$ |
|---------------------------------------|-------------------|-----------|-------------|---------------------------|
| Kind of load                          | Load              | Slab 1(m) | tf∙m        | tf∙m                      |
| Dead Load (tf/ $m^2$ )                | 0.682             | 1.20      | 0.041       | 0.082                     |
| Concentrated load (tf)*1              | 6.72              | 1.20      | 1.008       | 1.008                     |
| Distribution load(tf/m <sup>2</sup> ) | 0.245             | 1.20      | 0.015       | 0.029                     |
| Line load (tf/m)                      | 3.500             | 1.20      | 0.210       | 0.420                     |

#### a) Dead Load+Concentrated Load

| Vind of load                   | Effective  | Effective load (tf $\cdot$ m/m) |             |  |  |
|--------------------------------|------------|---------------------------------|-------------|--|--|
| Kind of load                   | Width B(m) | Mc                              | $M_{\rm B}$ |  |  |
| Dead Load (tf/m <sup>2</sup> ) | 1.000      | 0.041                           | 0.082       |  |  |
| Concentrated Load (tf)*1       | 0.700      | 1.440                           | 1.440       |  |  |
| Total                          |            | 1.481                           | 1.522       |  |  |

#### b) Dead Load+Distribution Load+Line Load

| Wind of load                                                     | Effective       | Effective loa | ld (tf∙m/m)   |  |  |
|------------------------------------------------------------------|-----------------|---------------|---------------|--|--|
| Kind of load                                                     | Width B(m)      | Mc            | $M_{\rm B}$   |  |  |
| Dead Load (tf/ $m^2$ )                                           | 1.000           | 0.041         | 0.082         |  |  |
| Distribution load(tf/m <sup>2</sup> )                            | 1.000           | 0.015         | 0.029         |  |  |
| Line Load (tf/m)                                                 | 0.400           | 0.525         | 1.050         |  |  |
| Total                                                            |                 | 0.581         | 1.161         |  |  |
| Standard Design Strength ck=240(kgf/cm <sup>2</sup> )            |                 |               |               |  |  |
| Allowable Bending Compressive Stress ca=80(kgf/cm <sup>2</sup> ) |                 |               |               |  |  |
| Allowable Shearing Stress a=9(kgf/cm <sup>2</sup> )              |                 |               |               |  |  |
| Allowable Tensile Stres                                          | ss of Reinforce | ment sa=1     | 1,800 (kgf/cm |  |  |
|                                                                  |                 |               |               |  |  |

| Them of enousing the                   | Slab of Edge |         | Center Slab |       |       |           |
|----------------------------------------|--------------|---------|-------------|-------|-------|-----------|
| item of examination                    | Lower bar    | Upper b | oar         | Lower | r bar | Upper bar |
| Bending moment (tf·m)                  | 2.073        | 3 2.5   | 340         |       | 1.481 | 1.522     |
| Shearing force (tf)                    | 6.75         | 2 —     |             |       | -     | —         |
| Bar Arrangement                        | D13 @125     | D13@1   | 25          | D13 @ | @125  | D13@125   |
| Area of bar (cm <sup>2</sup> )         | 10.14        | 4 10    | .14         |       | 10.14 | 10.14     |
| Width (cm)                             | 100          | )       | 100         |       | 100   | 100       |
| Height (cm)                            | 2            | 5       | 25          |       | 25    | 25        |
| Effective Height (cm)                  | 1'           | 7       | 17          |       | 17    | 17        |
| Covering Thickness (cm)                | 8            | 3       | 8           |       | 8     | 8         |
| Stress $\sigma$ (kgf/cm <sup>2</sup> ) |              |         |             |       |       |           |
| Compression Stress $\sigma c$          | 47           | 53      |             | 34    |       | 35        |
| Tension Stress $\sigma s$              | 1,359        | 1,533   |             | 970   |       | 997       |
| Shearing force $	au$ c                 | 4.5          | _       |             | _     |       | _         |

Standard Design Strength Allowable Bending Compressive Stress Allowable Shearing Stress Allowable Tensile Stress of Reinforcement sa=1,800 (kgf/cm<sup>2</sup>)

ca=80(kgf/cm<sup>2</sup>) a=9(kgf/cm<sup>2</sup>)

#### 3. Calculation of Girder

#### (1) Design method

It calculates as a simple beam where both ends were pins.

The calculation of the bending moment is as follows.

Concentrated load

 $M_{max}=P \cdot l/4$ ,  $R_A=P/2$ 

Distribution load

 $M_{max}=w\cdot l^2/8$ ,  $R_A=w\cdot l/2$ 

#### (2) Calculation of load

#### 1) Dead Load

|  | Item             | Width | Thickness | Unit Weight          | Load     |
|--|------------------|-------|-----------|----------------------|----------|
|  |                  | B (m) | d (m)     | (tf/m <sup>3</sup> ) | p (tf/m) |
|  | Surface pavement | 1.70  | 0.03      | 2.30                 | 0.117    |
|  | Slab             | 1.70  | 0.25      | 2.45                 | 1.041    |
|  | Girder           | 0.50  | 0.65      | 2.45                 | 0.796    |
|  | Total            |       |           |                      | 1.955    |

#### 2) Wheel load

Concentrated load Front wheel load P1=2.52 tf (Wheel load x 1.5)

Rear wheel load P2=10.08 tf (Wheel load x 1.5)

| Item              | w or W | Width | $\Sigma \ {\rm w \ or \ } W$ |
|-------------------|--------|-------|------------------------------|
| Distribution load | 0.245  | 1.70  | 0.417                        |
| Line load         | 3.5    | 1.70  | 5.95                         |

#### (3) Calculation of section force

| Kind of load            | Value of | Length of    | $\mathbf{M}_{max}$ | $\mathbf{R}_{\mathbf{x}}$ |
|-------------------------|----------|--------------|--------------------|---------------------------|
| Kind of load            | Load     | Girder l (m) | tf∙m               | tf∙m                      |
| Dead Load (tf/m )       | 1.955    | 6.00         | 8.797              | 5.864                     |
| Front Wheel Load (tf)   | 2.520    | 6.00         | 3.780              | 1.260                     |
| Rear Wheel Load (tf)    | 10.080   | 6.00         | 15.120             | 5.040                     |
| Distribution load(tf/m) | 0.417    | 6.00         | 1.877              | 1.251                     |
| Line Load (tf/m)        | 5.950    | 6.00         | 8.925              | 2.975                     |

#### 1) Dead Load+Concentrated Load

| Kind of load      | Value of Load | $M_{max}tf^{\textstyle \cdot}m$ | $R_xtf^{\textstyle\cdot}m$ |
|-------------------|---------------|---------------------------------|----------------------------|
| Dead Load         | 1.955         | 8.797                           | 5.864                      |
| Concentrated Load | 10.080        | 15.120                          | 5.040                      |
| Total             |               | 23.917                          | 10.904                     |

#### 2) Dead Load+Distribution Load+Line Load

| Wind of lood                          | Value of | $M_{\text{max}}$ | $\mathbf{R}_{\mathbf{x}}$ |  |
|---------------------------------------|----------|------------------|---------------------------|--|
| Kind of load                          | Load     | tf∙m             | tf∙m                      |  |
| Dead Load (tf/m <sup>2</sup> )        | 1.955    | 8.797            | 5.864                     |  |
| Distribution load(tf/m <sup>2</sup> ) | 0.417    | 1.877            | 1.251                     |  |
| Line Load (tf/m)                      | 5.950    | 8.925            | 2.975                     |  |
| Total                                 |          | 19.598           | 10.090                    |  |

#### (4) Calculation of Reinforced Concrete

| Item of examination                    | Lower bar            | Lower bar  |                         |
|----------------------------------------|----------------------|------------|-------------------------|
| Bending moment (tf·m)                  | 23.917               | 19.598     |                         |
| Shearing force (tf)                    | 10.904               | 10.090     |                         |
| Bar Arrangement                        | D25x4                | D22x4      |                         |
| Area of bar (cm <sup>2</sup> )         | 20.27                | 15.48      |                         |
| Width (cm)                             | 50                   | 50         |                         |
| Height (cm)                            | 90                   | 90         |                         |
| Effective Height (cm)                  | 80                   | 80         |                         |
| Covering Thickness (cm)                | 10                   | 10         |                         |
| Stress $\sigma$ (kgf/cm <sup>2</sup> ) |                      |            |                         |
| Compression Stress $\sigma c$          | 52                   | 47         |                         |
| Tension Stress $\sigma s$              | 1,651                | 1,750      |                         |
| Shearing force $\tau$ c                | 3.1                  | 3.1        |                         |
| Standard Design Strength               | ı                    | ck=240(l   | kgf/cm²)                |
| Allowable Bending Comp                 | gf/cm <sup>2</sup> ) |            |                         |
| Allowable Shearing Stress              | s                    | a=9(kgf    | f/cm²)                  |
| Allowable Tensile Stress of            | of Reinforceme       | ent sa=1,8 | 00 (kgf/cm <sup>2</sup> |

#### (1) Design method

It calculates as a simple beam of fixation and pins.

The calculation of the bending moment is as follows.

Concentrated load

 $M_{C}=R_{A} \cdot a, M_{B}=P \cdot a \cdot b \cdot (a+1)/(2 \cdot l^{2}), R_{A}=P \cdot b^{2}(a+2 \cdot l)/(2 \cdot l^{3})$ 

Distribution load

 $M_{max}=9 \cdot w \cdot l^2/128$ ,  $M_B=wl^2/8$ 

#### (2) Calculation of load

1) Dead Load

| T                | Width | Thickness | Length | Unit Weight          | Load   |
|------------------|-------|-----------|--------|----------------------|--------|
| Item             | B (m) | d (m)     | L (m)  | (tf/m <sup>3</sup> ) | p (tf) |
| Surface pavement | 1.70  | 0.03      | 6.00   | 2.30                 | 0.704  |
| Slab             | 1.70  | 0.25      | 6.00   | 2.45                 | 6.248  |
| Girder           | 0.50  | 0.65      | 6.00   | 2.45                 | 4.778  |
| Total            |       |           |        |                      | 6.951  |
| Receiving Beam   | 1.40  | 0.70      | -      | 2.45                 | 2.401  |

#### 2) Wheel load

Concentrated load  $\;$  Front wheel load  $\;$  P1= 4.41 tf (Wheel load x 2.625) \;

Rear wheel load P2= 10.08 tf (Wheel load x 1.5)

|                   |       |       | Total  | 14.49 tf |
|-------------------|-------|-------|--------|----------|
| Item              | B (m) | L (m) | w or W | p (tf)   |
| Distribution load | 1.70  | 6.00  | 0.245  | 2.499    |
| Line load         | 1.70  | -     | 3.5    | 5.95     |
| Total             |       |       |        | 8.449    |

#### (3) Calculation of section force

| Kind of load          | Value<br>of | Beam         Position of           Span         load           Mc |       | Position of load |         | M <sub>B</sub> |
|-----------------------|-------------|-------------------------------------------------------------------|-------|------------------|---------|----------------|
|                       | Load        | (m)                                                               | a (m) | b (m)            | U · 111 | ι.·            |
| Dead Load (tf)        | 6.951       | 2.55                                                              | 1.70  | 0.85             | 1.751   | 3.283          |
| Receiving Beam (tf/m) | 2.401       | 2.55                                                              | -     | -                | 1.098   | 1.952          |
| Wheel Load (tf)       | 14.490      | 2.55                                                              | 1.70  | 0.85             | 3.649   | 6.843          |
| Distribution load(tf) | 8.449       | 2.55                                                              | 1.70  | 0.85             | 2.128   | 3.990          |

| Kind of load          | RA (tf) | R <sub>B</sub> (tf) |
|-----------------------|---------|---------------------|
| Dead Load (tf)        | 1.030   | 5.921               |
| Receiving Beam (tf/m) | 2.296   | 3.827               |
| Wheel Load (tf)       | 2.147   | 12.343              |
| Distribution load(tf) | 1.252   | 7.197               |

Combination of Loads

#### 1) Dead Load+Concentrated Load

| Kind of load   | Effective le                  | oad (tf·m/m) | Reaction of Support   |        |  |
|----------------|-------------------------------|--------------|-----------------------|--------|--|
| Kind of load   | M <sub>C</sub> M <sub>B</sub> |              | $R_A$ (tf) $R_B$ (tf) |        |  |
| Dead Load      | 1.751                         | 3.283        | 1.030                 | 5.921  |  |
| Receiving Beam | 1.098                         | 1.952        | 2.296                 | 3.827  |  |
| Wheel Load     | 3.649                         | 6.843        | 2.147                 | 12.343 |  |
| Total          | 6.498                         | 12.077       | 5.472                 | 22.091 |  |

#### 2) Dead Load+Distribution Load+Line Load

| Wind of load      | Effective le                  | oad (tf·m/m) | Reaction of Support                    |        |  |
|-------------------|-------------------------------|--------------|----------------------------------------|--------|--|
| Kind of load      | M <sub>C</sub> M <sub>B</sub> |              | R <sub>A</sub> (tf) R <sub>B</sub> (tf |        |  |
| Dead Load         | 1.751                         | 1.751 3.283  |                                        | 5.921  |  |
| Receiving Beam    | 1.098                         | 1.098 1.952  |                                        | 3.827  |  |
| Distribution load | 2.128                         | 3.990        | 1.252                                  | 7.197  |  |
| Total             | 4.976                         | 9.224        | 4.577                                  | 16.945 |  |

#### (4) Calculation of Reinforced Concrete

| Item of energiantica                   | Whee  | Wheel Load |       | Distribution Load |  |  |
|----------------------------------------|-------|------------|-------|-------------------|--|--|
| item of examination                    | Lower | Upper      | Lower | Upper             |  |  |
| Bending moment (tf·m)                  | 6.498 | 12.077     | 4.976 | 9.224             |  |  |
| Shearing force (tf)                    | 5.472 | 22.091     | 4.577 | 16.945            |  |  |
| Bar Arrangement                        | D16x7 | D16x7      | D16x7 | D16x7             |  |  |
| Area of bar (cm <sup>2</sup> )         | 13.9  | 13.9       | 13.9  | 13.9              |  |  |
| Width (cm)                             | 140   | 140        | 140   | 140               |  |  |
| Height (cm)                            | 70    | 70         | 70    | 70                |  |  |
| Effective Height (cm)                  | 60    | 60         | 60    | 60                |  |  |
| Covering Thickness (cm)                | 10    | 10         | 10    | 10                |  |  |
| Stress $\sigma$ (kgf/cm <sup>2</sup> ) |       |            |       |                   |  |  |
| Compression Stress $\sigma_c$          | 14    | 25         | 10    | 19                |  |  |
| Tension Stress $\sigma$ s              | 835   | 1,551      | 639   | 1,185             |  |  |
| Shearing force $\tau$ c                | 0.7   | 3.1        | 1.0   | 2.0               |  |  |

| Standard Des<br>Allowable Ber<br>Allowable Sho<br>Allowable Ter | ign Strengt<br>nding Comp<br>earing Stres<br>nsile Stress | h<br>ressive Stre<br>s<br>of Reinforce | ss<br>ment         | ck= 240 (kgf/cm <sup>2</sup> )<br>ca= 80 (kgf/cm <sup>2</sup> )<br>a= 9 (kgf/cm <sup>2</sup> )<br>sa= 1,800 (kgf/cm <sup>2</sup> ) |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| d. Pile bearing capacity a                                      | analysis                                                  |                                        |                    |                                                                                                                                    |  |  |
| 1. Design Conditions                                            |                                                           |                                        |                    |                                                                                                                                    |  |  |
| (1) Material of Piles                                           |                                                           |                                        |                    |                                                                                                                                    |  |  |
| 1) Coupled Steel Sh                                             | eet Piles                                                 |                                        |                    |                                                                                                                                    |  |  |
| Type- SY29                                                      | 5                                                         |                                        |                    |                                                                                                                                    |  |  |
| Allowable Stres                                                 | s sa=                                                     | 1,800 kgf/cr                           | $n^2$              |                                                                                                                                    |  |  |
| Sectional Area                                                  |                                                           |                                        |                    |                                                                                                                                    |  |  |
| Area of Steel                                                   | a=                                                        | $137.6 \mathrm{~cm^2}$                 |                    |                                                                                                                                    |  |  |
| Area of Inside                                                  | e A <sub>p</sub> =                                        | $0.100 \ m^2$                          |                    |                                                                                                                                    |  |  |
| Circumferent                                                    | ial surface a                                             | urea A <sub>s</sub> = 1.39             | 90 cm <sup>2</sup> |                                                                                                                                    |  |  |
| Width                                                           | B=                                                        | 0.40 m                                 |                    |                                                                                                                                    |  |  |
| 2) Steel Pipe pile                                              |                                                           |                                        |                    |                                                                                                                                    |  |  |
| SS400 = 500  n                                                  | nm t= 9.0 m                                               | m                                      |                    |                                                                                                                                    |  |  |
| Allowable Stres                                                 | s sa= 1,40                                                | 0 kgf/cm <sup>2</sup>                  |                    |                                                                                                                                    |  |  |
| Sectional Area                                                  |                                                           |                                        |                    |                                                                                                                                    |  |  |
| Area of Steel                                                   | a= 138                                                    | $.8 \text{ cm}^2$                      |                    |                                                                                                                                    |  |  |
| Area of Inside                                                  | e A <sub>p</sub> = 0.19                                   | 96 m <sup>2</sup>                      |                    |                                                                                                                                    |  |  |
| Circumferent                                                    | ial surface a                                             | area A <sub>s</sub> = 1.5′             | 70 m <sup>2</sup>  |                                                                                                                                    |  |  |
| Width                                                           | B= 0.50                                                   | ) m                                    |                    |                                                                                                                                    |  |  |
| 3) Corrosion                                                    | tc= 1.8 mm                                                | (Life time 3                           | 80 year            | s)                                                                                                                                 |  |  |
| 4) Safety Factor of 1                                           | Pile Bearing                                              | g Capacity                             | F= 2.              | 5                                                                                                                                  |  |  |
| (2) Subsoil Condition                                           |                                                           |                                        |                    |                                                                                                                                    |  |  |
| Level DL (m)                                                    | Depth(m)                                                  | N value                                |                    |                                                                                                                                    |  |  |
| -0.5~-12.0                                                      | 11.5                                                      | 5                                      |                    |                                                                                                                                    |  |  |
| -12.0~                                                          | -                                                         | 40                                     |                    |                                                                                                                                    |  |  |
| (3) Load Condition                                              |                                                           |                                        |                    |                                                                                                                                    |  |  |
| 1) Load of superstru                                            | ucture                                                    |                                        |                    |                                                                                                                                    |  |  |
| $W= 2xR_B= 44.18 tf$                                            |                                                           |                                        |                    |                                                                                                                                    |  |  |
| 2) Load of Pile                                                 | 2) Load of Pile                                           |                                        |                    |                                                                                                                                    |  |  |
| Coupled Steel S                                                 | heet Piles v                                              | v= 0.120 tf/r                          | n                  |                                                                                                                                    |  |  |
| Steel Pipe pile w= $0.109 \text{ tf/m}$                         |                                                           |                                        |                    |                                                                                                                                    |  |  |

| 2. Bearing Capacity of Pile                                                            |
|----------------------------------------------------------------------------------------|
| (1) Estimation of Axial Ultimate Bearing Capacity                                      |
| The ultimate bearing capacity of a pile driven in sandy soil shall be calculated       |
| in accordance with following formula.                                                  |
| $R_u=30NA_p+N_mA_s/5$                                                                  |
| where, $R_u$ ; Ultimate bearing capacity of the pile (tf)                              |
| $A_p$ ; Tip area of the pile (m <sup>2</sup> )                                         |
| As; Total circumferential surface area of the pile (m <sup>2</sup> )                   |
| N; N value of the subsoil at the tip of the pile                                       |
| $N_{m}\!\!\!\!$ Mean N value for the total embedded length of the pile                 |
| In this case, N shall be calculated in a accordance with following formula.            |
| $N=(N_1+N_{m2})/2$                                                                     |
| where, $N_1\!\!;$ The value whichever smaller of the N value at the tip of the pile or |
| mean N value in the range from the tip of the pile to below.                           |
| $N_{\rm m2};$ Mean N value in the range from the tip of the pile to 10B above.         |
| B; Diameter or width of the pile.                                                      |
| (2) Allowable Bearing Capacity                                                         |
| Ra=R <sub>u</sub> /F                                                                   |
| (3) Calculation of the Pile Length                                                     |
|                                                                                        |
| 1) Coupled Steel Sheet Piles                                                           |

| Level of<br>Pile Tip | Embedded<br>Length | Pile<br>Length | Load<br>W(tf) | $N_1$ | N <sub>m2</sub> | N     | Nm    |
|----------------------|--------------------|----------------|---------------|-------|-----------------|-------|-------|
| DL(III)              | (11)               | L (III)        |               |       |                 |       |       |
| -12.0                | 11.5               | 14.0           | 45.86         | 40.00 | 5.00            | 22.50 | 5.00  |
| -12.5                | 12.0               | 14.5           | 45.92         | 40.00 | 9.38            | 24.69 | 6.46  |
| -13.0                | 12.5               | 15.0           | 45.98         | 40.00 | 13.75           | 26.88 | 7.80  |
| -13.5                | 13.0               | 15.5           | 46.04         | 40.00 | 18.13           | 29.06 | 9.04  |
| -14.0                | 13.5               | 16.0           | 46.10         | 40.00 | 22.50           | 31.25 | 10.19 |
| -14.5                | 14.0               | 16.5           | 46.16         | 40.00 | 26.88           | 33.44 | 11.25 |
| -15.0                | 14.5               | 17.0           | 46.22         | 40.00 | 31.25           | 35.63 | 12.24 |
| -15.5                | 15.0               | 17.5           | 46.28         | 40.00 | 35.63           | 37.81 | 13.17 |
| -16.0                | 15.5               | 18.0           | 46.34         | 40.00 | 40.00           | 40.00 | 14.03 |
|    | Level of Pile   | 30NA <sub>p</sub> | NmAs/5   | Ru    |     | Ra   | a=Ru/F |                                      |       |      |
|----|-----------------|-------------------|----------|-------|-----|------|--------|--------------------------------------|-------|------|
|    | Tip DL(m)       | (tf)              | (tf)     | (tf)  |     |      | (tf)   |                                      |       |      |
|    | -12.0           | 67.50             | 15.99    | 83    | .49 |      | 33.39  |                                      |       |      |
|    | -12.5           | 74.06             | 21.55    | 95    | .61 |      | 38.24  | <load out<="" td=""><td></td></load> |       |      |
|    | -13.0           | 80.63             | 27.11    | 107   | .73 |      | 43.09  |                                      |       |      |
|    | -13.5           | 87.19             | 32.67    | 119   | .85 |      | 47.94  |                                      |       |      |
|    | -14.0           | 93.75             | 38.23    | 131   | .98 |      | 52.79  |                                      |       |      |
|    | -14.5           | 100.31            | 43.79    | 144   | .10 |      | 57.64  |                                      |       |      |
|    | -15.0           | 106.88            | 49.35    | 156   | .22 |      | 62.49  |                                      |       |      |
|    | -15.5           | 113.44            | 54.91    | 168   | .34 |      | 67.34  |                                      |       |      |
|    | -16.0           | 120.00            | 60.47    | 180   | .47 |      | 72.19  |                                      |       |      |
| 2) | Steel Pipe pile |                   |          |       |     |      |        |                                      |       |      |
|    | Level of Pile   | Embedded          | l Pile L | ength | Lo  | ad   | $N_1$  | $N_{m2}$                             | Ν     | Nm   |
|    | Tip DL(m)       | Length (m         | n) L (   | (m)   | W   | (tf) |        |                                      |       |      |
|    | -12.0           | 11.               | 5        | 14.0  | 45  | .71  | 40.00  | 5.00                                 | 22.50 | 5.0  |
|    | -12.5           | 12.               | .0       | 14.5  | 45  | .76  | 40.00  | 9.50                                 | 24.75 | 6.4  |
|    | -13.0           | 12.               | 5        | 15.0  | 45  | .82  | 40.00  | 14.00                                | 27.00 | 7.8  |
|    | -13.5           | 13.               | .0       | 15.5  | 45  | .87  | 40.00  | 18.50                                | 29.25 | 9.0  |
|    | -14.0           | 13.               | 5        | 16.0  | 45  | .92  | 40.00  | 23.00                                | 31.50 | 10.1 |
|    | -14.5           | 14.               | .0       | 16.5  | 45  | .98  | 40.00  | 27.50                                | 33.75 | 11.2 |
|    | -15.0           | 14.               | 5        | 17.0  | 46  | .03  | 40.00  | 32.00                                | 36.00 | 12.2 |
|    | -15.5           | 15.               | .0       | 17.5  | 46  | .09  | 40.00  | 36.50                                | 38.25 | 13.1 |
|    | -16.0           | 15.               | 5        | 18.0  | 46  | .14  | 40.00  | 41.00                                | 40.50 | 14.0 |
|    |                 |                   |          |       |     |      |        |                                      |       |      |
|    | Level of Pile   | 30NA <sub>p</sub> | NmAs/5   | Ru    |     | Ra   | a=Ru/F |                                      |       |      |
|    | Tip DL(m)       | (tf)              | (tf)     | (tf)  |     |      | (tf)   |                                      |       |      |
|    | -12.0           | 132.30            | 18.06    | 150   | .36 |      | 60.14  |                                      |       |      |
|    | -12.5           | 145.53            | 24.34    | 169   | .87 |      | 67.95  | >Load                                | ok    |      |
|    | -13.0           | 158.76            | 30.62    | 189   | .38 |      | 75.75  |                                      |       |      |
|    | -13.5           | 171.99            | 36.90    | 208   | .89 |      | 83.55  |                                      |       |      |
|    | -14.0           | 185.22            | 43.18    | 228   | .40 |      | 91.36  |                                      |       |      |
|    | -14.5           | 198.45            | 49.46    | 247   | .91 |      | 99.16  |                                      |       |      |
|    | -15.0           | 211.68            | 55.74    | 267   | .42 |      | 106.97 |                                      |       |      |
|    | -15.5           | 224.91            | 62.02    | 286   | .93 |      | 114.77 |                                      |       |      |
|    | -16.0           | 238.14            | 68.30    | 306   | .44 |      | 122.57 |                                      |       |      |
|    |                 |                   |          | •     |     |      |        |                                      |       |      |

2. Bearing Capacity of Pile (1) Estimation of Axial Ultimate Bearing Capacity The ultimate bearing capacity of a pile driven in sandy soil shall be calculated in accordance with following formula. Ru=30NAp+NmAs/5 where, R<sub>u</sub>; Ultimate bearing capacity of the pile (tf)  $A_p$ ; Tip area of the pile (m<sup>2</sup>)  $A_s$ ; Total circumferential surface area of the pile (m<sup>2</sup>) N; N value of the subsoil at the tip of the pile  $N_{m};$  Mean N value for the total embedded length of the pile In this case, N shall be calculated in a accordance with following formula.  $N=(N_1+N_{m2})/2$ where, N1; The value whichever smaller of the N value at the tip of the pile or mean N value in the range from the tip of the pile to below.  $N_{m2}$ ; Mean N value in the range from the tip of the pile to 10B above. B; Diameter or width of the pile. (2) Allowable Bearing Capacity Ra=Ru/F (3) Calculation of the Pile Length 1) Coupled Steel Sheet Piles

| Level of<br>Pile Tip<br>DL(m) | Embedded<br>Length<br>(m) | Pile<br>Length<br>L (m) | Load<br>W(tf) | $N_1$ | N <sub>m2</sub> | N     | Nm    |
|-------------------------------|---------------------------|-------------------------|---------------|-------|-----------------|-------|-------|
| -12.0                         | 11.5                      | 14.0                    | 45.86         | 40.00 | 5.00            | 22.50 | 5.00  |
| -12.5                         | 12.0                      | 14.5                    | 45.92         | 40.00 | 9.38            | 24.69 | 6.46  |
| -13.0                         | 12.5                      | 15.0                    | 45.98         | 40.00 | 13.75           | 26.88 | 7.80  |
| -13.5                         | 13.0                      | 15.5                    | 46.04         | 40.00 | 18.13           | 29.06 | 9.04  |
| -14.0                         | 13.5                      | 16.0                    | 46.10         | 40.00 | 22.50           | 31.25 | 10.19 |
| -14.5                         | 14.0                      | 16.5                    | 46.16         | 40.00 | 26.88           | 33.44 | 11.25 |
| -15.0                         | 14.5                      | 17.0                    | 46.22         | 40.00 | 31.25           | 35.63 | 12.24 |
| -15.5                         | 15.0                      | 17.5                    | 46.28         | 40.00 | 35.63           | 37.81 | 13.17 |
| -16.0                         | 15.5                      | 18.0                    | 46.34         | 40.00 | 40.00           | 40.00 | 14.03 |

2.

|        | Tie Rod ;     | SS400                               |        |        |                      |          |       |        |       |    |
|--------|---------------|-------------------------------------|--------|--------|----------------------|----------|-------|--------|-------|----|
|        | Allował       | ole stress                          | sa =   | 960 k  | gf/cm <sup>2</sup>   |          |       |        |       |    |
|        | Wale ; SS     | 41                                  |        |        |                      |          |       |        |       |    |
|        | Allował       | ole stress                          | sa =   | 1,400  | kgf/cm <sup>2</sup>  |          |       |        |       |    |
|        | Backfillin    | g                                   |        |        |                      |          |       |        |       |    |
|        |               | Unit Weight $\gamma$ (tf/m3) $\phi$ |        |        |                      |          |       |        |       |    |
|        | Mate          | rials                               |        | Iı     | ı air                | In wat   | er    | (°)    | (rad  | d) |
|        | Backfi        | ll of Coral S                       | tone   |        | 1.80                 | 1.       | 00    | 30     | 0.52  | 36 |
|        | Backfi        | ll of sand                          |        |        | 1.80                 | 1.       | 00    | 30     | 0.52  | 36 |
|        | Unit weig     | ht of water                         |        | w = 1. | 03 tf/m <sup>3</sup> |          |       |        |       |    |
| (5) §  | Safety Facto  | or of Embedo                        | ded    | F = 1  | .5                   |          |       |        |       |    |
| (6) A  | Angle of wal  | l friction                          | = 1    | 5.0 °  |                      |          |       |        |       |    |
| (7) (  | Condition of  | Subsoil                             |        |        |                      |          |       |        |       |    |
|        | Depth D       | L-0.5m ~ -1                         | 2.0m   |        |                      |          |       |        |       |    |
|        | '= 1.0        | ) tf/m³ (unde                       | er the | water  | ), N= 5,             | = 28.0   | ) °   |        |       |    |
|        | Depth D       | )L-12.0m ~                          |        |        |                      |          |       |        |       |    |
|        | '= 1.0        | ) tf/m³ (unde                       | er the | water  | ), N= 40             | , = 40   | ° 0.  |        |       |    |
|        |               |                                     |        |        |                      |          |       |        |       |    |
| 2. Cal | culation of l | Load                                |        |        |                      |          |       |        |       |    |
| (1) A  | Active Earth  | Pressure a                          | nd Re  | sidua  | l Water j            | pressure |       |        |       |    |
|        | Level         | Hight                               | Σγ     | h+q    | Kah                  |          | Press | ure Pa | (tf/m | 2) |
|        | DL (m)        | h (m)                               | tf/    | $m^2$  |                      | Eartl    | n:pa  | Wate   | r;pw  | 1  |

| DL (m) | h (m) | tf/m <sup>2</sup> |        | Earth <sup>:</sup> pa | Water;pw | Total |
|--------|-------|-------------------|--------|-----------------------|----------|-------|
| +3.30  |       | 1.50              | 0.2911 | 0.437                 | 0.000    | 0.437 |
| +1.00  | 2.30  | 5.64              | 0.2911 | 1.642                 | 0.000    | 1.642 |
| +0.89  | 0.11  | 5.84              | 0.2911 | 1.700                 | 0.000    | 1.700 |
| +0.00  | 0.89  | 6.73              | 0.2911 | 1.959                 | 0.917    | 2.876 |
| -0.50  | 0.50  | 7.23              | 0.2911 | 2.105                 | 0.917    | 3.022 |
| -0.50  | 0.00  | 7.23              | 0.3140 | 2.270                 | 0.917    | 3.187 |
| -3.00  | 2.50  | 9.73              | 0.3140 | 3.055                 | 0.917    | 3.972 |

Note; Kah is horizontal Coefficient of active earth pressure

|        | Loval           | Hojaht     | Da                | ΣPa           | Contor            | Parv     |
|--------|-----------------|------------|-------------------|---------------|-------------------|----------|
|        | DL (m)          | h (m)      | tf/m2             | tf/m          | v (m)             | tf·m/m   |
|        |                 | 11 (111)   | 0.497             | 0.500         | y (III)           | 0.771    |
|        | +3.30           |            | 0.437             | 0.503         | -1.533            | -0.771   |
|        | +1.00           | 2.30       | 1.642             | 1.888         | -0.767            | -1.448   |
|        | +1.00           |            | 1.642             | 0.090         | 0.037             | 0.003    |
|        | +0.89           | 0.11       | 1.700             | 0.094         | 0.073             | 0.007    |
|        | +0.89           |            | 1.700             | 0.757         | 0.407             | 0.308    |
|        | 0.00            | 0.89       | 2.876             | 1.280         | 0.703             | 0.900    |
|        | 0.00            |            | 2.876             | 0.719         | 1.167             | 0.839    |
|        | -0.50           | 0.50       | 3.022             | 0.756         | 1.333             | 1.008    |
|        | -0.50           |            | 3.187             | 3.984         | 2.333             | 9.295    |
|        | -3.00           | 2.50       | 3.972             | 4.965         | 3.167             | 15.724   |
|        | Total           | 6.30       |                   | 15.04         |                   | 25.865   |
| (2) I  | Passive Eart    | h Pressur  | e                 |               |                   |          |
|        | Level           | Height     | Σγh               | Kph           | Рp                |          |
|        | DL (m)          | h (m)      | tf/m <sup>2</sup> |               | tf/m <sup>2</sup> |          |
|        | -0.50           | 2.50       | 0.00              | 0.000         | 0.000             |          |
|        | -3.00           | 2.50       | 2.50              | 4.3312        | 10.828            |          |
|        | Note; Kph       | is horizo  | ntal Coeff        | icient of pas | sive earth        | pressure |
|        | Level           | Height     | Рp                | ΣРр           | Center            | Ра∙у     |
|        | DL (m)          | h (m)      | tf/m <sup>2</sup> | tf/m          | y (m)             | tf•m/m   |
|        | -0.50           |            | 0.000             | 0.000         | 2.333             | 0.000    |
|        | -3.00           | 2.50       | 10.828            | 13.535        | 3.167             | 42.865   |
|        | Total           |            |                   | 13.535        |                   | 42.865   |
|        |                 |            |                   |               |                   |          |
| 3. Des | sign of Shee    | t Piles    |                   |               |                   |          |
| (1) F  | -<br>Embedded I | ongth of S | Shoot Pilo        |               |                   |          |

(1) Embedded Length of Sheet Piles

The embedded length of sheet piles shall be calculated to satisfy the following formula

F= Pp• y/Pa• y

where,  $Pp \cdot y$ : Moment for the tie rod setting point by passive earth

pressure

Pa•y: Moment for the tie rod setting point by active earth pressure and residual water pressure

F: Safety factor

|                                                                                   | F=                                            | 1.657 > 1.5        | 5 ok              |             |            |            |                    |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------|--------------------|-------------------|-------------|------------|------------|--------------------|--|
| (2)                                                                               | (2) Section of Sheet Piles                    |                    |                   |             |            |            |                    |  |
| 1)                                                                                | Active Ea                                     | urth Press         | ure and R         | esidual W   | ater press | sure above | e the design depth |  |
|                                                                                   | Level                                         | ΣΡα                | Ра∙у              |             |            |            |                    |  |
|                                                                                   | $\mathrm{DL}\left(m ight)$                    | tf/m               | tf•m/m            |             |            |            |                    |  |
|                                                                                   | +3.30                                         | 0.503              | -0.771            |             |            |            |                    |  |
|                                                                                   | +1.00                                         | 1.888              | -1.448            |             |            |            |                    |  |
|                                                                                   | +1.00                                         | 0.090              | 0.003             |             |            |            |                    |  |
|                                                                                   | +0.89 0.094 0.007                             |                    |                   |             |            |            |                    |  |
|                                                                                   | +0.89                                         | 0.757              | 0.308             |             |            |            |                    |  |
|                                                                                   | +0.00                                         | 1.280              | 0.900             |             |            |            |                    |  |
|                                                                                   | +0.00                                         | 0.719              | 0.839             |             |            |            |                    |  |
|                                                                                   | -0.50                                         | 0.756              | 1.008             |             |            |            |                    |  |
|                                                                                   | Total                                         | 6.087              | 0.846             |             |            |            |                    |  |
| 2)                                                                                | Reaction                                      | force of de        | esign dept        | h           |            |            |                    |  |
|                                                                                   | Ro= F                                         | • a• y∶/lt= 0      | .564 tf/m         |             |            |            |                    |  |
|                                                                                   | where,                                        | lt: Distanc        | e from Tie        | e rod to De | esign dept | h lt=1.5   | 50 m               |  |
| 3)                                                                                | Reaction                                      | at the tie         | rod settin        | g point     |            |            |                    |  |
|                                                                                   | Ap= p                                         | a-Ro= 5.5          | 523 tf/m          |             |            |            |                    |  |
| 4)                                                                                | Zero Poir                                     | nt of Shear        | ring force        |             |            |            |                    |  |
|                                                                                   | Q=A-B-                                        | y-C•y <sup>2</sup> |                   |             |            |            |                    |  |
|                                                                                   | A= 0.91                                       | 1 , B= 2.8'        | 76 , C= 0.1       | 456         |            |            |                    |  |
|                                                                                   | (DL -)y=                                      | = 0.3120 m         | 1                 | Q = 0.000   |            |            |                    |  |
| 5)                                                                                | Maximur                                       | n bending          | moment o          | of sheet pi | les M      | max        | -                  |  |
|                                                                                   | Level                                         | Height             | Pa                | ΣΡα         | Center     | Ра∙у       |                    |  |
|                                                                                   | $\mathrm{DL}\left(m ight)$                    | h (m)              | tf/m <sup>2</sup> | tf/m        | y (m)      | tf•m/m     |                    |  |
|                                                                                   | -0.312                                        | 0.188              | 2.967             | 0.279       | 0.063      | 0.018      |                    |  |
|                                                                                   | -0.500                                        | 0.188              | 3.022             | 0.284       | 0.125      | 0.036      |                    |  |
|                                                                                   | Total                                         |                    |                   | 0.563       |            | 0.054      |                    |  |
| 6)                                                                                | Section C                                     | haracteri          | stic of She       | et Pile     |            |            |                    |  |
|                                                                                   | Sectional modulus (Steel Sheet Pile Type-)    |                    |                   |             |            |            |                    |  |
|                                                                                   | Z= 1,340 cm <sup>3</sup> /m(Before Corrosion) |                    |                   |             |            |            |                    |  |
| $Z=945 \text{ cm}^3/\text{m}(After \text{ Corrosion}; \text{Life time 30 years})$ |                                               |                    |                   |             |            |            |                    |  |
| 7)                                                                                | 7) Stress of Sheet Piles                      |                    |                   |             |            |            |                    |  |
| = Mmax / Z'= 6 kgf/cm <sup>2</sup> $<$ 1,800 kgf/cm <sup>2</sup> ok               |                                               |                    |                   |             |            |            |                    |  |

| (3) Design of Tie Rods                                                                |
|---------------------------------------------------------------------------------------|
| 1) Tension of the tie rod                                                             |
| Tension acting on a tie rod shell be calculated in accordance with following          |
| formula.                                                                              |
| T=Ap*L                                                                                |
| where. 1: Tie rod setting interval = $1.6 \text{ m}$                                  |
| T= 8.837 tf                                                                           |
| 2) Stress of Tie Rod                                                                  |
| Diameter of Tie Rod = 38 mm                                                           |
| Corrosion tc= 1.8 mm (Life time 30 years)                                             |
| Sectional area A= 1029.2 mm <sup>2</sup>                                              |
| Stress of Tie Rod $=$ T/A= 859 kgf/cm <sup>2</sup> $<$ 960 kgf/cm <sup>2</sup>        |
| (4) Design of Wale                                                                    |
| 1) Maximum bending moment                                                             |
| M= T · L/10= 1.414 tf · m/m                                                           |
| 2) Stress of Wale                                                                     |
| Using material Ditch type Steel 2x [ 125x65x6.0x8.0                                   |
| Sectional modulus Z= 2x67=134 cm <sup>3</sup> (Before Corrosion)                      |
| Z'= 2x57=114 cm <sup>3</sup> (After Corrosion ; Life time 30 years)                   |
| Stress of Wale $s=M/Z=1240 \text{ kgf/cm}^2 \le 1,400 \text{ kgf/cm}^2$               |
| (5) Design of Anchorage Steel Sheet Piles                                             |
| 1) Section Characteristic of Sheet Pile                                               |
| Sectional modulus (Steel Sheet Pile Type-)                                            |
| Z= 1,340 cm <sup>3</sup> /m(Before Corrosion)                                         |
| Z'= 1,160 cm <sup>3</sup> /m(After Corrosion ; Life time 30 years)                    |
| Pile flexural rigidity EI (kgf·cm <sup>2</sup> )                                      |
| EI= 3.360E+10 kgf·cm <sup>2</sup> /m (Before Corrosion)                               |
| EI= 2.879E+10 kgf·cm <sup>2</sup> /m(After Corrosion ; Life time 30 years)            |
| 2) Coefficient of lateral subgrade reaction kh                                        |
| $h = 0.15 N = 0.75 \ kgf/cm^3$                                                        |
| where, $N=5$ (N-value of the ground)                                                  |
| 3) = {kh · B/(4EI)} <sup>1/4</sup> = 0.00486 cm <sup>-1</sup> = 0.486 m <sup>-1</sup> |
| ' = {kh · B/(4EI)} <sup>1/4</sup> = 0.00505 cm <sup>-1</sup> = 0.505 m <sup>-1</sup>  |
| where, Width of Pile B= 100 cm                                                        |
| 4) Maximum bending moment                                                             |
| Mmax = 0.3224 • T/                                                                    |

| where, Tension of a tie rod T= 5.523 tf/m                               |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Mmax = 3.664 tf • m/m                                                   |  |  |  |  |  |  |  |
| 5) Stress of Sheet Piles                                                |  |  |  |  |  |  |  |
| = M max / Z '= 316 kgf/cm <sup>2</sup> $<$ 1,800 kgf/cm <sup>2</sup> ok |  |  |  |  |  |  |  |
| 6) Embedded Length of Sheet Piles                                       |  |  |  |  |  |  |  |
| L= 3.0/ = 6.17  m = 6.50  m                                             |  |  |  |  |  |  |  |
| Length of Sheet Piles Ls= 7.00 m                                        |  |  |  |  |  |  |  |
| 7) Displacement of a Sheet Pile at Tie Rod                              |  |  |  |  |  |  |  |
| = T/(2EI <sup>3</sup> )= 0.744 cm <5.0cm ok                             |  |  |  |  |  |  |  |
| 8) Distance between Sheet Piles L(m)                                    |  |  |  |  |  |  |  |
| Height between Tie Rod and Sea Bed h1= 1.50 m                           |  |  |  |  |  |  |  |
| Effective height of Anchorage Sheet Piles $Lm1/3=$ /(3 )= 2.155 m       |  |  |  |  |  |  |  |
| Angle of the failer plane of active earth pressure $\cot a = 0.653$     |  |  |  |  |  |  |  |
| Angle of the failer plane of passive earth pressure $\cot p= 2.653$     |  |  |  |  |  |  |  |
| L= $h1 \cdot cot$ a+ $h2 \cdot cot$ p= 6.697 m 7.00 m                   |  |  |  |  |  |  |  |
| Coloulation regult table                                                |  |  |  |  |  |  |  |

#### Calculation result table

| Structures  | Calculation Item         | Unit                                        | Calculation                 | Allował  |  |  |
|-------------|--------------------------|---------------------------------------------|-----------------------------|----------|--|--|
|             |                          |                                             | value                       | value    |  |  |
|             | Materials                | Steel Sheet Piles                           | L=4.50 n                    | 1        |  |  |
|             | Standard                 | JIS A 5528,Type U                           | <b>Ⅲ</b> ,SY295             |          |  |  |
| Cheet Diles | Section                  | A=76.42cm <sup>2</sup> ,Z=1,3               | 40cm <sup>3</sup> /m,I=16,8 | 800cm4/m |  |  |
| Sheet Flies | Stress                   | kgf/cm <sup>2</sup>                         | 6                           | 1,800    |  |  |
|             | Embedded Level           | DL(m)                                       | -3.00                       | -        |  |  |
|             | Safety Ratio of Embedded | -                                           | 1.657                       | 1.5      |  |  |
|             | Materials                | Tie Rod , SS400 , $\phi = 38.00 \text{ mm}$ |                             |          |  |  |
| Tie Rods    | Stress                   | kgf/cm <sup>2</sup>                         | 859                         | 960      |  |  |
|             | Length of Tie Rod        | m                                           | 7.00                        | 6.70     |  |  |
| W7 - 1      | Materials                | Ditch Type Steel,ss400 ,2[ 125x65x6.0x8.0   |                             |          |  |  |
| wales       | Stress                   | kgf/cm <sup>2</sup>                         | 1,240                       | 1,400    |  |  |
|             | Materials                | Steel Sheet Piles L=6.50 m                  |                             |          |  |  |
|             | Standard                 | JIS A 5528,Type U- <b>I</b> ,SY295          |                             |          |  |  |
|             | Section                  | A=76.42cm <sup>2</sup> ,Z=1,3               | 40cm <sup>3</sup> /m,I=16,8 | 300cm4/m |  |  |
| Anchorage   | Stress                   | kgf/cm <sup>2</sup>                         | 316                         | 1,800    |  |  |
|             | Embedded Level           | DL(m)                                       | -5.50                       | -5.17    |  |  |
|             | Displacement of Head     | cm                                          | 0.74                        | 5.00     |  |  |

# (6) Calculation of the Sheet Pile Length

| Level of<br>Pile<br>Tip DL(m) | Embedde<br>d<br>Length(m<br>) | Pile<br>Length<br>L (m) | Load<br>W(tf/m) | $N_1$ | N <sub>m2</sub> | N     | Nm    |
|-------------------------------|-------------------------------|-------------------------|-----------------|-------|-----------------|-------|-------|
| -12.0                         | 11.5                          | 14.0                    | 17.08           | 40.00 | 5.00            | 22.50 | 5.00  |
| -12.5                         | 12.0                          | 14.5                    | 17.16           | 40.00 | 12.00           | 26.00 | 6.46  |
| -13.0                         | 12.5                          | 15.0                    | 17.23           | 40.00 | 19.00           | 29.50 | 7.80  |
| -13.5                         | 13.0                          | 15.5                    | 17.31           | 40.00 | 26.00           | 33.00 | 9.04  |
| -14.0                         | 13.5                          | 16.0                    | 17.38           | 40.00 | 33.00           | 36.50 | 10.19 |
| -14.5                         | 14.0                          | 16.5                    | 17.46           | 40.00 | 40.00           | 40.00 | 11.25 |

| Level of Pile |       | 30NA <sub>p</sub> | N <sub>m</sub> A <sub>s</sub> /5 | $R_u$  | Ra=Ru/F |       |
|---------------|-------|-------------------|----------------------------------|--------|---------|-------|
| Tip DI        | L(m)  | (tf)              | (tf)                             | (tf)   | (tf)    |       |
|               | -12.0 | 168.75            | 23.00                            | 191.75 | 76.70   | >Load |
|               | -12.5 | 195.00            | 31.00                            | 226.00 | 90.40   |       |
|               | -13.0 | 221.25            | 39.00                            | 260.25 | 104.10  |       |
|               | -13.5 | 247.50            | 47.00                            | 294.50 | 117.80  |       |
|               | -14.0 | 273.75            | 55.00                            | 328.75 | 131.50  |       |
|               | 14.5  | 300.00            | 63.00                            | 363.00 | 145.20  |       |

# C. Island Harbours

Design Conditions

 Design Tidal Level
 H.W.L D.L.+1.34 m
 L.W.L D.L. ± 0.00 m
 R.W.L D.L.+0.45m {=L.W.L+(H.W.L L.W.L)/3}
 Design Level
 Crown Height of Quay wall D.L.+2.00 m
 Planed Depth of Quay wall D.L.-2.50 m
 Design Depth of Quay wall D.L.-2.50 m
 Depth of Concrete Block D.L.-2.70 m
 Surcharge q=1.5 t/m<sup>2</sup>
 Materials
 Plain concrete c = 2.30 tf/m<sup>3</sup>

## Backfilling

| Materials               | Unit Wo<br>(tf/ | φ        |    |
|-------------------------|-----------------|----------|----|
|                         | In air          | In water | () |
| Backfill of Coral Stone | 1.80            | 1.00     | 30 |
| Backfill of sand        | 1.80            | 1.00     | 30 |
| Rubble Stone            | 1.80            | 1.00     | 40 |

. Concrete Block Type (Front wall inclination = 0 °、 Planed depth DL-2.5 m)

Unit weight of water w = 1.03 tf/m<sup>3</sup>

#### (5) Coefficient of static friction

| Concrete against Concrete     | 0.5 |
|-------------------------------|-----|
| Concrete against Rubble Stone | 0.6 |

(6) Angle of wall friction = 15.0 °

(7) Bearing capacity of Subsoil  $qa = 16.0 \text{ tf/m}^2$ 

# 2. Calculation of Load

# (1) Weight of Concrete Block

| Level of Block | Height | Width | γc                   | Weight   | Center | W·x    |
|----------------|--------|-------|----------------------|----------|--------|--------|
| DL (m)         | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x (m)  | tf•m/m |
| +2.00          |        | 0.50  |                      |          |        |        |
| +0.80          | 1.20   | 0.90  | 2.30                 | 1.932    | 0.360  | 0.696  |
| +0.80          |        | 1.80  |                      |          |        |        |
| +0.45          | 0.35   | 1.80  | 2.30                 | 1.449    | 0.900  | 1.304  |
| +0.45          |        | 1.80  |                      |          |        |        |
| -1.00          | 1.45   | 1.80  | 1.27                 | 3.315    | 0.900  | 2.984  |
| -1.00          |        | 2.30  |                      |          |        |        |
| -2.70          | 1.70   | 2.30  | 1.27                 | 4.966    | 1.150  | 5.711  |
| Total          | 4.70   |       |                      | 11.662   |        | 10.695 |

# (2) Weight of Soil on the Block

| Level  | Height | Width | r                    | Weight   | Center | W·x    |
|--------|--------|-------|----------------------|----------|--------|--------|
| DL (m) | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x (m)  | tf•m/m |
| +2.00  |        | 0.40  |                      |          |        |        |
| +0.80  | 1.20   | 0.00  | 1.80                 | 0.432    | 0.767  | 0.331  |
| +0.80  | 1.20   | 0.90  | 1.80                 | 1.944    | 1.350  | 2.624  |
| +0.45  | 0.35   | 0.50  | 1.80                 | 1.395    | 2.050  | 2.860  |
| +0.45  |        | 0.50  |                      |          |        |        |
| -1.00  | 1.45   | 0.50  | 1.00                 | 0.725    | 2.050  | 1.486  |
| Total  | 3.00   |       |                      | 4.496    |        | 7.301  |

|        | Level       | Height      | Surcharge              | $\Sigma \gamma h+q$ | Kah        | Pressure  | Pa    |
|--------|-------------|-------------|------------------------|---------------------|------------|-----------|-------|
|        | DL (m)      | h (m)       | q (tf/m²)              | tf/m <sup>2</sup>   |            | pa(tf/m²) | tf/m  |
|        | +2.00       |             | 1.50                   | 1.50                | 0.2911     | 0.437     | 0.262 |
|        | +0.80       | 1.20        |                        | 3.66                | 0.2911     | 1.066     | 0.640 |
|        | +0.80       |             |                        | 3.66                | 0.2911     | 1.066     | 0.187 |
|        | +0.45       | 0.35        |                        | 4.29                | 0.2911     | 1.249     | 0.219 |
|        | +0.45       |             |                        | 4.29                | 0.2911     | 1.249     | 0.906 |
|        | -1.00       | 1.45        |                        | 5.74                | 0.2911     | 1.671     | 1.211 |
|        | -1.00       |             |                        | 5.74                | 0.2911     | 1.671     | 1.420 |
|        | -2.70       | 1.70        |                        | 7.44                | 0.2911     | 2.166     | 1.841 |
|        | Total       | 4.70        |                        |                     |            |           | 6.685 |
|        | Note;Kah i  | s horizont  | al Coefficient         | t of active ea      | rth pressu | re        |       |
|        | Level       | Height      | Pa                     | Center              | Ра∙у       | y'        | Pv    |
|        | DL (m)      | h (m)       | tf/m                   | y (m)               | tf∙m/m     | m         | tf/m  |
|        | +2.00       | 1.20        | 0.262                  | 4.300               | 1.127      |           | 0.07  |
|        | +0.80       | 1.20        | 0.640                  | 3.900               | 2.494      | 0.516     | 0.17  |
|        | +0.80       | 0.35        | 0.187                  | 3.383               | 0.631      |           | 0.05  |
|        | +0.45       | 0.35        | 0.219                  | 3.267               | 0.714      |           | 0.05  |
|        | +0.45       | 1.45        | 0.906                  | 2.667               | 2.415      |           | 0.24  |
|        | -1.00       | 1.45        | 1.211                  | 2.183               | 2.645      | 1.228     | 0.32  |
|        | -1.00       | 1.70        | 1.420                  | 1.133               | 1.610      |           | 0.38  |
|        | -2.70       | 1.70        | 1.841                  | 0.567               | 1.043      |           | 0.49  |
|        | Total       |             | 6.685                  |                     | 12.680     | 1.897     | 1.79  |
| (4) Re | sidual Wate | er Pressure | •                      |                     |            |           |       |
|        | Level       | Height      | Pressure               | Pw                  | Center     | Pw·y      | y'    |
|        | DL (m)      | h (m)       | pw(tf/m <sup>2</sup> ) | tf/m                | y (m)      | tf∙m/m    | m     |
|        | +0.45       |             | 0                      | 0.000               | 0.000      | 0.000     |       |
|        | +0.00       | 0.45        | 0.464                  | 0.104               | 2.850      | 0.297     |       |
|        | -1.00       | 1.00        | 0.464                  | 0.464               | 2.200      | 1.020     | 1.14  |
|        | -2.70       | 1.70        | 0.464                  | 0.788               | 0.850      | 0.670     |       |
|        | Total       |             |                        | 1.356               |            | 1.987     | 1.46  |

#### 3. Stability Calculation

(1) Examination Concerning Sliding of Wall

Safety Rate of Sliding F=f•W/P

| Level  | Weig   | ht and verti | cal force W | (tf/m) |
|--------|--------|--------------|-------------|--------|
| DL (m) | Block  | Soil         | Pv          | Total  |
| +0.80  | 1.932  | 0.432        | 0.242       | 2.606  |
| -1.00  | 6.696  | 3.771        | 1.745       | 12.212 |
| -2.70  | 11.662 | 4.496        | 1.791       | 17.949 |

| Level  | Horizontal force P (tf/m) |       | Coefficient | Safety rate   | Permissił    |       |
|--------|---------------------------|-------|-------------|---------------|--------------|-------|
| DL (m) | Pa                        | Pw    | Total       | of friction f | of sliding F | value |
| +0.80  | 0.902                     | 0.000 | 0.902       | 0.5           | 1.445        |       |
| -1.00  | 3.424                     | 0.568 | 3.992       | 0.5           | 1.530        | 1.20  |
| -2.70  | 6.685                     | 1.356 | 8.041       | 0.6           | 1.339        |       |

(2) Examination Concerning Overturning of Wall

Safety Rate of Overturning F=W·x/P·y

| Level  | Weight and vertical force $W \cdot x$ (tf/m) |       |       |        |
|--------|----------------------------------------------|-------|-------|--------|
| DL (m) | Block                                        | Soil  | Pv·x  | Total  |
| +0.80  | 0.696                                        | 0.331 | 0.217 | 1.244  |
| -1.00  | 4.984                                        | 2.955 | 3.141 | 11.080 |
| -2.70  | 10.695                                       | 7.301 | 4.119 | 22.115 |

| Level  | Horizontal force $P \cdot y$ (tf/m) |       |        | Safety rate | Permissible |
|--------|-------------------------------------|-------|--------|-------------|-------------|
| DL (m) | Pa∙y'                               | Pw∙y' | Total  | F           | value       |
| +0.80  | 0.466                               | 0.000 | 0.466  | 2.673       |             |
| -1.00  | 4.206                               | 0.648 | 4.854  | 2.282       | 1.20        |
| -2.70  | 12.680                              | 1.987 | 14.667 | 1.508       |             |

(3) Bottom Reactions of Concrete Block

where, Depth of Rubble Foundation D=0.80 mtan = P/W =0.448

1,11

= 24.1 °

b1'=2.434 m

 $\label{eq:max.Reaction} \begin{array}{ll} p1'=b'\cdot p1/b1'+ & _2\cdot D=15.55 \mbox{ tf}/m^2 < 16.0 \mbox{ tf}/m^2 \\ \mbox{where, Unit Weight of Rubble Foundation} & _2=1.0 \mbox{ tf}/m^3 \end{array}$ 

# Calculation result table

| Coloulation Itom                   | Calc  | Allowable |       |       |
|------------------------------------|-------|-----------|-------|-------|
| Calculation item                   | +0.80 | -1.00     | -2.70 | value |
| Sliding Safety rate of Wall        | 1.445 | 1.530     | 1.339 | 1.20  |
| Overturning safety rate of Wall    | 2.673 | 2.282     | 1.508 | 1.20  |
| Bottom Reactions of Concrete Block | —     | —         | 28.83 | 30.0  |
| Bottom Reactions of Rubble Stone   | _     | —         | 15.55 | 16.0  |

Concrete Block Type (Front wall inclination = 18.43 °、 Planed depth DL-2.5 m)
1. Design Conditions

(1) Design Tidal Level
H.W.L D.L.+1.34 m
L.W.L D.L. ± 0.00 m
R.W.L D.L.+0.45m {=L.W.L+(H.W.L L.W.L)/3}

(2) Design Level

Crown Height of Quay wall D.L.+2.00 m
Planed Depth of Quay wall D.L.-2.50 m
Design Depth of Quay wall D.L.-2.50 m
Depth of Concrete Block D.L.-2.70 m
(3) Surcharge q=1.5 t/m<sup>2</sup>
(4) Materials

Plain concrete c = 2.30 tf/m<sup>3</sup>

# Backfilling

| Materials               | Unit Wo<br>(tf/ | φ<br>(8) |    |
|-------------------------|-----------------|----------|----|
|                         | In air          | In water |    |
| Backfill of Coral Stone | 1.80            | 1.00     | 30 |
| Backfill of sand        | 1.80            | 1.00     | 30 |
| Rubble Stone            | 1.80            | 1.00     | 40 |

Unit weight of water  $w = 1.03 \text{ tf/m}^3$ 

(5) Coefficient of static friction

| Concrete against Concrete     | 0.5 |  |
|-------------------------------|-----|--|
| Concrete against Rubble Stone | 0.6 |  |

(6) Angle of wall friction = 15.0 °

(7) Bearing capacity of Subsoil  $qa = 16.0 \text{ tf/m}^2$ 

| 2. Calculation of Load |
|------------------------|
|------------------------|

# (1) Weight of Concrete Block

| Level of Block | Height | Width | γc                   | Weight   | Center | W·x    |
|----------------|--------|-------|----------------------|----------|--------|--------|
| DL (m)         | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x (m)  | tf∙m/m |
| +2.00          |        | 0.50  |                      |          | 1.707  | 3.298  |
| +0.80          | 1.20   | 0.90  | 2.30                 | 1.932    | 0.540  | 1.043  |
| +0.80          |        | 1.70  |                      |          | 1.990  | 2.820  |
| +0.45          | 0.35   | 1.82  | 2.30                 | 1.417    | 0.940  | 1.332  |
| +0.45          |        | 1.82  |                      |          | 1.832  | 6.949  |
| -1.00          | 1.45   | 2.30  | 1.27                 | 3.793    | 1.265  | 4.798  |
| -1.00          |        | 2.30  |                      |          |        |        |
| -2.70          | 1.70   | 2.87  | 1.27                 | 5.581    | 1.572  | 8.773  |
| Total          | 4.70   |       |                      | 12.723   |        | 21.840 |

# (2) Weight of Soil on the Block

| Level  | Height | Width | r                    | Weight   | Center   | ,W∙x'  |
|--------|--------|-------|----------------------|----------|----------|--------|
| DL (m) | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x ,x'(m) | tf•m/m |
| +2.00  |        | 0.80  |                      |          | 2.467    | 4.263  |
| +0.80  | 1.20   | 0.80  | 1.80                 | 1.728    | 1.300    | 2.246  |
| +0.80  |        | 0.00  |                      |          | 2.870    | 0      |
| +0.45  | 0.35   | 0.00  | 1.80                 | 0.000    | 1.820    | 0.000  |
| +0.45  |        | 0.00  |                      |          | 2.867    | 0      |
| -1.00  | 1.45   | 0.00  | 1.00                 | 0.000    | 2.300    | 0.000  |
| Total  | 1.80   |       |                      | 1.728    |          | 4.263  |

#### (3) Earth Pressure

| Level  | Height | Surcharge              | $\Sigma \gamma h+q$ | Kah    | Pressure  | Pa    |
|--------|--------|------------------------|---------------------|--------|-----------|-------|
| DL (m) | h (m)  | q (tf/m <sup>2</sup> ) | tf/m <sup>2</sup>   |        | pa(tf/m²) | tf/m  |
| +2.00  |        | 1.50                   | 1.50                | 0.2911 | 0.437     | 0.262 |
| +0.80  | 1.20   |                        | 3.66                | 0.2911 | 1.066     | 0.640 |
| +0.80  |        |                        | 3.66                | 0.2911 | 1.066     | 0.187 |
| +0.45  | 0.35   |                        | 4.29                | 0.2911 | 1.249     | 0.219 |
| +0.45  |        |                        | 4.29                | 0.2911 | 1.249     | 0.906 |
| -1.00  | 1.45   |                        | 5.74                | 0.2911 | 1.671     | 1.211 |
| -1.00  |        |                        | 5.74                | 0.2911 | 1.671     | 1.420 |
| -2.70  | 1.70   |                        | 7.44                | 0.2911 | 2.166     | 1.841 |
| Total  | 4.70   |                        |                     |        |           | 6.686 |

Note; Kah is horizontal Coefficient of active earth pressure

| Level  | Height | Pa    | Center | Ра∙у   | у'    | Pv    |
|--------|--------|-------|--------|--------|-------|-------|
| DL (m) | h (m)  | tf/m  | y (m)  | tf∙m/m | m     | tf/m  |
| +2.00  | 1.20   | 0.262 | 4.300  | 1.127  |       | 0.070 |
| +0.80  | 1.20   | 0.640 | 3.900  | 2.496  | 0.516 | 0.171 |
| +0.80  | 0.35   | 0.187 | 3.383  | 0.633  |       | 0.050 |
| +0.45  | 0.35   | 0.219 | 3.267  | 0.715  |       | 0.059 |
| +0.45  | 1.45   | 0.906 | 2.667  | 2.416  |       | 0.243 |
| -1.00  | 1.45   | 1.211 | 2.183  | 2.644  | 1.229 | 0.324 |
| -1.00  | 1.70   | 1.420 | 1.133  | 1.609  |       | 0.380 |
| -2.70  | 1.70   | 1.841 | 0.567  | 1.043  |       | 0.493 |
| Total  |        | 6.686 |        | 12.683 | 1.897 | 1.791 |

## (4) Residual Water Pressure

| Level  | Hight | Pressure               | Pw    | Center | Pw·y   | у'    |
|--------|-------|------------------------|-------|--------|--------|-------|
| DL (m) | h (m) | pw(tf/m <sup>2</sup> ) | tf/m  | y (m)  | tf∙m/m | m     |
| +0.45  |       | 0                      | 0.000 | 0.000  | 0.000  |       |
| +0.00  | 0.45  | 0.464                  | 0.104 | 2.850  | 0.296  |       |
| -1.00  | 1.00  | 0.464                  | 0.464 | 2.200  | 1.021  | 1.139 |
| -2.70  | 1.70  | 0.464                  | 0.788 | 0.850  | 0.670  |       |
| Total  |       |                        | 1.356 |        | 1.987  | 1.465 |

| 3. S | tabi | lity | Cal | lcul | lation |
|------|------|------|-----|------|--------|
|------|------|------|-----|------|--------|

(1) Examination Concerning Sliding of Wall

Safety Rate of Sliding F=f•W/P

| Level  | Weight and vertical force W (tf/m |       |       |        |  |
|--------|-----------------------------------|-------|-------|--------|--|
| DL (m) | Block                             | Soil  | Pv    | Total  |  |
| +0.80  | 1.932                             | 0.000 | 0.242 | 2.174  |  |
| -1.00  | 7.142                             | 1.728 | 0.918 | 9.788  |  |
| -2.70  | 12.723                            | 1.728 | 1.791 | 16.242 |  |

| Level<br>DL (m) | Horizontal force P (tf/m) |       |       | Coefficient   | Safety rate  | Permissibl |
|-----------------|---------------------------|-------|-------|---------------|--------------|------------|
|                 | Pa                        | Pw    | Total | of friction f | of sliding F | e<br>value |
| +0.80           | 0.902                     | 0.000 | 0.902 | 0.5           | 1.205        |            |
| -1.00           | 3.425                     | 0.568 | 3.993 | 0.5           | 1.226        | 1.20       |
| -2.70           | 6.686                     | 1.356 | 8.042 | 0.6           | 1.212        |            |

#### (2) Examination Concerning Overturning of Wall

Safety Rate of Overturning  $F=W\cdot x/P\cdot y$ 

| Level  | Weight and vertical force $W \cdot x$ (tf/m) |       |       |        |  |  |
|--------|----------------------------------------------|-------|-------|--------|--|--|
| DL (m) | Block                                        | Soil  | Pv∙x  | Total  |  |  |
| +0.80  | 1.043                                        | 0.000 | 0.218 | 1.261  |  |  |
| -1.00  | 9.017                                        | 3.283 | 2.111 | 14.412 |  |  |
| -2.70  | 21.840                                       | 4.263 | 5.140 | 31.243 |  |  |

| Level  | Horizontal force P·y (tf/m) |       |       | safety rate | Permissible |
|--------|-----------------------------|-------|-------|-------------|-------------|
| DL (m) | Pa·y' Pw·y' Total           |       | F     | value       |             |
| +0.80  | 0.465                       | 0.000 | 0.465 | 2.709       |             |
| -1.00  | 4.209                       | 0.647 | 4.856 | 2.968       | 1.20        |
| -2.70  | 12.683 1.987 14.670         |       | 2.130 |             |             |

(3) Bottom Reactions of Concrete Block

Bottom Reactions of Concrete Block

Position of Gravity  $x=(W \cdot x \cdot P \cdot y)/W= 1.020 \text{ m}$ 

Eccentricity of Gravity e=b/2-x=0.415 m < B/6=0.478 m

Reaction at the front toe  $p1 = (1+6e/B)*W/B = 10.57 \text{ tf/m}^2 < 30.0 \text{ tf/m}^2$ 

Width of Reactions b'= 2.87 m

| (4) Bottom Reactions of Rubble Stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Width of distribution of Reaction b1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| $b1'=b'+D{tan(30 \circ + )+tan(30 \circ - )}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| where、Depth of Rubble Foundation D= 0.50 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| tan = P/W = 0.495 = 26.3 ° the blue state blue blue state blue sta |  |  |  |  |  |  |  |
| Max. Reaction $p1'=b' \cdot p1/b1'+ _2 \cdot D = 8.80 \text{ tf/m}^2 < 16.0 \text{ tf/m}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| where Unit Weight of Rubble Foundation $_2$ = 1.0 tf/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |

## Calculation result table

| Colculation Itom                   | Cale  | Allowable |       |       |
|------------------------------------|-------|-----------|-------|-------|
|                                    | +0.80 | -1.00     | -2.70 | value |
| Sliding Safety rate of Wall        | 1.205 | 1.226     | 1.212 | 1.20  |
| Overturning safety rate of Wall    | 2.709 | 2.968     | 2.130 | 1.20  |
| Bottom Reactions of Concrete Block | —     | —         | 10.57 | 30.0  |
| Bottom Reactions of Rubble Stone   | —     | —         | 8.80  | 16.0  |

| . Concrete Block | k Type   | (Front wall inclina    | tion = 18        | 3.43°、Plan       | ed depth DL-3.0 m | 1) |
|------------------|----------|------------------------|------------------|------------------|-------------------|----|
| 1 . Design (     | Conditi  | ions                   |                  |                  |                   |    |
| (1) Desi         | gn Tid   | al Level               |                  |                  |                   |    |
| H                | .W.L     | D.L.+1.34 m            |                  |                  |                   |    |
| L.               | W.L      | D.L. ± 0.00 m          |                  |                  |                   |    |
| R.               | W.L      | D.L.+0.45m {=L.W       | 7.L+(H.W.L       | L.W.L)/3}        |                   |    |
| (2) Desi         | gn Lev   | vel                    |                  |                  |                   |    |
| Cı               | rown H   | leight of Quay wall    | D.L.+2.0         | 0 m              |                   |    |
| Pl               | aned I   | Depth of Quay wall     | D.L-3.00         | m                |                   |    |
| De               | esign I  | Depth of Quay wall     | D.L3.00          | ) m              |                   |    |
| De               | epth of  | f Concrete Block       | D.L3.2           | 0 m              |                   |    |
| (3) Surc         | harge    | q=1.5 t/m <sup>2</sup> |                  |                  |                   |    |
| (4) Mate         | erials   |                        |                  |                  |                   |    |
| Pl               | ain co   | ncrete c = 2.30 t      | f/m <sup>3</sup> |                  |                   |    |
| Ba               | ackfilli | ng                     |                  |                  |                   |    |
|                  |          |                        | Unit We          | eight $\gamma$   |                   |    |
|                  | Mat      | erials                 | (tf/:            | m <sup>3</sup> ) | φ<br>(a)          |    |
|                  |          |                        | In air           | In water         | (*)               |    |

|                         | In air | In water |    |
|-------------------------|--------|----------|----|
| Backfill of Coral Stone | 1.80   | 1.00     | 30 |
| Backfill of sand        | 1.80   | 1.00     | 30 |
| Rubble Stone            | 1.80   | 1.00     | 40 |
|                         |        |          |    |

Unit weight of water  $w = 1.03 \text{ tf/m}^3$ 

# (5) Coefficient of static friction

| Concrete against Concrete     | 0.5 |
|-------------------------------|-----|
| Concrete against Rubble Stone | 0.6 |

(6) Angle of wall friction =  $15.0^{\circ}$ 

(7) Bearing capacity of Subsoil  $qa = 16.0 \text{ tf/m}^2$ 

# 2. Calculation of Load

# (1) Weight of Concrete Block

| Level of Block | Height | Width | γc                   | Weight   | Center | W·x    |
|----------------|--------|-------|----------------------|----------|--------|--------|
| DL (m)         | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x (m)  | tf∙m/m |
| +2.00          |        | 0.50  |                      |          | 1.873  | 3.619  |
| +0.80          | 1.20   | 0.90  | 2.30                 | 1.932    | 0.540  | 1.043  |
| +0.80          |        | 1.80  |                      |          | 2.207  | 3.304  |
| +0.45          | 0.35   | 1.92  | 2.30                 | 1.497    | 0.990  | 1.482  |
| +0.45          |        | 1.92  |                      |          | 2.022  | 9.932  |
| -1.30          | 1.75   | 2.50  | 1.27                 | 4.912    | 1.389  | 6.823  |
| -1.30          |        | 2.50  |                      |          |        |        |
| -3.20          | 1.90   | 3.13  | 1.27                 | 6.793    | 1.717  | 11.664 |
| Total          | 5.20   |       |                      | 15.134   |        | 28.519 |

# (2) Weight of Soil on the Block

| Level  | Height | Width | r                    | Weight   | Center   | $W \cdot x, W \cdot x'$ |
|--------|--------|-------|----------------------|----------|----------|-------------------------|
| DL (m) | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x ,x'(m) | tf∙m/m                  |
| +2.00  |        | 0.90  |                      |          | 2.683    | 5.216                   |
| +0.80  | 1.20   | 0.90  | 1.80                 | 1.944    | 1.350    | 2.624                   |
| +0.80  |        | 0.00  |                      |          | 3.137    | 0                       |
| +0.45  | 0.35   | 0.00  | 1.80                 | 0.000    | 1.920    | 0.000                   |
| +0.45  |        | 0.00  |                      |          | 3.133    | 0                       |
| -1.30  | 1.75   | 0.00  | 1.00                 | 0.000    | 2.500    | 0.000                   |
| Total  | 2.10   |       |                      | 1.944    |          | 5.216                   |

| (3) Ea | (3) Earth Pressure |        |           |                     |        |           |       |  |  |  |
|--------|--------------------|--------|-----------|---------------------|--------|-----------|-------|--|--|--|
|        | Level              | Height | Surcharge | $\Sigma \gamma h+q$ | Kah    | Pressure  | Pa    |  |  |  |
|        | DL (m)             | h (m)  | q (tf/m2) | tf/m <sup>2</sup>   |        | pa(tf/m²) | tf/m  |  |  |  |
|        | +2.00              |        | 1.50      | 1.50                | 0.2911 | 0.437     | 0.262 |  |  |  |
|        | +0.80              | 1.20   |           | 3.66                | 0.2911 | 1.066     | 0.640 |  |  |  |
|        | +0.80              |        |           | 3.66                | 0.2911 | 1.066     | 0.187 |  |  |  |
|        | +0.45              | 0.35   |           | 4.29                | 0.2911 | 1.249     | 0.219 |  |  |  |
|        | +0.45              |        |           | 4.29                | 0.2911 | 1.249     | 1.093 |  |  |  |
|        | -1.30              | 1.75   |           | 6.04                | 0.2911 | 1.759     | 1.539 |  |  |  |
|        | -1.30              |        |           | 6.04                | 0.2911 | 1.759     | 1.671 |  |  |  |
|        | -3.20              | 1.90   |           | 7.94                | 0.2911 | 2.312     | 2.196 |  |  |  |
|        | Total              | 5.20   |           |                     |        |           | 7.807 |  |  |  |

Note;Kah is horizontal Coefficient of active earth pressure

| Level  | Height | Pa    | Center | Ра∙у   | у'    | Pv    |
|--------|--------|-------|--------|--------|-------|-------|
| DL (m) | h (m)  | tf/m  | y (m)  | tf∙m/m | m     | tf/m  |
| +2.00  | 1.20   | 0.262 | 4.800  | 1.258  |       | 0.070 |
| +0.80  | 1.20   | 0.640 | 4.400  | 2.816  | 0.516 | 0.171 |
| +0.80  | 0.35   | 0.187 | 3.883  | 0.726  |       | 0.050 |
| +0.45  | 0.35   | 0.219 | 3.767  | 0.825  |       | 0.059 |
| +0.45  | 1.75   | 1.093 | 3.067  | 3.352  |       | 0.293 |
| -1.30  | 1.75   | 1.539 | 2.483  | 3.822  | 1.348 | 0.412 |
| -1.30  | 1.90   | 1.671 | 1.267  | 2.117  |       | 0.448 |
| -3.20  | 1.90   | 2.196 | 0.633  | 1.391  |       | 0.588 |
| Total  |        | 7.807 |        | 16.306 | 2.089 | 2.091 |

#### (4) Residual Water Pressure

| Level  | Height | Pressure               | Pw    | Center | Pw·y   | y'    |
|--------|--------|------------------------|-------|--------|--------|-------|
| DL (m) | h (m)  | pw(tf/m <sup>2</sup> ) | tf/m  | y (m)  | tf∙m/m | m     |
| +0.45  |        | 0                      | 0.000 | 0.000  | 0.000  |       |
| +0.00  | 0.45   | 0.464                  | 0.104 | 3.350  | 0.348  |       |
| -1.30  | 1.30   | 0.464                  | 0.603 | 2.550  | 1.538  | 1.228 |
| -3.20  | 1.90   | 0.464                  | 0.881 | 0.950  | 0.837  |       |
| Total  |        |                        | 1.588 |        | 2.723  | 1.715 |

#### 3. Stability Calculation

(1) Examination Concerning Sliding of Wall

Safety Rate of Sliding F=f•W/P

| Level  | Weight | Weight and vertical force W (tf/m) |       |        |  |  |  |  |
|--------|--------|------------------------------------|-------|--------|--|--|--|--|
| DL (m) | Block  | Soil                               | Pv    | Total  |  |  |  |  |
| +0.80  | 1.932  | 0.000                              | 0.242 | 2.174  |  |  |  |  |
| -1.30  | 8.341  | 1.944                              | 1.056 | 11.341 |  |  |  |  |
| -3.20  | 15.134 | 1.944                              | 2.091 | 19.169 |  |  |  |  |

| Level  | Horizontal force P (tf/m) |       | Coefficient | Safety rate   | Permissible  |       |
|--------|---------------------------|-------|-------------|---------------|--------------|-------|
| DL (m) | Pa                        | Pw    | Total       | of friction f | of sliding F | value |
| +0.80  | 0.902                     | 0.000 | 0.902       | 0.5           | 1.205        |       |
| -1.30  | 3.940                     | 0.707 | 4.647       | 0.5           | 1.220        | 1.20  |
| -3.20  | 7.807                     | 1.588 | 9.395       | 0.6           | 1.224        |       |

#### (2) Examination Concerning Overturning of Wall

#### Safety Rate of Overturning F=W· x/P· y

|   | Level                      | Weight and vertical force $W \cdot x$ (tf/m) |       |              |        |  |  |
|---|----------------------------|----------------------------------------------|-------|--------------|--------|--|--|
|   | $\mathrm{DL}\left(m ight)$ | Block                                        | Soil  | $Pv \cdot x$ | Total  |  |  |
|   | +0.80                      | 1.043                                        | 0.000 | 0.218        | 1.261  |  |  |
| ſ | -1.30                      | 11.574                                       | 3.985 | 2.640        | 18.199 |  |  |
| - | -3.20                      | 28.519                                       | 5.216 | 6.545        | 40.279 |  |  |

| Level | Horizon | Horizontal force $P \cdot y$ (tf/m) |        |       | Permissible |
|-------|---------|-------------------------------------|--------|-------|-------------|
| DL(m) | Pa∙y'   | Pw·y'                               | Total  | F     | value       |
| +0.80 | 0.465   | 0.000                               | 0.465  | 2.709 |             |
| -1.30 | 5.311   | 0.868                               | 6.179  | 2.945 | 1.20        |
| -3.20 | 16.306  | 2.723                               | 19.029 | 2.117 |             |

(3) Bottom Reactions of Concrete Block

Position of Gravity  $x=(W \cdot x \cdot P \cdot y)/W=1.109 \text{ m}$ 

Eccentricity of Gravity e=b/2-x=0.456 m < B/6=0.522 m

 $\label{eq:planck} \begin{array}{ll} {\rm Reaction \ at \ the \ front \ toe \ } & p1=(1+6e/B)*W/B=11.48 \ tf/m^2 < 30.0 \ tf/m^2 \\ {\rm Width \ of \ Reactions \ } & b'=3.13 \ m \end{array}$ 

| (4) Bottom Reactions of Rubble Stone                                                          |
|-----------------------------------------------------------------------------------------------|
| Width of distribution of Reaction b1'                                                         |
| $b1'=b'+D{tan(30 \circ + )+tan(30 \circ - )}$                                                 |
| where, Depth of Rubble Foundation D=0.50 m                                                    |
| tan = P/W =0.490 = 26.1 °,b1'=3.908 m                                                         |
| Max. Reaction $p1'=b' \cdot p1/b1'+ _{2} \cdot D = 9.70 \text{ tf/m}^2 < 16.0 \text{ tf/m}^2$ |
| where, Unit Weight of Rubble Foundation 2=1.0 tf/m <sup>3</sup>                               |

# Calculation result table

| Coloulation Itom                   | Calc  | Calculation value |       |       |  |
|------------------------------------|-------|-------------------|-------|-------|--|
| Calculation Item                   | +0.80 | -1.30             | -3.20 | value |  |
| Sliding Safety rate of Wall        | 1.205 | 1.220             | 1.224 | 1.20  |  |
| Overturning safety rate of Wall    | 2.709 | 2.945             | 2.117 | 1.20  |  |
| Bottom Reactions of Concrete Block | —     | —                 | 11.48 | 30.0  |  |
| Bottom Reactions of Rubble Stone   | —     | —                 | 9.70  | 16.0  |  |

. Concrete Block Type (Front wall inclination  $\hfill = 18.43$  °  $\searrow$  Planed depth DL-2.0 m)

1 . Design Conditions

(1) Design Tidal Level

H.W.L D.L.+1.34 m

- $\text{L.W.L} \quad \text{D.L.} \pm 0.00 \text{ m}$
- R.W.L D.L.+0.45m {=L.W.L+(H.W.L L.W.L)/3}

(2) Design Level

Crown Height of Quay wall D.L.+2.00 m

Planed Depth of Quay wall D.L-2.00 m

Design Depth of Quay wall D.L.-2.00 m

Depth of Concrete Block D.L.-2.20 m

(3) Surcharge  $q=1.5 t/m^2$ 

(4) Materials

Plain concrete c = 2.30 tf/m<sup>3</sup>

#### Backfilling

| Materials               | Unit Wo<br>(tf/ | φ<br>( <b>8</b> ) |    |
|-------------------------|-----------------|-------------------|----|
|                         | In air          | In water          | () |
| Backfill of Coral Stone | 1.80            | 1.00              | 30 |
| Backfill of sand        | 1.80            | 1.00              | 30 |
| Rubble Stone            | 1.80            | 1.00              | 40 |

Unit weight of water  $w = 1.03 \text{ tf/m}^3$ 

#### (5) Coefficient of static friction

| Concrete against Concrete     | 0.5 |
|-------------------------------|-----|
| Concrete against Rubble Stone | 0.6 |

(6) Angle of wall friction = 15.0 °

(7) Bearing capacity of Subsoil  $qa = 16.0 \text{ tf/m}^2$ 

| 2. Calculation of Load |  |
|------------------------|--|
|------------------------|--|

(1) Weight of Concrete Block

| Level of Block | Height | Width | γc                   | Weight   | Center | W•x    |
|----------------|--------|-------|----------------------|----------|--------|--------|
| DL (m)         | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x (m)  | tf•m/m |
| +2.00          |        | 0.50  |                      |          | 1.540  | 2.975  |
| +0.80          | 1.20   | 0.90  | 2.30                 | 1.932    | 0.540  | 1.043  |
| +0.80          |        | 1.60  |                      |          | 1.773  | 2.369  |
| +0.45          | 0.35   | 1.72  | 2.30                 | 1.336    | 0.890  | 1.189  |
| +0.45          |        | 1.72  |                      |          | 1.642  | 4.581  |
| -0.70          | 1.15   | 2.10  | 1.27                 | 2.790    | 1.142  | 3.186  |
| -0.70          |        | 2.10  |                      |          |        |        |
| -2.20          | 1.50   | 2.60  | 1.27                 | 4.477    | 1.421  | 6.362  |
| Total          | 4.20   |       |                      | 10.535   |        | 16.287 |

# (2) Weight of Soil on the Block

| Level  | Height | Width | r                    | Weight   | Center   | $W^{\textstyle \cdot} x, W^{\textstyle \cdot} x'$ |
|--------|--------|-------|----------------------|----------|----------|---------------------------------------------------|
| DL (m) | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x ,x'(m) | tf•m/m                                            |
| +2.00  |        | 0.70  |                      |          | 2.250    | 3.402                                             |
| +0.80  | 1.20   | 0.70  | 1.80                 | 1.512    | 1.250    | 1.890                                             |
| +0.80  |        | 0.00  |                      |          | 2.603    | 0                                                 |
| +0.45  | 0.35   | 0.00  | 1.80                 | 0.000    | 1.720    | 0.000                                             |
| +0.45  |        | 0.00  |                      |          | 2.600    | 0                                                 |
| -0.70  | 1.15   | 0.00  | 1.00                 | 0.000    | 2.100    | 0.000                                             |
| Total  | 1.50   |       |                      | 1.512    |          | 3.402                                             |

# (3) Earth Pressure

| Ī | Level  | Height | Surcharge | $\Sigma \gamma h+q$ | Kah    | Pressure  | Ра    |
|---|--------|--------|-----------|---------------------|--------|-----------|-------|
|   | DL (m) | h (m)  | q (tf/m²) | tf/m <sup>2</sup>   |        | pa(tf/m²) | tf/m  |
| Ī | +2.00  |        | 1.50      | 1.50                | 0.2911 | 0.437     | 0.262 |
| ſ | +0.80  | 1.20   |           | 3.66                | 0.2911 | 1.066     | 0.640 |
|   | +0.80  |        |           | 3.66                | 0.2911 | 1.066     | 0.187 |
|   | +0.45  | 0.35   |           | 4.29                | 0.2911 | 1.249     | 0.219 |
|   | +0.45  |        |           | 4.29                | 0.2911 | 1.249     | 0.718 |
|   | -0.70  | 1.15   |           | 5.44                | 0.2911 | 1.584     | 0.911 |
|   | -0.70  |        |           | 5.44                | 0.2911 | 1.584     | 1.188 |
|   | -2.20  | 1.50   |           | 6.94                | 0.2911 | 2.021     | 1.516 |
|   | Total  | 4.20   |           |                     |        |           | 5.641 |

Note; Kah is horizontal Coefficient of active earth pressure

| Level  | Height | Pa    | Center | Ра∙у   | y'    | Pv    |
|--------|--------|-------|--------|--------|-------|-------|
| DL (m) | h (m)  | tf/m  | y (m)  | tf∙m/m | m     | tf/m  |
| +2.00  | 1.20   | 0.262 | 3.800  | 0.996  |       | 0.070 |
| +0.80  | 1.20   | 0.640 | 3.400  | 2.176  | 0.516 | 0.171 |
| +0.80  | 0.35   | 0.187 | 2.883  | 0.539  |       | 0.050 |
| +0.45  | 0.35   | 0.219 | 2.767  | 0.606  |       | 0.059 |
| +0.45  | 1.15   | 0.718 | 2.267  | 1.627  |       | 0.192 |
| -0.70  | 1.15   | 0.911 | 1.883  | 1.716  | 1.108 | 0.244 |
| -0.70  | 1.50   | 1.188 | 1.000  | 1.188  |       | 0.318 |
| -2.20  | 1.50   | 1.516 | 0.500  | 0.758  |       | 0.406 |
| Total  |        | 5.641 |        | 9.606  | 1.703 | 1.511 |

## (4) Residual Water Pressure

| Level  | Height | Pressure               | Pw    | Center | Pw∙y   | y'    |
|--------|--------|------------------------|-------|--------|--------|-------|
| DL (m) | h (m)  | pw(tf/m <sup>2</sup> ) | tf/m  | y (m)  | tf∙m/m | m     |
| +0.45  |        | 0                      | 0.000 | 0.000  | 0.000  |       |
| +0.00  | 0.45   | 0.464                  | 0.104 | 2.350  | 0.244  |       |
| -0.70  | 0.70   | 0.464                  | 0.324 | 1.850  | 0.599  | 1.104 |
| -2.20  | 1.50   | 0.464                  | 0.695 | 0.750  | 0.521  |       |
| Total  |        |                        | 1.123 |        | 1.365  | 1.216 |

#### 3. Stability Calculation

(1) Examination Concerning Sliding of Wall

Safety Rate of Sliding F=f·W/P

| Level  | Weight and vertical force W (tf/m) |       |       |        |  |  |  |
|--------|------------------------------------|-------|-------|--------|--|--|--|
| DL (m) | Block                              | Soil  | Pv    | Total  |  |  |  |
| +0.80  | 1.932                              | 0.000 | 0.242 | 2.174  |  |  |  |
| -0.70  | 6.058                              | 1.512 | 0.787 | 8.357  |  |  |  |
| -2.20  | 10.535                             | 1.512 | 1.511 | 13.558 |  |  |  |

| Level                      | Horizontal force P (tf/m) |       |       | Coefficient   | Safety rate  | Permissible |
|----------------------------|---------------------------|-------|-------|---------------|--------------|-------------|
| $\mathrm{DL}\left(m ight)$ | Pa                        | Pw    | Total | of friction f | of sliding F | value       |
| +0.80                      | 0.902                     | 0.000 | 0.902 | 0.5           | 1.205        |             |
| -0.70                      | 2.937                     | 0.428 | 3.365 | 0.5           | 1.242        | 1.20        |
| -2.20                      | 5.641                     | 1.123 | 6.764 | 0.6           | 1.203        |             |

# (2) Examination Concerning Overturning of Wall

# Safety Rate of Overturning $F=W\cdot x/P\cdot y$

| Level  | Weight and vertical force $W \cdot x$ (tf/m) |       |       |        |  |  |
|--------|----------------------------------------------|-------|-------|--------|--|--|
| DL (m) | Block                                        | Soil  | Pv∙x  | Total  |  |  |
| +0.80  | 1.043                                        | 0.000 | 0.218 | 1.261  |  |  |
| -0.70  | 6.896                                        | 2.646 | 1.653 | 11.195 |  |  |
| -2.20  | 16.287                                       | 3.402 | 3.929 | 23.618 |  |  |

| Level  | Horizontal force $\mathbf{P}\!\cdot\!\mathbf{y}$ (tf/m) |       |        | safety rate | Permissible |
|--------|---------------------------------------------------------|-------|--------|-------------|-------------|
| DL (m) | Pa∙y'                                                   | Pw·y' | Total  | F           | value       |
| +0.80  | 0.465                                                   | 0.000 | 0.465  | 2.709       |             |
| -0.70  | 3.254                                                   | 0.473 | 3.727  | 3.004       | 1.20        |
| -2.20  | 9.606                                                   | 1.365 | 10.971 | 2.153       |             |

(3) Bottom Reactions of Concrete Block

Position of Gravity x=(W · x-P· y)/W=0.933 m

Eccentricity of Gravity ~~ e=b/2-x =0.367 m < B/6=0.433 m ~

Reaction at the front toe  $p1 = (1+6e/B)*W/B=9.63 \text{ tf/m}^2 < 30.0 \text{ tf/m}^2$ 

Width of Reactions b'=2.60 m

| (4) Bottom Reactions of Rubble Stone                                                 |
|--------------------------------------------------------------------------------------|
| Width of distribution of Reaction b1'                                                |
| $b1'=b'+D{tan(30 \circ + )+tan(30 \circ - )}$                                        |
| where、Depth of Rubble Foundation D=0.50 m                                            |
| tan = P/W =0.499 = 26.5 ° ,b1'=3.386 m                                               |
| Max. Reaction p1'=b'· p1/b1'+ _2· D =7.90 tf/m <sup>2</sup> < 16.0 tf/m <sup>2</sup> |
| where, Unit Weight of Rubble Foundation 2=1.0 tf/m <sup>3</sup>                      |

# Calculation result table

| Coloulation Itom                   | Cal   | Allowable |       |       |
|------------------------------------|-------|-----------|-------|-------|
|                                    | +0.80 | -0.70     | -2.20 | value |
| Sliding Safety rate of Wall        | 1.205 | 1.242     | 1.203 | 1.20  |
| Overturning sefty rate of Wall     | 2.709 | 3.004     | 2.153 | 1.20  |
| Bottom Reactions of Concrete Block | —     | —         | 9.63  | 30.0  |
| Bottom Reactions of Rubble Stone   | —     | —         | 7.90  | 16.0  |

| . L-Shaped Block 7  | ype (Front wall in    | clination | =0°、Plar       | ned depth DL-2.5 m) |
|---------------------|-----------------------|-----------|----------------|---------------------|
| 1 . Design Conditio | ons                   |           |                | ¥,                  |
| (1) Design Tida     | l Level               |           |                |                     |
| H.W.L               | D.L.+1.34 m           |           |                |                     |
| L.W.L               | D.L. ± 0.00 m         |           |                |                     |
| R.W.L               | D.L.+0.45m {=L.W      | .L+(H.W.L | L.W.L)/3}      |                     |
| (2) Design Leve     | əl                    |           |                |                     |
| Crown H             | eight of Quay wall    | D.L.+2.0  | 00 m           |                     |
| Planed D            | epth of Quay wall     | D.L-2.50  | m              |                     |
| R.W.L               | D.L.+0.45m {=L.W      | .L+(H.W.L | L.W.L)/3}      |                     |
| (2) Design Leve     | əl                    |           |                |                     |
| Crown H             | eight of Quay wall    | D.L.+2.0  | 00 m           |                     |
| Design D            | epth of Quay wall     | D.L2.50   | ) m            |                     |
| Depth of            | Concrete Block        | D.L2.7    | 0 m            |                     |
| (3) Surcharge       | $q=1.5 \text{ t/m}^2$ |           |                |                     |
| (4) Materials       |                       |           |                |                     |
| Plain con           | crete c = 2.30 t      | f/m³      |                |                     |
| Backfillin          | ıg                    |           |                |                     |
|                     |                       | Unit We   | eight $\gamma$ |                     |
| Mate                | φ<br>(-)              |           |                |                     |
|                     |                       | In air    | In water       | (°)                 |
|                     |                       |           |                |                     |

# Backfill of Coral Stone 1.80 1.00 30 Backfill of sand 1.80 1.00 30 Rubble Stone 1.80 1.00 40

Unit weight of water w = 1.03 tf/m<sup>3</sup>

# (5) Coefficient of static friction

| Concrete against Concrete     | 0.5 |
|-------------------------------|-----|
| Concrete against Rubble Stone | 0.6 |

(6) Angle of wall friction = 15.0 °

(7) Bearing capacity of Subsoil  $qa = 16.0 \text{ tf/m}^2$ 

# 2. Calculation of Load

# (1) Weight of Concrete Block

| Level of Block | Height | Width | γc                   | Weight   | Center | W·x    |
|----------------|--------|-------|----------------------|----------|--------|--------|
| DL (m)         | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x (m)  | tf∙m/m |
| +2.00          |        | 0.50  |                      |          |        |        |
| +0.80          | 1.20   | 0.90  | 2.30                 | 1.932    | 0.360  | 0.696  |
| +0.80          |        | 2.50  |                      |          |        |        |
| +0.45          | 0.35   | 2.50  | 1.90                 | 1.663    | 1.250  | 2.079  |
| +0.45          |        | 2.50  |                      |          |        |        |
| -2.70          | 3.15   | 2.50  | 1.05                 | 8.269    | 1.250  | 10.336 |
| Total          | 4.70   |       |                      | 11.864   |        | 13.111 |

# (2) Weight of Soil on the Block

| Level  | Height | Width | r                    | Weight   | Center | W·x    |
|--------|--------|-------|----------------------|----------|--------|--------|
| DL (m) | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x (m)  | tf∙m/m |
| +2.00  |        | 0.40  |                      |          |        |        |
| +0.80  | 1.20   | 0.00  | 1.80                 | 0.432    | 0.767  | 0.331  |
| +0.80  | 1.20   | 1.60  | 1.80                 | 3.456    | 1.700  | 5.875  |
| Total  | 1.20   |       |                      | 3.888    |        | 6.206  |

| (3) I | Earth Press | ure    |           |                     |        |           |       |
|-------|-------------|--------|-----------|---------------------|--------|-----------|-------|
|       | Level       | Height | Surcharge | $\Sigma \gamma h+q$ | Kah    | Pressure  | Pa    |
|       | DL (m)      | h (m)  | q (tf/m²) | tf/m <sup>2</sup>   |        | pa(tf/m²) | tf/m  |
|       | +2.00       |        | 1.50      | 1.50                | 0.2911 | 0.437     | 0.262 |
|       | +0.80       | 1.20   |           | 3.66                | 0.2911 | 1.066     | 0.640 |
|       | +0.80       |        |           | 3.66                | 0.2911 | 1.066     | 0.187 |
|       | +0.45       | 0.35   |           | 4.29                | 0.2911 | 1.249     | 0.219 |
|       | +0.45       |        |           | 4.29                | 0.2911 | 1.249     | 1.967 |
|       | -2.70       | 3.15   |           | 7.44                | 0.2911 | 2.166     | 3.411 |
|       | Total       | 4.70   |           |                     |        |           | 6.686 |

Note; Kah is horizontal Coefficient of active earth pressure

| Level  | Height | Pa    | Center | Ра∙у   | у'    | Pv    |
|--------|--------|-------|--------|--------|-------|-------|
| DL (m) | h (m)  | tf/m  | y (m)  | tf∙m/m | m     | tf/m  |
| +2.00  | 1.20   | 0.262 | 4.300  | 1.127  |       | 0.070 |
| +0.80  | 1.20   | 0.640 | 3.900  | 2.496  | 0.516 | 0.171 |
| +0.80  | 0.35   | 0.187 | 3.383  | 0.633  |       | 0.050 |
| +0.45  | 0.35   | 0.219 | 3.267  | 0.715  |       | 0.059 |
| +0.45  | 3.15   | 1.967 | 2.100  | 4.131  |       | 0.527 |
| -2.70  | 3.15   | 3.411 | 1.050  | 3.582  |       | 0.914 |
| Total  |        | 6.686 |        | 12.683 | 1.897 | 1.791 |

# (4) Residual Water Pressure

| Level  | Height | Pressure  | Pw    | Center | Pw·y   |
|--------|--------|-----------|-------|--------|--------|
| DL (m) | h (m)  | pw(tf/m²) | tf/m  | y (m)  | tf∙m/m |
| +0.45  |        | 0         | 0.000 | 0.000  | 0.000  |
| +0.00  | 0.45   | 0.464     | 0.104 | 2.850  | 0.297  |
| -2.70  | 2.70   | 0.464     | 1.251 | 1.350  | 1.689  |
| Total  |        |           | 1.356 |        | 1.987  |

# 3. Stability Calculation

(1) Examination Concerning Sliding of Wall

Safety Rate of Sliding F=f• W/P

| Level  | Weight and vertical force W (tf/m) |       |       |        |  |  |
|--------|------------------------------------|-------|-------|--------|--|--|
| DL (m) | Block                              | Soil  | Pv    | Total  |  |  |
| +0.80  | 1.932                              | 0.432 | 0.242 | 2.606  |  |  |
| -2.70  | 11.864                             | 3.888 | 1.791 | 17.543 |  |  |

| Level             | Horizontal force P (tf/m) |       | Coefficient | Safety rate   | Permissible  |       |
|-------------------|---------------------------|-------|-------------|---------------|--------------|-------|
| $DL\left(m ight)$ | Pa                        | Pw    | Total       | of friction f | of sliding F | value |
| +0.80             | 0.902                     | 0.000 | 0.902       | 0.5           | 1.444        | 1.90  |
| -2.70             | 6.686                     | 1.356 | 8.042       | 0.6           | 1.309        | 1.20  |

# (2) Examination Concerning Overturning of Wall

# Safety Rate of Overturning $F=W\cdot x/P\cdot y$

| Level  | Weight and vertical force W $\cdot x$ (tf/m) |            |       |        |  |  |
|--------|----------------------------------------------|------------|-------|--------|--|--|
| DL (m) | Block                                        | Block Soil |       | Total  |  |  |
| +0.80  | 0.696                                        | 0.331      | 0.217 | 1.244  |  |  |
| -2.70  | 13.111                                       | 6.206      | 4.478 | 23.795 |  |  |

| Level  | Horizon | tal force P | •y (tf/m)     | safety rate | Permissible |
|--------|---------|-------------|---------------|-------------|-------------|
| DL (m) | Pa·y'   | Pw·y'       | Pw·y' Total F |             | value       |
| +0.80  | 0.466   | 0.000       | 0.466         | 2.673       | 1.00        |
| -2.70  | 12.683  | 1.987       | 14.670        | 1.622       | 1.20        |

(3) Bottom Reactions of Concrete Block

Position of Gravity x=(W • x-P• y)/W=0.520 m

 $\label{eq:control} \mbox{Eccentricity of Gravity} \quad e=b/2\mbox{-}x = 0.730\mbox{ m} > B/6 = 0.417\mbox{ m}$ 

Reaction at the front toe  $p1 = 2W/(3x) = 22.48 \text{ tf/m}^2 < 30.0 \text{ tf/m}^2$ 

Width of Reactions b'=3x=1.560 m

(4) Bottom Reactions of Rubble Stone Width of distribution of Reaction b1' b1'=b'+D{tan(30 ° + )+tan(30 ° - )} where, Depth of Rubble Foundation D=0.50 m tan = P/W =0.458 = 24.6 ° b1'=2.312 m Max. Reaction p1'=b' p1/b1'+  $_{2}$ · D =15.68 tf/m<sup>2</sup> < 16.0 tf/m<sup>2</sup> Where, Unit Weight of Rubble Foundation 2=1.0 tf/m<sup>3</sup>

# Calculation result table

| Colculation Itom                   | Calculat | Allowable |       |
|------------------------------------|----------|-----------|-------|
| Calculation Item                   | +0.80    | -2.70     | value |
| Sliding Safety rate of Wall        | 1.444    | 1.309     | 1.20  |
| Overturning safety rate of Wall    | 2.673    | 1.622     | 1.20  |
| Bottom Reactions of Concrete Block | —        | 22.48     | 30.00 |
| Bottom Reactions of Rubble Stone   | —        | 15.68     | 16.00 |

. Cellular Block Type (Front wall inclination  $\hfill=0$  °  $\hfill Planet depth DL-2.5 m)$ 

1 . Design Conditions

(1) Design Tidal Level

H.W.L D.L.+1.34 m

L.W.L D.L. ± 0.00 m

R.W.L D.L.+0.45m {=L.W.L+(H.W.L L.W.L)/3}

#### (2) Design Level

Crown Height of Quay wall D.L.+2.00 m

Planed Depth of Quay wall D.L-2.50 m

Design Depth of Quay wall D.L. 2.50 m

Depth of Concrete Block D.L.-2.70 m

(3) Surcharge  $q=1.5 \text{ t/m}^2$ 

(4) Materials

Plain concrete c = 2.30 tf/m<sup>3</sup>

#### Backfilling

| Materials               | Unit Wo<br>(tf/ | Unit Weight γ<br>(tf/m <sup>3</sup> ) |    |  |  |
|-------------------------|-----------------|---------------------------------------|----|--|--|
|                         | In air          | In water                              | () |  |  |
| Backfill of Coral Stone | 1.80            | 1.00                                  | 30 |  |  |
| Backfill of sand        | 1.80            | 1.00                                  | 30 |  |  |
| Rubble Stone            | 1.80            | 1.00                                  | 40 |  |  |

Unit weight of water  $w = 1.03 \text{ tf/m}^3$ 

#### (5) Coefficient of static friction

| Concrete against Concrete     | 0.5 |
|-------------------------------|-----|
| Concrete against Rubble Stone | 0.6 |

(6) Angle of wall friction = 15.0 °

(7) Bearing capacity of Subsoil  $qa = 16.0 \text{ tf/m}^2$ 

| 2. | Calculation | n of Load |
|----|-------------|-----------|
|    |             |           |

# (1) Weight of Concrete Block

| Level of Block | Height | Width | γc                   | Weight   | Center | W·x    |
|----------------|--------|-------|----------------------|----------|--------|--------|
| DL (m)         | h (m)  | b (m) | (tf/m <sup>3</sup> ) | W (tf/m) | x (m)  | tf•m/m |
| +2.00          |        | 0.50  |                      |          |        |        |
| +0.80          | 1.20   | 0.90  | 2.30                 | 1.932    | 0.360  | 0.696  |
| +0.80          |        | 1.80  |                      |          |        |        |
| +0.45          | 0.35   | 1.80  | 2.10                 | 1.323    | 0.900  | 1.191  |
| +0.45          |        | 1.80  |                      |          |        |        |
| -1.00          | 1.45   | 1.80  | 1.20                 | 3.132    | 0.900  | 2.819  |
| -1.00          |        | 2.30  |                      |          |        |        |
| -2.70          | 1.70   | 2.30  | 1.20                 | 4.692    | 1.150  | 5.396  |
| Total          | 4.70   |       |                      | 11.079   |        | 10.102 |

# (2) Weight of Soil on the Block

| Lovol  | Hojght | Width    | r                    | Woight   | Contor | Wex    |
|--------|--------|----------|----------------------|----------|--------|--------|
| Level  | meight | vv iutii | /                    | weight   | Center | VV - X |
| DL (m) | h (m)  | b (m)    | (tf/m <sup>3</sup> ) | W (tf/m) | x (m)  | tf∙m/m |
| +2.00  |        | 0.40     |                      |          |        |        |
| +0.80  | 1.20   | 0.00     | 1.80                 | 0.432    | 0.767  | 0.331  |
| +0.80  | 1.20   | 0.90     | 1.80                 | 1.944    | 1.350  | 2.624  |
| +0.45  | 0.35   | 0.50     | 1.80                 | 1.395    | 2.050  | 2.860  |
| +0.45  |        | 0.50     |                      |          |        |        |
| -1.00  | 1.45   | 0.50     | 1.00                 | 0.725    | 2.050  | 1.486  |
| Total  | 3.00   |          |                      | 4.496    |        | 7.301  |

#### (3) Earth Pressure

| Level                       | Height | Surcharge | $\Sigma \gamma h+q$ | Kah    | Pressure  | Pa    |
|-----------------------------|--------|-----------|---------------------|--------|-----------|-------|
| $\mathrm{DL}\left(m\right)$ | h (m)  | q (tf/m²) | tf/m <sup>2</sup>   |        | pa(tf/m²) | tf/m  |
| +2.00                       |        | 1.50      | 1.50                | 0.2911 | 0.437     | 0.262 |
| +0.80                       | 1.20   |           | 3.66                | 0.2911 | 1.066     | 0.640 |
| +0.80                       |        |           | 3.66                | 0.2911 | 1.066     | 0.187 |
| +0.45                       | 0.35   |           | 4.29                | 0.2911 | 1.249     | 0.219 |
| +0.45                       |        |           | 4.29                | 0.2911 | 1.249     | 0.906 |
| -1.00                       | 1.45   |           | 5.74                | 0.2911 | 1.671     | 1.211 |
| -1.00                       |        |           | 5.74                | 0.2911 | 1.671     | 1.420 |
| -2.70                       | 1.70   |           | 7.44                | 0.2911 | 2.166     | 1.841 |
| Total                       | 4.70   |           |                     |        |           | 6.685 |

Note;Kah is horizontal Coefficient of active earth pressure

| Level  | Height | Pa    | Center | Ра∙у   | у'    | Pv    |
|--------|--------|-------|--------|--------|-------|-------|
| DL (m) | h (m)  | tf/m  | y (m)  | tf•m/m | m     | tf/m  |
| +2.00  | 1.20   | 0.262 | 4.300  | 1.127  |       | 0.070 |
| +0.80  | 1.20   | 0.640 | 3.900  | 2.494  | 0.516 | 0.171 |
| +0.80  | 0.35   | 0.187 | 3.383  | 0.631  |       | 0.050 |
| +0.45  | 0.35   | 0.219 | 3.267  | 0.714  |       | 0.059 |
| +0.45  | 1.45   | 0.906 | 2.667  | 2.415  |       | 0.243 |
| -1.00  | 1.45   | 1.211 | 2.183  | 2.645  | 1.228 | 0.325 |
| -1.00  | 1.70   | 1.420 | 1.133  | 1.610  |       | 0.381 |
| -2.70  | 1.70   | 1.841 | 0.567  | 1.043  |       | 0.493 |
| Total  |        | 6.685 |        | 12.680 | 1.897 | 1.791 |

## (4) Residual Water Pressure

| Level  | Height | Pressure               | Pw    | Center | Pw∙y   | у'    |
|--------|--------|------------------------|-------|--------|--------|-------|
| DL (m) | h (m)  | pw(tf/m <sup>2</sup> ) | tf/m  | y (m)  | tf∙m/m | m     |
| +0.45  |        | 0                      | 0.000 | 0.000  | 0.000  |       |
| +0.00  | 0.45   | 0.464                  | 0.104 | 2.850  | 0.297  |       |
| -1.00  | 1.00   | 0.464                  | 0.464 | 2.200  | 1.020  | 1.141 |
| -2.70  | 1.70   | 0.464                  | 0.788 | 0.850  | 0.670  |       |
| Total  |        |                        | 1.356 |        | 1.987  | 1.465 |

| (3) ] | (3) Earth Pressure |        |                        |                     |        |           |       |  |  |  |
|-------|--------------------|--------|------------------------|---------------------|--------|-----------|-------|--|--|--|
|       | Level              | Height | Surcharge              | $\Sigma \gamma h+q$ | Kah    | Pressure  | Pa    |  |  |  |
|       | DL (m)             | h (m)  | q (tf/m <sup>2</sup> ) | tf/m <sup>2</sup>   |        | pa(tf/m²) | tf/m  |  |  |  |
|       | +2.00              |        | 1.50                   | 1.50                | 0.2911 | 0.437     | 0.262 |  |  |  |
|       | +0.80              | 1.20   |                        | 3.66                | 0.2911 | 1.066     | 0.640 |  |  |  |
|       | +0.80              |        |                        | 3.66                | 0.2911 | 1.066     | 0.187 |  |  |  |
|       | +0.45              | 0.35   |                        | 4.29                | 0.2911 | 1.249     | 0.219 |  |  |  |
|       | +0.45              |        |                        | 4.29                | 0.2911 | 1.249     | 0.906 |  |  |  |
|       | -1.00              | 1.45   |                        | 5.74                | 0.2911 | 1.671     | 1.211 |  |  |  |
|       | -1.00              |        |                        | 5.74                | 0.2911 | 1.671     | 1.420 |  |  |  |
|       | -2.70              | 1.70   |                        | 7.44                | 0.2911 | 2.166     | 1.841 |  |  |  |
|       | Total              | 4.70   |                        |                     |        |           | 6.685 |  |  |  |

Note;Kah is horizontal Coefficient of active earth pressure

| Level  | Height | Pa    | Center | Ра∙у   | y'    | Pv    |
|--------|--------|-------|--------|--------|-------|-------|
| DL (m) | h (m)  | tf/m  | y (m)  | tf∙m/m | m     | tf/m  |
| +2.00  | 1.20   | 0.262 | 4.300  | 1.127  |       | 0.070 |
| +0.80  | 1.20   | 0.640 | 3.900  | 2.494  | 0.516 | 0.171 |
| +0.80  | 0.35   | 0.187 | 3.383  | 0.631  |       | 0.050 |
| +0.45  | 0.35   | 0.219 | 3.267  | 0.714  |       | 0.059 |
| +0.45  | 1.45   | 0.906 | 2.667  | 2.415  |       | 0.243 |
| -1.00  | 1.45   | 1.211 | 2.183  | 2.645  | 1.228 | 0.325 |
| -1.00  | 1.70   | 1.420 | 1.133  | 1.610  |       | 0.381 |
| -2.70  | 1.70   | 1.841 | 0.567  | 1.043  |       | 0.493 |
| Total  |        | 6.685 |        | 12.680 | 1.897 | 1.791 |

## (4) Residual Water Pressure

| Level  | Height | Pressure               | Pw    | Center | Pw·y   | у'    |
|--------|--------|------------------------|-------|--------|--------|-------|
| DL (m) | h (m)  | pw(tf/m <sup>2</sup> ) | tf/m  | y (m)  | tf•m/m | m     |
| +0.45  |        | 0                      | 0.000 | 0.000  | 0.000  |       |
| +0.00  | 0.45   | 0.464                  | 0.104 | 2.850  | 0.297  |       |
| -1.00  | 1.00   | 0.464                  | 0.464 | 2.200  | 1.020  | 1.141 |
| -2.70  | 1.70   | 0.464                  | 0.788 | 0.850  | 0.670  |       |
| Total  |        |                        | 1.356 |        | 1.987  | 1.465 |

# 3. Stability Calculation

(1) Examination Concerning Sliding of Wall

Safety Rate of Sliding  $F=f\cdot W/P$ 

| Level  | Weight | Weight and vertical force W (tf/m |       |        |  |  |  |
|--------|--------|-----------------------------------|-------|--------|--|--|--|
| DL (m) | Block  | Soil                              | Pv    | Total  |  |  |  |
| +0.80  | 1.932  | 0.432                             | 0.242 | 2.606  |  |  |  |
| -1.00  | 6.387  | 3.771                             | 1.745 | 11.903 |  |  |  |
| -2.70  | 11.079 | 4.496                             | 1.791 | 17.366 |  |  |  |

| Level                       | Horizontal force $P(tf/m)$ |       |       | Coefficient   | Safety rate  | Permissible |
|-----------------------------|----------------------------|-------|-------|---------------|--------------|-------------|
| $\mathrm{DL}\left(m\right)$ | Pa                         | Pw    | Total | of friction f | of sliding F | value       |
| +0.80                       | 0.902                      | 0.000 | 0.902 | 0.5           | 1.445        |             |
| -1.00                       | 3.424                      | 0.568 | 3.992 | 0.7           | 2.087        | 1.20        |
| -2.70                       | 6.685                      | 1.356 | 8.041 | 0.7           | 1.512        |             |

#### (2) Examination Concerning Overturning of Wall

Safety Rate of Overturning F=W·x/P·y

| Level  | Weight and vertical force W $\cdot \mathbf{x}$ (tf/m) |       |              |        |  |  |
|--------|-------------------------------------------------------|-------|--------------|--------|--|--|
| DL (m) | Block                                                 | Soil  | $Pv \cdot x$ | Total  |  |  |
| +0.80  | 0.696                                                 | 0.331 | 0.217        | 1.244  |  |  |
| -1.00  | 4.706                                                 | 2.955 | 3.141        | 10.802 |  |  |
| -2.70  | 10.102                                                | 7.301 | 4.119        | 21.522 |  |  |

| Level  | Horizon | tal force P | •y (tf/m) | safety rate | Permissible |
|--------|---------|-------------|-----------|-------------|-------------|
| DL (m) | Pa∙y'   | Pw∙y'       | Total     | F           | value       |
| +0.80  | 0.466   | 0.000       | 0.466     | 2.673       |             |
| -1.00  | 4.206   | 0.648       | 4.854     | 2.225       | 1.20        |
| -2.70  | 12.680  | 1.987       | 14.667    | 1.467       |             |

(3) Bottom Reactions of Concrete Block

 $\begin{array}{ll} \mbox{Position of Gravity} & x=\!(W\cdot x\!\cdot\!P\!\cdot\,y)/W\!=\!0.395\ m \\ \mbox{Eccentricity of Gravity} & e\!=\!b/2\!\cdot\!x\!=\!0.755\ m\!>\!B/6\!=\!0.383\ m \\ \mbox{Reaction at the front toe} & p1=2W/(3x)=\!29.33\ tf/m^2<30.0\ tf/m^2 \\ \mbox{Width of Reactions} & b'\!=\!3x\!=\!1.184\ m \\ \end{array}$ 

(4) Bottom Reactions of Rubble Stone
Width of distribution of Reaction b1'
b1'=b'+D{tan(30 ° + )+tan(30 ° - )}
where, Depth of Rubble Foundation D=0.80 m
tan = P/W =0.463 = 24.8 ° b1'=2.393 m
Max. Reaction p1'=b'• p1/b1'+ 2• D =15.32 tf/m<sup>2</sup> < 16.0 tf/m<sup>2</sup>
where, Unit Weight of Rubble Foundation 2=1.0 tf/m<sup>3</sup>

#### Calculation result table

| Calculation Itom                   | Cale  | Allowable |       |       |
|------------------------------------|-------|-----------|-------|-------|
| Calculation Item                   | +0.80 | -1.00     | -2.70 | value |
| Sliding Safety rate of Wall        | 1.445 | 2.087     | 1.512 | 1.20  |
| Overturning safety rate of Wall    | 2.673 | 2.225     | 1.467 | 1.20  |
| Bottom Reactions of Concrete Block | —     | —         | 29.33 | 30.0  |
| Bottom Reactions of Rubble Stone   | —     | —         | 15.32 | 16.0  |

. Steel Sheet Pile Type (Front wall inclination = 0 ° 、 Planed depth DL-2.5 m) 1 . Design Conditions (1) Design Tidal Level H.W.L D.L.+1.34 m L.W.L D.L. ± 0.00 m R.W.L D.L+0.89m (=L.W.L+(H.W.L-L.W.L)\*2/3) (2) Design Level Crown Height of Quay wall D.L+2.00 m Planed Depth of Quay wall D.L-2.50 m Design Depth of Quay wall D.L-2.50 m Level of Tie Rod D.L+1.00 m Embedded Level of Sheet Pile D.L -5.50 m (3) Surcharge  $q=1.5 t/m^2$ (4) Materials Steel Sheet Pile; SY295 Allowable stress sa = 1,800 kgf/cm<sup>2</sup> Type-IIIA Sectional modulus Z = 1,520 kgf/cm<sup>2</sup> /m Type-II A Sectional modulus Z = 880 kgf/cm<sup>2</sup>/m Tie Rod ; SS400 Allowable stress sa = 960 kgf/cm<sup>2</sup> Wale; SS400 Allowable stress sa = 1,400 kgf/cm<sup>2</sup> Backfilling Unit Weight  $\gamma$  (tf/m<sup>3</sup>) φ Materials In air In water (°) (rad) Backfill of Coral Stone 1.80 1.00 30 0.5236Backfill of sand 1.801.0030 0.5236 Unit weight of water w = 1.03tf/m<sup>3</sup> (5) Safety Factor of Embedded F = 1.5(6) Angle of wall friction = 15.0 ° (7) Condition of Subsoil  $' = 1.0 \text{ tf/m}^3$  (under the water)

= 28.0 °

| (1) A | (1) Active Earth Pressure and Residual Water pressure |        |                     |        |                     |          |       |  |  |  |
|-------|-------------------------------------------------------|--------|---------------------|--------|---------------------|----------|-------|--|--|--|
|       | Level                                                 | Height | $\Sigma \gamma h+q$ | Kah    | Pressure Pa (tf/m2) |          |       |  |  |  |
|       | DL (m)                                                | h (m)  | tf/m <sup>2</sup>   |        | Earth:pa            | Water;pw | Total |  |  |  |
|       | +2.00                                                 |        | 1.50                | 0.2911 | 0.437               | 0.000    | 0.437 |  |  |  |
|       | +1.00                                                 | 1.00   | 3.30                | 0.2911 | 0.961               | 0.000    | 0.961 |  |  |  |
|       | +0.89                                                 | 0.11   | 3.50                | 0.2911 | 1.019               | 0.000    | 1.019 |  |  |  |
|       | +0.00                                                 | 0.89   | 4.39                | 0.2911 | 1.278               | 0.917    | 2.195 |  |  |  |
|       | -2.50                                                 | 2.50   | 6.89                | 0.2911 | 2.006               | 0.917    | 2.923 |  |  |  |
|       | -2.50                                                 | 0.00   | 6.89                | 0.3140 | 2.163               | 0.917    | 3.080 |  |  |  |
|       | -5.50                                                 | 3.00   | 9.89                | 0.3140 | 3.105               | 0.917    | 4.022 |  |  |  |

Note; Kah is horizontal Coefficient of active earth pressure

| Level  | Height | Pa                | ΣΡα   | Center | Ра∙у   |
|--------|--------|-------------------|-------|--------|--------|
| DL (m) | h (m)  | tf/m <sup>2</sup> | tf/m  | y (m)  | tf∙m/m |
| +2.00  |        | 0.437             | 0.219 | -0.667 | -0.146 |
| +1.00  | 1.00   | 0.961             | 0.481 | -0.333 | -0.160 |
| +1.00  |        | 0.961             | 0.053 | 0.037  | 0.002  |
| +0.89  | 0.11   | 1.019             | 0.056 | 0.073  | 0.004  |
| +0.89  |        | 1.019             | 0.453 | 0.407  | 0.184  |
| 0.00   | 0.89   | 2.195             | 0.977 | 0.703  | 0.687  |
| 0.00   |        | 2.195             | 2.744 | 1.833  | 5.030  |
| -2.50  | 2.50   | 2.923             | 3.654 | 2.667  | 9.745  |
| -2.50  |        | 3.080             | 4.620 | 4.500  | 20.790 |
| -5.50  | 3.00   | 4.022             | 6.033 | 5.500  | 33.182 |
| Total  | 7.50   |                   | 19.29 |        | 69.318 |

#### (2) Passive Earth Pressure

2 . Calculation of Load

| Level  | Height | Σγh               | Kph    | Рp                |
|--------|--------|-------------------|--------|-------------------|
| DL (m) | h (m)  | tf/m <sup>2</sup> |        | tf/m <sup>2</sup> |
| -2.50  | 3.00   | 0.00              | 0.000  | 0.000             |
| -5.50  | 3.00   | 3.00              | 4.3312 | 12.994            |

Note; Kph is horizontal Coefficient of passive earth pressure

| Level  | Height | Pp                | ΣPp    | Center | Ра∙у    |
|--------|--------|-------------------|--------|--------|---------|
| DL (m) | h (m)  | tf/m <sup>2</sup> | tf/m   | y (m)  | tf∙m/m  |
| -2.50  |        | 0.000             | 0.000  | 4.500  | 0.000   |
| -5.50  | 3.00   | 12.994            | 19.491 | 5.500  | 107.201 |
| Total  |        |                   | 19.491 |        | 107.201 |

3. Design of Sheet Piles

(1) Embedded Length of Sheet Piles

The embedded length of sheet piles shall be calculated to satisfy the following formula

\_ \_ \_

F=Pp• y/Pa• y

where,  $\ \operatorname{Pp} \cdot y \mathrel{\dot{\cdot}} \operatorname{Moment}$  for the tie rod setting point by passive

#### earth pressure

Pa•y: Moment for the tie rod setting point by active earth

pressure and residual water pressure

# F: Safety factor

F=1.547 > 1.5 ok

(2) Section of Sheet Piles

a) Active Earth Pressure and Residual Water pressure above the

design depth

| Level  | ΣΡα   | Ра•у   |
|--------|-------|--------|
| DL (m) | tf/m  | tf∙m/m |
| +2.00  | 0.219 | -0.146 |
| +1.00  | 0.481 | -0.160 |
| +1.00  | 0.053 | 0.002  |
| +0.89  | 0.056 | 0.004  |
| +0.89  | 0.453 | 0.184  |
| +0.00  | 0.977 | 0.687  |
| +0.00  | 2.744 | 5.030  |
| -2.50  | 3.654 | 9.745  |
| Total  | 8.637 | 15.346 |

b) Reaction force of design depth

Ro=Pa• y:/lt=4.385tf/m

Where, lt: Distance from Tie rod to Design depth, lt=3.50 m

c) Reaction at the tie rod setting point

Ap= pa-Ro=4.252 tf/m

| d) Z                       | ero Point         | of Shearing             | force                 |                   |             |                     |              |
|----------------------------|-------------------|-------------------------|-----------------------|-------------------|-------------|---------------------|--------------|
|                            | Q=A-B• y-         | $C \cdot y^2$           |                       |                   |             |                     |              |
|                            | A=2.013           | ,B=2.195 ,              | C=0.1456              |                   |             |                     |              |
|                            | (DL -)y=0.        | 8672 m                  | Q=0.0                 | 000               |             |                     |              |
| e) M                       | laximum l         | pending mo              | ment of sh            | eet piles         | Mmax        |                     |              |
|                            | Level             | Height                  | Pa                    | ΣΡα               | Center      | Ра∙у                |              |
|                            | DL (m)            | h (m)                   | tf/m <sup>2</sup>     | tf/m              | y (m)       | tf∙m/m              |              |
|                            | -0.867            | 1.633                   | 2.448                 | 1.999             | 0.544       | 1.087               |              |
|                            | -2.500            | 1.633                   | 2.923                 | 2.387             | 1.089       | 2.599               |              |
|                            | Total             |                         |                       | 4.386             |             | 3.686               |              |
| f) S                       | ection Cha        | racteristic (           | of Sheet P            | ile               |             |                     | <u>.</u>     |
|                            | Sectional         | modulus (S              | teel Sheet            | Pile Type         | - A)        |                     |              |
|                            | Z=1,5             | 20 cm³ /m(B             | efore Corr            | rosion)           |             |                     |              |
|                            | Z'=1,0            | 76 cm <sup>3</sup> /m(A | After Cor             | rosion ; L        | ife time 30 | 0 years)            |              |
| g) S                       | tress of Sł       | neet Piles              |                       |                   |             |                     |              |
|                            | = Mma             | x / Z'=343              | kgf/cm <sup>2</sup> < | 1,800 kgf         | ∕cm² ok     |                     |              |
| (3) Desi                   | gn of Tie I       | Rods                    |                       |                   |             |                     |              |
| a) T                       | 'ension of t      | he tie rod              |                       |                   |             |                     |              |
|                            | Tension a         | cting on a ti           | e rod shel            | l be calcul       | lated in ac | cordance wi         | th following |
|                            | formula.          |                         |                       |                   |             |                     |              |
|                            | T=Ap <sup>3</sup> | ۲L                      |                       |                   |             |                     |              |
|                            | Where             | e , l: Tie rod          | setting in            | terval l          | =1.6m       |                     |              |
|                            | T=6.803           | ßtf                     |                       |                   |             |                     |              |
| b) S                       | tress of Ti       | e Rod                   |                       |                   |             |                     |              |
|                            | Diameter          | of Tie Rod              | =32r                  | nm                |             |                     |              |
|                            | Corrosion         |                         | tc=1.8                | mm (Life          | time 30 ye  | ears)               |              |
|                            | Sectional         | area                    | A=716                 | .3mm <sup>2</sup> |             |                     |              |
|                            | Stress of '       | lie Rod                 | =T/A                  | =950kgf/c         | $m^2 < 960$ | kgf/cm <sup>2</sup> |              |
| (4) Desi                   | gn of Wale        | •                       |                       |                   |             |                     |              |
| a) M                       | laximum l         | pending mo              | ment                  |                   |             |                     |              |
|                            | M=T·l             | /10=1.088t              | f∙m/m                 |                   |             |                     |              |
| b) (                       | Jsing mate        | erial                   |                       |                   |             |                     |              |
|                            | Ditch type        | e Steel 2 [             | 125x65x               | 6.0 x 8.0         |             |                     |              |
|                            | Sectional         | modulus                 |                       |                   |             |                     |              |
|                            | Z=2               | x67=134cm               | <sup>3</sup> (Before  | Corrosior         | 1)          |                     |              |
| Z'=2x57=114cm <sup>3</sup> | After Co          | rrosion ; Li            | fe time 30            | years)            |             |                     |              |

Stress of Wale  $s=M/Z=954kgf/cm^2 < 1,400 kgf/cm^2$ (5) Design of Anchorage Steel Sheet Piles a) Section Characteristic of Sheet Pile Sectional modulus (Steel Sheet Pile Type- A) Z= 880 cm<sup>3</sup> /m(Before Corrosion) Z'= 762 cm<sup>3</sup> /m(After Corrosion ; Life time 30 years) Pile flexural rigidity EI (kgf·cm<sup>2</sup>) EI= 2.226E+10 kgf·cm<sup>2</sup>/m (Before Corrosion) EI= 1.911E+10 kgf·cm<sup>2</sup>/m(After Corrosion; Life time 30 years) b) Coefficient of lateral subgrade reaction kh  $kh=0.15N=0.75 kgf/cm^3$  where N=5 (N-value of the ground) c) = {kh · B/(4EI)}<sup>1/4</sup> = 0.00538727 cm<sup>-1</sup> = 0.539 m<sup>-1</sup> ' = {kh · B/(4EI')}<sup>1/4</sup> = 0.00559674 cm<sup>-1</sup> = 0.560 m<sup>-1</sup> where, Width of Pile B= 100 cm d) Maximum bending moment Mmax = 0.3224 • T/ Where, Tension of a tie rod T= 4.252 tf/m  $Mmax = 2.543 \text{ tf} \cdot m/m$ e) Stress of Sheet Piles = Mmax / Z'=  $334 \text{ kgf/cm}^2 < 1,800 \text{ kgf/cm}^2 \text{ ok}$ f) Embedded Length of Sheet Piles L=3.0/=5.57 m - 6.00 mLength of Sheet Piles Ls= 6.50 m g) Displacement of a Sheet Pile at Tie Rod  $= T/(2EI^{3}) = 0.635 \text{ cm} < 5.0 \text{ cm}$  ok h) Distance between Sheet Piles L(m) Height between Tie Rod and Sea Bed h1= 3.50 m Effective height of Anchorage Sheet Piles Lm1/3= /(3 )= 1.943 m Angle of the failure plane of active earth pressure  $\cot a = 0.653$ Angle of the failure plane of passive earth pressure  $\cot p = 2.653$  $L=h1 \cdot cot a+h2 \cdot cot p= 7.440 m 8.000 m$ 

| Structures  | Colculation Itom         | Unit                                                                        | Calculation | Allowable |  |  |
|-------------|--------------------------|-----------------------------------------------------------------------------|-------------|-----------|--|--|
|             | Calculation Item         |                                                                             | value       | value     |  |  |
| Sheet Piles | Materials                | Steel Sheet                                                                 | .00 m       |           |  |  |
|             | Standard                 | JIS A 5528,Type U-IIA,SY295                                                 |             |           |  |  |
|             | Section                  | A=74.4cm <sup>2</sup> ,Z=1,520cm <sup>3</sup> /m,I=22.800cm <sup>4</sup> /m |             |           |  |  |
|             | Stress                   | kgf/cm <sup>2</sup>                                                         | 343         | 1,800     |  |  |
|             | Embedded Level           | DL(m)                                                                       | -5.50       | -         |  |  |
|             | Safety Ratio of Embedded | —                                                                           | 1.547       | 1.5       |  |  |
| Tie Rods    | Materials                | Tie Rod, SS400, $\phi$ =32.00 mm                                            |             |           |  |  |
|             | Stress                   | kgf/cm <sup>2</sup>                                                         | 950         | 960       |  |  |
|             | Length of Tie Rod        | m                                                                           | 8.00        | 7.44      |  |  |
| Wales       | Materials                | Ditch Type Steel,ss400 ,2[ 125x65x6.0x8.0                                   |             |           |  |  |
|             | Stress                   | kgf/cm <sup>2</sup>                                                         | 954         | 1,400     |  |  |
| Anchorage   | Materials                | Steel Sheet Piles L=6.00 m                                                  |             |           |  |  |
|             | Standard                 | JIS A 5528,Type U- II A,SY295                                               |             |           |  |  |
|             | Section                  | A=43.2cm <sup>2</sup> ,Z=880cm <sup>3</sup> /m,I=10,600cm <sup>4</sup> /m   |             |           |  |  |
|             | Stress                   | kgf/cm <sup>2</sup>                                                         | 334         | 1,800     |  |  |
|             | Embedded Level           | DL(m)                                                                       | -5.00       | -4.57     |  |  |
|             | Displacement of Head     | cm                                                                          | 0.64        | 5.00      |  |  |

# S2-2: REFERENCE DATA ON TELECOMMUNICATION SECTOR

- 1. Provisional International Sunspot Numbers
- 2. Monthly Average Sunspot Number
- 3. HF Radio Propagation Model (Male'-Fonadhoo)
- 4. HF Radio Propagation Model (Male'-Hithadhoo)

# 1. Provisional International Sunspot Numbers

# From the SIDC (World Data Center for the Sunspot Index): Provisional International Sunspot Numbers

Provisional International monthly mean Sunspot Number for April 2005 : 24.4 (twenty-four point four) Maximum : 37 on 30 // Minimum : 9 on 24 Provisional daily International Sunspot Numbers for April 2005 : 6.. 29 16.. 28 1.. 16 11.. 13 21.. 16 26.. 11 7.. 28 17.. 26 2.. 20 12.. 21 22.. 16 27.. 17 18.. 26 3.. 28 8.. 27 13.. 29 23.. 14 28.. 30 9.. 27 14.. 35 19.. 26 24.. 9 4.. 33 29.. 35 5.. 35 10.. 27 15.. 36 20.. 25 25.. 13 30.. 37 42 cooperating stations on May 1, 09 UT Predictions of the monthly smoothed Sunspot Number using the last provisional value, calculated for October 2004 : 35.9 (+-5%) SM CM SM CM SM CM 2005 May 2004 Nov 35 35 25 30 2005 Nov 17 23 23 Dec 32 34 Jun 29 Dec 17 21 2005 Jan 30 34 Jul 22 28 2006 Jan 16 20 Feb 29 33 Aug 20 27 Feb 15 18 Mar 27 32 Sep 19 26 Mar 14 16 26 18 25 13 31 Oct 15 Apr Apr SM : SIDC classical method : based on an interpolation of Waldmeier's standard curves; the estimated error ranges from 7% (first month) to 35% (last month) CM : Combined method : the combined method is a regression technique coupling a dynamo-based estimator with Waldmeier's idea of standard curves, due to K. Denkmayr. ref. : K. Denkmayr, P. Cugnon, 1997 : "About Sunspot Number Medium-Term Predictions", in "Solar-Terrestrial Prediction Workshop V", eds. 💃 G. Heckman et al., Hiraiso Solar Terrestrial Research Center, Japan, 103 http://sidc.oma.be/current/ri.html 2005/05/23



# 2. Monthly Average Sunspot Number

# 3. HF Radio Propagation Model (Male'-Fonadhoo)

(1) Jan, SSN=10, Male' - Fonadhoo



(2) Apr, SSN=10, Male' - Fonadhoo



# (3) Jul, SSN=10, Male' - Fonadhoo



(4) Oct, SSN=10, Male' - Fonadhoo



(5) Jan, SSN=60, Male' - Fonadhoo



(6) Apr, SSN=60, Male' - Fonadhoo



(7) Jul, SSN=60, Male' - Fonadhoo



(8) Oct, SSN=60, Male' - Fonadhoo



(9) Jan, SSN=100, Male' - Fonadhoo



(10) Apr, SSN=100, Male' - Fonadhoo



# (11) Jul, SSN=100, Male' - Fonadhoo



(12) Oct, SSN=100, Male' - Fonadhoo



# 4. HF Radio Propagation Model (Male'-Hithadhoo)

(1) Jan, SSN=10, Male' - Hithadhoo



(2) Apr, SSN=10, Male' - Hithadhoo



# (3) Jul, SSN=10, Male' - Hithadhoo



(4) Oct, SSN=10, Male' - Hithadhoo



# (5) Jan SSN=60 Male' – Hithadhoo



(6) Apr, SSN=60, Male' - Hithadhoo



# (7) Jul, SSN=60, Male' - Hithadhoo



(8) Oct, SSN=60, Male' - Hithadhoo


(9) Jan, SSN=100, Male' - Hithadhoo



(10) Apr, SSN=100, Male' - Hithadhoo



(11) Jul, SSN=100, Male' - Hithadhoo



(12) Oct, SSN=100, Male' - Hithadhoo



## S2-3: SCOPE OF WORKS

## SCOPE OF WORK FOR THE STUDY

ON

# TSUNAMI RECOVERY, REHABILITATION AND DEVELOPMENT OF ISLANDS IN MALDIVES

#### AGREED UPON BETWEEN

# THE DEPARTMENT OF EXTERNAL RESOURCES, MINISTRY OF FOREIGN AFFAIRS

## AND

## JAPAN INTERNATIONAL COOPERATION AGENCY

MALE, 12th April, 2005

Ms. Aminath Didi Assistant Director General, Department of External Resources, Ministry of Foreign Affairs Republic of Maldives

(Witnessed by)

Ms. Lucia Moosa Director, Programmes, Ministry of Planning and National Development Republic of Maldives

an

Mr. Masami Fuwa Leader of Project Monitoring Team, Senior Advisor, Social Development Department, Japan International Cooperation Agency

#### . INTRODUCTION

In response to the official request of the Government of the Republic of Maldives (hereinafter referred to as "GOM"), the Government of Japan (hereinafter referred to as "GOJ") has decided to undertake a study for "Tsunami Recovery, Rehabilitation and Development of Islands in Maldives" (hereinafter referred to as "the Study"), in accordance with the relevant laws and regulations in force in Japan.

Accordingly, Japan International Cooperation Agency (hereinafter referred to as "JICA"), the official agency responsible for the implementation of the technical cooperation programs of the GOJ, will undertake the Study, in close cooperation with the authorities concerned of GOM.

The Department of External Resources (hereinafter referred to as "DER"), and Ministry of Planning and National Development shall act as the counterpart agency to the JICA Study Team and also act as the coordinating body with other relevant organizations for the smooth implementation of the Study, on behalf of the GOM.

The present document sets forth the Scope of Work for the Study.

#### . <u>OBJECTIVES OF THE STUDY</u>

The objectives of the Study are:

- 1. to formulate detailed project plans for the project area described in "III. STUDY AREA" based on the National Recovery and Reconstruction Plan (NRRP),
- 2. to assist the implementation of recovery and rehabilitation projects to be funded under the Japanese Non-Project Grant Aid and ODA Loan,
- 3. to share Japanese experiences in disaster management through the implementation of the Study and to monitor process and outcome.

#### . STUDY AREA

Study area shall be composed of following islands (see Annex-1);

Laamu Atoll (Gan, Fonadhoo, Maabaidhoo, Ishdhoo / Isdhoo-Kalaidhoo, Maavah) Thaa Atoll (Guraidhoo, Kinbidhoo, Veymandoo, Dhiyamigili, Thimarafushi, Hirilandhoo) Alif Alif Atoll (Mathiveri) Vaavu Atoll (Felidhoo)

Map of Study Area is given in Annex-2.

#### . <u>SCOPE OF THE STUDY</u>

In order to achieve the objectives mentioned above, the Study will cover the following components, in collaboration with GOM:

1. Technical Assistance for Short-term Recovery Project for implementing reconstruction of social and economic infrastructure development:

Project formulation based on the National Recovery and Reconstruction Plan (NRRP) for the following sectors shall be conducted under the Study.

- (1) Multi purpose buildings including island administrative complex in Laamu Gan
- (2) Island Offices in Laamu Fonadhoo, Alif Alif Mathiveri, and Vaavu Felidhoo
- (3) Power generation and distribution facilities in Laamu Gan
- (4) Sewerage System Rehabilitation for Laamu Isdhoo/Isdhoo-Kalaidhoo and Laamu Fonadhoo
- (5) Rehabilitation of Island Harbours for Thaa Atoll (Guraidhoo, Kinbidhoo, Veymandoo, Dhiyamigili, Thimarafushi, Hirilandhoo) and Laamu Atoll (Isdhoo/Isdhoo-Kalaidhoo, Fonadhoo, Maabaidhoo and Maavah) (only preliminary study will be required)
- 2. Support for implementing Medium-term reconstruction of social and economic infrastructure development project:
  - 2-1 Socio-economic Framework of the Study Area for the formulation of item 2-2.
  - 2-2 Project formulation based on the NRRP for the following sectors at the Project site according to Annex-1;
    - (1) Island Harbours and Jetties
    - (2) Coastal protection
    - (3) Causeways in Laamu between Gan and Fonadhoo
    - (4) Sewage System / Network
    - (5) Water supply system
    - (6) Emergency Communication System
- 3. Implementation of small community based demonstration project for Debris Recycling and Monitoring on process of community empowerment and disaster prevention education in Laamu Fonadhoo, assisted by JICA Study Team.

#### . <u>SCHEDULE OF THE STUDY</u>

The Study shall be carried out from March 2005 to January 2006. (see Annex-3)

#### VI. <u>REPORTS</u>

JICA shall prepare and submit the following reports in English to the GOM.

- 1. First Report:Twenty (20) copies, to be submitted in April, 2005. This First Report<br/>shall include following information;
  - (1) Project concept paper which shows description of the project, sector,

|                   | estimated cost, proposed implementation schedule, etc. for projects in        |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------|--|--|--|--|
|                   | IV. 1.                                                                        |  |  |  |  |
|                   | (2) Candidate project list for projects in IV. 2.                             |  |  |  |  |
| 2. Second Report: | Twenty (20) copies, to be submitted in August, 2005. <sup>1</sup> This Second |  |  |  |  |
|                   | Report shall include following information;                                   |  |  |  |  |
|                   | (1) Technical Tender Specifications for the selected projects in IV.1 to be   |  |  |  |  |
|                   | submitted on or before August, 2005.                                          |  |  |  |  |
|                   | (2) Conceptual plan for prioritized projects on the candidate project list    |  |  |  |  |
|                   | for projects in IV. 2.                                                        |  |  |  |  |
| 3. Third Report:  | Twenty (20) copies, to be submitted in January, 2006, result of the Study.    |  |  |  |  |

#### VII. RESPONSIBILITIES OF GOM

- 1. To facilitate smooth conduct of the Study, the GOM shall undertake the following necessary measures:
  - (1) To permit the members of the JICA Team to enter, leave and sojourn in Maldives for the duration of their assignment therein, and meet the charges for temporary resident permit fees;
  - (2) To meet the charges from import duties, and any other levies on equipment, machinery and other materials brought into Maldives for the conduct of the Study by the JICA Team;
  - (3) To exempt the members of the JICA Team from income tax and charges of any kind imposed on or in connection with any emoluments or allowances paid to the members of the JICA Study Team for their services in connection with the implementation of the Study;
  - (4) To provide necessary facilities to the JICA Team for remittance as well as utilization of the funds introduced into Maldives from Japan in connection with the implementation of the Study.
- 2. GOM shall bear claims, if any arises, against the members of the JICA Team resulting from, occurring in the course of, or otherwise connected with, the discharge of their duties in the implementation of the Study, except when such claims arise from gross negligence or willful misconduct on the part of the members of the JICA Team.
- 3. Coordination with other donor in the Study area will be facilitate by the GOM

<sup>&</sup>lt;sup>1</sup> By the end of May JICA Study Team will submit technical specification on equipment supply portion, and by the end of July JICA Study Team will submit technical specification on facility construction.

- 4. GOM shall, at its own expense, provide the Team with the following, in cooperation with other organizations concerned:
  - (1) Security related information as well as measures to ensure the safety of the JICA team;
  - (2) Available data and information related to the Study;
  - (3) Counterpart personnel;
  - (4) Credentials or identification cards; and
  - (5) Information on obtaining medical services.

#### VIII . OTHER CONSIDERATIONS

JICA and the GOM shall consult with each other in respect of any matter that may arise from or in connection with the Study.

## Annex-1 Project Site (JICA Study Areas and Sectors)

| ATOLL     | No.  | ISLAND                      |                               | SHORT-TERM RECOVERY PROJECT |                                    |                    | DEMO<br>PROJECT              | MID- | TERM INFRAS                  | TRUCTURE P         | ROJECTS                   |                                |
|-----------|------|-----------------------------|-------------------------------|-----------------------------|------------------------------------|--------------------|------------------------------|------|------------------------------|--------------------|---------------------------|--------------------------------|
|           |      |                             | Multi-<br>purpose<br>building | Island<br>office            | Power<br>supply<br>facility<br>*1) | Sewerage<br>system | Coastal<br>facilities<br>*2) |      | Coastal<br>facilities<br>*2) | Sewerage<br>system | Water<br>supply<br>system | Emergency<br>Communica<br>tion |
| Alif Alif | AA-1 | Mathiveri                   |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |
| Vaavu     | V-1  | Felidhoo                    |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |
| Thaa      | Th-1 | Dhiyamigili                 |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |
|           | Th-2 | Guraidhoo                   |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |
|           | Th-3 | Thimarafushi                |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |
|           | Th-4 | Veymandoo                   |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |
|           | Th-5 | Kinbidhoo                   |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |
|           | TH-6 | Hirilandhoo                 |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |
| Laamu     | L-1  | Isdhoo/<br>Isdhoo-Kalaidhoo |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |
|           | L-2  | Maabaidhoo                  |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |
|           | L-3  | Gan                         |                               |                             |                                    |                    |                              |      | *3)                          |                    |                           |                                |
|           | L-4  | Fonadhoo                    |                               |                             |                                    |                    | *3)                          |      | *3)                          |                    |                           |                                |
|           | L-5  | Maavah                      |                               |                             |                                    |                    |                              |      |                              |                    |                           |                                |

Notes:

\*1) consisting generation and distribution facilities

\*2) consisting Island harbour/jetty, and coastal protection

\*3) consisting Island harbour/jetty, coastal protection, causeway (between Gan to Fonadhoo)

Main Study Component, Preliminary Study

#### Annex-2 JICA Study Area



🛧 : JICA Study Area

### Annex-3 Schedule of the Study

| Year              | 05/3 | 4   | 5 | 6 | 7       | 8 | 9 | 10 | 11 | 12 | 1   | 2  |
|-------------------|------|-----|---|---|---------|---|---|----|----|----|-----|----|
| Duration (months) | 1    | 2   | 3 | 4 | 5       | 6 | 7 | 8  | 9  | 10 | 11  | 12 |
|                   |      |     |   |   |         |   |   |    |    |    |     |    |
| Work in Maldives  |      |     |   |   |         |   |   |    |    |    |     |    |
| Work in Japan     | _    |     |   |   |         |   |   |    |    |    |     |    |
|                   | _    |     |   |   |         |   |   |    |    |    |     |    |
| Reports           |      |     |   |   | <b></b> |   |   |    |    |    |     |    |
|                   |      | 1st |   |   | 2nd     |   |   |    |    |    | 3rd |    |

### S2-4: MINUTES OF MEETING

## MINUTES OF MEETING

CONTENTS:

## Part I : Japanese Contribution and the Role of JICA Part II: Key aspects of reconstruction and development Part III: Clarification of the Scope of Work

In response to the request of the Government of the Republic of Maldives (hereinafter referred to as "the GOM"), the Government of Japan dispatched the preparatory study team (hereinafter referred to as "the Team") headed by Mr. Masami FUWA to discuss a technical assistance on the Tsunami Recovery, Rehabilitation and Development of islands in the Republic of Maldives" (herein referred to as "the Study").

The Team had a series of meetings with the Department of External Resources, Ministry of Foreign Affairs (herein referred to as "DER"), Ministry of Planning and National Development ("MPND") and other organizations related to the Study in Maldives. The participants of the meetings are listed in Attachment I.

Based on the discussions, Maldives side and the Team agreed upon the Scope of Work for the Study. The main issues discussed by both sides in relation to the Scope of Work for the Study are summarized below.

The JICA as the executing agency of technical cooperation program of the government of Japan would like to assist Maldives people, society and governments to play each of their roles in reconstruction process, and to try to transfer lessons learned from Japanese reconstruction experience in devastating natural disasters i.e., earthquake and tsunami in the past.

## Part I: Japanese Contribution and the Role of JICA

In order for Maldives to accomplish seamless transition through recovery, rehabilitation, and development after tsunami disaster, Japanese government would like to assist whole process by employing disaster relief teams, technical assistance of JICA, non-project grant aid, and JBIC loan programs. Thus, as a member of all Japanese agencies, JICA would like to conduct a study on recovery and rehabilitation plans in the short run, and development plans in the mid-term perspectives, and accordingly, to contribute to following financial assistance by the GOJ.

Major role of JICA as the technical cooperation agency of Japan, in the course of reconstruction phases, is to propose useful plans based on Japanese own experience in reconstruction from huge scale natural disasters in Japan. The aspects involved are to be environmental preservation, disaster prevention, social issues, and economic viability.

Study components listed in the Scope of Work (S/W) are, by and large, infrastructure rehabilitation and development that will contribute to rebuilding people's living welfare, transportation, communication, and industries like tourism, fishery, cement manufacturing and others. In terms of living welfare of people, that infrastructure should be basis of superstructure including housing, factories, etc, and thus, that rehabilitation should come earlier than rebuilding superstructure.

Japanese experience in reconstruction from natural disasters is useful to apply to similar circumstances in Maldives, e.g., tsunami, earthquake, typhoon and volcanic disasters in isolated islands. Annex 1-show lessons learned from Japanese experience in reconstruction after natural disasters. Deriving from real experience, JICA will assume process of reconstruction through which infrastructure reconstruction by the government can be harmonized with reconstruction of people's living welfare, seeking goals of much safer township plans from natural disasters, environmentally sustainable development, and avoiding unnecessary stress on people affected by tsunami.

#### Part II: Key aspects of reconstruction and development

#### 1. Disaster Prevention Policy - Preparedness for recurring disasters -

The reconstruction plan of the tsunami affected areas needs to be consistent with disaster prevention policy in the country and the regions.

The National Recovery and Reconstruction Plan (NRRP) includes a program area on environment and disaster risk management, in which intended outcomes are assumed that "Develop suitable disaster risk management systems including early warning systems" and "Improve disaster resilience of key infrastructure facilities".

In this context, Japanese experience and knowledge are to be utilized. Disaster prevention policy includes hardware solutions and software solutions. Based on analyses of damage caused by natural disaster e.g. hazard map, the government can prepare disaster prevention plan leading to an appropriate land use plan. Disaster prevention facility e.g. coastal protection surrounding islands, tsunami dike, breakwater system mitigating affects of tsunami, etc is an example of hardware solution. In the most dangerous area to tsunami, Japanese government set up Tsunami Evacuation Shelter to save lives because it may take time for people to evacuate to highland when tsunami attacks. On the other hand software solutions play key role for risk management: early warning system and disaster prevention education to the people. Together with international early warning system, national and local governments should have sound communication systems to get and transfer the disaster information. Finally, the most crucial point is people's action of evacuation. Thus, disaster prevention education is essential to save lives.

The Team would like to recommend GOJ to provide more technical cooperation on disaster prevention policy to Maldives, though JICA has already accepted participants from tsunami affected countries including Maldives for seminar and site inspection on early warning system and disaster prevention systems working in Japan.

Mid-term reconstruction plans prepared by JICA should utilize Japanese knowledge and experience in disaster prevention. In addition, in the demonstration project by JICA some facility for disaster prevention, e.g., tsunami evacuation shelter, would be considered to apply to an island of Maldives.

#### 2. Environmentally sustainable development

The reconstruction plan of the tsunami affected areas needs to be consistent with environmentally sustainable development policy.

The NRRP includes a program area on environment and disaster risk management, in which intended outcomes are assumed that "Develop environment contingency plans and waste management programs" and "Develop coral reef impact assessments and bio-diversity surveys".

Considering the importance and significance of Tourism industry of Maldives, environmentally sustainable development is one of the most essential matters even in the case of reconstruction phases from natural disaster.

In this context, JICA will prepare appropriate plans and designs for social infrastructure to prevent pollution and damage to the environment that may arise from people's activity and industry on the planned new townships and areas.

#### 3. Economic development

On mid-term development plans JICA will consider to conduct preliminary feasibility studies of infrastructure development. Thus, It is necessary to conduct verification study on economic and financial viability.

#### 4. Monitoring and supporting mechanism for appropriate implementation

Social and environmental impact should be carefully assessed and monitored (by the Study) throughout the recovery process. Although the assessment should not delay the implementation of reconstruction projects, the findings shall be constantly fed back to ongoing projects and the long-term development plan.

## Part III : Clarification of the Scope of Work

# <u>Clarification of the Short-term Study component of item 1 in Article IV, S/W</u> <u>- Quickness –</u>

Item 1 of the Scope of the Study is short-term reconstruction of some infrastructure to be implemented by finance programs, i.e.<sup>1</sup>

- (1) Multi purpose buildings including island administrative complex <sup>2</sup>in Laamu Gan
- (2) Island Offices in Laamu Fonadhoo, Alif Alif Mathiveri, and Vaavu Felidhoo
- (3) Power supply and distribution facilities in Laamu Gan
- (4) Sewerage System Rehabilitation for Laamu Isdhoo/Isdhoo-Kalaidhoo, and Laamu Fonadhoo
- (5) Rehabilitation of Island Harbours for Thaa Atoll (Guraidhoo, Kinbidhoo, Veymandoo, Dhiyamingili, Thimarafushi, Hirilandhoo) (only preliminary study will be required), and Laamu Atoll (Fonadhoo, Isdhoo/Isdhoo-Kalaidhoo, Maabaidhoo, and Maavah)

The most important matter on item 1 is quickness of the work. JICA study team will conduct project design, cost estimation and technical specification by the end of May for the first portion (procurement of equipment), and by the end of July for the second portion (construction of facilities), so that construction work can be started properly.

In addition to rapidity, those infrastructure designs should contribute to environmentally sustainable and disaster-resistant reconstruction of new townships.

#### 2. <u>Clarification of the Mid-term Study component of item 2 in Article IV, S/W</u> <u>- Mid-term reconstruction in harmonization with long-term development-</u>

Item 2 of the Scope of the Study is Mid-term development of some infrastructure to be implemented by finance programs, i.e.

- (1) Island Harbors and Jetties
- (2) Coastal protection
- (3) Causeways between Laamu Gan and Laamu Fonadhoo
- (4) Sewage System / Network
- (5) Water supply system
- (6) Emergency Communication System

As mentioned in the S/W, the project sites are according to Annex 1 of the S/W.

Mid-term development shall be based on the long-term vision of the development of Maldives such as environmental sustainability, reducing the gap between Male and outer islands and preparedness for the sea level rising. For example, inter-atoll and intra-atoll transport could be improved even from the pre-Tsunami situation by the well-designed reconstruction projects, which shall encourage the recovery of local economy and livelihood.

At the same time, the mid-term recovery approach should be carefully clarified in balance with both the expanding tourism and maintaining the local lives.

#### 3. <u>Clarification of the demonstration Project component of item 3 in Article IV, S/W</u>

Item 3 is Implementation of small community based demonstration projects for Debris Recycling in Laamu Fonadhoo and Social Impact Monitoring in Laamu Fonadhoo, assisted by JICA Study Team.

As mentioned in Part 2, some demonstration project will be implemented in the course of the Study. The objectives of the demonstration project are as following.

1) to generate income for affected people by involving and employing them in reconstruction

Waste management system at Laamu Gan, Laamu Isdhoo-Kalaidhoo, Laamu Fonadhoo, and Laamu Maabaidhoo: because it may take time for JICA to conduct environmental assessment

Amour rocks for sea walls at several islands: because it is simply a provision of raw materials, instead those components are to be included in "Repair of Harbours".

<sup>2</sup> Island administrative complex includes town hall, space for gathering community members, meeting/conference rooms, etc.

<sup>&</sup>lt;sup>1</sup> Note: Components proposed by GOM but deleted for short-term reconstruction are as followings: Island offices (Repair) at Laamu Isdhoo-Kalaidhoo : because size of each repairing is small New sewage system at Laamu Gan: because it could not be considered for short-term recovery project.

works of debris recycling

- 2) to make a memorial facility of Tsunami that may contribute to disaster prevention education for the people
- 3) to consider to build tsunami evacuation shelter building for risk management

#### 4. Coordination with other Donors

Both sides agreed that the JICA Study Team shall conduct the rehabilitation Study mutually collaborating with the Donors Group for Rehabilitation in Maldives.

#### 5. Counterpart Personnel

Both sides agreed that the Study should be conducted in a manner of a joint work of the Maldivian and Japanese sides. In this context, the Team requested the GOM to allocate necessary number of counterpart personnel. The GOM agreed to allocate a counterpart personnel (full-time and part-time basis) according to the composition of the Study Team.

#### 6. Vehicles

The GOM requested JICA to provide transportation necessary for the Study. JICA agreed to prepare vehicles by the Japanese side.

#### 7. Office Space and Equipment

The GOM requested JICA to prepare necessary office space and equipment for the Study in Male. JICA agreed and provided the necessary office facility for the Study Team.

List of Appendices

Annex 1: Attendants List

Annex 2: Lessons learned from Japanese experience in reconstruction after natural disasters

# **ANNEX 1**

## **Attendants List**

#### Maldivian side

| <ministry &="" dev<="" national="" of="" planning="" th=""><th>velopment&gt;</th></ministry>              | velopment>                                            |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Mr. Hamdun Hameed                                                                                         | Minister                                              |
| Mr. Mohamed Imad                                                                                          | Director, Spatial Planning                            |
| Ms. Lucia Moosa                                                                                           | Director, Programmes                                  |
| Mr. Huda Ali Shareef                                                                                      | Assistant Director, Resource Management               |
| Ms. Shafeea Rasheed                                                                                       | Assistant Secretary                                   |
|                                                                                                           |                                                       |
| <department external="" of="" resources<="" td=""><td>, Ministry of Foreign Affairs&gt;</td></department> | , Ministry of Foreign Affairs>                        |
| Ms. Aminath Didi                                                                                          | Assistant Director General                            |
| Mr. Mohamed Shahudy                                                                                       | Assistant Director                                    |
| Ms. Aishath Azeema                                                                                        | Senior Desk Officer                                   |
| -National Disaster Management Ce                                                                          | nter>                                                 |
| Mr. Mauroof Jameel                                                                                        | Director General                                      |
| Mr. Thorig Ibrahim                                                                                        | Deputy Director                                       |
|                                                                                                           |                                                       |
| <ministry atolls="" development="" of=""></ministry>                                                      |                                                       |
| Mr. Abdul Hameed Mohamed                                                                                  | Atoll Chief                                           |
|                                                                                                           |                                                       |
| <ministry &="" constru-<="" environment="" of="" td=""><td>ction&gt;</td></ministry>                      | ction>                                                |
| Mr. Ali Amir                                                                                              | Deputy Director                                       |
| Mr. Mohamed Ali                                                                                           | Assistant Director                                    |
| Ministry of Finance 8 Traceury                                                                            |                                                       |
|                                                                                                           | Evenutive Director                                    |
| Ma Aminath Ali Manik                                                                                      | Executive Director                                    |
| Ms. Aminath All Manik                                                                                     | Deputy Director                                       |
| Ms. Aminath masha Shaleeq                                                                                 | Assistant Desk Officer                                |
| <maldives &="" develo<="" housing="" td="" urban=""><td>pment Board&gt;</td></maldives>                   | pment Board>                                          |
| Mr. Ibrahim Rafeeq                                                                                        | Director General                                      |
|                                                                                                           |                                                       |
|                                                                                                           |                                                       |
| Japanese side                                                                                             |                                                       |
| <japan age<="" cooperation="" international="" p=""></japan>                                              | gency>                                                |
| Mr. Masami Fuwa                                                                                           | Leader/ Senior Advisor, Social Development Department |
| MS. AFTAMAZAKI                                                                                            | Study Monitoring/ Global Environment Department       |
| <consultant team=""></consultant>                                                                         |                                                       |
| Mr. Masatsugu Komiya                                                                                      | Leader/Disaster Reconstruction                        |
| Mr. Hiroshi Matsuo                                                                                        | Sub-Leader/City Planning                              |
| Mr. Tatsuru Ogawa                                                                                         | Housing Planning/Land Use Plan                        |
| Mr. Hisavuki Yamamoto                                                                                     | Construction Plan/Cost Estimation- 1                  |
| Mr. Yoshiaki Kobayashi                                                                                    | Community/Social Condition-2                          |
|                                                                                                           |                                                       |

## ANNEX 2:

# Lessons learned from Japanese experience in reconstruction after natural disasters

#### 1. <u>Reconstruction process with initiative of the affected people</u>

In Japanese experience of reconstruction from 1995 Hanshin-Awaji devastating earthquake, Japanese people learned that it is necessary to establish cooperation system between affected people, community, and governments.

In reconstruction process, there are two spheres of restoration: reconstruction of city and township (hardware), and restoration of people's living welfare. In the case of 1995 earthquake, Japanese people experienced that reconstruction of city and township itself could not secure the recovery of people's living welfare. A lot of people could not live in area they wanted to be, and suffered from trauma and injury due to the earthquake.

Major lessons learned from reconstruction process in 1995 Hanshin earthquake are:

- 1) It is the most important and indispensable that affected person himself/herself should start reconstruction activities. (self-reliance)
- 2) The community plays major role in tackling issues that can not be resolved by the affected people (community empowerment)
- 3) The government should assist people and community activities. (administration support)

The reconstruction can be defined to be "activities of the affected people to adjust themselves to the change in living condition in the society that are forced to drastically change due to devastation of earthquake."

#### 2. Process of Reconstruction

It is very important to assume an appropriate process of reconstruction. The affected people need a certain period of time and temporary space to live, when and where the people heal mental and physical shocks, start reconstruction actions, consult each other and with government, building consensus of final plan of reconstruction of township, industries, houses, and living welfare.

This section explains Japanese experience in building community based organization, temporary and transitional township, role of the CBO and the government, and land adjustment program based on the unanimous consensus building.

#### 2-1. Community empowerment

After the emergency relief period, it is necessary to start reconstruction activities. We should understand that it takes a long time to reconstruct cities and township and to rebuild living welfare.

The first step of reconstruction is to empower the community that should be the body of mutual helps among people, then a community reconstruction committee is set up. That is a "Community Based Organization (CBO)" intended to plan, implement, and monitor the process of reconstruction. The committee should represent the affected people who voluntarily join the committee. It is appropriate that decision making at the committee is unanimous.

The community reconstruction committee should try to make solution of issues the community faces, for example making reconstruction plans reflecting the needs of the community, making rule and regulation on building design and environmental preservation, and making agreement between the community and the government.

The government should assist activities of the community reconstruction committee in cooperation with a variety of experts and private enterprises. Because the issues of reconstruction consists of township, public health and social welfare, environment, and industry rebuilding, right expert team should be formed to assist and advise on the community's own activities and the government's support.

#### 2-2. Temporary and Transitional Township

The affected people needs a certain period of time and temporary space when and where the people heal mental and physical shocks, start reconstruction actions, consult each other and with government, building consensus of final plan of reconstruction of township, industries, houses, and living welfare. Temporary and transitional township can provide the affected people with the space and the time to accomplish those processes of reconstruction.

The notion of "Temporary and Transitional Township" was invented after 1995 Hanshin earthquake in Japan. At the reconstruction period of 1995 earthquake, the local government tried to set up temporary camps very far away from affected areas. Those temporary camps could not include facilities and functions for commercial and industrial activities by law. People who were forced to move to the camps far away from their original places had to face difficulty harming mutual cooperation due to separation of original communities. Those people could dwell in temporary houses provided by the government, but could not restart their commercial and industrial activities and business there. People had to live in very inconvenient places without shops and public facilities.

It takes a long time to realize final goal of reconstruction, and also it should be assumed that the community faces some difficult issues for people to resolve by themselves.

"Temporary and Transitional Township" should accommodate the people's transitional lives as comfortable as possible, and thus, it should consist of temporary houses, temporary shops, offices and factories, and public facilities. In Japan transitional period could be three years before final stage of reconstruction.

Temporary and transitional township scheme was implemented in the cases of 1995 Kobe Hanshin earthquake, 1999 Turkey Anatoria earthquake, and 1999 Taiwan Earthquake.

#### 2-3. Functions of the Temporary and Transitional Township

The function and objectives of temporary and transitional township are assumed to be as follows.

1) Accommodate of Whole households

Publicly planned temporary houses should be prepared to accommodate whole households of the specific original community affected, so that the community is not separated when moving to the temporary town.

2) Temporary and transitional township near the affected area

Temporary and transitional township should be planned to be constructed as near as possible from the affected area, and not very far away from the original town. That can enable the affected people to remove the debris and rubble of the damaged houses, to exchange and transmit information among the community, and to communicate each other.

#### 3) The initiative of the affected people

It should be avoided to exclude the affected people from construction process of the temporary and transitional township. Although the affected people tend to be "victims" who should be given and provided the services, they should be involved in the reconstruction process by utilizing their capabilities and intention of restoration for reconstruction energy of the community. That can lead to realization of community driven reconstruction in which the affected people themselves undertake and implement the reconstruction.

#### 4) Integrated living condition/welfare in the temporary and transitional township

In temporary and transitional township, not only temporary shelters but also other facilities necessary for the life should be constructed. The temporary and transitional township is deemed to be the place of living and the base of rebuilding the life. Thus, there should be commercial, medical, and educational facilities, offices and factories, waste treatment plant, waste recycling unit, caring facility for aged people and disabled, job creating facilities for the unemployed people, space for children, community center, amusement facilities, etc.

#### 2-4. Role of the community and Role of the government

When constructing temporary and transitional township, the land is to be provided and temporary facilities should be needed. The Community Based Organization (CBO) should play key roles in gathering information, acquisition of land, and constructing temporary facilities.

On the other hand, the government should make legal arrangement for the CBO to lend the land owned by private sector for a certain period to temporary and transitional township. The government also arranges functional system for the CBO to construct temporary facilities.

#### 3. Land Adjustment Program for Reconstruction

The Land Adjustment Program of Japan is a legal scheme utilized in case of urban redevelopment.

As the final goal of reconstruction of township, it is recommended to plan and design a resistant town to natural disaster, and in some cases to add public spaces for common welfare.

Redevelopment of a congested area in a city and a town, the most serious constraint is the land. The land adjustment program can legally create the space based on unanimous consensus among people of landowners and people living and working there. The government intervenes the process of redevelopment of the area by making a plan and promoting community based organization consisting of the people.

With financial assistance of government, original alignment of the land is reorganized and designed to be well-organized town roads, public space, disaster prevention facilities, and necessary infrastructures, that can lead to enhancement of the value of the land. The CBO plays an important role to make consensus among the community, and to consult with the government.

In the case of reconstruction from devastating natural disaster, land adjustment program can be introduced to reconstruct a congested area. When temporary and transitional township program is implemented, it is easier to make unanimous consensus building on the land adjustment program.

#### 4. Disaster Prevention Policy

The reconstruction plan of the tsunami affected areas needs to be consistent with disaster prevention policy in the country and the regions. The JICA will try to incorporate disaster prevention policy for the affected areas in cooperation with the Japanese government.

# S2-5 : REQUESTS OF THE MALDIVES AND CHANGING SITUTAION OF THE STUDY CONTENTS

## STUDY PROJECT TO ASSIST URGENT TSUNAMI RECOVERY, REHABILITATION AND DEVELOPMENT FOR ISLANDS IN THE MALDIVES

| At the Onset of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Modifications of the Study Following S/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W Signed on 12 <sup>th</sup> April                                                                                                                                                                                                     | Modifications of the Study Following Ste<br>on 5 <sup>th</sup> May                                                                                                                                                                                                                                                                                                        | eering Committee Meeting                                                                                                                     | Modifications of the Study Following Steering Committee<br>Meeting on 5 <sup>th</sup> June |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------|
| (End of March, 2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Modified Study Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reasons for<br>Modification                                                                                                                                                                                                            | Modified Study Contents                                                                                                                                                                                                                                                                                                                                                   | Reasons for<br>Modification                                                                                                                  | Modified Study Contents                                                                    | Reasons for<br>Modification |
| 1. Basic Study Policies<br>1.1 Objectives of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ol> <li>Basic Study Policies</li> <li>1.1 Objectives of the Study<br/>The Study has the following objectives.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Based on the S/W (signed on 12 <sup>th</sup> April, 2005)                                                                                                                                                                              | <ol> <li>Basic Study Policies</li> <li>1.1 Objectives of the Study</li> </ol>                                                                                                                                                                                                                                                                                             |                                                                                                                                              | <ol> <li>Basic Study Policies</li> <li>1.1 Objectives of the Study</li> </ol>              |                             |
| <ol> <li>Formulation of Rehabilitation Plans and Policies (Development Master<br/>Plan)</li> <li>To formulate medium to long-term rehabilitation plans and policies for<br/>the target islands of the Study and other islands while fully considering<br/>their compatibility with the Safe Islands Programme (the local island<br/>rehabilitation and development programme with due consideration of<br/>disaster prevention measures) which is a national project in the Maldives</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Deletion of the objectives described left.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | It was decided not to<br>formulate a development<br>master plan under the<br>Study through discussions<br>on the S/W.                                                                                                                  | As left                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                              | Asleft                                                                                     |                             |
| <ul> <li>2) Assistance for Implementation of Urgent Recovery and Rehabilitation<br/>Projects (Assistance for Formulation of Individual Projects)</li> <li>To identify the concrete needs for the Rehabilitation and Development<br/>Project in the Study Area (target islands) and to conduct project monitoring<br/>at the design/estimation and implementation assistance/construction stages)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>The objective of the Study is to assist the following plans in the Study Area.</li> <li>1) Short-term recovery plan: technical cooperation to assist the swift recovery of socioeconomic infrastructure (planning and design, etc.)</li> <li>2) Mid-term rehabilitation and development project: study contributing to the early commencement of the reconstruction of socioeconomic infrastructure</li> <li>3) Demonstration project: small-scale participatory demonstration project by the JICA Team on Fonadhoo Island of Laamu Atoll (recycling of waste materials, community empowerment and disaster prevention education) and monitoring of the progress of these activities</li> </ul> | Based on the S/W (signed<br>on 12 <sup>th</sup> April, 2005)                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                            |                             |
| Study Area         The Study Area consists of the following seven islands (see Location Map 1).         ① Target islands of the JICS non-project grant aid for housing construction         Table 1 Candidate Islands for Housing Construction for Non-Project Grant Aid         No. Under Ranking in Housing Atoll/Island Homeles Requirin g Req | <ul> <li>1.2 Study Area</li> <li>The Study Area consists of the following 13 islands (see Location Map 2).</li> <li>① Alif-Alif Atoll: Mathiveri (AA-1)</li> <li>② Vaavu Atoll: Felidhoo (V-1)</li> <li>③ Thaa Atoll: Dhiyamigili (Th-1), Graidhoo (Th-2), Thimarafushi (Th-3), Veymandoo (Th-4), Kinbidhoo (Th-5), Hirilandhoo (Th-6)</li> <li>④ Laam Atoll: Isdhoo/Isdhoo-Kalaidhoo (L-1), Maabaidhoo (L-2), Gan (L-3), Fonadhoo (L-4), Maavah (L-5)</li> </ul>                                                                                                                                                                                                                                        | Based on the S/W (signed<br>on 12 <sup>th</sup> April, 2005)<br>Based on the request of<br>the Maldives side,<br>modifications were made<br>to avoid duplication with<br>other donors and to<br>establish geographical<br>consistency. | <ul> <li>1.2 Study Area</li> <li>The Study Area consists of the following island (see Location Map 3).</li> <li>① Thaa Atoll: Dhiyamigili (Th-1), Graidhoo (Th-2), Thimarafushi (Th-3), Veymandoo (Th-4), Kinbidhoo (Th-5), Hirilandhoo (Th-6)</li> <li>② Laam Atoll: Isdhoo/Isdhoo-Kalaidhoo (L-1), Maabaidhoo (L-2), Gan (L-3), Fonadhoo (L-4), Maavah (L-5)</li> </ul> | Based on the intentions of<br>the Maldives side which<br>were confirmed at the<br>Steering Committee<br>meeting on 5 <sup>th</sup> May, 2005 | 1.2 Study Area<br>As left                                                                  |                             |

## **REQUESTS OF THE MALDIVES SIDE AND CHANGING SITUATION OF THE STUDY CONTENTS**

| At the Onset of the Study                                                                                                                         | Modifications of the Study Following S/                                                   | W Signed on 12 <sup>th</sup> April                       | Modifications of the Study Following Steerin<br>on 5 <sup>th</sup> May | ng Committee Meeting        | Modifications of the Study Following Steering Committee<br>Meeting on 5 <sup>th</sup> June |                             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|-----------------------------|--|
| (End of March, 2005)                                                                                                                              | Modified Study Contents                                                                   | Reasons for<br>Modification                              | Modified Study Contents                                                | Reasons for<br>Modification | Modified Study Contents                                                                    | Reasons for<br>Modification |  |
| 1.3 Basic Policies                                                                                                                                | 1.3 Basic Policies                                                                        | Based on the S/W (signed on $12^{\text{th}}$ April 2005) | 1.3 Basic Policies                                                     |                             | 1.3 Basic Policies                                                                         |                             |  |
| (1) Status of Present Urgent Development Assistance                                                                                               | (1) Status of Present Urgent Development                                                  | As above                                                 | (1) Status of Present Urgent                                           | _                           | (1) Status of present Urgent                                                               | _                           |  |
| The Study is part of the recovery and rehabilitation project for the entire disaster-hit areas in the Maldives.                                   | As left                                                                                   | 115 00070                                                | As left                                                                |                             | As left                                                                                    |                             |  |
|                                                                                                                                                   |                                                                                           |                                                          |                                                                        |                             | ASIAL                                                                                      |                             |  |
| (2) Compatibility with Rehabilitation Assistance Policies of the Maldives                                                                         | (2) Compatibility with Rehabilitation                                                     |                                                          | (2) Compatibility with Rehabilitation                                  |                             | (2) Compatibility with Rehabilitation                                                      |                             |  |
| As the Department of External Resources (DER) of the Ministry of<br>Foreign Affairs which acts as the front desk to deal with foreign aid on      | Assistance Policies of the Maldives                                                       |                                                          | Assistance Policies of the Maldives                                    |                             | Assistance Policies of the Maldives                                                        |                             |  |
| behalf of the GOM requests that the Study be compatible with the latest                                                                           | recovery and rehabilitation projects based on                                             |                                                          |                                                                        |                             |                                                                                            |                             |  |
| national development plan, this request will be fully taken into consideration.                                                                   | the NRRP. Accordingly, the compatibility of                                               |                                                          |                                                                        |                             | As left                                                                                    |                             |  |
|                                                                                                                                                   | the NRRP will be attempted by checking the                                                | As above                                                 | As left                                                                | —                           | Asien                                                                                      | —                           |  |
| The Maldives side has set up the National Disaster Rehabilitation Unit                                                                            | state of the tsunami disaster, present                                                    |                                                          |                                                                        |                             |                                                                                            |                             |  |
| the nationwide tsunami disaster rehabilitation efforts. The Unit arranged aid                                                                     | projects with those of other donors, etc.                                                 |                                                          |                                                                        |                             |                                                                                            |                             |  |
| projects for the country by sector, identified the project contents, cost,<br>funding sources (donors) and formulated the National Perceivery and | through a field survey and other means.                                                   |                                                          |                                                                        |                             |                                                                                            |                             |  |
| Reconstruction Plan (Programmes and Projects) in March, 2005. Given the                                                                           | National Development Plan 2001 – 2005                                                     |                                                          |                                                                        |                             |                                                                                            |                             |  |
| fact that projects in the NRRP are moving quickly, the Study aims at formulating highly feasible projects which do not overlap with the projects  | (Ministry of Planning) will be confirmed.                                                 |                                                          |                                                                        |                             |                                                                                            |                             |  |
| of other donors and which are compatible with the NRRP through close liaisoning with the prospective implementation bodies in the Maldives        | In 1998 prior to the tsunami disaster, the                                                |                                                          |                                                                        |                             |                                                                                            |                             |  |
| hasoning with the prospective implementation boates in the ivitatives.                                                                            | under which people would be resettled to                                                  |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | major islands for efficient development. This                                             |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | following viewpoints.                                                                     |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | Development potential                                                                     |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | <ul> <li>Potential for easy investment</li> <li>Large island</li> </ul>                   |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | • Potential to increase the island size by                                                |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | reclamation                                                                               |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | In the aftermath of the tsunami disaster,                                                 |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | Island Initiative, the GOM formulated the                                                 |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | Safe Island Programme with a disaster                                                     |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | prevention function (construction of a 2 m<br>high ring road to act as an embankment with |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | the introduction of high ground at the centre                                             |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | of the island to provide emergency shelter,                                               |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | nationwide. However, the early                                                            |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | implementation of the Programme was                                                       |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | question of the resettlement of the islanders                                             |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | and the GOM formulated the Host Island                                                    |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | Programme based on the Safe Island<br>Programme.                                          |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | Five islands have been selected for the Host                                              |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | Island Programme and development efforts<br>are conducted in a priority manner to         |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | facilitate resettlement to these islands. Gan                                             |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | Island of Laamu Atoll, one of the target                                                  |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | At present, the GOM considers the                                                         |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | implementation of the NRRP to be the highest                                              |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | the Host Island Programme to be an exercise                                               |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | for the future. The Study will examine the                                                |                                                          |                                                                        |                             |                                                                                            |                             |  |
|                                                                                                                                                   | ongoing status of the Safe Island Programme.                                              |                                                          |                                                                        |                             |                                                                                            |                             |  |

| At the Onset of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Modifications of the Study Following S/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V Signed on 12 <sup>th</sup> April                                                                                                                                                                 | Modifications of the Study Following Ste<br>on 5 <sup>th</sup> May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eering Committee Meeting                                                                                                                                                                                                             | Modifications of the Study Following Steering Committee<br>Meeting on 5 <sup>th</sup> June                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (End of March, 2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Modified Study Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reasons for<br>Modification                                                                                                                                                                        | Modified Study Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reasons for<br>Modification                                                                                                                                                                                                          | Modified Study Contents                                                                                                                                                                                                                                                                                             | Reasons for<br>Modification                                                                                                                                                                                                                                                                 |  |
| <ul> <li>(3) Confirmation of Urgency of Reconstruction, Viewpoint for Rehabilitation and Trends of Non-Project Grant Aid</li> <li>At the tsunami disaster sites, reconstruction activities are in progress with the cooperation of donors, including Japan, NGOs and local residents, and the situation at these sites is changing on a daily basis. Under these circumstances, the Study aims at urgently finding sites which require urgent recovery and rehabilitation, confirming the present conditions at each site and identifying the needs. It is essential that the Study take the stance of urgently clarifying Japan's commitment to assistance to assist the achievement of the recovery and rehabilitation of the Maldives as a whole from the medium to long-term perspective through collaboration and coordination with all donors. It is also necessary to confirm the details of the JOG's assistance (non-project grant aid of Japan at present is listed below.</li> <li>Fishing gears (fishing nets, poles, GPS and fish finders): ¥500 million</li> <li>Housing construction: ¥1,000 million (three bedroom houses: MOR estimate of 300,000 Rf (approx. US\$ 23,500) per house</li> <li>Reserve: ¥500 million</li> </ul> | <ul> <li>(3) Confirmation of Urgency of Reconstruction, Viewpoint for Rehabilitation and Trends of Non-Project Grant Aid The original S/W for intended signing by the GOM and the Study Team dispatched in March to discuss the S/W did not obtain the consent of the Ministry of Planning, presumably because of the ongoing negotiations between the GOM and the German Red Cross and Singapore Government, etc. regarding assistance for the construction of private housing as well as public facilities. The S/W was finally signed based on discussions held by the Study Team dispatched in March and discussions held by the subsequent Consultant Study Team and the JICA Sri Lanka Office with the GOM together with signing of the M/M explaining the intentions, concepts and proceedings of the JICA's cooperation (12<sup>th</sup> April). The present Study formulates rehabilitation assistance projects based on the purport of the S/W and the M/M (both signed on 12<sup>th</sup> April). The planned assistance by Japanese non-project grant aid was replaced by the nocurement of house rehabilitation materials because of the fact that the housing reconstruction plan was withdrawn due to a problem of ownership. Accordingly, the prospective contents of the non-project grant aid have been changed to the following. Fishing gears (fishing nets, poles, GPS and fish finders) approx. ¥500 million Housing rehabilitation: approx. ¥500 – 700 million (inclusive of the transportation cost) Construction of public facilities: approx. ¥800 – 1,000 million</li></ul> | Based on the S/W (signed<br>on 12 <sup>th</sup> April)                                                                                                                                             | <ul> <li>(3) Confirmation of Urgency of Reconstruction, Viewpoint for Rehabilitation and Trends of Non-Project Grant Aid</li> <li>In regard to Japan's assistance with non-project grant aid, the housing reconstruction plan was entirely withdrawn, including the procurement of rehabilitation materials, because of a problem of ownership. Accordingly, the prospective contents of the non-project grant aid are as follows.</li> <li>Fishing gears (fishing nets, poles, GPS and fish finders): approx. ¥500 million</li> <li>Agricultural tools: approx. ¥250 million</li> <li>Construction of public facilities: approx. ¥1,200 million</li> <li>Given the above situation, the Study will assist the public facility construction plan under the non-project grant aid scheme.</li> </ul> | Based on the intention to<br>assist non-project grant<br>aid as confirmed through<br>discussions at the Steering<br>Committee meeting held<br>on 5 <sup>th</sup> May, 2005                                                           | (3) Confirmation of Urgency of<br>Reconstruction, Viewpoint for<br>Rehabilitation and Trends of<br>Non-Project Grant Aid<br>As left                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                             |  |
| 1.4 Contents of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.4 Contents of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    | 1.4 Contents of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                      | 1.4 Contents of the Study                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             |  |
| <ul> <li>(1) Development Master Plan</li> <li>(a) Formulation of a short to mid-term draft rehabilitation plan for infrastructure facilities (JBIC yen loan) <ul> <li>Study on tsunami damage to infrastructure facilities</li> <li>Formulation of the rehabilitation project contents (draft) for each facility</li> <li>Formulation of a rehabilitation project implementation plan (draft) (prioritising and cost estimation)</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1) Short-Term Recovery Plan<br>(Non-Project Grant Aid)<br>Assistance will be provided for the<br>implementation of the short-term recovery<br>plan (social and economic infrastructure) to<br>assist the urgent rehabilitation efforts. In<br>consideration of speed, sustainability of the<br>environment and disaster control, the<br>planning and design of projects featuring the<br>following facilities will be conducted based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The short-term recovery<br>plan assumes<br>implementation with<br>non-project grant aid and<br>was selected from the list<br>of non-project grant aid<br>targets shown by the<br>GOM. The list was | (1) Short-Term Recovery Plan<br>The planning and design of projects<br>featuring the following facilities will<br>be conducted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Based on the intentions<br>of the GOM confirmed at<br>the Steering Committee<br>meeting on 5 <sup>th</sup> May, 2005<br>and discussions with the<br>project implementation<br>bodies on the Maldives<br>side on 22 <sup>nd</sup> May | <ul> <li>(1) Short-Term Recovery Plan         <ul> <li>The planning and design of projects featuring the following facilities will be conducted.</li> <li>Development of social infrastructure on Laamu Atoll (preparation of draft tender documents and assistance for the evaluation of bids)</li></ul></li></ul> | Modified to reflect the<br>intentions of the GOM<br>which were confirmed at the<br>Steering Committee meeting<br>held on 5 <sup>th</sup> June, 2005<br>Following discussions<br>between the GOM and the<br>ADB, it was decided that the<br>ADB would rehabilitate the<br>sewerage system on |  |

| At the Onset of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Modifications of the Study Following S/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W Signed on 12 <sup>th</sup> April                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Modifications of the Study Following Steering Committee Meeting<br>on 5 <sup>th</sup> May                                                                                   |                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| (End of March, 2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Modified Study Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reasons for<br>Modification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Modified Study Contents                                                                                                                                                     | Reasons for<br>Modification |  |
| <ul> <li>Advice on the compatibility with the Safe Island Programme and the National Development Plan</li> <li>Assistance to obtain final approval for the Land Use Plan (assistance and advice at community meetings)</li> <li>Note1 Although telecommunications equipment is not included in the project, the situation of tsunami damage to telephone, TV, radio, cable TV and disaster warning systems will be studied from the viewpoint of ensuring the means of information conveyance at the time of an emergency. Proposals will be made for the necessary rehabilitation work.</li> <li>Note 2 In regard to fishing ports (harbours), the distribution routes from the fish market on each atoll will be studied to determine the necessity to introduce certain equipment (ice-making machine and others) for the target islands.</li> <li>(b) Assistance for the following projects associated with the construction of housing (JICS non-project grant aid)</li> <li>Planning Stage         <ul> <li>Checking of the housing layout plan (confirmation of the compatibility with the Land Use Plan)</li> <li>Assistance for the preparation of the technical specifications for the tender</li> </ul> </li> <li>Pre-Construction Stage         <ul> <li>Assistance for housing land development work: facilitation of surveying and ground preparation work</li> <li>Waste recycling project (demonstration project candidate): participatory production of blocks (for housing walls and other uses) recycled from waste materials from collapsed houses</li> </ul> </li> <li>Construction Stage         <ul> <li>Assistance for the tender for housing construction and also for project monitoring in the construction period (to be decided by a decision between the JICS and the GOM in the coming months)</li> <li>Tsunami memorial construction project (demonstration project candidate): participatory construction of the Tsunami Memorial Park (use of the recycled b</li></ul></li></ul> | on the NRRP.<br>(1) Administrative complex building<br>(Laamu Gan)<br>(2) Island office building (Laamu<br>Fonadhoo, Alif-Alif Mathiveri and<br>Vaavu Felidhoo)<br>(3) Power generation and distribution<br>facilities (Laamu Gan)<br>(4) Sewerage system (Laamu<br>Isdhoo/Isdhoo-Kalaidhoo and Laamu<br>Fonadhoo)<br>(5) Harbour facilities and seawalls (Thaa<br>Atoll: Dhiyamigil, Guraidhoo,<br>Thimarafushi, Veymandoo,<br>Kinbidhoo and Hirilandhoo; Laamu<br>Atoll: Isdhoo/Isdhoo-Kalaidhoo,<br>Maabaidhoo, Gan, Fonadhoo and<br>Maavah) | revised and shown four<br>times from the first<br>version submitted at the<br>Steering Committee<br>Meeting on 5 <sup>th</sup> April to the<br>fourth version on 12 <sup>th</sup><br>April when the S/W was<br>signed.<br>As a result of donor<br>adjustment by the GOM,<br>the original request to<br>Japan to assist the<br>implementation of<br>housing reconstruction<br>was replaced by a request<br>for assistance for the<br>rehabilitation of social and<br>economic infrastructure<br>while the formulation of a<br>development master plan<br>was considered to be<br>unnecessary.<br>From the viewpoints of<br>urgency and prospect of<br>swift completion, coastal<br>protection for Meemu<br>Korufshi and Laamu<br>Madifushi and the<br>sewerage system and<br>harbour facilities on<br>Laamu Gan, which the<br>Japanese side had<br>proposed, were dropped<br>from the scope of the<br>Project and the waste<br>treatment system on three<br>Laamu Atoll islands as<br>proposed by the Maldives<br>side was also dropped<br>because of the lengthy<br>period required for<br>environmental and social<br>consideration. In the case<br>of harbour facilities which<br>would require time to<br>reach the construction<br>stage, it was decided to<br>conduct the basic design<br>as part of the short-term<br>assistance and the detailed |                                                                                                                                                                             |                             |  |
| (2) Assistance for Formulation of Individual Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2) Mid-Term Rehabilitation and<br>Development Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mid-term assistance.<br>As a result, it was<br>decided to provide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) Mid-Term Rehabilitation and<br>Development Plan                                                                                                                         |                             |  |
| (a) Formulation of a short to mid-term draft rehabilitation plan for infrastructure facilities (JBIC yen loan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | As assistance for mid-term rehabilitation, a survey will be conducted                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | assistance for the urgent<br>rehabilitation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The planning and design of projects featuring the following facilities will be conducted                                                                                    | As above                    |  |
| <ul> <li>Target Infrastructure <ul> <li><u>Laamu Fonadhoo (H4)</u></li> <li>Repair of the harbour facilities and causeway (request by atoll chief)</li> <li>Water supply and sewerage systems (confirmation of their</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to contribute to the early implementation of<br>the mid-term rehabilitation and<br>development plan (social and economic<br>infrastructure). This survey will<br>incorporate the viewpoint of the long-term<br>development of the Maldives and will                                                                                                                                                                                                                                                                                             | infrastructure on 13<br>islands of Laamu Atoll<br>(especially Fonadhoo) and<br>Thaa Atoll.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ol> <li>Island harbour facilities and<br/>coastal protection facilities<br/>(Thaa Atoll: Dhiyamigili,<br/>Guraidhoo, Thimarafushi,<br/>Veymandoo, Kinbidhoo and</li> </ol> |                             |  |
| necessity by the Study Team through interviews)<br>Other housing sites (H2, H3, H5 and H5) and Laamu Gan (S4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | consider the sustainability of the<br>environment, rectification of the<br>socioeconomic gap between the major<br>islands and remote islands and the impacts                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hirilandhoo; Laamu Atoll:<br>Isdhoo/Isdhoo-Kalaidhoo,<br>Maabaidhoo, Gan, Fonadhoo<br>and Maavah)                                                                           |                             |  |

| Modifications of the Study Following Steering Committee |
|---------------------------------------------------------|
| Meeting on 5 <sup>th</sup> June                         |

| Wreeting on 5               | Reasons for                                                  |  |  |  |
|-----------------------------|--------------------------------------------------------------|--|--|--|
| Modified Study Contents     | Modification                                                 |  |  |  |
| building (Gan)              | Fonadhoo and the GOM                                         |  |  |  |
| ② Island office building    | (DER) sent a letter                                          |  |  |  |
| (Fonadnoo)                  | target island for sewerage                                   |  |  |  |
| and Fonadhoo)               | system rehabilitation to the                                 |  |  |  |
| ④ Power distribution system | Embassy of Japan in Sri                                      |  |  |  |
| (Laamu Atoll:               | Lanka. In response to this                                   |  |  |  |
| Isdhoo/Isdhoo-Kalaidhoo,    | request, the target island was                               |  |  |  |
| Maabaidhoo, Gan and         | Isdboo/Isdboo-Kalaidboo                                      |  |  |  |
| 5 Photovoltaic power        | Following this decision,                                     |  |  |  |
| generation system (for ①    | the Study Team conducted                                     |  |  |  |
| and <sup>(2)</sup> above)   | an urgent survey on                                          |  |  |  |
| 6 Sewerage system           | Isdhoo/Isdhoo-Kalaidhoo                                      |  |  |  |
| (Isdhoo/Isdhoo-Kalaidhoo)   | of the relevant ministries                                   |  |  |  |
|                             | (Ministry of Health, Ministry                                |  |  |  |
|                             | of Planning and Ministry of                                  |  |  |  |
|                             | Construction and                                             |  |  |  |
|                             | and confirmed that the                                       |  |  |  |
|                             | planned design for the                                       |  |  |  |
|                             | Isdhoo area would go ahead.                                  |  |  |  |
|                             | In the case of the                                           |  |  |  |
|                             | Isdhoo-Kalaidhoo area,                                       |  |  |  |
|                             | families (households) in the                                 |  |  |  |
|                             | eastern part of this area have                               |  |  |  |
|                             | expressed a wish to be                                       |  |  |  |
|                             | relocated to the western part                                |  |  |  |
|                             | from tsunami and high tides                                  |  |  |  |
|                             | during discussions with the                                  |  |  |  |
|                             | island chief and that a letter                               |  |  |  |
|                             | signed by all was submitted                                  |  |  |  |
|                             | to the Ministry of Atoli<br>Development Because the          |  |  |  |
|                             | JICA Study Team has to deal                                  |  |  |  |
|                             | with the sewerage system as                                  |  |  |  |
|                             | well as the power                                            |  |  |  |
|                             | distribution system in the                                   |  |  |  |
|                             | residents will necessitate                                   |  |  |  |
|                             | changes of the design and                                    |  |  |  |
|                             | project implementation                                       |  |  |  |
|                             | schedule, etc. The Maldives                                  |  |  |  |
|                             | and Ministry of Atoll                                        |  |  |  |
|                             | Development, etc.) is                                        |  |  |  |
|                             | scheduled to make a decision                                 |  |  |  |
|                             | on this requested relocation                                 |  |  |  |
|                             | by 31 <sup></sup> May. The Study<br>Team will then conduct a |  |  |  |
|                             | survey based on this                                         |  |  |  |
| Same as left                | decision. It has been agreed                                 |  |  |  |
| Sume as left                | by all related parties that the                              |  |  |  |
|                             | survey on the sewerage                                       |  |  |  |
|                             | assuming the relocation sites                                |  |  |  |
|                             | until the GOM's policy                                       |  |  |  |
|                             | regarding this relocation is                                 |  |  |  |
|                             | finalised.                                                   |  |  |  |
|                             |                                                              |  |  |  |
|                             |                                                              |  |  |  |

| At the Onset of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Modifications of the Study Following S/V                                                                                                                                                                                                                                                                                                                                                   | W Signed on 12 <sup>th</sup> April                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Modifications of the Study Following Steerin<br>on 5 <sup>th</sup> May | ng Committee Meeting        | Modifications of the Study Following Steering Committee<br>Meeting on 5 <sup>th</sup> June |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|------------------------------------|
| (End of March, 2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Modified Study Contents                                                                                                                                                                                                                                                                                                                                                                    | Reasons for<br>Modification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Modified Study Contents                                                | Reasons for<br>Modification | Modified Study Contents                                                                    | <b>Reasons for</b><br>Modification |
| <ul> <li>Roads, harbours, coastal protection, water supply, sewerage, waste collection and disposal, electricity</li> <li>(b) Assistance for the following projects associated with housing construction (collaboration with JICS non-project grant aid)</li> <li><u>Planning Stage</u> <ul> <li>Checking of the housing layout plan (confirmation of the construction locations on the existing map as the houses in some areas are due for reconstruction)</li> <li>Assistance for the preparation of the technical specifications for the tender</li> </ul> </li> <li><u>Construction Stage</u> <ul> <li>Assistance for the tender for housing construction and also for project monitoring in the construction period</li> </ul> </li> </ul> | of global warming. As in the case of the<br>short-term recovery plan, projects featuring<br>the following facilities will be designed<br>and planned based on the NRRP.<br>(1) Island harbours and jetties<br>(2) Coastal protection<br>(3) Causeways in Laamu between Gan<br>and Fonadhoo<br>(4) Sewerage system/network<br>(5) Water supply system<br>(6) Emergency communication system | These projects are<br>extracted from the list for<br>non-project grant aid<br>prepared by the GOM in<br>view of their scale,<br>required time for<br>construction and urgency,<br>etc. to match the concept<br>of mid-term rehabilitation.<br>The Japanese proposals<br>are mainly accepted but,<br>in the case of Gan for<br>which there is a<br>redevelopment plan and<br>where the potential for<br>development assistance is<br>high, improvement of the<br>sewerage system was<br>dropped from the<br>viewpoint of swift<br>implementation.<br>Consequently,<br>assistance for<br>infrastructure<br>rehabilitation will be<br>provided for 11 islands of<br>Laama Atoll (especially<br>Fonadhoo) and Thaa<br>Atoll. | (2) Emergency administrative radio communication system                |                             |                                                                                            | As above                           |

## S2-6 LIST OF PARTIES CONCERNED

# (Maldives side)

| Office                         | Name                       | Designation                        |
|--------------------------------|----------------------------|------------------------------------|
| The President's Office         | Mr. Mohamed H. Shareef     | Chief Government Spokesman         |
|                                | Ms. Aminath Didi           | Deputy Minister                    |
| Department of External         | Mr. Hussain Niyaaz, Ph.D.  | Executive Director                 |
| Resources (DER),               | Mr. Ali Naseer Mohamed     | Assistant Director General         |
| Ministry of Foreign Affairs    | Mr. Mohamed Shahudy        | Assistant Director                 |
|                                | Mr. Aishath Azeema         | Senior Desk Officer                |
|                                | Mr. Hamdun A. Hameed       | Minister                           |
|                                | Dr. Mohamed Shareef        | Asst. Director General             |
|                                | Ms. Lucia Moosa            | Director, Programmes               |
|                                | Mr. Mohamed Imad           | Director, Spatial Planning         |
|                                | Ms. Huda Ali Shareef       | Director                           |
|                                | Mr. Thoria Ibrohim         | Deputy Director, Regional          |
|                                |                            | Development                        |
|                                | Mr. Ahmed Rasheed          |                                    |
| Ministry of Planning &         | Mr. Ahmar Mohamed          | Planning Officer Trainee           |
| National Development           | Mr. Mohamed Rasheed        | Director, Administration & Finance |
| (MPND)                         | Ms. Shafiyya Rasheed       | Assistant Secretary                |
|                                | Mr. Abdulla Shibau         | City Planning / Spatial Planning   |
|                                | Mr. Mohamed Luan Latheef   | Spatial Planning                   |
|                                | Ms. Loona Abdul Hakeem     |                                    |
|                                | Ms. Mariyam Mirufath       |                                    |
|                                | Ms. Musliha Hasson         | Planning Officer Trainee           |
|                                | Mr. Fathimath Rashedha     |                                    |
|                                | Ms. Mnohhg Hassan          |                                    |
|                                | Mr. Miusam Saleem          | Planning Officer Trainee           |
|                                | Mr. Riluwan Shareef        | Deputy Minister                    |
| Ministry of Finance & Treasury | Mr. Mohamed Ahmed          | Executive Director                 |
| (MFT)                          | Ms. Aminath Ali Manik      | Assistant Director General         |
|                                | Mr. Abdul Wahid            |                                    |
|                                | Ms. Aminath Inasha Shafeeq | Senior Desk Officer                |

| Office                                               | Name                     | Designation                                       |
|------------------------------------------------------|--------------------------|---------------------------------------------------|
| Ministry of Atolls Development                       | Mr. Abdhul Azeez Yoosuf  | Deputy Minister                                   |
| (MOAD)                                               | Mr. Adam Moosa           | Director                                          |
|                                                      | Mr. Ahmed Rasheed        | Assistant Executive Director                      |
|                                                      | Mr. Hamid Yoosuf         | Director General                                  |
|                                                      | Mr. Mohamed Farook       | Deputy Director General                           |
|                                                      | Mr. Abdul Hameed Mohamed | Atoll Chief                                       |
|                                                      | Mr. Abdulla Shibau       |                                                   |
| National Disaster Management<br>Center (NDMC)        | Mr. Thoriq Ibrahim       | Deputy Director                                   |
|                                                      | Mr. Abdul Razzak Idris   | Deputy Minister                                   |
|                                                      | Mr. Mohamed Ali          | Assistant Director                                |
|                                                      | Mr. Thoriq Ibrahim       | Deputy Director                                   |
|                                                      | Mr. Ahmed Jameel         | Deputy Director, Environment<br>Assessment        |
|                                                      | Mr. Ali Amir             | Public Works Section                              |
| Ministry of Environment, Energy<br>and Water         | Mr. Mohamed Zuhair       | Deputy Director, Product Area                     |
| (MEEW)                                               | Ms. Labuna Moosa         |                                                   |
|                                                      | Mr. Gil Marshal          |                                                   |
|                                                      | Mr. Abdulla Firag        | Project Manager, Renewable<br>Development Project |
|                                                      | Mr. Ajwad Musthafa       | Assistant Director                                |
|                                                      | Mr. Ajwad Shakeel        | Civil Engineer                                    |
| Ministry of Transport and<br>Communications<br>(MTC) | Mr. Mohamed Saeed        | MInister                                          |
| Telecommunications Authority of Maldives (TAM)       | Mr. Mohamed Amir         | Chief Executive                                   |
| National Security Service<br>(NSS)                   | Mr. Ibrahim M. Didi      | Communication, electronics and IT services        |
| Maldives Electricity Bureau                          | Mr. Mohamed Majdee       | Dicrector, Energy Resources                       |
| (MEB)                                                | Mr. Abdulla Wahid        | Deputy Director General                           |
| State Electric Company Limited                       | Mr. Mohamed Rasheed      | Assistant Managing Director                       |
| (STELCO)                                             | Mr. Mohamed Latheef      | Director                                          |
|                                                      | Mr. Ahmed Niyaz          | Senior Engineer                                   |

| Office                                                                   | Name                       | Designation                        |
|--------------------------------------------------------------------------|----------------------------|------------------------------------|
|                                                                          | Mr. Ibrahim Athif          | Mechanical Engineer                |
|                                                                          | Mr. Ahmed Shafeeu          | Electrical Engineer                |
| Maldives Ports Authority                                                 | Mr. Mahadi Imad            | Deputy Managing Director           |
| (MPA)                                                                    | Mr. Ali Ahmed              | Director Cargo Handling            |
|                                                                          | Mr. Mohamed Haneef         | Deputy Director Cargo Handling     |
| Maldives Airport Company<br>Limited (MAC)                                | Mr. Ali Hashim             | Assistant Managing Director        |
| Regional Air port in MTCA                                                | Mr. Mohamed Maahid Shareef | Deputy Director                    |
|                                                                          | Ms. Sheena Moosa           | Deputy Director of Health Services |
|                                                                          | Mr. Shehenaz Fahmy         | Deputy Director                    |
| Ministry of Health                                                       | Mr. Ahmed Zahid            |                                    |
| (MOH)                                                                    | Mr. Ahmed Waheed           |                                    |
|                                                                          | Mr. Aslam Rasheed          |                                    |
|                                                                          | Dr. Roisin Rooney          |                                    |
|                                                                          | Ms. Shaheeda Adam Ibrahim  | Director                           |
| Maldives Water and Sanitation                                            | Mr. Mohamed Musthafa       | Engineer                           |
| Authority (MWSA)                                                         | Mr. Abdul Aleem            |                                    |
|                                                                          | Mr. Ali Munaz Mubaarik     | Engineer                           |
| Male' Water and Sewerage<br>Company (MWSC)                               | Mr. Mohamed Rasheed Bari   | Technical Manager                  |
| Ministry of Economic<br>Development and Trade<br>(MEDT)                  | Mr. Mohamed Jaleel         | Minister                           |
| Ministry of Fisheries,<br>Agriculture and Marine<br>Resources<br>(MFAMR) | Mr. Hussain Rasheed        | Director of Statistic Department   |
| Maldives Housing and Urban                                               | Mr. Ibrahim Rafeeq         | Minister                           |
| Development Board                                                        | Ms. Fathimath Rasheed      | Assistant Director, Planning       |
| Ministry of Construction and<br>Public Infrastructure                    | Mr. Mauroof Jameel         | Minister                           |

| Office                           | Name                    | Designation                       |
|----------------------------------|-------------------------|-----------------------------------|
| L. Atoll Office (L. Funadhoo)    | Mr. Moosa Ali Kaleyfaan | Atoll Chief                       |
|                                  | Mr. Saud Ibrahim        | Acting Atoll Chief                |
|                                  | Mr. Mohamed Haleem      | Assistant Atoll Chief             |
| Island Office                    | Mr. Abdull Pabaam       | L. Ishdhoo-Kalaidhoo Island Chief |
| (L. Ishdhoo-Kalaidhoo)           |                         |                                   |
| Island Office (L. Maabaidhoo)    | Mr. Mohamed Jameel      | Island Chief                      |
| Island Office (L. Gan Thundhi)   | Mr. Abdul Wahaby        | Thundhi Island Chief              |
| Island Office (L. Fonadhoo)      | Mr. Ahmed Youshuf       | Island Chief                      |
|                                  | Mr. Ibrahim Mohamed     | Island Chief                      |
|                                  | Mr. Mohamed Jameel      | Senior Secretary                  |
|                                  | Mr. Mohamed Naif        | Assistant Island Chief            |
|                                  | Mr. Ahmed Ali           | Assistant Island Chief            |
|                                  | Mr. Aishath Salwa       | Island Assistant                  |
| Island Office (L. Maafaru)       | Mr. Abdul Sattar        | Island Chief                      |
|                                  | Mr. Ibrahim Mohamed     | Senior Island Chief               |
| Thaa Atoll Office                | Mr. Abdul Setter Adam   | Thaa Atoll Chief                  |
| Island Office (Th.) Thimarafushi | Mr. Ahmed Ali           | Island Chief                      |

| Office                | Name              | Designation       |
|-----------------------|-------------------|-------------------|
| MIFCO                 | Mr. Adil Saleem   | Deputy Director   |
| Fonadhoo Tuna Product | Mr. Husam Mohamed | Finance Manager   |
| Horizon Fisheries     | Mr. Adnan Ali     | Managing Director |

| Office                                     | Name                  | Designation                         |
|--------------------------------------------|-----------------------|-------------------------------------|
| United Nations (UN)                        | Mr. Babar Sobhan      | RC Coordination Specilist           |
| World Bank                                 | Mr. Richard Scurfield | Special Representative for Maldives |
| Food and Agriculture<br>Organization (FAO) | Mr. Winston R. Rudder | FAO Maldives Officer                |
| UNDP                                       | Mr. Murrey Wilson     | Infrastructure Advisor              |
|                                            | Mr. Man B. Thapa      | Disaster Management Specialist      |

| Office                                | Name                        | Designation                            |
|---------------------------------------|-----------------------------|----------------------------------------|
|                                       | Ms. Rita Missal             | Recover Officer Disaster<br>Management |
|                                       | Mr. Knut Ostby              | Recovery Management                    |
|                                       | Mr. Peter Wurzel (Zimbabwe) | Sewage and Water Supply                |
|                                       | Mr. Dan Martin (England)    | Sewage and Water Supply                |
|                                       | Mr. Mohamed Saeed           | Program Officer                        |
|                                       | Mr. Anthony Raby            | Regional Emergency Project Officer     |
| UNICEF                                | Mr. Ken Maskall             | Representative                         |
|                                       | Mr. Johan Fagersiold        | Programme Coordinator                  |
|                                       | Ms. Aishath Mohamed Didi    | Program Officer                        |
|                                       | Ms. Kyoko Takamizawa        |                                        |
| International Federation Red<br>Cross | Mr. Jerry Talbot            | Head of Delegation                     |
|                                       | Ms. Selina Chan             | Watson Delegate                        |
| British Red Cross                     | Mr. Per Andersson           | Construction Manager                   |
|                                       | Mr. Ventella Fortune        | Programme Development Advisor          |
|                                       | Mr. Simon Little            | Team Leader                            |
| French Red Cross                      | Mr. Ernesto HERPERA         | Head of Mission                        |
|                                       | Mr. Philippo Clay           | Civil Engineer                         |

# (Japanese side)

| Office           | Name                  | Designation                                                        |
|------------------|-----------------------|--------------------------------------------------------------------|
| Embassy of Japan | Mr. Hiroshi KARUBE    | Minister, Deputy Chief of Mission                                  |
|                  | Mr. Hideyuki ONISHI   | Counselor                                                          |
|                  |                       | Senior Assistant to the Director                                   |
| JICA Head Office | Mr. Masami FUWA       | General, Social Development<br>Department                          |
|                  |                       |                                                                    |
|                  |                       | Team Director, Water Resources                                     |
|                  | Mr. Masafumi NAGAISHI | Team Director, Water Resources<br>and Disaster Management Team II, |
|                  |                       | Group III                                                          |
|                  | Mr. Hideaki MATSUMOTO | Water Resources and Disaster                                       |
|                  |                       | Management Team II, Group III                                      |

| Office                | Name                 | Designation                       |
|-----------------------|----------------------|-----------------------------------|
|                       | Ms. Ai YAMAZAKI      | Water Resources and Disaster      |
|                       |                      | Management Team II, Group III     |
|                       | Mr. Naomichi MUROOKA | Transportation Team II, Group III |
| JICA Sri Lanka Office | Mr. Takumi UESHIMA   | Resident Representative           |
|                       | Mr. Ko GOTO          | Assistant Resident Representative |

| Name                        | Field in charge                                              | Occupation                                                    |
|-----------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
| Masatsugu KOMIYA<br>(Mr.)   | Leader/Disaster Reconstruction                               | Yachiyo Engineering Co., Ltd.                                 |
| Hiroshi MATSUO<br>(Mr.)     | Sub-Leader/City Planning                                     | Pacet Co.,Ltd.                                                |
| Tatsuru OGAWA<br>(Mr.)      | Housing Planning / Land Use Plan                             | Aoyama Urban Design Institute                                 |
| Kazunori SEKI<br>(Mr.)      | Architect-1 / Society Service                                | Pacet Co.,Ltd.                                                |
| Atsushi MORIOKA             | Architect-2                                                  | NIPPON KOEI CO., LTD.                                         |
| Hisayuki Yamamoto<br>(Mr.)  | Construction Plan / Cost Estimation- 1                       | Yachiyo Engineering Co., Ltd                                  |
| Shigeki Yamaoka<br>(Mr.)    | Cost Estimation-2/Demonstration Project-1                    | NIPPON KOEI CO., LTD.                                         |
| Hidenori OSUMI<br>(Mr.)     | Construction Monitoring/Demonstration<br>Project-2           | NIPPON KOEI CO., LTD.                                         |
| Tadayuki OGAWA<br>(Mr.)     | Public Facility-1                                            | Yachiyo Engineering Co., Ltd.                                 |
| Yasuo HORIGOME<br>(Mr.)     | Public Facility -2                                           | HORIGOME Architect Firm                                       |
| Mamoru AMEMIYA<br>(Mr.)     | Coastal Facility                                             |                                                               |
| Shinsuke KUBO<br>(Mr.)      | Cost Estimation for Coastal Facility                         | Omega Engineering Co., Ltd.                                   |
| Katsumi FUJII<br>(Mr.)      | Communication Facility                                       | NIPPON KOEI CO., LTD.                                         |
| Akitoshi IIO<br>(Mr.)       | Community/Social Condition-1                                 | Yachiyo Engineering Co., Ltd.                                 |
| Fumiaki SHIOMI<br>(Mr.)     | Seashore Preservation                                        | Yachiyo Engineering Co., Ltd.                                 |
| Toshihiro HOTTA<br>(Mr.)    | Causeway Planning                                            | Yachiyo Engineering Co., Ltd.                                 |
| Fumiaki YOSHIKAWA<br>(Mr.)  | Tender Evaluation for Coastal Faiclities                     | Yachiyo Engineering Co., Ltd.                                 |
| Osamu SASE<br>(Mr.)         | Natural Condition                                            | OPC                                                           |
| Takashi SATOU<br>(Mr.)      | Environmental Assessment                                     | METOCEAN ENVIRONMENT INC.                                     |
| Ichiro KANO<br>(Mr.)        | Economic and Financial Analysis                              | Engineering and Consulting Firms<br>Association, Japan (ECFA) |
| Tatsuya KOBAYASHI<br>(Mr.)  | Preparation of Tender Documents/Power<br>Distribution Design | Yachiyo Engineering Co., Ltd.                                 |
| Yoshiaki KOBAYASHI<br>(Mr.) | Community/Social Condition-2/Coordinator-1                   | Yachiyo Engineering Co., Ltd.                                 |
| Yoshinobu MATSUO<br>(Mr.)   | Coordinator/Public Facility-3                                | Yachiyo Engineering Co., Ltd.                                 |
| Nobuaki TACHIBANA<br>(Mr.)  | Coordinator-3                                                | Yachiyo Engineering Co., Ltd.                                 |
| Yoriko KAWAZOE<br>(Ms.)     | Coordinator-4                                                | Yachiyo Engineering Co., Ltd.                                 |

# S2-7 Study Team Member List