
Appendix 4 Topographic Profile of FDC Lines

Cross section of FDC observation and exposed rate diagram of manganese crusts (05SMC12FDC02) Appendix Fig. 4-1

Cross section of FDC observation and exposed rate diagram of manganese crusts (05SMC12FDC03) Appendix Fig. 4-2

Cross section of FDC observation and exposed rate diagram of manganese crusts (05SMC13FDC02) Appendix Fig. 4-3

Appendix 5 Laboratory Work

- 5-1. Microscopic Observation of Rock Samples
- 5-2. Chemical Analyses of Igneous Rock
- 5-3. X-ray Diffraction Analyses of Rock Samples
- 5-4. Microscopic Observation of Manganese Crust
- 5-5. X-ray Diffraction Analyses of Manganese Crust
- 5-6. Chemical Analysis of Manganese Crust
- 5-7. Identification of Microfossils and Large Fossils of Carbonate
- 5.8. Identification of Fossils of Unconsolidated Sediments

5-1 Microscopic Observation of Rock Samples

5-1-1 Samples

Thin sections were prepared for six samples as shown in Table 5-1-1. Descriptions of hand specimens and thin section were conducted by Katsuhiko Maeda, a geologist of Mitsubishi Materials Natural Resources Corp.

Table 5-1-1 Rock Samples for Microscopic Observation

Serial No.	Sample No.	Depth of Bottom Touch (m)	Individual Piece No. of Samples	Rock Name	Remarks
1	05SMC12AD16_TS01	2,004	c2	aphyric basalt	-
2	05SMC12AD19_TS01	1,873	c1	aphyric basalt	_
3	05SMC12AD27_TS01	2,209	c3	basalt cobble of calcareous conglomerate	-
4	05SMC12AD29_TS01	2,385	с6	aphyric basalt	_
5	05SMC13AD15_TS01	1,724	-	materials filling interstices	agate ?
6	05SMC13AD16_TS01	2,061	c1	clinopyroxene basalt	_

5-1-2 Descriptions of Hand Specimen

Prior to preparation of thin sections, all hand specimens were described. The photographs of hand specimen are given in Plate I. The descriptions of each sample are given below.

05SMC12AD16 TS01

It is brownish dark gray, aphyric basalt and it shows intensive vesicularity with abundant vesicles of 2-3mm across. The vesicles are filled and coated by milky white to brown calcite and limonite. Cracks are occasionally filled by calcite veins of 1-2mm wide.

05SMC12AD19 TS01

It is brownish dark gray aphyric basalt, and vesicles of 0-3mm across occur showing vermicular texture. Vesicles are filled and coated by limonite. Brownish milky white calcite rarely occurs filling the vesicles.

05SMC12AD27 TS01

It is dark gray aphyric basalt with abundant vesicles. The vesicles are 2-3cm across

and the amount of vesicles reaches to 40 volume% of whole rock. Limonite and carbonate occasionally occur attached on the inner surface of vesicles.

05SMC12AD29 TS01

It is brown to dark gray, aphyric basalt and these colors changes gradationally. Vesicularity is poor and the vesicles filled by limonite usually show globular shape of 1-2cm across. Slightly large vesicles of 3mm across rarely occur. Angular fragments of pale brownish gray to milky white quartz and calcite, 3-4mm across, are included.

05SMC13AD15 TS01

It is colorless to reddish dark gray agate. In its inner part, it shows reddish dark gray, parallel, fibrous stripes of 3mm interval. Less than 5mm thick fragment of limestone is partly attached on the surface.

05SMC13AD16 TS01

It is dark gray, pyroxene basalt with clinopyroxene and hyperthene phenocrysts of less than 0.5mm across. Rarely altered hornblende of less than 0.5mm across is observed. It is generally compact, but rarely less than 0.5mm across vesicles filled by milky white calcite and limonite are observed. It includes 3mm across, angular xenolith.

5-1-3 Microscopic Observation of Thin Sections

The results of microscopic observations are given in Table 5-1-2, and description sheet and micrographs are shown on Plate II.

Table 5-1-2 Results of Microscopic Observation

Sea	;	Depth		:		:		Phe	Phenocrysts					Groundmass	ass						Sec	ondary l	Secondary Minerals
Mountain	Sample No.	(II)	Piece No. of Samples	rock Name	Texture	Alteration	Q PI	Cpx Opx Ol	IO ×	HP	Bi Op	O'	Pl Cpx	Æ	0]	ð	G Chi	Sm	Pal	Ð	ಕ	Q Cly	Others
	05SMC12AD16 TS01	2004	బ	Basalt	intersertal vesicular	Intermediate	0				0		0			7	⊲				◁		Limonite (\bigcirc) . Hematite (\triangle)
80%	05SMC12AD19 TS01	1873	c1	Basalt	intersertal vesicular	Intermediate	0				0		©			7	◁						Limonite (O) , Hematite (Δ)
MOIS	05SMC12AD27 TS01	2209	ဥာ	Apyric Basalt	aphyricvesi cular	Weak	∇				◁		0				0						Hematite (△)
	05SMC12AD29 TS01	2385	90	Basalt	intersertal vesicular	Strong	◁				٥		0								◁		Goethite (△) 、Limonite (◎)
MC13	05SMC13AD15 TS01	1724	_	Agate	aphamitic	ı															0		
	05SMC13AD16 TS01	2061	cl	Clinopyroxene Basalt	intersertal vesicular	Intermediate	∢	◁					◁										Limonite (\bigcirc) , Goethite (\triangle)
							Q ; Quartz	uartz		.: E	Chl : Chlorite	ड		* ; Pseudomorph	ошорп	욘	۱	© : abundant (>30)	ındant	(>30)			
							Р. Р	Pl ; Plagioclase		Sm :	Sm : Smectite	ite					U	○ ; Common (10~30)	mmon	(10∽3	ô		
						•	D: xd	Cpx ; Clinopyroxene	ne	ď.	Ep ; Epidote	æ					7	∆ ; Rare (3~10)	~(3)~	10)			
)	0: xd(Opx : Orthpyroxene	e e	Pal:	Pal ; Paragonite	onite					•	; Trace (<3)	(¥ 86	≅			
							Ol ; Olivine	livine		 පි	Cb ; Cristobarite	barite											
							H : H	Hb : Hornblende		 ප	Cc ; Calcite	es.											
							Bi ; Biotite	iotite		Cly:	Cly : Clay Minerals	Aineral	s										
							Op : Opaqu G : Glass	Op : Opaque minerals G : Glass	erals	Š	Ne : Nepheline	eline											

5-2 Chemical Analyses of Igneous Rock

5-2-1 Samples

The chemical analyses of volcanic rocks were conducted for six samples They are four from MC12 area, one from MC13 area and one standard sample of JB·3, which is standard sample of basalt prepared by JGS (Table5·2·1).

Serial No.	Sea Mt.	Sample No.	Depth of Bottom Touch (m)	Individual Piece No. of Samples	Rock Name
1		05SMC12AD16_CA01	2,004	c2	aphyric basalt
2		05SMC12AD19_CA01	1,873	c1	aphyric basalt
3	MC12	05SMC12AD27_CA01	2,209	c3	basalt cobble of calcareous conglomerate
4		05SMC12AD29_CA01	2,385	с6	aphyric Basalt
5	MC13	05SMC13AD16_TS01	2,061	c1	clinopyroxene basalt
6	_	JB-3	_	_	basalt

Table 5-2-1 Rock Samples of Chemical Analysis

5-2-2 Chemical Analyses

As given below, chemical analyses of 44 elements were conducted.

Major elements (16 elements)

SiO₂, TiO₂, Al₂O₃, Fe₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, Cr₂O₃, CO₂, H₂O⁺, H₂O⁻, LOI (detection limit: 0.01%)

Trace elements (28 elements)

Rb, Ba, Zr, Y, Cs, Ta, U (detection limit: 0.1ppm)

Sr, V, Nb, Hf, Pb, Th, Ni (detection limit: 1ppm)

REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) (detection limit 0.01ppm)

5-2-3 Analytical Methods

After drying samples for more than 12 hours using dry oven, samples were crushed by hand using iron pot. Samples were dried again for more than 12 hours, then, pulverized to 250 micron size by tungsten carbide mill.

Chemical analyses were conducted at ALS Chemex, Canada. Since all the samples were collected in the ocean, desalination was conducted for all the samples. For chemical analyses of major elements and trace elements other than Zr, Ba and REE, samples were digested using HF-HNO₃-HClO₄ acid. Lithium borate fusion was conducted for chemical analyses of Zr, Ba and REE. The chemical analyses of major

element (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, Cr₂O₃, LOI) were conducted by X-ray Fluorescence Analysis (Panalytical (former Philips), PW2404 XRF). FeO was determined by titration. Trace elements, such as Rb, Ba, Zr, Y, Cs, Ta, U, Sr, V, Nb, Hf, Pb, Th, Ni, REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), were analyzed by Inductively Coupled Plasma –Mass Spectrometry (Perkin Elmer, Elan9000 ICP-MS). LECO (LECO, RMC-100) was used for determination of CO₂, H2O⁺, H2O⁻.

5-2-4 Analytical Results

The analytical results are given in Table 5-2-2.

The analytical results of standard samples prepared by ALS Chemex, which were simultaneously analyzed together with the samples of MC12 and MC13 areas, were shown in Table 5-2-3.

All the samples show high LOI, ranging from 2.43% to 5.96%, and among them MC13 sample has the lowest LOI of 2.43%. Fe₂O₃ is high compared with FeO in all the samples, and P₂O₅, ranging from 0.52% to 4.67%, is very high compared to common igneous rock value of less than 0.5%. Coincide with the results of microscopic observation, these high values of LOI, Fe₂O₃ and P₂O₅ suggest considerable alteration of these rocks, characterized by occurrences of secondary minerals such as clay minerals and phosphate minerals. In addition, relatively high CO₂ values of 0.55% to 1.28% suggest occurrences of carbonates as secondary minerals. 05SMC13AD16 shows the major elements chemistry of the least alteration compared with other samples of MC12.

Reflecting these alterations, SiO₂, ranging from 44.75% to 48.98%, is low compared with normal basaltic rock. MgO varies from 0.70% to 2.71% for the samples of MC12 and a wide range of Mg#, 10.34 to 31.64, was obtained. The highest MgO, 4.17%, and the highest Mg#, 35.41, was obtained from the samples of MC13. The sample of MC13 shows slightly different nature compared with five samples of MC12. The former shows higher TiO₂, MgO, CaO and lower Al₂O₃, NaO and K₂O compared with the latter.

Table 5-2-2 Analytical Results of Volcanic Rocks

San	nple No.	05SMC12AD16 CA01	05SMC12AD19 CA01	05SMC12AD27 CA01	05SMC12AD29 CA01	05SMC13AD16 CA01	Standard Sample JB-3	Standard Sample JB·3 Recommended Value
Roc	ck Name	Aphyric Basalt	Aphyric Basalt	Apyric Basalt	Apyric basalt	Clinopyroxene Basalt	Basalt	Basalt
Ro	ск Туре	alkali	alkali	alkali	alkali	sub-alkali	High Alumina Basalt	High Alumina Basalt
	SiO2	45.96	44.76	44.75	48.98	45.94	50.08	50.96
	TiO2	2.75	2.86	2.31	1.73	2.96	1.53	1.44
	Al2O3	16.70	17.65	16.66	18.07	14.35	17.25	17.20 3.20
	Fe2O3	10.16	10.37 1.48	7,14 1,22	7.29 1.22	9,41 5.08	4.52 6.18	7.85
	FeO MnO	1,29 0.06	0.10	0.09	0.09	0.20	0.16	0.18
	MgO	2,71	0.70	1.41	1.29	4.17	4.31	5.19
	CaO	5.91	8.18	10.35		10.66	8.98	9.79
] ٿا ا	Na2O	3.25	3.48	3.56		2,56	2.90	2.73
*[K2O	3.01	3.36	2.79	2.79	0.98	1.40	0.78
	P2O5	1.89	3.27	4.67	1.84	0,52	0.74	0,29
	Cr2O3	< 0.01	< 0.01	<0.01	<0.01	0.01	0.01	0.17
	CO2	1.28	0.66	0.77		0,55 1,34	0.07 0.67	0.44 0.18
	H2O+ H2O-	2.17 3.55	1.67 1.24	1.50 2.38	1.48 2.57	1.86	0.62	0.18
	LOI	<u>3,55</u> 5.96	3,30	4.21	4.78	2.43	1.06	
	TOTAL	99.65	99.51	99.16		99.27	99.12	
Fe	eO (*1)	10,43	10.81	7.65	7.78	13.55	10.25	10.73
M	[g# (*2)	31.64	10.34	24.72		35.41	42.83	46.29
	Rb	192.0	42,4			29.2	33.1	15.1
	Ba	309.0	347.0	495.0		50.4	281.0	245,0 97.8
	Zr	452.0	434.0	433.0		205,0 52.0	260.0 33.7	26.9
	Y	48.0 20.3	60.6 0.6			2.3	2.2	0.9
	Cs Ta	5.0	5.4				2.0	0.2
	U	1.4	1.7		1.8		0.9	0.5
	Sr .	673	725				473	403
	V	127	239				287	372
1 [Nb	77	79				31	2
	Hf	12.0	12.0				7.0	2.7
	Pb	4,0	6.4				5.9	5.6
╽╶╣	Th	6.0	7.0				4.0 36.0	1.3 36.2
E E	Ni L	16.0 60.60	29.0				28.60	8.81
	La Ce	133.50	69.20 142.50		162.50		_68.50	21.50
	Pr	17.00	17.90		19.80		8.00	3.11
	Nd	70.20	73.60		79.90	24,10	33.90	15.60
1 [Sm	_14.80	16.00	17.80	14,80		7.50	4,27
	Eu	4.60	5,10				2,30	1.32
	Gd	13.20	15.60	19.20			7.40	4,67 0,73
	Tb	1.90	2,20				1,20 6,50	<u>0.73</u> 4.54
	Dy	10.40	12.00				1.30	0.80
	Ho Er	1.70 4.70	2.10 5.90				3.40	2,49
H	Er Tm	0.60	0.70				0.50	0.42
H	Yb	3,50	4,30				3.10	2.55
	~ N	0.50					0.50	0.39

^{*1} FeO = FeO+(0.9*Fe2O3)

^{*2} $Mg# = 100*Mg/(Mg+Fe^{2+})$

Table 5-2-3 Analytical Results of ALS Chemex Standard Samples

Standard S	Camples	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	LOI
Standard	samples						%					
STSD-2 (Standard)	Results of This Time	53.79	0.80	16.07	7.48	0.14	3.19	4.01	1.76	2.19	0.33	9.87
STSD-2	Lower Bound	51.01	0.74	15.29	7.12	0.12	2.94	3.79	1.65	2.00	0.29	9.78
Recommended Value	Upper Bound	56.40	0.84	16.92	7.90	0.16	3.28	4.21	1.85	2.24	0.35	10.83

Standard S	Camulaa	FeO
Standard	Samples	%
SY·4 (Standard)	Results of This Time	2.83
SY-4	Lower Bound	2.78
Recommended Value	Upper Bound	2.94

Standard S	Camples	Rb	Ba	Zr	Y	Cs	Ta	U**	Sr	V**	Nb	Hf	Pb**	Th	Ni
Standard	Samples							ppi	m						
SY-4 (Standard)	Results of This Time	57.7	326	530	126	1.7	0.9	3.6	1215	110	14	12	703	2	11
SY-4	Lower Bound	49.3	306	465	107	1.3	<0.5	2.9	1070	96	11	9	603	<1	<5
Recommended Value	Upper Bound	60.7	375	569	132	1.8	1	3.7	1310	120	15	13	738	2	10

Standard S	Camples	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Standard	Samples							ppı	n						
SY-4 (Standard)	Results of This Time	60.6	127	15.8	61.5	12.4	2	14.4	2.8	18.5	4.5	14.7	2.4	15.3	2.3
SY·4	Lower Bound	51.7	110	13.4	50.8	11.3	1.7	12.5	2.2	16.3	3.8	12.7	2	13.2	1.8
Recommended Value	Upper Bound	64.3	135	16.6	63.2	14.1	2.3	15.5	3	20.1	4.8	15.7	2.6	16.4	2.4

Standard	Camples	C
Standard S	Samples	%
B-03 (Standard)	Results of This Time	0.02
B-03	Lower Bound	<0.01
Recommended Value	Upper Bound	0.02

G1 1 1	C1	H2O+	H2O-
Standard	Samples	%	
G-2000 (Standard)	Results of This Time	3.19	0.81
G-2000	Lower Bound	2.89	0.70
Recommended Value	Upper Bound	3.35	0.82

^{*} ALS Chemex LTD.

^{**} Standard sample G2000 was used.

5-2-5 Considerations

(1) Chemical Nature of the Samples

To understand the nature of the major elements chemistry, the analytical results were plotted on alkali-Silica Diagram (Figure 5-2-1), TAS (total alkalis-silica) Diagram (Fig. 5-2-2) and AFM (Na₂O+K₂O-FeOtotal-MgO) Diagram (Figure 5-2-3).

The results of microscopic observation and chemical analyses suggest considerable alteration of these rocks. Consequently these diagrams of major elements do not precisely show original nature of the igneous rocks. On the alkali-silica diagram, all the samples of MC12 are plotted in the field of alkali rock, while the sample of MC13 (05SMC13AD16CA01) is plotted in subalkalic field. Further, on the TAS diagram, all the samples of MC12 are distributed in and around tephrite field and the sample of MC13 is plotted in basalt filed. Although SiO₂ values of the all the rock may have been decreased by alteration, the sample of MC13 seems to have slightly different chemical nature from all other samples of MC12. All the samples are plotted in the filed of tholeiite trend on the AFM diagram.

For considering the petrogenetic setting of these rock, MORB normalized spiderdiagram and chondorite normalized REE patterns are constructed (Figures 5-2-4 and 5-2-5). The chemical compositions of MORB and chodrite used for normalization were after Sun et al. (1997) and Wakita et al. (1971), respectively (Table5-2-4).

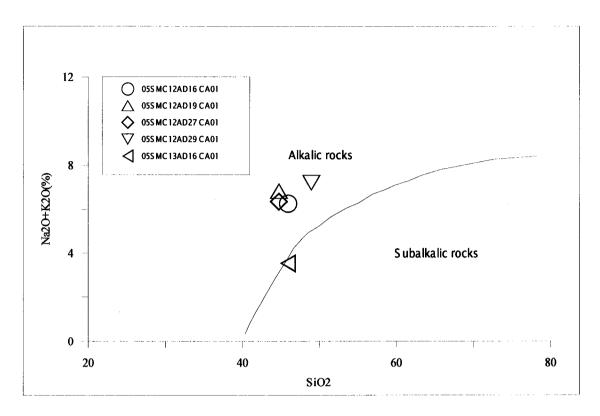


Figure 5-2-1 Alkali-Silica Diagram

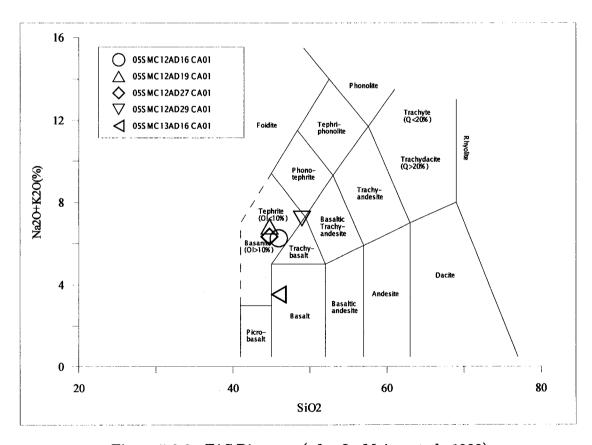


Figure 5-2-2 TAS Diagram (after Le Maitre et al., 1989)

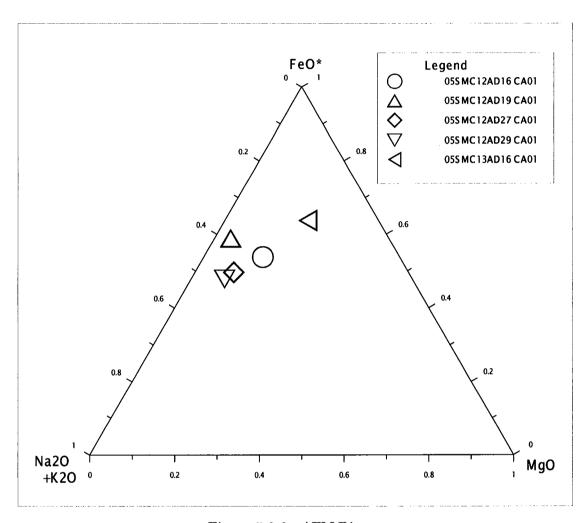


Figure 5-2-3 AFM Diagram

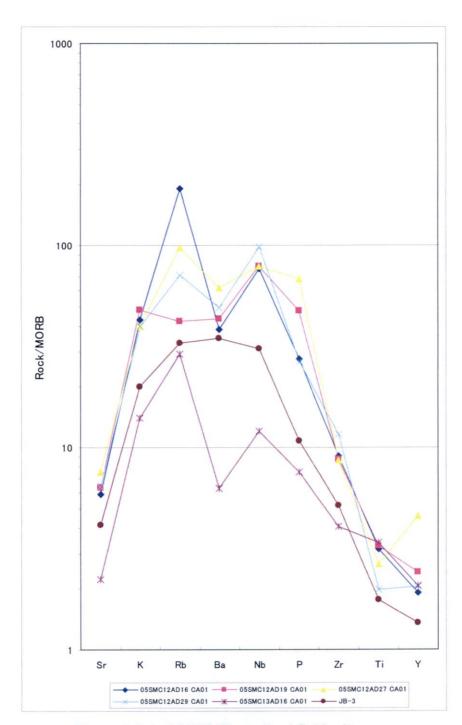


Figure 5-2-4 MORB Normalized Spiderdiagram

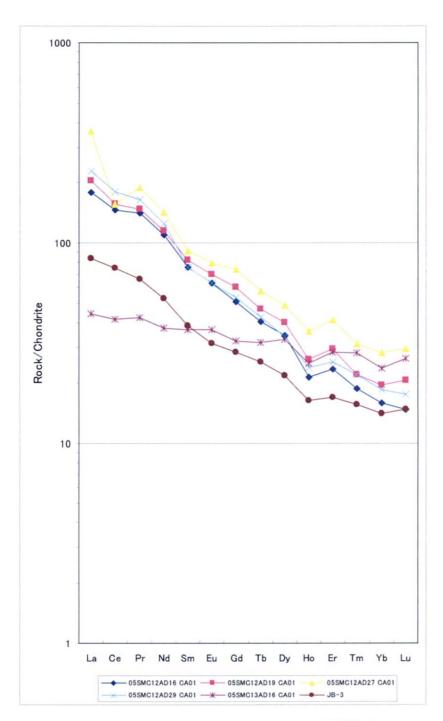


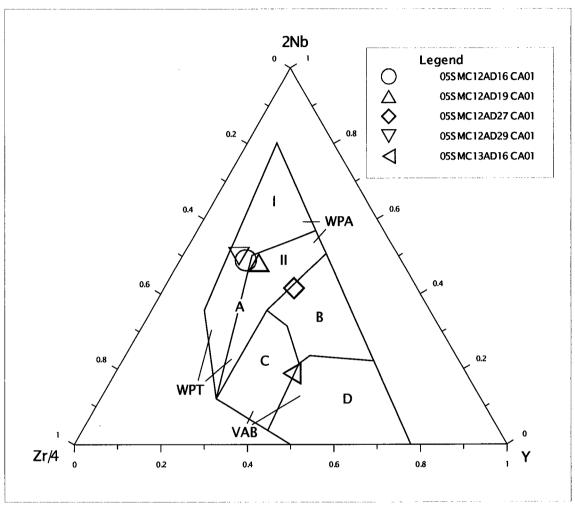
Figure 5-2-5 Chondrite Normalized REE Patterns

Table 5-2-4 Chemical Composition of MORB and Chondrite

	MORB after Sun et al., 1979 (ppm)		Chondrite after Wakita et al., 1971 (ppm)
Sr	114	La	0.34
K	580	Ce	0.91
Rb	1	Pr	0.121
Ba	8	Nd	0.64
Nb	1	Sm	0.195
P	300	Eu	0.073
Zr	50	Gd	0.26
Ti	5215	Tb	0.047
Y	25	Dy	0.3
		Но	0.08
		Er	0.2
		Tm	0.032
		Yb	0.22
		Lu	0.034

On the spiderdiagram (Figure 5-2-4), there are clear differences of patterns between the samples of MC12 and MC13. Despite of similar values of Sr, Ti and Y, enrichments of K, Rb, Ba, Nb, P and Zr are clearly observed in MC12 samples compared to MC13 sample which show relatively depleted values of these elements. These enriched patterns of MC12 samples are similar to that of within plate alkali basalt such as ocean island basalt.

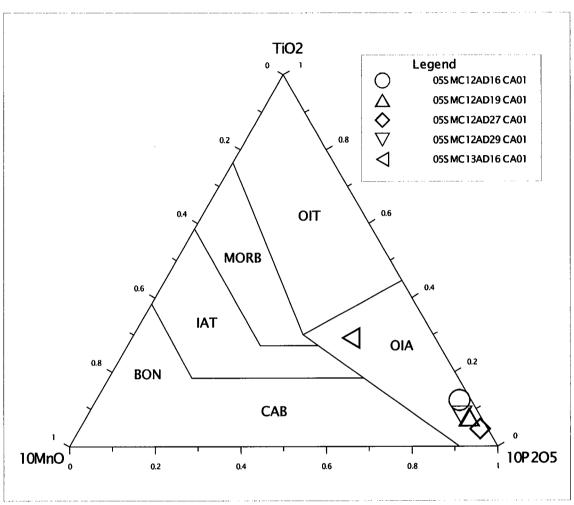
On the figure of chondrite normalized REE patterns (Figure 5-2-5), clear differences of pattern are, again, observed between samples MC12 and MC13. The samples of MC12 show patterns of steeply declined to right hand side with La as high as 200 to 400 time chondrite and 15 to 30 times chondrite Lu. The sample of MC13, on the other hand, shows a pattern of gently declined to right hand side with 45 times chondrite La and 30 times chondrite Lu. The former pattern of REE with enriched LRRE is observed for alkali rocks, typically, ocean island basalt (OAB). While, the pattern of MC13 with gentle sloop is similar to that of theleiitic rocks, most typically ocean island tholeiite. All of the samples does not show clear Eu anomaly.


For further considering tectonic environments of samples collected from MC12

and MC13 areas, discrimination diagrams using relatively immobile elements were constructed. They are Zr/4·2Nb·Y diagram of Meschende (1986) (Figure 5·2·6). 10MnO·TiO₂·10P₂O₅ diagram of Mulen (1983) (Figure 5·2·7) and Zr·Ti/100·3Y diagram of Pearce and Cann (1973) (Figure 5·2·8).

On Zr/4-2Nb-Y diagram, all of the samples of MC12 area are plotted in the field of within-plate alkali basalt with an exception of 05SMC12AD27CA01, which is plotted in E-type MORB. The sample of MC13, on the other hand, is plotted in field of N-Type MORB and Volcanic-Arc-Basalt.

Although 10MnO-TiO₂-10P₂O₅ diagram was constructed, all the samples of MC12 and MC13 have high P₂O₅ content possibly by enrichment through alteration episode. They, consequently, occupy the area very close to P₂O₅ corner in oceanic island basalt except MC13 sample, which has less P₂O₅ compared with other samples of MC12. Therefore, this diagram does not properly suggest tectonic environment for these rocks.


On Zr-Ti/100-3Y diagram, the samples of MC12 are distributed in the field of island-arc calc-alkaline basalt, while MC13 sample is plotted in the field of island-arc tholeitte.

Al, within-plate alkali basalts; All, within-plate alkali basalts and within-plate tholeii B, E-type MORB; C, within-plate tholeiites and volcanic-arc basalts;

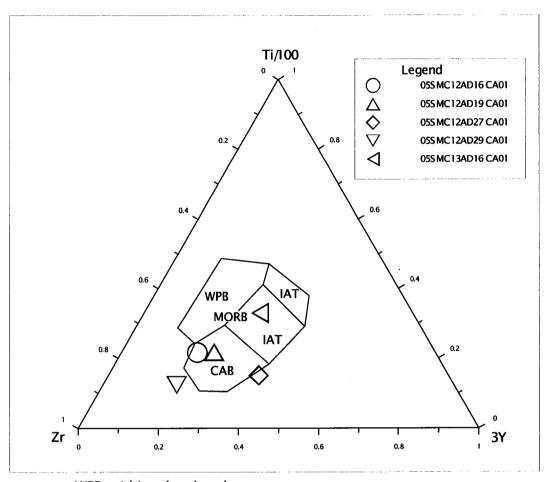

D, N-type MORB and volcanic-arc basalts
WPA, within-plate alkali basalt; WPT, within-plate tholeiite, VAB, volcanic-arc basalt

Figure 5-2-6 Zr/4-2Nb-Y (fields of tectonic environment were taken from Meschende (1986))

OIT, ocean-island tholeiite or seamount tholeiite; OIA, ocean-island alkali basalt or seamount alkali basalt; CAB, island-arc calc-alkaline basalt; IAT, island-arc tholeiite; BON, boninite

 $Figure~5-2-7~~10P_2O_5-TiO_2-10MnO~Diagram \\$ (Field of tectonic environment were taken from Mullen (1983))

WPB, within-plate basalt; CAB, island-arc calc-alkaline basalt; IAT, island-arc tholeiite

Figure 5-2-8 3Y-Ti100-Zr Diagram

(fields of tectonic environment were taken from Pearce and Cann (1973))

(2) Summary

The analytical results of major elements of four samples from MC12 area and one sample of MC13 area show certain degree of alteration for these with high LOI, Fe₂O₃ and P₂O₅. Although SiO₂ seems to be decreased from original composition by alteration, MC12 samples clearly occupy the field of alkali rock on Alkali-Silica and TAS diagrams. The sample of MC13 with least alteration, on the other hand, shows sub-alkalic nature on the major elements chemistry.

On the spiderdiagram and chondorite normalized REE pattern, MC12 samples and MC13 sample show a quite different nature. The former shows chemical nature of alkalic rock, such as oceanic island basalt, with enrichment in LIL on the spiderdiagram and steep right hand side dipping chondrite normalized REE patterns. While the latter without clear enrichment in LIL in spiderdiagram and gently dipping REE pattern of 40 to 30 times chondrite La shows tholeitic nature, such as arc-basalt and oceanic island tholeite.

For further considering tectonic environment of igneous rock, discrimination diagrams using immobile elements and incompatible elements are constructed. On Zr/4-2Nb-Y diagram, all of the samples of MC12 are plotted in the field of within-plate alkali basalt with an exception of 05SMC12AD27CA01, which is distributed outside of but close to the field of within-plate alkali basalt. The sample of MC13, on the other hand, is plotted in field of N-Type MORB and Volcanic-Arc-Basalt. All of the samples are distributed in the field of ocean-island alkali basalt on 10MnO-TiO₂·10P₂O₅ diagram, however, considering the possible introduction of P₂O₅ through alteration episode, this diagram can not be applicable for these samples to discriminate tectonic environment. On Zr-Ti/100-3Y diagram, the samples of MC12 are distributed in the field of island-arc calc-alkaline basalt, while MC13 sample is plotted in the field of island-arc tholeiite.

Considering all the chemical natures of the samples, the most probable interpretation of MC12 samples is that they are alkali basalt of oceanic island setting.

The sample of MC13 shows tholeiitic nature. It is not clear whether it is ocean-island tholeiite or island arc tholeiite, however, no clear depletion of Nb, which is commonly depleted in the rocks of island arc setting, suggest ocean-island setting for this rock, possibly oceanic island tholeiite.

5-3. Identification of Minerals by X-ray Diffraction Analysis

5-3-1 Samples

As shown on Table 5-3-1, three samples were selected for X-ray deflection analysis. The X-ray deflection analysis was conducted at Dowa Techno Research and identification of minerals from X-ray chart was done by Y. Negishi and K. Maeda of Mitsubishi Materials Natural Resources Corp.

Table 5-3-1 Samples for X-ray Diffraction Analysis

Ser. No.	Sea Mount.	Sample No.	Depth of Bottom Touch (m)	Piece No. of Sample	Lithology
1	MC12	05SMC12AD27_XRD01	2,209	c2	Tuffaceous Siltstone
2	MC12	05SMC12AD28_XRD01	1,858	c2	Altered Basalt
3	MC13	05SMC13AD15_XRD01	1,724	_	Fillings of Interstice

5-3-2 Sample Preparation and Analytical Method

The samples were crushed and dried at room temperature, then pulverized using vibration mill and agate mortar. The X-ray diffraction analysis was conducted using non-oriented samples. The abundance of each mineral was estimated by quartz index using pure quartz sample prepared by the same way as rock samples.

The analyses were conducted using Geiger Flex, Rigaku by the settings given below.

X-ray: Cu K-ALPHA 1/30 kV/15mA

Attachment: Standard Sample Holder

Radiation/Scatter Slit: 1 deg.

Target Slit: 0.30mm

Scanning Mode: continuous

Scanning Speed: 2,000 deg./min

Scanning Step: 0.050 deg.

Scanning Angle: 2.000 to 70.000 deg.

5-3-3. Results of Analysis and Considerations

The results of X-ray diffraction analyses are given in Table 5-3-2.

The relative abundance of minerals is estimated by quartz index using following equation.

 $Q.I. = Im/Iq \times 100$

Q.I.= quartz index

Im: the maximum peak of each mineral

Iq: the maximum peak of pure quartz obtained by this anlysis

11,043 cps was obtained by this analysis

Table 5-3-2 Results of X-ray diffraction Analyses

			Silica	ites		0.1
Ser. No.	Sample No.		Felds	par	Clay	Others
		Quartz	K-feldspar	Albite	Smectite	Apatite
1	05SMC12AD27 XRD01		1.6		0.9	2.9
2	05SMC12AD28 XRD01			15.0		
3	05SMC13AD15 XRD01	19.7				

The results of X-ray diffraction analyses were given below on each sample basis.

05SMC12AD27 XED01

Potash feldspar, smectite and apatite were identified from this sample. Although this sample was described as tudffaceous siltstone, the board peak characterizing amorphous materials was not identified. This is siltstone consisting of mainly potash feldspar with secondary minerals of smectite and apatite.

05SMC12AD28 XRD01

Although this sample was described as altered basalt, no secondary mineral such as clay minerals was identified and albite is the only mineral identified by x-ray diffraction. Despite of the appearance, the degree of the alteration of this rock seems to be weak, possibly affected only by oxidation.

05SMC13AD15 XRD01

This sample was described as agate filling interstices. Only quartz was identified from this sample and the broad peak reflecting the occurrence of amorphous materials was not identified.

5-4 Microscopic Observation of Manganese Crust

5-4-1 Samples

A total of 12 polish sections of manganese crust were prepared for microscopic observation (Table 5-4-1). The photographs of hand specimen are shown on Plate III. The descriptions of hand specimen and microscopic work were conducted by Dr. K. Maeda, Mitsubishi Materials Natural Resources Corporation.

Ser. NO.	Sample No.	Water Depth (m)	Piece No. of Samples	Lithology	Remarks
1	05SMC12AD15 _PS01			Manganese crust	continuous sample
2	05SMC12AD15 _PS02	0.407	- 0	Manganese crust	continuous sample
3	05SMC12AD15 _PS03	2,437	a 3	Manganese crust	continuous sample
4	05SMC12AD15 _PS04	1		Manganese crust	continuous sample
5	05SMC12AD16 _PS01			Manganese crust	continuous sample
6	05SMC12AD16 _PS02	1	- 0	Manganese crust	continuous sample
7	05SMC12AD16 _PS03	2,004	a 3	Manganese crust	continuous sample
8	05SMC12AD16 _PS04			Manganese crust	continuous sample
9	05SMC12AD16 _PS05	1	_	Strongly Altered Rock	massive goethite
10	05SMC12AD29 _PS01		a 2	Manganese crust	bulk sample
11	05SMC12AD29 _PS06	2,385		Manganese crust	continuous sample
19	05SMC19AD90 PS07	1	a4	Manganese crust	continuous sample

5-4-1 Manganese Crust Samples for Microscopic Observation

5-4-2 Descriptions of Hand Specimen

Each hand specimen was described prior to investigations by microscope. The results of descriptions were given below.

05SMC12AD15 PS01 - PS04

13cm long cross section of manganese crust. Although it is not clear but botryoidal texture of 5mm across is observed on the surface. From the surface to 8cm: Black and massive manganese oxides. Network of irregular and unclear fracture occurs entirely and limonite filling the pores of 0.5mm across is occasionally observed along the fracture. From 8cm to the end: Pale brownish gray calcareous fillings (rock fragments?) of 3 to 5mm across increases reaching to 40vol% and they occur radiating outward from inner part to surface. It has smooth surface and it does not attach to hand.

05SMC12AD16 PS01 - PS04

13cm long cross section of black to pale brownish gray manganese crust. The surface shows botryoidal texture of 2cm across. From the surface to below, the amount of irregular shaped

patch to network of pale brownish gray calcareous fillings (rock fragments?) increases to 30 vol. %. Pores of 1mm across are rare and unclear, 2 to 3mm wide network of limonite is scattered entirely. It has smooth surface and it does not attach to hand.

05SMC12AD16 PS05

Black massive limonite / goethite. Massive and it does not show any particular texture. Pores of 1 to 2mm across are scattered and milky white calcite is rarely found filling pores of less than 1mm across. It has smooth surface and it does not attach to hand.

05SMC12AD29 PS01

3 X 3cm platy fragments of manganese crust. It is black and massive with botryoidal surface of 2 to 3mm across. In lower part, a layer with scattered distribution of pale brownish gray calcareous fillings of 1 to 2mm across occurs showing relatively sharp contact with upper part without calcareous fillings. In the upper part, abundant pores of less than 5mm across filled by limonite occur in the network band of 2 to 3 mm wide. It has relatively smooth surface and it does not attach to hand.

05SMC12AD29 PS06-PS07

7cm long cross section of manganese oxides. It is black to pale brownish gray, and pores of 2 to 3mm across are irregularly distributed. Limonite is attached in some of the pores. In upper layer from the surface to 5cm, pores of less than 5mm across are filled by calcareous fillings (fragments of carbonate rock?). The surface is slightly granular, it attaches to hand.

5-4-3 Results of Microscopic Observation

The results of microscopic observation of polished section are given in Plate IV with micrographs, and a summary of descriptions is given in Table 5-4-2.

5-4-2 Microscopic Observation of Manganese Crust

Ser		,	Water	Piece No. of		- E	Ratio of Ore	၂၀	Ore Mineral	eral	<u> </u>	Gangue Mineral	ral				Clastics	ics
No.	Area	Sample No.	Depth (m)	Samples	Latholigy	Texture	Minerals (%)	Λd	Py Geo Mg	eo M	ලි ල	ა ე	Ap	අ	PI	ප	Ap	Rock Fragments
1		05SMC12AD15 PS01			Manganese crust	massive to spotted	06	0						•	•			
2		05SMC12AD15 PS02	7070	G	Manganese crust	massive to colloform	88	0						•	◁			calcareous rock(•)
အ		05SMC12AD15 PS03	7647	Cg Cg	Manganese crust	massive to colloform	62	0						•	•		9	calcareous rock(O)
4		05SMC12AD15 PS04			Manganese crust	colloform	79	0						٠	•		-	calcareous rock(())
ಬ		05SMC12AD16 PS01			Manganese crust	massive to spotted	77	0							•			
9		05SMC12AD16 PS02			Manganese crust	spotted to colloform	84	0	•					•	◁		0	Calcareous rock(○)
7	MC12	05SMC12AD16 PS03	2004	a3	Manganese crust	spotted to network	82	0						•	0		5	calcareous $\operatorname{rock}(\bigcirc)$ volcanic $\operatorname{rock}(\cdot)$
8		05SMC12AD16 PS04			Manganese crust	massive to network	90	0						•	◁		- 5	calcareous rock(○)
6		05SMC12AD16 PS05		_	Strongly Altered Rock	massive to oolitic	85			0	\Diamond							
10	, ,	05SMC12AD29 PS01		28	Manganese crust	spotted to colloform	89	0						٠	0		•	calcareous $rock(\bigcirc)$ volcanic $rock(\bigcirc)$
11		05SMC12AD29 PS06	2385	70	Manganese crust	massive to colloform	90	0						٠	\triangleleft			volcanic rock(•)
12		05SMC12AD29 PS07		4 4	Manganese crust	colloform	94	0						•	◁		-	calcareous rock(O)
		·						Vd: 1 Py: 1 Geo: g	Vd: vernadite Py: pyrite Geo: goethite Mg: magnetite	o 29	, o ₹	Q: quartz Cc: calcite Ap: apatite	ite ite	Ä	PI: plagioclase	Чаве	© 0 4 ·	 ⑤ ; abundant (>30) ் common (10~30) △ ; rare (3~10) · ; trace (<3)

5-5 X-ray Diffraction Analyses of Manganese Crust

5-5-1 Samples

The X-ray diffraction analyses of manganese crust were conducted for 5 samples as shown in Table 5-5-1.

The X-ray deflection analysis was carried out at Dowa Techno Research and identification of minerals from X-ray chart was done by Y. Negishi and K. Maeda of Mitsubishi Materials Natural Resources Corp.

Water Depth Ser. of Bottom Piece No. of Area Sample No. Lithology No. Touch (m) Samples MC12 05SMC12AD15_XRD01 2,437 a3 manganese crust 2 MC12 | 05SMC12AD16_XRD01 **a**3 manganese crust 2,004 3 MC12 | 05SMC12AD16_XRD02 strongly altered rock MC12 05SMC12AD29_XRD01 manganese crust **a2** 2,385 MC12 05SMC12AD29_XRD03 a4 manganese crust

5-5-1 Samples for X-ray diffraction Analyses

5-5-2 Sample Preparation and Analytical Method

The samples were crushed and dried at room temperature, then pulverized using vibration mill and agate mortar. The X-ray diffraction analysis was conducted using non-oriented samples. The abundance of each mineral was estimated by quartz index using pure quartz sample prepared by the same way as manganese crust samples.

The analyses were conducted using Geiger Flex, Rigaku by the settings given below.

X-ray: Cu K-ALPHA 1/30 kV/15mA Attachment: Standard Sample Holder

Radiation/Scatter Slit: 1 deg.

Target Slit: 0.30mm

Scanning Mode: continuous

Scanning Speed: 2,000 deg./min

Scanning Step: 0.050 deg.

Scanning Angle: 2.000 to 70.000 deg.

5-5-3. Results of Analysis and Considerations

The results of X-ray diffraction analyses are given in Table 5-5-2.

The relative abundance of minerals is estimated by quartz index using following

equation.

 $Q.I. = Im/Iq \times 100$

Q.I.: quartz index

Im: the maximum peak of each mineral

Iq: : the maximum peak of pure quartz obtained by this analysis

11,043 cps was obtained by this analysis

Table 5-5-2 Results of X-ray Diffraction Analysis

			Silicate		Carbonates	Mn Oxides	Others
Ser. No.	Sample No.	Silica	Feldspar	Clay Minerals	Calcite	Vernadite	Goethite
		Quartz	Plagioclase	Sericite/ Smectite	Calcite	Vermanie	Goethic
1	05SMC12AD15_XRD01	0.4	0.5			0.4	
2	05SMC12AD16_XRD01	0.3	0.4		0.8	0.4	
3	05SMC12AD16_XRD02			0.2			2.1
4	05SMC12AD29_XRD01	0.6	0.6			0.4	
5	05SMC12AD29_XRD03				0.6	0.4	

The results of X-ray diffraction analyses are given below on each sample basis.

05SMC12AD15 XRD01

The X-ray diffraction analysis shows that the manganese oxide forming this manganese crust is vernadite (beta-MnO2). Clastics, such as quartz and plagioclase, were identified. Q.I. shows similar value for all three minerals.

05SMC12AD16 XRD01

The manganese oxide of this sample is vernadite (beta-MnO2). In addition to this, quartz, plagioclase and calcite of either detrital or secondary origin were identified. Calcite shows the highest Q.I. of 0.8 and vernadite, quartz and plagioclase have similar values of 0.3 to 0.4.

05SMC12AD16 XRD02

Mixed layers of sericite/chlorite and goethite were identified. The goethite shows high Q.I of 2.1 compared to 0.2 for the mixed layers of sericite/smectite. This corresponds with hand specimen description of this sample as goethite pebble.

05SMC12AD29 XRD01

Vernadite (beta-MnO2), quartz and plagioclase were identified. Quartz and plagioclase show higher Q.I. of 0.6 compared to 0.4 for vernadite.

05SMC12AD29 XRD03

Vernadite (beta-MnO2) and calcite of secondary origin were identified and both of them show Q.I. of, respectively, 0.4 and 0.6.

5-6 Chemical Analyses of Manganese Crust

5-6-1 Samples

A total of 35 samples including two standard samples were chosen for chemical analyses of 36 elements (Table 5-6-1).

Table 5-6-1 Manganese Crust Samples for Chemical Analyses

6		Tuble 0 0 1 Manga	Water Depth		
Ser.	Area	Sample No.	of Bottom	Piece No. Of	Remarks
No.	"	•	touch (m)	Samples	
1		05SMC12AD15 CM01		a1	bulk
2		05SMC12AD15 CM02		a2	bulk
3		05SMC12AD15 CM03		<u> </u>	bulk
4	li	05SMC12AD15 CMO4	2, 437	<u> </u>	layer I
5	li	05SMC12AD15 CM05		a3	layer II
6		05SMC12AD15 CMO6			layer III
7		05SMC12AD15 CM07			layer IV
8		05SMC12AD16 CM01		a1	bulk
9		05SMC12AD16 CM02		a2	bu l k
10		05SMC12AD16 CMO3			bu l k
11		05SMC12AD16 CMO4	2, 004	a3	layer I
12	ll	05SMC12AD16 CM05		43	layer II
13		05SMC12AD16 CM06]		layerⅢ
14	1	05SMC12AD16 CM07		_	massive goethite
15] [05SMC12AD17 CM01	1, 772	a1	buik
16	1 1	05SMC12AD19 CM01	1, 873	a2	bulk
17	MC12	05SMC12AD19 CM02	1,0/3	a3 a1	bulk
18		05SMC12AD20 CM01	1, 562	a1	bulk
19		05SMC12AD22 CM01	1, 822	a1	bulk (crust fragment)
20	i I	05SMC12AD28 CM01	1, 858	a1	bulk
21		05SMC12AD29 CM01		a1	bulk
22		05SMC12AD29 CM02	1	a2	bulk
23	i I	05SMC12AD29 CM03	1		bulk
24	1 1	05SMC12AD29 CM04		a3	layer I
25	l I	05SMC12AD29 CM05	2, 385	l as	layer II
26	1 1	05SMC12AD29 CM06	1	[layerⅢ
27	1	05SMC12AD29 CM07	1		bulk
28]	05SMC12AD29 CM08	1	a4	layer I
29]	05SMC12AD29 CM09]		layer II
30		05SMC12AD30 CM01		a1	Bulk
31		05SMC12AD30 CM02	1		upper layer of slab
	1 1		2, 370	a2	lower layer of slab
32		O5SMC12AD3O CMO3			(for reference)
33	MC13	05SMC13AD15CM01	1, 724	a1	_
34	·	Standard JMn-1			_
35		Standard JMn-1			

5-6-2 Elements of Chemical Analyses

The chemical analyses of 36 elements given below were conducted for all samples.

- Co, Ni, Cu, Mn, Fe, Pb, Zn, Ti, Mo, V, Si, Al, Ca, Na, K, P, Ba, Sr, LOI, H₂O+, H₂O (detection limit: 0.01%)
- Pt(detection limit:0.01ppm)
- REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) (detection limit: 0.01ppm)

5-6-3 Analytical Methods

All the chemical analyses including samples preparation were conducted at ALS Chemex, Canada. Major elements, such as Mn, Ti, Si, Al, Ca, Na, K, P, Fe, were analyzed by Inductively Coupled Plasma Spectrometry (Vista Pro ICP-AES, Varian). While, trace elements analyses, Co, Ni, Cu, Pb, Zn, Mo, V, Ba, Sr, REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), were conducted by Inductively Coupled Plasma-Mass Spectrometry (Elan9000 ICP-MS, Perkin Elmer). Assaying of Pt was conducted by fire assay with NiS collection and quantified by Inductively Coupled Plasma Spectrometry (Vista Pro ICP-AES, Varian). LECO (RMC-100, LECO) was used for determination of H2O+, H2O and LOI (ignition loss) was gravitationally determined.

The sample weight was determined following the method of Terashima et al. (1995). Prior to the chemical analyses, after drying, crushing and pulverizing samples were dried for 10 hours by dry oven and the weight was measured quickly after taking out the sample from the dry oven.

5-6-4 Analytical Results

The analytical results are given on Table 5-6-2, and Table 5-6-3 shows analytical results of ALS Chemex standard samples simultaneously analyzed with MC12 and MC13 samples.

Table 5-6-2 Results of Chemical Analyses of Manganese Crust

																		•)													
Sample No.	5	2	2	4	S	f	- 2	12	7	* 0		5	Ž.	и	٥	ď	ð	101	п	4	å	H	F	- N	┝	-	E .	É	غ	1	⊢	Ę	\$:	9
05SMC12AD15 CM01	_	-	┿		-	+-	-	+-	₩	100	23	<u>و</u>	ļ.,	ļ.,	Ļ	┺	01.0	+ -	1	_	<u>_</u>	152	28	27.9	112 22	1_	٠	+		-	36.4	24	15.0	24	0.32
				10.80		0.07			0.02	۳	88	3.88 1.35	3.28	<u>8</u>	.	0.18	0.13	14.95	+-	3.42	Ľ	_	<u> </u>	9	37.	-	10.6 45.6	<u> </u>	\vdash	9.	2.92	3.8	24.5	3.9	0.47
05SMC12AD15 CM03	0.22	0.20	0.10 11.62		23.30 0	0.08	1 0.00	1.45 0.	0.04 0.04		5.71 24	2.80 1.50	0 2.88	8 0.96	0.59	0.21	0.15	14.85	6.79	1.65	0.12	303	551 57	57.6 2	233 45	45.9 12	12.8 55.4	5.4 8.7	.7 48.8	.8 10.6	39.6	4.3	26.0	4.0	0.50
05SMC12AD15 CM04	0.33	0:30	0.09	16.88	20.30	0.11 0	0.05 0.	0.63	0.06 0.05		1.01	1.32 1.98	8 2.96	6 0.82	0.74	0.13	0.16	17.85	7.43	3.15	1188	320 6	614 Œ			52.3 14	14.6 63.	63.0	6 54.8	.8 12.0	33.1	4.8	29.7	4.8	0.83
05SMC12AD15 CM05	0.40	0.32	0.07	17.50 24	20.10	0.14 0	0.06	0.93 0.	0.06 0.	0.05 2.	76 0.1	0.88 1.83	3 292	2 0.76	0.59	0.19	0.18	17.40	8.81	1.93	0.10	381 8	845 73	73.2 2	291 56	56.8 15	15.7 68.1	3.1 10.4	.4 59.9	9 13.0	36.0	5.2	31.5	4.9	0.87
05SMC12AD15 CM06	0.19	0.15	60.0	11.19 2	25.40	0.09	0.07	2.05 0.	0.03	0.04 5.	5.12 1.9	1.94	2.52	2 0.76	0.50	0.27	0.16	14.55	7.64	2.30	0.19	340 6	659 68	69.2	271 55	55.2 15.	15.0 62.4	2.4 9.8	.8	11.8	328	4.6	27.6	4.3	0.44
05SMC12AD15 CM07	0.07	0.14	0.14	7.62 2	24.90 0	0.03	0.07	1.17 0.	0.02 0.05	8	49 4.0	4.60 1.36	3.00	0 1.14	0.70	0.17	0.11	13.00	7.69	3.55 0	0.20	208	221 3	37.4	121 30	30.7	8.9 36.	36.9 5.8	.8 35.3	.3 7.5	5 21.9	3.0	19.4	3.0	0.31
05SMC12AD16 CM01	0.24	61.0	90.0	11.81	25.00	0.10	1. 10.0	1.68	0.03 0.	0.05 5.0	5.03	212 222	2 264	4 0.82	87.0	0.23	0.16	15.05	6.79	4.26	0.12	9 062	199	52.0	208 41	41.9 11	11.8 50.	50.9 7.9	9 47.3	.3 10.3	88.9	4.2	25.6	4.0	0.47
05SMC12AD16 CM02	0.21	0.19	90.0	10.84	23.00	0.08	0.06	0.21	0.03	0.04	3.0	3.08 4.14	14 2.90	0 1.02	0.85	0.17	0.14	14.65	6.48	3.53	0.11	244	165 4	41.6	172 33.	22	10.0 43.3	1.3 6.7		7.	Ļ	3.8	23.7	3.8	0.47
05SMC12AD16 CM03	0.38	61.0	200	11.31	23.50	0.09	0.06	1.67	0.03	0.05 6.1	3.	3.16 2.56	3.04	4 1.02	99'0	0.21	0.15	15.40	7.19	3.99	0.14	2003	\$ 669	48.0	195 38	6	10.8 46.9	3.9 7.4	41.7	7.	3.25.6	3.9	23.0	3.7	0.48
05SMC12AD16 CM04	0.44	0.31	90.0	16.03	21.40	0.13	0.05	1.05	0.05	0.04	1 60	1.54 2.03	3 2.96	6 0.88	17.0	0.18	0.17	17.20	8.10	3.84	0.14	8 162	870 50	20.9	208 41	41.7 11	11.8 51.	51.0 7.8	8.	4 10.4	23.2	4.3	999	4.4	0.75
05SMC12AD16 CM05	0.20	0.14	0.07	9.84	23.90	0.09	2 70:0	242	0.02 0.05	9	3.	3.08 2.00	268	1.08	0.50	0.22	0.15	14.10	7.24	238	0.13	386	582	20.9	204	41.1	11.4	3.5 7.6	6.44.4	.4	38.4	3.7	23.4	3.5	0.41
05SMC12AD16 CM06	0.08	01.0	90.0	6.47 2	21.30	0.03	0.07	0.79	0.02	0.05	65 5.	5.78 5.49	3.64	4 1.44	0.80	0.16	0.12	15.25	6.40	2.70	0.14	190	82	31.4	129 27.	8	8.1 34.	1.2 5.4	4 34.4	4. 7.8	33.2	3.3	808	3.4	0.30
05SMC12AD16 CM07	0.00	0.01	0.07	0.11 5	50.00	0.00	0.04	0.02	0.00	0.01	2.77 0.0	0.66 0.16	0.20	0.30	0.46	0.00	10.0	11.80	11.10	1.16	0.01	9	6	1:1	0	0.9	0.3	1.1 0.2	2 1.1	.1	8.0	0.1	6.0	0.2	0.00
05SMC12AD17 CM01	69.0	0.31	90:08	15.88 2	22.50	0.13	0.04	1.36	0.03	0.05	16	1.80 3.00	3.52	2 1.00	0.59	0.18	0.15	18.65	98.9	4.31	1.02	11 882	1135 4	44.8	181 35	35.9 10.1	_	44.0 6.7	.7 40.5	.5 9.2	36.9	3.9	25.0	4.1	0.71
05SMC12AD19 CM01	0.31	0.24	90.0	12.86 2	06:90	0.11	0.06	1.35	0.03 0.	0.04	1:01	1.90 1.60	30 2.66	6 0.84	99.08	0.21	0.15	15.15	7.97	2.54	0.19	7 276	44	48.5	39	39.7	11.2 48.	48.8 7.6	.6 45.1	.1 9.9	1.88.1	4.0	25.2	4.0	0.48
05SMC12AD19 CM02	0.23	0.24	90.0	12.97	0.14	0.13	1.	1.36	0.03	0.04	5.71 2:	222 1.56	2.78	ш	0.55	0.23	0.16	14.65	6.55	4.27	0.16	L			98 671	Ш	10.4 43.1	3.1	40.4	4. 8.4	25.1	3.5	828	3.5	0.54
05SMC12AD20 CM01	980	890	990	19.52	881	0.15	0.05	0 asa	0.06	0.06	17	1188	98u 98u	98 1186	880 8	0.11	0.17	18.20	6239	8.57	0.19	322	741 59	59.4	244 48	13	13.2 58.	58.0 9.0	0 51.8	8.11.8	33.4	4.9	30.3	4.9	,
05SMC12AD22 CM01	92.0	0.32	0.11	17.35 2	21.70	0.14	0.05	1.35	0.04	0.04	2.71 1.3	32 2.08	3.62	2 0.94	1 0.57	0.20	0.17	17.90	8.73	3.85	1.28	320 12	235 55	520 2	207 41	41.3 11	11.2 48.	48.7 7.3	.3 43.7	7.	29.2	4.2	27.0	4.3	0.80
05SMC12AD28 CM01	0.22	0.18	0.11	10.57	24.10	0.12	2 70.0	2.05	0.02 0.05	1	15 3.	3.12 1.53	K3 2.84	4 1.02	1 0.47	0.22	0.14	13.00	6.75	2.39	188	1 261	712 3	35.4	140 29	29.3	8.4 34.7	1.7 5.3	3 31.6	9.9	18.9	2.7	17.2	2.7	0.44
05SMC12AD29 CM01	0.34	0.29	0.10 14.37	14.37 2	21.70 0	0.13	0.06	1.32 0	0.04 0.	0.05	72 1.1	1.86 1.87	7 288	8 0.90	0.57	0.19	0.16	15.50	6.58	4.67	0.12	304	721 58			45.0 12	126 54.4	1.4 8.4		7 10.4	6.62	4.2	26.8	4.2	0.66
05SMC12AD29 CM02	0.34	0.30	0.11	16.03	21.60	0.13	0.06	1.20	0.05	4.	4.49	1.66 1.87	230	0.86	0.61	0.20	0.17	16.35	6.87	6.12	0.13	306		59.0	233 46	46.7 13	13.0 54.	54.2 8.4	.4 49.2	2 10.0	29.5	4.1	26.1	4.0	0.74
05SMC12AD29 CM03	0.28	0.25	0.12	12.74 2	23.60 (0.09	0.06	1.33 0	0.04 0.	0.04 5.	5.14 2.	2.70 1.66	3.24	4 0.96	0.62	0.20	0.15	15.45	4.88	4.56	0.32	327 6	611 58	58.3	236 47	47.4 13	13.4 58.	16 9.1	.1 51.5	5 11.5	32.2	4.7	28.8	4.7	0.54
05SMC12AD29 CM04	0.33	0.31	60:0	16.34 2	21.10	0.12	0.05 0.	0.75 0	0.05 0.	0.05	1.00	1.42 1.98	8 284	4 0.82	0.73	0.15	0.17	16.60	4.07	1:21	1188	324 6	652 63	62.2 2	255 52	52.4 14	14.5 61.	61.5	.6 55.	.1 12.0	33.8	4.9	30.2	4.8	0.77
05SMC12AD29 CM05	0.46	0.35	0.10	17.12 3	20.70	0.13	0.06	1.04	0.06 0.	0.04	38	1.24 1.94	ణ	12 0.86	99.0	0.17	0.17	17.15	6.77	5.23	0.15	332 7	784 54	58.7 2	235 47	47.8 13	13.4 56.5	3.5 8.8	.8 52.5	5 11.4	33.3	4.7	30.5	4.8	0.83
06SMC12AD29 CM06	0.14	0.16	0.12	9.37	36.30	90.0	0.07	1.56 0	0.02	0.03	13 3.	3.30 1.34	3.08	1.00	0.56	0.21	0.14	14.20	7.60	3.73	0.28	315 4	\blacksquare				13.0 56.3	3.3 8.6	Щ	.5 11.2	32.4	4.5	1.83	4.4	0.36
05SMC12AD29 CM07	0.39	0.25	0.15	12.90	23.10	01.0	0.05	1.52 0	0.03	0.04	82	2.98 2.1	3.26	5 1.18	0.50	0.19	0.15	16.55	6.93	5.09	95.0	303	789	51.4	204	41.6 11	11.6 49.	1.5	.5 45.2	2 9.7	7 28.3	4.1	25.9	4.3	0.56
05SMC12AD29 CM08	0.51	0:30	0.13	16.34	20.80	0.12	0.05	1.38	0.03	9.04	22	1.88 2.45	3.20	0.38	0.54	0.18	0.16	18:00	7.30	388	1970	345	991	60.1	241	47.2 13	13.2 56.7	_	8.5 51.3	3 11.0	32.4	4.6	9.62	4.8	0.79
05SMC12AD29 CM09	0.21	0.16	0.16	10.03	25.10	0.07	0.06	1.52 0	0.02	0.04 6.	6.29	3.62 1.72	е;	12 1.16	0.47	0.20	0.13	14.70	7.26	2.28	0.55	292	519 54	50.8	204 39	39.7	11.0 49.0	3.0 7.4	429	6.93	36.6	3.8	24.1	3.9	0.40
05SMC12AD30 CM01	0.32	0.31	0.11	15.88 2	20.50	0.13	0.06	1.12 0	0.04 0.	0.04	.86	1.86 1.80	282	2 0.88	0.56	0.18	0.16	16.05	6.99	3.07	0.14	7 662	705 58	55.0 2	217 44.	2	123 525		8.0 47.7	7 10.2	29.5	4.3	27.3	4.4	0.77
06SMC12AD30 CM02	0.33	0.47	0.13	14.87	21.80	0.11	0.08	1.25 0	0.04 0.	0.04	1.68	226 1.66	36 2.76	6 1.22	0.54	0.26	0.14	15.85	6.93	285	0.21	242 €	607 4	46.5	186 38	38.0 10	10.6 45.	45.5 7.0	7.0 40.0	9.8	3 24.1	3.5	220	3.5	0.68
05SMC12AD30 CM03	0.40	0.34	0.09	16.27	21.10	0.13	0.06	1.04	0.06	0.05 3.	.58	1.60 1.94	3.12	2 0.96	3 0.67	0.18	0.17	17.15	1.08	3.56	0.11	325	733 5	57.9	238 45	45.0 12	129 584	3.4	0 51.5	.5 12.0	33.6	5.0	30.4	4.9	0.77
CM01	0.29	0.29	0.11	14.52 2	21.40 (0.13	0.06	1.00	0.04	0.04	5.07 2.	224 1.90	2.84	4 0.92	2 0.65	0.17	0.16	15.95	6.28	3.71	61.0	253	538 4'	47.8	192 38	38.4 10	10.7 45.	45.3 7.0	.0 39.8	8.4	1 24.1	3.4	21.4	3.5	0.68
Standard JMn-1	0.15 >10000		1.06	21.14	8.48	0.04	0.09 0.	0.46 0	0.03	0.04 5.	5.92 3.	3.34 1.56	3.84	1.28	3 0.41	0.16	0.08	16.20	6.73	3.54 40	:002	134 2	230 33	33.6	134 29	29.8	7.9 30.	30.9	5.0 28.7	.7 5.7	16.0	2.2	14.6	2.2	2.49
Standard JMn·1	0.15 >10000		1.06	20.99	8.47 (0.04	0.09	0.46 0	0.03	0.04 5.	5.92 3.	3.36 1.57	3.86	8 1.30	0.41	0.16	90.0	16.40	6.24	3.28	0.13	135	386	34.0	58	73	8.0 32	325 5.	5.2 28.8	8 5.9	16.4	23	14.8	23	2.48
Recommended Values for JMn-1	0.17	81	LII	83.	5.04	0.04	0.11	9.0	0.08	0.04 6.	0.0	0.04 2.08	- 86 - 1.04	0.39	0.12	0.17	0.08	Т	7.90	1	0.11	<u> </u>	277 3	31.4	137 30	30.2	623	29.8	4.8 28.3	5.8	3 14.6	2.1	13.8	12	5.09
g	nse: not sufficient sample	sufficient	t sampl																																

Table 5-6-3 Analytical Results of ALS Chemex Standard

Stand	doud	Co	Ni	Cu	Mn	Fe	Ti	SiO2	Al	Ca	K	Na	P
Stand	ara		ppm						%				ppm
GEOMS-03	Results of this time	11	51	130	_	4.07	0.04	-	1.86	0.34	0.34	0.01	1020
GEOMS-03 (Recommended	Lower Bound	10	48	121	_	3.48	0.03	_	1.63	0.30	0.29	<0.01	880
values*)	Upper Bound	13	59	148	-	4.28	0.04	_	2.01	0.38	0.37	0.03	1100
SY-4	Results of this time	_	_	_	0.12	_	_	50.20	_	_		_	_
SY-4 (Recommended	Lower Bound	_	_	_	0.09	_	_	47.40	-			-	_
Values*)	Upper Bound	_	_	_	0.12	_	_	52.40	_		_	-	_

Stane	dord	Pb	Zn	Mo	v	Ba	Sr
Stand	ıaru			. pp	m		
SY-4	Results of this time	15	92	3	11	320	1110
SY-4 (Recommended	Lower Bound	<5	79	<2	<5	306	1070
Values*)	Upper Bound	16	107	4	10	375	1310

Stand	loud	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Stand	laru							pp	m						
SY-4	Results of this time	60.6	124.0	14.9	54.3	12.0	2.1	13.8	2.6	18.2	4.4	14.2	2.2	14.4	2.1
SY-4 (Recommended	Lower Bound	51.7	109.5	13.4	50.8	11.3	1.7	12.5	2.2	16.3	3.8	12.7	2.0	13.2	1.8
Values*)	Upper Bound	64.3	134.5	16.6	63.2	14.1	2.3	15.5	3.0	20.1	4.8	15.7	2.6	16.4	2.4

Stand	lowd	Pt
Stand	iaru	ppm
PGMS-6	Results of this time	0.118
PGMS-6	Lower Bound	0.11
(Recommended	Upper Bound	0.13

Stand	laud	H2O+	H2O-	LOI
Stand	laru		%	
G-2000	Results of this time	3.11	0.80	4.64
G-2000 (Recommended	Lower Bound	2.89	0.70	4.08
Values*)	Upper Bound	3.35	0.82	5.00

^{*:} ALS Chemex LTD.

The analytical results of the manganese crust of MC12 and MC13 areas show that Mn ranges form 6.47 to 19.52% and five samples (05SMC12AD15 CM01, 05SMC12AD15 CM07, 05SMC12AD16 CM05, 05SMC12AD16 CM06 and 05SMC12AD29 CM06) have Mn values of less than 10%. While, Co ranges from 0.08 to 0.51 and only five samples of 05SMC12AD15 CM07, 05SMC12AD16 CM04, 05SMC12AD29 CM05, 05SMC12AD29 CM08 and 05SMC12AD30 CM03 have Co value of greater than 0.4%. Pt is generally not so high ranging from 0.10 to 0.61ppm with the maximum amount of 1.02ppm (05SMC12AD17 CM01. H₂O+ is 4.88 to 8.81% and no sample shows H₂O+ more than 10%. The highest H₂O value of 8.57%was obtained from sample 05SMC12AD20 CM01, but other than this H₂O is generally less than 5%, ranging from 1.51 to 5.09%. Ca is generally low, showing a range of 1.34 to 5.49%.

The sample described as massive goethite (05SMC12AD16CM07) has Fe50.00% and the total of all the elements other than Fe, LOI, H₂O⁺ and H₂O⁺ is less than 3%.

The chemical analyses were monitored using the manganese nodule standard of the geological survey of Japan (JMn-1). Comparisons of analytical results of this time and the recommended value of this do not give significant differences showing approximately 1% for major elements and few % for trace elements and REE. The standard samples prepared by ALS Chemex were analyses simultaneously with the samples of CM12 and CM13 area. Significant differences of analytical results between analyses of this time and recommended values were, also, not observed.

5-6-5 Considerations

(1) Chemical Compositions of Bulk Samples

The analytical results of manganese crust bulk samples of this year and previous year were compiled for MC12 and MC13 areas for further considering the nature of the manganese crust of these areas (Tables 5-6-4 and 5-6-5).

As shown in the histograms of key elements (Co, Ni, Pt), chemical compositions of the manganese crust do not show clear differences between MC12 and MC13 areas, most of the samples showing Co and Ni less than 0.4% and Pt less than 0.3ppm (Figure 5-6-1). Compared with the chemical compositions of typical areas of manganese crust, such as Hawaii and the Marshall Island (e.g. Usui, 1996 and Hein et al. 2000), these values are not high.

Table 5-6-4 Sampling Depth, Thickness and Chemical Composition of Manganese Crust (Majour Elements, includes 1998 samples)

						-		-						l	-		-		-	ŀ	-			ļ		
	-		Condition of	:		Tickness	ර ද	3 S	g S	E (;	£	2	r (Ž,	> {	ر م	₹ 5°5	- E 6	м;	Δ. ;	æ	<u>ئ</u> تۇ	101	to'H	H,O-
Sampling No.	Code Crust Iype	1ype Substrate	Numbee	Analyzed Part	Ê	Î	╀	+	+	╁	Milyre	8	8	<u>ê</u>	+	+	+	+	+	╁	╁	8	<u> </u>	ŝ	8	8
D03 CIM01	A cobble	ole limestone	botryoidal	bulk	1,903		0.27 0	0.29	40.00	18.60	0.89	0.09	90:0	1.23	0.042	0.055 3.75		1.14 3.57	7		0.72					
	Н		botryoidal	4	1,218	-	Н		Н	-	1.14	0.15	20:0		Н	H	1.85	0.59 8.89	9		2.65	L	Ĺ			
98SMC12AD06 CM03	B	st hyaloclastite	botryoidal	bulk	2,474	14	0.17 0	0.15 40.001	14.26	5 26.54	0.54	80.0	0.10	2.05	0.030 0	0.073 7.1	7.19 2.	2.10 1.76	9.		0.35					
98SMC12AD07 CM01	A fragment		smooth	bulk	2,159	+9	0.27 0	0.21 <0.001	001 16.20	22.95	0.71	0.10	0.11	21.7	0.024 0	0.069 5.0	5.60	1.50 2.09	Q.		0.28					
98SMC12AD08 CM01	A crust	st tuff	botryoidal	bulk	1,736	2	0.94	0.35 0.02	21.18	3 21.88	0.97	0.12	60'0	1.44	0.049	0.072 3.63	Н	1.33 2.13	3		0.28					
98SMC12AD09 CM01	A cobble	de reef limestone	smooth	bulk	1,106	2	0.52 0	0.34 <0.001	001 23.70	16.57	1.43	91.0	0.07	1.06	0.056 0	0.076	1.67 0.	0.52 4.89	õ		0.89					
98SMC12AD13 CM01	A crust	st limestone	botryoidal	bulk	2,309	0.3	0.36 0	0.32 0.01	01 20.40	19.00	1.07	0.11	0.05	0.74	0.038 0	0.055 4.97	Н	1.05 3.80	Q.		0.65					
98SMC12AD14 CM01	A cerusal	st besult	botryoidal	bulk	2,289	4.5	0.40	0.29 40.001	001 19.49	17.95	1.09	0.11	90:0	1.38	0.040	0.050 4.4	4.46	1.18 2.21	-1		0.28					
98SMC12AD14 CM04	C crust	156	botryoidal	bulk	2,289	6.5	0.17 0	0.15 <0.001	001 14.58	3 25.21	0.58	90.0	600	1.95	0.025 0	0.061 6.0	6.66 1.	1.92 1.81	_		0.28					
05SMC12AD15 CM01	al crust	st volcaniclastic rock	ooke-like	hulk	2,437	7	0.12 0	0.13 0.11	7.04	21.80	0.32	90.0	90:0	1.45	0.01	0.05	9.82 6.	6.36 1.84	4.06	5 2.22	2 0.44	91.0	0.10	13.35	6.81	3.09
05SMC12AD15 CM02	a2 crust	st volcaniclastic rock?	botryoidal, coke-like	Pulk	2,437	œ	0.25 0	0.20 0.14	10.80	22.90	0.47	0.07	90.0	1.45	0.02	0.04	6.62	3.88 1.35	3.28	1.22	2 0.52	0.18	0.13	14.95	7.34	3.42
05SMC12AD15 CM03	a3 crust	15	botryoidal, coke-like	bulk	2,437	++	0.22 0	0.20 0.10	11.62	23.30	0.50	90.0	0.07	1.45	0.04	0.04 5.71	Н	2.80 1.50	50 2.88	8 0.96	65.0	0.21	0.15	14.85	6.79	1.65
05SMC12AD16 CM01	a) crust	st calcareous conglomerate	botryoidal	bulk	2,004	•	Н	0.19 0.06	18:11	1 25.00	0.47	0.10	20.0	1.68	0.03	0.05 5.0	5.03 2.	2.12 2.22	2.64	4 0.82	2 0.78	Н	0.16	15.05	6.79	4.26
05SMC12AD16 CM02	a2 crust	, ,	botryoidal	bulk	2,004	±	0.21 0	0.19 0.08	38 10.84	23.00	0.47	90.0	90.0	0.21	0.03	0.04 5.54	-	3.08 4.14	2.90	0 1.02	2 0.85	0.17	0.14	14.65	6.48	3.53
05SMC12AD16 CM03	a3 caust		botryoidal	bulk	2,004	±	0.26 0	0.19 0.07	11.31	1 23.50	0.48	0.09	90.0	1.67	0.03	0.05 6.0	90.9	3.16 2.56	3.04	1.02	99.0	0.21	0.15	15.40	7.19	3.99
05SMC12AD17 CM01	al fragment	·	ooke-like	þulk	1,772	‡	0 69.0	0.31 0.08	38 15.88	3 22.50	0.73	0.13	90.0	1.36	0.03	0.05	3.16	1.80 3.00	3.52	1.00	0.59	0.18	0.15	18.65	6.86	4.31
05SMC12AD19 CM01	a2 fragment	cont .	botryoidal	bulk	1,873	±	0.31 0	0.24 0.08	38 12.86	26.90	0.48	0.11	90.0	135	0.03	0.04 4.91	-	1.90	30 2.66	5 0.84	0.58	0.21	0.15	15.15	7.97	2.54
05SMC12AD19 CM02	a3 crust	st sandstone	botryoidal	bulk	1,873	9	0.29	0.24 0.08	38 12.97	7 24.00	0.54	0.13	0.07	1.36	0.03	0.04	5.71 2.	222 1.56	3.78	88.0	8 0.55	0.23	0.16	14.65	6.55	4.27
	a) crust	st calcareous conglomerate	botryoidal	bulk	1,562	0.5	+	DSS DSS	ss 19.52	SS C	-	0.15	0.05	BSS	90.0	0.06	2.17 n	DSS DSS	SSU	S	DSS	0.11	0.17	18.20	6.29	8.57
05SMC12AD22 CM01	al fragment	cont	coke-like	Alle	1,822	3.5	0.76	0.32 0.11	11 17.35	5 21.70	0.80	0.14	0.05	1.35	90.0	0.04 2.71		1.32 2.08	3.62	-	1 0.57	0.20	0.17	17.90	8.73	3.85
05SMC12AD28 CM01	al crust	st calcareous conglomerate	botryoidal	bulk	1,858	-	0.22 0	0.18 0.11	11 10.57	7 24.10	0.44	0.12	0.07	2.05	0.02	0.05	7.15 3.	3.12 1.53	53 2.84	1.02	2 0.47	0.22	0.14	13.00	6.75	2.99
05SMC12AD29 CM01	al crust	st calcareous conglomerate	botryoidal, granule	Peulk	2,385	s	0.34 0	0.29 0.10	10 14.37	7 21.70	99.0	0.13	90.0	1.32	90.0	0.05	4.72	1.86 1.87	7 2.88	8 0.90	0.57	0.19	0.16	15.50	6.58	4.67
05SMC12AD29 CM02	a2 crust	st calcareous sandstone	botryoidal	bulk	2,385	3.5	0.34 0	0.30 0.11	11 16.03	3 21.60	0.74	0.13	90.0	1.20	0.05	0.04	4.49	1.66 1.87	77 2.90	98.0	19.0	0.20	0.17	16.35	6.87	6.12
05SMC12AD29 CM03	a3 cobble	Je -	coke-like	bulk	2,385	++	0.28 0	0.25 0.12	12.74	1 23.60	25.0	60.0	90.0	1.33	0.04	0.04	5.14 2.	2.70 1.66	3.24	96:0	5 0.62	0.20	0.15	15.45	4.88	4.56
	84 crust	, ·	coke-like	bulk	2,385	₽	0.39 0	0.25 0.15	12.90	23.10	0.56	0.10	0.05	1.52	0.03	0.04	4.82	2.98 2.14	3.26	5 1.18	8 0.50	61.0	0.15	16.55	6.99	5.09
05SMC12AD30 CM01	al crust	st siltstone	botryoidal	Polk	2,370	m	0.32 0	0.31 0.11	11 15.88	3 20.50	0.77	0.13	90.0	1.12	0.04	0.04	4.86	1.86 1.80	2.82	2 0.88	3 0.56	0.18	0.16	16.05	6.99	3.07
05SMC12AD30 CM02	a2 cobble	ole siltstone	granule br	bulk (upper surface)	2,370	-	0.33 0	0.47 0.13	13 14.87	21.80	89.0	0.11	90.0	1.25	0.04	0.04	4.68	2.26 1.66	2.76	5 1.22	0.54	0.26	0.14	15.85	6.93	2.85
MC13-area																										
98SMC13AD02 CM02	B crust	st mudstone	botryoidal	bulk	2,299	1.5	0.25 0	0.24 0.08	38 14.82	20.96	0.71	60.0	0.10	1.58	0.022	0.049	9.11 2.	2.80 2.69	6		0.45					
98SMC13AD03 CM01	A cobble	ole phosphorite	botryoidal	bulk	1,750	6	0.29 0	0.24 <0.001	16.46	5 21.27	0.77	60.0	80.0	1.59	0.024	0.052 6.2	6.24	1.79 2.99	g	-	0.27					
98SMC13AD05 CM01	C fragment	cont	granule	Peulk Deulk	2,798	<u>\$</u>	0.05	0.06 <0.001	001 6.80	11.62	0.59	0.02	0.03	0.94	0.006	0.031 19.	19.63	6.63 6.91	=		0.18					
98SMC13AD06 CM09	C cobble	sle limestone	granule	bulk	2,347	s	0.39	0.29 0.03	18.24	23.10	0.79	0.12	90.0	1.40	0.041	0.064	5.39	1.45 2.01	=		0.35					
	E crust	st conglomerate	granule	Peulk	2,347	\$	0.49 0	0.36 0.03	33 21.23	3 19.22	1.10	0.14	0.07	96.0	0.052 0	0.069	3.99	0.81 2.38	90		0.26					
98SMC13AD07 CM01	A cobble	ske limestone	botryoidal	bulk	2,043	3.5	0.33 0	0.28 <0.001	100	7 18.82	0.89	0.11	60.0	1.42	0.031	150.0	5.88	1.63 2.07	4		0.24					
98SMC13AD08 CM02	F cobble	ye conglomerate	granule	Pulk Trill	2,499	-	0.52 0	0.43 0.05	05 22.00	20.48	1.07	0.13	90.0	96.0	0.047	0.061	4.70	1.15 2.54	.5	-	0.36					
98SMC13AD12 CM15	M cobble	. ek	granule	bulk	1,975	₫	0.33 0	0.29 0.01	09:91	24.54	89.0	0.10	60:0	89.1	0.030	0.059 6.8	6.88	1.99	g.		0.34					
98SMC13AD13 CM01	A crust		granule	bulk	2,458	0.15	0.45 0	0.37 <0.001	001 20.37	7 21.31	98.0	0.13	90.0	1.15	0.027	0.056 4.8	4.83	1.04 3.31		-	0.30					
05SMC13AD15 CM01	a crust	st siltstone	botryoidal	Selk	1,724	-	0.29	0.29 0.11	11 14.52	21.40	89'0	0.13	90.0	00:1	40.0	0.04	5.07 2.	2.24 1.90	2.84	4 0.92	2 0.65	0.17	0.16	15.95	6.28	3.71

Table 5-6-5 Sampling Depth, Thickness and Chemical Composition of Manganese Crust (Pt and REE, includes 1998 samples)

	ŀ	-									-	}	The state of the s	-							
		1	,	Condition of		Water depth	Tickness	£	<u>.</u>		左						y He				.3
mying No.	3	Crust Type	Substrate	Surface	Analyzed Part	(B)	<u> </u>	(mod	ÎE E	Î	(IIIdd	7	(1000)		(B)	(1000)	odd) (mdd	(add)	(index)	(tucks)	+
MCI2-area 98SMC12AD03 CM01	<	cobble	limestone	botrvoidal	P. P	1.903	10	0.21	259	462	44.5	<u>\$</u>	37	656			38 7.5	22	3.24	- 61	288
98SMC12AD05 CM01	۷	cobble	limestone	botryoidal	Pulk	1.218		0.41	38	├	49.2	219	H	ļ.	_	-	_				3.77
98SMC12AD06 CM03	В	crust	hyaloclastite	botryoidal	bulk	2,474	7.	0.18	310	Н	53.6	237	Н	L			_	-	\vdash		3.82
98SMC12AD07 CM01	A	fragment	•	thooms	Þuk	2,159	ţ	0.32	350	H	61.3	11/2	\vdash	14.00	52 9	9.6	11.0		H	L	4.47
98SMC12AD08 CM01	٧	crust	tuff.	botryoidal	Pulk	1,736	5	19.0	318		47.5	210		10.30	-	7.0 41	8.1	1 25			3.63
98SMC12AD09 CM01	٧	cobble	reef limestone	quous	Mod	1,106	2	0.30	318	506	51.0	225	10	06:01	37 7	7.6	43 8.5	28	3.90	22	3.55
98SMC12AD13 CM01	٧	crust	limestone	botryoidal	Pulk	2,309	0.3	91.0	302	Н	54.4	245	H	Н	47 8	8.5 50	8.6 9.8				4.06
98SMC12AD14 CM01	۷	crust	besalt	botryoidal	bulk	2,289	4.5	0.20	283	707	49.2	231	51 12	12.70	45 8	8.6 49	49 10.0	0 30	0 4.90	52	4.66
98SMC12AD14 CM04	၁	crust		botryoidal	Auk	2,289	6.5	0:30	276	\$	46.0	202	42 10	10.80	40 7	7.4 4:	45 8.8	3 26	3.90	23	3.62
05SMC12AD15 CM01	al	crust	volcaniclastic rock	coke-like	bulk	2,437	7	0.18	152.0	281.0	6.72	112.0	22.9	6.6	28.4	4.4 26	26.2 5.8	8 16.4	4 2.4	15.00	2.40
05SMC12AD15 CM02	28	crust	volcaniclastic rock?	botryoidal, coke-like	Auk	2,437		0.35	271.0	530.0	46.6	186.0	37.3 IC	10.6	45.6 6	6.9	41.8 9.1	1 26.2	2 3.8	24.50	3.90
05SMC12AD15 CM03	83	crust	٠	botryoidal, ooke-like	bulk	2,437	14+	0.12	303.0	551.0	57.6	233.0	45.9 17	12.8 5	55.4	8.7 48	48.8 10.6	6 29.6	.6 4.3	26.00	4.00
05SMC12AD16 CM01	la I	crust	calcareous conglomerate	botryoidal	bulk	2,004	•	0.12	290.0	0.199	52.0	208.0	41.9	11.8	50.9	7.9 47.3	7.3 10.3	3 28.9	9 4.2	25.60	4.00
05SMC12AD16 CM02	a2	crust	•	botryoidal	bulk	2,004	11+	0.11	244.0	465.0	41.6	171.5	33.5	10 4	43.3 6	6.7 40	40.7	26.3	.3 3.8	23.70	3.80
05SMC12AD16 CM03	£3	crust	•	botryoidal	bulk	2,004	+11	0.14	263.0	99.0	48.0	194.5	38.9 10	10.8	46.9	7.4 41.7	1.7 9.6	6 25.6	6. 3.9	23.00	3.70
05SMC12AD17 CM01	la la	fragment	•	coke-like	bulk	1,772	4+	1.02	289.0	1135.0	44.8	180.5	35.9	10.1	44 6	6.7 40	40.5 9.2	2 26.9	9 3.9	25.00	4.10
05SMC12AD19 CM01	22	fragment	•	botryoidal	bulk	1,873	#	0.19	276.0	0.602	48.5	199.5	39.7	11.2	48.8	7.6 45.1	5.1 9.9	9 28.1	1.	25.20	4.00
05SMC12AD19 CM02	83	crust	sandstone	botryoidal	bulk	1,873	3	91.0	257.0	846.0	44.5	179.0	36.9	10.4	43.1 6	6.6 40.4	3.4 8.4	4 25.1	.1 3.5	22.80	3.50
05SMC12AD20 CM01	Į8	crust	calcareous conglomerate	botryoidal	bulk	1,562	0.5	0.19	322.0	741.0	59.4	244.0	48.0	13.2	28	9 51	51.8 11.8	.8 33.4	4 4.9	30.30	4.90
05SMC12AD22 CM01	al	fragment	•	coke-like	bulk	1,822	3.5+	1.28	320.0	1295.0	52.0	207.0	41.3	11.2	48.7	7.3 43	43.7 9.9	9 29.2	2 4.2	27.00	4.30
05SMC12AD28 CM01	la la	guest	calcareous conglomerate	botryoidal	bulk	1,858	-	ssu	192.0	712.0	35.4	139.5	29.3	8.4	34.7	5.3 31	31.6 6.6	6 18.9	9 2.7	17.20	2.70
05SMC12AD29 CM01	al	crust	calcareous conglomerate	botryoidal, granule	bulk	2,385	5	0.12	304.0	721.0	58.7	234.0 4	45.0 E	12.6	54.4	8.4 49.7	10.4	4 29.9	9 4.2	26.80	4.20
05SMC12AD29 CM02	73	crust	calcareous sandstone	botryoidal	bulk	2,385	3.5	0.13	306.0	752.0	29.0	233.0	46.7	13 5	54.2	8.4 49	49.2 10	29.5	5 4.1	26.10	4.00
05SMC12AD29 CM03	£	copple	•	coke-like	A Parity	2,385	14+	0.32	327.0	611.0	58.3	236.0	47.4	13.4 5	58.6	9.1 51	51.5	5 32.2	2 4.7	28.80	4.70
05SMC12AD29 CM07	2	crust		coke-like	bulk	2,385	ŧ	0.56	303.0	789.0	51.4	204.0	41.6	11.6	49.1	7.5 45.2	5.2 9.7	7 28.3	3 4.1	25.90	4.30
05SMC12AD30 CM01	al	crust	siltstone	botryoidal	PER	2,370	3	0.14	299.0	705.0	55.0	217.0	44.2	12.3 5	52.2	8 47	47.7 10.2	2 29.5	5 4.3	27.30	4.40
05SMC12AD30 CM02	28	cobble	siltstone	granule	bulk (upper surface)	2,370	-	0.21	242.0	0.709	46.5	186.0	38.0	10.6	45.5	7	40 8.6	24.1	1 3.5	22.00	3.50
MC13-area				•																	
98SMC13AD02 CM02	В	crust	mudstone	botryoidal	bulk	2,299	1.5	0.15	223	505	39.1	173	36	16.8	32 6	6.2	37 7.1	1 21	3.25	61	3.14
98SMC13AD03 CM01	V	cobble	phosphorite	botryoidal	bulk	1,750	6	0.21	232	465	40.3	178	36 9.	9.22	34 6	6.2 37	7 7.3	3 22	3.30	61 6	3.15
98SMC13AD05 CM01	၁	fragment	•	granule	bulk	2,798	1.54	0.03	15	109	10.3	8	11	3.03	1	1.9	1 2.1	9	0.94	5.6	0.88
98SMC13AD06 CM09	Ü	copple	limestone	granule	Pulk	2,347	5	0.21	302	629	52.3	231	47	7	43 8	8.1	49 9.9	9 29	04.40	92	4.12
98SMC13AD06 CM17	Э	crust	conglomerate	granule	bulk	2,347	\$	80.0	315	627	53.1	241	49 12	12.30	8	8.8	11.0	32	4.92	53	4.60
98SMC13AD07 CM01	4	cobble	limestone	botryoidal	bulk	2,043	3.5	91.0	237	517	40.7	181	37 9.	9.33	34	6.5 38	38 7.6	5 23	3.49	21	3.32
98SMC13AD08 CM02	īr	cobble	conglomerate	granule	bulk	2,499	-	91.0	292	89	61.2	192	53 13	13.80	53 9	9.0	54 11.0	0 32	2 4.75	30	4.61
98SMC13AD12 CM15	Σ	oopple	•	granule	bulk	1,975	ţ	97.0	290	289	51.3	121	2	11.20	43 7	7.5 4	46 9.7	7 28	3 4.18	25	3.98
98SMC13AD13 CM01	۷	crust	besalt	granule	bulk	2,458	0.15	0.16	373	-	76.7	335	\dashv	17.20	\dashv	11.0 62	12.0	0 35	5.04		4.62
05SMC13AD15 CM01	al	crust	siltstone	botryoidal	bulk	1,724	-	0.19	253.0	638.0	47.8	191.5	38.4	10.7	45.3	7 39	39.8 8.4	4 24.1	.1 3.4	21.40	3.50

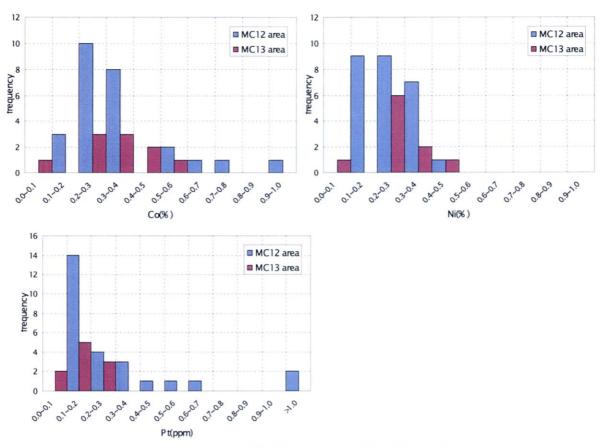


Figure 5-6-1 Histograms of Co, Ni and Pt

Although the grades of the manganese crust in MC12 and MC13 areas are slightly low compared with other typical area elsewhere, samples with relatively high Co (more than 0.5%) and Pt (more than 0.5ppm) are found in MC12 area. They are six samples of 98SMC12AD05 CM01, 98SMC12AD08 CM01, 98SMC12AD09 CM01, 05SMC12 AD17 CM01, 05SMC12 AD22 CM01 and 05SMC12AD29 CM07. Paying attention to the appearances of these six samples, these samples are divides into two groups of common occurrences. The two samples of manganese crust show compact texture and they occur approximately at 1,200m deep, being attached to substrate of reef limestone. The thickness of manganese crust of them is 2 to 3cm. The common features of rest of the four samples are porous columnar texture without fillings. Three of them were collected approximately at 1,800m deep and one samples was collected at slightly deeper depth of 2,400m.

The two samples collected approximately at 1,800m show very high Pt content of more than 1ppm. Although it is not clear, because some of them are incomplete samples, the thickness of these manganese crusts are 5 to 10cm thick. Based on the appearances and occurrences of the manganese crust, Co and Pt might have been concentrated on the surface of manganese crust through adsorption by manganese oxides (vernadite).

To understand chemical nature of the manganese crust, the analytical results are

plotted on diagrams of (Cu+Ni)x10-Fe-Mn (Figure 5-6-2) and chondrite normalized patterns (Figure 5-6-3). The chondrite composition of Wakita et al. (1971) was used for normalization (Table 5-6-6).

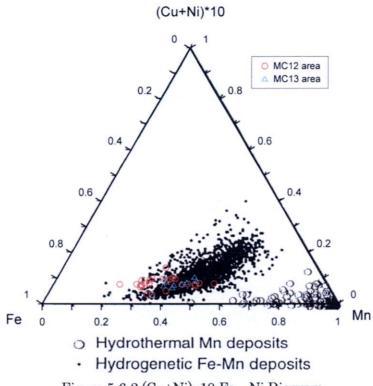


Figure 5-6-2 (Cu+Ni)x10-Fe—Ni Diagram (Plotted on the dioagram of Usui and Someya, 1997.)

On the (Cu+Ni)x10-Fe-Mn diagram (Figure 5-6-2), all of the manganese crust of MC12 and MC13 areas are plotted within a field of hydrogenetic manganese crust by Usui and Someya (1997) and they are slightly Fe enriched compared to Mn, occupying the area away from the field of manganese oxide of diagenetic origin. Some of chondrite normalized patterns of MC12 and MC13 areas show Ce positive anomaly, a characteristic feature of hydrogenetic manganese oxides. The chemical characteristics of these, coincide with occurrences of vernadite shown by the microscopic work and X-ray diffraction analyses, suggest hydrogenetic origin for manganese crust of MC12 and MC13 areas.

For MC12 area, calculation of correlation coefficients and no-correlation test were conducted for major elements, Pt, La and Ce of REE, sampling depth and thickness of manganese crust (Table 5-6-7). The main characteristics of these are given below.