部热储层扩展的周边井 ZK002、ZK102、ZK202、ZK401、ZK404、ZK352、ZK4001 等的温度 分布的测定结果与计算结果也大体一致。因此,本数值模型大体上再现了实际浅部热储 层的规模。

2-8-4 历史匹配模拟

(i)解析方法、条件设定 省略

(ii) 计算结果

图 2-8-38 显示了, 浅部井多数流入点所在的第 3 层 (海拔 4, 150~4, 200m) 热储层的温度平面分布以及热水流速矢量分布的历时变化。根据此图,可以看出南部的温度随着生产逐年降低。而且也可以看出,南部流体最初是由西北向东南方向流动,现在却相反,变为由东南向东北方向流动。在地球化学调查中,从硅石浓度和 CL 浓度的变化来看流体来源的比例,与深部热水相比较地表水(温泉水)的比例逐年增加,从而推测地表水从浅部热储层周围流向热储层。根据数值计算算出的流体流动的逐年变化和根据地球化学调查推定的结果相吻合。

根据计算结果, 热储层温度、压力的逐年下降说明了南部井喷气停止和地表地热显示消失这些实际现象。

关于流入点区域的温度和地球化学温度(根据硅石浓度推测的温度)的匹配,将数值计算结果和地球化学温度相比较,可以说两者大体上一致的。将 2K4001 井温度的计算结果和地球化学温度相比较,两者很好地匹配。因此,在历史匹配模拟中,由热储层模拟计算得到的流入点附近的温度可以说大体再现了实际的热储层温度。

从以上的匹配结果来看,可以说本数值模型大体再现了目前羊八井地区的热储层。因此,可以认为后面将进行的生产预测模拟的结果也是可以信赖的。

2-8-5 将来预测和地热资源量评价

这里的生产预测模拟是通过各生产井蒸汽生产量的变化,对热储层的生产能力进行评价。因此,在计算时,具体各生产井的破损、堵塞等钻井的寿命没有考虑。而且,这 里所记述的并不是各生产井继续生产时的情况。这一点希望能注意一下。

(i)条件设定

生产预测时间是从 2006 年 3 月到 2036 年 3 月,实施了 30 年。各钻井的喷出流量(蒸汽流量+热水流量)以历史匹配计算完成后的 2006 年 3 月为基准,此时的喷出流量设为定值。实际上,随着生产,由于热储层的压力、温度下降,喷出流量随着时间的推移而逐渐减少。但是,在后述的维持现有状态,追加 ZK4001 井,或是将蒸汽流量维持在 200t/h的各种情况下,由于没观察到热储层压力、温度显著下降,认为这种假设没有太大问题。

生产预测的设定,根据回灌的有无,分 2 个阶段来进行计算。在阶段 I 中,不实施回灌, 计算蒸汽流量变换 5 次的情况 (情况 I $-1\sim5$)。在阶段 II 中, 根据在阶段 I 评价的热储层能力, 在将来开发时认为较妥当的蒸汽流量情况下 (蒸汽流量 200 t/h 的情况),预测喷出热水全部回灌时的生产情况。在此,以调查回灌井的最适位置为目的, 进行了 3 次回灌井位置变换的计算 (II $-1\sim3$)。

图 2 - 8 - 3 8 历史匹配模拟热储层温度分布的历时变化(第3层:海拔4150~4200m)

1) 无回灌生产预测模拟(阶段 I) 的条件设定

计算包括以下 5 种情况(表 2-8-3),①仅有目前运作的浅部生产井,不追加补充生产井的情况,②对目前运作的浅部生产井,从 2006 年 3 月开始追加深部井 ZK4001,之后不再追加补充生产井的情况,③为了使总蒸汽流量不下降到 200t/h 以下,及时在深部追加补充井的情况,④为了使总蒸汽流量不下降到 240t/h 以下,及时在深部追加补充井的情况,⑤为了使总蒸汽流量不下降到 280t/h 以下,及时在深部追加补充井的情况。

假定追加的深部补充井位于深部热储层,并且全部在不同的区域。生产井间的距离也尽可能地往大设。图 2-8-41 表示了深部补充井的位置和顺序。

当蒸汽流量低于设定的蒸汽流量时,追加深部补充生产井。并且假设深部补充井的流入点位于与深部热储层中的 ZK4001 井不同的区域。在不同的情况下,由于流入点区域的温度或压力下降,致使蒸汽不能合流到蒸汽管道里。根据井内流动模拟的计算结果,当浅部井流入点区域的压力低于 0.6MPa,温度低于 140℃时停止生产。

2)有回灌生产预测模拟(阶段Ⅱ)的条件设定

根据后述的计算结果,考虑到本热储层的能力,认为最妥当的总蒸汽流量为200t/h,对蒸汽流量不低于总蒸汽流量200t/h的情况实施了有回灌模拟。与上述设定一样,在总蒸汽流量低于200t/h时追加深部补充井。

图 2-8-42 显示了回灌井的位置,为评价回灌井的最适合位置,对位于本地区北部、中央部、南部的 3 种情况(表 2-8-4)进行了计算。

假定浅部井热水一旦流入回灌池,在大气压放开后即被回灌。此时回灌流体的温度设定为 40℃。另一方面,深部井热水被分离后认为是在封闭状态下回灌。此时回灌流体的温度设定为比分离压为 7.0kg/cm2G 时的饱和温度 164℃稍低的 160℃。

由浅部井生产的热水流量如后述所示从 1,181t/h 略增到 1,217t/h。这里假设热水流量恒为 1,200t/h,从分离器到闪蒸槽,流体的总比焓为定值,闪蒸后的总热水流量为 1,130t/h。如表 2-8-4 所示,总热水流量分配到各回灌井。

另一方面,每1孔深部井生产的热水流量为200~230t/h。平均每孔深部井的热水回灌流量设定为215t/h,每1孔深部补充井都追加1孔回灌井。

(ii) 计算结果

- 1) 无回灌生产预测模拟(阶段 I)的计算结果
- a) 不追加深部补充井的情况(情况 I-1, 图 2-8-45)

在不追加深部补充井的情况下(情况 I-1),从 2006 年到 2036 年的 30 年间,计算得到总蒸汽流量从 167t/h 下降到 146t/h。流入点区域的温度、压力在预测期间基本上保持稳定。从上述结果来看,在这种不追加深部补充井的情况下计算时,仅目前的生产井,本热储层具有足够实现 30 年生产的能力。这一点可从最近的发电输出量基本上保持稳定得到印证。

b) 在现有状态下只追加 ZK4001 井的情况 (情况 I-2, 图 2-8-49)

在现有生产井的状况下只追加 ZK4001 井的情况(情况 I-2),从 2006 年到 2036 年的 30 年间,计算得到总蒸汽流量从 220t/h 下降到 187t/h。流入点区域的温度、压力在预测期间基本上保持稳定。从上述结果来看,在现有生产井的状况下只追加 ZK4001 井计算时,本热储层具有足够实现生产的能力。

表2-8-3 无回灌生产预测模拟的条件设定、结果一览

	情况 I-1	情况 I -2	情况 I-3	情况 I -4	情况 I -5
格来预测期间		2006	2006年3月~2036年3月(30年)	30年)	
补充井追加位置		≯XZ ≒	与 ZK4001 相同深部热储层的不同部位	同部位	
补充井追加时间		为了不	为了不低于所需最低蒸汽量,逗	适时追加	
所需最低蒸汽流量 (t/h)	维持现状	维特现状十ZK4001	200	240	280
管道压力(kg/cm ² G)	1.7(1、2号机)	1.7 (1、2号机) 7.0 (3号机)	1.7(1、2号机) 7.0(3号机)	1.7 (1、2号机) 7.0 (3号机)	1.7(1、2号机) 7.0(3号机)
现在的生产井数(2005年)			33 (现在: 13 孔)		
追加补充井数	0	1 (ZK4001)	2	2	6
2006年的蒸汽流量	7 G 7	220	220	247	301
(浅部: 深部, t/h)	101	(167: 53)	(167: 53)	(167:80)	(167:134)
2036 年的蒸汽流量	146	187	197	249	289
(浅部: 深部, t/h)	140	(143; 44)	(132:65)	(49:200)	(41: 248)
2036 年的钻井数	13	14	12	11	13
开发的可能性	足够	足够	足够	有开发的可能性,但 风险较大	开发的风险非常大,目难实现
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

备注		生産中	生産中	生産中	生産中	生産中	生産中	生産中	生産中	生産中	生産中	生盛中	生産中	生産中	深部補充井1	深部補充井2	深部補充井3	深部補充井4	深部補充井5	深部補充井 6	深部補充井7	深部補充井8	深部補充井 9
	K	က	5	4	5	က	က	დ.	ധ	က	4	4	5	4	=	11	11	13	13	13	11	9	10
位置	ſ	11	12	15	16	17	18	19	16	17	18	17	18	16	20	20	20	18	28	19	20	22	22
	-	12	14	14	13	4	12	12	11	11	6	6	7	7	8	5	13	9	6	7	10	1	6
钻井编号		4(324)	608)6	" 04"	"02 "	13	357	355	329(12)	358	354	329	302	″03″	4001	4003	4004	4005	4006	4007	4008	4009	4010
50		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22

●: 浅部生产井

图2-8-41 生产预测模拟计算(无回灌)时 深部井的追加位置和顺序

中央部還元井2 中央部還元井3 北部還元井2 北部還元井3 北部還元井2 中央部還元井 深部補充井2 深部補充井3 北部還元井 1 北部還元井 北部還元井 深部補充井 生産中 生産中 生産中 生産中 生産中 生産中 生産中 生産中 **生確中** 生産中 生産中 生産中 生産中 гO ¥ က Ŋ ŝ က က က က 4 Ю 4 4 4 --- 4 4 က O: 深部补充井 位置 9 5 9 7 8 2 17 8 8 16 20 ន្តន 20 20 20 13 <u>က</u> 10 10 10 တ ω LC 5 တ 2 O 12 G Ξ ∞ SR03 14 355 358 73 357 4(324) 9(309) 329(12) 354 359 302 4003 4004 NR02 NR03 CR02 CR03 SR02 钻井编号 ″0**4**″ "05" ″03″ CR01 SR01 4001 NR01 ű. 9 5 22 25 2 က LO Ó ω O ---- 7 3 4 9 , <u>∞</u> 6 20 21 23 24

图 2 - 8 - 4 2 生产预测模拟计算(有回灌)时深部井的追加位置和顺序

●: 浅部生产井 ▼:浅部回灌井

表2-8-4 有回灌生产预测模拟的条件设定、结果一览

				- C L 以来	年70 13
	A	将来预测期间	2006	2006年3月~2036年3月(30年間)	
	*	补充并追加位置	XZ 年	与 ZK4001 相同深部热储层的不同部位	17
	*	补充井追加时间	7.1.4	为了不低于所需最低蒸汽量,适时追加	加
		回灌井的流出点) 提	南部(1号机周边)过去的生产井流入点	1 па
		回灌流体温度		40°C	
				ZK23 (ZK313) 70kg/s	
	浅部井的				
	数头	1 1 1		6 (ZK314) 50kg/s	
		口罹流量		엉	
4				11 (ZK328) 50kg/s	
及河				10(322) $25 kg/s$	
		· · · · · · · · · · · · · · · · · · ·	北部(ZK4001周边)	中央部(4号井周边)	南部(1号机周边)
	3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	回灌井的流出点	浅部热储层(海拔 4,150~	浅部热储层(海拔 4,150~	浅部热储层(海拔
	米部十四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十		4, 200m)	4, 200m)	4, $150 \sim 4,200m$)
	交交	回灌流体温度		160°C	
	•	回灌流量		每1孔井215t/h	
	所需	最低蒸汽流量(t/h)		200	i de de la companya d
	***************************************	(56//) 十上		1.7 (1.2号机)	
-	直通	写道/左/J(Kg/cm-co)		7.0 (3号机)	
	现在的	现在的生产井数(2005年)		33 (现在: 13孔)	
		追加补充井数	೮	3	3
			ZK4001(2006年)	ZK4001(2006年)	ZK4001(2006年)
	妆	补充并的追加时间	ZK4003(2017年)	ZK4003(2017年)	ZK4003(2017年)
	<u>:</u>		ZK4004(2026年)	ZK4004(2026年)	ZK4004(2031年)
	200	2006 年的蒸汽流量	220	220	220
计算	(洗 (洗	(浅部: 深部, t/h)	(167: 53)	(167: 53)	(167: 53)
结果	208	2036 年的蒸汽流量	201	201	197
		(浅部: 深部, t/h)	(120: 81)	(120: 81)	(132:65)
	20	2036年的坑井数	16	16	16
		开发的可能性	足够	足够	足够

图 2 - 8 - 4 9 蒸汽流量的性状预测结果(情况 I - 2: 维持生产井现状+ZK4001)

c)维持总蒸汽流量在200t/h的情况(情况 I-3,图2-8-55)

为了使总蒸汽流量不低于 200 t/h (情况 I-3), 经计算需要增加 2 孔深部补充井。在 2025 年追加深部补充井 ZK4003 后, 浅部流入点区域的压力大幅度下降,但历时变化大体上显得较稳定。浅部井、深部井的温度没有明显地降低。因此从这种情况下的计算可知,本热储层有实现蒸汽流量不低于 200 t/h 的生产能力。

d)维持总蒸汽流量在240t/h的情况(情况 I-4,图2-8-61)

为了使总蒸汽流量不低于 240t/h (情况 I-4), 经计算需要增加 7 孔深部补充井。 浅部流入点区域的压力从 2006 年到 2023 年有所下降, 2023 年以后趋于稳定。在深部流 入点区域, 部分井的压力在 30 年间下降了 3.0MPa, 稍微偏大。浅部井、深部井流入点 区域的温度虽有缓慢下降, 但并没有显著的降低。从上述结果来看, 在这种情况下本热 储层有实现蒸汽流量不低于 240t/h 的生产能力。但是关于深部热储层能力的资料较少, 目前追加的 7 孔深部补充井是否都有足够的生产量等不确定因素还很多, 因此这种情况 下开发的风险比较大。

e)维持总蒸汽流量在280t/h的情况(情况 I-5,图 2-8-67)

为了使总蒸汽流量不低于 280t/h (情况 I -5), 经计算需要增加 9 孔深部补充井。在深部流入点区域,部分井的压力在 30 年间下降了 4.0MPa 左右,压力显著降低。浅部流入点区域的温度不稳定,有继续降低的趋势。深部流入点区域的温度在大约 1 年间大幅度下降。考虑上述结果,认为本地区的热储层实际上不能实现蒸汽流量不低于 280t/h 的生产能力。而且追加 9 孔补充井的话,不确定因素很多,开发风险大,因此比较难实现。

2)有回灌生产预测模拟(阶段Ⅱ)的计算结果

a)维持总蒸汽流量在 200t/h 而且深部井热水向地区北部回灌的情况 (情况 II-1, 图 2-8-73)

在实施回灌并且总蒸汽流量不低于 200t/h 的情况下(情况 II-1),经计算需要追加 3 孔深部补充井。而无回灌、蒸汽流量维持在 200t/h 时,需要 2 孔深部补充井。低温回灌热水是浅部生产井流体温度下降的原因。但是,由于热水回灌,热储层压力上升,可看到回灌维持的正效应。从上述结果来看,在实际实施回灌的同时,本热储层有足够实现蒸汽流量不低于 200t/h 的生产能力。

b)维持总蒸汽流量在200t/h而且深部井热水向地区中央部回灌的情况(情况II-2,图2-8-79)

在实施回灌并且总蒸汽流量不低于 200t/h 的情况下(情况 II-2),经计算需要追加 3 孔深部补充井。而无回灌、蒸汽流量维持在 200t/h 时,需要 2 孔深部补充井。低温回灌热水是浅部生产井流体温度下降的原因。但是,由于热水回灌,热储层压力上升,可看到回灌维持的正效应。从上述结果来看,在实际实施回灌的同时,本热储层有足够实现蒸汽流量不低于 200t/h 的生产能力。

c)维持总蒸汽流量在 200t/h 而且深部井热水向地区南部回灌的情况 (情况 II -3,图 2 -8-85)

在浅部井及深部井喷出的热水全部回灌并且总蒸汽流量不低于 200t/h 的情况下(情况 II-3),经计算需要追加 3 孔深部补充井。而无回灌、蒸汽流量维持在 200t/h 时,需

-70-

-71-