

N-1 Checking based on 2025_Night_Peak

Monitored Elements				Base Flow\|	Maximum Flow	Impact	Rate	\%	Contingency		Countermeasures
1570 BIYAG-1	132.00	1590 SAPUGA-1	132.001	155.03	284.2	285.39	225	126.8\%	OPEN LINE FROM BUS 1570 [BIYAG-1 BUS 1590 [SAPUGA-1 $132.00]$ CKT 2	${ }^{132.00] ~ T O}$	switching off lines: Biyagama - Sapugaukanda
1570 BIYAG-1	132.00	1590 SAPUGA-1	132.002	155.03	284.2	285.39	225	126.8\%	OPEN LINE FROM BUS 1570 [BIYAG-1 BUS 1590 [SAPUGA-1 $132.00]$ CKT 1	${ }^{132.00] ~ T O}$	switching off lines: Biyagama - Sapugaukanda
1950 NCHW	132.00	6290 NATTAN	132.001	149.16	244.26	250.33	225	111.3\%	OPEN LINE FROM BUS 1950 [NCHW	${ }^{132.00] ~ T O}$	switching off lines: N_Chilaw - Nattandiya
1950 NCHW	132.00	6290 NATTAN	132.002	149.16	244.26	250.33	225	111.3	OPEN LINE FROM BUS 1950 [NCHW BUS 6290 [NATTAN 132.00 CKT 1	${ }^{132.00] ~ T O}$	switching off lines: N _Chilaw - Nattandiya
1640 DENIY-1	132.00	5641 DENIY-T1	132.001	42.16	82.32	87.59	80	109.5\%	OPEN LINE FROM BUS 1640 [DENIY-1	${ }^{132.00] ~ T O}$	switching over is effective
1640 DENIY-1	132.00	5642 DENIY-T2	132.002	42.16	82.32	87.59	80	109.5\%	$\begin{array}{ll}\text { OPEN LINE FROM BUS } 1640 \text { [DENIY-1 } \\ \text { BUS } 5641 \text { [DENIY-T1 } & \text { 132.00] CKT } 1\end{array}$	$132.00]$ TO	switching over is effective
1710 TRINC-1	132.00	6140 GALENB	132.001	65.84	103.83	107.76	100	107.8\%	OPEN LINE FROM BUS 1710 [TRINC-1 BUS 6140 [GALENB 132.00 CKT 2	${ }^{132.00] ~ T O}$	switching over is effective
1710 TRINC-1	132.00	6140 GALENB	132.002	65.84	103.83	107.76	100	107.8\%	$\begin{array}{ll}\text { OPEN LINE FROM BUS } & 1710 \text { [TRINC-1 } \\ \text { BUS } 6140 \text { [GALENB } & 132.00] \text { CKT 1 }\end{array}$	${ }^{132.00] ~ T O}$	switching over is effective
2580 KOTUG-2	220.00	5581 KOTU-DU1	1220.00	201.53		265.12	250	106.0\%	OPEN Transformer Unit1		switching over is effective
2580 KOTUG-2	220.00	5582 KOTU-DU2	2220.00	201.53		265.12	250	106.0\%	OPEN Transformer Unit2		switching over is effective
2580 KOTUG-2	220.00	5583 KOTU-DU3	3220.00	201.53		265.12	250	106.0\%	OPEN Transformer Unit3		switching over is effective
1130 POLPI-1	132.00	6380 ANGUR	132.001	63.49	92.87	93.85	100	93.9\%	OPEN LINE FROM BUS 1130 [POLPI-1 BUS 6380 [ANGUR $\quad 132.00$] CKT 2	${ }^{132.00] ~ T O}$	-
1130 POLPI-1	132.00	6380 ANGUR	132.002	63.49	92.87	93.85	100	93.9\%	OPEN LINE FROM BUS 1130 [POLPI-1 BUS 6380 [ANGUR $\quad 132.00$] CKT 1	132.00] TO	-
1100 LAX-1	132.00	1120 WIMAL-1	132.001	44.23	88.24	90.19	100	90.2\%	OPEN LINE FROM BUS 1100 [LAX-1 BUS 1120 [WIMAL-1 132.00 CKT 2	${ }^{132.00] ~ T O}$	-
1100 LAX-1	132.00	1120 WIMAL-1	132.002	44.23	88.24	90.19	100	90.2\%	$\begin{array}{ll}\text { OPEN LINE FROM BUS } 1100 \text { [LAX-1 } \\ \text { BUS } 1120 \text { [WIMAL-1 } & 132.00 \text { CKT } 1\end{array}$	${ }^{132.00] ~ T O}$	-
1680 KURUN-1	132.00	1770 KIRIB-1	132.001	41.19	82.64	89.39	100	89.4	$\begin{array}{ll}\text { OPEN LINE FROM BUS } 1680 \text { [KURUN-1 } \\ \text { BUS } 1770[K I R I B-1 & 132.00] \\ \text { CKT } 2\end{array}$	${ }^{132.00] ~ T O}$	-
1680 KURUN-1	132.00	1770 KIRIB-1	132.002	41.19	82.64	89.39	100	89.4\%	OPEN LINE FROM BUS 1680 [KURUN-1 BUS $1770[$ KIRIB-1 $132.00]$ CKT 1	$\begin{aligned} & \hline 132.00] \mathrm{TO} \\ & \hline \end{aligned}$	-

\footnotetext{
Voltage

N-1 Checking based on 2025_Day_Peak

Monitored Elements				Base Flow	ximum Flo	mact	Rate	\%	Contingency			Countermeasures
1590 SAPUGA-1	132.00	1870 K_NIYA-1	132.001	3.61	224.22	35	165	135.46	OPEN LINE FROM BUS BUS 1870 [K NIYA-1	1590 [SAPUGA-1 $132.00]$ CKT 2	132.00] TO	switching off lines: Sapugaskanda - Kelaniya
1590 SAPUGA-1	132.00	1870 K_NIYA-1	132.002	123.61	224.22	223.35	165	135.46	OPEN LINE FROM BUS BUS 1870 [K NIYA-1	1590 [SAPUGA-1 $132.00]$ CKT 1	${ }^{132.00] ~ T O}$	switching off lines: Sapugaskanda - Kelaniya
1110 N-LAX-1	132.00	1130 POLPI-1	132.001	41.	56.05	56.05	45	124.6%	OPEN LINE FROM BUS BUS 1130 [POLPI-1	1110 [$\mathrm{N}-\mathrm{LAX}-1$ 132.00] CKT 2	${ }^{132.00] ~ T O}$	switching off lines: Laxapana - N Laxapana
1110 N-LAX-1	132.00	1130 POLPI-1	132.002	41.98	56.05	56.05	45	24.6\%	OPEN LINE FROM BUS	$\begin{aligned} & S 1110 \text { [N-LAX-1 } \\ & 132.00 \text { CKT } 1 \end{aligned}$	${ }^{132.00] ~ T O}$	switching off lines: Laxapana - N L Laxapana
1710 TRINC-1	132.00	6140 GALENB	132.001	34.28	. 99	54.27	45	-	OPEN LINE FROM BUS	1710 [TRINC-1 132.00 CKT 2	${ }^{132.00] ~ T O}$	switching off lines: TTrincomalee - Galenbindunnuwewa
1710 TRINC-1	132.00	6140 GALENB	132.002	34.28	53.99	54.27	45	120.68	OPEN LINE FROM BUS BUS 6140 GGALENB	1710 [TRINC-1 $132.00]$ CKT 1	${ }^{132.00] ~ T O}$	switching off lines: TTrincomalee - Galenbindunnuwewa
1570 BIYAG-1	2.00	1590 SAPUGA-1	132.001	108.05	46	195.86	165	18.7\%	OPEN LINE FROM BUS 1 BUS 1590 [SAPUGA-1	1570 [BIIAG-1	${ }^{132.00] ~ T O}$	switching off lines: Sapugaskanda - Biyagama
1570 BIYAG-1	132.00	1590 SAPUGA-1	132.002	108.05	197.46	195.86	165	118.7\%	OPEN LINE FROM BUS BUS 1590 [SAPUGA-1		132.00] TO	switching off lines: Sapugaskanda - Biyagama
1680 KURUN-1	132.00	1770 KIRIB-1	132.001	25	49.77	49.34	45	109.6\%	OPEN LINE FROM BUS BUS 1770 [KIRIB-1	1680 [KURUN-1 32.00] CKT 2	${ }^{132.00] ~ T O}$	switching over is effective
1680 KURUN-1	132.00	1770 KIRIB-1	132.002	25	49.77	49.34	45	109.6\%	OPEN LINE FROM BUS 1 BUS 1770 [KIRIB-1 132	1680 [KURUN-1 32.00] CKT 1	${ }^{132.00] ~ T O ~}$	switching over is effective
1640 DENIY-1	132.00	5641 DENIY-T1	132.001	20.96	42.02	42.81	40	107.0\%	OPEN LINE FROM BUS	$\begin{aligned} & 1640 \text { [DENY- } \\ & 132.00] \text { CKT } 2 \end{aligned}$	132.00] TO	switching over is effective
1640 DENIY-1	132.00	5642 DENIY-T2	32.002	20.96	42.02	42.81	40	107.0\%	OPEN LINE FROM BUS BUS 5641 [DENIY-T1	$\begin{aligned} & 1640[\text { DENIY-1 } \\ & \text { 132.00] CKT 1 } \end{aligned}$	132.00] TO	switching over is effective
2580 KOTUG-2	220.00	5581 KOTU-DU1	220.00	180.	266.43	266.43	250	106.6\%	OPEN LINE FROM BUS BUS 5582 [KOTU-DU2	1580 [KOTUG-1	${ }^{132.00] ~ T O}$	switching over is effective
2580 KOTUG-2	220.00	5582 KOTU-DU2	220.00	180.48	66.43	266.43	250	106.6\%	OPEN LINE FROM BUS 1 BUS 5581 [KOTU-DU1	$\begin{aligned} & 1580[\mathrm{KOTUG-1} \\ & 220.00 \mathrm{CKT} \end{aligned}$	${ }^{132.00] ~ T O}$	switching o
2580 KOTUG-2	220.00	5583 KOTU-DU3	220.00	180.48	266.43	266.43	250	6.6%	OPEN LINE FROM BUS BUS 5581 [KOTU-DU1	1580 [KOTUG-1 $220.00]$ CKT 1	${ }^{132.00] ~ T O}$	switching over is effective
1130 POLPI-1	132.00	1510 SITHA-1	132.001	129.94	175.23	175.23	165	106.2\%	OPEN LINE FROM BUS BUS 5502 [KOSG-1T2	1130 [POLPI-1 $132.00]$ CKT 1	${ }^{132.00] ~ T O}$	switching over is effective
1670 MATARA-1	132.00	6010 WELIGA	132.001	90.67	165.69	5.69	165	100.4\%	OPEN LINE FROM BUS 1 BUS 6010 [WELIGA $\quad 132$	$\begin{aligned} & \text { 1670 [MATARA-1 } \\ & 132.00 \text { CKT } 2 \\ & \hline \end{aligned}$	${ }^{132.00] ~ T O}$	switching over is effective
1670 MATARA-1	132.00	6010 WELIGA	132.002	90.67	165.69	165.69	165	100.4	OPEN LINE FROM BUS	$\begin{aligned} & 1670 \text { [MATARA-1 } \\ & 132.00] \text { CKT 1 } \end{aligned}$	132.00] TO	switching over is effective
1650 GALLE-1	132.00	1990 BADDE	132.001	88.69	161.63	64.01	165	99.4\%		-		-

4. Voltage $\begin{gathered}220 \mathrm{kV}\end{gathered}$

Bus	Voltage	Contingency	Countermeasures
Nothing			
132kV			
Bus	Voltage	Contingency	Countermeasures
Nothing			

Appendix 18

Generation Dispatch Schedule

Site	2010			2015			2020			2025			Year COM		Retirement Year
	NP	DP	OP												
Old Lazapana	50	25	25	50	25	0	50	25	0	50	25				
New Laxapana	100	50	50	100	50		100	50	0	100	50	0			
WTimalasurendra	25	0	0	25	25		25	25	0	0	0	0			
Poppitiya	75	37.5	37.5	75	37.5		75	37.5	0	75	37.5	37.5			
Canyon	0	0	0	30	0		30	0	0	0	0	0			
Ampara	75	0	0	75	75		75	0	0	75	0	0			
Samanalawewa	120	60	60	120	60	60	120	60	60	120	60	60			
Ukuwela	19	0	0	19	19	19	19	19	19	19	19	19			
Bowatenna	0	0	0	11	0	0	11	10	0	11	0	0			
Kelanitissa_GT7	115	115	0	0	0	0	0	0	0	0	0	0			
Sapugaskanda Diesel_ 1-4	72	72	72	\bigcirc		\bigcirc			R	\bigcirc		r			2013
Sapugaskanda Diesel_5-12	36	36	0	36	36			0		r		\bigcirc			2023
Sapugaskanda Diesel_GT	-								,	105	105	0		2024	
Kukule	70	35	35	70	35	35	70	35	35	70	35	35			
Lakdhanavi CEB	R		-	T	-	\square		\square	<	0	105	0		2024	
Lakdhanavi IPP	22.5	0		\checkmark	\bigcirc	r				\checkmark		<			2013
Asia Power (KHD)	51	0	0	51	0	0	0	0	0	0	0	0			2018
Galle	105	105	0	105	0	0	105	105	0	210	105	0	2009(105MW7), 2021(105MW7)		
ACE Embilipitiya	100	0	0	r	\square	\bigcirc	\checkmark	\square	\square	r	r	\bigcirc			2015
CEE Matara	r	\bigcirc	\checkmark	-	\checkmark	<	r		r	105	105	0		2024	
Trincomalee_GT	35	35	35	35	0			0		35		0		2009	
Chunnakam	35	35	35	35	35		70	70		70	35	3	2010(105MWV), 2020(105MW7)		
Heladanavi IPP	100	100	0	r	r	R	\checkmark	R	\checkmark	\checkmark	R	\checkmark			2015
Heladanavi CEB	\square					\checkmark	105	0	0	210	105		2020(105MW), 2022(105MW)		
Paddirippu	75	75	0	75	0		75	75	0	75	75	0		2010	
Kotmale	130	65	65	130	65	65	130	65	65	130	65	0			
Colombo Power (Barge)	60	0	0	0	0			0	0	0	0	0			2015
Upper Kotmale	<		<	150	75		150	75	0	150	75	0		2011	
Victoria	34.1	48	91.2	83.4	89	28.5	114.2	32.4	53.6	47.4	138	56.7			
Randenigala	60	60	60	60	60	60	60	60	0	60	60	0			
CEE Kelanitissa_CCGT	165	165	165	165	165		165	0	0	165	165	0			
AES Kelanitissa	163	163	0	0	0		0	0		\bigcirc		\bigcirc			2024
Kerawalapitity__CCGT	300	300	300	300	300	150	300	300	150	300	300	150	2008(200MWW), $2009(100 \mathrm{MWW})$		
Kerawalapitiya_GT	210	105	,	210	105	0	210	105	,	315	105		2009(105MW), 2010(105MW), 2022(105MW)		
Panripitiya	\sim			\square	\bigcirc	-	<	-	ζ	315	315	105	2023(210MW), 2024(100Mm)		
ACE Horana	20	20	20	\checkmark	\checkmark	C	\bigcirc	\bigcirc	\bigcirc	-		\square			2013
ACE Matara	0	0		\checkmark					<	\checkmark		r			2012
Chuuakam CEE	0	0	0	0	0			0		0	,		2010(35MW), 2020(35MW)		
Rantembe	25	25	25	25	25	25	25	25	25	25	25	25			
Puttalam_Coal	\%	r	\square	600	600	550	1200	900	720	1800	900	1080	2011(600MWW), 2012/2020/2021/2022/2023(300MWW)		
Trincomalee_Coal					0		600	600	360	600	300	360	2017/2018/2019(300MW)		
Hambantota_Coal	\checkmark		\square	900	600	550	1200	900	720	2100	1800	1200			

Reexamination of Construction Costs at New Hydro Power Project Sites

The projected construction costs at Moragolla, one of the candidate sites for a new hydro power project for the 2005-2019 long-term generation expansion plan (LTGEP), were reexamined in Chapter 6. Among the other candidate sites for development, Gin Ganga and Uma Oya are at the same pre-F/S survey stage as Moragolla. Although there is some need to reexamine the projected construction costs for these two sites in our survey, on the basis of the latest data, we have not discussed such reexaminations in this text, because we have chosen rather to emphasize the importance of changes in the development plan.

The CEB may, however conduct a comparative examination of construction costs in its internal review of and any resulting alterations to the Master Plan. We are therefore including as a reference the results of our reexamination of the projected construction costs for these two sites conducted as part of this survey.

(1) Method of Reexamination of Construction Costs

Our reexamination of the projected construction costs for the two sites used the construction cost estimates for the Broadlands site, made by JICA in its Hydro Power Optimization Study (Feb. 2004), in considering construction cost estimates for the two sites in the CEB's 1989 Master Plan survey. Both sites represent larger-scale developments than at the Broadlands site, and basic factors in calculating construction costs (construction methods, unit costs) may therefore differ, but we have not given this any special consideration.

(2) Results of Reexamination of Construction Costs

Our reexamination of costs found that construction costs for both projects will increase, but less than the escalation of costs in the 1992 calculations. This indicates that the increase in prices factored into the 1992 calculations was exaggerated relative to the real price base. In addition, local costs are affected by exchange rate fluctuations, and increases are therefore higher than foreign cost increases.

Construction cost for Ginganga Site (Basic Cost)			Units: million US\$
Year costs were calculated	Foreign	Local	Total
1992	76.38	16.47	92.85
2003	83.21	24.43	107.64
Difference (\%)	$6.83(+8.4 \%)$	$7.96(+48.3 \%)$	$14.79(+15.9 \%)$

Note: "Local" represents the cost of the project multiplied by 0.9 .

Construction cost for Uma Oya site (Basic Cost)			Units: million US\$
Year costs were calculated Foreign Local Total 1992 233.94 53.61 287.55 2003 244.66 82.11 326.77 Difference (\%) $10.72(+4.6 \%)$ $28.5(+53.2 \%)$ $39.22(+13.6 \%)$			

The costs of the LTGEP hydro power projects at the candidate sites are shown in the table below. In all cases the basic costs, including interest during the construction period, are lower than the previous estimates.

Plant	Source	Capacity (MW)	Construction Cost (mnUS\$)		Cost Basis	Exchange Rate (Rs/US\$)	New Exchange Rate (Rs/US\$)
			Foreign	Local			
Gin Ganga	[1]	49	83.21	24.43	Sep. 2003	96	99.64
Broadlands	[2]	35	68.19	19.04	Sep. 2003	96	99.64
Uma Oya	[3]	150	246.66	82.11	Sep. 2003	96	99.64
Moragolla	[4]	27	58.69	15.89	Sep. 2003	96	99.64

[1]** Masterplan project repot GING074
[2] Hydro Power Optimization Study,February 2004
[3]** CECE Pre-feasibility Study July 1991
[4]** Masterplan project MAHW263

* updated in June 1992,Refer Page 10-2 of Kukule Feasibility Study Report(Vol-1)
** updated in this study, Refer Hydro Power Opomization Study,February 2004

Plant	Pure Capital Cost $\quad * *(\mathrm{US} \$ / \mathrm{kW})$			Constr. Period	$\begin{aligned} & \hline \text { IDC@10\% } \\ & \text { (\% of pure } \\ & \text { costs) } \\ & \hline \end{aligned}$	Cost Input WASP IV		Total Cost $* *(U S \$ / k W)$ Incl.IDC	
				**(US		Incl.IDC			
	Foreign	Local	Total			Foreign	Local		
Gin Ganga	1905.4	570.2	2475.7		5	23.78	2358.5	705.8	3064.4
Broadlands	2027.0	576.7	2603.7	4	18.53	2402.6	683.6	3086.2	
Uma Oya	1761.1	597.5	2358.6	5	23.78	2179.9	739.6	2919.5	
Moragolla	2438.9	673.2	3112.1	4	18.53	2890.8	797.9	3688.7	

Uma Oya Cost Sheet(1/2)

September. 2003

Uma Oya Cost Sheet(2/2)

	Hydro-Mechanical Works			5,691,200	633,000	6,324,000
	Intake Structure(sum) Total			1,546,000	172,000	1,718,000
2	Penstock Total			$3,956,200$	440,000	4,396,000
	Draft Equipment Total			189,000	21,000	210,000
E	Electro-Mechanical Work			58,148,000	6,461,000	64,609,000
F	132kV Transmission Line	km	10.0	1,018,000	255,000	1,273,000
	Grand Total (A to F)			203,473,200	69,646,000	273,119,000
	Adminstration Engineering Service Contingency	$\begin{array}{\|l\|} \hline \text { 2\% of Direct Cost } \\ \text { 13\% of Direct Cost } \\ \text { 10\%:Prep.Env.Civil 5\% H } \\ \hline \end{array}$		$\begin{array}{r} 26,452,000 \\ \mathbf{1 6 , 7 3 1 , 0 0 0} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { 5,463,000 } \\ & 9,054,000 \\ & 6,971,000 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { 5,463,000 } \\ 35,506,000 \\ 23,702,000 \\ \hline \end{array}$
	Land Acquisition				100,000	100,000
	Grand Total			246,657,000	91,233,000	337,890,000

Ginganga Cost Sheet (1/2)						September. 2003	
Description		Unit	Quantity	Orice (US\$)		Amount (US\$)	
		Foreign		Local			
A $\begin{array}{r}\text { A } \\ 1 \\ 1 \\ 2 \\ \\ 3\end{array}$	Preparatory Work						
	Access Road				1,716,000	1,716,000	
	Brige across the river	L.S	1	1,042,000	348,000	1,390,000	
	Power Supply	L.S	1	668,000	222,000	890,000	
	Construction Camp	L.S	1		2,080,000	2,080,000	
	Total Prepartoty Work			1,710,000	4,366,000	6,076,000	
B	Environmental Mitigation 3% of Civil Works			1,106,000	368,000	1,474,000	
	Total Environmental Mitigation			1,106,000	368,000	1,474,000	
C	Civil Works			36,837,000	12,277,000	49,114,000	
1	Care of River Total			844,000	281,000	1,125,000	
2	Dam						
	Total			15,345,000	5,115,000	20,460,000	
3	Intake						
	Total			621,000	207,000	828,000	
$\begin{array}{r} 4 \\ 4.1 \end{array}$	Headrace Tunnel						
	Intake Tunnel Sub Total			278,000	92,000	370,000	
4.2	Main Tunnnel Sub Total			13,955,000	4,652,000	18,607,000	
	Total			14,233,000	4,744,000	18,977,000	
5	Surge Chamber Total			1,400,000	467,000	1,867,000	
6.1	Penstock						
	Tunnel Sub Total			211,000	70,000	281,000	
6.2	Open Sub Total			142,000	47,000	189,000	
	Total			353,000	117,000	470,000	
	Powerhouse Total			1,918,000	639,000	2,557,000	
8	Tailrace Total			2,123,000	707,000	2,830,000	

Ginganga Cost Sheet (2/2)

D	Hydro-Mechanical Works			4,866,000	541,000	5,407,000
1	Spillway Equipment Total			2,629,000	292,000	2,921,000
2	Intake Structure(sum) Total			1,060,000	118,000	1,178,000
3	Penstock Total			988,000	110,000	1,098,000
4	Draft Equipment Total			189,000	21,000	210,000
E	Electro-Mechanical Work			22,073,000	2,453,000	24,526,000
F	132kV Transmission Line	km	23.0	2,342,000	586,000	2,928,000
	Grand Total (A to F)			68,934,000	20,591,000	89,525,000
Adminstration Engineering Service Contingency		2\% of Direct Cost 13\% of Direct Cost 10\%:Prep.Env.Civil 5\% H		$\begin{array}{r} \mathbf{8 , 9 6 1 , 0 0 0} \\ 5,319,000 \\ \hline \end{array}$	$\begin{aligned} & 1,791,000 \\ & 2,677,000 \\ & \mathbf{1 , 9 9 0 , 0 0 0} \\ & \hline \end{aligned}$	$1,791,000$ $11,638,000$ $7,309,000$
	Land Acquisition				100,000	100,000
	Grand Total			83,214,000	27,149,000	110,363,000

