資料 7-2 土質調査結果

Ministry of Constructing & Housing National Center for Research & Construction Labs.

Soil Investigation

For

- 1. North Samawah Bridge
- 2. Hillal Bridge
- 3. Majid Bridge
- 4. Mardi Bridge
- 5. Daraji Bridge

BAGHDAD NOVEMBER / 2004

SOIL INVESTIGATION SITES

- (1) North Samawah Bridge
- (2) Hillal Bridge
- (3) Majid Bridge
- (4) Mardi Bridge
- (5) Daraji Bridge

ABBREVIATIONS

С	Cohesion in kN/m^2
C.I.	Unconfined Compressive Strength.
C.P. %	Collapse Potential
C _c	Compression Index.
CL %	Chloride Content
СРТ	Water Table. Moisture Content. Liquid
Cr	Swelling Index
Cv	Coefficient of Consolidation
D	Disturbed Sample.
eo	Initial Void Ratio
GS	Cohesion in kN/m ² . Angle of Internal
Gyp %	Gypsum Content
K	Coefficient of Permeability
L.S	Weight.
LL	Specific Gravity.
M.C	Linear Shrinkage. Consistency Index
Ø	Angle of Internal Friction.
ORG %	Organic Matter.
P.1	Natural Unite Weight Dry Unite
P.L	Unified Soil Classification System.
pc	Reconsolidation Pressure
PH	Acidity or Alkalinity
Ро	Overburden Pressure
Ps	Swelling Pressure
qu	Unconfined Compressive Strength.
SO ₃ %.	Sulphate Content
SPT (N-Value)	Dynamic Cone Penetration Test
SS	Standard Penetration Test Value.
T.S.S	Total Soluble Salts
U	Undisturbed Sample.
Uni. Class.	Friction. Initial Void Ratio.
W.T	Limit. Plastic Limit Plasticity Index
γdry	Dry Unite Weight
γwet	Natural Unite Weight

REPORT NO. 1/1/46/2004-BAGHDAD North Samawah Bridge

REPORT NO. 1/1/46/2004-BAGHDAD

North Samawah Bridge

Contents

		Page
1 -	INTRODUCTION	A6-56
	1-1 Authorization and Scope	A6-56
	1-2 Site Location and Description	A6-56
-		
2 -	FIELD EXPLORATION	A6-56
	2-1 Drilling and Sampling	A6-56
	2-2 Number of Boreholes ·····	A6-56
3 -	LABORATORY TESTING	A6-57
-		
4 -	SUBSOIL STRATIFICATION	A6-58
	4-1 Soil Pro File	A6-58
	4-2 Underground Water Level·····	A6-59
5 -	EVALUATION AND DISCUSSION OF RESULTS	A6-59
	5-1 Strength of the Soil	A6-59
	5-2 Consolidation Test Results	A6-60
	5-3 Chemical Properties	A6-61
	5-4 Atterberg Limits Test Results	A6-61
6 -	CONCLUTION & RECOMMENDATIONS	A6-61
	6-1 Type of Footing	A6-61
	6-2 Depth of Footings	A6-61
	6-3 Length of Piles	A6-61
	6-4 Working Load per a Single Pile	A6-62
	6-5 Loading Test for Piles	A6-62
	6-6 Settlement	A6-62
	6-7 Type of Cement ·····	A6-62
	6-8 Dewatering	A6-62

APPENDICES

Record of Test Results	A6-63
Borehole Logs ·····	A6-67

REPORT NO. 1/1/46/2004-BAGHDAD

North Samawah Bridge

1-INTRODUCTION

1-1 Authorization and Scope

The soil investigation for this project has been conducted by the Directorate of Soil Investigation / National Centre for Research & Construction Laboratories (NCCLR) - Baghdad according to the contract with "The Engineering House Group "dated at 271 9 /2004.

The sol investigation described in this report consists of drilling the boreholes, securing representative samples, testing these samples and analyzing the soil conditions with test results.

1-2 Site Location and Description

The project is located at Al-Muthanna governorate, in Samawah city specifically on Euphrates River. The locations of the drilled boreholes are not similar in level.

2- FIELD EXPLORATION

2-1 Drilling and Sampling

Drilling was done using flight auger. The drilling rig used is of (Acker) type, which is a power driven machine. The diameters of drilled boreholes were (15.0) cm. The disturbed sample (D) were collected from the cutting of auger at any depth. The undisturbed samples marked (U) were obtained using Shelby tubes. Split spoon samples (SS) were obtained from standard split spoon used in a Standard.

Penetration Test (S.P.T), which was performed for every test boring at different intervals depending on the stratification of the soil.

The actual depth for all samples and the N-Values for S.P.T. are shown in the record of test results sheet of this report.

2-2 Number of Boreholes

Two boring points were assigned and located by the concerned authorities at the locations of abutments (one borehole at each river bank). These boring points were drilled by (NCCL) to a depth of (30.0) m. below N.G.S. The locations of these boreholes are marked on the site plan at (Fig.1)

Fig. 1: Site plan for borehole locations

3- LABORATORY TESTING

Each of the soil samples received by the laboratories of the Directorate of Soil Investigations Baghdad was given a laboratory number.

The samples of the borehole were visually examined for initial classification before laboratory testing.

The test program was decided by the soil engineer. The actual test proposed for a particular sample depends on the type of sample (S.S, U & D) and the nature of its material.

A full list of tests conducted for this project is:

A - Classification Tests

- Atterberg limits (L.L, P.L).
- Grain size analysis (sieve and hydrometer analysis).
- Linear shrinkage limits (L.S).
- Unit weight (natural and dry).
- Natural moisture content.

B - Strength and Deformation Tests

- Unconfined compression strength.
- Triaxial compression test.
- Direct shear test "Consolidation test.

<u>C - Chemical Tests</u>

- Sulphate content (SO₃%).
- Chloride content (Cl %).
- Gypsum content (GYP %).
- PH value.
- Calcium carbonate (CaCo₃ %).
- Organic matter (ORG%).

The results of these tests are shown in the Record of "Tests Result sheet" appended,

4- SUBSOIL STRATIFICATION

4-1 Soil Pro file

According to the unified soil classification system (USCS), the subsoil profile for each borehole location can be summarized as follows: -

Borehole No.1 Location

• The upper soil layer consists of medium to hard brown - grey or light green lean or fat clay (CL, CH) change to silt or elastic silt (ML, MH). This layer extends from natural ground surface (N.G.S) down to a bout (19.0) m.

Through this layer a thin layer of medium light green sand with silt or silty sand is observed from (10.5) m. to (13.0) m. depth.

• The second soil layer consists of very dense grayish blue or light brown silty sand (SM). This layer is observed below the above layer and extends to (26.0) m.

• The last soil layer consists of hard light green lean clay with sand or silty clay with sand (CL, CL-ML). This layer extends below the above layer down to the end of boring at (30.0) m. depth,

Borehole No.1 Location

- The upper soil layer is a fill layer, which consists of a mixture of (silt, sand, clay). This layer extends from existing ground surface down to about (2.0) m.
- The second soil layer consists of stiff to hard brown or green lean or fat clay (CL, CH). This layer is observed below the above layer and extends to about (9.0) m.
- The last soil layer consists of dense to very dense light green silty sand or sand with silt to silty clayey sand (SM, SP-SM, SC-SM). This layer extends below the above layer down to the end of boring at (30.0) m.

Through this layer a thin layer of hard light brown highly gypseous lean clay (CL) is observed from (19.75)m. to (21.0)m. depth.

Details of soil stratification for each borehole are shown at the "Borelogs" appended.

4-2 Underground Water Level

The underground water level was encountered at a depth of (2.65) m. at the location of borehole No.1 and at a depth of (3.65) m. at the location of borehole No.2 below natural ground surface (N.G.S) after 24 hours from drilling termination at the time of boring (October /2004). This level may fluctuate during the coming season due to the fluctuation of water level in the Euphrates River.

5- EVALUATION AND DISCUSSION OF RESULTS

5-1 Strength of the Soil

- For the cohesive soil layer, the results of the unconfined and triaxial compression tests as well as the number of standard penetration test (S.P.T) indicate that the consistency of the cohesive soil layer is medium to hard for B.H.I site location, and stiff to hard for B.H.2, site location. The results of the unconfined and triaxial compression tests as well as the results of natural and dry densities are shown in Table (1).

рц	Danth	Ou	Triaxi	al Test	Zunat	¥ dun
No.	(m)	Qu (kN/m ²)	Cu (kN/m ²)	Ø u Degree	(kN/m^3)	(kN/m^3)
	1.5 - 2.0	-	135	2	20.8	18.0
1	3.5 - 4.0	99	-	-	19.2	15.3
	7.0 - 7.5	-	71	6	19.9	15.9
	2.5 - 3.0	250	-	-	18.0	15.0
2	6.0 - 6.5	-	131	3	19.0	15.3
	8.0 - 8.5	133	-	-	19.2	15.2

Table 1: Unconfined and Triaxial test results with depth

- For the cohesioless soil layer, the results of direct shear test (C, 0) and number of blows of standard penetration test (S.P.T) indicate that the relative density of this soil is medium to very dense for B.H.1 site location and dense to very dense for B.H.2 site location.

The results of the direct shear test results with the initial wet and dry densities at test condition are shown in Table (2).

B.H No.	Depth (m)	C (kN/m^2)	Ø Degree	γ wet (kN/m ³)	Ƴdry (kN/m³)
1	10.5 - 11.0	0	46	19.4	17.6
I	25.0 - 25.5	0	40	16.6	13.6
	13.5 - 14.5	0	39	19.4	16.7
2	15.0 - 16.0	0	28	19.4	16.1
2	21.0 - 22.0	0	28	19.4	17.1
	23.5 - 24.0	0	37	19.4	16.8

Table 2: Unconfined and triaxial test results with depth

5-2 Consolidation Test Results

The variations of overburden (Po), preconsolidation (Pc) & swelling (Ps) pressures with depth, which are shown in Table (3), indicate that the cohesive soil layer at the two locations is in general is over consolidated. Other consolidation parameters are also shown.

B.H No.	Depth (m)	$\begin{array}{c} Po \\ (kN/m^2) \end{array}$	$\frac{Pc}{(kN/m^2)}$	$\frac{Ps}{(kN/m^2)}$	Void Ratio e _o	C_c	C_r
1	3.5 - 4.0	61	170	-	0.724	0.18	0.036
1	7.0 - 7.6	96	170	-	0.692	0.18	0.037
	2.5 - 3.0	50	230	30	0.554	0.11	0.228
2	6.0 - 6.5	89	230	-	0.764	0.21	0.069
	8.0 - 8.5	107	390	-	0.537	0.19	0.032

 Table 3: Consolidation parameters with depth

5-3 Chemical Properties

The results of the chemical tests for soil and water samples are shown in the Test Results Sheet". The results in general indicate slight sulphate content except some locations at each borehole which indicate high sulphate content (at a depth (14.75 - 15.5m.) for borehole No. 1 site location and at a depth of (19.75-21.0) m. for borehole No.2 site location). The sulphate content in general varies from (0.1) to (3.22) percent. The PH value varies from (7.36) to (8.44).

The chloride content varies from (0, 07) to (0, 83) percent. The calcium carbonate content varies from (7.5) to (50.0) percent.

5-4 Atterberg limits Test Results

The values of liquid limit (L.L), plasticity index (P.I.) and moisture content (M.C.) at different depths are shown in the "Record of test result sheets "and "borehole logs" appended.

The results generally indicate that the value of moisture content is closer to the plastic limit than to the liquid limit for both site locations.

6- CONCLUTION & RECOMMENDATIONS

6-1 Type of Footing

For abutments location, piled foundation should be used of reinforced concrete large diameters bored piles of (1.0, 1.5) m. in diameter arranged as in the single and double structure groupings.

6-2 Depth of Footings

It is necessary to take into consideration the scour depth in order to specify the depth of pile cap otherwise the top of the cap of piles should be at least (2) m, below N.G.L at each boring point in order to minimize the scour effect of water against the footing during the flooding time.

6-3 Length of Piles

Due to the difference in nature and strength of the soil strata as well as the difference in ground level the tips of piles are placed in different levels. Table 4. Shows the pile tip depth below the ground level at each borehole location.

B.H No.	Depth of pile tip below the ground elevation
1	20
2	16

Table 4: Depth of pile below the ground level

6-4 Working Load per a Single Pile

For both single and group action of piles, each single pile should not be loaded a Working load of more than (300 or 500) tons for piles of (1.0 or 1.5) m. diameter respectively. The working load of piles are based on the strength of concrete cylinder (1:1,5:3) of 6" in diameter and 12" in height cured for 28.0 days in wafer giving a crushing strength of not less than 3000 psi.

6-5 Loading Test for Piles

Loading test should be performed in the site on a representative number of piles. The lower results in both the working load and the resulting settlement between our recommendation and the loading test results should be adopted.

6-6 Settlement

The maximum expected settlement under piles will be within permissible limits.

6-7 Type of Cement

- Sulphate resisting cement must be used for concrete works in touch with the soil.
- The amount of cement content is 420 kg/m^3 .
- Maximum free water / cement ratio is 0.45 by weight.
- Vibrators should be used in order to density fresh concrete. -Minimum concrete cover of (7.5) cm is recommended to protect reinforcement from chlorides effect

6-8 Dewatering

During construction, the under ground water should be pumped out until the construction reaches ground level

Layla N. Abduallah Engineer Hisham F. Razouki Head of Soil Dept. Consultant

Taha Yaseen Director of Soil Investigation

MIN	ISTRY	V OF I	SNOE	ING &	CON	STRU	CT10	N								PROJECT:- NORTH SAM	(WA)	A BRI	DGE		183		1
NAT	LONA	L CEI	NTER	FOR	RESE	ARCH	S C(LISNC	RUCT	T NO1	BS					50					- 10		1
							4			R	ECOR	DOFT	ESTR	ESUL	IS	B.H.No.:-1					23a		The second
Sam	ples		Dept	jo ų	5	Index	(Prope	sity	Partic	cle size	distribu	ution &		SPT				87/8	Chemic	cal Te	sts		
		-	Sam	ple	N.C.				Í	dromet	er ana	ysis		"N-		Description of Call			Ì		ł		
Field	del	1 ype	From	4 D	%	77	R	487	Cay	ĨŜ	Sand	Gravel	3	val.	Symbol	ince in linndunean	so	T.S.S	ORG C	YP Ca	Co. P	=	d
No.	No.	_	Ę	Ë	2	*	%	%	%	%	%	%				+	%	8	8	8	%	+	28
		_				E)				Boreho	le No.	1		Elev.=1	2.65m.							~	
	2487	9	0.0	1.5					(15	75	5	â	_	1	ซ	Brown lean clay						-	
N	2468	>	1.5	2.0	16	55	31						-	1	н	Very stiff brown fat clay	0.65			_	8	69	*
e	2489	SS	2.0	2.5					(19	26	ມ	6		23	ธ่	Very stiff brown lean clay					-	-	
4	2490	D	3.5	4.0	25	42	20							1	ช	Top: do(medium)					20	•	
										-					MR.	Bott: brown – grey silt							
ŝ	2491	SS	4.0	4.5					(2	85	13	6		13	ML	Do(very stiff)	0.05			e.	4,0	9	2
9	2492	SS	5.5	6.0		42	20							28	С	Very stiff brown - grey lean clay					-		
~	2493	٥	6.0	0.7 -					(18	42	40	6		ı	5	Brown - grey sandy lean clay	• • • •						
80	2494	P	7.0	7.5	25	25	36						-	1	CH	Stiff green fat clay							
6	2485	SS	7.5	8.0										42	Ċ	Hard brown lean clay	0.22	<u>.</u>			6	\$	
6	2496	8	9.0	9.5					(37	8	ß	6		46	ы	Do						-	
F	2497	٥	9.5	10.5										1	С	å		3	1				
5	2498	>	10.5	11.0					-	-1-	93	6		,	WS-dS	Light green sand with silt	1.0			-	12	-	16
13	2499	SS	11.0	11.5										17	SP-SM	Do(medium)						1	
14	2500	SS	12.5	13.0					·ٺ	-17-	83	6		23	SM	Medium light green sifty sand							
15	2501	۵	13.0	14.5		56	21						1		HW	Grey elastic silt				-676	1000	-	
16	2602	SS	14.5	15.0					(35	57	හ	6	10476 10550	50/6"	ы	Top: Herd grey lean clay			-				
															ป	Bott do(moderately gypseous)	3.91		13	153			
11	2503	0	15.5	16.0		43	25							4	СГ	Light greon lean clay							
18	2504	SS	16.0	16.5					(34	52	14	6		50/6"	ช	Do(hard)	0.75			4	8.1		181
19	2505	SS	17.5	18.0										50/6"	ե	Do							
20	2506	SS	19.0	19.5										20/02	ರ	Top: do					-		
				_					0)	8	01	6	-		SM	Bott:Very dense light brown sifty sand			-	-	-	-	

E	4-	2			ថ	8		6.8.9				0.8			62.0	
0-34	the state			ſ	Ŧ	T	+	7.42				7.65			7.36	
			fests	F	CaCos	*		7.6				50.0				
			lical 1		GYP	%								Ю.		
GE			Chen		ORG	*				- 10 						
BRU			č	-	T.8.S	*						<u>.</u>				
WA.		1		T	ŝ	*		0.81		3,22		0.45			0.24	
T:-NORTH SAMA		11		rintion of Soil				ayish blue sitty sand			an clay	sand)		en sifty clay with sand		
PROJEC		B.H.No.:		Deer			å	Very dense gr	å	8	Light green let	Do(hard, with :	8	Hard light gree		
		IS			Notime		SM	SM	SM	SM	ซ	ರ	ฮ	CL-ML		
		RESUL	SPT	×٩.	val.		50/4"	50/6"	5015	\$3/6°		50/6"	50/5	50/5"		യ പ്ര
		EST		-	3										_	N.N.
		LAOC	ution &	ysis	Gravel	%		6	1			6		6		1 055 m. be
	SS	COR	listrib	r ana	Sand	*		69				53		1		aler = 2
	ONLA	RE	le size d	dromete	뷺	%		35				8		2		no punouti
1	UCTI		Partic	Ţ	Clay	2		0)			526.6	(19		(11		o ulicia
	STR				Ē	*							_			
ION	CON		perty		7						6			10.000		
UCT	Η&		ex Pro	1	a.	-					-	-	-		-	
STR	ARC		pul	1	1	*					ě			_		
CON	LESE		0.00	M	70	2										
6.6	ORE		of		<u>۽</u>	Ę	21.0	22.5	24.0	25.5	26.5	27.0	28.5	30.0	٩	
USIN	ER F		Jepth	Sampl	Ę	Ë	0.5	2.0	23.5	25.0	26.0	26.5	28.0	29.5	r samp	
F HO	ENT				ype F			ss a	SS	SS	0	SS	SS	SS	Wate	
rry o	NAL (0		- 0		507	208	605	510	511	512	513	514	544	
INIS,	ATIO		mple		Ed Lai	No			3	1	10	8	7 2	17	0	
Z	Z		S		퍞	ž		2	2	ñ	N	Ñ	N	2	20	

	OUT & NUMERICAL STORY GOAD GOA CHOMMEN	OUT & INCRUSIANUE O MORE STAR GOA GOA	OUT INVITATION & CONFIRMENTATION & NOT A DEST	OUT & INCLUSION OF ONCO S NOT & A DO	OUT & NORTHANDOR & NOT	A CONCIDENTIAL A DO	NOTIONAL & NOTIONAL PROPERTY	NUMBER OF A DO	OU Y Y DO	90											5	Ş
õ	NAL	CENT	ERF	OKK	ESEA	KCH	5	IISU	KUCI	NUL R	ECOB	D OF T	ESTR	LIUSE	8	B.H.No.:- 2						71
00	-		Depth	of		Index	Prope	sty	Parti	cle size	distrib	ution &		SPT				0	hemic	al Test	w	
- 1	-	0	Sampl	9	ן א				Ŧ	rdromet	er ana	lysis	2	"N	1	Description of Soil		ŀ	F	-	Ĺ	1
<u>, a</u>	e de	ype Fr	mo	τo	8	E	Ē.	Lsh	Clay	NS .	Sand	Gravel	S	val.	ayerood		SO3	15.5 0	RG GY	P CaCo	H4 8	5
Ź			É	ε		*	%	%	%	*	*	%	-				14	25	8	8	_	8
										Boreho	le No.	2	۵	ev.=11.	537m.			-	-	1	_	
32	15	0	0.0	1.5					6	8	5	6		,		Fill layer of (silt,sand,cley)	2,21				_	
25	16	SS	1,5	2.0				+					-	20	100	Do(very stiff)						
25	4		2.5	3.0	\$	40	16	60	12					1	บี	Very stiff brown loan clay	0.45	_	3	8	7.93	2211
25	16	SS	3.0	3.5					(34	64	2	6		40	ъ	Do(hard)						
25	19	0	3.5	4.5		53	33						-	1	Э	Brown fat clay			-			
25	20	SS	4.5	5.0					8	60	•	6		16	ช	Very stiff brown lean clay		1				
25	51	2	6.0	6.5	25	62	37							•	сн	Very stiff brown fat clay		-	_			
25	8	8	6.6	7.0					8	76	-	6		54	CL	Hard brown lean clay		-				
33	53	2	8.0	8.5	27	53	36			et:			-	1	Ч	Stiff green fat clay	0.1	0	141	21.5		0.1
25	124	SS	8.5	9.0										2	ß	Top: do (hard)		-				
	×.								-	-16-	84	6			WS	Bott: very dense light green slity sand						
30	25	0	0.6	10.0										T	SM	Do					-	
25	126	SS	10.0	10.5					~	4	85	6		ଞ୍ଚ	WIS	Do(densc)	0.1			20.3		9
25	27	SS	11.5	12.0										4	WS	Do					1016	-
52	528	SS	13.0	13.5					_	φ	8	6		4	SP-SM	Dense light green sand with silt			-			<u></u>
28	529	0	13.5	14.5)			,	SP-SM	Do			1		_	211
23	30	SS	14.5	15.0					_	-10	8	6		50/6"	WS-dS	Do (V.dense)						500
25	831	0	15.0	16.0				1	1					,	SC-SM	Light green silty clayey sand	67,0		-		8.15	
26	532	SS	16.0	16.5					(2	28	67	6		50/5*	SC-SM	Do(very dense)						-
33	233	SS	17.5	18.0										50/6"	SC-SM	Top: do						-
		Ň		er sv Fil						-11-	68	6			WS-dS	Bott : very dense light groen sand			-			
																with silt				-		-
3	534	SS	19.0	19.5	1000								_	50/6"	SP-SM	8	0.1	-	-	_	_	

	-				-									_	-	102911	
4	2			ರ	*			11	-		+	0.12				0.32	
10				H								53	ŧ.			1.25	
		ests		CaCos	*							16.0					
		ical T	Ī	GYP	%			47.3	11-	140-15						AT 6454	
19		hem	ſ	ORG	8			6.6			1				100	51455	
SKII		0	ſ	5.5	*									-			
e .			ł	\$0, 1	*			E	-		10			-	2	5	
MA								23				-				•	
FROJECT:- NORTH SA	B.H.No.:- 2		Decembrican of Coil			Light brown highly gypseous lean	clay	Do (hard)	Light green sand with silt	Do(very dense)	å	Do	Do	Very dense light green sitty sand	Do		
+	SL			symbol		CL		ษ	WS-dS	NS-SM	SP-SM	WS-SM	SP-SM	SM	SM		
	RESUL	SPT	"N,	· val.		1		50/5	ſ	50/6"	50/5.	\$0/4	50/6*	50/5"	50/5"		о С
	EST		1	3													2 . B
	DOFT	ution &	ysis	Gravel	*					6		6		6			ас 1. 1. 28 20 20 20 20 20 20 20 20 20 20 20 20 20
s	COR	istrib	anal	Sand	8					8		61		87			ຕ. ແ ເ
LAI	RE	ize d	neter	#									••••••		(
NOL		icle s	ydror	Ø						루.		ф.		-13-			705
LOU		Part	T	Clay	*					~				-			Septh c
STR.		y		Lsh	8			0.007							100		
CON		opert		=		00	1.0		-		-						
H&		ex Pr	}	п.	-						2010		_				
ARC		Ind		F	%	36				_							1
LESE COV		UM	N.C	70	2					3							
OR R		of		2	É	20.5		21.0	22.0	22.5	24.0	25.5	0.73	28.5	30.0	-	
RF		epth	ample	E		0		1.5	0.1	0	3.5	0.5	5.5	0.5	3.5	sample	
HOH			ŝ	Fre	-	3		20	3	2	8	N	1 26	2	X	Water	
L C			1	5		0		SS	0	SS	SS	SS	SS	SS	SS		
LIONA		ples		1.ab	U.N.	2535		2536	2537	2538	2539	2540	2541	2542	2543	2545	·
NA		San		Field	NO.	2		53	33	54	25	26	21	58	53	8	

REPORT NO. 1/1/47/2004-BAGHDAD Al-Hillal Bridge at Samawah

REPORT NO. 1/1/47/2004-BAGHDAD

Al-Hillal Bridge at Samawah

Content

Page 1 - INTRODUCTION A6-71 1-1 Authorization and Scope A6-71 1-2 Site Location and Description A6-71 2 - FIELD EXPLORATION A6-71 2-1 Drilling and Sampling A6-71 2-2 Number of Boreholes A6-71 3 - LABORATORY TESTING A6-72 4 - SUBSOIL STRATIFICATION A6-73 4-1 Soil Profile A6-73 4-2 Underground Water Level A6-75 5 - EVALUATION AND DISCUSSION OF RESULTS A6-76 5-1 Atterberg limits Test Results A6-76 5-2 Chemical Tests A6-76 5-3 Strength of the Soil A6-76 5-4 Consolidation Test Results A6-77 6 - GENERAL RECOMMENDATIONS A6-78 6-1 Type of Footing A6-78 6-2 Depth of Footings A6-78 6-3 Length of Piles A6-78 6-4 Loading Test for Piles A6-78 6-5 Type of Cement ······ A6-78 6-6 Dewatering A6-79 6-7 Type and Depth of Foundation A6-79 6-8 Precautions Due to Sulphate and Chloride Content A6-79

APPENDICES

Record of Test Results	A6-81
Borehole Logs ·····	A6-84

Report No. 1/1/47/2004 - Baghdad

Al-Hillal Bridge at Samawah

1- INTRODUCTION

1-1 Authorization and Scope

The soil investigation for this project has been conducted by the Directorate of Soil Investigations / National Center for Construction Laboratories and Research (NCCLR) - Baghdad according to the contract with "Dar Al-Handasah Group" dated at 29/9/2004.

The soil investigation described in this report consists of drilling the boreholes, securing representative samples, testing these samples and analyzing the soil conditions with test results.

1-2 Site Location and Description

The site is located in Samawa City. The locations of boreholes are on the banks of Ehlail River. Since the site is generally banks of river, there are differences in the level of borehole location as shown in Table (1).

2- FIELD EXPLORATION

2-1 Drilling and Sampling

Drilling was done using flight auger. The drilling rig used is of (Acker) type, which is a power driven machine. The diameter of drilled boreholes was (15.0) cm. The disturbed samples (D) were collected from the cutting of auger at any depth. The undisturbed samples marked (U) were obtained using Shelby tubes. Split spoon samples (SS) were obtained from standard split spoon used in a Standard Penetration Test (S.P.T), which was performed for each test boring at different intervals depending on the stratification of the soil.

The actual depth for all samples and the N-values for S.P.T. are shown in the record of test results sheets of this report.

2-2 Number of Boreholes

Four boring points were assigned and located by the concerned authorities. These boring point were drilled by (NCCLR), to different depths. Boreholes (B.H.1, B.H.3 and B.H.4) were drilled to a depth of 30 m., while borehole (B.H.2) was drilled to a depth of 40m. The location of these boring points is marked on the site plan at Fig. (1).

Fig.1: Site plan for boreholes location

3 - LABORATORY TESTING

Each of the soil samples received by the laboratories of the Directorate of Soil Investigations NCCLR / Baghdad was given a laboratory number. The samples of each borehole were visually examined for initial classification before laboratory testing.

The soil engineer decided the test program. The actual test proposed for a particular sample depends on the type of sample (SS, U & D) and the nature of its material. A full list of tests conducted for this project is:

A - Classification Tests

- Atterberg limits (L.L, and P.L).
- Natural moisture content.
- Unit weight (natural and dry).
- Grain Size Analysis (sieve and hydrometer).

B- Chemical Tests

- Sulphate content (SO₃ %).
- PH value.
- Gypsum content (%).
- Chlorite content (Cl %).
- Carbonate content CaCO₃.

<u>C - Strength and deformation Tests</u>

- Unconfined compression test.
- Direct shear test.

D- Consolidation Test

The results of these tests are shown in the record of test - result sheets appended.

4- SUBSOIL STRATIFICATION

4-1 Soil Profile

According to the Unified Soil Classification System (USCS), the subsoil profile can be summarized as follows:

For boreholes (1 & 2) (Left Bank)

The first soil layer consists of very stiff brown sandy elastic silt with little gypsum and little shells of fossil and O.M. This layer revealed in general down to (5.0 - 7.0) m. below N.G.L for boreholes (1 & 2) taking into consideration the difference between the level of their locations.

At the top of this layer, a layer of brown sandy silt with little shells of fossil was appeared in borehole (1).

- Below the first layer, a layer of medium to very dense grey silty sand was observed. This layer extends to (6.0 11.0) m. depth.
- A layer of hard brown silty fat clay with O.M. represents the third layer. This layer follows the above layer and extends to (12.0) m. depth.
- The fourth layer consists of very dense grey silty sand. This layer extends to (15.5 18.5) m. depth. A layer of hard grey clayey sandy elastic silt was appeared at the top of this layer in borehole (2).
- A layer of (10,0) m. thickness was followed the fourth layer. This layer consists of hard light brown to light green sandy elastic silt with little to high gypsum. A layer of very dense light green silty sand was appeared through this layer at a depth of (19.0 21.0) m in borehole (1).
- The last layer consists of two parts. The first one is a layer of hard grey silty fat clay extends to the depth of (30.0) m., which is the end of boring of borehole (1). In the second part the soil is hard grey sandy elastic silt extend from (30.0) m. depth to the end of boring of borehole (2) which is (40.0) m. depth.

Details of soil stratification for boreholes (1&2) are shown in the "Borelogs" appended and the "soil profiles" at Fig. (2).

For boreholes (3 & 4) (Right Bank)

- The first soil layer consists of very stiff to hard brown clayey silt with sand. This layer revealed in general down to (4.0 8.5) m. below N.G.L. for boreholes (3 & 4) taking into consideration the difference between the reduced levels of their locations. Also a lense of (0.5 1.0) m. thickness of brown lean to fat clay with sand was appeared at this layer.
- Below the first layer, a layer of hard brown silty lean to fat clay was observed. This layer extends to (13.0 15.0) m. depth. A layer of very dense grey silty sand was appeared through this layer at a depth of (4.0 4.5) m. and (10.5 11.0) m. in borehole (3).
- The third layer consists of dense to very dense grey silty sand. This layer follows the above layer and extends to (17.0 19.0) m. depth. At the bottom of this layer a lense of (1.5) m. thickness of very dense clayey sand with silt was observed in borehole (4).
- The last layer consists of hard brown silty fat clay with little gypsum. This layer extends to the end of boring at (30.0) m. depth. A layer of hard grey elastic silt with clay and sand was observed in boreholes (3 & 4) respectively.

Details of soil stratification for boreholes (3 & 4) are shown in the "Borelogs" appended and the "soil profiles" at Fig. (3).

Fig. 2: Soil profile through boreholes (3 & 4)

4-2 Underground Water Level

The depth of underground water level was measured from the top surface of each borehole. This depth was measured after 24 hours from drilling termination at the time of boring (September /2004). However, it should be mentioned here that this level might be fluctuated during the coming seasons. The elevation of boreholes and the depth of water are shown in Table (1).

B.H. No.	Elevation (m)	Depth of W.T (m)
1	10.269	1.85
2	12.379	3.95
3	11.669	3.25
4	10.069	3.65

Table (1); Elevation of boreholes and the depth of water

5- EVALUATION AND DISCUSSION OF RESULTS

5-1 Atterberg limits Test Results

Record of test result sheets shows the values of liquid limit (L.L.), plastic limit (P.L), plasticity index (P.I.) and moisture content (M.C.) at different depths for all boreholes.

The results of the tests evidence that the soil of the boreholes shows medium to high plasticity.

On the other hand, it can be seen that the value of moisture content is closer to plastic limit than to the liquid limit. This trend suggests that the cohesive layer is over consolidated.

5-2 Chemical Tests

The results of the chemical tests for soil and water samples are shown in the "Test Results Sheets".

Examination of these results reveals that the amount of chemical agents which are normally aggressive to reinforce concrete (i,e, sulphates (SO₃) and chloride are very small in all depth except in depth (17.5) - (22.5)m., where the sulphate content varies from (4.45) - (14.38) %). The sulphate content varies from (0.10) - (1.17) %, while the chloride content varies from (0.07) (1.38) %. The PH value varies from (7.05) - (8.56).

5-3 Strength of the Soil

Table (2) summarized the results of the unconfined compression test and the results of natural and dry densities for the cohesive soil layer. From this table, it is observed that the unconfined compression strength of the cohesive soil layers ranged from (55 to 500) kPa and is consistent with medium to hard soil. This is also compatible with results of standard penetration test (S.P.T).

BH. No.	Depth (m.)	$Qu kN/m^2$	γ wet kN/m^3	$\gamma dry kN/m^3$
1	4.0 - 4.5	443	19.4	15.8
	3.5 - 4.0	386	19.3	15.6
2	6.0 - 6.5	333	19.6	15.6
	9.0 - 9.5	310		
	1.5 - 2.0	55	19.1	15.0
3	3.5 - 4.0	102	19.1	14.9
	8.0 - 8.5	500	19.1	15.6
4	4.5 - 5.0	175	19.1	15.0
+	8.0 - 8.5	356	20.0	16.4

Table 2: Unconfined compression test results with depth

For the cohesioless soil layer, the results of direct shear (c, \emptyset) and number of blows of standard penetration test (S.P.T) indicate that the relative density of this soil layer is medium to very dense. The results of the direct shear test are shown in Table (3).

BH. No.	Depth (m.)	c (kN/m^2)	Ø (Degree)	γ wet kN/m^3	$\gamma dry kN/m^3$
1	9.0 - 9.5	0	41	19.4	16.7
1	14.5 - 15.0	0	35	19.4	17.3
	11.5 - 12.0	0	36	19.4	16.5
2	14.0 - 16.0	0	33	19.4	16.8
	16.0 - 16.5	0	32	19.4	16.7
3	10.5 - 11.0	0	35	19.4	16.4
4	12.5 - 13.0	0	26	19.4	16.3

Table 3: Direct shear test results

5-4 Consolidation Test Results

The results of consolidation test are presented as preconsolidation pressure (Pc), swelling pressure (Ps), initial void ratio (eo), compression index (Cc) and rebound or swelling index (Cr) in Table (4).

It can be seen that the value of Cc ranged from (0.14) to (0.24) while the values of (Cr) ranged from (0.017) to (0.060). The variations of the overburden pressure (Po) and the over consolidation ratio (O.C.R) with depth are also presented in Table (4). As can be seen the soil layer is in general over consolidated with the values of (O.C.R) decrease with depth.

B.H No.	Depth (m.)	Po kN/m ²	Pc KN/m ²	O.C.R	$\frac{Ps}{kN/m^2}$	Void ratio e _o	C _c	C _r
1	1.5 - 2.0	36	250	6.94	95	0.486	0.14	0.036
1	6.5 - 7.0	139	360	2.59	110	0.639	0.21	0.050
	3.5 - 4.0	72	200	2.8	80	0.648	0.17	0.053
2	6.0 - 6.5	123	200	1.63	35	0.755	0.20	0.043
	9.0 - 9.5	168	170	1.01	30	0.711	0.15	0.047
	1.5 - 2.0	34	300	8.82		0.636	0.16	0.017
3	3.5 - 4.0	72	250	3.47		0.837	0.24	0.53
	8.0 - 8.5	169	190	1.12		0.607	0.15	0.050
	4.5 - 5.0	91	240	2.64		0.793	0.19	0.050
4	8.0 - 8.5	167	310	1.86	55	0.668	020	0.060
	12.5 - 13.0	196	220	1.12		0.793	0.17	0.040

Table 4: Consolidation parameters with depth

6- GENERAL RECOMMENDATIONS

No design data was provided by the concerned authority, therefore the following recommendations are made according to field and laboratory tests.

6-1 Type of Footing

Deep pile foundation should be used for the bridge. Reinforced concrete large diameter bored piles are recommended. The diameter and allowable working load for the suggested piles at each borehole location are shown in Table (5).

Dia of Pilos (m)		Allowable Work	king Load (Ton)	
Dia. 0f 1 lies (m).	B.H.1	B.H.2	B.H.3	B.H.4
1.0	200	350	250	200
1.5	400	500	400	400

Table (5) Details of suggested piles

The working load of piles are based on the strength of concrete cylinder (1:1.5:3) of (15) cm in diameter and (30) cm. in height cured for 28 days in water giving a crushing strength of not less than (2200) ton/ m^2 .

6-2 Depth of Footings

The top of the cap of piles should be at least (2) m. below N.G.L at each Structure location in order to minimize the scour effect of water against the footing during the flooding time.

6-3 Length of Piles

Examination of soil profile through boreholes shows that the sub-soil strata are predominantly silt and clay. Therefore no other economical way rather than using friction piles in cohesive strata. Each single pile should be at least (22) m. in its effective length (below the bottom of the cap).

6-4 Loading Test for Piles

Loading test should be performed in the site for both single and group action if possible. The lower results in both the working load per a single pile and the resulting settlement between our recommendations and the loading test results should be adopted.

6-5 Type of Cement

- The sulphate resisting cement is recommended to be used for concrete works in a touch with the soil.
- The amount of cement content is 420 kg/m^2 .
- Maximum free water / cement ratio is 0.45 by weight.

- Vibrators should be used in order to density the fresh concrete.
- Minimum concrete over of (7.5) cm. is recommended to protect reinforcement from chloride effect.

6-6 Dewatering

During construction of foundation, the ground water should be pumped out until the construction reaches ground level.

6-7 Type and Depth of Foundation

Precast or bored piles are recommended to be used. The depth of piles should be at (14.0) m. below (N.G.L). The pile cap should be at (2.0) m. below natural ground surface (N.G.S).

The working load of piles shown at table (4) is based on the strength concrete cylinder (1:1.5:3) of 6" diameter and 12" in height cured for 28 days in water giving a crushing strength of not less than (3000) psi. The tips piles should be at 12.0 m. depth.

Type of pile	Diameter (m.)	Allowable working load (tons)
Precast	0.28 x 0.28	35
Bored	0.6	100
Bored	0.8	220
Bored	1.0	300

Table 4: Details of suggested piles

Pile test should be carried out in site. The least results between our recommendations and the test results should be adopted for the working loads.

During construction, the under ground water should be pumped out until the construction reaches ground level.

6-8 Precautions Due to Sulphate and Chloride Content

- Sulphate resisting cement is recommended to be used for foundation.
- Minimum cement content is 420 kg/m³.
- Maximum free water / cement ratio is 0.45 by weight.
- Vibrators should be used in order to densify fresh concrete.
- Coating of bottom and sides of foundations with three layers of bituminous material should be carried out.

Abbas J. Al-TAie Engineer HISHAM F. RAZOUKI Head of Soil Dept.

TAHA Y. ABDULNABI Director of Soil Inv.

				CL %			0.07						0.09									0.42									0.14	
nawa				Hd			7.83						8.56																		7.05	
at San			al Tests	ORG %																												
ridge			Chemic	GYP %																		1.59	8.77									
illal B				CaCo ₃ %														29.2			42.9	34.0										
- Al H				SO_3			0.57						0.22					0.1				0.75	4.45								0.18	
PROJECT:		B.H.No.:- 3		Describinon of Soli	.669 m.	Brown sandy elastic silt	Br.silty lean clay with sand	Hard br. Elastic silt with clay & little sand	Do(with little gypsum & O.M)	Top: do	Bott: dense grey silty sand	Hard brown silty fat clay	Do	Do	Grey silty sand	Top: do	<u>Bott: hard brown silty lean clay</u>	Do	Very stiff brown silty lean clay	Very dense grey silty sand with clay	Do	Hard brown sandy silt with gypsum	Light green sandy silt with little gypsum	Hard light green sandy silt with clay	Hard light green sandy clayey silt	Hard brown silty fat clay with sand & little gypsum	Hard nrown silty lean clay with sand	Hard brown silty fat clay	Do	Hard grey silty fat clay with sand		
		NLTS	1 1 0	oymoor	0n = 11.	HM	CL	НМ	ΗМ	ΗМ	SM	CH	СН	СН	SM	SM	CL	CL	CL	SM	SM	ΗМ	НМ	НМ	НМ	CH	CL	CH	CH	CH		
	RCH	FRES	SPT (a.i.,	val.	Elevati	ł	ł	35	ł	43		49	I	57	I	49		30	50/6"	50/6"	50/6"	50/6"	50/6"	50/6"	50/6"	50/6"	50/5"	50/6"	50/6"	50/5"		
	ESEA]	TES1	Ċ	5																												w N.G.S
	ES & R	RD OF	n & s	Gravel %		()	()		()		()		()		6			(0		(0		()		()	()			()		()		25 m. belo
	FORI	RECC	istributic r analysi	Sand %	e No. 3	48	5		5		60		0		45			ю		68		40		49	28			4		15		ater $= 3.5$
	ORA		le size d dromete	Silt %	Borehol	52	76		85		33		64		55			52		21		60		45	47			56		48		round w
Ð	N LAB		Partic Hy	Clay %		0	(19		(10		۲)		(34		0			(45		(11		0		9)	(25			(40		(37		epth of g
JISUC	CTIO		ty	L.sh %																												D
H & H	TRU		x Proper	P.I %			22	37		32			28	31			20		22				27			38	32		33			
NOIL	CONS		Inde	L.L %			42	64		55			50	54			38		40				51			61	39		62			
TRUC	FOR			J.M.C			26		30				22.1																			
ONS	VTER		th of 1ple	To m.		1.5	2.0	2.5	4.0	4.5		6.5	8.5	9.0	11.0	11.5		13.0	13.5	15.5	17.5	19.5	21.0	21.5	23.0	25.0	26.5	27.5	28.0	30.0	ple	
7 OF (L CE		Dept	From m.		0.0	1.5	2.0	3.5	4.0		6.0	8.0	8.5	10.5	11.0		12.0	13.0	15.0	17.0	19.0	20.0	21.0	22.5	24.5	26.0	26.5	27.5	29.5	ater sam	
STR	IONA		E	1 ype		D	D	SS	D	\mathbf{SS}		SS	D	\mathbf{SS}	D	SS		D	SS	SS	SS	\mathbf{SS}	D	SS	SS	SS	SS	D	SS	SS	W	
INIM	IAT		nples	Lab No.		2432	2433	2434	2435	2436		2437	2438	2439	2440	2441		2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2485	
			San	Field No.		1	7	б	4	5		9	7	8	6	10		11	12	13	14	15	16	17	18	19	20	21	22	23	24	

MIN	VISTR	Y OF (CONS	TRUCT	ION	& HC	NISU	Ð							PROJECT:-	Al Hi	llal Br	idge a	it Sam	awa	
IA]	FIONA	L CEI	NTER	FOR C	ONS	FRUC	NOIL	I LAB	ORAJ	FORH	ES & R	ESEA	RCH								
										RECO	RD OI	TEST	F RESI	STIC	B.H.No.:- 4						
Samples	Ē	Dep San	th of nple		Index	Proper	ty	Particle Hyc	e size d	istributi r analys	on & is	ć	SPT SPT	lo dan 1				Chemic	al Tests		
Field Lat No. No.	1 Jpe	From m.	To m.			P.I %	L.sh %	Clay %	Silt %	Sand 6 %	Gravel %	5	val.	ymbol	nescription of Sou	$^{SO_3}_{\%}$	CaCo3 %	GYP %	ORG %	Hd	% CL
								B	orehol	e No. 4			Eleva	tion = 1	2.069 m.						
1 245.	5 D	0.0	1.0					(25	99	٢	2)			ΗΗ	Brown clayey silt with sand						
2 245	6 SS	1.0	1.5										22	ΗΗ	Very stiff br. clayey silt with sand	0.25	34.5				1.38
3 245	7 D	1.5	2.5					(29	73	٢	(0		ł	ΗH	Do.						
4 245	8 U	2.5	3.0	- 1	55	34		(36	59	5	(0		ł	CH	Br. silty fat clay with sand						
5 245	9 SS	3.0	3.5		51	29							34	CH	Do. (hard)	0.88	31.7				0.14
6 246	0 0	3.5	4.0					(26	67	7	(0		1	ΗH	brown clayey elastic silt with O.M						
7 246	1 U	4.5	5.0	28	64	36							1	ΗН	Do						
8 246.	2 SS	5.0	5.5					(15	80	5	(0		17	HМ	Do						
9 246.	3 SS	6.5	7.0	-	62	41							62	CH	Hard brown silty fat clay	0.2					0.12
10 246	4 U	8.0	8.5	22.1				(24	74	7	(0		ł	ΗH	Hard Br. clayey elastic silt with O.M						
11 246.	5 SS	8.5	9.0	- ,	51	28							69	CL	Hard Br. silty lean clay with O.M						
12 246	6 D	9.0	10.0	7	48	31		(39	57	4	6		1	CL	Do.						
13 246	7 SS	10.0	10.5	7	41	23							64	CL	Do.	0.26					0.12
14 246	8 SS	11.5	12.0										62	SM	Very dense grey silty sand						
15 246	9 U	12.5	13.0	26				(10	51	39	(0			SM	Top: Do.						
														CL	Bott .: Brown lean clay						
16 247	0 SS	13.0	13.5										32	CL	Top: Do.						
		_												SM	Bott.: Dense grey silty sand						
17 247	1 SS	15.0	15.5					(- 22	1	78	0		50/6"	SM	Very dense grey silty sand						
18 247.	D	15.5	16.5		59	39								SC	Very dense clayey sand with silt						
19 247.	3 SS	16.5	17.0					(24	16	60	6		50/6"	SC	Do.	0.36	32.7				0.36
20 247.	4 D	17.0	18.5		53	34								СН	Hard light green silty fat clay with sand and little gypsum						
21 247.	5 SS	18.5	19.0					(42	40	18	(0		50/6"	CH	Do.						
22 247.	6 D	19.0	20.5	- 1	51	27								CH	Do						
23 247	7 SS	20.5	21.0					(23	59	18	()		50/6"	CH	Do.						
24 247.	8 SS	22.5	23.0	•	60	33							50/5	CH	Hard br.silty fat clay with little sand and little gypsum	0.66	21.0				0.25

				% CL				0.07			0.15		
awa			_	Hd							7.34		
t Sam			al Tests	ORG %									
idge a	D		Chemica	GYP %									
llal Br)	CaCo ₃ %				25.0					
Al Hil				${}^{\mathrm{SO}_3}_{\%}$				0.25			0.24		
PROJECT:-		B.H.No.:- 4	Decorintion of Soil		Do.(with trace of sand)	Do.	Do.	Do.	Do.	Hard grey silt with little sand and clay			
		OLTS	lodant	mante	CH	CH	CH	CH	CH	HIM			
	RCH	FRESI	SPT ''''	val.	1	50/6	50/5	50/6		50/5		 S.S	
	ESEA	FTES	^e	3								 low N.C	
	ES & R	ORD O	ion & sis	Gravel %	(0		(0		(0	(0		 .65 m. be	
	TORI	RECO	listribut er analy	Sand %	5		7		б	15		 a ter = 3	
	30RA		le size c dromet	Silt %	60		65		62	74		 n puno	
Ŋ	N LAI		Partic Hy	Clay %	(35		(33		(35	(11		 oth of g	
OUSI	CTIO		erty	L.sh %								 Del	
N & H	STRU		ex Prop	P.I 1.4		45		31					
CTIO	CON		Inde	L.L %		65		57					
STRU	R FOR		U M	М									
CON	NTEF		pth of mple	n To m.	24.5	25.0	26.5	28.0	29.5	30.0	mple		
Y OF	AL CE		De	Fron.	23.0	24.5	26.0	27.5	28.0	29.5	rater Sa		
ISTR	ION		T	1 yr	D	SS	SS	SS	Ω	SS	M		
NIW	NAT		mples	d Lab No.	2479	2480	2481	2482	2483	2484	2486		
			Sa	Fiel(No.	25	26	27	28	29	30	31		

A7-87

REPORT NO. 1/1/53/2004-BAGHDAD Al - Majid Bridge in Samawah

REPORT NO. 1/1/53/2004-BAGHDAD

Al - Majid Bridge in Samawah

Contents

	Page
1 - INTRODUCTION	··· A6-90
1-1 Authorization and Scope	··· A6-90
1-2 Site Location and Description	··· A6-90
2 - FIELD EXPLORATION ······	··· A6-90
2-1 Drilling and Sampling	··· A6-90
2-2 Number of Boreholes	··· A6-90
3 - LABORATORY TESTING	··· A6-91
4 - SUBSOIL STRATIFICATION	···· A6-92
4-1 Soil Profile	··· A6-92
4-2 Underground Water Level	··· A6-93
5 - EVALUATION AND DISCUSSION OF RESULTS	··· A6-93
5-1 Strength of the Soil	··· A6-93
5-2 Consolidation Test Results	··· A6-93
5-3 Atterberg Limits Test Results	··· A6-94
5-4 Chemical Properties	··· A6-94
6 - GENERAL RECOMMENDATIONS	···· A6-94
6-1 Type OF Footing	··· A6-94
6-2 Depth of Footings	··· A6-95
6-3 Length of Piles	··· A6-95
6-4 Working Load per a Single Pile	··· A6-95
6-5 Loading Test for Piles	··· A6-95
6-6 Settlement	··· A6-95
6-7 Type of Cement	··· A6-95
6-8 Dewatering	··· A6-96

APPENDICES

Record of Test Results	A6-97
Borehole Logs ·····	A6-99

REPORT NO. 1/1/53/2004 - BAGHDAD

Al - Majid Bridge in Samawah

1- INTRODUCTION

1-1 Authorization and Scope

The soil investigation for this project has been conducted by the Directorate of Soil Investigation / National Centre for Research & Construction Laboratories (NCCLR) - Baghdad according to the contract with "Dar Al-Handasah "dated at 31/ 10/2004.

The soil investigation described in this report consists of drilling the boreholes, securing representative samples, testing these samples and analyzing the soil conditions with test results.

1-2 Site Location and Description

The site is located at Al- Muthanna governorate specifically at Samawah city which is far from Baghdad city of about 271 Km. (south - west) .The Euphrates river pass through Al - Samawah city then divided into two small rivers (Al Majid & Al Atshan). The site is located at the two banks of al-Majid River.

2- FIELD EXPLORATION

2-1 Drilling and Sampling

Drilling was done using flight auger. The drilling rig used is of (Acker) type, which is a power driven machine. The diameters of drilled boreholes were (15.0) cm. The disturbed sample (D) were collected from the cutting of auger at any depth .The undisturbed samples marked (U) were obtained using Shelby tubes. Split spoon samples (SS) were obtained from standard split spoon used in a Standard Penetration Test (S.P.T), which was performed for every test boring at different intervals depending on the stratification of the soil.

The actual depth for all samples and the N-Values for S.P.T. are shown in the record of test results sheets of this report.

2-2 Number of Boreholes

Two boring points were assigned and located by the concerned authorities at the locations of abutments (one borehole at each river bank). These boring points were drilled to the depth of (30.0) me. The locations of these boreholes are marked on the site plan at (Fig.1).

Fig. 1: Site plan for borehole locations

3- LABORATORY TESTING

Each of the soil samples received by the laboratories of the Directorate of Soil Investigations Baghdad was given a laboratory number.

The samples of the borehole were visually examined for initial classification before laboratory testing.

The test program was decided by the soil engineer. The actual test proposed for a particular sample depends on the type of sample (S.S, U & D) and the nature of its material.

A full list of tests conducted for this project is:

A - Classification Tests

- Atterberg limits (L.L, P.L).
- Grain size analysis (sieve and hydrometer analysis).
- Linear shrinkage limits (L.S).
- Unit weight (natural and dry).
- Natural moisture content.

B- Strength and Deformation Tests

- Unconfined compression strength.
- Direct shear test.

C- Consolidation Test

D- Chemical Tests for Water and Soil Samples

- Sulphate content (SO₃ %).
- Chloride content (Cl %).
- PH value.
- Calcium carbonate (CaCo₃ %)
- Organic matter (ORG%).

The results of these tests are shown in the Record of "Tests Result sheet "appended.

4- SUBSOIL STRATIFICATION

4-1 Soil Profile

According to the unified soil classification system (USCS), the subsoil profile for each borehole location can be summarized as follows: -

Borehole No.1 Location (Um Al- Kaf District)

- The upper soil layer consists of stiff to hard brown silt with sand and clay (ML) changes to lean clay (CL). This layer extends from (N.G.S) to (9.0) m. depth. A length of (1.0) thick of loose grey silty sand (SM) was observed.
- The second soil layer consists of medium to very dense grey silty sand (SM) to sand with silt (SP). This layer extends below the above layer to a bout (18.0) m. depth and sometimes mixed with gypsum.
- The third soil layer consists of hard brown fat clay (CH) which extends to (22.0) m.
- The last soil layer is very dense grey silty sand (SM) sometimes mixed with gypsum. This layer extends to the end of boring of (30.0) m.

Borehole No.2 Location (Al- Majid District)

- The upper soil layer consist of stiff to hard brown lean to fat clay (CL,CH) change to silt with sand & clay (ML) or elastic silt (MH). This layer extends from (N.G.S) to (22.0)m. depth.
- The second soil layer consists of very dense grey silty sand (SM). This layer was observed below the above layer to end of boring of (30.0) m.

4-2 Underground Water Level

The underground water level was encountered at a depth of (3.25) at the location of borehole (1), and at a depth of (3.05) m. at the location of borehole (2) below natural ground surface (N.G.S) after 24 hours from drilling termination at the time of boring (November /2004). This level may fluctuate during the coming season due to the fluctuation of water level in the Euphrates River.

5- EVALUATION AND DISCUSSION OF RESULTS

5-1 Strength of the Soil

For the cohesive soil layer, the results of the unconfined compression tests and the number of standard penetration test (S.P.T) indicate that the consistency of the cohesive soil layer is stiff to hard. The results of the unconfined compression tests as well as the results of natural and dry densities are shown in Table (1).

B.H No	Depth (m.)	Qu (kN/m ²)	γ wet (kN/m ³)	γ dry (kN/m³)
1	5.5 - 6.0	101	19.0	15.2
2	6.0 - 6.5	203	17.5	14.6
2	14.5 - 15.0	208	17.9	12.8

Table 1: Unconfined test results with depth

For the cohesion less soil layer, only one sample was tested, the results of direct shear (C, \emptyset) and number of blows of standard penetration test (S.P.T) indicate that the relative density of this soil is medium to very dense. The results of direct shear test results with depth are shown in table (2).

B.H	Depth	C(kN/m ²)	Ø	γ wet	γ dry
No.	(m.)		Degree	(kN/m³)	(kN/m³)
1	14.0 - 14.5	0	30	19.4	16.0

Table 2: Direct shear tests results with depth

5-2 Consolidation Test Results

The variations of overburden (Po), preconsolidation (Pc) & swelling (Ps) pressures with depth, which are shown in Table (3), indicate that the cohesive soil layer in general is over consolidated.

B.H No.	Depth (m.)	Po kN/m ²	Pc kN/m^2	$\frac{Ps}{kN/m^2}$	Void ratio e _o	Cc	C_r
1	3.5 - 4.0	56	198		1.45	0.54	0.077
1	5.5 - 6.0	90	300		0.66	0.19	0.026
	4.0 - 4.5	70	198	33	0.77	0.32	0.053
2	6.0 - 6.5	88	199	32	0.83	0.29	0.058
2	10.0 - 10.5	121	400		0.85	0.26	0.036
	14.5 - 15.0	146	400	25	1.176	0.48	0.077

Table 3: Overburden, preconsolidation & swelling pressures with depth

5-3 Atterberg limits Test Results

The values of liquid limit (L.L.), plasticity index (P.I.) and moisture content (M.C.) at different depths are shown in the "Record of test result sheets "and "borehole logs" appended.

The results generally indicate that the value of moisture content is closer to the plastic limit than to the liquid limit for both site locations.

5-4 Chemical Properties

The results of the chemical tests for soil and water -amples are shown in the "Test Results Sheet".

The results in general indicate slight sulphate content except BH 1.which indicates high sulphate content at a depth of (14.0 - 14.5m) & (26.0 - 27.0) m.

The sulphate content in general varies from (0.05) to (0.93) percent. The PH value varies from (7.88) to (8.04).

The chloride content varies from (0.08) to (0.23) percent. The calcium carbonate content varies from (28.0) to (34.0) percent.

6- GENERAL RECOMMENDATIONS

No design data was provided by the concerned authority the following recommendation is made according to field and laboratory tests.

6-1 Type OF Footing

Deep pile foundation should be used for the bridge. Large diameter bored piles are recommended. The diameter and allowable working load for the suggested piles at boreholes location are shown in Table (4).

Dia. of piles (m.)	Allowable working load (ton)
1.0	300
1.5	500

Table 4: Details of suggested piles

6-2 Depth of Footings

It is necessary to take into consideration the scour depth in order to specify the depth of pile cap otherwise the top of the cap of piles should be at least (3) m. below N.G.L at each boring point in order to minimize the scour effect of water against the footing during the flooding time.

6-3 Length of Piles

Due to the difference in nature and strength of the soil strata as well as the difference in ground level the tips of piles are placed at least (23) m. in its effective length (below the bottom of the cap).

6-4 Working Load per a Single Pile

For both single and group action of piles, each single pile should not be loaded a working load of more than (300 or 500) tons for piles of (1.0 or 1.5) m. diameter respectively. The working load of piles are based on the strength of concrete cylinder (1:1.5:3) of 6" in diameter and 12" in height cured for 28.0 days in water giving a crushing strength of not less than 3000 psi.

6-5 Loading Test for Piles

Loading test should be performed in the site on a representative number of piles. The lower results in both the working load and the resulting settlement between our recommendation and the loading test results should be adopted.

6-6 Settlement

The maximum expected settlement under piles will be within permissible limits.

6-7 Type of Cement

- Sulphate resisting cement must be used for concrete works in touch with the soil.
- The amount of cement content is 420 kg/m³.
- Maximum free water / cement ratio is 0.45 by weight.
- Vibrators should be used in order to density fresh concrete.
- Minimum concrete cover of (7.5) cm is recommended to protect reinforcement from chlorides effect.

6-8 Dewatering

During construction, the under ground water should be pumped out until the construction reaches ground level.

Ban K. Mohammed Engineer Hisham F. Razouki Head of Soil Dept. Consultant

Taha Yaseen Director of Soil Investigation

rict			% CL		0.22						0.09														0.23		
af dist			Hd		8.03						8.0														7.88		
n al-k:		al Tests	ORG %		0.24																						
ge /Un		Chemica	GYP %												50.7							48.1					
Brid)	CaCo ₃ %				34.																				
Majid			$\overset{\mathrm{SO}_3}{\%}$		0.93		0.05				0.1				23.9							22.4			0.20		
PROJECT:-	B.H.No.:- 1	Decorintion of Soil		Elevation = 11.303 m.	Brown silt with sand &clay	Do	Do (stiff)	Brown lean clay	Loose grey silty sand	Brown lean clay	Hard brown silt	Do	Medium grey sand	Do (dense)	Gypsum soil	Grey silty sand	Very dense grey silty sand	Hard brown fat clay	Do	Very dense grey silty sand	Do	Do (highly gypsum)	Do	Do		Water table =3.25 m .below N.G.S	
	ULTS	Svmhol	manife		ML	ML	ML	CL	SM	CL	ML	ML	\mathbf{SP}	SP	SP	SM	SM	CH	CH	SM	SM	SM	SM	SM			
	F RES	SPT "N"	val.		* * *	* * *	14	* * *	10	* * *	44	53		40	86/12"	* * *	50/5"	50/2"	50/4"	50/6"	01/10"	* * *	50/3"	50/2"			
	TES	SS	9					2.72		2.7											5						
ABS	RD OF	on & is	Gravel %		5]		[0		0]		0]		0]			0]				2]	[0]			0]			
INOL	RECO	istributio r analys	Sand %	No. 1	23		18		80		S		95			85				55	88			65			
RUCJ		e size d Iromete	Silt %	rehole]	55		70				92									38							
NC		Particl Hye	Clay %	Bo	[17		[12		[-20		[]		[-5-			[-15				[5	[-12			[-35			
UCTIO		erty	L.sh %																								
NSTRI ARCI		x Prope	P.I N.																								
& COP		Inde	L.L %					20		15		8						36	31								
FOR		МС	м. с					36		37		31						61	53								
HOUS		th of 1ple	To m.			23		53		24				21											iple		
(OF I L CEI		Dep San	From m.		1.5	2.0	2.5	4.0	4.5	6.0	6.5	8.5	10.5	12.5	14.5	16.5	17.0	19.0	21.0	23.0	25.0	27.0	28.0	30.0	tter sam		
(STR) [ONA]		Twne	2461		0.0	1.5	2.0	3.5	4.0	5.5	6.0	8.0	10.0	12.0	14.0	16.0	16.5	18.5	20.5	22.5	24.5	26.0	27.5	29.5	Wa		
MIN NATI		ıples	Lab No.		3067	3068	3069	3070	3071	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084	3085	3086	3108		
		San	Field No.		-	2	б	4	5	9	٢	8	6	10	11	12	13	14	15	16	17	18	19	20	21		

t				% CL		0.12				0.08																	
listric				Hd		8.03				8.04																	
lajid c			al Tests	ORG %																							
/Al-M			Chemic	GYP %																							
ridge			0	CaCo ₃ %																28.2							
ajid B				$^{SO_3}_{\%}$		0.05				0.15			0.15	0.20						0.88			0.84				
PROJECT:- M	B.H.No.:- 2		Decorintion of Soil		Elevation = 11.135 m.	Brown silt with sand &clay	Brown lean clay	Stiff brown fat clay	Do (very stiff)	Do	Do (hard)	Do	Do (stiff)	Very stiff brown sandy silt	Brown lean clay with silt	Very stiff brown silt with clay	Do (very stiff)	.brown fat clay	Very stiff brown elastic silt	Do (hard)	Hard brown fat clay	Do	Very dense grey silty sand	Do	Do	Do (with gravel)	Water table =3.05 m .below N.G.S
	ST, III		Sumbol	100111 60		ML	CL	CH	CH	CH	CH	CH	CH	ML	CL	ML	ML	CH	ΗМ	ΗМ	CH	CH	SM	SM	SM	SM	
	T RES		SPT "N"	val.		* * *	* * *	16	21	* *	33	* * *	16	20	* *	20	24	* *	27	37	50/6"	* *	50/4"	50/3"	50/4"	50/2"	
	F TES		SC C	3								2.72			2.70			3.72									
ARS			ion & sis	Gravel %		[0			[0					[0		[0		[0			[0		[0			20]	
NOL	RECC		istribut er analy	Sand %	e No. 2	14			5					43		8		2			З		74			ΤŢ	
			e size d Iromete	Silt %	sorehol	71			52					45		77		39			52					1	
NN TSNO			Particl Hye	Clay %		[15			[43	-				[12		[15		[59			[45		[-27			[2	
UCTIC H & C	2	Ì	irty	L.sh %			11																				
NSTRI ARCI			x Prope	P.I %			17	35			39	34	31		19				25			36					
E CON			Inde	L.L %			35	59			64	58	58		36				53			61					
EOB		Ì	C M	Э. Ш			19			26		29			30			42									
HOUS		Ì	h of ple	To n.		1.5	2.0	2.5	4.0	4.5	5.0	6.5	7.0	8.5	10.5	11.0	13.0	15.0	15.5	17.5	19.5	22.0	23.5	25.5	27.5	30.0	
OF F			Dept	From m.		0.0	1.5	2.0	3.5	4.0	4.5	6.0	6.5	8.0	10.0	10.5	12.5	14.5	15.0	17.0	19.0	21.0	23.0	25.0	27.0	29.5	
STRY		Ì	Twee	Jhc		D	N	SS	SS	N	SS	N	SS	SS	N	SS	SS	Ŋ	SS	SS	SS	D	SS	SS	SS	SS	
MINI		Ì	ples	Lab No.		2087	2088	2089	2090	2091	2092	2093	2094	2095	2096	2097	2098	2099	3100	3101	3102	3103	3104	3105	3106	3107	
			Sam	Field No.		-	2	ŝ	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	

A7-100

REPORT NO. 1/1/5 7/2004-BAGHDAD Al - Mahdi Bridge in Samawah

REPORT NO. 1/1/5 7/2004-BAGHDAD

Al - Mahdi Bridge in Samawah

Contents

			Page
1 -	INT	RODUCTION	A6-103
	1-1	Authorization and Scope	A6-103
	1-2	Site Location and Description	A6-103
2 -	FIEI	LD EXPLORATION	A6-103
	2-1	Drilling and Sampling	A6-103
	2-2	Number of Boreholes	A6-103
3 -	LAF	BORATORY TESTING	A6-104
4 -	SUE	SOIL STRATIFICATION	A6-105
	4-1	Soil Profile	A6-105
	4-2	Underground Water Level	A6-105
5 -	EVA	ALUATION AND DISCUSSION OF RESULTS	A6-106
	5-1	Strength of the Soil	A6-106
	5-2	Consolidation Test Results	A6-106
	5-3	Atterberg Limits Test Results	A6-107
	5-4	Chemical Properties	A6-107
6 -	GEN	VERAL RECOMMENDATIONS	A6-107
	6-1	Type of Footing	A6-107
	6-2	Depth of Footings ······	A6-107
	6-3	Length of Piles	A6-108
	6-4	Working Load per a Single Pile	A6-108
	6-5	Loading Test for Piles	A6-108
	6-6	Settlement	A6-108
	6-7	Type of Cement	A6-108
	6-8	Dewatering	A6-108

APPENDICES

Record of Test Results	A6-110
Borehole Logs ·····	A6-112

REPORT NO. 1/1/5 7/2004 - BAGHDAD

Al - Mahdi Bridge in Samawah

1-INTRODUCTION

1-1 Authorization and Scope

The soil investigation for this project has been conducted by the Directorate of Soil Investigation / National Centre for Research & Construction Laboratories (NCCLR) - Baghdad according to the contract with "Dar Al- Handasah "dated at 31/ 10/2004.

The soil investigation described in this report consists of drilling the boreholes, securing representative samples, testing these samples and analyzing the soil conditions with test results.

1-2 Site Location and Description

The site located at Al- Muthanna governorate specifically at Samawah city which is far from Baghdad city of about 271 Km. (south - west). The site is located at the two banks of Al-Atshan River.

2- FIELD EXPLORATION

2-1 Drilling and Sampling

Drilling was done using flight auger. The drilling rig used is of (Acker) type, which is a power driven machine. The diameters of drilled boreholes were (15.0) cm. The disturbed sample (D) were collected from the cutting of auger at any depth .The undisturbed samples marked (U) were obtained using Shelby tubes. Split spoon samples (SS) were obtained from standard split spoon used in a Standard Penetration Test (S.P.T), which was performed for every test boring at different intervals depending on the stratification of the soil.

The actual depth for all samples and the N-Values for S.P.T. are shown in the record of test results sheets of this report.

2-2 Number of Boreholes

Two boring points were assigned and located by the concerned authorities at the locations of abutments (one borehole at each river bank).

These boring points were drilled to the depth of (30.0) m. The locations of these boreholes are marked on the site plan at (Fig.1).

Fig. 1: Site plan for borehole locations

3- LABORATORY TESTING

Each of the soil samples received by the laboratories of the Directorate of Soil Investigations Baghdad was given a laboratory number.

The samples of the borehole were visually examined for initial classification before laboratory testing.

The test program was decided by the soil engineer. The actual test proposed for a particular sample depends on the type of sample (S.S, U & D) and the nature of its material.

A full list of tests conducted for this project is:

A- Classification Tests

- Atterberg limits (L.L, P.L).
- Grain size analysis (sieve and hydrometer analysis).
- Linear shrinkage limits (L.S).
- Unit weight (natural and dry).
- Natural moisture content.

B- Strength and Deformation Tests

- Unconfined compression strength.
- Direct shear test.

C- Consolidation Tests

D- Chemical Tests for Water and Soil Samples

- Sulphate content (SO₃ %).
- Chloride content (Cl %).
- PH value.
- Calcium carbonate (CaCo₃ %)
- Organic matter (ORG%).

The results of these tests are shown in the Record of "Tests Result sheet "appended.

4- SUBSOIL STRATIFICATION

4-1 Soil Profile

According to the unified soil classification system (USCS), the subsoil profile for each borehole location can be summarized as follows: -

Borehole No.1 Location

• The main soil layer consists of cohesive soil of medium to hard brown lean to fat clay (CL,CH) change to clayey silt (ML). This layer extends from (N.G.S) to the end of boring of (30.0) m. depth. Through this layer, thin layer of medium to dense grey silty sand (SM) at different depth with (1.75 - 2.5) m. thickness.

Borehole No.2 Location

• The main soil layer consist of stiff to hard brown lean to fat clay (CL,CH) mixture with silt change to silt with sand or sandy silt (ML) to clayey silt. This layer extends from (N.G.S) to the end of boring of (30.0) m. Through this layer, a lense of very dense grey silty sand of (1.0 - 1.75) m. thick was observed in different depths.

4-2 Underground Water Level

The underground water level was encountered at a depth of (0.25) at the location of borehole (1), and at a depth of (0.12) m. at the location of borehole (2) below natural ground surface (N.G.S) after 24 hours from

drilling termination at the time of boring (November /2004). This level may fluctuate during the coming season due to the fluctuation of water level in the Euphrates River.

5- EVALUATION AND DISCUSSION OF RESULTS

5-1 Strength of the Soil

For the cohesive soil layer, the results of the unconfined compression tests and the number of standard penetration test (S.P.T) indicate that the consistency of the cohesive soil layer is stiff to hard. The results of the unconfined compression tests as well as the results of natural and dry densities are shown in Table (1).

B.H No.	Depth (m.)	Qu (kN/m ²)	γ wet (kN/m ³)	γ dry (kN/m³)
1	1.5 - 2.0	148	18.2	13.5
2	6.0 - 6.5	250	19.2	14.8
2	4.5 - 5.0	200	19.5	15.2

Table 1: Unconfined test results with depth

For the cohesion less soil layer, only one sample was tested, the results of direct shear (C, \emptyset) and number of blows of standard penetration test (S.P.T) indicate that the relative density of this soil is medium to very dense. The results of direct shear test results with depth are shown in Table (2).

Table 2: Direct shear test results with depth

B.H	Depth	$C \\ (kN/m^2)$	Ø	γwet	γ dry
No.	(m.)		Degree	(kN/m ³)	(kN/m³)
1	10.0 - 10.5	0	34	19.4	16.1

5-2 Consolidation Test Results

The variations of overburden (Po), preconsolidation (Pc) pressures with depth, which are shown in Table (3), indicate that the cohesive soil layer in general is over consolidated.

 Table 3: Overburden, preconsolidation pressures with depth

B.H No.	Depth (m.)	Po kN/m ²	Pc kN/m ²	Void ratio e _o	C _c	Cr
1	1.5 - 2.0	18	199	0.84	0.29	0.050
1	6.0 - 6.5	59	550	0.86	0.24	0.062
	1.0 - 1.5	11	380	1.03	0.29	0.017
2	4.5 - 5.0	39	170	0.83	0.13	0.037
	6.5 - 7.0	48	250	0.85	0.34	0.053

5-3 Atterberg limits Test Results

The values of liquid limit (L.L.), plasticity index (P.I.) and moisture content (M.C.) at different depths are shown in the "Record of test result sheets "and "borehole logs" appended.

The results generally indicate that the value of moisture content is closer to the plastic limit than to the liquid limit for both site locations.

5-4 Chemical Properties

The results of the chemical tests for soil and water samples are shown in the "Test Results Sheet".

The results in general indicate slight sulphate content. The sulphate content in general varies from (0.05) to (0.72) percent. The PH value varies from (7.66) to (8.28).

The chloride content varies from (0.09) to (0.66) percent. The organic matter content varies from (0.51) to (0.89) percent.

6- GENERAL RECOMMENDATIONS

No design data was provided by the concerned authority the following recommendation is made according to field and laboratory tests.

6-1 Type of Footing

Deep pile foundation should be used for the bridge. Large diameter bored piles are recommended. The diameter and allowable working load for the suggested piles at boreholes location are shown in Table (4).

Dia. of piles	Allowable working load
(<i>m</i> .) 1.0	(<i>ton</i>) 300
1.5	500

Table 4: Details of suggested piles

6-2 Depth of Footings

It is necessary to take into consideration the scour depth in order to specify the depth of pile cap otherwise the top of the cap of piles should be at least (3) m. below N.G.L at each boring point in order to minimize the scour effect of water against the footing during the flooding time.

6-3 Length of Piles

Examination of soil profile through boreholes shows that the sub-soil strata are predominantly silt and clay. Therefore no other economical way rather than using friction piles in cohesive strata. Each single pile should be at least (16.0) m. in its effective length (below the bottom of the cap).

6-4 Working Load per a Single Pile

For both single and group action of piles, each single pile should not be loaded a working load of more than (300 or 500) tons for piles of (1.0 or 1.5) m. diameter respectively. The working load of piles are based on the strength of concrete cylinder (1:1.5:3) of 6" in diameter and 12" in height cured for 28.0 days in water giving a crushing strength of not less than 3000 psi.

6-5 Loading Test for Piles

Loading test should be performed in the site on a representative number of piles. The lower results in both the working load and the resulting settlement between our recommendation and the loading test results should be adopted.

6-6 Settlement

The maximum expected settlement under piles will be within permissible limits.

6-7 Type of Cement

- Sulphate resisting cement must be used for concrete works in touch with the soil.
- The amount of cement content is 420 kg/m³.
- Maximum free water / cement ratio is 0.45 by weight.
- Vibrators should be used in order to density fresh concrete.
- Minimum concrete cover of (7.5) cm is recommended to protect reinforcement from chlorides effect.

6-8 Dewatering

During construction, the under ground water should be pumped out until the construction reaches ground level.

Ban K. Mohamed Engineer Hisham F. Razouki Head of Soil Dept. Consultant

Taha Yaseen Director of Soil Investigation

			CL %	0 \	0.11			0.09																			0.30	
			Hd		7.9			8.28																			7.88	
		al Tests	ORG %	2	0.51																0.77	0.89						
oridge		hemica	GYP %	2																								
ahdi b		C	CaCo ₃ %	2																	10.9							
T:- M	-1		$^{\circ}_{\circ}$,	0.15			0.05						0.15													0.20	
PROJEC	ULTS B.H.No.:	D	Description of Soll	Elevation =7.688 m	Brown silty lean clay with sand	Do	Do (medium)	Grey silty sand	Do (medium)	Hard brown lean clay	Do	Hard brown clayey silt	Do (hard)	Grey silty sand	Do	Brown fât clay	Dense grey silty sand	Hard brown fat clay	Do	Hard brown clayey silt	Brown fat clay	Do (hard)	Do (hard)	Brown clayey silt	Do (hard)	Hard brown lean clay	Water table=0.25 m. below	C.D.V.
	T RESI	0h.l	oymbol		CL	CL	CL	SM	SM	CL	cL	ML	ML	SM	SM	CH	SM	CH	CH	ML	CH	CH	CH	ML	ML	C		
	F TES	SPT	val.		* * *	* * *	8	* * *	12	48	* * *	43	48	* *	19	* * *	34	46	91/8"	50/5"	* * *	50/6"	50/6"	* * *	50/4"	50/4"		
	RD O	טנ	5			2.69					2.71																	
ABS	RECO	on & is	jravel %	2	[0			[0			0]		0]		0]		0]			0]				0]		0]		
I NOI		stributic analys	and C %	No. 1	15			51			б		Э		74		81			б				8		Э		
RUCT		s size di Irometer	Silt S	orehole	58			34			60		74							68				68		64		
N ONSTI		Particle Hyc	Clay %	- B	[27			[15			[37		[23		[-26		[-19			[29				[24		[33		
JCTIC I & C		rty	L.sh %	2	12		12																					
ARCH		x Prope	P.I %	2	22		28			24		21				33		36			37		39					
è CON RESE		Index	L.L %	2	44		48			45		47				56		58			61		64					
ING & FOR		C IV	М.			35					30			20														
HOUS		h of ple	To		1.5	2.0	2.5	3.5	4.0	5.5	6.5	7.0	8.5	10.5	11.0	13.0	14.5	16.5	18.0	20.0	21.5	22.5	24.5	26.5	28.0	30.0	ole	
L CEN		Dept	From		0.0	1.5	2.0	3.0	3.5	5.0	6.0	6.5	8.0	10.0	10.5	12.5	14.0	16.0	17.5	19.5	21.0	22.0	24.0	26.0	27.5	29.5	ter sam	
STRY		Ē	1 ype		D	N	SS	D	SS	SS	N	SS	SS	N	SS	D	SS	SS	SS	SS	D	SS	SS	D	SS	SS	Wat	
MINI		ples	Lab		3022	3023	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033	3034	3035	3036	3037	3038	3039	3040	3041	3042	3043	3066	
		San	Field		-	0	ŝ	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	

			CL %		0.66			0.09																			
			Hd		7.66			8.15																			
		l Tests	ORG %		0.69																0.54		0.73				
ridge		hemica	GYP %																								
ıhdi bı		0	CaCo ₃ %																		18.8						
Γ:- Ma	2		SO3 %		0.72			0.10				0.05															
PROJECT	S B.H.No.:-	Desorintion of Soil		Elevation =7.555m.	Brown silt with sand	Do	Stiff brown sandy silt	Do (very stiff)	Brown silty lean clay	Hard brown fat clay	Brown silty lean clay	Do (very stiff)	Very dense grey silty sand	Brown fat clay	Very dense grey silty sand	Hard brown lean clay	Grey silty sand	Hard brown silt with clay	Do	Hard brown silty lean clay	Do	Hard brown clayey silt	Do	Do	Brown fat clay	Hard brown clayey silt with sand	Water table=0.12 m. below N.G.S
	SULTS	լովությ	IOUIII ÁC		ML	ML	ML	ML	CL	CH	CL	CL	SM	CH	SM	CL	SM	ML	ML	CL	CL	ML	ML	ML	CH	ML	
	T RE	SPT "N"	val.		* * *	* * *	10	21	* * *	56	* * *	29		* * *	61	41	* * *	50/3"	50/2"	50/3"	* * *	50/4"	50/2"	50/4"	* * *	50/2"	
	F TES	30	5			2.7			2.7		2.69																
ABS	RD O	on & s	Gravel %		[0		[0		[0			[0	[0		[0		[0	[0		[0		[0		[0		[0	
ION L	RECC	istributio r analysi	Sand 6 %	<u>No. 2</u>	19		40		7			ε	75		70		76	4		4		8		8		15	
RUCT		e size di dromete	Silt %	rehole]	73		55		64			67	23		27		_!	81		64		70		72		60	
NC NC		Particl Hy	Clay %	Bo	8]		[5		[34			[30	[2		[3		[-27	[15		[32		[22		[20		[25	
UCTIO		srty	L.sh %							14																	
ARCI		x Prope	P.I %							30	29			32		23					25				30		
c CON RESE		Inde	L.L %							53	50			55		40					50				55		
NG & FOR		C N).M						30		20		15														
IOUSI		h of ple	To n.		1.0	1.5	2.0	3.5	5.0	5.5	7.0	7.5	9.5	11.0	13.0	14.0	15.5	16.0	18.0	20.0	21.0	22.5	24.5	26.5	28.0	30.0	ple
OF H		Dept Sam	From m.		0.0	1.0	1.5	3.0	4.5	5.0	6.5	7.0	9.0	10.5	12.5	13.5	15.0	15.5	17.5	19.5	20.5	22.0	24.0	26.0	27.5	29.5	cer sam]
STRY ONAL		Tuna	- iype		D	N	SS	SS	N	SS	N	SS	SS	D	SS	SS	D	SS	SS	SS	D	SS	SS	SS	D	SS	Wat
MINE		oles	Lab No.		3044	3045	3046	3047	3048	3049	3050	3051	3052	3053	3054	3055	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	
		Sam	Field No.		1	7	б	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23

A7-113

REPORT NO. 1/1/5 9/2004-BAGHDAD Al - Daraji Bridge in Samawah

REPORT NO. 1/1/5 9/2004-BAGHDAD

Al - Daraji Bridge in Samawah

Contents

Page

1 - INTRODUCTION	A6-116
1-1 Authorization and Scope	A6-116
1-2 Site Location and Description	A6-116
2 - FIELD EXPLORATION	A6-116
2-1 Drilling and Sampling	A6-116
2-2 Number of Boreholes	· A6-116
3 - LABORATORY TESTING	• A6-117
4 - SUBSOIL STRATIFICATION	A6-118
4-1 Soil Profile	A6-118
4-2 Underground Water Level	A6-119
5 - EVALUATION AND DISCUSSION OF RESULTS	A6-119
5-1 Strength of the Soil	A6-119
5-2 Consolidation Test Results	· A6-120
5-3 Atterberg Limits Test Results	· A6-120
5-4 Chemical Properties	· A6-120
6 - GENERAL RECOMMENDATIONS	· A6-120
6-1 Type of Footing	A6-121
6-2 Depth of Footings	A6-121
6-3 Length of Piles	· A6-121
6-4 Working Load per a Single Pile	A6-121
6-5 Loading Test for Piles	· A6-122
6-6 Settlement	· A6-122
6-7 Type of Cement ·····	· A6-122
6-8 Dewatering	· A6-122

APPENDICES

Record of Test Results	A6-123
Borehole Logs ······	A6-125

REPORT NO. 1/1/5 9/2004 - BAGHDAD

Al - Daraji Bridge in Samawah

1-INTRODUCTION

1-1 Authorization and Scope

The soil investigation for this project has been conducted by the Directorate of Soil Investigation / National Centre for Research & Construction Laboratories (NCCLR) - Baghdad according to the contract with "Dar Al-Handasah "dated at 31/ 10/2004.

The soil investigation described in this report consists of drilling the boreholes, securing representative samples, testing these samples and analyzing the soil conditions with test results.

1-2 Site Location and Description

The site is located at Al- Muthanna governorate near Al- Khider on Euphrates River. Which is far from Baghdad city of about 300 Km (south - west)? The locations of the drilled boreholes are not similar in level. The site is located at the two banks of Euphrates River.

2- FIELD EXPLORATION

2-1 Drilling and Sampling

Drilling was done using flight auger. The drilling rig used is of (Acker) type, which is a power driven machine. The diameters of drilled boreholes were (15.0) cm. The disturbed sample (D) were collected from the cutting of auger at any depth. The undisturbed samples marked (U) were obtained using Shelby tubes. Split spoon samples (SS) were obtained from standard split spoon used in a Standard Penetration Test (S.P.T), which was performed for every test boring at different intervals depending on the stratification of the soil.

The actual depth for all samples and the N-Values for S.P.T. are shown in the record of test results sheets of this report.

2-2 Number of Boreholes

Two boring points were assigned and located by the concerned authorities at the locations of abutments (one borehole at each river bank). These boring points were drilled to the depth of (30.0) m. The locations of these boreholes are marked on the site plan at (Fig.1).

Fig. 1: Site plan for borehole locations

3- LABORATORY TESTING

Each of the soil samples received by the laboratories of the Directorate of Soil Investigations Baghdad was given a laboratory number.

The samples of the borehole were visually examined for initial classification before laboratory testing.

The test program was decided by the soil engineer. The actual test proposed for a particular sample depends on the type of sample (S.S, U & D) and the nature of its material.

A full list of tests conducted for this project is:

A- Classification Tests

- Atterberg limits (L.L, P.L).
- Grain size analysis (sieve and hydrometer analysis).
- Linear shrinkage limits (L.S).
- Unit weight (natural and dry).
- Natural moisture content.

B- Strength and Deformation Tests

- Unconfined compression strength.
- Direct shear test.

C- Consolidation Test

D- Chemical Tests for Water and Soil Samples

- Sulphate content (SO₃ %).
- Chloride content (Cl %).
- PH value.
- Calcium carbonate (CaCo₃ %)
- Organic matter (ORG%).

The results of these tests are shown in the Record of "Tests Result sheet "appended.

4- SUBSOIL STRATIFICATION

4-1 Soil Profile

According to the unified soil classification system (USCS), the subsoil profile for each borehole location can be summarized as follows: -

Borehole No.1 Location (Al Khidar district)

- The first soil layer consist of stiff brown lean clay (CL) or silt with sand (ML) .This layer extends from (N.G.S) to (3.0) m.
- The second soil layer consists of medium to very dense grey silty sand (SM). This layer extends below the above layer to end of boring of (30.0) m.

Borehole No.2 Location (Al Warka'a district)

• The upper soil layer consists of loose to medium grey to brown silt with clay or sandy silt (ML). This later extends from N.G.S to (5.0) m. depth.

- The second soil layer is medium grey silty sand (SM). This layer observed below the above layer to (11.0) m. depth.
- The third soil layer is noticed below the second layer to (26.0) m. depth which consists of very dense grey moderately gypseous sandy silt (ML) or silty lean clay with sand (CL).
- The last soil layer consists of very dense grey slightly gypseous silty sand (SM). This layer extend to the end of boring of (30.0) m.

4-2 Underground Water Level

The underground water level was encountered below natural ground surface (N.G.S) after 24 hours from drilling termination at the time of boring (November /2004). This level may fluctuate during the coming season due to the fluctuation of water level in the Euphrates River. The elevation of boreholes and the depth of water are shown in Table 1.

B.H No.	Elevation (m.)	Depth of W.T (m.)
1	9.596	3.6
2	6.268	0.3

 Table 1: Elevation of boreholes & the Depth of Water Table

5- EVALUATION AND DISCUSSION OF RESULTS

5-1 Strength of the Soil

For the cohesive soil layer, only one sample was tested, the results of the unconfined compression tests and the number of standard penetration test (S.P.T) indicate that the consistency of the cohesive soil layer is stiff to hard. The results of the unconfined compression tests as well as the results of natural and dry densities are shown in Table (2).

Table 2:	Unconfined	test results	with depth
----------	------------	--------------	------------

B.H	Depth	Qu	γwet	γ dry
No.	(m.)	(kN/m ²)	(kN/m ³)	(kN/m³)
1	1.5 - 2.0	326	18.5	15.0

For the cohesion less soil layer, the results of direct shear (C, \emptyset) and number of blows of standard penetration test (S.P.T) indicate that the relative density of this soil is medium to very dense. The results of direct shear test results with depth are shown in table (3).

B.H No.	Depth (m.)	$C \\ (kN/m^2)$	Ø Degree	γwet (kN/m ³)	γ dry (kN/m ³)
1	16.0 - 17.0	0	37	19.4	16.4
2	1.0 - 1.5	0	38	19.4	14.5

Table 3: Direct shear tests results with depth

5-2 Consolidation Test Results

The variations of overburden (Po), preconsolidation (Pc) & swelling (Ps) pressures with depth, which are shown in Table (4), indicate that the cohesive soil layer in general is over consolidated.

Table 4: Overburden, preconsolidation & swelling pressures with depth

B.H No.	Depth (m.)	Po kN/m ²	Pc kN/m^2	$\frac{Ps}{kN/m^2}$	Void ratio e _o	C_c	C_r
1	1.5 - 2.0	31	250	30	0.87	0.28	0.042
1	6.5 - 7.0	98	170		0.81	0.22	9.033

5-3 Atterberg limits Test Results

The values of liquid limit (L.L.), plasticity index (P.I.) and moisture content (M.C.) at different depths are shown in the "Record of test result sheets "and "borehole logs" appended.

The results generally indicate that the value of moisture content is closer to the plastic limit than to the liquid limit for both site locations.

5-4 Chemical Properties

The results of the chemical tests for soil and water samples are shown in the "Test Results Sheet".

The results in general indicate slight sulphate content. Except B.H.2 which indicate slight to moderately gypseous content from depth (13.0) m. down to (30.0) m. The sulphate content in general varies from (0.05) to (9.46) percent. The PH value varies from (7.8) to (8.45).

The chloride content varies from (0.09) to (0.53) percent. The organic matter content varies from (0.8) to (0.14) percent. The Calcium carbonate varies from (12.4) to (13.5) percent.

6- GENERAL RECOMMENDATIONS

No design data was provided by the concerned authority. The following recommendations are made according to field and laboratory tests.

6-1 Type of Footing

Deep pile foundation should be used for the bridge. Large diameter bored piles are recommended. The diameter and allowable working load for the suggested piles at boreholes location are shown in Table (4).

Dia. of piles (m.)	Allowable working load (ton)
1.0	300
1.5	500

Table 5: Details of suggested piles

6-2 Depth of Footings

It is necessary to take into consideration the scour depth in order to specify the depth of pile cap otherwise the top of the cap of piles should be at least (3) m. below N.G.L at each boring point in order to minimize the scour effect of water against the footing during the flooding time.

6-3 Length of Piles

Due to the difference in nature and strength of the soil strata as well as the difference in ground level the tips of piles are placed in different levels. Table 6. Shows the pile tip depth below the ground level at each borehole location.

 Table 6: Depth of pile below the ground level

B.H No.	Depth of pile tip below the ground elevation
1	20
2	26

6-4 Working Load per a Single Pile

For both single and group action of piles, each single pile should not be loaded a working load of more than (300 or 500) tons for piles of (1.0 or 1.5) m. diameter respectively. The working load of piles are based on the strength of concrete cylinder (1:1.5:3) of 6" in diameter and 12" in height cured for 28.0 days in water giving a crushing strength of not less than 2200 ton/m².

6-5 Loading Test for Piles

Loading test should be performed in the site on a representative number of piles. The lower results in both the working load and the resulting settlement between our recommendation and the loading test results should be adopted.

6-6 Settlement

The maximum expected settlement under piles will be within permissible limits.

6-7 Type of Cement

- Sulphate resisting cement must be used for concrete works in touch with the soil.
- The amount of cement content is 420 kg/m^3 .
- Maximum free water / cement ratio is 0.45 by weight.
- Vibrators should be used in order to density fresh concrete.
- Minimum concrete cover of (7.5) cm is recommended to protect reinforcement from chlorides effect

6-8 Dewatering

During construction, the under ground water should be pumped out until the construction reaches ground level.

Ban K. Mohammed Engineer Hisham F. Razouki Head of Soil Dept. Consultant

Taha Yaseen Director of Soil Investigation
	MINIS	STRY ONAI	(OF I L CEN	HOUS	FOR	& COI RESE	NSTR ARC	UCT H & (ION	TRUC	NOIL	LABS				PROJE	CT:-]	Daraji l	bridge			
											RECO	IRD OI	F TESI	FRESU	STIC	B.H.No.	:- -					
Sam	oles	Time	Dept Sam	th of 1ple	UM	Inde	x Prop	erty	Parti H	cle size ydrome	distribu ter analy	tion & /sis	SC	SPT "N"	Sumbol	Decorintion of Coil		0	Chemic	al Tests		
Field No.	Lab No.	1 ype	From m.	To n.		L.L %	P.I %	L.sh %	Clay %	Silt %	Sand %	Gravel %	3	val.	IOUIIIKe	noc to nondinesor	$^{\rm SO_3}_{\rm \sim}$	CaCo ₃ %	GYP %	ORG %	Hd	CL %
										Boreh	ole No. 1					Elevation =9.596 m						
П	3109	D	0.0	1.5			_		[13	69	18	[0		* * *	ML	Brown silt with sand	0.85				7.89	0.24
0	3110	Ŋ	1.5	2.0	23	47	23						2.72	* * *	CL	Brown lean clay						
ŝ	3111	SS	2.0	2.5		37	15							16	CL	Do (stiff)						
4	3112	SS	3.5	4.0			_		<u> </u>	32-	68	[0		24	SM	Medium grey silty sand	0.08				8.45	0.09
5	3113	SS	5.5	6.0			_							34	SM	Do (dense)						
9	3114	N	6.5	7.0	30	26	6						2.68	* * *	SM	Top: do						
							_								ML	Bott: brown silt with sand						
٢	3115	SS	7.0	7.5			_		' 	17-	83	[0]		41	SM	Dense grey silty sand						
8	3116	SS	9.0	9.5			_							52	SM	Do (very dense)	0.05					
6	3117	SS	10.5	11.0			_		· · · 	20-	80	[0]		35	SM	Do (dense)						
10	3118	SS	12.5	13.0			_							51	SM	Do (very dense)						
11	3119	SS	14.5	15.0			_		·7 —	21-	79	[0]		64	SM	Do						
12	3120	D	16.0	17.0	18		_							* * *	SM	Do						
13	3121	SS	19.0	19.5			_							50/6"	SM	Do						
14	3122	SS	20.5	21.0			_							50/6"	SM	Do						
15	3123	SS	22.5	23.0			_		· · ·	32-	68	[0]		50/4"	SM	Do						
16	3124	SS	24.5	25.0			_							50/2"	SM	Do						
17	3125	D	26.5	27.0			_							* * *	SM	Do						
18	3126	SS	28.0	28.5			_		- ''	22-	78	[0]		50/1"	SM	Do						
19	3127	SS	29.5	30.0			_							50/0.5"	SM	Do						
							_															
		_	_				_									Water table=3.6 m. below N C S						
							_									6.0.1						

ΣŻ	INISTI NOITV	RY O	F HO	USING FR FOF	& CO	NST FAR	RUCT CH & (ION	TRUC		LABS				PROJEC	CT:-D	araji b	ridge			
1										RECO	RD OF	TEST	RESU	STI	B.H.No.:	- 2					
Sample	S.	D S	Septh of Sample		Ind	ex Pro	perty	Partic Hy	cle size ydrome	distribu ter analy	tion & /sis	SS	SPT "W"	Sumbol	Decorintion of Soil		0	hemical	l Tests		
Field L No. N	ab ¹ y ₁ lo.	Fro m	m T	о.	L.L %	P.I %	L.sh %	Clay %	Silt %	Sand %	Gravel %	9	val.	months		SO_3	CaCo ₃ %	GYP %	ORG %	Ηd	% CL
									Boreh	ole No.	2				Elevation =6.268m.						
1 31	28 D	0.0	0	0				[15	80	5	[0]		* * *	ML	Brown silt with clay	0.10				7.8	0.53
2 31	29 SS	S 1.(0 1	5 34				[2	60	38	[0		10	ML	Loose grey sandy silt						
3 31	30 SS	S 2.:	5 3.	0					_				15	ML	Do (medium)	0.10				8.45	0.30
4 31	31 SS	S 4.(0 4.	5									18	ML	Do (medium)						
5 31	32 SS	S 6.(0 6.	5				[-2	2-	78	[0		21	SM	Medium grey silty sand						
6 31	33 SS	S 8.(0 8.	5					_				23	SM	Do						
7 31	34 SS	S 10.	.0 10	S									28	SM	Do						
8 31	35 D	12.	.0 13	0	38	20		[26	46	28	[0]		* * *	CL	Brown silty lean clay with sand						
9 31	36 SS	S 13.	.5 14	0.				[2	64	34	[0]		50/3"	ML	Very dense grey moderately gypseous sandy silt	9.46	13.5		0.08		
10 31	37 SS	S 15.	.5 16	0	32	15			_				50/2"	ML	Do						
11 31	38 SS	S 17.	.5 18	0	37	16							50/2"	ML	Do	9.18					
12 31	39 SS	S 19.	.5 20	0.				[10	45	45	[0]		50/3"	ML	Do						
13 31	40 D	21.	.5 22	Ś									* * *	ML	Do	6.67	12.4				
14 31	41 SS	S 22.	.5 23	0.				[2	78	20	[0		50/2"	ML	Do						
15 31	42 SS	S 24.	.5 25	0					_				50/3"	ML	Do						
16 31	43 SS	3 26.	.5 27	0				[10	32	53	5]		50/2"	SM	Very dense grey slightly gypseous silty sand	2.67			0.14		
17 31	44 D	27.	.0 28	0.									* * *	SM	Do						
18 31	45 SS	S 29.	.5 30	0] ċ	-2-	57	8]		50/2"	SM	Do						
															Water table=0.30 m. below N C S						

